WO2021106285A1 - 漏電検出装置、車両用電源システム - Google Patents

漏電検出装置、車両用電源システム Download PDF

Info

Publication number
WO2021106285A1
WO2021106285A1 PCT/JP2020/031046 JP2020031046W WO2021106285A1 WO 2021106285 A1 WO2021106285 A1 WO 2021106285A1 JP 2020031046 W JP2020031046 W JP 2020031046W WO 2021106285 A1 WO2021106285 A1 WO 2021106285A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
state
detection device
resistor
leakage detection
Prior art date
Application number
PCT/JP2020/031046
Other languages
English (en)
French (fr)
Inventor
中山 正人
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to US17/756,316 priority Critical patent/US20220413061A1/en
Priority to JP2021561161A priority patent/JPWO2021106285A1/ja
Priority to EP20894879.4A priority patent/EP4068545A4/en
Priority to CN202080081670.4A priority patent/CN114746762A/zh
Publication of WO2021106285A1 publication Critical patent/WO2021106285A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/04Details with warning or supervision in addition to disconnection, e.g. for indicating that protective apparatus has functioned
    • H02H3/044Checking correct functioning of protective arrangements, e.g. by simulating a fault
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/16Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass
    • H02H3/17Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass by means of an auxiliary voltage injected into the installation to be protected

Definitions

  • the present invention relates to an earth leakage detection device for detecting an earth leakage of a load insulated from the ground, and a power supply system for a vehicle.
  • HVs hybrid vehicles
  • PSVs plug-in hybrid vehicles
  • EVs electric vehicles
  • traction battery auxiliary battery
  • auxiliary battery generally a 12V output lead battery
  • a high-voltage circuit including a high-voltage drive battery, an inverter, and a traveling motor is insulated from the vehicle body (chassis ground).
  • Y capacitors are inserted between the positive wiring on the vehicle side of the high-voltage circuit and the chassis ground, and between the negative wiring on the vehicle side of the high-voltage circuit and the chassis ground, respectively, and are supplied to the load on the vehicle side from the high-voltage drive battery.
  • the power supply is stabilized.
  • An earth leakage detection device that monitors the insulation resistance between the high-power circuit and the chassis ground to detect an earth leakage is installed.
  • a pulse voltage is applied to the positive electrode terminal or the negative electrode terminal of the drive battery via a resistor and a coupling capacitor, and the voltage at the connection point between the resistor and the coupling capacitor is measured. Detects the presence or absence of electric leakage.
  • a pulse voltage having a frequency sufficiently lower than the frequency at the time of leakage detection is applied, the applied voltage is compared with the measured voltage, and both are used.
  • There is a method of determining normal if they are close to each other see, for example, Patent Document 1).
  • the present disclosure has been made in view of such a situation, and an object thereof is to provide a technique for performing a failure diagnosis of an earth leakage detection device with high accuracy.
  • the leakage detection device of a certain aspect of the present disclosure includes a coupling capacitor whose one end is connected to the current path of the power storage unit connected to the load in a state of being insulated from the ground, and a period.
  • a first voltage output unit that generates a periodic voltage that changes in a uniform manner and applies it to the other end of the coupling capacitor via a first resistor, a second voltage output unit that outputs a fixed voltage, and the coupling capacitor.
  • Between the second resistor and the third resistor connected in series with the connection point between the first resistor and the second voltage output unit, and between the second resistor and the third resistor.
  • the current of the power storage unit is based on the voltage measured by the voltage measuring unit. Based on the leakage determination unit that determines the presence or absence of leakage between the path and the ground, and the voltage measured by the voltage measurement unit during the period in which two types of fixed voltages are sequentially applied to the voltage division point. It is provided with a diagnostic unit for determining whether or not the current leakage detection device is normal.
  • FIG. 6 (a)-(d) is a diagram showing an example of a measurement waveform at the time of failure diagnosis of the leakage detection device according to the embodiment. It is a figure which shows an example of the leakage path of the power-source system including the leakage detection device which concerns on embodiment.
  • 8 (a)-(d) is a diagram showing an example of a measurement waveform at the time of failure diagnosis of the leakage detection device according to the first modification.
  • 9 (a)-(d) is a diagram showing an example of a measurement waveform at the time of failure diagnosis of the leakage detection device according to the second modification.
  • FIG. 1 is a diagram for explaining a configuration of a power supply system 5 including an earth leakage detection device 10 according to a comparative example.
  • the power supply system 5 is mounted on an electric vehicle.
  • the power supply system 5 is provided separately from the auxiliary battery (usually, a lead battery having a 12V output is used) in the electric vehicle.
  • the power supply system 5 includes a high-voltage power storage unit 20 and an earth leakage detection device 10.
  • the power storage unit 20 includes a plurality of cells E1-En connected in series.
  • As the cell a lithium ion battery cell, a nickel hydrogen battery cell, a lead battery cell, an electric double layer capacitor cell, a lithium ion capacitor cell, or the like can be used.
  • a lithium ion battery cell nominal voltage: 3.6-3.7 V
  • the electric vehicle is equipped with an inverter 2 and a motor 3 as a high voltage load.
  • the positive electrode of the power storage unit 20 and one end of the inverter 2 are connected by the positive wiring Lp, and the negative electrode of the power storage unit 20 and the other end of the inverter 2 are connected by the negative wiring Lm.
  • the positive main relay MRp is inserted into the positive wiring Lp, and the negative main relay MRm is inserted into the negative wiring Lm.
  • the positive side main relay MRp and the negative side main relay MRm function as contactors for controlling conduction / disconnection between the power storage unit 20 and the high voltage load in the electric vehicle. It is also possible to use a semiconductor switch with high withstand voltage and high insulation instead of the relay.
  • the inverter 2 is a bidirectional inverter connected between the power storage unit 20 and the motor 3.
  • the inverter 2 converts the DC power supplied from the power storage unit 20 into AC power and supplies it to the motor 3 during power running. At the time of regeneration, the AC power supplied from the motor 3 is converted into DC power and supplied to the power storage unit 20.
  • the motor 3 for example, a three-phase AC motor is used.
  • the motor 3 rotates according to the AC power supplied from the inverter 2 during power running. At the time of regeneration, the rotational energy due to deceleration is converted into AC power and supplied to the inverter 2.
  • the power storage unit 20 is mounted on the electric vehicle in a state of being insulated from the chassis ground of the electric vehicle.
  • the auxiliary battery is mounted on the electric vehicle with the negative electrode conducting with the chassis ground.
  • From the positive main relay MRp the positive wiring Lp on the inverter 2 side and the chassis ground are connected via the positive Y capacitor Cp.
  • the negative wiring Lm on the inverter 2 side and the chassis ground are connected via the negative side Y capacitor Cm.
  • the positive Y capacitor Cp and the negative Y capacitor Cm insulate the positive wiring Lp and the chassis ground, and the negative wiring Lm and the chassis ground in a direct current manner, and stabilize the voltages of the positive wiring Lp and the negative wiring Lm, respectively. Has the effect of causing.
  • the intermediate potential of the power storage unit 20 is maintained near the potential of the chassis ground.
  • the positive electrode potential of the power storage unit 20 is maintained at around + 125V and the negative electrode potential is maintained at around -125V.
  • the insulation state between the positive wiring Lp and the chassis ground is represented by the positive leakage resistance Rlp
  • the insulation state between the negative wiring Lm and the chassis ground is represented by the negative leakage resistance Rlm.
  • the leakage detection device 10 includes a coupling capacitor Cc, a first resistor R1, a first operational amplifier OP1, a second resistor R2, a smoothing capacitor C1, a second operational amplifier OP2, and a control unit 11.
  • the control unit 11 includes an oscillation unit 11a, a voltage measurement unit 11b, an earth leakage determination unit 11c, and a diagnosis unit 11d.
  • the control unit 11 can be composed of, for example, a microcomputer and a non-volatile memory (for example, EEPROM, flash memory).
  • One end of the coupling capacitor Cc is connected to the current path of the power storage unit 20.
  • one end of the coupling capacitor Cc is connected to the negative electrode of the power storage unit 20.
  • One end of the coupling capacitor Cc may be connected to the positive electrode of the power storage unit 20, or may be connected to any node of a plurality of cells E1-En in the power storage unit 20.
  • the other end of the coupling capacitor Cc is connected to the output end of the voltage output unit via the first resistor R1.
  • the connection point between the other end of the coupling capacitor Cc and the first resistor R1 is the measurement point A.
  • another impedance element may be used instead of the 1st resistor R1.
  • an aluminum electrolytic capacitor that can increase the capacity at a relatively low cost is used for the coupling capacitor Cc.
  • the aluminum electrolytic capacitor has polarity, and in FIG. 1, the positive electrode of the aluminum electrolytic capacitor is connected to the measurement point A, and the negative electrode of the aluminum electrolytic capacitor is connected to the negative electrode of the power storage unit 20.
  • the coupling capacitor Cc may be configured by connecting a plurality of aluminum electrolytic capacitors in series. In this case, even if one capacitor is short-circuited, DC insulation can be maintained by the remaining capacitors.
  • the voltage output unit generates a periodic voltage that changes periodically, and applies the generated periodic voltage to the other end of the coupling capacitor Cc via the first resistor R1.
  • a periodic voltage that changes periodically, and applies the generated periodic voltage to the other end of the coupling capacitor Cc via the first resistor R1.
  • the voltage output unit includes the oscillation unit 11a and the first operational amplifier OP1.
  • the oscillating unit 11a includes a multivibrator and a local oscillator, and generates a rectangular wave having a preset frequency.
  • the rectangular wave voltage generated by the oscillating unit 11a is input to the non-inverting input terminal of the first operational amplifier OP1.
  • the output terminal of the first operational amplifier OP1 is connected to the first resistor R1.
  • the inverting input terminal and the output terminal of the first operational amplifier OP1 are connected.
  • the positive power supply terminal of the first operational amplifier OP1 is connected to the first fixed potential (power supply potential Vcc), and the negative power supply terminal of the first operational amplifier OP1 is connected to the second fixed potential (ground potential GND).
  • Vcc power supply potential
  • GND ground potential
  • the first operational amplifier OP1 functions as a voltage follower that has an amplification factor of 1 and only performs impedance conversion. Instead of the first operational amplifier OP1, an AND gate in which one input terminal is connected to the first fixed potential or an OR gate in which one input terminal is connected to the second fixed potential may be used.
  • the first operational amplifier OP1 can be replaced as long as it is an element that functions as a buffer that separates the impedances of the control unit 11 and the measurement point A.
  • the measurement point A is connected to the non-inverting input terminal of the second operational amplifier OP2 via the second resistor R2.
  • the inverting input terminal and output terminal of the second operational amplifier OP2 are connected.
  • the second operational amplifier OP2 also functions as a voltage follower that has an amplification factor of 1 and performs only impedance conversion.
  • a smoothing capacitor C1 is connected between the non-inverting input terminal of the second operational amplifier OP2 and the second fixed potential (ground potential GND). The smoothing capacitor C1 removes noise of the voltage input to the non-inverting input terminal of the second operational amplifier OP2.
  • the second operational amplifier OP2 outputs the voltage at the measurement point A to the voltage measuring unit 11b.
  • the voltage measuring unit 11b measures the voltage at the measuring point A.
  • the voltage measuring unit 11b includes an A / D converter, and the A / D converter includes an analog voltage at the measurement point A at a timing synchronized with the timing of the rising edge and the falling edge of the rectangular wave voltage generated by the oscillating unit 11a. Is sampled and the sampled analog voltage is converted to a digital value.
  • the voltage sampled at the timing of the rising edge of the square wave voltage corresponds to the lower peak value of the measured voltage waveform, and the voltage sampled at the timing of the falling edge of the square wave voltage is the measured voltage waveform. Corresponds to the upper peak value of.
  • the voltage measuring unit 11b outputs the voltage at the measurement point A to the leakage determination unit 11c and the diagnosis unit 11d.
  • the electric leakage determination unit 11c determines whether or not there is an electric leakage between the current path of the power storage unit 20 and the chassis ground based on the voltage at the measurement point A measured by the voltage measuring unit 11b. If the peak peak value indicated by the difference between the upper peak value and the lower peak value is smaller than the set value, the electric leakage determination unit 11c determines that an electric leakage has occurred between the current path of the power storage unit 20 and the chassis ground. To do.
  • the set value is determined based on the peak value of the measured voltage waveform at the time of leakage, which is derived in advance by experiments and simulations by the designer.
  • FIG. 2 is a diagram showing an example of an applied pulse waveform and a measured voltage waveform.
  • the pulse waveform applied from the voltage output unit to the measurement point A has a high-side potential of 5 V and a low-side potential of 0 V.
  • the earth leakage determination unit 11c identifies the upper peak value Vp1 and the lower peak value Vp2 of the voltage waveform measured during the period when the pulse voltage is applied to the measurement point A, and sets the upper peak value Vp1 and the lower peak value Vp2. The presence or absence of electric leakage is determined based on the peak value defined by the difference between.
  • the diagnosis unit 11d determines whether or not the leakage detection device 10 is normal based on the voltage measured by the voltage measurement unit 11b. That is, the presence or absence of failure of the leakage detection device 10 itself is diagnosed.
  • a pulse voltage having a frequency sufficiently lower than that at the time of earth leakage detection is applied to the measurement point A. For example, a pulse voltage of 10 Hz may be applied when the leakage is detected, and a pulse voltage of 1 Hz may be applied when the fault of the leakage detection device 10 is diagnosed.
  • FIG. 3 (a)-(d) are diagrams showing an example of the measurement waveform at the time of failure diagnosis of the leakage detection device 10 according to the comparative example.
  • FIG. 3A shows an example of the measurement waveform when the leakage detection device 10 is normal. If the paths of the oscillating unit 11a, the first operational amplifier OP1, the first resistor R1, the second resistance R2, the second operational amplifier OP2, and the voltage measuring unit 11b are normal, the pulse voltage output from the oscillating unit 11a is measured as it is. Measured in part 11b. The measured waveform is dull due to the influence of the smoothing capacitor C1.
  • the voltage measured during the high level period of the applied pulse voltage is a voltage near the first reference voltage (5V in this comparative example), and the voltage measured during the low level period is the second reference voltage.
  • the leakage detection device 10 is determined to be normal.
  • the leakage current increases.
  • the leakage current tends to increase if it is left for a long time in a no-load state.
  • FIG. 4 is a diagram showing an example of a leak path of the power supply system 5 including the leakage detection device 10 according to the comparative example.
  • a minute leak current flows between the current path of the power storage unit 20 and the chassis ground with a leakage resistance of several tens of M ⁇ to 100 M ⁇ even in a normal state. Even when the positive side main relay MRp and the negative side main relay MRm are off (open), a minute leak current flows between the current path on the power storage unit 20 side and the chassis ground (see leakage resistance Rlb).
  • the insulation resistance of the coupling capacitor Cc decreases, a minute leakage current flows through the paths of the first operational amplifier OP1, the first resistor R1, the coupling capacitor Cc, the power storage unit 20, and the leakage resistance Rlb.
  • the resistance value of the first resistor R1 is set to 200 k ⁇
  • the insulation resistance of the coupling capacitor Cc drops to about 20 M ⁇
  • the measured waveform of the pulse voltage generated by the 5 V power supply is affected by the leak current. Decreases by about 1V.
  • FIG. 3B shows an example of the measurement waveform when a minute leak current is flowing from the first operational amplifier OP1 to the chassis ground.
  • the circuit itself of the leakage detection device 10 is in a normal state.
  • the entire measurement waveform is reduced due to the influence of the leak current.
  • the measured voltage during most of the low-side period of the applied pulse voltage is set to 0 V. It is clamped.
  • FIG. 3C shows an example of the measurement waveform when the leakage detection device 10 is abnormal.
  • the voltage near 0 V is measured in both the high level period and the low level period of the applied pulse voltage.
  • the diagnostic unit 11d determines that the leakage detection device 10 is abnormal when the voltage measured during the high level period of the applied pulse voltage deviates from the first reference voltage (5V in this comparative example) by a specified value or more. To do. For example, when any of the paths of the oscillation unit 11a, the first operational amplifier OP1, the first resistance R1, the second resistance R2, the second operational amplifier OP2, and the voltage measurement unit 11b is broken, the high level of the applied pulse voltage is obtained. During the period, the voltage near 0V will be measured. In addition, when a short failure or an open failure occurs in any of the circuit elements, the voltage measured during the high level period deviates significantly from the first reference voltage.
  • FIG. 3D shows an example of the measurement waveform when the constant of the circuit element used in the leakage detection device 10 changes.
  • the measured waveform of the applied pulse voltage hardly changes as compared with the normal state. For example, even if the resistance value of the first resistor R1 is lowered from 200 k ⁇ to 100 k ⁇ due to deterioration, the measured waveform of the pulse voltage hardly changes.
  • the diagnostic method of the leakage detection device 10 according to the comparative example is greatly affected by a minute leakage current flowing from the first operational amplifier OP1 to the chassis ground.
  • the diagnostic unit 11d since the circuit itself of the earth leakage detection device 10 is in a normal state, it is expected that the diagnostic unit 11d originally determines that the earth leakage detection device 10 is normal.
  • the measured voltage during the high-side period of the applied pulse voltage is around 4V, which greatly deviates from the original theoretical value of 5V.
  • FIG. 3D it is difficult to detect a change in the constant of the circuit element by the diagnostic method of the leakage detection device 10 according to the comparative example. Specifically, it is difficult to detect the deterioration of the first resistor R1.
  • FIG. 5 is a diagram for explaining the configuration of the power supply system 5 including the earth leakage detection device 10 according to the embodiment.
  • the third resistor R3 and the third operational amplifier OP3 are added.
  • the control unit 11 further includes a constant voltage output unit 11e.
  • the constant voltage output unit 11e can output two types of fixed voltages, a first reference voltage (5V in the present embodiment) and a second reference voltage (0V in the present embodiment).
  • the oscillation unit 11a and the first operational amplifier OP1 form the first voltage output unit
  • the constant voltage output unit 11e and the third operational amplifier OP3 form the second voltage output unit
  • the first voltage output unit is also configured to be able to output two types of fixed voltages, a first reference voltage and a second reference voltage.
  • the second resistor R2 and the third resistor R3 are connected in series between the connection point A between the coupling capacitor Cc and the first resistor R1 and the second voltage output unit. More specifically, the constant voltage output from the constant voltage output unit 11e is input to the non-inverting input terminal of the third operational amplifier OP3. The output terminal of the third operational amplifier OP3 is connected to the third resistor R3. The inverting input terminal and the output terminal of the third operational amplifier OP3 are connected. The third operational amplifier OP3 also functions as a voltage follower having an amplification factor of 1 and performing only impedance conversion.
  • the voltage dividing point voltage of the second resistor R2 and the third resistor R3 is input to the non-inverting input terminal of the second operational amplifier OP2. That is, the voltage measuring unit 11b measures the voltage at the measuring point A with the compressed voltage by measuring the voltage dividing point voltage of the second resistor R2 and the third resistor R3.
  • the earth leakage determination unit 11c calculates the earth leakage resistance value with reference to the earth leakage resistance conversion table based on the voltage amplitude value measured by the voltage measurement unit 11b, and the earth leakage between the current path of the electricity storage unit 20 and the chassis ground. Judge the presence or absence of.
  • the period during which the voltage at the measurement point A deviates from the measurement range (0 to 5 V in the present embodiment) can be reduced by dividing the voltage at the measurement point A for measurement. That is, it is possible to reduce the period during which the leakage determination cannot be performed.
  • the diagnostic unit 11d determines whether or not the leakage detection device 10 is normal based on the voltage measured by the voltage measuring unit 11b during the period in which two types of fixed voltages are sequentially output from the first voltage output unit. Diagnose. Specifically, the diagnostic unit 11d calculates the difference between the voltage measured in the first state and the voltage measured in the second state during the period, and when the difference is within the set range, the leakage detection device 10 is operated. Judge as normal. The first state and the second state are continued for several seconds (for example, 4 seconds), respectively.
  • FIGS. 6 (a)-(d) are diagrams showing an example of the measurement waveform at the time of failure diagnosis of the leakage detection device 10 according to the embodiment.
  • the resistance value of the first resistor R1 is set to 200 k ⁇
  • the resistance value of the second resistor R2 is set to 1000 k ⁇
  • the resistance value of the third resistor R3 is set to 1000 k ⁇ .
  • the first voltage output unit outputs the first reference voltage (5V in the present embodiment)
  • the second voltage output unit outputs the second reference voltage (0V in the present embodiment)
  • FIG. 6A shows an example of the measurement waveform when the leakage detection device 10 is normal. If the first voltage output unit, the first resistance R1, the second resistance R2, the third resistance R3, the second voltage output unit, the second operational amplifier OP2, and the voltage measurement unit 11b are normal, about 2.27V in the first state. Is measured, and about 2.73V is measured in the second state. The theoretical value of the measured voltage in the first state and the theoretical value of the measured voltage in the second state are calculated by the following (Equation 1) and (Equation 2).
  • the diagnostic unit 11d calculates the difference voltage ⁇ V between the two. In this example, it is 0.46V. If the difference voltage ⁇ V is within the set range, the diagnosis unit 11d determines that the leakage detection device 10 is normal.
  • the setting range is set to a range in which the optimum accuracy can be obtained based on the data obtained by experiments and simulations by the designer.
  • FIG. 7 is a diagram showing an example of a leak path of the power supply system 5 including the leakage detection device 10 according to the embodiment.
  • FIG. 6B shows an example of the measurement waveform when a minute leak current is flowing from the first operational amplifier OP1 to the chassis ground.
  • the circuit itself of the leakage detection device 10 is in a normal state.
  • the entire measurement waveform is reduced by 1 V due to the influence of the leak current.
  • About 1.27V is measured in the first state and about 1.72V is measured in the second state.
  • the difference voltage ⁇ V between the two is 0.46V.
  • FIG. 6C shows an example of the measurement waveform when the leakage detection device 10 is abnormal.
  • the voltage near 0V is measured in both the first state and the second state.
  • the difference voltage ⁇ V between the two is 0V. Since the difference voltage ⁇ V deviates from the predetermined set range (center value is 0.46V), the diagnosis unit 11d determines that the leakage detection device 10 is abnormal.
  • FIG. 6D shows an example of the measurement waveform when the constant of the circuit element used in the leakage detection device 10 changes.
  • the example shown in FIG. 6D shows a measurement waveform when the resistance value of the first resistor R1 decreases from 200 k ⁇ to 100 k ⁇ due to deterioration. Approximately 2.38V is measured in the first state and approximately 2.62V is measured in the second state. When the resistance value of the first resistor R1 is 100 k ⁇ , the theoretical value of the measured voltage in the first state and the theoretical value of the measured voltage in the second state are calculated by the following (Equation 3) and (Equation 4).
  • the difference voltage ⁇ V between the two is 0.24V. Since the difference voltage ⁇ V deviates from the predetermined set range (center value is 0.46V), the diagnosis unit 11d determines that the leakage detection device 10 is abnormal.
  • the failure diagnosis of the leakage detection device 10 can be performed with high accuracy. Specifically, even when a minute leak current is flowing from the first operational amplifier OP1 to the chassis ground, the difference voltage ⁇ V becomes almost the same value as in the normal state as shown in FIG. 6 (b). Therefore, the failure diagnosis of the leakage detection device 10 can be performed with almost no influence of the minute leakage current. In this respect, as shown in FIG. 3B, in the comparative example, it is greatly affected by a minute leak current. In the present embodiment, it is not necessary to take a large margin of the setting range, and it is possible to reduce oversight of minor defects of the circuit element.
  • (Modification example 1) 8 (a)-(d) is a diagram showing an example of a measurement waveform at the time of failure diagnosis of the leakage detection device 10 according to the first modification.
  • the configuration of the leakage detection device 10 is the same as the configuration shown in FIG.
  • the resistance value of the first resistor R1 is set to 200 k ⁇
  • the resistance value of the second resistor R2 is set to 1000 k ⁇
  • the resistance value of the third resistor R3 is set to 1000 k ⁇ .
  • the first voltage output unit outputs the first reference voltage (5V in the modified example 1)
  • the second voltage output unit outputs the first reference voltage
  • the first voltage output unit outputs the first reference voltage. It is assumed that the first reference voltage is output and the second voltage output unit outputs the second reference voltage (0V even in the modified example 1).
  • FIG. 8A shows an example of the measurement waveform when the leakage detection device 10 is normal. If the first voltage output unit, the first resistance R1, the second resistance R2, the third resistance R3, the second voltage output unit, the second operational amplifier OP2, and the voltage measurement unit 11b are normal, about 5V is measured in the first state. And about 2.27V is measured in the second state. In the first state, 5V is applied to both ends of the first resistor R1, the second resistor R2, and the third resistor R3 connected in series, so that the theoretical value of the measured voltage in the first state is also 5V. The theoretical value of the measured voltage in the second state is calculated by the above (Equation 1).
  • the diagnostic unit 11d calculates the difference voltage ⁇ V between the two. In this example, it is 2.73V. If the difference voltage ⁇ V is within the set range, the diagnosis unit 11d determines that the leakage detection device 10 is normal.
  • FIG. 8B shows an example of the measurement waveform when a minute leak current is flowing from the first operational amplifier OP1 to the chassis ground.
  • the circuit itself of the leakage detection device 10 is in a normal state.
  • the entire measurement waveform is reduced by 1 V due to the influence of the leak current.
  • About 4V is measured in the first state and about 1.27V is measured in the second state.
  • the difference voltage ⁇ V between the two is 2.73V. Since the difference voltage ⁇ V falls within the predetermined set range (center value is 2.73V), the diagnostic unit 11d determines that the leakage detection device 10 is normal.
  • FIG. 8C shows an example of the measurement waveform when the leakage detection device 10 is abnormal.
  • the voltage near 0 V is measured in both the first state and the second state.
  • the difference voltage ⁇ V between the two is 0V. Since the difference voltage ⁇ V deviates from the predetermined set range (center value is 2.73V), the diagnosis unit 11d determines that the leakage detection device 10 is abnormal.
  • FIG. 8D shows an example of the measurement waveform when the constant of the circuit element used in the leakage detection device 10 changes.
  • the example shown in FIG. 8D shows a measurement waveform when the resistance value of the first resistor R1 decreases from 200 k ⁇ to 100 k ⁇ due to deterioration.
  • About 5V is measured in the first state and about 2.38V is measured in the second state.
  • 5 V is applied to both ends of the first resistor R1, the second resistor R2, and the third resistor R3 connected in series, so that the measured voltage of the first state is measured regardless of the resistance value of the first resistor.
  • the theoretical value is also 5V.
  • the theoretical value of the measured voltage in the second state is calculated by the above (Equation 3).
  • the difference voltage ⁇ V between the two is 2.62V. Since the difference voltage ⁇ V deviates from the predetermined set range (center value is 2.73V), the diagnosis unit 11d determines that the leakage detection device 10 is abnormal.
  • the first voltage output unit may continuously output the second reference voltage instead of the first reference voltage.
  • (Modification 2) 9 (a)-(d) is a diagram showing an example of a measurement waveform at the time of failure diagnosis of the leakage detection device 10 according to the second modification.
  • the configuration of the leakage detection device 10 is the same as the configuration shown in FIG.
  • the resistance value of the first resistor R1 is set to 200 k ⁇
  • the resistance value of the second resistor R2 is set to 1000 k ⁇
  • the resistance value of the third resistor R3 is set to 1000 k ⁇ .
  • the first voltage output unit outputs the first reference voltage (5V in the modified example 2)
  • the second voltage output unit outputs the first reference voltage
  • the first voltage output unit outputs the first reference voltage in the second state.
  • the second reference voltage (0V in the modified example 2) is output and the second voltage output unit outputs the first reference voltage.
  • FIG. 9A shows an example of the measurement waveform when the leakage detection device 10 is normal. If the first voltage output unit, the first resistance R1, the second resistance R2, the third resistance R3, the second voltage output unit, the second operational amplifier OP2, and the voltage measurement unit 11b are normal, about 5V is measured in the first state. And about 2.73V is measured in the second state. In the first state, 5V is applied to both ends of the first resistor R1, the second resistor R2, and the third resistor R3 connected in series, so that the theoretical value of the measured voltage in the first state is also 5V. The theoretical value of the measured voltage in the second state is calculated by the above (Equation 2).
  • the diagnostic unit 11d calculates the difference voltage ⁇ V between the two. In this example, it is 2.27V. If the difference voltage ⁇ V is within the set range, the diagnosis unit 11d determines that the leakage detection device 10 is normal.
  • FIG. 9B shows an example of the measurement waveform when a minute leak current is flowing from the first operational amplifier OP1 to the chassis ground.
  • the circuit itself of the leakage detection device 10 is in a normal state.
  • the entire measurement waveform is reduced by 1 V due to the influence of the leak current.
  • About 4V is measured in the first state and about 1.73V is measured in the second state.
  • the difference voltage ⁇ V between the two is 2.27V. Since the difference voltage ⁇ V falls within the predetermined set range (center value is 2.27V), the diagnostic unit 11d determines that the leakage detection device 10 is normal.
  • FIG. 9C shows an example of the measurement waveform when the leakage detection device 10 is abnormal.
  • the voltage near 0 V is measured in both the first state and the second state.
  • the difference voltage ⁇ V between the two is 0V. Since the difference voltage ⁇ V deviates from the predetermined set range (center value is 2.27V), the diagnosis unit 11d determines that the leakage detection device 10 is abnormal.
  • FIG. 9D shows an example of the measurement waveform when the constant of the circuit element used in the leakage detection device 10 changes.
  • the example shown in FIG. 9D shows a measurement waveform when the resistance value of the first resistor R1 decreases from 200 k ⁇ to 100 k ⁇ due to deterioration.
  • About 5V is measured in the first state and about 2.62V is measured in the second state.
  • 5 V is applied to both ends of the first resistor R1, the second resistor R2, and the third resistor R3 connected in series, so that the measured voltage of the first state is measured regardless of the resistance value of the first resistor.
  • the theoretical value is also 5V.
  • the theoretical value of the measured voltage in the second state is calculated by the above (Equation 4).
  • the difference voltage ⁇ V between the two is 2.38V. Since the difference voltage ⁇ V deviates from the predetermined set range (center value is 2.27V), the diagnosis unit 11d determines that the leakage detection device 10 is abnormal.
  • the second voltage output unit may continuously output the second reference voltage instead of the first reference voltage.
  • the first reference voltage and the second reference voltage are not limited to 5V and 0V, and any two different voltages can be used.
  • the leakage determination unit 11c can specify the peak peak value from the voltage waveform at the measurement point A and determine the presence or absence of leakage in the same manner as in the above embodiment.
  • the earth leakage detection device 10 can be applied to applications other than in-vehicle applications.
  • the load may be any load as long as the power storage unit 20 and the load receiving power from the power storage unit 20 are insulated from the ground.
  • it may be a load used in a railroad vehicle.
  • the embodiment may be specified by the following items.
  • a coupling capacitor (Cc) whose one end is connected to the current path of the power storage unit (20) connected to the load (2) while being insulated from the ground.
  • a first voltage output unit (11a, OP1) that generates a periodic voltage that changes periodically and applies it to the other end of the coupling capacitor (Cc) via a first resistor (R1).
  • the second voltage output unit (11e, OP3) that outputs a fixed voltage and The second resistor (R2) and the second resistor (R2) connected in series between the connection point between the coupling capacitor (Cc) and the first resistor (R1) and the second voltage output unit (11e, OP3).
  • the diagnostic unit (11d) that determines (10).
  • the failure diagnosis of the leakage detection device (10) can be performed with high accuracy.
  • the diagnostic unit (11d) determines the leakage detection device (11d). 10) is judged to be abnormal,
  • the second state is characterized in that at least one output voltage of the first voltage output unit (11a, OP1) and the second voltage output unit (11e, OP3) is different from the first state.
  • the leakage detection device (10) according to item 1. According to this, the failure diagnosis of the leakage detection device (10) can be performed with high accuracy.
  • the first voltage output unit (11a, OP1) outputs the first reference voltage in the first state and outputs the second reference voltage in the second state.
  • the second voltage output unit (11e, OP3) outputs the second reference voltage in the first state and outputs the first reference voltage in the second state.
  • the leakage detection device (10) according to item 2, wherein the leakage detection device (10) is provided. According to this, it is possible to measure a suitable differential voltage for determination.
  • the first voltage output unit (11a, OP1) continuously outputs the first reference voltage or the second reference voltage in the first state and the second state.
  • the second voltage output unit (11e, OP3) outputs the first reference voltage in the first state and outputs the second reference voltage in the second state.
  • the first voltage output unit (11a, OP1) outputs the first reference voltage in the first state and outputs the second reference voltage in the second state.
  • the second voltage output unit (11e, OP3) continuously outputs the first reference voltage or the second reference voltage in the first state and the second state.
  • the first reference voltage is a high-side reference voltage.
  • the second reference voltage is a low-side reference voltage.
  • the leakage detection device (10) according to any one of items 3 to 5, wherein the leakage detection device (10) is characterized. According to this, the first reference voltage and the second reference voltage can be easily generated.
  • a power storage unit (20) that is mounted in a state of being insulated from the chassis ground of the vehicle and supplies electric power to the load (2) in the vehicle.
  • the leakage detection device (10) according to any one of items 1 to 6 and the leakage detection device (10).
  • a vehicle power supply system (5) According to this, it is possible to realize a vehicle power supply system (5) including an electric leakage detection device (10) capable of performing its own failure diagnosis with high accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

漏電検出装置の故障診断を高精度に行うために、第1電圧出力部(11a、OP1)は、周期的に変化する周期電圧を生成して、カップリングコンデンサ(Cc)の他端に第1抵抗(R1)を介して印加する。カップリングコンデンサ(Cc)と第1抵抗(R1)との間の接続点と、第2電圧出力部(11e、OP3)との間に第2抵抗(R2)および第3抵抗(R3)が直列に接続される。電圧測定部(11b)は、第2抵抗(R2)と第3抵抗(R3)との間の分圧点の電圧を測定する。分圧点に2種類の固定電圧が順番に印加される期間において、診断部(11d)は、電圧測定部(11b)により測定された電圧をもとに、漏電検出装置(10)が正常であるか否かを判定する。

Description

漏電検出装置、車両用電源システム
 本発明は、アースから絶縁された負荷の漏電を検出する漏電検出装置、車両用電源システムに関する。
 近年、ハイブリッド車(HV)、プラグインハイブリッド車(PHV)、電気自動車(EV)が普及してきている。これらの電動車両には、補機電池(一般的に12V出力の鉛電池)と別に高電圧の駆動用電池(トラクションバッテリ)が搭載される。感電を防止するために、高電圧の駆動用電池、インバータ、走行用モータを含む強電回路と、車両のボディ(シャーシアース)間は絶縁される。
 強電回路の車両側のプラス配線とシャーシアース間、及び強電回路の車両側のマイナス配線とシャーシアース間には、それぞれYコンデンサが挿入され、高電圧の駆動用電池から車両側の負荷に供給される電源が安定化されている。強電回路とシャーシアース間の絶縁抵抗を監視して漏電を検出する漏電検出装置が搭載される。
 AC方式の漏電検出装置では、駆動用電池の正極端子または負極端子に、抵抗とカップリングコンデンサを介してパルス電圧を印加し、当該抵抗と当該カップリングコンデンサとの接続点の電圧を測定し、漏電の有無を検出する。
 AC方式の漏電検出装置において、漏電検出装置自体の故障を診断する方法として、漏電検出時の周波数より十分に低い周波数のパルス電圧を印加し、印加した電圧と測定した電圧を比較し、両者が近似していれば正常と判定する方法がある(例えば、特許文献1参照)。
国際公開第2010/058855号
 カップリングコンデンサの劣化によりカップリングコンデンサの漏電が大きくなると、漏電検出装置から、カップリングコンデンサ及び車両の強電回路を経由して、シャーシアースに流れるリーク電流が大きくなる。上記した漏電検出装置の故障診断方法では、このリーク電流が大きくなると、印加したパルス電圧が低下し、印加した電圧と測定した電圧との間に大きな乖離が発生する。これにより、正常な漏電検出装置を異常と誤判定する可能性が高まる。この誤判定を抑制するには、両者の近似に対する判定基準を緩める必要があるが、その場合、異常な漏電検出装置を正常と誤判定する可能性が高まる。
 本開示はこうした状況に鑑みなされたものであり、その目的は、漏電検出装置の故障診断を高精度に行う技術を提供することにある。
 上記課題を解決するために、本開示のある態様の漏電検出装置は、アースと絶縁された状態で、負荷に接続されている蓄電部の電流経路に一端が接続されるカップリングコンデンサと、周期的に変化する周期電圧を生成して、前記カップリングコンデンサの他端に第1抵抗を介して印加する第1電圧出力部と、固定電圧を出力する第2電圧出力部と、前記カップリングコンデンサと前記第1抵抗との間の接続点と、前記第2電圧出力部との間に直列に接続された第2抵抗および第3抵抗と、前記第2抵抗と前記第3抵抗との間の分圧点の電圧を測定する電圧測定部と、前記第1電圧出力部から前記周期電圧が出力されている状態において、前記電圧測定部により測定された電圧をもとに、前記蓄電部の電流経路と前記アース間の漏電の有無を判定する漏電判定部と、前記分圧点に2種類の固定電圧が順番に印加される期間において、前記電圧測定部により測定された電圧をもとに、本漏電検出装置が正常であるか否かを判定する診断部と、を備える。
 本開示によれば、漏電検出装置の故障診断を高精度に行うことができる。
比較例に係る漏電検出装置を備える電源システムの構成を説明するための図である。 印加パルス波形と測定電圧波形の一例を示す図である。 図3(a)-(d)は、比較例に係る漏電検出装置の故障診断時の測定波形の一例を示す図である。 比較例に係る漏電検出装置を備える電源システムのリーク経路の一例を示す図である。 実施の形態に係る漏電検出装置を備える電源システムの構成を説明するための図である。 図6(a)-(d)は、実施の形態に係る漏電検出装置の故障診断時の測定波形の一例を示す図である。 実施の形態に係る漏電検出装置を備える電源システムのリーク経路の一例を示す図である。 図8(a)-(d)は、変形例1に係る漏電検出装置の故障診断時の測定波形の一例を示す図である。 図9(a)-(d)は、変形例2に係る漏電検出装置の故障診断時の測定波形の一例を示す図である。
(比較例)
 図1は、比較例に係る漏電検出装置10を備える電源システム5の構成を説明するための図である。電源システム5は電動車両に搭載される。電源システム5は電動車両内において、補機電池(通常、12V出力の鉛電池が使用される)と別に設けられる。電源システム5は、高電圧の蓄電部20、及び漏電検出装置10を含む。蓄電部20は、直列接続された複数のセルE1-Enを含む。セルには、リチウムイオン電池セル、ニッケル水素電池セル、鉛電池セル、電気二重層キャパシタセル、リチウムイオンキャパシタセル等を用いることができる。以下、本明細書ではリチウムイオン電池セル(公称電圧:3.6-3.7V)を使用する例を想定する。
 電動車両は高電圧の負荷として、インバータ2及びモータ3を備える。蓄電部20の正極とインバータ2の一端がプラス配線Lpで接続され、蓄電部20の負極とインバータ2の他端がマイナス配線Lmで接続される。プラス配線Lpに正側メインリレーMRpが挿入され、マイナス配線Lmに負側メインリレーMRmが挿入される。正側メインリレーMRpと負側メインリレーMRmは、蓄電部20と電動車両内の高電圧の負荷との間の導通/遮断を制御するコンタクタとして機能する。なおリレーの代わりに、高耐圧・高絶縁の半導体スイッチを使用することも可能である。
 インバータ2は、蓄電部20とモータ3の間に接続される双方向インバータである。インバータ2は力行時、蓄電部20から供給される直流電力を交流電力に変換してモータ3に供給する。回生時、モータ3から供給される交流電力を直流電力に変換して蓄電部20に供給する。モータ3には例えば、三相交流モータが使用される。モータ3は力行時、インバータ2から供給される交流電力に応じて回転する。回生時、減速による回転エネルギーを交流電力に変換してインバータ2に供給する。
 蓄電部20は、電動車両のシャーシアースと絶縁された状態で電動車両に搭載される。補機電池は、負極がシャーシアースと導通した状態で電動車両に搭載される。なお、正側メインリレーMRpよりインバータ2側のプラス配線Lpとシャーシアース間が正側YコンデンサCpを介して接続される。また、負側メインリレーMRmよりインバータ2側のマイナス配線Lmとシャーシアース間が負側YコンデンサCmを介して接続される。正側YコンデンサCp及び負側YコンデンサCmは、プラス配線Lpとシャーシアース間、及びマイナス配線Lmとシャーシアース間をそれぞれ直流的に絶縁するとともに、プラス配線Lp及びマイナス配線Lmの電圧を安定化させる作用を有する。
 蓄電部20がシャーシアースから理想的に絶縁されている場合、蓄電部20の中間電位がシャーシアースの電位近辺に維持される。例えば、蓄電部20の両端電圧が250Vの場合、蓄電部20の正極電位が+125V近辺、負極電位が-125V近辺に維持される。高電圧の蓄電部20とシャーシアース間が導通した状態で、人間が電動車両の露出した導電部に触れると感電する危険がある。そこで高電圧の蓄電部20を搭載した電動車両では、漏電検出装置10を搭載して、高電圧の車両負荷に接続されている蓄電部20の電流経路とシャーシアース間の絶縁状態を監視する必要がある。図1では、プラス配線Lpとシャーシアース間の絶縁状態を正側漏電抵抗Rlp、マイナス配線Lmとシャーシアース間の絶縁状態を負側漏電抵抗Rlmと表している。
 比較例では漏電検出装置10は、カップリングコンデンサCc、第1抵抗R1、第1オペアンプOP1、第2抵抗R2、平滑用コンデンサC1、第2オペアンプOP2及び制御部11を含む。制御部11は、発振部11a、電圧測定部11b、漏電判定部11c及び診断部11dを含む。制御部11は例えば、マイクロコンピュータ及び不揮発メモリ(例えば、EEPROM、フラッシュメモリ)により構成することができる。
 カップリングコンデンサCcは、蓄電部20の電流経路に一端が接続される。図1に示す例では蓄電部20の負極にカップリングコンデンサCcの一端が接続されている。なお、カップリングコンデンサCcの一端は、蓄電部20の正極に接続されてもよいし、蓄電部20内の複数のセルE1-Enのいずれかのノードに接続されてもよい。カップリングコンデンサCcの他端は、第1抵抗R1を介して電圧出力部の出力端に接続される。カップリングコンデンサCcの他端と第1抵抗R1との間の接続点が測定点Aとなる。なお、第1抵抗R1の代わりに他のインピーダンス素子を使用してもよい。
 図1ではカップリングコンデンサCcに、比較的安価に大容量化することができるアルミ電解コンデンサが使用されている。アルミ電解コンデンサは極性を有しており、図1ではアルミ電解コンデンサの正極が測定点Aに接続され、アルミ電解コンデンサの負極が蓄電部20の負極に接続されている。カップリングコンデンサCcは、複数のアルミ電解コンデンサが直列に接続されて構成されていてもよい。この場合、1つのコンデンサがショート故障しても、残りのコンデンサにより直流的な絶縁を維持することができる。
 上記の電圧出力部は、周期的に変化する周期電圧を生成して、生成した周期電圧をカップリングコンデンサCcの他端に第1抵抗R1を介して印加する。以下、本明細書では周期電圧として矩形波電圧を使用する例を想定する。
 電圧出力部は、発振部11a及び第1オペアンプOP1を含む。発振部11aは、マルチバイブレータや局部発振器を含み、予め設定された周波数の矩形波を発生させる。発振部11aにより生成された矩形波電圧は、第1オペアンプOP1の非反転入力端子に入力される。第1オペアンプOP1の出力端子は第1抵抗R1に接続される。第1オペアンプOP1の反転入力端子と出力端子が接続される。第1オペアンプOP1の正側電源端子は第1固定電位(電源電位Vcc)に接続され、第1オペアンプOP1の負側電源端子は第2固定電位(グラウンド電位GND)に接続される。以下、本明細書では電源電位Vccが5V、グラウンド電位GNDが0Vの例を想定する。
 第1オペアンプOP1は、増幅率が1倍でインピーダンス変換だけを行うボルテージフォロアとして機能する。なお、第1オペアンプOP1の代わりに、一方の入力端子が第1固定電位に接続されたANDゲート、又は一方の入力端子が第2固定電位に接続されたORゲートを使用してもよい。制御部11と測定点Aのインピーダンスを分離するバッファとして機能する素子であれば、第1オペアンプOP1を代替可能である。
 測定点Aは、第2抵抗R2を介して第2オペアンプOP2の非反転入力端子に接続される。第2オペアンプOP2の反転入力端子と出力端子が接続される。第2オペアンプOP2も、増幅率が1倍でインピーダンス変換だけを行うボルテージフォロアとして機能する。第2オペアンプOP2の非反転入力端子と第2固定電位(グラウンド電位GND)との間に平滑用コンデンサC1が接続される。平滑用コンデンサC1は、第2オペアンプOP2の非反転入力端子に入力される電圧のノイズを除去する。
 第2オペアンプOP2は、測定点Aの電圧を電圧測定部11bに出力する。電圧測定部11bは測定点Aの電圧を測定する。電圧測定部11bはA/Dコンバータを含み、当該A/Dコンバータは、発振部11aにより生成される矩形波電圧の立ち上がりエッジと立ち下がりエッジのタイミングに同期したタイミングで、測定点Aのアナログ電圧をサンプリングし、サンプリングしたアナログ電圧をデジタル値に変換する。矩形波電圧の立ち上がりエッジのタイミングでサンプリングされた電圧は、測定された電圧波形の下側ピーク値に相当し、矩形波電圧の立ち下がりエッジのタイミングでサンプリングされた電圧は、測定された電圧波形の上側ピーク値に相当する。なお、矩形波電圧の鈍りを考慮して、下側ピーク値をサンプリングすべきタイミングと、上側ピーク値をサンプリングすべきタイミングが調整されていてもよい。電圧測定部11bは、測定点Aの電圧を漏電判定部11cと診断部11dに出力する。
 漏電判定部11cは、電圧測定部11bにより測定された測定点Aの電圧をもとに、蓄電部20の電流経路とシャーシアース間の漏電の有無を判定する。漏電判定部11cは、上側ピーク値と下側ピーク値との差分で示されるピークピーク値が、設定値より小さい場合、蓄電部20の電流経路とシャーシアース間に漏電が発生していると判定する。当該設定値は、設計者による実験やシミュレーションにより予め導出された漏電発生時の測定電圧波形のピークピーク値をもとに決定される。蓄電部20の電流経路とシャーシアース間に漏電が発生している場合、第1オペアンプOP1から、検出抵抗として作用している第1抵抗R1を介してカップリングコンデンサCcに交流電流が流れる。第1抵抗R1に電流が流れると、電圧降下により測定点Aの電圧振幅が縮小する。
 図2は、印加パルス波形と測定電圧波形の一例を示す図である。電圧出力部から測定点Aに印加されるパルス波形は、ハイサイド電位が5Vでローサイド電位が0Vに設定されている。漏電判定部11cは、測定点Aにパルス電圧が印加されている期間に測定された電圧波形の上側ピーク値Vp1と下側ピーク値Vp2を特定し、上側ピーク値Vp1と下側ピーク値Vp2との差分で規定されるピークピーク値をもとに漏電の有無を判定する。
 図1に戻る。診断部11dは、電圧測定部11bにより測定された電圧をもとに、漏電検出装置10が正常であるか否か判定する。即ち、漏電検出装置10自体の故障の有無を診断する。漏電検出装置10の故障診断時は、漏電検出時と比較して、十分に低い周波数のパルス電圧が測定点Aに印加される。例えば、漏電検出時に10Hz、漏電検出装置10の故障診断時に1Hzのパルス電圧が印加されてもよい。
 図3(a)-(d)は、比較例に係る漏電検出装置10の故障診断時の測定波形の一例を示す図である。図3(a)は、漏電検出装置10が正常な場合の測定波形の一例を示している。発振部11a、第1オペアンプOP1、第1抵抗R1、第2抵抗R2、第2オペアンプOP2、電圧測定部11bの経路が正常であれば、発振部11aから出力されたパルス電圧が、そのまま電圧測定部11bで測定される。なお、平滑用コンデンサC1の影響により測定波形に鈍りが発生している。診断部11dは、印加されたパルス電圧のハイレベル期間に測定された電圧が第1基準電圧(本比較例では5V)近辺の電圧であり、ローレベル期間に測定された電圧が第2基準電圧(本比較例では0V)近辺の電圧のとき、漏電検出装置10を正常と判定する。
 ところで、カップリングコンデンサCcは劣化すると、リーク電流が増加する。カップリングコンデンサCcにアルミ電解コンデンサを使用する場合、無負荷状態で長時間放置されるとリーク電流が増加しやすくなる。
 図4は、比較例に係る漏電検出装置10を備える電源システム5のリーク経路の一例を示す図である。蓄電部20の電流経路とシャーシアース間には、正常な状態でも数十MΩ~100MΩの漏電抵抗で、微小なリーク電流が流れている。正側メインリレーMRp及び負側メインリレーMRmがオフ(オープン)の状態でも、蓄電部20側の電流経路とシャーシアース間に微小なリーク電流が流れる(漏電抵抗Rlb参照)。カップリングコンデンサCcの絶縁抵抗が低下すると、第1オペアンプOP1、第1抵抗R1、カップリングコンデンサCc、蓄電部20、漏電抵抗Rlbの経路で微小なリーク電流が流れる。例えば、第1抵抗R1の抵抗値が200kΩに設定されている場合、カップリングコンデンサCcの絶縁抵抗が20MΩ程度まで低下すると、当該リーク電流の影響により、5V電源で生成されたパルス電圧の測定波形が1V程度低下する。
 図3(b)は、第1オペアンプOP1からシャーシアースに微小なリーク電流が流れている場合の測定波形の一例を示している。なお、漏電検出装置10の回路自体は正常な状態にある。図3(b)では当該リーク電流の影響により、測定波形全体が低下している。なお図3(a)-(d)に示す例では、0V未満の電圧を検出できない測定回路を使用しているため、印加されたパルス電圧のローサイド期間の殆どの期間の測定電圧は、0Vにクランプされている。
 図3(c)は、漏電検出装置10が異常な場合の測定波形の一例を示している。図3(c)では、印加されたパルス電圧のハイレベル期間とローレベル期間のいずれの期間でも、0V近辺の電圧が測定されている。診断部11dは、印加されたパルス電圧のハイレベル期間に測定された電圧が、第1基準電圧(本比較例では5V)から規定値以上、乖離しているとき漏電検出装置10を異常と判定する。例えば、発振部11a、第1オペアンプOP1、第1抵抗R1、第2抵抗R2、第2オペアンプOP2、電圧測定部11bの経路のどこかが断線している場合、印加されたパルス電圧のハイレベル期間にも、0V近辺の電圧が測定されることになる。その他、いずれかの回路素子にショート故障またはオープン故障が発生している場合も、ハイレベル期間に測定された電圧が、第1基準電圧から大きく乖離する。
 図3(d)は、漏電検出装置10に使用される回路素子の定数が変化した場合の測定波形の一例を示している。比較例では、回路素子の定数が変化しても、印加されたパルス電圧の測定波形は、正常時と比較して殆ど変化しない。例えば、第1抵抗R1の抵抗値が劣化により、200kΩから100kΩに低下しても、パルス電圧の測定波形は殆ど変化しない。
 図3(b)に示したように比較例に係る漏電検出装置10の診断方法では、第1オペアンプOP1からシャーシアースに流れる微小なリーク電流の影響を大きく受ける。図3(b)に示した例では、漏電検出装置10の回路自体は正常な状態にあるため、本来的には診断部11dは漏電検出装置10を正常と判定することが期待される。しかしながら、印加されたパルス電圧のハイサイド期間の測定電圧は4V近辺であり、本来の理論値である5Vから大きく乖離している。この状態を正常と判定するには、判定用の規定値に1V程度のマージンを設ける必要があり、判定基準を大幅に緩和する必要がある。この場合、回路素子の小さな故障を見逃すことになる。また、図3(d)に示したように比較例に係る漏電検出装置10の診断方法では、回路素子の定数の変化を検出することが難しい。具体的には第1抵抗R1の劣化を検出することが難しい。
(実施の形態)
 図5は、実施の形態に係る漏電検出装置10を備える電源システム5の構成を説明するための図である。以下、図1に示した比較例に係る電源システム5の構成との相違点を説明する。実施の形態では第3抵抗R3及び第3オペアンプOP3が追加される。制御部11は、定電圧出力部11eをさらに含む。定電圧出力部11eは、第1基準電圧(本実施の形態では5V)と第2基準電圧(本実施の形態では0V)の2種類の固定電圧を出力することができる。
 本実施の形態では、発振部11a及び第1オペアンプOP1が第1電圧出力部を構成し、定電圧出力部11e及び第3オペアンプOP3が第2電圧出力部を構成する。本実施の形態では、第1電圧出力部からも、第1基準電圧と第2基準電圧の2種類の固定電圧を出力することができるように構成される。
 カップリングコンデンサCcと第1抵抗R1との間の接続点Aと、第2電圧出力部との間に直列に第2抵抗R2及び第3抵抗R3が接続される。より具体的には、定電圧出力部11eから出力される定電圧は、第3オペアンプOP3の非反転入力端子に入力される。第3オペアンプOP3の出力端子は第3抵抗R3に接続される。第3オペアンプOP3の反転入力端子と出力端子が接続される。第3オペアンプOP3も、増幅率が1倍でインピーダンス変換だけを行うボルテージフォロアとして機能する。
 本実施の形態では、第2抵抗R2と第3抵抗R3の分圧点電圧が第2オペアンプOP2の非反転入力端子に入力される。即ち、電圧測定部11bは、第2抵抗R2と第3抵抗R3の分圧点電圧を測定することにより、測定点Aの電圧を圧縮された電圧で測定する。漏電判定部11cは、電圧測定部11bにより測定された電圧の振幅値をもとに、漏電抵抗変換テーブルを参照して漏電抵抗値を算出し、蓄電部20の電流経路とシャーシアース間の漏電の有無を判定する。本実施の形態では、測定点Aの電圧を分圧して測定することにより、測定点Aの電圧が測定レンジ(本実施の形態では0~5V)から外れる期間を減少させることができる。即ち、漏電判定ができない期間を減少させることができる。
 診断部11dは、第1電圧出力部から2種類の固定電圧が順番に出力される期間において、電圧測定部11bにより測定された電圧をもとに、漏電検出装置10が正常であるか否か診断する。具体的には診断部11dは、当該期間の第1状態で測定された電圧と、第2状態で測定された電圧との差分を算出し、当該差分が設定範囲内のとき漏電検出装置10を正常と判定する。第1状態と第2状態はそれぞれ数秒間(例えば、4秒間)、継続される。
 図6(a)-(d)は、実施の形態に係る漏電検出装置10の故障診断時の測定波形の一例を示す図である。以下に示す例では、第1抵抗R1の抵抗値が200kΩ、第2抵抗R2の抵抗値が1000kΩ、及び第3抵抗R3の抵抗値が1000kΩに設定されていることを前提とする。また第1状態において第1電圧出力部が第1基準電圧(本実施の形態では5V)を出力し、第2電圧出力部が第2基準電圧(本実施の形態では0V)を出力し、第2状態において第1電圧出力部が第2基準電圧を出力し、第2電圧出力部が第1基準電圧を出力することを前提とする。
 図6(a)は、漏電検出装置10が正常な場合の測定波形の一例を示している。第1電圧出力部、第1抵抗R1、第2抵抗R2、第3抵抗R3、第2電圧出力部、第2オペアンプOP2、電圧測定部11bが正常であれば、第1状態において約2.27Vが測定され、第2状態において約2.73Vが測定される。第1状態の測定電圧の理論値と、第2状態の測定電圧の理論値は下記(式1)、(式2)により算出される。
 5×(1000/(200+1000+1000))≒2.27 ・・・(式1)
 5×((200+1000)/(200+1000+1000))≒2.73 ・・・
(式2)
 診断部11dは両者の差分電圧ΔVを算出する。この例では0.46Vである。診断部11dは差分電圧ΔVが設定範囲内であれば、漏電検出装置10を正常と判定する。設定範囲は、設計者による実験やシミュレーションにより得られるデータに基づき、最適な精度が得られる範囲に設定される。
 本実施の形態でも比較例と同様に、カップリングコンデンサCcが劣化すると、リーク電流が増加する。図7は、実施の形態に係る漏電検出装置10を備える電源システム5のリーク経路の一例を示す図である。
 図6(b)は、第1オペアンプOP1からシャーシアースに微小なリーク電流が流れている場合の測定波形の一例を示している。なお、漏電検出装置10の回路自体は正常な状態にある。図6(b)では当該リーク電流の影響により、測定波形全体が1V低下している。第1状態において約1.27Vが測定され、第2状態において約1.72Vが測定されている。両者の差分電圧ΔVは0.46Vである。
 図6(c)は、漏電検出装置10が異常な場合の測定波形の一例を示している。図6(c)では、第1状態と第2状態のいずれの状態でも、0V近辺の電圧が測定されている。両者の差分電圧ΔVは0Vである。診断部11dは差分電圧ΔVが、所定の設定範囲(中心値が0.46V)を外れるため、漏電検出装置10を異常と判定する。
 図6(d)は、漏電検出装置10に使用される回路素子の定数が変化した場合の測定波形の一例を示している。図6(d)に示す例は、第1抵抗R1の抵抗値が劣化により200kΩから100kΩに低下した場合の測定波形を示している。第1状態において約2.38Vが測定され、第2状態において約2.62Vが測定される。第1抵抗R1の抵抗値が100kΩの場合、第1状態の測定電圧の理論値と、第2状態の測定電圧の理論値は下記(式3)、(式4)により算出される。
 5×(1000/(100+1000+1000))≒2.38 ・・・(式3)
 5×((100+1000)/(100+1000+1000))≒2.62 ・・・
(式4)
 両者の差分電圧ΔVは0.24Vである。診断部11dは差分電圧ΔVが、所定の設定範囲(中心値が0.46V)を外れるため、漏電検出装置10を異常と判定する。
 以上説明したように本実施の形態によれば、分圧点に2種類の固定電圧が順番に印加される期間において、第1状態と第2状態の差分電圧ΔVが設定範囲に収まるか否かを判定することにより、漏電検出装置10の故障診断を高精度に行うことができる。具体的には、第1オペアンプOP1からシャーシアースに微小なリーク電流が流れている場合でも、図6(b)に示したように、差分電圧ΔVは正常な状態とほぼ同じ値となる。したがって、微小なリーク電流の影響を殆ど受けずに、漏電検出装置10の故障診断を行うことができる。この点、図3(b)に示したように比較例では、微小なリーク電流の影響を大きく受ける。本実施の形態では、設定範囲のマージンを大きくとる必要がなく、回路素子の軽微な不具合の見逃しを減らすことができる。
 また、図6(d)に示したように本実施の形態では、回路素子の定数の変化を検出することも可能である。具体的には検出抵抗として機能する第1抵抗R1の劣化を検出することができる。この点、図3(d)に示したように比較例では、回路素子の定数の変化を検出することが難しい。
(変形例1)
 図8(a)-(d)は、変形例1に係る漏電検出装置10の故障診断時の測定波形の一例を示す図である。漏電検出装置10の構成は、図5に示した構成と同様である。変形例1でも、第1抵抗R1の抵抗値が200kΩ、第2抵抗R2の抵抗値が1000kΩ、及び第3抵抗R3の抵抗値が1000kΩに設定されていることを前提とする。また第1状態において第1電圧出力部が第1基準電圧(変形例1でも5V)を出力し、第2電圧出力部が第1基準電圧を出力し、第2状態において第1電圧出力部が第1基準電圧を出力し、第2電圧出力部が第2基準電圧(変形例1でも0V)を出力することを前提とする。
 図8(a)は、漏電検出装置10が正常な場合の測定波形の一例を示している。第1電圧出力部、第1抵抗R1、第2抵抗R2、第3抵抗R3、第2電圧出力部、第2オペアンプOP2、電圧測定部11bが正常であれば、第1状態において約5Vが測定され、第2状態において約2.27Vが測定される。第1状態では、直列接続された第1抵抗R1、第2抵抗R2、第3抵抗R3の両端に5Vが印加されるため、第1状態の測定電圧の理論値も5Vになる。第2状態の測定電圧の理論値は上記(式1)により算出される。
 診断部11dは両者の差分電圧ΔVを算出する。この例では2.73Vである。診断部11dは差分電圧ΔVが設定範囲内であれば、漏電検出装置10を正常と判定する。
 図8(b)は、第1オペアンプOP1からシャーシアースに微小なリーク電流が流れている場合の測定波形の一例を示している。なお、漏電検出装置10の回路自体は正常な状態にある。図8(b)では当該リーク電流の影響により、測定波形全体が1V低下している。第1状態において約4Vが測定され、第2状態において約1.27Vが測定されている。両者の差分電圧ΔVは2.73Vである。診断部11dは差分電圧ΔVが、所定の設定範囲(中心値が2.73V)に収まるため、漏電検出装置10を正常と判定する。
 図8(c)は、漏電検出装置10が異常な場合の測定波形の一例を示している。図8(c)では、第1状態と第2状態のいずれの状態でも、0V近辺の電圧が測定されている。両者の差分電圧ΔVは0Vである。診断部11dは差分電圧ΔVが、所定の設定範囲(中心値が2.73V)を外れるため、漏電検出装置10を異常と判定する。
 図8(d)は、漏電検出装置10に使用される回路素子の定数が変化した場合の測定波形の一例を示している。図8(d)に示す例は、第1抵抗R1の抵抗値が劣化により200kΩから100kΩに低下した場合の測定波形を示している。第1状態において約5Vが測定され、第2状態において約2.38Vが測定される。第1状態では、直列接続された第1抵抗R1、第2抵抗R2、第3抵抗R3の両端に5Vが印加されるため、第1抵抗の抵抗値に関わらず、第1状態の測定電圧の理論値も5Vになる。第2状態の測定電圧の理論値は上記(式3)により算出される。両者の差分電圧ΔVは2.62Vである。診断部11dは差分電圧ΔVが、所定の設定範囲(中心値が2.73V)を外れるため、漏電検出装置10を異常と判定する。
 以上説明したように変形例1によれば、第1電圧出力部が第1状態及び第2状態において、同じ電圧を継続して出力しても、第2電圧出力部の出力電圧を切り替えることにより、上記実施の形態と同様の効果を奏する。なお、第1電圧出力部は第1基準電圧に代えて第2基準電圧を継続して出力してもよい。
(変形例2)
 図9(a)-(d)は、変形例2に係る漏電検出装置10の故障診断時の測定波形の一例を示す図である。漏電検出装置10の構成は、図5に示した構成と同様である。変形例2でも、第1抵抗R1の抵抗値が200kΩ、第2抵抗R2の抵抗値が1000kΩ、及び第3抵抗R3の抵抗値が1000kΩに設定されていることを前提とする。また第1状態において第1電圧出力部が第1基準電圧(変形例2でも5V)を出力し、第2電圧出力部が第1基準電圧を出力し、第2状態において第1電圧出力部が第2基準電圧(変形例2でも0V)を出力し、第2電圧出力部が第1基準電圧を出力することを前提とする。
 図9(a)は、漏電検出装置10が正常な場合の測定波形の一例を示している。第1電圧出力部、第1抵抗R1、第2抵抗R2、第3抵抗R3、第2電圧出力部、第2オペアンプOP2、電圧測定部11bが正常であれば、第1状態において約5Vが測定され、第2状態において約2.73Vが測定される。第1状態では、直列接続された第1抵抗R1、第2抵抗R2、第3抵抗R3の両端に5Vが印加されるため、第1状態の測定電圧の理論値も5Vになる。第2状態の測定電圧の理論値は上記(式2)により算出される。
 診断部11dは両者の差分電圧ΔVを算出する。この例では2.27Vである。診断部11dは差分電圧ΔVが設定範囲内であれば、漏電検出装置10を正常と判定する。
 図9(b)は、第1オペアンプOP1からシャーシアースに微小なリーク電流が流れている場合の測定波形の一例を示している。なお、漏電検出装置10の回路自体は正常な状態にある。図9(b)では当該リーク電流の影響により、測定波形全体が1V低下している。第1状態において約4Vが測定され、第2状態において約1.73Vが測定されている。両者の差分電圧ΔVは2.27Vである。診断部11dは差分電圧ΔVが、所定の設定範囲(中心値が2.27V)に収まるため、漏電検出装置10を正常と判定する。
 図9(c)は、漏電検出装置10が異常な場合の測定波形の一例を示している。図9(c)では、第1状態と第2状態のいずれの状態でも、0V近辺の電圧が測定されている。両者の差分電圧ΔVは0Vである。診断部11dは差分電圧ΔVが、所定の設定範囲(中心値が2.27V)を外れるため、漏電検出装置10を異常と判定する。
 図9(d)は、漏電検出装置10に使用される回路素子の定数が変化した場合の測定波形の一例を示している。図9(d)に示す例は、第1抵抗R1の抵抗値が劣化により200kΩから100kΩに低下した場合の測定波形を示している。第1状態において約5Vが測定され、第2状態において約2.62Vが測定される。第1状態では、直列接続された第1抵抗R1、第2抵抗R2、第3抵抗R3の両端に5Vが印加されるため、第1抵抗の抵抗値に関わらず、第1状態の測定電圧の理論値も5Vになる。第2状態の測定電圧の理論値は上記(式4)により算出される。両者の差分電圧ΔVは2.38Vである。診断部11dは差分電圧ΔVが、所定の設定範囲(中心値が2.27V)を外れるため、漏電検出装置10を異常と判定する。
 以上説明したように変形例2によれば、第2電圧出力部が第1状態及び第2状態において、同じ電圧を継続して出力しても、第1電圧出力部の出力電圧を切り替えることにより、上記実施の形態と同様の効果を奏する。また変形例2によれば、変形例1と比較し、第2状態の測定電圧の理論値が高くなることから、測定波形全体の低下に対する耐性が大きくなる。なお、第2電圧出力部は第1基準電圧に代えて第2基準電圧を継続して出力してもよい。
 以上、本開示を実施の形態をもとに説明した。実施の形態は例示であり、それらの各構成要素や各処理プロセスの組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本開示の範囲にあることは当業者に理解されるところである。
 上記実施の形態では、第1基準電圧として電源電圧の5V、第2基準電圧としてグラウンド電圧の0Vを使用する例を説明した。この点、第1基準電圧、第2基準電圧は5V、0Vに限定されるものではなく、異なる任意の2種類の電圧を使用することができる。
 上記実施の形態では、第1電圧出力部から第1抵抗R1を介してカップリングコンデンサCcに矩形波電圧を印加する例を説明した。この点、正弦波電圧をカップリングコンデンサCcに印加してもよい。この場合も漏電判定部11cは、測定点Aの電圧波形からピークピーク値を特定し、上記実施の形態と同様に漏電の有無を判定することができる。
 上記実施の形態では、漏電検出装置10を電動車両に搭載して使用する例を説明した。この点、実施の形態に係る漏電検出装置10は車載用途以外の用途にも適用できる。蓄電部20、及び蓄電部20から電力供給を受ける負荷がアースから絶縁されている構成であれば、負荷はどのような負荷であってもよい。例えば、鉄道車両内で使用される負荷であってもよい。
 なお、実施の形態は、以下の項目によって特定されてもよい。
[項目1]
 アースと絶縁された状態で、負荷(2)に接続されている蓄電部(20)の電流経路に一端が接続されるカップリングコンデンサ(Cc)と、
 周期的に変化する周期電圧を生成して、前記カップリングコンデンサ(Cc)の他端に第1抵抗(R1)を介して印加する第1電圧出力部(11a、OP1)と、
 固定電圧を出力する第2電圧出力部(11e、OP3)と、
 前記カップリングコンデンサ(Cc)と前記第1抵抗(R1)との間の接続点と、前記第2電圧出力部(11e、OP3)との間に直列に接続された第2抵抗(R2)および第3抵抗(R3)と、
 前記第2抵抗(R2)と前記第3抵抗(R3)との間の分圧点の電圧を測定する電圧測定部(11b)と、
 前記第1電圧出力部(11a、OP1)から前記周期電圧が出力されている状態において、前記電圧測定部(11b)により測定された電圧をもとに、前記蓄電部(20)の電流経路と前記アース間の漏電の有無を判定する漏電判定部(11c)と、
 前記分圧点に2種類の固定電圧が順番に印加される期間において、前記電圧測定部(11b)により測定された電圧をもとに、本漏電検出装置(10)が正常であるか否かを判定する診断部(11d)と、
 を備えることを特徴とする漏電検出装置(10)。
 これによれば、漏電検出装置(10)の故障診断を高精度に行うことができる。
[項目2]
 前記診断部(11d)は、前記期間の第1状態で測定された電圧と、前記期間の第2状態で測定された電圧との差分が、設定範囲を外れているとき、本漏電検出装置(10)を異常と判定し、
 前記第2状態は、前記第1状態と比較して、前記第1電圧出力部(11a、OP1)及び前記第2電圧出力部(11e、OP3)の少なくとも一方の出力電圧が異なることを特徴とする項目1に記載の漏電検出装置(10)。
 これによれば、漏電検出装置(10)の故障診断を高精度に行うことができる。
[項目3]
 前記第1電圧出力部(11a、OP1)は、前記第1状態において第1基準電圧を出力し、前記第2状態において第2基準電圧を出力し、
 前記第2電圧出力部(11e、OP3)は、前記第1状態において前記第2基準電圧を出力し、前記第2状態において前記第1基準電圧を出力する、
 ことを特徴とする項目2に記載の漏電検出装置(10)。
 これによれば、好適な判定用の差分電圧を測定することができる。
[項目4]
 前記第1電圧出力部(11a、OP1)は、前記第1状態及び前記第2状態において、第1基準電圧または第2基準電圧を継続して出力し、
 前記第2電圧出力部(11e、OP3)は、前記第1状態において前記第1基準電圧を出力し、前記第2状態において前記第2基準電圧を出力する、
 ことを特徴とする項目2に記載の漏電検出装置(10)。
 これによれば、好適な判定用の差分電圧を測定することができる。
[項目5]
 前記第1電圧出力部(11a、OP1)は、前記第1状態において第1基準電圧を出力し、前記第2状態において第2基準電圧を出力し、
 前記第2電圧出力部(11e、OP3)は、前記第1状態及び前記第2状態において、前記第1基準電圧または前記第2基準電圧を継続して出力する、
 ことを特徴とする項目2に記載の漏電検出装置(10)。
 これによれば、好適な判定用の差分電圧を測定することができる。
[項目6]
 前記第1基準電圧はハイサイド基準電圧であり、
 前記第2基準電圧はローサイド基準電圧である、
 ことを特徴とする項目3から5のいずれか1項に記載の漏電検出装置(10)。
 これによれば、第1基準電圧と第2基準電圧を簡単に生成することができる。
[項目7]
 車両のシャーシアースと絶縁された状態で搭載され、前記車両内の負荷(2)に電力を供給する蓄電部(20)と、
 項目1から6のいずれか1項に記載の漏電検出装置(10)と、
 を備えることを特徴とする車両用電源システム(5)。
 これによれば、自身の故障診断を高精度に行うことができる漏電検出装置(10)を備える車両用電源システム(5)を実現することができる。
 2 インバータ、 3 モータ、 Lp プラス配線、 Lm マイナス配線、 Cp 正側Yコンデンサ、 Cm 負側Yコンデンサ、 Rlp 正側漏電抵抗、 Rlm 負側漏電抵抗、 Rlb 漏電抵抗、 MRp 正側メインリレー、 MRm 負側メインリレー、 5 電源システム、 20 蓄電部、 E1-En セル、 10 漏電検出装置、 11 制御部、 11a 発振部、 11b 電圧測定部、 11c 漏電判定部、 11d 診断部、 11e 定電圧出力部、 Cc カップリングコンデンサ、 R1 第1抵抗、 R2 第2抵抗、 R3 第3抵抗、 C1 平滑用コンデンサ、
  OP1 第1オペアンプ、 OP2 第2オペアンプ、 OP3 第3オペアンプ。

Claims (7)

  1.  アースと絶縁された状態で、負荷に接続されている蓄電部の電流経路に一端が接続されるカップリングコンデンサと、
     周期的に変化する周期電圧を生成して、前記カップリングコンデンサの他端に第1抵抗を介して印加する第1電圧出力部と、
     固定電圧を出力する第2電圧出力部と、
     前記カップリングコンデンサと前記第1抵抗との間の接続点と、前記第2電圧出力部との間に直列に接続された第2抵抗および第3抵抗と、
     前記第2抵抗と前記第3抵抗との間の分圧点の電圧を測定する電圧測定部と、
     前記第1電圧出力部から前記周期電圧が出力されている状態において、前記電圧測定部により測定された電圧をもとに、前記蓄電部の電流経路と前記アース間の漏電の有無を判定する漏電判定部と、
     前記分圧点に2種類の固定電圧が順番に印加される期間において、前記電圧測定部により測定された電圧をもとに、本漏電検出装置が正常であるか否かを判定する診断部と、
     を備えることを特徴とする漏電検出装置。
  2.  前記診断部は、前記期間の第1状態で測定された電圧と、前記期間の第2状態で測定された電圧との差分が、設定範囲を外れているとき、本漏電検出装置を異常と判定し、
     前記第2状態は、前記第1状態と比較して、前記第1電圧出力部及び前記第2電圧出力部の少なくとも一方の出力電圧が異なることを特徴とする請求項1に記載の漏電検出装置。
  3.  前記第1電圧出力部は、前記第1状態において第1基準電圧を出力し、前記第2状態において第2基準電圧を出力し、
     前記第2電圧出力部は、前記第1状態において前記第2基準電圧を出力し、前記第2状態において前記第1基準電圧を出力する、
     ことを特徴とする請求項2に記載の漏電検出装置。
  4.  前記第1電圧出力部は、前記第1状態及び前記第2状態において、第1基準電圧または第2基準電圧を継続して出力し、
     前記第2電圧出力部は、前記第1状態において前記第1基準電圧を出力し、前記第2状態において前記第2基準電圧を出力する、
     ことを特徴とする請求項2に記載の漏電検出装置。
  5.  前記第1電圧出力部は、前記第1状態において第1基準電圧を出力し、前記第2状態において第2基準電圧を出力し、
     前記第2電圧出力部は、前記第1状態及び前記第2状態において、前記第1基準電圧または前記第2基準電圧を継続して出力する、
     ことを特徴とする請求項2に記載の漏電検出装置。
  6.  前記第1基準電圧はハイサイド基準電圧であり、
     前記第2基準電圧はローサイド基準電圧である、
     ことを特徴とする請求項3から5のいずれか1項に記載の漏電検出装置。
  7.  車両のシャーシアースと絶縁された状態で搭載され、前記車両内の負荷に電力を供給する蓄電部と、
     請求項1から6のいずれか1項に記載の漏電検出装置と、
     を備えることを特徴とする車両用電源システム。
PCT/JP2020/031046 2019-11-26 2020-08-18 漏電検出装置、車両用電源システム WO2021106285A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/756,316 US20220413061A1 (en) 2019-11-26 2020-08-18 Earth leakage detecting device, and vehicular power supply system
JP2021561161A JPWO2021106285A1 (ja) 2019-11-26 2020-08-18
EP20894879.4A EP4068545A4 (en) 2019-11-26 2020-08-18 LEAK DETECTION DEVICE AND POWER SUPPLY SYSTEM FOR A VEHICLE
CN202080081670.4A CN114746762A (zh) 2019-11-26 2020-08-18 漏电检测装置、车辆用电源***

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-213256 2019-11-26
JP2019213256 2019-11-26

Publications (1)

Publication Number Publication Date
WO2021106285A1 true WO2021106285A1 (ja) 2021-06-03

Family

ID=76128831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031046 WO2021106285A1 (ja) 2019-11-26 2020-08-18 漏電検出装置、車両用電源システム

Country Status (5)

Country Link
US (1) US20220413061A1 (ja)
EP (1) EP4068545A4 (ja)
JP (1) JPWO2021106285A1 (ja)
CN (1) CN114746762A (ja)
WO (1) WO2021106285A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020262084A1 (ja) * 2019-06-28 2020-12-30 三洋電機株式会社 漏電検出装置、車両用電源システム
JPWO2021199490A1 (ja) * 2020-03-30 2021-10-07

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03209179A (ja) * 1990-01-11 1991-09-12 Rohm Co Ltd コンデンサのリーク検査器
JP2007163291A (ja) * 2005-12-14 2007-06-28 Denso Corp 車両用対地絶縁回路の絶縁性能診断装置
JP2010151595A (ja) * 2008-12-25 2010-07-08 Omron Corp 検知装置および方法
WO2012029214A1 (ja) * 2010-08-31 2012-03-08 パナソニック株式会社 車両用絶縁抵抗検出装置
JP2013195136A (ja) * 2012-03-16 2013-09-30 Mitsubishi Electric Corp 車載高電圧機器の漏電抵抗検出装置およびその漏電抵抗検出方法
JP2016024155A (ja) * 2014-07-24 2016-02-08 パナソニックIpマネジメント株式会社 異常検出装置
JP2017142269A (ja) * 2013-11-22 2017-08-17 三菱電機株式会社 絶縁検出器及び電気機器
WO2019176173A1 (ja) * 2018-03-15 2019-09-19 三洋電機株式会社 漏電検出回路、車両用電源システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004347372A (ja) * 2003-05-20 2004-12-09 Denso Corp 車載対地絶縁回路のカップリングコンデンサ式漏電検出装置
WO2008016179A1 (fr) * 2006-08-04 2008-02-07 Toyota Jidosha Kabushiki Kaisha Système de détermination de résistance d'isolement, appareil de détermination de résistance d'isolement et procédé de détermination de résistance d'isolement
JP5716601B2 (ja) * 2011-08-02 2015-05-13 トヨタ自動車株式会社 絶縁抵抗低下検出装置
WO2013190611A1 (ja) * 2012-06-18 2013-12-27 日立ビークルエナジー株式会社 リーク検出装置
CN107076792A (zh) * 2014-10-31 2017-08-18 松下知识产权经营株式会社 异常检测装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03209179A (ja) * 1990-01-11 1991-09-12 Rohm Co Ltd コンデンサのリーク検査器
JP2007163291A (ja) * 2005-12-14 2007-06-28 Denso Corp 車両用対地絶縁回路の絶縁性能診断装置
JP2010151595A (ja) * 2008-12-25 2010-07-08 Omron Corp 検知装置および方法
WO2012029214A1 (ja) * 2010-08-31 2012-03-08 パナソニック株式会社 車両用絶縁抵抗検出装置
JP2013195136A (ja) * 2012-03-16 2013-09-30 Mitsubishi Electric Corp 車載高電圧機器の漏電抵抗検出装置およびその漏電抵抗検出方法
JP2017142269A (ja) * 2013-11-22 2017-08-17 三菱電機株式会社 絶縁検出器及び電気機器
JP2016024155A (ja) * 2014-07-24 2016-02-08 パナソニックIpマネジメント株式会社 異常検出装置
WO2019176173A1 (ja) * 2018-03-15 2019-09-19 三洋電機株式会社 漏電検出回路、車両用電源システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4068545A4 *

Also Published As

Publication number Publication date
EP4068545A1 (en) 2022-10-05
US20220413061A1 (en) 2022-12-29
CN114746762A (zh) 2022-07-12
JPWO2021106285A1 (ja) 2021-06-03
EP4068545A4 (en) 2023-01-18

Similar Documents

Publication Publication Date Title
JP7001970B2 (ja) 地絡検出装置、及び蓄電システム
US10180459B2 (en) Monitoring system for detecting occurrence of leakage current and/or relay short-circuit condition in an electrical system
WO2020262083A1 (ja) 漏電検出装置、車両用電源システム
US10161982B2 (en) Failure inspection system enabling discrimination between leakage current failure and short-circuit failure
JP7431212B2 (ja) 漏電検出装置、車両用電源システム
US20220357408A1 (en) Leakage detection device and power system for vehicle
JP2009042080A (ja) 電圧検出装置
WO2021106285A1 (ja) 漏電検出装置、車両用電源システム
JP7498164B2 (ja) 車両用電源システム
WO2021106284A1 (ja) 漏電検出装置、車両用電源システム
JP7276814B2 (ja) 漏電検出装置、車両用電源システム
WO2020262082A1 (ja) 漏電検出装置、車両用電源システム
WO2021199490A1 (ja) 漏電検出装置、車両用電源システム
CN109444549B (zh) 一种车身绝缘的快速检测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20894879

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021561161

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020894879

Country of ref document: EP

Effective date: 20220627