WO2020249004A1 - 板坯连铸二冷区的电磁搅拌装置及方法 - Google Patents

板坯连铸二冷区的电磁搅拌装置及方法 Download PDF

Info

Publication number
WO2020249004A1
WO2020249004A1 PCT/CN2020/095358 CN2020095358W WO2020249004A1 WO 2020249004 A1 WO2020249004 A1 WO 2020249004A1 CN 2020095358 W CN2020095358 W CN 2020095358W WO 2020249004 A1 WO2020249004 A1 WO 2020249004A1
Authority
WO
WIPO (PCT)
Prior art keywords
contactor
electromagnetic
electromagnetic stirring
stirring device
cooling water
Prior art date
Application number
PCT/CN2020/095358
Other languages
English (en)
French (fr)
Inventor
温宏权
周月明
吴存有
胡超
金小礼
赵显久
王春锋
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to JP2021573545A priority Critical patent/JP7232940B2/ja
Priority to US17/617,663 priority patent/US11772153B2/en
Priority to KR1020227000223A priority patent/KR20220024418A/ko
Priority to EP20823673.7A priority patent/EP3984666A4/en
Publication of WO2020249004A1 publication Critical patent/WO2020249004A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/122Accessories for subsequent treating or working cast stock in situ using magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling
    • B22D11/1246Nozzles; Spray heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/20Controlling or regulating processes or operations for removing cast stock
    • B22D11/201Controlling or regulating processes or operations for removing cast stock responsive to molten metal level or slag level
    • B22D11/205Controlling or regulating processes or operations for removing cast stock responsive to molten metal level or slag level by using electric, magnetic, sonic or ultrasonic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/22Controlling or regulating processes or operations for cooling cast stock or mould
    • B22D11/225Controlling or regulating processes or operations for cooling cast stock or mould for secondary cooling

Definitions

  • the invention relates to an electromagnetic stirring device and method used in the technical field of continuous casting, in particular to an electromagnetic stirring device and method in the second cold zone of slab continuous casting.
  • the equiaxed crystal ratio is the main indicator that determines the quality and performance of the cast slab, generally in the range of 20-40%. If the equiaxed crystal ratio is too low, the slab is prone to intergranular cracks during solidification and subsequent rolling. Moreover, the solidification method of steel with columnar crystals is often accompanied by severe segregation of the central component, which is greatly troubled by the existence of these problems Improve the internal quality and performance of the cast slab. Practice has proved that for the continuous casting of high-carbon steel, silicon steel, stainless steel, etc., electromagnetic stirring in the second cold zone or soft core reduction at the solidification end is often required to interrupt the solidification and growth process of columnar crystals inside the cast slab. Increasing the number of crystal nuclei at the front of the solid-liquid interface can promote nucleation, refine crystal grains, and reduce segregation.
  • representative continuous casting secondary cold zone electromagnetic stirring technology includes: (a) counter-polar stirring, such as the inserted counter-polar electromagnetic stirrer disclosed in US Patent US19870014097; (b) roller stirring, such as The roller-type electromagnetic stirrer disclosed in the US patent US20060299624 and the electromagnetic stirring roller disclosed in the Chinese invention patent ZL200710085940.5; (c) box-type stirring, such as the linear electromagnetic stirrer disclosed in Japanese patent JP20050117052.
  • the internal structure of these stirrers is composed of copper coil windings and silicon steel sheet laminated iron cores, and the stirrers are arranged horizontally along the broad side of the cast slab between or behind the segmented rollers of the caster segment.
  • a traveling wave stirring electromagnetic force transmitted in a certain direction is induced in the billet to drive the directional flow of molten steel in the casting billet. Due to the existence of segmented rolls on both sides of the cast slab (the roll diameter is generally about 150mm), the distance between the stirring magnetic field generator in the second cold zone and the cast slab is generally larger, and the distance between the box agitator and the cast slab is generally more than 200mm. Coupled with the leakage of the magnetic field at both ends of the linear stirrer core, the electromagnetic stirring efficiency is low and the actual effect is limited.
  • the stirring roller can contact the casting slab, but due to the limitation of the size of the cavity inside the stirring roller and the shielding effect of the roller sleeve on the magnetic field, the strength of the stirring magnetic field actually generated inside the casting slab is actually not very high. high.
  • the purpose of the present invention is to provide an electromagnetic stirring device and method for the secondary cold zone of slab continuous casting, which has less magnetic field loss, high stirring efficiency, the opening degree of the stirrer can be adjusted online, the stirring direction can be alternately changed, and the continuous slab can be effectively improved. Casting quality and performance.
  • the present invention is realized as follows:
  • An electromagnetic stirring device for the secondary cold zone of slab continuous casting comprising an electromagnetic stirring device main body, an opening adjustment component and a secondary cooling component;
  • the electromagnetic stirring device main body includes a protective shell, a phase sequence control component and an iron core installed in the protective shell
  • the opening adjustment component includes a cylinder, a fixed seat, a movable joint shaft and a number of silicon steel sheet group inserts; a number of silicon steel sheet group inserts are connected in turn by the movable joint shaft to form a movable joint, so that the silicon steel sheet group inserts can be wound around
  • the movable joint axis rotates, and several movable joints are connected with the iron core to form a closed ring structure; an electromagnetic coil is wound on the iron core, and the electromagnetic coil generates an alternating magnetic field in the closed ring structure through the phase sequence control component.
  • the piston end of the cylinder is connected with the main body of the electromagnetic stirring device and drives the movable joint to open and close.
  • the cylinder is fixedly installed on the outside of the main body of the electromagnetic stirring device through a fixed seat;
  • the secondary cooling component includes a cooling water inlet and several cooling water Nozzles, cooling water inlets are arranged on the outer end of the protective shell, and several cooling water nozzles are arranged on the inner end of the protective shell at intervals and facing the casting slab.
  • the cooling water enters the protective shell through the cooling water inlet and completely soaks the electromagnetic coil. And the iron core, and then sprayed onto the surface of the cast slab through several cooling water nozzles.
  • the frequency of the stirring current of the main body of the electromagnetic stirring device is 2-15 Hz.
  • the phase sequence control component includes a water-cooled cable, an alternating phase conversion circuit, a fuse, and an isolating switch;
  • the water-cooled cable includes a first stirring current inlet line, a second stirring current inlet line, and a third stirring current inlet line.
  • One end of the inlet line, the second stirring current inlet line and the third stirring current inlet line is connected to a three-phase power supply, and the other ends of the first stirring current inlet line, the second stirring current inlet line and the third stirring current inlet line respectively pass through the isolation switch
  • the fuse is connected to the electromagnetic coil through the alternating phase circuit.
  • the alternating phase conversion circuit includes a first contactor, a second contactor, an alternating voltage, a transformer, a first diode, a second diode and a resistor, the alternating voltage is connected to the primary of the transformer, the first and second The anode of the pole tube and the anode of the second diode are respectively connected to the output terminal of the secondary of the transformer, the cathode of the first diode is connected to the input of the secondary of the transformer via the first contactor, and the cathode of the second diode It is connected to the input terminal of the secondary of the transformer via the second contactor and resistance; the first contactor and the second contactor are connected to the electromagnetic coil, and the phase sequence of the first contactor to the electromagnetic coil is connected to the second contactor The phase sequence of the electromagnetic coil is opposite, and the on-off of the first contactor and the second contactor are respectively controlled by the alternating phase conversion circuit.
  • the frequency of the alternating voltage is 0.1-1 Hz.
  • the phase sequence control assembly also includes a thermal relay, and the first contactor and the second contactor are respectively connected to the electromagnetic coil through the thermal relay.
  • the two sides of the tooth head end of the protective shell are recessed inward to form a curved surface structure, so that the tooth head end of the protective shell extends in the direction of the casting billet and is located between the two segmented rollers. Match the shape of the section roller.
  • connection between the two ends of the pair of iron cores and the protective shell is provided with water sealing rings.
  • An electromagnetic stirring method for the second cold zone of slab continuous casting including the following steps:
  • Step 1 According to the thickness of the casting billet, the silicon steel sheet group insert piece is driven to rotate around the movable joint axis through the cylinder to adjust the opening degree of the closed ring structure;
  • Step 2 The phase sequence control component is energized through the alternating phase circuit, so that the electromagnetic coil wound on the iron core forms a periodically changing magnetic field in the closed ring structure, and electromagnetically stirs the molten steel in alternating forward and reverse directions;
  • Step 3 Cooling water enters the protective shell through the cooling water inlet, and completely soaks the electromagnetic coil and iron core, and then sprays onto the surface of the casting slab through several cooling water nozzles.
  • Said step 2 also includes the following sub-steps:
  • Step 2.1 The first diode of the alternating phase circuit is turned on, the commutation current of the positive half cycle passes through the first contactor of the phase sequence control assembly, and the first contactor is energized to work;
  • Step 2.2 The electromagnetic coil wound on the iron core generates a magnetic field, and the phase sequence of the three-phase power supply is connected to the electromagnetic stirring coil according to U-V-W to carry out positive electromagnetic stirring of molten steel;
  • Step 2.3 The second diode of the alternating phase conversion circuit is forward-conducted, the commutation current of the negative half cycle passes through the second contactor of the phase sequence control assembly, and the second contactor is energized to work;
  • Step 2.4 The electromagnetic coil wound on the iron core generates a magnetic field, the phase sequence of the three-phase power supply is connected to the electromagnetic stirring coil according to W-V-U, and the molten steel is reversely electromagnetically stirred;
  • Step 2.5 The first diode and the second diode are turned on alternately through the alternating voltage of the alternating phase circuit, so that the first contactor and the second contactor are alternately turned on and off, so that the phase sequence of the three-phase power supply alternates Change and periodically change the direction of electromagnetic stirring.
  • the present invention has the following beneficial effects:
  • the present invention adopts an annular closed electromagnetic stirrer, which better solves the problems of large magnetic leakage and low stirring efficiency in the existing open stirring device, and the opening degree of the annular electromagnetic stirrer can be adjusted online to maximize improvement The effect of electromagnetic stirring for slabs of different thicknesses and specifications in the second cold zone is discussed.
  • the present invention can make the traveling wave electromagnetic stirring direction change periodically at a certain frequency, so that the molten steel can flow in a horizontal ring with alternating directions under the driving of the electromagnetic force. It solves the problems of single mixing direction of the existing agitator and difficulty in adapting to high-speed continuous casting, improves and improves the ability of the molten steel in the billet shell to wash the front of the solidification interface, and avoids the adverse effects of a single fixed direction circulation on the solidified shell for a long time. It can refine the crystal grains, increase the equiaxed crystal ratio, and improve the center segregation, so as to achieve the purpose of improving the internal quality and performance of the cast slab.
  • the device of the present invention has simple structure and diverse functions, has good application value in the continuous casting process of steel, especially high-speed continuous casting, and has a broad prospect.
  • Figure 1 is a cross-sectional view of the electromagnetic stirring device in the second cold zone of the slab continuous casting of the present invention
  • FIG. 2 is a front view of the closed ring structure in the electromagnetic stirring device of the second cold zone of the slab continuous casting of the present invention
  • Figure 3 is a partial enlarged view of Figure 2;
  • phase sequence control component in the electromagnetic stirring device of the second cold zone of the slab continuous casting of the present invention
  • FIG. 5 is a circuit diagram of the alternating phase circuit in the electromagnetic stirring device of the second cold zone of the slab continuous casting of the present invention.
  • Fig. 6 is a flow chart of the electromagnetic stirring method in the second cold zone of slab continuous casting of the present invention.
  • An electromagnetic stirring device for the secondary cold zone of slab continuous casting comprising an electromagnetic stirring device main body, an opening adjustment component and a secondary cooling component; please refer to Figure 1 and Figure 2.
  • the electromagnetic stirring device main body includes a protective shell 3 and a phase sequence
  • the opening adjustment assembly includes a cylinder 7, a fixed seat 8, a movable joint shaft 12 and a number of silicon steel sheet group inserts 13;
  • the silicon steel sheet group inserts 13 are sequentially connected to form movable joints through the movable joint shaft 12, so that the silicon steel sheet group inserts 13 can rotate at a certain angle around the movable joint shaft 12, and several movable joints are connected with the iron core 4 to form a closed ring structure.
  • the silicon steel sheet group insert 13 has an arc-shaped structure, which can be connected to form an arc-shaped movable joint, and three pairs of movable joints can be arranged so that the opening of the closed ring structure can be controlled by the rotation of the silicon steel sheet group insert 13 Degrees; an electromagnetic coil 5 is wound on the iron core 4, and the electromagnetic coil 5 generates an alternating magnetic field in the closed ring structure through the phase sequence control component.
  • the alternating magnetic field can be efficiently transmitted in the closed ring structure, reducing magnetic field leakage or loss, The electromagnetic stirring efficiency of the traveling wave magnetic field is improved.
  • the casting billet 1 passes through the alternating magnetic field of the closed ring structure to realize traveling wave electromagnetic stirring of molten steel; the piston end of the cylinder 7 is connected to the main body of the electromagnetic stirring device and drives the movable joint to open and close
  • the cylinder 7 is fixedly installed on the outside of the main body of the electromagnetic stirring device through the fixing seat 8.
  • the cylinder 7 can also adopt a telescopic structure such as a hydraulic cylinder, and realize online adjustment of the opening degree of the closed ring structure through telescoping;
  • the secondary cooling assembly includes The cooling water inlet 9 and several cooling water nozzles 10 are arranged on the outer end of the protective shell 3, and several cooling water nozzles 10 are respectively arranged on the inner end of the protective shell 3 at intervals and facing the casting slab 1.
  • Secondary cooling cooling water flows in order to cool the protective shell 3, the iron core 4, the coil 5 and the casting slab 1, and the cooling water flow path is in a non-circulating "open circuit" state, avoiding the installation of an electromagnetic stirring device between the segmented rollers 2.
  • the main body interferes and affects the original cooling water nozzle in the secondary cooling zone, which replaces the original cooling water nozzle for secondary cooling of the cast slab to a certain extent.
  • the magnetic field strength of the alternating magnetic field is 10000-30000 A.N, preferably 15000 A.N.
  • the stirring current frequency should be appropriately increased compared to traditional electromagnetic stirring.
  • the stirring current frequency f1 of the electromagnetic stirring device main body is 2-15 Hz, preferably 8 Hz.
  • the phase sequence control component includes a water-cooled cable 6, an alternating phase conversion circuit, a fuse FU, and an isolating switch QS;
  • the water-cooled cable 6 includes a first stirring current inlet line L1, a second stirring current inlet line L2 And the third stirring current inlet line L3, the first stirring current inlet line L1, the second stirring current inlet line L2 and one end of the third stirring current inlet line L3 are connected to a three-phase power supply, the first stirring current inlet line L1, the second stirring current
  • the other ends of the current inlet line L2 and the third stirring current inlet line L3 are respectively connected to the electromagnetic coil 5 through the isolating switch QS and the fuse FU through the alternating phase circuit.
  • the alternating phase conversion circuit includes a first contactor KM1, a second contactor KM2, an alternating voltage u1, a transformer T, a first diode D1, a second diode D2, and a resistor R ,
  • the anodes of the first diode D1 and the second diode D2 are respectively connected to the output terminal of the secondary of the transformer T, and the cathode of the first diode D1 is connected to the transformer T through the first contactor KM1 and the resistor R
  • the secondary input terminal, the cathode of the second diode D2 is connected to the secondary input terminal of the transformer T via the second contactor KM2 and the resistor R;
  • the first contactor KM1 and the second contactor KM2 are connected to the electromagnetic coil 5 ,
  • the phase sequence of the first contactor KM1 connected to the electromagnetic coil 5 is opposite to the phase sequence of the second contactor KM2 connected to the electromagnetic coil 5.
  • the frequency f2 of the alternating voltage u1 is 0.1-1 Hz, preferably 0.2 Hz.
  • the phase sequence control component also includes a thermal relay FR.
  • the first contactor KM1 and the second contactor KM2 are respectively connected to the electromagnetic coil 5 through the thermal relay FR, which can play the role of overload protection.
  • the two sides of the tooth head end of the protective shell 3 are concave inward and present a curved structure, so that the tooth head end of the protective shell 3 extends in the direction of the casting blank 1 and is located between the two segmented rollers 2.
  • the arc structure of the protective shell 3 matches the shape of the segmented roller 2, so that the main body of the electromagnetic stirring device, especially the magnetic pole head, can be as close as possible to the surface of the casting slab 1, reducing the electromagnetic stirring field on the electromagnetic stirring device main body and the casting slab 1. Attenuation and loss in the gap between.
  • the protective shell 3 can be made of a non-magnetic stainless steel material, and the electromagnetic coil 5 can be wound by a highly conductive copper tube. The cooling water can further enhance the cooling of the electromagnetic coil 5 itself.
  • the inner side of the iron core 4 is provided with several grooves 41 at intervals, and the electromagnetic coil 5 is wound in the groove 41 of the iron core 4 to facilitate the uniform distribution of the magnetic field.
  • connection between the two ends of the pair of iron cores 4 and the protective shell 3 is provided with a water sealing ring 11 to ensure that the cooling water flows within the range of the iron core 4 and the electromagnetic coil 5 without water leakage.
  • an electromagnetic stirring method in the secondary cold zone of slab continuous casting including the following steps:
  • Step 1 According to the thickness of the casting billet 1, the cylinder 7 drives the silicon steel sheet group insert 13 to rotate around the movable joint shaft 12 to adjust the opening degree of the closed ring structure.
  • Step 2 The phase sequence control component is energized through the alternating phase circuit, so that the electromagnetic coil 5 wound on the iron core 4 forms a periodically changing magnetic field in the casting slab 1, and performs electromagnetic stirring of the molten steel in alternating forward and reverse directions;
  • Step 3 The cooling water enters the protective shell 3 through the cooling water inlet 9 and completely soaks the electromagnetic coil 5 and the iron core 4, and then sprays onto the surface of the casting slab 1 through several cooling water nozzles 10.
  • Step 2.1 The first diode D1 conducts forward, the commutation current of the positive half cycle passes through the first contactor KM1, and the first contactor KM1 is energized to work.
  • Step 2.2 The electromagnetic coil 5 wound on the iron core 4 generates a magnetic field, the phase sequence of the three-phase power supply is connected to the electromagnetic stirring coil 5 according to U-V-W, and the molten steel is subjected to positive electromagnetic stirring.
  • Step 2.3 The second diode D2 conducts forward, the negative half-cycle commutation current passes through the second contactor KM2, and the second contactor KM2 is energized to work.
  • Step 2.4 The electromagnetic coil 5 wound on the iron core 4 generates a magnetic field, the phase sequence of the three-phase power supply is connected to the electromagnetic stirring coil 5 according to W-V-U, and the molten steel is subjected to reverse electromagnetic stirring.
  • Step 2.5 The first diode D1 and the second diode D2 are turned on alternately through the alternating voltage u1, so that the first contactor KM1 and the second contactor KM2 are alternately turned on and off, and the phase sequence of the three-phase power supply can be realized According to a certain frequency, the corresponding electromagnetic stirring direction changes periodically.
  • the recommended electromagnetic stirring device is installed at the 0# section of the caster sector near the mold outlet.
  • the thickness of the continuous casting slab shell at this time is about 10-20mm, and the unsolidified fraction is 60-80%.
  • the solidified slab shell has enough strength to hold the cast slab.
  • the non-condensed fraction of the liquid core is large, the amount of molten steel is sufficient, and the growth of columnar crystals has just begun, which is just suitable for the secondary cooling zone. Apply a certain intensity of electromagnetic stirring.
  • the stirring current intensity is 800A
  • the liquid core of the casting slab 1 is alternately driven by two electromagnetic forces of equal magnitude and opposite directions generated by the main body of the electromagnetic stirring device to form a horizontal circular flow.
  • the circular flow of molten steel should actually be in the form of a spiral from a spatial perspective.
  • the flow of molten steel formed by electromagnetic stirring continuously scoured the dendrites in the crystalline paste zone at the front of the solid/liquid interface inside the solidified slab shell, breaking the growing dendrites through mechanical mechanisms. Or through the necking mechanism of the high-order dendrite roots, many new grain growth cores are continuously produced, thereby effectively increasing the equiaxed crystal ratio of the final slab 1 and improving the casting defects such as dendrite segregation and macrosegregation.
  • the phase sequence of the first stirring current inlet line L1, the second stirring current inlet line L2, and the third stirring current inlet line L3 is automatically changed by contactor control.
  • the contactor is controlled by its internal control circuit.
  • the electromagnetic coil inside the first contactor KM1 When the electromagnetic coil inside the first contactor KM1 is energized (positive half-cycle control voltage), the coil current will generate a magnetic field, which causes the static iron core to generate electromagnetic attraction to attract its moving iron core , Drive the first contactor KM1 contact action, the three pairs of main contacts are connected, the phase sequence of the three-phase power supply is connected to the electromagnetic coil 5 according to U1-V1-W1, and the molten steel is subjected to "positive" electromagnetic stirring.
  • the electromagnetic coil inside the first contactor KM1 When the electromagnetic coil inside the first contactor KM1 is de-energized, the electromagnetic attraction force disappears. Under the action of the release spring, the armature is released, the contact is restored, and the main contact of the first contactor KM1 is disconnected. At the same time, the electromagnetic coil inside the second contactor KM2 is energized (negative half-cycle control voltage). Based on the same principle, the three pairs of main contacts are connected to the main circuit due to electromagnetic attraction, and the phase sequence of the three-phase power supply can be as W2-V2 -U2 is connected to the electromagnetic coil 5 to realize "reverse" electromagnetic stirring.
  • the unidirectional first diode D1 When the unidirectional first diode D1 is forward conducting, the positive half cycle The commutation current will pass through the first contactor KM1, and the first contactor KM1 will be energized to achieve forward stirring; after forward stirring for 5s, the negative half-cycle commutation current will be forwarded by the unidirectional second diode D2 Through the second contactor KM2, the second contactor KM2 is energized to work, the phase sequence of the stirring current is automatically switched from U1-V1-W1 to W2-V2-U2, and the transmission direction of the traveling wave stirring magnetic field is changed to the opposite direction.
  • the electromagnetic stirring force generated by the internal induction is reversed, and the circulating direction of the molten steel is also changed to realize reverse stirring. After reverse stirring for 5 seconds, the current will return to forward stirring due to the current commutation.
  • the second contactor KM2 of the first contactor KM1 is turned on and off alternately, and the phase sequence of the three-phase stirring current can be alternately changed at a certain frequency.
  • the stirring direction changes periodically, which improves the scouring effect of the liquid steel flow on the solid-liquid interface, improves the effect of electromagnetic stirring, and avoids the shortcomings of the traditional one-way stirring method.
  • the thickness of the billet 1 is reduced from 80mm to 60mm.
  • the movable joint of the main body of the electromagnetic stirring device is driven by the cylinder 7 on the back.
  • the direction of the billet is close to 10mm, or the movement of only the cylinder 7 on the free side causes the iron core 4 and the electromagnetic coil 5 of the main body of the free side stirring device to move 20mm to the fixed side, which is equivalent to the opening of the closed ring structure is reduced by 20mm, while the casting billet 1 It is still at the center of symmetry of the closed ring structure, reducing the loss of the stirring magnetic field in the air gap, and relatively improving the stirring efficiency and effect of the main body of the electromagnetic stirring device in the second cold zone.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

本发明公开了一种板坯连铸二冷区的电磁搅拌装置及方法,该装置包括电磁搅拌装置主体、开口调节组件和二次冷却组件。搅拌装置主体包括保护壳(3)、相序控制组件、铁芯(4)和电磁线圈(5),通过三相电流相序变换对钢水进行变方向电磁搅拌;开口调节组件包括气缸(7)、固定座(8)、活动关节轴(12)和硅钢片组插片(13),通过活动关节结构对闭口环形铁芯开口度在线调节;二次冷却组件包括冷却水进口(9)和冷却水喷口(10),冷却水浸泡冷却电磁线圈和铁芯,再通过冷却水喷口喷射到铸坯(1)表面进行二次冷却。本发明磁场泄漏或损耗少,电磁搅拌效率高,搅拌器开口度可在线调节、搅拌方向交替变化,提高铸坯内部质量和性能。

Description

板坯连铸二冷区的电磁搅拌装置及方法 技术领域
本发明涉及一种用于连铸技术领域的电磁搅拌装置及方法,尤其涉及一种板坯连铸二冷区的电磁搅拌装置及方法。
背景技术
在连续铸造过程中,等轴晶率是决定铸坯质量与性能的主要指标,一般在20~40%范围内。等轴晶率过低,板坯凝固期间和后续轧制时容易产生晶间裂纹;而且,钢以柱状晶为主的凝固方式也常常会伴随严重的中心成分偏析,这些问题的存在极大困扰着铸坯内部质量及使用性能的提高。实践证明,对于高碳钢、硅钢、不锈钢等的连铸,往往要求在二冷区进行电磁搅拌、或在凝固末端进行液芯轻压下,以打断铸坯内部柱状晶的凝固生长进程,增加固液界面前沿晶核数量,起到促进形核、细化晶粒、减小偏析等作用。
目前,代表性的连铸二冷区电磁搅拌技术(S-EMS)包括:(a)对极式搅拌,如美国专利US19870014097公开的***对极式电磁搅拌器;(b)辊式搅拌,如美国专利US20060299624公开的辊式电磁搅拌器和中国发明专利ZL200710085940.5公开的电磁搅拌辊;(c)箱式搅拌,如日本专利JP20050117052公开的线性电磁搅拌器。这些搅拌器内部结构均由铜线圈绕组和硅钢片叠片铁芯组成,且搅拌器沿铸坯宽边横向布置于铸机扇形段的分节辊之间或背后,通过电磁场的临近效应,在铸坯内感应产生沿一定方向传递的行波搅拌电磁力,驱动铸坯内部钢水定向流动。由于铸坯两侧分节辊(辊径一般在150mm左右)的存在,二冷区的搅拌磁场发生装置与铸坯间的距离普遍较大,箱式搅拌器和铸坯距离一般在200mm以上,加之线性搅拌器铁芯两端的磁场泄漏,电磁搅拌效率较低、实际效果有限。对于辊式搅拌,尽管搅拌辊可以与铸坯相互接触,但受搅拌辊内部空腔尺寸大小的限制及辊套对磁场的屏蔽作用,真正在铸坯内部产生的搅拌磁场强度实际上并不很高。
近年来,连铸技术领域内最新出现的薄板坯连铸连轧技术(CSP、ESP等), 其铸坯厚度较小(60~90mm)、拉坯速度较高(4~6m/min),与常规连铸有着较大区别:柱状晶更加发达,等轴晶率更低,因此对二冷区电磁搅拌能力的要求急剧升高,迫切需要开发新型高效二冷区用电磁搅拌技术,从而保证铸坯质量。
发明内容
本发明的目的在于提供一种板坯连铸二冷区的电磁搅拌装置及方法,磁场损失少,搅拌效率高,搅拌器开口度可以在线调节,搅拌方向可以交替变化,能有效提高板坯连铸质量和性能。
本发明是这样实现的:
一种板坯连铸二冷区的电磁搅拌装置,包括电磁搅拌装置主体、开口调节组件和二次冷却组件;电磁搅拌装置主体包括保护壳、相序控制组件及安装在保护壳内的铁芯和电磁线圈,开口调节组件包括气缸、固定座、活动关节轴和若干片硅钢片组插片;若干片硅钢片组插片通过活动关节轴依次连接成活动关节,使硅钢片组插片能绕活动关节轴转动,若干个活动关节与铁芯连接成闭口环形结构;铁芯上绕置电磁线圈,电磁线圈通过相序控制组件在闭口环形结构内产生交变磁场,铸坯从闭口环形结构的交变磁场中通过;气缸的活塞端与电磁搅拌装置主体连接并带动活动关节开合,气缸通过固定座固定安装在电磁搅拌装置主体的外侧;二次冷却组件包括冷却水进口和若干个冷却水喷口,冷却水进口设置在保护壳的外侧端上,若干个冷却水喷口分别间隔设置在保护壳的内侧端上并面向铸坯,冷却水通过冷却水进口进入保护壳内,并完全浸泡电磁线圈和铁芯,再通过若干个冷却水喷口喷射到铸坯的表面。
所述的电磁搅拌装置主体的搅拌电流频率为2-15Hz。
所述的相序控制组件包括水冷电缆、交变换相电路、熔断器和隔离开关;水冷电缆包括第一搅拌电流进线、第二搅拌电流进线和第三搅拌电流进线,第一搅拌电流进线、第二搅拌电流进线和第三搅拌电流进线的一端外接三相电源,第一搅拌电流进线、第二搅拌电流进线和第三搅拌电流进线的另一端分别通过隔离开关和熔断器经交变换相电路接入电磁线圈。
所述的交变换相电路包括第一接触器、第二接触器、交变电压、变压器、第一二极管、第二二极管和电阻,交变电压与变压器的初级连接,第一二极管和第二二极管的正极分别连接到变压器的次级的输出端,第一二极管的负极经第一接 触器连接到变压器的次级的输入端,第二二极管的负极经第二接触器和电阻连接到变压器的次级的输入端;第一接触器和第二接触器接入电磁线圈,且第一接触器接入电磁线圈的相序与第二接触器接入电磁线圈的相序相反,第一接触器和第二接触器的通断分别受交变换相电路的控制。
所述的交变电压的频率为0.1-1Hz。
所述的相序控制组件还包括热继电器,第一接触器和第二接触器分别通过热继电器接入电磁线圈。
所述的保护壳的齿头端两侧向内凹陷呈弧面结构,使保护壳的齿头端向铸坯方向延伸并位于两个分节辊之间,且保护壳的弧面结构与分节辊的外形相匹配。
所述的一对铁芯的两端与保护壳的连接处均设有水密封圈。
一种板坯连铸二冷区的电磁搅拌方法,包括以下步骤:
步骤1:根据铸坯的厚度,通过气缸带动硅钢片组插片绕活动关节轴转动,调节闭口环形结构的开口度;
步骤2:相序控制组件通过交变换相电路通电,使绕置在铁芯上的电磁线圈在闭口环形结构内形成周期性改变的磁场,对钢水进行正反向交替的电磁搅拌;
步骤3:冷却水通过冷却水进口进入保护壳内,并完全浸泡电磁线圈和铁芯,再通过若干个冷却水喷口喷射到铸坯的表面。
所述的步骤2还包括以下分步骤:
步骤2.1:交变换相电路的第一二极管正向导通,正半周的换相电流通过相序控制组件的第一接触器,第一接触器通电工作;
步骤2.2:绕置在铁芯上的电磁线圈产生磁场,三相电源的相序按U-V-W接入电磁搅拌线圈,对钢水进行正向电磁搅拌;
步骤2.3:交变换相电路的第二二极管正向导通,负半周的换相电流通过相序控制组件的第二接触器,第二接触器通电工作;
步骤2.4:绕置在铁芯上的电磁线圈产生磁场,三相电源的相序按W-V-U接入电磁搅拌线圈,对钢水进行反向电磁搅拌;
步骤2.5:第一二极管和第二二极管通过交变换相电路的交变电压交替导通,使第一接触器和第二接触器交替通断电,使三相电源的相序交替变化并周期性改变电磁搅拌方向。
本发明与现有技术相比,具有如下有益效果:
1、本发明采用了环形闭口电磁搅拌器,较好的解决了现有开放式搅拌装置存在的漏磁大、搅拌效率低等问题,且环形电磁搅拌器开口度可在线调节,最大限度地改善了不同厚度和规格的板坯在二冷区进行电磁搅拌的作用效果。
2、本发明通过对搅拌电流的相序自动控制,可以使行波电磁搅拌方向以一定频率周期***替变化,使钢水在此电磁力的驱动下相应做方向可交替变化的水平环形流动,解决了现有搅拌器搅拌方向单一、难适应高速连铸等问题,提高和改善坯壳内钢水冲刷凝固界面前沿的能力,避免了单一固定方向环流对凝固坯壳长期冲刷所带来的不良影响,能细化晶粒、提高等轴晶率、改善中心偏析,从而达到改善铸坯内部质量与使用性能的目的。
3、本发明的装置结构简单,功能多样,在钢的连铸过程尤其是高速连铸中有良好应用价值,前景广阔。
附图说明
图1是本发明板坯连铸二冷区的电磁搅拌装置的剖面图;
图2是本发明板坯连铸二冷区的电磁搅拌装置中闭口环形结构的主视图;
图3是图2的局部放大图;
图4是本发明板坯连铸二冷区的电磁搅拌装置中相序控制组件的电路图;
图5是本发明板坯连铸二冷区的电磁搅拌装置中交变换相电路的电路图;
图6是本发明板坯连铸二冷区的电磁搅拌方法的流程图。
图中,1铸坯,2分节辊,3保护壳,4铁芯,41凹槽,5电磁线圈,6水冷电缆,7气缸,8固定框架,9冷却水进口,10冷却水喷口,11水密封圈,12活动关节轴,13硅钢片组插片,QS隔离开关,FU熔断器,KM1第一接触器,KM2第二接触器,FR热继电器,D1第一二极管,D2第二二极管,T变压器,R电阻,L1第一搅拌电流进线,L2第二搅拌电流进线,L3搅拌电流进线,u1交变电压。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明。
一种板坯连铸二冷区的电磁搅拌装置,包括电磁搅拌装置主体、开口调节组件和二次冷却组件;请参见附图1和附图2,电磁搅拌装置主体包括保护壳3、相序控制组件及安装在保护壳3内的铁芯4和电磁线圈5,请参见附图3,开口调节 组件包括气缸7、固定座8、活动关节轴12和若干片硅钢片组插片13;若干片硅钢片组插片13通过活动关节轴12依次连接成活动关节,使硅钢片组插片13能绕活动关节轴12以一定角度转动,若干个活动关节与铁芯4连接成闭口环形结构,优选的,硅钢片组插片13为弧形结构,可连接形成圆弧形的活动关节,且活动关节可设置三对,使其能通过硅钢片组插片13的转动控制闭口环形结构的开口度;铁芯4上绕置电磁线圈5,电磁线圈5通过相序控制组件在闭口环形结构内产生交变磁场,交变磁场可以在闭口环形结构内高效传递,减小了磁场泄漏或损耗,提高了行波磁场的电磁搅拌效率,铸坯1从闭口环形结构的交变磁场中通过,实现对钢水的行波电磁搅拌;气缸7的活塞端与电磁搅拌装置主体连接并带动活动关节开合,气缸7通过固定座8固定安装在电磁搅拌装置主体的外侧,优选的,气缸7也可采用液压缸等伸缩结构,通过伸缩实现对闭口环形结构的开口度的在线调节;二次冷却组件包括冷却水进口9和若干个冷却水喷口10,冷却水进口9设置在保护壳3的外侧端上,若干个冷却水喷口10分别间隔设置在保护壳3的内侧端上并面向铸坯1,冷却水通过冷却水进口9进入保护壳3内,并完全浸泡电磁线圈5和铁芯4对齐进行冷却,再通过若干个冷却水喷口10喷射到铸坯1的表面,起到对铸坯1补充进行二次冷却作用,冷却水依次流动冷却保护壳3、铁芯4、线圈5和铸坯1,冷却水流路处于非循环的“开路”状态,避免因分节辊2之间安装了电磁搅拌装置主体而对二冷区原有冷却水喷嘴造成干涉和影响,一定程度上代替了原有冷却水喷嘴对铸坯进行二次冷却功能。
所述的交变磁场的磁场强度为10000-30000A.N,优选为15000A.N。考虑到拉速的影响,钢水环形流动从空间上看实际应该是螺旋线形式的,且拉坯速度越高,钢水流动螺旋线的节距越大。因此,对于高拉速连铸,搅拌电流频率比传统电磁搅拌应适当提高,所述的电磁搅拌装置主体的搅拌电流频率f1为2-15Hz,优选为8Hz。
请参见附图4,所述的相序控制组件包括水冷电缆6、交变换相电路、熔断器FU和隔离开关QS;水冷电缆6包括第一搅拌电流进线L1、第二搅拌电流进线L2和第三搅拌电流进线L3,第一搅拌电流进线L1、第二搅拌电流进线L2和第三搅拌电流进线L3的一端外接三相电源,第一搅拌电流进线L1、第二搅拌电流进线L2和第三搅拌电流进线L3的另一端分别通过隔离开关QS和熔断器FU经交变换相电路接入电磁线圈5。
请参见附图5,所述的交变换相电路包括第一接触器KM1、第二接触器KM2、交变电压u1、变压器T、第一二极管D1、第二二极管D2和电阻R,第一二极管D1和第二二极管D2的正极分别连接到变压器T的次级的输出端,第一二极管D1的负极经第一接触器KM1和电阻R连接到变压器T的次级的输入端,第二二极管D2的负极经第二接触器KM2和电阻R连接到变压器T的次级的输入端;第一接触器KM1和第二接触器KM2接入电磁线圈5,且第一接触器KM1接入电磁线圈5的相序与第二接触器KM2接入电磁线圈5的相序相反,第一接触器KM1和第二接触器KM2的通断分别受交变换相电路的控制。
所述的交变电压u1的频率f2为0.1-1Hz,优选为0.2Hz。
所述的相序控制组件还包括热继电器FR,第一接触器KM1和第二接触器KM2分别通过热继电器FR接入电磁线圈5,可起到过载保护的作用。
请参见附图1,所述的保护壳3的齿头端两侧向内凹陷呈弧面结构,使保护壳3的齿头端向铸坯1方向延伸并位于两个分节辊2之间,且保护壳3的弧面结构与分节辊2的外形相匹配,使电磁搅拌装置主体特别是磁极头部分可以尽可能靠近铸坯1表面,减少搅拌电磁场在电磁搅拌装置主体和铸坯1之间空隙内的衰减和损耗。优选的,保护壳3可采用非磁性的不锈钢材质制成,电磁线圈5可采用高导电铜管绕制,冷却水能进一步强化电磁线圈5本身的冷却。
所述的铁芯4的内侧间隔设有若干个凹槽41,电磁线圈5绕置于铁芯4的凹槽41内,便于磁场的均匀分布。
所述的一对铁芯4的两端与保护壳3的连接处均设有水密封圈11,确保冷却水在铁芯4和电磁线圈5的范围内流动,且不漏水。
请参见附图6,一种板坯连铸二冷区的电磁搅拌方法,包括以下步骤:
步骤1:根据铸坯1的厚度,通过气缸7带动硅钢片组插片13绕活动关节轴12转动,调节闭口环形结构的开口度。
步骤2:相序控制组件通过交变换相电路通电,使绕置在铁芯4上的电磁线圈5在铸坯1内形成周期性改变的磁场,对钢水进行正反向交替的电磁搅拌;
步骤3:冷却水通过冷却水进口9进入保护壳3内,并完全浸泡电磁线圈5和铁芯4,再通过若干个冷却水喷口10喷射到铸坯1的表面。
步骤2.1:第一二极管D1正向导通,正半周的换相电流通过第一接触器KM1,第一接触器KM1通电工作。
步骤2.2:绕置在铁芯4上的电磁线圈5产生磁场,三相电源的相序按U-V-W接入电磁搅拌线圈5,对钢水进行正向电磁搅拌。
步骤2.3:第二二极管D2正向导通,负半周的换相电流通过第二接触器KM2,第二接触器KM2通电工作。
步骤2.4:绕置在铁芯4上的电磁线圈5产生磁场,三相电源的相序按W-V-U接入电磁搅拌线圈5,对钢水进行反向电磁搅拌。
步骤2.5:第一二极管D1和第二二极管D2通过交变电压u1交替导通,使第一接触器KM1和第二接触器KM2交替通断电,三相电源的相序可以实现按一定频率交替变化,相应的电磁搅拌方向随之周期性改变。
实施例:
对于薄板坯的高速连铸,推荐的电磁搅拌装置安装于铸机扇形段0#段靠近结晶器出口的位置。在二冷区冷却水喷嘴喷淋冷却的作用下,此时的连铸坯壳厚度约10~20mm,未凝固分率60~80%,凝固坯壳已经有了足够的强度可以容纳铸坯1内部钢水,并在宽边外侧采取电磁搅拌而不用过多担心可能存在漏钢风险;而且,液芯未凝分率较大、钢水量足够、柱状晶生长刚刚开始,正好适合于在二冷区施加具有一定强度的电磁搅拌作用。搅拌电流强度800A,铸坯1的液芯在电磁搅拌装置主体产生的两个大小相等且方向相反的电磁力的交替驱动下形成水平环形流动。考虑到拉速的影响,钢水环形流动从空间上看实际应该是螺旋线形式的。而且,拉坯速度越高,钢水流动螺旋线的节距越大。因此,对于高拉速连铸,搅拌电流频率比传统电磁搅拌应适当提高,搅拌电流频率f1=8Hz。在二冷区的铸坯凝固过程中,电磁搅拌所形成的钢水流动不断冲刷着凝固坯壳内部固/液界面前沿结晶糊状区的树枝晶,通过力学机制打断正在生长的枝晶干,或通过高次枝晶根部的颈缩机制,不断产生许多新的晶粒生长核心,从而有效提高了最终铸坯1等轴晶率、改善枝晶偏析和宏观偏析等铸造缺陷。
在相序控制组件中,第一搅拌电流进线L1、第二搅拌电流进线L2、第三搅拌电流进线L3的相序采用接触器控制自动变换。接触器受其内部的控制电路控制,第一接触器KM1内部的电磁线圈通电(正半周控制电压)时,线圈电流会产生磁场,产生的磁场使其静铁芯产生电磁吸力吸引其动铁芯,带动第一接触器KM1触点动作,其三对主触头接通,三相电源的相序按U1-V1-W1接入电磁线圈5,对钢水进行“正向”的电磁搅拌。当第一接触器KM1内部的电磁线圈断电后,电磁吸 力消失,在释放弹簧的作用下衔铁释放,触点复原,第一接触器KM1的主触头断开。同时,第二接触器KM2内部的电磁线圈通电(负半周控制电压),基于同样原理其三对主触头因电磁吸引力作用接通主回路,三相电源的相序即可按W2-V2-U2接入电磁线圈5,从而实现“反向”电磁搅拌。
两个接触器内部的电磁线圈的通断电控制是通过对频率为f2=0.1Hz的交变电压u1进行交变换相实现的,在单向第一二极管D1正向导通时,正半周的换相电流会通过第一接触器KM1,第一接触器KM1通电工作,实现正向搅拌;正向搅拌5s后,负半周的换相电流在单向第二二极管D2正向导通后通过第二接触器KM2,第二接触器KM2通电工作,搅拌电流的相序从U1-V1-W1自动切换为W2-V2-U2,行波搅拌磁场传递方向改变为相反方向,在铸坯1内感应产生的电磁搅拌力反向,钢水环流方向也随之改变,实现反向搅拌。反向搅拌5s后,由于电流换相又会恢复成正向搅拌,如此,第一接触器KM1的第二接触器KM2交替通断电,三相搅拌电流的相序可以实现按一定频率交替变化,相应地搅拌方向随之周期性改变,改善了钢液流动对固液界面的冲刷效果,提高了电磁搅拌的作用,避免了传统单向搅拌方式的不足之处。
在铸坯1的规格变换时,例如铸坯1厚度从80mm减小到60mm,电磁搅拌装置主体的活动关节在背部的气缸7的驱动下,铸坯1宽面的电磁搅装置主体同时向铸坯方向靠近10mm,或者仅自由侧的气缸7运动使自由侧搅拌装置主体的铁芯4和电磁线圈5向固定侧移动20mm,均相当于闭口环形结构的开口度缩小了20mm,而铸坯1仍处于闭口环形结构的对称中心位置,减小了搅拌磁场在气隙中损耗,同时也相对提高了二冷区电磁搅拌装置主体的搅拌效率和效果。
以上仅为本发明的较佳实施例而已,并非用于限定发明的保护范围,因此,凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种板坯连铸二冷区的电磁搅拌装置,其特征是:包括电磁搅拌装置主体、开口调节组件和二次冷却组件;电磁搅拌装置主体包括保护壳(3)、相序控制组件及安装在保护壳(3)内的铁芯(4)和电磁线圈(5),开口调节组件包括气缸(7)、固定座(8)、活动关节轴(12)和若干片硅钢片组插片(13);若干片硅钢片组插片(13)通过活动关节轴(12)依次连接成活动关节,使硅钢片组插片(13)能绕活动关节轴(12)转动,若干个活动关节与铁芯(4)连接闭口环形结构;铁芯(4)上绕置电磁线圈(5),电磁线圈(5)通过相序控制组件在闭口环形结构内产生交变磁场,铸坯(1)从闭口环形结构的交变磁场中通过;气缸(7)的活塞端与电磁搅拌装置主体连接并带动活动关节开合,气缸(7)通过固定座(8)固定安装在电磁搅拌装置主体的外侧;二次冷却组件包括冷却水进口(9)和若干个冷却水喷口(10),冷却水进口(9)设置在保护壳(3)的外侧端上,若干个冷却水喷口(10)分别间隔设置在保护壳(3)的内侧端上并面向铸坯(1),冷却水通过冷却水进口(9)进入保护壳(3)内,并完全浸泡电磁线圈(5)和铁芯(4),再通过若干个冷却水喷口(10)喷射到铸坯(1)的表面。
  2. 根据权利要求1所述的板坯连铸二冷区的电磁搅拌装置,其特征是:所述的电磁搅拌装置主体的搅拌电流频率f1为2-15Hz。
  3. 根据权利要求1所述的板坯连铸二冷区的电磁搅拌装置,其特征是:所述的相序控制组件包括水冷电缆(6)、交变换相电路、熔断器FU和隔离开关QS;水冷电缆(6)包括第一搅拌电流进线L1、第二搅拌电流进线L2和第三搅拌电流进线L3,第一搅拌电流进线L1、第二搅拌电流进线L2和第三搅拌电流进线L3的一端外接三相电源,第一搅拌电流进线L1、第二搅拌电流进线L2和第三搅拌电流进线L3的另一端分别通过隔离开关QS和熔断器FU经交变换相电路接入电磁线圈(5)。
  4. 根据权利要求3所述的板坯连铸二冷区的电磁搅拌装置,其特征是:所述的交变换相电路包括第一接触器KM1、第二接触器KM2、交变电压u1、变压器T、第一二极管D1、第二二极管D2和电阻R,交变电压u1与变压器T的初级连接,第一二极管D1和第二二极管D2的正极分别连接到变压器T的次级的输出端,第一二极管D1的负极经第一接触器KM1和电阻R连接到变压器T的次级的输入端, 第二二极管D2的负极经第二接触器KM2和电阻R连接到变压器T的次级的输入端;第一接触器KM1和第二接触器KM2接入电磁线圈(5),且第一接触器KM1接入电磁线圈(5)的相序与第二接触器KM2接入电磁线圈(5)的相序相反,第一接触器KM1和第二接触器KM2的通断分别受交变换相电路的控制。
  5. 根据权利要求4所述的板坯连铸二冷区的电磁搅拌装置,其特征是:所述的交变电压u1的频率f2为0.1-1Hz。
  6. 根据权利要求3所述的板坯连铸二冷区的电磁搅拌装置,其特征是:所述的相序控制组件还包括热继电器FR,第一接触器KM1和第二接触器KM2分别通过热继电器FR接入电磁线圈(5)。
  7. 根据权利要求1所述的板坯连铸二冷区的电磁搅拌装置,其特征是:所述的保护壳(3)的齿头端两侧向内凹陷呈弧面结构,使保护壳(3)的齿头端向铸坯(1)方向延伸并位于两个分节辊(2)之间,且保护壳(3)的弧面结构与分节辊(2)的外形相匹配。
  8. 根据权利要求1所述的板坯连铸二冷区的电磁搅拌装置,其特征是:所述的一对铁芯(4)的两端与保护壳(3)的连接处均设有水密封圈(11)。
  9. 一种采用权利要求1所述的板坯连铸二冷区的电磁搅拌装置的电磁搅拌方法,其特征是:包括以下步骤:
    步骤1:根据铸坯(1)的厚度,通过气缸(7)带动硅钢片组插片(13)绕活动关节轴(12)转动,调节闭口环形结构的开口度;
    步骤2:相序控制组件通过交变换相电路通电,使绕置在铁芯(4)上的电磁线圈(5)在闭口环形结构内形成周期性改变的磁场,对钢水进行正反向交替的电磁搅拌;
    步骤3:冷却水通过冷却水进口(9)进入保护壳(3)内,并完全浸泡电磁线圈(5)和铁芯(4),再通过若干个冷却水喷口(10)喷射到铸坯(1)的表面。
  10. 根据权利要求9所述的板坯连铸二冷区的电磁搅拌方法,其特征是:所述的步骤2还包括以下分步骤:
    步骤2.1:交变换相电路的第一二极管D1正向导通,正半周的换相电流通过相序控制组件的第一接触器KM1,第一接触器KM1通电工作;
    步骤2.2:绕置在铁芯(4)上的电磁线圈(5)产生磁场,三相电源的相序按U-V-W接入电磁搅拌线圈(5),对钢水进行正向电磁搅拌;
    步骤2.3:交变换相电路的第二二极管D2正向导通,负半周的换相电流通过相序控制组件的第二接触器KM2,第二接触器KM2通电工作;
    步骤2.4:绕置在铁芯(4)上的电磁线圈(5)产生磁场,三相电源的相序按W-V-U接入电磁搅拌线圈(5),对钢水进行反向电磁搅拌;
    步骤2.5:第一二极管D1和第二二极管D2通过交变换相电路的交变电压u1交替导通,使第一接触器KM1和第二接触器KM2交替通断电,使三相电源的相序交替变化并周期性改变电磁搅拌方向。
PCT/CN2020/095358 2019-06-12 2020-06-10 板坯连铸二冷区的电磁搅拌装置及方法 WO2020249004A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021573545A JP7232940B2 (ja) 2019-06-12 2020-06-10 スラブ連鋳における二次冷却帯に用いる電磁力撹拌装置および方法
US17/617,663 US11772153B2 (en) 2019-06-12 2020-06-10 Electromagnetic stirring device and method for secondary cooling zone during slab continuous casting
KR1020227000223A KR20220024418A (ko) 2019-06-12 2020-06-10 슬래브 연속주조 2차 냉각 영역의 전자기 교반 장치 및 방법
EP20823673.7A EP3984666A4 (en) 2019-06-12 2020-06-10 ELECTROMAGNETIC STIRRING DEVICE AND METHOD FOR A SECONDARY COOLING SECTION IN CONTINUOUS SLAM CASTING

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910504269.6 2019-06-12
CN201910504269.6A CN112077272B (zh) 2019-06-12 2019-06-12 板坯连铸二冷区的电磁搅拌装置及方法

Publications (1)

Publication Number Publication Date
WO2020249004A1 true WO2020249004A1 (zh) 2020-12-17

Family

ID=73733219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095358 WO2020249004A1 (zh) 2019-06-12 2020-06-10 板坯连铸二冷区的电磁搅拌装置及方法

Country Status (6)

Country Link
US (1) US11772153B2 (zh)
EP (1) EP3984666A4 (zh)
JP (1) JP7232940B2 (zh)
KR (1) KR20220024418A (zh)
CN (1) CN112077272B (zh)
WO (1) WO2020249004A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113218200A (zh) * 2021-03-23 2021-08-06 山东交通学院 单线圈电磁加热纵向电磁搅拌装置及使用方法

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11320052A (ja) * 1998-05-20 1999-11-24 Nippon Steel Corp 連続鋳造における溶鋼流動の制御方法
JP2005117052A (ja) 2003-10-09 2005-04-28 Asm Japan Kk シリコンカーバイド膜を製造する方法
US20060029624A1 (en) 2004-07-28 2006-02-09 Bernhard Banowski Low-residue deodorant or antiperspirant stick based on an oil-in-water dispersion
JP2009066651A (ja) * 2007-09-18 2009-04-02 Central Res Inst Of Electric Power Ind 電磁撹拌装置および導電性物質の凝固方法
CN201519749U (zh) * 2009-11-10 2010-07-07 湖南中科电气股份有限公司 多模式方圆坯连铸电磁搅拌器
JP2010214392A (ja) * 2009-03-13 2010-09-30 Nippon Steel Engineering Co Ltd 電磁撹拌装置
CN202185569U (zh) * 2011-07-12 2012-04-11 宝山钢铁股份有限公司 结晶器电磁搅拌装置
CN202571213U (zh) * 2012-06-12 2012-12-05 中冶京诚工程技术有限公司 大断面圆坯的连续铸造装置
CN103182495A (zh) * 2011-12-29 2013-07-03 宝山钢铁股份有限公司 一种多功能电磁搅拌器
CN104107891A (zh) * 2013-04-19 2014-10-22 宝山钢铁股份有限公司 板坯连铸结晶器电磁搅拌装置的电磁感应器
CN104209499A (zh) * 2013-05-29 2014-12-17 宝山钢铁股份有限公司 利用电磁力致熔体振荡的低频脉冲磁场凝固细晶方法
CN105728679A (zh) * 2016-04-26 2016-07-06 湖南中科电气股份有限公司 具有磁屏蔽和多模式的方圆坯连铸弯月面电磁搅拌***及方法
CN105935751A (zh) * 2016-07-05 2016-09-14 湖南中科电气股份有限公司 多功能多模式板坯连铸结晶器电磁控流装置
CN106475537A (zh) * 2015-08-25 2017-03-08 宝山钢铁股份有限公司 搅拌区域可调的电磁搅拌装置及方法
JP2018103198A (ja) * 2016-12-22 2018-07-05 株式会社神戸製鋼所 連続鋳造方法
CN108723316A (zh) * 2018-08-30 2018-11-02 湖南中科电气股份有限公司 一种连铸末端具有加热功能的电磁搅拌***
CN208929149U (zh) * 2018-09-29 2019-06-04 南京钢铁股份有限公司 一种带有辊式电磁搅拌装置的超宽薄比连铸机

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2187468A1 (en) * 1972-06-08 1974-01-18 Siderurgie Fse Inst Rech Stirring molten metal - in continuous casting installation by induction
JPS5326210B2 (zh) * 1974-03-23 1978-08-01
CH627956A5 (de) * 1977-02-03 1982-02-15 Asea Ab Elektromagnetische mehrphasige ruehrvorrichtung an einer stranggiessmaschine.
DE2743505C3 (de) * 1977-09-23 1984-09-20 Aeg-Elotherm Gmbh, 5630 Remscheid Einrichtung zur Erzeugung eines elektromagnetischen Wanderfeldes innerhalb der Stützrollenbahn einer Brammengießanlage
DE2912539A1 (de) * 1979-03-29 1980-10-09 Licentia Gmbh Vorrichtung zum elektrodynamischen ruehren des sumpfes in einer stranggegossenen erstarrenden metallbramme
DE2918700A1 (de) * 1979-05-09 1980-11-13 Siemens Ag Einrichtung zum umruehren von metallischen schmelzen in stranggiessanlagen
JPS61130359A (ja) 1984-11-28 1986-06-18 Idemitsu Petrochem Co Ltd ポリプロピレン樹脂組成物
US4741383A (en) 1986-06-10 1988-05-03 The United States Of America As Represented By The United States Department Of Energy Horizontal electromagnetic casting of thin metal sheets
JPS6444251A (en) 1987-08-10 1989-02-16 Mitsubishi Heavy Ind Ltd Electromagnetic stirring apparatus
CN104353797B (zh) * 2014-07-04 2016-09-28 河南中孚实业股份有限公司 伸缩式铸锭凝固末端电磁搅拌装置
WO2016180882A1 (de) 2015-05-11 2016-11-17 Sms Group Gmbh Verfahren zur herstellung eines metallischen bandes im giesswalzverfahren
JP6766688B2 (ja) * 2017-02-27 2020-10-14 日本製鉄株式会社 連続鋳造機
CN110548843A (zh) * 2019-09-20 2019-12-10 江苏科技大学 一种用于连铸机的电磁搅拌装置

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11320052A (ja) * 1998-05-20 1999-11-24 Nippon Steel Corp 連続鋳造における溶鋼流動の制御方法
JP2005117052A (ja) 2003-10-09 2005-04-28 Asm Japan Kk シリコンカーバイド膜を製造する方法
US20060029624A1 (en) 2004-07-28 2006-02-09 Bernhard Banowski Low-residue deodorant or antiperspirant stick based on an oil-in-water dispersion
JP2009066651A (ja) * 2007-09-18 2009-04-02 Central Res Inst Of Electric Power Ind 電磁撹拌装置および導電性物質の凝固方法
JP2010214392A (ja) * 2009-03-13 2010-09-30 Nippon Steel Engineering Co Ltd 電磁撹拌装置
CN201519749U (zh) * 2009-11-10 2010-07-07 湖南中科电气股份有限公司 多模式方圆坯连铸电磁搅拌器
CN202185569U (zh) * 2011-07-12 2012-04-11 宝山钢铁股份有限公司 结晶器电磁搅拌装置
CN103182495A (zh) * 2011-12-29 2013-07-03 宝山钢铁股份有限公司 一种多功能电磁搅拌器
CN202571213U (zh) * 2012-06-12 2012-12-05 中冶京诚工程技术有限公司 大断面圆坯的连续铸造装置
CN104107891A (zh) * 2013-04-19 2014-10-22 宝山钢铁股份有限公司 板坯连铸结晶器电磁搅拌装置的电磁感应器
CN104209499A (zh) * 2013-05-29 2014-12-17 宝山钢铁股份有限公司 利用电磁力致熔体振荡的低频脉冲磁场凝固细晶方法
CN106475537A (zh) * 2015-08-25 2017-03-08 宝山钢铁股份有限公司 搅拌区域可调的电磁搅拌装置及方法
CN105728679A (zh) * 2016-04-26 2016-07-06 湖南中科电气股份有限公司 具有磁屏蔽和多模式的方圆坯连铸弯月面电磁搅拌***及方法
CN105935751A (zh) * 2016-07-05 2016-09-14 湖南中科电气股份有限公司 多功能多模式板坯连铸结晶器电磁控流装置
JP2018103198A (ja) * 2016-12-22 2018-07-05 株式会社神戸製鋼所 連続鋳造方法
CN108723316A (zh) * 2018-08-30 2018-11-02 湖南中科电气股份有限公司 一种连铸末端具有加热功能的电磁搅拌***
CN208929149U (zh) * 2018-09-29 2019-06-04 南京钢铁股份有限公司 一种带有辊式电磁搅拌装置的超宽薄比连铸机

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113218200A (zh) * 2021-03-23 2021-08-06 山东交通学院 单线圈电磁加热纵向电磁搅拌装置及使用方法
CN113218200B (zh) * 2021-03-23 2022-06-21 山东交通学院 单线圈电磁加热纵向电磁搅拌装置及使用方法

Also Published As

Publication number Publication date
US11772153B2 (en) 2023-10-03
US20220305549A1 (en) 2022-09-29
CN112077272B (zh) 2021-06-15
EP3984666A1 (en) 2022-04-20
JP7232940B2 (ja) 2023-03-03
JP2022535971A (ja) 2022-08-10
CN112077272A (zh) 2020-12-15
KR20220024418A (ko) 2022-03-03
EP3984666A4 (en) 2022-05-18

Similar Documents

Publication Publication Date Title
WO2020249004A1 (zh) 板坯连铸二冷区的电磁搅拌装置及方法
US4016926A (en) Electro-magnetic strirrer for continuous casting machine
US20080164004A1 (en) Method and system of electromagnetic stirring for continuous casting of medium and high carbon steels
CN109158563B (zh) 带复合磁场的连铸结晶器电磁搅拌器
CN105728462B (zh) 一种镁合金板坯超声铸轧方法
CN104209499B (zh) 利用电磁力致熔体振荡的低频脉冲磁场凝固细晶方法
CN203639530U (zh) 利用稳恒磁场优化金属凝固组织的复合电渣熔铸装置
JP2015530255A (ja) 連続薄ストリップ鋳造の方法および装置
CN113426970A (zh) Φ1000mm-Φ2000mm大型圆坯的立式半连续生产装置及其生产工序
CN203679244U (zh) 一种制备金属半固态浆料的装置
CN108526424B (zh) 一种双频电磁搅拌的磁场发生器
CN103464705A (zh) 一种减缓结晶器液面波动的电磁控流方法
CN103658608A (zh) 一种制备金属半固态浆料的装置及应用
WO2015188573A1 (zh) 一种电磁旋流水口连铸方法及装置
CN106475537A (zh) 搅拌区域可调的电磁搅拌装置及方法
JPS59150649A (ja) ブル−ム連鋳用電磁撹拌鋳型
JP2011189356A (ja) 双ロール鋳造方法および双ロール鋳造機
CN2244444Y (zh) 板坯连铸电磁搅拌辊
CN110842162A (zh) 紫铜锭大规格水平连铸用结晶器
CN208680474U (zh) 一种电磁能晶粒细化的装置
CN105268935B (zh) 一种两瓣式浸入式水口电磁旋流装置及其支撑装置
CN112317707A (zh) 侧螺旋电磁搅拌装置
CN109290537B (zh) 一种原料纯铁小方坯的生产方法
JP5897318B2 (ja) 金属製品製造装置
CN109913690A (zh) 一种铜镍铁磁材制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20823673

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021573545

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227000223

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020823673

Country of ref document: EP

Effective date: 20220112