WO2020246558A1 - 電池制御装置 - Google Patents

電池制御装置 Download PDF

Info

Publication number
WO2020246558A1
WO2020246558A1 PCT/JP2020/022182 JP2020022182W WO2020246558A1 WO 2020246558 A1 WO2020246558 A1 WO 2020246558A1 JP 2020022182 W JP2020022182 W JP 2020022182W WO 2020246558 A1 WO2020246558 A1 WO 2020246558A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
current
control device
resistance
polarization
Prior art date
Application number
PCT/JP2020/022182
Other languages
English (en)
French (fr)
Inventor
耕平 本蔵
啓 坂部
Original Assignee
ビークルエナジージャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ビークルエナジージャパン株式会社 filed Critical ビークルエナジージャパン株式会社
Priority to EP20819382.1A priority Critical patent/EP3982458A4/en
Priority to US17/617,251 priority patent/US20220236329A1/en
Priority to CN202080042059.0A priority patent/CN113994222A/zh
Priority to JP2021524906A priority patent/JPWO2020246558A1/ja
Publication of WO2020246558A1 publication Critical patent/WO2020246558A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing

Definitions

  • the present invention relates to a battery control device containing a large number of batteries, such as a power storage device for a mobile body, a power storage device for stabilizing grid interconnection, and an emergency power storage device.
  • the state of charge (SOC) of the battery In order to bring out the performance of the battery control device, the state of charge (SOC) of the battery, the state of deterioration of the battery (SOH), the maximum current that can be charged and discharged (allowable current value), etc. must be appropriately determined.
  • the internal state and parameters of the battery such as the open circuit voltage (OCV) of the battery and the internal resistance are required.
  • OCV open circuit voltage
  • a current is passed in addition to the internal resistance (DC resistance) that causes a voltage change that occurs at the moment when the current is passed through the battery.
  • the influence of the internal resistance (polarization resistance) that causes a voltage change when continuing is large.
  • the battery controller holds as a data table of what values the parameters such as DC resistance and polarization resistance are at various SOCs and temperatures, or as a function thereof. Then, the battery controller estimates the SOC based on the information sent from the cell controller, and then specifies the parameter value from the data table or the function.
  • the battery controller determines the resistance increase rate according to the SOH of the battery in order to compensate for the influence of battery deterioration, and multiplies the DC resistance and polarization resistance in the initial state of the battery by the resistance increase rate to obtain the deteriorated DC resistance. And the polarization resistance is determined.
  • the SOH of all the battery cells is determined, and the resistance increase rate of the most deteriorated battery cell is used to determine the battery module or the battery pack. , The allowable current value of the battery pack is calculated.
  • Patent Document 1 has a data table of DC resistance and diffusion coefficient in the initial state, while measuring the measured value of the battery voltage waveform during charging / discharging and the DC resistance identified by calculation based on a predetermined battery model.
  • a learning algorithm for a degradation management system is disclosed that updates the data table of the measured SOC and the location corresponding to the temperature according to the value of the diffusion coefficient.
  • the DC resistance and polarization resistance when the battery deteriorates do not increase uniformly in all SOCs, and in some SOCs, the DC resistance or polarization resistance may decrease as the battery deteriorates. ..
  • the DC resistance and polarization resistance of a battery are derived from the DC resistance and polarization resistance of the positive electrode and the negative electrode constituting the battery.
  • the DC resistance or polarization resistance of the positive electrode and the negative electrode has a dependency on the SOC of each of the positive electrode and the negative electrode, and the SOC dependence of the DC resistance or the polarization resistance of the battery is determined by the correspondence between the SOCs of the positive electrode and the negative electrode.
  • the correspondence between the SOCs of the positive electrode and the negative electrode changes as the battery deteriorates. From this, the SOC dependence of the DC resistance or the polarization resistance of the battery changes, and depending on the SOC, the DC resistance or the polarization resistance decreases due to deterioration. Therefore, if the permissible current value is determined according to the battery cell in which the deterioration has progressed most, the permissible current in the battery cell in which the deterioration has not progressed may be deviated and the deterioration of the battery cell may be accelerated.
  • the present invention is a battery control device capable of preventing deviation of current and voltage from a predetermined range for all battery cells and suppressing battery deterioration even when a plurality of battery cells having different degrees of deterioration are connected in series.
  • the purpose is to provide.
  • the present invention is a battery control device including a battery module and a battery controller, wherein the battery controller executes a memory and a program recorded in the memory to execute the battery.
  • the memory includes a control circuit for controlling the operation of the battery of the module, the memory stores battery data including the relationship between the DC resistance component and the charging state, and the relationship between the polarization resistance component and the charging state, and the control circuit stores the battery.
  • the deterioration state of the battery is estimated, the battery data is referred to, and the relationship between the DC resistance component and the charging state and the relationship between the polarization resistance component and the charging state are extracted based on the estimated current deterioration state of the battery to obtain the battery. I tried to control it.
  • the present invention is a battery control device capable of preventing deviation of current and voltage from a predetermined range for all battery cells and suppressing battery deterioration even when a plurality of battery cells having different degrees of deterioration are connected in series. Can be provided.
  • FIG. 1 is an example of a hardware block diagram of a battery system 100 used in an electric vehicle or the like.
  • the battery system 100 includes a battery control device 1, an inverter 2, a load 3 such as a motor, and a host controller 4.
  • the inverter 2 converts the output voltage of the battery control device 1 into three-phase alternating current and supplies it to the load 3.
  • the host controller 4 controls the battery control device 1 and the inverter 2.
  • the battery control device 1 is configured in the same manner.
  • the electric power output by the load 3 can be stored in the battery module 11 in the battery control device 1 by using the inverter 2 as a bidirectional inverter. By connecting the charging system in parallel with the inverter 2, it is possible to charge the battery module 11 as needed.
  • the battery control device 1 has a charge rate (SOC), a deterioration rate (SOH), and a maximum charge / discharge current (allowable current value) that can be passed through the battery as information on the state of the battery useful for controlling the inverter 2 and the load 3. , Battery temperature, presence / absence of battery abnormality, etc. are transmitted to the host controller 4.
  • the host controller 4 performs energy management, abnormality detection, and the like based on this information.
  • the host controller 4 determines that the battery control device 1 should be disconnected from the inverter 2 or the load 3, the host controller 4 transmits a disconnection instruction to the battery control device 1.
  • the battery control device 1 includes a battery module 11, a battery controller 12 that monitors and estimates the state of the battery, a relay 13 that interrupts the output of the battery control device 1, and a current flowing through the battery module 11.
  • a breaker 18 that is turned on and off according to the output voltage of the battery control device 1 is provided.
  • the battery control device 1 includes a plurality of (two) battery modules 11 connected in series via a circuit breaker 18.
  • the battery controller 12 includes a CPU (control circuit) 121 that performs various calculations, and a storage unit (memory) 122 that stores a data table (data structure) described later.
  • the battery module 11 has a plurality of unit batteries (battery cells), and has a circuit for measuring the temperature inside the battery module 11, a circuit for measuring the voltage of the unit battery, and charging / discharging for each unit battery as needed. It is equipped with a circuit to perform. Therefore, it is possible to monitor the voltage and adjust the voltage for each unit battery.
  • the battery controller 12 can estimate, determine, or determine the battery state based on the temperature information of the unit battery.
  • a plurality of battery modules 11 are connected in series, and a current sensor 14 and a pair of relays 13 are connected in series.
  • the current sensor 14 measures the current value required for the battery controller 12 to monitor and estimate the state of the battery module 11.
  • the battery controller 12 can cut off or connect the output of the battery control device 1 by controlling the opening and closing of the pair of relays 13 based on the command of the host controller 4.
  • a switch for forcibly cutting off the power input / output to the battery control device 1 by human power may be added in series with the relay 13 in preparation for the battery module 11 becoming a high voltage (for example, 100V). By doing so, it is possible to prevent a short circuit, for example, when assembling or disassembling the battery control device 1, or when responding to an accident of the device equipped with the battery control device 1.
  • a relay 13, a switch, and a current sensor 14 may be provided in each row.
  • the relay 13, the switch, and the current sensor 14 may be provided only in the output portion of the battery control device 1.
  • a relay 13, a switch, and a current sensor 14 may be provided in both the row and the output unit of the battery control device 1.
  • the relay 13 may be composed of one unit, or may be composed of a main relay, a precharge relay, and a set of resistors. In the latter configuration, resistors may be arranged in series with the precharge relay and these may be connected in parallel with the main relay.
  • the battery controller 12 connects the relay 13
  • first connect the precharge relay Since the current flowing through the precharge relay is limited by the resistors connected in series, the inrush current that can occur in the former configuration can be limited. Then, the main relay is connected after the current flowing through the precharge relay becomes sufficiently small.
  • the timing of connecting the main relay may be based on the current flowing through the precharge relay, or the voltage applied to the resistor or the voltage between the terminals of the main relay. Alternatively, the time elapsed since the precharge relay is connected may be used as a reference.
  • the voltage sensor 15 measures the voltage value required for the battery controller 12 to monitor and estimate the state of the battery module 11.
  • the voltage sensor 15 is connected in parallel to one or a plurality of battery modules 11.
  • An electric leakage sensor 16 is connected to the battery module 11 to detect a state in which an electric leakage can occur before the electric leakage occurs, that is, a state in which the insulation resistance is lowered, and prevent the occurrence of an accident.
  • Each of the current sensor 14, the voltage sensor 15, the temperature sensor 17, and the earth leakage sensor 16 transmits the measured value to the battery controller 12.
  • the battery controller 12 monitors and estimates the battery state of the battery module 11 based on the received measured value, and controls the battery module as a result.
  • “Control” includes, for example, charging / discharging of each unit battery for equalizing the voltage of each unit battery, control of the power supply of each sensor, addressing of each sensor, control of the relay 13 connected to the battery controller 12, and the like. including.
  • the CPU 121 performs calculations necessary for monitoring, estimating, and controlling the battery status as described above.
  • the battery control device 1 may include a fan for cooling the system, and the battery controller 12 may control the fan. By cooling the battery control device 1, it is possible to reduce the amount of communication with the host controller 4.
  • the voltage sensor 15 and the earth leakage sensor 16 are made into separate parts from the battery controller 12 to give a degree of freedom, but the battery controller 12 has a built-in voltage sensor 15 and the earth leakage sensor 16. May be. By doing so, the number of harnesses can be reduced and the time and effort required to attach the sensors can be reduced as compared with the case where individual sensors are prepared. However, since the scale (maximum output voltage, current, etc.) of the battery control device 1 that can be supported by incorporating the sensor may be limited, it is desirable to use a separate component in such a case.
  • FIG. 2 is an example of a functional block diagram of the battery controller 12.
  • the CPU 121 realizes the deterioration state estimation unit 1201, the charge state estimation unit 1202, and the allowable current calculation unit 1204 as functional modules.
  • a "part" may be paraphrased as a function, means, module, unit, unit, circuit, step, or the like.
  • the functional module may be realized by hardware such as a semiconductor circuit.
  • the storage unit 122 includes a battery data table 1205.
  • Each value of current, voltage, and temperature is input from a group of sensors such as a current sensor, a voltage sensor, and a temperature sensor to each of the deterioration state estimation unit 1201 and the charge state estimation unit 1202.
  • the deterioration state estimation unit 1201 estimates the deterioration state of the battery based on the current I, the voltage V, and the temperature T. "Estimation” may be paraphrased as setting, judgment, judgment, or judgment. This also applies to the charge state estimation unit 1202.
  • the deterioration state estimation unit 1201 may adopt, for example, a decrease in battery capacity as an index indicating the deterioration state of the battery.
  • a method of estimating the capacity decrease of the battery for example, there are the following.
  • the deterioration state estimation unit 1201 integrates the charge / discharge amount Q_AB from the time point A to another time point B. Then, OCV_A at time point A and OCV_B at time point B are calculated, and the charge / discharge amount Q_AB corresponding to OCV_A and the charge / discharge amount Q'_AB corresponding to OCV_B are obtained by referring to the battery data table in the initial state. Then, let Q'_AB / Q_AB be the capacity reduction rate. Let this volume reduction rate be SOH.
  • the charge state estimation unit 1202 estimates the charge state of the battery based on the current I, the voltage V, and the equivalent circuit model of the temperature T and the battery (battery cell).
  • FIG. 3 is a diagram showing an example of the voltage behavior of the battery when a square wave current is applied to the battery.
  • FIG. 4 is an example of an equivalent circuit model of a battery.
  • FIG. 3A shows the square wave current I applied to the battery
  • FIG. 3B shows the voltage V of the battery. In both cases, the horizontal axis is the elapsed time.
  • the voltage V of the battery that is, the CCV (closed circuit voltage) of the battery changes as shown in graph 32 of FIG. 3B.
  • This change in voltage is roughly classified into three components: DC voltage component I ⁇ R0, polarization voltage component Vp, and OCV fluctuation component ⁇ OCV.
  • R0 is a DC resistance component.
  • the first component the DC voltage component I ⁇ R0, responds instantaneously to a change in the current I. That is, it rises momentarily according to the rise of the current I, changes at a constant level, and then disappears with the fall of the current I.
  • the polarization voltage component Vp which is the second component, fluctuates with a delay with respect to the change in the current I. That is, it gradually rises after the rise of the current I and gradually falls after the fall of the current I.
  • the third component, ⁇ OCV corresponds to the difference between the OCV value of OCV1 before the start of charging and the OCV value of OCV2 after the start of charging.
  • ⁇ OCV corresponds to the amount of change in the state of charge of the battery according to the amount of charge / discharge.
  • the DC voltage component is obtained by applying the current I to the DC resistance component R0.
  • Rp represents a polarization resistance component and Cp represents a polarization capacitance component, and the polarization voltage component Vp can be obtained from these values, the current I, and the charge / discharge time t.
  • the polarization voltage component Vp exhibits an exponential variation based on the time constant RpCp.
  • the charge state estimation unit 1202 refers to the battery data table described later showing the relationship between the SOC and OCV of the battery from the OCV of the battery obtained by analyzing the CCV of the battery based on the equivalent circuit model. To calculate the SOC.
  • SOC may be calculated from the relationship between ⁇ Q and SOC based on the charge / discharge electricity amount ⁇ Q in which the current I is integrated. The SOC may be calculated by combining both methods.
  • FIG. 5 is an example of the battery data table 1205.
  • the items in the table are SOH (%), temperature T (° C.), SOC (%), current I (A), OCV (V), DC resistance Ro ( ⁇ ), polarization resistance Rp ( ⁇ ), and polarization capacitance.
  • Cp (F) (or polarization time constant ⁇ p (s)).
  • the battery data table it may be a function representing data.
  • the battery data table 1205 shows the DC resistance Ro ( ⁇ ), the polarization resistance Rp ( ⁇ ), and the polarization for each of these predetermined combinations for the temperatures T, SOC, SOH, and current I, which are in the predetermined ranges, respectively. It has a capacitance Cp (F). That is, in the battery data table, for each of a plurality of combinations in which the battery capacity reduction rate (SOH), the battery temperature (T), the battery charge rate (SOC), and the battery current (I) are predetermined values. Therefore, the values of the battery DC resistance Ro ( ⁇ ), the polarization resistance Rp ( ⁇ ), and the polarization capacitance Cp (F) are set respectively.
  • the SOH is the N level
  • the SOC is the M level
  • the temperature is the L level
  • the current is the K level.
  • the number of combinations of OCV, DC resistance, polarization resistance, and polarization capacitance is N ⁇ M ⁇ L ⁇ K.
  • the battery data table in FIG. 5 is determined in advance by experiments and simulations. For example, among the cells of the battery pack, a cell having an SOH of any M level (for example, SOH_1) is connected to the charging / discharging device in a constant temperature bath set to any of the L level temperatures (for example, T_1). After adjusting the SOC to one of the N levels (for example, SOC_1), the current is charged or discharged for a certain period of time as one of the K levels (for example, I_1), and the behavior of the obtained CCV is analyzed to obtain DC resistance Ro and polarization. The resistance Rp and the polarization capacitance Cp are determined.
  • the Ro corresponding to SOH_1, T_1, SOC_1, and I_1, the polarization resistance Rp, and the polarization capacitance Cp can be determined.
  • the battery data table of FIG. 5 can be realized.
  • the battery data table does not have to be provided for each individual battery cell, and one battery table may be provided for each battery cell specification (manufacturer, model, type, etc.).
  • Rp A ⁇ exp (B / (T + 273)
  • a and B as appropriate constants
  • FIG. 6A is a graph showing the SOC dependence of the DC resistance R0 of the battery at a temperature of 25 ° C., a current of 1C, a SOH of 100%, and a SOH of 83%.
  • FIG. 6B is a graph showing the SOC dependence of the polarization resistance Rp of the battery at a temperature of 25 ° C., a current of 1C, a SOH of 100%, and a SOH of 83%.
  • the current 1C means a current value that discharges the entire capacity of the battery in one hour.
  • the permissible current calculation unit 1204 refers to the DC resistance, polarization resistance, and polarization capacity of the battery stored in the battery data table 1205 based on the current battery temperature, SOC, and SOH, and calculates the permissible current of the battery.
  • the permissible current calculation unit 1204 maintains the safety of the battery control device 1 by limiting the current so as not to exceed the permissible current value as a part of the safety function for preventing the overvoltage of the battery, and at the same time, the battery suddenly becomes abrupt. Suppress deterioration.
  • An example of the calculation for obtaining the allowable current for that purpose is shown below.
  • Icmax is the allowable charging current
  • Vmax is the upper limit voltage
  • R is the internal resistance of the battery.
  • the allowable discharge current is calculated using the following formula (2).
  • Idmax is the allowable discharge current
  • Vmin is the lower limit voltage
  • R is the internal resistance of the battery.
  • R is calculated using, for example, the following equation (3).
  • Ro, Rp, Cp are obtained from the battery data table 1205.
  • t is time (seconds).
  • To select Ro, Rp, Cp from the database it is necessary to specify the current. Therefore, for example, there is a method of simply calculating the permissible current by using Ro, Rp, and Cp at a predetermined current. Further, for example, while changing the specified current, extraction of Ro, Rp, and Cp and calculation of equations (1) to (3) are repeated to obtain an allowable current in which equations (1) to (3) are consistently established. There is also a way to search.
  • the permissible current calculation unit 1204 calculates the permissible input and the permissible output of the battery based on the DC resistance, polarization resistance, and polarization capacity of the battery stored in the battery data table 1205.
  • the permissible input is calculated from the following equation (4).
  • the permissible output is calculated from the following equation (5).
  • each of the DC resistance component, the polarization resistance component, and the polarization capacitance component of the battery is associated with the temperature, SOC, SOH, and current. ..
  • the battery is used from the initial state of the battery, and the deterioration state estimation unit 1201 updates the SOH of the current battery, for example, when the engine is started, when the battery is charged by an external power source, or when the periodic inspection is performed. After that, the equivalent circuit parameter table corresponding to the updated SOH is used.
  • the charge state estimation unit 1202 calculates the SOC based on the relationship between the charge / discharge electricity amount and the SOC based on the charge / discharge electricity amount ⁇ Q obtained by integrating the current I detected by the current sensor 14.
  • the SOC is calculated based on the OCV of the battery obtained during hibernation and the relationship between the SOC and the OCV.
  • the SOC is calculated using any of OCV, DC resistance, polarization resistance, and polarization capacitance obtained by analyzing the detected values of the current sensor 14 and the voltage sensor 15 with an equivalent circuit model.
  • the SOC is calculated by combining a plurality of these calculation methods.
  • the allowable current calculation unit 1204 uses the equations (1) to (3) based on the DC resistance, polarization resistance, and polarization capacity of the battery stored in the battery data table 1205 to allow the battery to be charged and discharged. Calculate the current. Further, the allowable input Iin and the allowable output Iout are calculated using the equations (4) and (5).
  • the permissible current calculation unit 1204 executes the above permissible current and permissible input / output calculations for all the battery cells constituting the battery module (battery pack). At this time, since the temperature, SOC, and SOH of the individual battery cells are different, the allowable current and the allowable input / output are different for each battery cell.
  • the allowable current calculation unit 1204 selects the current having the smallest absolute value from the allowable currents of a group of battery cells connected in series in the battery module (battery pack), and allows the series battery cells to be allowed. Let it be an electric current.
  • the battery control device 1 estimates the deterioration state of a plurality of deteriorated batteries by estimating the deterioration state of the current battery and a battery data table including the relationship between the DC resistance component and the charging state and the relationship between the polarization resistance component and the charging state. From the battery data table including the relationship between the DC resistance component and the charging state and the relationship between the polarization resistance component and the charging state according to the deterioration state of the current battery estimated by the unit 1201 and the deterioration state estimation unit 1201, the current battery Parameters including the DC resistance component and the polarization resistance component are extracted, and the allowable current of the battery cell is calculated based on these.
  • the minimum value is the allowable current of the entire series group.
  • the permissible current calculation unit 1204 sets an permissible current for each of the plurality of groups, and each group.
  • the total allowable current of the battery module is set to the allowable current of the battery module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本発明は、電池モジュールと、バッテリコントローラと、を備える電池制御装置であって、前記バッテリコントローラは、メモリと、メモリに記録されたプログラムを実行して、前記電池モジュールの電池の動作を制御する制御回路と、を備え、前記メモリは、直流抵抗成分と充電状態の関係、分極抵抗成分と充電状態の関係を含む電池データを記憶し、前記制御回路は、電池の劣化状態を推定し、前記電池データを参照し、推定した電池の現在の劣化状態に基づいて、直流抵抗成分と充電状態の関係、分極抵抗成分と充電状態の関係を抽出して前記電池を制御するようにした。

Description

電池制御装置
 本発明は、移動体向け蓄電装置や系統連系安定化用蓄電装置、非常用蓄電装置といった、多数の電池を内蔵する電池制御装置に関する。
 電池制御装置の性能を引き出すために、電池の充電状態(SOC)や電池の劣化状態(SOH)、充放電可能な最大電流(許容電流値)等が適切に定められなくてはならない。電池制御装置が最大電流を算出するために、電池の開回路電圧(OCV)や内部抵抗等の電池の内部状態やパラメータが必要である。特に、常時不規則な電流が流れている移動体向けや系統連係安定化用蓄電装置では、電池に電流を流した瞬間に生じる電圧変化をもたらす内部抵抗(直流抵抗)に加えて、電流を流し続ける場合の電圧変化をもたらす内部抵抗(分極抵抗)の影響が大きい。
 直流抵抗や分極抵抗などのパラメータは、電池のSOC、および、温度によって変化する。そこで、バッテリコントローラは種々のSOCおよび温度において、直流抵抗および分極抵抗などのパラメータがどのような値になるかのデータテーブル、または、その関数として保持している。そして、バッテリコントローラは、セルコントローラから送られてくる情報に基づいて、SOCを推定したうえで、データテーブル、または、関数からパラメータの値を特定する。
 ところで、これらのパラメータは、電池の初期状態において定められため、電池が劣化すると、実際の値とは異なる値パラメータの値がデータテーブル、又は、関数から出力されてしまって、SOC、電池電圧値、許容電流値等が正しく算出されない。
 バッテリコントローラは、電池の劣化による影響を補正するために、電池のSOHに応じて抵抗上昇率を決定し、電池の初期状態の直流抵抗および分極抵抗に抵抗上昇率を乗じて劣化後の直流抵抗および分極抵抗を決定している。複数の電池セルを直列又は並列接続した、電池モジュール、あるいは、電池パックにおいては、全ての電池セルのSOHを決定し、最も劣化が進行した電池セルの抵抗上昇率を用いて、電池モジュール、あるいは、電池パックの許容電流値を計算している。
 電池の劣化に応じて、直流抵抗成分と分極抵抗成分のデータテーブルを更新することが提案されている。例えば、特許文献1には、初期状態の直流抵抗と拡散係数のデータテーブルを保有する一方で、充放電中の電池電圧波形の測定値と、所定の電池モデルに基づく計算で同定した直流抵抗と拡散係数との値に応じて、測定されたSOCと温度に対応する箇所のデータテーブルを更新する、劣化管理システムのための学習型のアルゴリズムが開示されている。
特開2013-44598号公報
 電池が劣化した場合での直流抵抗および分極抵抗は、全てのSOCにおいて一律に上昇するわけではなく、あるSOCでは、電池の劣化に伴って、直流抵抗、あるいは、分極抵抗が低下する場合がある。電池の直流抵抗と分極抵抗は、電池を構成する正極と負極との直流抵抗と分極抵抗に由来する。正極・負極の直流抵抗または分極抵抗は正極、負極それぞれのSOCへの依存性を持っており、電池の直流抵抗または分極抵抗のSOC依存性は、正極、負極のSOCの対応関係によって決まる。
 一方、正極、負極のSOCの対応関係は電池の劣化に伴い変化する。このことから、電池の直流抵抗または分極抵抗のSOC依存性が変化し、SOCによっては劣化によって直流抵抗あるいは分極抵抗が低下する。このため、最も劣化が進んだ電池セルに合わせて許容電流値を決定すると、劣化が進んでいない電池セルの許容電流を逸脱し、電池セルの劣化が加速される場合がある。
 本発明は、劣化度の異なる電池セルの複数が直列接続されても、全ての電池セルに対して電流および電圧の所定範囲からの逸脱を防止し、電池劣化を抑制することができる電池制御装置を提供することを目的とする。
 前記目的を達成するために、本発明は、電池モジュールと、バッテリコントローラと、を備える電池制御装置であって、前記バッテリコントローラは、メモリと、メモリに記録されたプログラムを実行して、前記電池モジュールの電池の動作を制御する制御回路と、を備え、前記メモリは、直流抵抗成分と充電状態の関係、分極抵抗成分と充電状態の関係を含む電池データを記憶し、前記制御回路は、電池の劣化状態を推定し、前記電池データを参照し、推定した電池の現在の劣化状態に基づいて、直流抵抗成分と充電状態の関係、分極抵抗成分と充電状態の関係を抽出して前記電池を制御するようにした。
 本発明は、劣化度の異なる電池セルの複数が直列接続されても、全ての電池セルに対して電流および電圧の所定範囲からの逸脱を防止し、電池劣化を抑制することができる電池制御装置を提供することができる。
電動車両等に利用される、本発明の実施形態に係る電池システムのハードウエアブロック図の一例である。 バッテリコントローラの機能ブロック図の一例である。 電池に矩形波電流を印加した時の電池の電圧挙動の一例を示すグラフであり、電池に印加した矩形波電流Iを示す。 電池に矩形波電流を印加した時の電池の電圧挙動の一例を示すグラフであり、電池の電圧Vを示す。 電池の等価回路モデルの一例を示す図である。 電池データテーブルの一例を示す図である。 温度25℃、電流1Cであり、SOHが100%、そして、83%での電池の直流抵抗R0のSOC依存性を示すグラフである。 温度25℃、電流1Cであり、SOHが100%、そして、83%での電池の分極抵抗RpのSOC依存を示すグラフである。(A)(B)複数のSOHにおける、電池の直流抵抗R0と分極抵抗RpのSOC依存性を示すグラフである。
 図面を参照して本発明の実施形態について説明する。図1は、電動車両等に利用される電池システム100のハードウエアブロック図の一例である。電池システム100は、電池制御装置1、インバータ2、モータなどの負荷3、上位コントローラ4を備える。
 電池制御装置1の出力電圧は、電池の残容量や出力電流等により変動する直流電圧であるため、負荷3に直接電力を供給するには適さない場合がある。そこで、インバータ2により電池制御装置1の出力電圧を三相交流に変換し、負荷3に供給している。
 上位コントローラ4は、電池制御装置1、及び、インバータ2を制御する。負荷3に直流電圧や他の多相交流、単相交流を供給する場合も、電池制御装置1は同じように構成される。
 負荷3が電力を出力する場合には、インバータ2を双方向インバータとすることにより、負荷3が出力した電力を電池制御装置1内の電池モジュール11に蓄えることができる。インバータ2と並列に充電システムを接続することで、必要に応じて電池モジュール11を充電することは可能である。
 電池制御装置1は、インバータ2や負荷3の制御に有用な電池の状態に関する情報として、充電率(SOC)と劣化率(SOH)、電池に流すことができる最大充放電電流(許容電流値)、電池温度、電池異常の有無等を、上位コントローラ4に送信する。上位コントローラ4は、これらの情報に基づき、エネルギーマネージメントや異常検知等を行う。上位コントローラ4は、電池制御装置1をインバータ2または負荷3から切り離すべきと判断した場合は、切断指示を電池制御装置1に対し送信する。
 電池制御装置1は、電池モジュール11と、電池の状態を監視、推定する等の制御を実行するバッテリコントローラ12と、電池制御装置1の出力を断続するリレー13と、電池モジュール11に流れた電流を計測する電流センサ14と、電池モジュール11の電圧を計測する電圧センサ15と、電池制御装置1とアースとの間の絶縁抵抗を計測する漏電センサ16と、電池温度を計測する温度センサ17と、電池制御装置1の出力電圧に応じてオンオフされる遮断器18と、を備える。電池制御装置1は、遮断器18を介して直列接続された複数(2台)の電池モジュール11を備えている。
 バッテリコントローラ12は、様々な演算を行うCPU(制御回路)121、後述するデータテーブル(データ構造)が記憶されている記憶部(メモリ)122を備える。
 電池モジュール11は、複数個の単位電池(電池セル)を有し、電池モジュール11内部の温度を計測する回路、単位電池の電圧を計測する回路、および、必要に応じ単位電池毎での充放電を行う回路を備えている。したがって、単位電池毎での電圧監視や電圧調整が可能である。バッテリコントローラ12は、単位電池の温度情報に基づいて、電池状態の推定、判定、又は、判断が可能になる。
 複数の電池モジュール11は直列に接続され、さらに、電流センサ14と一対のリレー13とが直列に接続されている。電流センサ14は、バッテリコントローラ12が電池モジュール11の状態を監視・推定するために必要な電流値を計測する。
 バッテリコントローラ12は、一対のリレー13の開閉を、上位コントローラ4の指令に基づき制御することによって、電池制御装置1の出力を遮断または接続することができる。
 電池モジュール11が高電圧(例えば、100V)になることに備えて、電池制御装置1への電力入出力を人力で強制的に遮断するためのスイッチをリレー13と直列に追加してもよい。こうすることにより、電池制御装置1の組み立て時、解体時、電池制御装置1を搭載した装置の事故対応時に、例えば、短絡を防ぐことができる。
 電池モジュール11が複数台並列に接続されている構造に対しては、各列にリレー13、スイッチ、電流センサ14を設けてもよい。又は、電池制御装置1の出力部分にのみリレー13、スイッチ、電流センサ14を設けてもよい。さらに、各列および電池制御装置1の出力部の両方にリレー13、スイッチ、電流センサ14を設けてもよい。
 リレー13は1台から構成されてもよいし、メインリレーとプリチャージリレー、抵抗の組で構成されてもよい。後者の構成ではプリチャージリレーと直列に抵抗を配置し、これらをメインリレーと並列接続すればよい。
 バッテリコントローラ12がリレー13を接続する際、まずプリチャージリレーを接続する。プリチャージリレーを流れる電流は直列接続した抵抗により制限されるため、前者の構成で生じうる突入電流を制限することができる。そして、プリチャージリレーを流れる電流が十分小さくなったのちにメインリレーを接続する。メインリレー接続のタイミングはプリチャージリレーを流れる電流を基準にしてもよいし、抵抗にかかる電圧やメインリレーの端子間電圧を基準にしてもよい。または、プリチャージリレーを接続してから経過した時間を基準にしてもよい。
 電圧センサ15は、バッテリコントローラ12が電池モジュール11の状態を監視、推定するのに必要な電圧値を計測する。電圧センサ15は、1台または複数台の電池モジュール11に対して並列接続される。
 電池モジュール11には漏電センサ16が接続され、漏電が生じる前に漏電が生じうる状態、すなわち、絶縁抵抗が低下した状態を検知し、事故の発生を予防する。
 電流センサ14、電圧センサ15、温度センサ17、そして、漏電センサ16のそれぞれは、計測値をバッテリコントローラ12に送信する。バッテリコントローラ12は、受信した計測値に基づいて、電池モジュール11の電池状態を監視、推定し、その結果、電池モジュールを制御する。“制御”は、例えば、各単位電池の電圧を均等化するための単位電池毎の充放電や、各センサの電源の制御、各センサのアドレッシング、バッテリコントローラ12に接続されたリレー13の制御等を含む。CPU121は、電池状態の監視、推定、そして、既述の制御ために必要な演算を行う。
 電池制御装置1にはシステム冷却用のファンが含まれてもよく、その制御をバッテリコントローラ12が行うこともある。電池制御装置1が冷却を行うことで、上位コントローラ4との通信量を削減することが可能となる。
 図1に示す例では、電圧センサ15や漏電センサ16をバッテリコントローラ12とは別部品とすることで自由度を持たせているが、バッテリコントローラ12に電圧センサ15や漏電センサ16を内蔵する構成としてもよい。こうすることで、個別のセンサを用意する場合に比べてハーネスの本数を減らし、センサ取り付けの手間を削減できる。ただし、センサを内蔵することで対応可能な電池制御装置1の規模(最大出力電圧、電流等)が限定されてしまうこともあるので、そのような場合には別部品とするのが望ましい。
 図2は、バッテリコントローラ12の機能ブロック図の一例である。CPU121は、記憶部122に記録されたプログラムを実行することにより、機能モジュールとしての、劣化状態推定部1201、充電状態推定部1202、許容電流演算部1204を実現する。“部”を、機能、手段、モジュール、ユニット、単位、回路、ステップ等と言い換えてもよい。機能モジュールを半導体回路等のハードウェアによって実現してもよい。記憶部122は、電池データテーブル1205を備える。
 劣化状態推定部1201、そして、充電状態推定部1202の夫々には、電流センサ、電圧センサ、温度センサなどのセンサ群から電流、電圧、温度の各値が入力される。劣化状態推定部1201は、電流I、電圧V、および、温度Tに基づいて、電池の劣化状態を推定する。“推定”を、設定、判定、判断、又は、判別と言い換えてもよい。これは充電状態推定部1202についても同じである。
 劣化状態推定部1201は、電池の劣化状態を表す指標として、例えば、電池の容量減少を採用してよい。電池の容量減少を推定する方法として、例えば、以下のことがある。
 劣化状態推定部1201は、時点Aから別の時点Bまでの充放電量Q_ABを積算する。そして、時点AにおけるOCV_Aと時点BにおけるOCV_Bを計算し、初期状態の電池データテーブルを参照して、OCV_Aに対応する充放電量Q_ABとOCV_Bに対応する充放電量Q’_ABを求める。その上で、Q’_AB/Q_ABを容量減少率とする。この容量減少率をSOHとする。
 充電状態推定部1202は、電流I、電圧V、および、温度Tと電池(電池セル)の等価回路モデルに基づき電池の充電状態を推定する。図3は、電池に矩形波電流を印加した時の電池の電圧挙動の一例を示す図である。図4は電池の等価回路モデルの一例である。図3Aは電池に印加した矩形波電流Iを示す、図3Bは電池の電圧Vを示す。いずれも横軸は経過時間である。
 電池に、例えば、図3Aのグラフ31に示す矩形波の電流Iを印加すると、電池の電圧V、すなわち、電池のCCV(閉回路電圧)は、図3Bのグラフ32に示すように変化する。この電圧の変化は、直流電圧成分I×R0、分極電圧成分Vp、OCV変動成分ΔOCVの3つの成分に大別される。R0は直流抵抗成分である。
 1つ目の成分である直流電圧成分I×R0は、電流Iの変化に対して瞬間的に応答する。すなわち、電流Iの立ち上がりに応じて瞬間的に上昇し、一定のレベルで推移した後に、電流Iの立ち下がりと共に消滅する。
 2つ目の成分である分極電圧成分Vpは、電流Iの変化に対して遅延して変動する。すなわち、電流Iの立ち上がり後に徐々に上昇し、電流Iの立ち下がり後に徐々に低下する。
 3つ目の成分である、ΔOCVは、充電開始前のOCV値であるOCV1と充電開始後のOCV値であるOCV2との差に相当する。ΔOCVは、充放電量に応じた、電池の充電状態の変化量に対応する。
 図4において、直流抵抗成分R0に電流Iをかけることで直流電圧成分が求められる。Rpは分極抵抗成分、Cpは分極容量成分をそれぞれ表しており、これらの値と電流Iと充放電時間tから分極電圧成分Vpが求められる。分極電圧成分Vpは、時定数RpCpに基づいて指数関数的な変動を示す。
 充電状態推定部1202は、第一の方式として、等価回路モデルに基づいて電池のCCVを解析することによって求めた電池のOCVから電池のSOCとOCVの関係を示す後述の電池データテーブルを参照してSOCを演算する。第二の方式として、電流Iを積算した充放電電気量ΔQに基づいて、ΔQとSOCの関係からSOCを演算してもよい。両方式を組み合わせてSOCを演算してもよい。
 図5は、電池データテーブル1205の一例である。テーブルの項目は、SOH(%)、温度T(℃)、SOC(%)、電流I(A)、OCV(V)、直流抵抗Ro(Ω)、分極抵抗Rp(Ω)、そして、分極容量Cp(F)(又は、分極時定数τp(s))を含む。電池データテーブルに代えて、データを表す関数でもよい。
 電池データテーブル1205は、夫々、所定の範囲にある、温度T、SOC、SOH、そして、電流Iについて、これらの所定の組み合わせの夫々に対する直流抵抗Ro(Ω)、分極抵抗Rp(Ω)、分極容量Cp(F)を備える。すなわち、電池データテーブルには、電池容量減少率(SOH)、電池温度(T)、電池充電率(SOC)、そして、電池電流(I)の夫々が所定の値である複数の組み合わせ夫々に対して、電池直流抵抗Ro(Ω)、分極抵抗Rp(Ω)、そして、分極容量Cp(F)夫々の値が設定されている。図5では、SOHがN水準、SOCがM水準、温度がL水準、電流がK水準ある場合を示している。OCV、直流抵抗、分極抵抗、分極容量の組み合わせ数は、N×M×L×Kである。
 図5の電池データテーブルは、予め実験やシミュレーションによって決定される。例えば、電池パックのセルのうち、SOHがM水準のいずれか(例えばSOH_1)であるセルを、L水準の温度のいずれか(例えばT_1)に設定した恒温槽内で充放電装置に接続し、SOCをN水準のいずれか(例えばSOC_1)に調整した後、電流をK水準のいずれか(例えばI_1)として一定時間充電または放電し、得られたCCVの挙動を解析して直流抵抗Ro、分極抵抗Rp、分極容量Cpを決定する。これにより、SOH_1、T_1、SOC_1、I_1に対応するRo、分極抵抗Rp、分極容量Cpが決定できる。この手順をM×N×L×K個の水準の組み合わせに対して行うことで、図5の電池データテーブルを実現できる。電池データテーブルは、個々の電池セル毎にある必要は無く、電池セルの仕様(メーカー別、モデル別、タイプ別等)毎に、一つの電池テーブルが設けられていればよい。
 データテーブルの一部または全部を関数で置き換えることも可能である。例えば、Rpの温度依存性について、A、Bを適当な定数として、Rp=A×exp(B/(T+273))のような指数関数で近似し、データテーブルの一部を置き換えることもできる。SOH、SOC、電流についても、実験データの傾向を適当な関数に近似することができれば、同様にデータテーブルの一部を置き換えることもできる。
 図6Aは、温度25℃、電流1Cであり、SOHが100%、そして、83%での電池の直流抵抗R0のSOC依存性を示すグラフである。図6Bは、温度25℃、電流1Cであり、SOHが100%、そして、83%での電池の分極抵抗RpのSOC依存を示すグラフである。電流1Cとは、電池の全容量を1時間で放電する電流値を意味する。
 許容電流演算部1204は、電池データテーブル1205に記憶された電池の直流抵抗、分極抵抗、分極容量を現在の電池の温度、SOC、SOHに基づいて参照し、電池の許容電流を演算する。許容電流演算部1204は、電池の過電圧を防ぐ安全機能の一部として、許容電流値を超えないように電流を制限することで、電池制御装置1の安全性を維持すると同時に、電池の急激な劣化を抑制する。そのための許容電流について、それを求めるための演算の一例を以下に示す。
Figure JPOXMLDOC01-appb-M000001
 Icmaxは充電許容電流、Vmaxは上限電圧、Rは電池の内部抵抗である。
 放電許容電流は、以下の式(2)を用いて算出される。
Figure JPOXMLDOC01-appb-M000002
 Idmaxは放電許容電流、Vminは下限電圧、Rは電池の内部抵抗である。
 Rは、例えば、以下の式(3)を用いて算出される。
Figure JPOXMLDOC01-appb-M000003
 Ro、Rp、Cpは電池データテーブル1205から得られる。tは時間(秒)である。Ro、Rp、Cpをデータベースから選択するには電流を指定する必要がある。そこで、例えば、所定の電流におけるRo、Rp、Cpを用いて簡易的に許容電流を計算する方法がある。また、例えば、指定する電流を変更しながらRo、Rp、Cpの抽出と式(1)から式(3)の計算を繰り返し、式(1)から式(3)が矛盾なく成立する許容電流を探索する方法もある。
 許容電流演算部1204は、電池データテーブル1205に記憶された電池の直流抵抗、分極抵抗、分極容量に基づき、電池の許容入力、許容出力を演算する。
 許容入力は、以下の式(4)から算出される。
Figure JPOXMLDOC01-appb-M000004
 許容出力は、以下の式(5)から算出される。
Figure JPOXMLDOC01-appb-M000005
 次に、電池制御装置の動作について説明する。電池の初期状態において、図5に示す電池データテーブルに、電池の直流抵抗成分、分極抵抗成分、そして、分極容量成分のそれぞれが、温度、SOC、SOH、そして、電流とに対応付けられている。
 その後、電池の初期状態から電池が使用され、例えば、エンジン始動時、外部電源による電池充電時、又は、定期点検時において、劣化状態推定部1201は、現在の電池のSOHを更新する。以後は、更新したSOHに対応する等価回路パラメータテーブルを用いる。
 充電状態推定部1202は、電流センサ14によって検出した電流Iを積算した充放電電気量ΔQに基づいて、充放電電気量とSOCの関係に基づいてSOCを演算する。あるいは、休止中に求めた電池のOCVと、SOCとOCVの関係に基づいてSOCを演算する。あるいは、電流センサ14と電圧センサ15の検出値を等価回路モデルで解析して得られたOCV、直流抵抗、分極抵抗、分極容量のいずれかを用いてSOCを演算する。あるいは、これらの演算方法の複数を組み合わせてSOCを演算する。
 次に、許容電流演算部1204は、電池データテーブル1205に記憶された電池の直流抵抗、分極抵抗、分極容量に基づき、式(1)~(3)を用いて電池の充電許容電流、放電許容電流を演算する。また、式(4)、(5)を用いて許容入力Iin、許容出力Ioutを演算する。
 許容電流演算部1204は、上記の許容電流および許容入出力の演算を、電池モジュール(電池パック)を構成する全ての電池セルに対して実行する。このとき、個々の電池セルの温度、SOC、SOHは異なっていることから、電池セルごとに許容電流および許容入出力が異なる。許容電流演算部1204は、電池モジュール(電池パック)のうちで直列に接続された一群の電池セルの許容電流のうち、絶対値が最小である電流を選択して、この直列電池セル群の許容電流とする。
 以上説明した実施形態によれば、次の作用効果が得られる。電池制御装置1は、複数の劣化状態の電池について、直流抵抗成分と充電状態の関係、分極抵抗成分と充電状態の関係を含む電池データテーブルと、現在の電池の劣化状態を推定する劣化状態推定部1201と、劣化状態推定部1201で推定された現在の電池の劣化状態に応じて、直流抵抗成分と充電状態の関係、分極抵抗成分と充電状態の関係を含む電池データテーブルから現時点の電池の直流抵抗成分と分極抵抗成分を含むパラメータを抽出し、これらに基づき電池セルの許容電流を演算する。
 直列群を構成する電池セルの許容電流のうち、最小値を直列群全体の許容電流とする。これにより、劣化度の異なる電池セルが直列接続された場合において、全ての電池セルに対して電流および電圧の所定範囲からの逸脱を防止し、電池劣化を抑制することができる。
 また、電池モジュールが、複数の電池セルが直列接続された群が複数並列接続された構造を備える態様では、許容電流演算部1204は、複数の群の夫々に許容電流を設定し、夫々の群の許容電流の総和を電池モジュールの許容電流にする。
 本発明は、上記の実施形態に限定されるものではなく、本発明の特徴を損なわない限り、本発明の技術思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。
1 電池制御装置
2 インバータ
3 負荷
4 上位コントローラ
11 電池モジュール
12 バッテリコントローラ
13 リレー
14 電流センサ
15 電圧センサ
16 漏電センサ
17 温度センサ
18 遮断器
100 電池システム
121 CPU
122 記憶部
 

Claims (8)

  1.  電池モジュールと、バッテリコントローラと、を備える電池制御装置であって、
     前記バッテリコントローラは、
     メモリと、
     前記メモリに記録されたプログラムを実行して、前記電池モジュールの電池の動作を制御する制御回路と、
     を備え、
     前記メモリは、直流抵抗成分と充電状態の関係、分極抵抗成分と充電状態の関係を含む電池データを記憶し、
     前記制御回路は、
     前記電池の劣化状態を推定し、
     前記電池データを参照し、推定した、電池の現在の劣化状態に基づいて、直流抵抗成分と充電状態の関係、分極抵抗成分と充電状態の関係を抽出して前記電池を制御するようにした、
     電池制御装置。
  2.  前記電池モジュールの電流(I)を計測する電流センサと、
     当該電池モジュールの電圧(V)を計測する電圧センサと、そして、
     当該電池モジュールの電池の温度(T)を計測する温度センサと、
     を備え、
     前記制御回路は、電流(I)、電圧(V)、および、温度(T)に基づいて前記電池の容量の減少率を算出して、当該電池の劣化状態を推定する、
     請求項1記載の電池制御装置。
  3.  前記制御回路は、電流(I)、電圧(V)、温度(T)、そして、前記電池の等価回路モデルに基づいて、当該電池の充電状態を推定する、
     請求項2記載の電池制御装置。
  4.  前記メモリは、前記電池データとして電池データテーブルを備え、
     当該電池データテーブルの項目は、電池容量減少率(SOH)、電池温度(T)、電池充電率(SOC)、電池電流(I)、電池直流抵抗(Ro)、電池分極抵抗(Rp)、そして、電池分極容量(Cp)を含む、
     請求項3記載の電池制御装置。
  5.  前記電池データテーブルには、前記電池容量減少率(SOH)、前記電池温度(T)、前記電池充電率(SOC)、そして、前記電池電流(I)の夫々が所定の値である複数の組み合わせ夫々に対して、前記電池直流抵抗Ro(Ω)、前記分極抵抗Rp(Ω)、そして、前記分極容量Cp(F)夫々の値が設定されている、
     請求項4記載の電池制御装置。
  6.  前記制御回路は、現在の電池容量減少率(SOH)、電池温度(T)、そして、電池充電率(SOC)に基づいて、前記電池データテーブルに記憶された、電池直流抵抗(Ro)、電池分極抵抗(Rp)、そして、電池分極容量(Cp)を参照し、前記電池の許容電流を演算する、
     請求項5記載の電池制御装置。
  7.  前記電池モジュールは、直列に接続された複数の電池を備え、
     前記制御回路は、
     前記電池モジュールの夫々の許容電流を演算し、
     絶対値が最小である許容電流を、前記電池モジュールの許容電流とする、
     請求項6記載の電池制御装置。
  8.  前記電池モジュールは、複数の電池セルが直列接続された群が複数並列接続された構造を備え、
     前記制御回路は、前記複数の群の夫々に許容電流を設定し、夫々の群の許容電流の総和を前記電池モジュールの許容電流にする、
     請求項6記載の電池制御装置。
     
PCT/JP2020/022182 2019-06-07 2020-06-04 電池制御装置 WO2020246558A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20819382.1A EP3982458A4 (en) 2019-06-07 2020-06-04 BATTERY CONTROL DEVICE
US17/617,251 US20220236329A1 (en) 2019-06-07 2020-06-04 Battery control apparatus
CN202080042059.0A CN113994222A (zh) 2019-06-07 2020-06-04 电池控制装置
JP2021524906A JPWO2020246558A1 (ja) 2019-06-07 2020-06-04

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-107482 2019-06-07
JP2019107482 2019-06-07

Publications (1)

Publication Number Publication Date
WO2020246558A1 true WO2020246558A1 (ja) 2020-12-10

Family

ID=73653258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/022182 WO2020246558A1 (ja) 2019-06-07 2020-06-04 電池制御装置

Country Status (5)

Country Link
US (1) US20220236329A1 (ja)
EP (1) EP3982458A4 (ja)
JP (1) JPWO2020246558A1 (ja)
CN (1) CN113994222A (ja)
WO (1) WO2020246558A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113640606A (zh) * 2021-08-17 2021-11-12 重庆蓝岸通讯技术有限公司 一种终端充电功能调试方法、装置及终端设备
WO2022244549A1 (ja) * 2021-05-20 2022-11-24 株式会社Gsユアサ 蓄電素子モデルの生成方法、蓄電素子モデルの生成装置及びプログラム
WO2023052822A1 (en) * 2021-09-30 2023-04-06 Cummins Inc. Estimating battery state of health

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004015963A (ja) * 2002-06-10 2004-01-15 Nissan Motor Co Ltd 車両用バッテリ充電状態推定装置
JP2013044598A (ja) 2011-08-23 2013-03-04 Toyota Motor Corp 二次電池の劣化管理システム
JP2017017907A (ja) * 2015-07-02 2017-01-19 日立オートモティブシステムズ株式会社 電池制御装置
JP2017162661A (ja) * 2016-03-09 2017-09-14 日立オートモティブシステムズ株式会社 電池管理システム、電池システムおよびハイブリッド車両制御システム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5220269B2 (ja) * 2005-09-16 2013-06-26 古河電気工業株式会社 蓄電池の劣化状態・充電状態の検知方法及びその装置
JP5633227B2 (ja) * 2009-10-14 2014-12-03 ソニー株式会社 電池パックおよび電池パックの劣化度検出方法
WO2012032776A1 (ja) * 2010-09-10 2012-03-15 パナソニック株式会社 電力制御装置、電力制御方法、及び電力供給システム
JP5863603B2 (ja) * 2012-08-24 2016-02-16 日立オートモティブシステムズ株式会社 電池状態推定装置、電池制御装置、電池システム、電池状態推定方法
US9952288B2 (en) * 2013-02-05 2018-04-24 Hitachi Automotive Systems, Ltd. Battery controller
JP6348232B2 (ja) * 2015-07-31 2018-06-27 株式会社日立製作所 電池制御装置
WO2017199629A1 (ja) * 2016-05-18 2017-11-23 日立オートモティブシステムズ株式会社 電池制御装置
JP2018046667A (ja) * 2016-09-14 2018-03-22 株式会社東芝 充電パターン作成装置、充電制御装置、充電パターン作成方法、プログラム、及び蓄電システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004015963A (ja) * 2002-06-10 2004-01-15 Nissan Motor Co Ltd 車両用バッテリ充電状態推定装置
JP2013044598A (ja) 2011-08-23 2013-03-04 Toyota Motor Corp 二次電池の劣化管理システム
JP2017017907A (ja) * 2015-07-02 2017-01-19 日立オートモティブシステムズ株式会社 電池制御装置
JP2017162661A (ja) * 2016-03-09 2017-09-14 日立オートモティブシステムズ株式会社 電池管理システム、電池システムおよびハイブリッド車両制御システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3982458A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022244549A1 (ja) * 2021-05-20 2022-11-24 株式会社Gsユアサ 蓄電素子モデルの生成方法、蓄電素子モデルの生成装置及びプログラム
CN113640606A (zh) * 2021-08-17 2021-11-12 重庆蓝岸通讯技术有限公司 一种终端充电功能调试方法、装置及终端设备
WO2023052822A1 (en) * 2021-09-30 2023-04-06 Cummins Inc. Estimating battery state of health

Also Published As

Publication number Publication date
EP3982458A4 (en) 2023-06-21
EP3982458A1 (en) 2022-04-13
CN113994222A (zh) 2022-01-28
JPWO2020246558A1 (ja) 2020-12-10
US20220236329A1 (en) 2022-07-28

Similar Documents

Publication Publication Date Title
US11247581B2 (en) Battery control device
WO2020246558A1 (ja) 電池制御装置
JP7106362B2 (ja) 蓄電池の充放電曲線推定装置および充放電曲線推定方法
EP3389132B1 (en) Cell control device, power system
JP7117534B2 (ja) 蓄電システム、管理装置
CN109874352B (zh) 电池控制装置
JP7066390B2 (ja) 蓄電池の経済性推定装置および経済性推定方法
US6924622B1 (en) Battery capacity measurement
JP5394162B2 (ja) 蓄電装置の内部抵抗検出装置および開路電圧検出装置および残容量検出装置
CN109858084B (zh) 一种功率边界数学模型的建立方法及装置
CN110277807B (zh) 充电电流控制方法及装置、电池管理***、运载工具、设备和计算机可读存储介质
JP2022036156A (ja) 電池管理装置、電池管理方法、電力貯蔵システム
JP6827355B2 (ja) 電池制御装置
KR101967863B1 (ko) 고전압 셀 밸런싱의 밸런싱 필요 시간 추정 장치 및 방법
JP7240893B2 (ja) 電池制御装置
US20230106946A1 (en) Method for determining a model error in a mathematical model of an electrical energy storage unit
JP2005333784A (ja) バッテリの保護装置
WO2023007872A1 (ja) 電池制御方法
CN104600760A (zh) 电池组的单体电池平衡控制方法及***
CN115728662A (zh) 电池故障风险判断方法、装置及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20819382

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021524906

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020819382

Country of ref document: EP

Effective date: 20220107