WO2020233032A1 - 一种湿法淋浆工艺干粒陶瓷砖及其制备方法 - Google Patents

一种湿法淋浆工艺干粒陶瓷砖及其制备方法 Download PDF

Info

Publication number
WO2020233032A1
WO2020233032A1 PCT/CN2019/120000 CN2019120000W WO2020233032A1 WO 2020233032 A1 WO2020233032 A1 WO 2020233032A1 CN 2019120000 W CN2019120000 W CN 2019120000W WO 2020233032 A1 WO2020233032 A1 WO 2020233032A1
Authority
WO
WIPO (PCT)
Prior art keywords
dry
glaze
mesh
preparation
grain
Prior art date
Application number
PCT/CN2019/120000
Other languages
English (en)
French (fr)
Inventor
萧礼标
汪庆刚
覃增成
杨元东
王贤超
闫志聪
程科木
Original Assignee
蒙娜丽莎集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蒙娜丽莎集团股份有限公司 filed Critical 蒙娜丽莎集团股份有限公司
Priority to EP19929369.7A priority Critical patent/EP3971155A4/en
Priority to JP2021558863A priority patent/JP7288973B2/ja
Priority to US17/595,428 priority patent/US20220204416A1/en
Publication of WO2020233032A1 publication Critical patent/WO2020233032A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/86Glazes; Cold glazes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/04Frit compositions, i.e. in a powdered or comminuted form containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/16Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions with vehicle or suspending agents, e.g. slip
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/22Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions containing two or more distinct frits having different compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/04Apparatus or processes for treating or working the shaped or preshaped articles for coating or applying engobing layers
    • B28B11/044Apparatus or processes for treating or working the shaped or preshaped articles for coating or applying engobing layers with glaze or engobe or enamel or varnish
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/04Apparatus or processes for treating or working the shaped or preshaped articles for coating or applying engobing layers
    • B28B11/048Apparatus or processes for treating or working the shaped or preshaped articles for coating or applying engobing layers by spraying or projecting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/08Apparatus or processes for treating or working the shaped or preshaped articles for reshaping the surface, e.g. smoothing, roughening, corrugating, making screw-threads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/0041Digital printing on surfaces other than ordinary paper
    • B41M5/007Digital printing on surfaces other than ordinary paper on glass, ceramic, tiles, concrete, stones, etc.
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9661Colour

Definitions

  • the invention relates to a wet-laid and fully polished dry particle brick and a preparation method thereof, and belongs to the field of ceramic brick production.
  • Chinese patent CN 109516691 A discloses a fully polished ceramic product with a dark pattern and a preparation method thereof. The process involved is also a dry granular glaze process, but its patent does not disclose specific process flow, parameters and solid melting The particle gradation relationship of the block is only a general description of the effect of the ceramic product prepared by pouring dry granular glaze.
  • the purpose of the present invention is to provide a glazed tile with high flatness and clear transparency and a preparation method thereof by using a reasonable ratio of dry particles of frit with different melting points.
  • the present invention provides a method for preparing dry-grained ceramic tiles by wet dipping process, which includes:
  • the bell jar After applying face glaze, inkjet printing patterns on the body, the bell jar is poured with dry grain glaze, and then fired to obtain ceramic tiles.
  • the dry grain glaze consists of: dry grain A: 15%, dry grain B: 12% to 15%, dry grain C: 13% to 17%, printing powder: 5% to 7%, in terms of mass percentage, Glue: 35% to 38%, water: 10% to 13%, the printing powder is composed of 45% to 50% feldspar powder, 15% to 17% limestone powder, and 35% to 40% quartz powder.
  • the particle gradation of dry particles in the glaze is: 60 ⁇ 80 mesh: 8% ⁇ 12%, 80 ⁇ 100 mesh: 6% ⁇ 10%, 100 ⁇ 120 mesh: 8% ⁇ 15%, 120 ⁇ 140 mesh: 8% ⁇ 15%, 140 ⁇ 250 mesh: 50% ⁇ 60%, 250 ⁇ 325 mesh: 1% ⁇ 4%, below 325 mesh: ⁇ 2%,
  • the softening temperature of the dry particles A is 1135°C to 1175°C
  • the softening temperature of the dry particles B is 980°C to 1050°C
  • the softening temperature of the dry particles C is 1020°C to 1127°C.
  • the fully polished tiles are produced by the process of wet drenching dry particles.
  • the ceramic tiles produced by this process can obtain a glaze with high flat mirror finish and clear transparency after polishing, and the design of the layout texture details is complicated The texture direction can also be clearly seen.
  • the production process is simple, and to a certain extent solves the problem of multiple pores on the dark layout, which is beneficial to the development of the dark layout.
  • the dry frit particles used in the present invention adopt a combination of three different melting point dry particles, and adopting such a matching method facilitates the effective adjustment of brick shape and firing temperature during production.
  • the expansion coefficient of the dry particles A at 40°C to 600°C is 7.3 ⁇ 10 -6 to 7.4 ⁇ 10 -6 /°C
  • the expansion coefficient of the dry particles B at 40°C to 600°C is 6.6 ⁇ 10 -6 to 6.7 ⁇ 10 -6 /°C
  • the expansion coefficient of the dry particles C at 40°C to 600°C is 6.9 ⁇ 10 -6 to 7.0 ⁇ 10 -6 /°C.
  • the dry grain glaze contains: printing powder: 5% to 7%, glue: 35% to 38%, and water: 10% to 13%.
  • the chemical composition of the dry granular glaze is: calculated by mass percentage, loss on ignition: 0.50% to 2.00%, SiO 2 : 60.50% to 65.00%, Al 2 O 3 : 12.00% to 14.00%, Fe 2 O 3 : 0.05% ⁇ 0.20%, TiO 2 : 0.05% ⁇ 0.10%, CaO: 9.00% ⁇ 11.00%, MgO: 1.00% ⁇ 2.00%, K 2 O: 4.00% ⁇ 8.00%, Na 2 O: 0.00% ⁇ 0.05%, ZnO: 1.87% ⁇ 2.32%, ZrO 2 : 0.01% ⁇ 0.03%.
  • the said chemical composition refers to the chemical composition of all solid dry particles, excluding printing powder, glue and water in the dry particle glaze.
  • the specific gravity of the dry glaze is 1.52-1.54, the flow rate is 32-35 seconds, and the glaze application amount is 900-1200 g/m 2 .
  • the particle gradation of the dry particles in the dry glaze is: 60-80 mesh: 8%-12%, 80-100 mesh: 6%-10%, 100-120 mesh: 8%-15% , 120 ⁇ 140 mesh: 8% ⁇ 15%, 140 ⁇ 250 mesh: 50% ⁇ 60%, 250 ⁇ 325 mesh: 1% ⁇ 4%, below 325 mesh: ⁇ 2%.
  • the temperature of the body before applying the glaze is 65°C to 70°C.
  • the specific gravity of the top glaze is 1.46 to 1.47, and the glaze application amount is 500 to 550 g/m 2 .
  • the temperature of the body before drying the granular glaze is 60°C to 70°C.
  • the firing period is 95 to 110 minutes, and the maximum firing temperature range is 1175°C to 1223°C.
  • the present invention provides ceramic tiles prepared by any of the above preparation methods.
  • the ceramic tile of the present invention has a glaze surface with high flatness and clear transparency, and can realize the effect of clear glaze surface for the design of the layout with complex texture details and dark layout.
  • a green body is prepared.
  • the green body can be prepared from a well-known ceramic raw material according to a conventional method, for example, the green body is ball milled, powder sprayed and granulated, pressed by a dry press, and dried in a drying kiln to obtain a dried green body.
  • the drying time can be 1 ⁇ 1.2h, and the moisture content of the dry billet can be controlled within 0.5%.
  • the temperature of the green body before applying the glaze is preferably controlled at 65°C ⁇ 70°C, within this temperature range, it can effectively ensure that the glaze surface is dry after the green brick leaves the glaze cabinet, thereby reducing the formation of dust falling on the surface due to the wet glaze surface
  • the probability of firing defects improves the quality of the product.
  • the top glaze formula is not particularly limited, and the top glaze formula commonly used in this field can be used.
  • the chemical composition of the top glaze is: by mass, loss on ignition: 3.00% to 5.00%, SiO 2 : 57.00% to 60.00%, Al 2 O 3 : 23.00% to 25.00%, Fe 2 O 3 : 0.30% ⁇ 0.40%, TiO 2 : 0.10% ⁇ 0.20%, CaO: 0.30% ⁇ 0.40%, MgO: 0.10% ⁇ 0.30%, K 2 O: 4.00% ⁇ 6.00%, Na 2 O: 2.00% ⁇ 3.00% , ZrO 2 : 6.00% ⁇ 12.00%.
  • the surface glaze of this chemical composition has a high whiteness, a wide firing temperature range and good color development of various ceramic inks.
  • the method of applying surface glaze includes but is not limited to spraying glaze, glazing and so on.
  • the specific gravity of spray glaze can be 1.46 ⁇ 1.47, and the amount of glaze can be 500 ⁇ 550g/m 2 .
  • the pattern printing method is not particularly limited, and the pattern printing method commonly used in the art can be used, and inkjet printing is preferred, so that a clearer pattern can be obtained.
  • the temperature of the bricks before the dry granular glaze is preferably controlled at 60°C ⁇ 70°C. Because of the large amount of ink on the dark surface, it is not easy to drain the water from the glaze slurry.
  • the temperature of the bricks before the dry granular glaze is controlled in this range, which is beneficial to the bricks. Discharge the water in time to meet the conditions for firing into the kiln and reduce the probability of brick cracking due to the failure of the water to be discharged in time.
  • Wet-sprinkled dry particles are used to obtain a high-flat mirror surface and clear glaze after polishing.
  • the texture direction can be clearly seen. To a certain extent, it solves the problem of many pores on the brick surface when producing dark panels, which is beneficial to the development of dark panels. Due to the inconsistency of the gray level of the layout in the dark color layout, even if there is a process of spraying glue to fix the dry particles in the dry spreading process, this method is easy to disperse the dry particles, causing the dry particles to be uneven and burning. It is easy to appear uneven glaze after making.
  • Dry granular glaze contains three solid dry granules: dry granules A, dry granules B, and dry granules C. These three kinds of dry particles have different melting points and different expansion coefficients.
  • the softening temperature of the dry particles A is 1135°C to 1175°C.
  • the softening temperature of the dry particles B is 980°C to 1050°C.
  • the softening temperature of the dry particles C is 1020°C to 1127°C.
  • the change in the firing temperature of the kiln during the production of ceramics has a greater impact on the brick shape of the product, and adjusting the base material of the ceramic body is a time-consuming and energy-consuming way.
  • the expansion coefficient of the dry particles A at 40°C to 600°C may be 7.3 ⁇ 10 -6 to 7.4 ⁇ 10 -6 /°C, for example, 7.3379 ⁇ 10 -6 /°C.
  • the expansion coefficient of the dry particles B at 40°C to 600°C may be 6.6 ⁇ 10 -6 to 6.7 ⁇ 10 -6 /°C, for example, 6.6630 ⁇ 10 -6 /°C.
  • the expansion coefficient of dry particles C at 40°C to 600°C is 6.9 ⁇ 10 -6 to 7.0 ⁇ 10 -6 /°C, for example, 6.9141 ⁇ 10 -6 /°C.
  • the expansion coefficient of the green body in actual production is higher than that of the glaze, and it is difficult to reduce the expansion coefficient of the green body.
  • Through the combination of three kinds of dry particles with such expansion coefficient It can provide a more convenient way to adjust the expansion coefficient of the glaze during production, and make the adjustment space of the expansion coefficient of the glaze wider.
  • the chemical composition of dry particles A is: SiO 2 : 63.35% to 64.21%, Al 2 O 3 : 13.43% to 13.98%, CaO: 10.01% to 11.32%, MgO: 1.20% to 1.33%, K 2 O: 4.87% to 5.44%, Na 2 O: 0.0% to 0.3%, ZnO: 5.34% to 6.74%, ZrO 2 : 0.20% to 0.37%.
  • the chemical composition of dry particles B is: SiO 2 : 58.73% to 59.81%, Al 2 O 3 : 10.90% to 13.30%, CaO: 11.62% to 13.93%, MgO: 0.52% to 1.12%, K 2 O: 5.25% to 6.23%, Na 2 O: 1.50% to 1.96%, ZnO: 4.34% to 6.49%, ZrO 2 : 0.12% to 0.29%.
  • the chemical composition of dry particles C is: SiO 2 : 60.10%-62.35%, Al 2 O 3 : 11.10%-11.70%, CaO: 10.00%-11.52%, MgO: 1.20%-1.75%, K 2 O: 5.10% to 5.65%, Na 2 O: 1.92% to 2.16%, ZnO: 6.21% to 6.84%, ZrO 2 : 0.25% to 0.30%.
  • the content of dry grain A can be 15%.
  • the content of dry particles B may be 12%-15%, for example 14%.
  • the content of dry particles C may be 13%-17%, for example 15%.
  • the total content of dry-grain A, dry-grain B and dry-grain C can be 40% to 44%.
  • the particle gradation of the solid dry frit in the dry glaze can be: 60 ⁇ 80 mesh: 8% ⁇ 12%, 80 ⁇ 100 mesh: 6% ⁇ 10%, 100 ⁇ 120 mesh: 8% ⁇ 15%, 120 ⁇ 140 mesh: 8% ⁇ 15%, 140 ⁇ 250 mesh: 50% ⁇ 60%, 250 ⁇ 325 mesh: 1% ⁇ 4%, below 325 mesh: ⁇ 2%.
  • Adopting such a particle gradation can make the dry glaze suitable for glazing with a bell-jar drenching method. Compared with the linear glaze shower, it can effectively control the uniformity of the dry glaze amount on the whole tile surface, so that the product can be fired. Obtain higher flatness in the process.
  • Dry glaze can also contain printing powder: 5% to 7%, glue: 35% to 38%, water: 10% to 13%.
  • Glue mainly plays a role in uniformly dispersing dry particles and adjusting the suspension of slurry.
  • the surface tension of the glue used is similar to the ink tension (preferably equal). For example, when the ink surface tension 28mN ⁇ m -1 ⁇ 34mN ⁇ m -1, so that the surface tension of the glue is also 28mN ⁇ m -1 ⁇ 34mN ⁇ m -1.
  • Glue can be made by mixing glaze glue commonly used in this field with carboxymethyl cellulose with high viscosity (for example, ⁇ 800 ⁇ 1200mPa ⁇ s in 2% aqueous solution viscosity), and the ratio is for example 100:0.7 ⁇ 0.9 For example, 100:0.8) mixed.
  • the dry glaze contains a larger amount of glue and a smaller amount of water, so as to effectively ensure the flow and suspension performance of the dry glaze slurry during production and use, and reduce the agglomeration and precipitation of the dry glaze .
  • the water content in this range ensures the solubility of the printing powder, the dissolution is more uniform, and the phenomenon of supersaturation and coagulation will not occur.
  • Glue content of this range may not only improve the bonding properties of the glaze dry particles, but also acts as a fixing agent, a surface tension range glue surface tension of the ink is the ink according to the manufacturer supplied (supply ink surface tension data 28mN ⁇ m - 1 ⁇ 34mN ⁇ m -1 ) as the basis, adjust the surface tension of the glue to be compatible with the ink tension, so as to ensure that the design pattern of inkjet printing will not be repelled due to the large difference in surface tension between the two and cause the printing pattern.
  • the dry-grain glaze shrinks outward, and the dry-grain glaze does not adhere to the surface of the pattern, causing the defect of leakage of the dry-grain glaze after firing.
  • Printing powder refers to the combination of feldspar powder, limestone powder and quartz powder.
  • the content of feldspar powder can be 45%-50%, the content of limestone powder can be 15%-17%, and the content of quartz powder can be 35%-40%.
  • the function of the printing powder is to flux, and the firing temperature, high temperature fluidity and flow rate of the dry glaze can be better adjusted in this system to ensure that the slurry has good fluidity.
  • the chemical composition of the printing powder is shown in Table 1.
  • the chemical composition of dry-grain glaze frits can be: based on mass percentage, loss on ignition: 0.50% ⁇ 2.00%, SiO 2 : 60.50% ⁇ 65.00%, Al 2 O 3 : 12.00% ⁇ 14.00%, Fe 2 O 3 : 0.05% ⁇ 0.20%, TiO 2 : 0.05% ⁇ 0.10%, CaO: 9.00% ⁇ 11.00%, MgO: 1.00% ⁇ 2.00%, K 2 O: 4.00% ⁇ 8.00%, Na 2 O: 0.00% ⁇ 0.05% , ZnO: 1.87% to 2.32%, ZrO 2 : 0.01% to 0.03%.
  • the chemical composition described here does not include the chemical composition of printing powder, glue and water.
  • the specific gravity of the dry granular glaze is 1.52 to 1.54, and the flow rate is 32 to 35 seconds.
  • the flow rate here means that the 8mm caliber flow rate cup is filled with the object to be measured, the small hole under the flow rate cup is opened, and the time from the beginning to the end of the flow of the object to be measured is recorded as the flow rate of the object to be measured.
  • the drying temperature can be controlled between 140°C and 150°C, and the moisture content after drying is controlled within 1.0%.
  • the firing cycle can be from 95 to 110 minutes. Because the ratio of the dry grain glaze frit can be adjusted, the maximum firing temperature can be adjusted in a wide range, which can be 1135 to 1223°C.
  • polishing full polishing
  • polishing line parameters are shown in Table 2.
  • the number of meshes in Table 2 refers to the number of modules, the number of groups refers to the number of groups of modules, and the pressure refers to the pressure of the polishing head.
  • polishing line parameters shown in Table 2 can improve the probability that the gray layout is prone to throwing yellow edges and leaking the bottom.
  • post-processing such as edge grinding, grading, packing and storage can also be carried out.
  • the ceramic tile obtained according to the preparation method of the present invention has a high-flat mirror surface and a clear glaze surface.
  • the The invention has the characteristics of glue and printing powder, which can effectively ensure the uniformity of the dry particle solid frit in the dry particle glaze, and realize the uniformity of the overall dry particle glaze amount on the brick surface during the process of drying the particle glaze.
  • the high-viscosity cohesiveness also ensures that after the glaze is dried, the dry solid frit is prevented from being blown, and the flatness of the dry glaze before entering the kiln is guaranteed, plus the dry glaze is melted at high temperature It has good fluidity, so it can obtain a higher flatness after firing. For the product in the later polishing process, it can obtain a high-flat mirror glaze effect without deep polishing, which can save production costs under the same conditions.
  • the present invention has a higher moisture content than Chinese patent CN 109516691 A is less, which effectively guarantees the flow and suspension performance of the dry-grain glaze slurry during production and use, reduces the phenomenon of dry-grain frit precipitation, and effectively reduces the drying cycle of the brick after the slurry is poured, reducing energy consumption and shortening Production cycle. Due to the particle gradation relationship of the solid dry frit, the process adopts the bell-jar drenching method in the production process, which can effectively control the uniformity of the dry glaze amount on the entire tile surface compared with the linear glaze shower, so that the product In the firing process, higher flatness is obtained.
  • the printing powder used in the present invention is a combination of feldspar powder, limestone powder, and quartz powder, so that the dry frit has better fluidity during high temperature melting, and promotes The flatness of the glaze.
  • the higher the flatness of the glaze the lower the loss of the module in the polishing process, the longer the service life of the module, and the saving of production costs.
  • the invention can obtain the effective thickness of the glaze surface of 0.35-0.45 mm while ensuring the flatness.
  • the glaze surface can reach level 4 in abrasion resistance, and dark boards can reach level 3.
  • Spray surface glaze the brick temperature is 68°C before spraying surface glaze; the specific gravity of surface glaze is 1.46, and the amount of glaze applied is 500g/m 2 .
  • the bell jar is poured with dry granular glaze, and the brick temperature is 65°C before pouring the dry granular glaze.
  • the content of each component of the dry glaze is shown in Table 3.
  • the chemical composition of dry particle A is: SiO 2 : 63.37%, Al 2 O 3 : 13.57%, CaO: 10.21%, MgO: 1.33%, K 2 O: 5.04%, Na 2 O: 0.0%, ZnO: 6.13% , ZrO 2 : 0.35%, the softening temperature of dry frit A is 1135°C ⁇ 1175°C, and the expansion coefficient is 7.3379 ⁇ 10 -6 /°C.
  • the chemical composition of dry particles B is: SiO 2 : 59.78%, Al 2 O 3 : 12.48%, CaO: 11.74%, MgO: 1.07%, K 2 O: 6.21%, Na 2 O: 1.96%, ZnO: 6.47% , ZrO 2 : 0.29%, the softening temperature of dry particles B is 980°C ⁇ 1050°C, and the expansion coefficient is 6.6630 ⁇ 10 -6 /°C.
  • the chemical composition of dry particle C is: SiO 2 : 61.34%, Al 2 O 3 : 11.49%, CaO: 10.51%, MgO: 1.75%, K 2 O: 5.64%, Na 2 O: 2.15%, ZnO: 6.83% , ZrO 2 : 0.29%, the softening temperature of dry particles C is 1020°C ⁇ 1127°C, and the expansion coefficient is 6.9141 ⁇ 10 -6 /°C.
  • the printing powder is obtained by mixing 45% feldspar powder, 17% limestone powder, and 38% quartz powder.
  • the glue is obtained by mixing glaze glue (purchased from Itaga Precision Ceramic Technology Co., Ltd.) and carboxymethyl cellulose (purchased from Rongsheng Chemical Co., Ltd.) with a viscosity of 950 mPa ⁇ s in a mass ratio of 100:0.8.
  • the chemical composition of dry grain glaze frits is: loss on ignition: 1.50%, SiO 2 : 63.84%, Al 2 O 3 : 13.73%, Fe 2 O 3 : 0.05%, TiO 2 : 0.09%, CaO: 10.84%, MgO : 1.20%, K 2 O: 6.75%, Na 2 O: 0.02%, ZnO: 1.97%, ZrO 2 : 0.01%.
  • the particle gradation of dry glaze is: 60 ⁇ 80 mesh: 10%, 80 ⁇ 100 mesh: 8%, 100 ⁇ 120 mesh: 11%, 120 ⁇ 140 mesh: 9%, 140 ⁇ 250 mesh: 60%, 250 ⁇ 325 mesh: 1%, below 325 mesh: 1%.
  • the specific gravity of the dry glaze is 1.53, the flow rate is 33 seconds, and the glaze application amount is 1050 g/m 2 .
  • polishing line parameters are shown in Table 2.
  • the ceramic tile produced can obtain an effective thickness of 0.42mm while ensuring the flatness of the ceramic tile.
  • the sample is cut into 12cm ⁇ 12cm and placed in the glazed wear resistance.
  • the cover is fixed on the sample, the steel balls of different diameters are weighted according to the proportion and put into the cover, and then 3g corundum powder and 20ml water are placed.
  • the wear resistance test of the wear resistance method shows that the abrasion resistance of the glaze surface can reach level 4 for light-colored plates and level 3 for dark-colored plates.
  • the chemical composition of dry grain glaze frit is: loss on ignition: 1.52%, SiO 2 : 63.30%, Al 2 O 3 : 13.53%, Fe 2 O 3 : 0.15%, TiO 2 : 0.05%, CaO: 10.94%, MgO : 1.80%, K 2 O: 6.75%, Na 2 O: 0.02%, ZnO: 1.93%, ZrO 2 : 0.01%.
  • the specific gravity of the dry glaze is 1.54, the flow rate is 35 seconds, and the glaze application amount is 900g/m 2 .
  • polishing line parameters are shown in Table 2.
  • the produced ceramic tiles can obtain an effective glaze thickness of 0.37mm while ensuring the flatness.
  • the glaze wear resistance can reach level 4 and dark panels can reach level 3.
  • the chemical composition of dry grain glaze frit is: loss on ignition: 1.45%, SiO 2 : 63.08%, Al 2 O 3 : 13.93%, Fe 2 O 3 : 0.13%, TiO 2 : 0.05%, CaO: 11.00%, MgO : 1.60%, K 2 O: 6.72%, Na 2 O: 0.02%, ZnO: 2.01%, ZrO 2 : 0.01%.
  • the particle gradation of dry glaze is: 60 ⁇ 80 mesh: 12%, 80 ⁇ 100 mesh: 9%, 100 ⁇ 120 mesh: 14%, 120 ⁇ 140 mesh: 8%, 140 ⁇ 250 mesh: 55%, 250 ⁇ 325 mesh: 1%, below 325 mesh: 1%.
  • the specific gravity of the dry glaze is 1.52, the flow rate is 35 seconds, and the glaze application amount is 1200g/m 2 .
  • polishing line parameters are shown in Table 2.
  • the produced ceramic tiles can obtain an effective glaze thickness of 0.44mm while ensuring the flatness.
  • the glaze wear resistance can reach level 4
  • dark panels can reach level 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Finishing Walls (AREA)

Abstract

一种湿法淋浆工艺干粒陶瓷砖及其制备方法,包括:在坯体上施面釉、印刷图案后淋干粒釉,然后烧成,得到陶瓷砖,其中,所述干粒釉含有:按质量百分比计,干粒A:15%、干粒B:12%~15%、干粒C:13%~17%,所述干粒A的软化温度为1135℃~1175℃,所述干粒B的软化温度为980℃~1050℃,所述干粒C的软化温度为1020℃~1127℃。所使用的熔块干粒采用三种不同熔点干粒的搭配,采用这样的搭配方式,便于在生产中可以有效地调整砖形及烧成温度。

Description

一种湿法淋浆工艺干粒陶瓷砖及其制备方法 技术领域
本发明涉及一种湿法淋浆全抛干粒砖及其制备方法,属于陶瓷砖生产领域。
背景技术
伴随着社会的快速发展,人们的消费水平也逐步提高,在追求高质量生活的同时,对于居住环境的装饰效果也越来越注重。在建陶行业发展的长河中,传统的抛光、抛釉砖已经无法满足人们对于装饰效果的要求。传统的抛釉、抛光砖存在镜面度不平整、图案纹理模糊缺点,因此对于版面纹理细节复杂、深色版面的设计在生产中很难实现釉面清晰的效果。为了适应市场的需求,开发高平镜面度、透感清晰的釉面砖将成为行业的趋势。
对于目前市场来说,一般采用干法铺撒干粒的工艺,但是该生产工艺较为复杂,而且生产成本较高,在生产深色版面时容易在砖面产生许多毛孔,生产技术也不稳定。
中国专利CN 109516691 A公开了一种深色图案的全抛光面陶瓷制品及其制备方法,其中涉及到工艺也是采取淋干粒釉工艺,但是其专利并没有公开具体的工艺流程、参数以及固体熔块的颗粒级配关系,仅仅只是笼统地讲述了通过淋干粒釉所制备的陶瓷产品所取得的效果。
技术问题
针对上述问题,本发明的目的在于通过使用不同熔点熔块干粒的合理配比,提供一种高平镜面度、透感清晰的釉面砖及其制备方法。
技术解决方案
第一方面,本发明提供一种湿法淋浆工艺干粒陶瓷砖的制备方法,其包括:
在坯体上施面釉、喷墨打印图案后钟罩淋干粒釉,然后烧成,得到陶瓷砖,
其中,所述干粒釉由:按质量百分比计,干粒A:15%、干粒B:12%~15%、干粒C:13%~17%、印刷粉:5%~7%、胶水:35%~38%、水:10%~13%组成,所述印刷粉由45%~50%长石粉、15%~17%石灰石粉、35%~40%石英粉组成,所述干粒釉中干粒的颗粒级配为:按质量百分比计,60~80目:8%~12%,80~100目:6%~10%,100~120目:8%~15%,120~140目:8%~15%,140~250目:50%~60%,250~325目:1%~4%,325目以下:≤2%,
所述干粒A的软化温度为1135℃~1175℃,所述干粒B的软化温度为980℃~1050℃,所述干粒C的软化温度为1020℃~1127℃。
根据本发明,采用湿法淋浆干粒的工艺生产全抛砖,采用该工艺生产的陶瓷砖,在经过抛光过后可获得高平镜面度、透感清晰的釉面,对于版面纹理细节复杂的设计也能清晰看到纹理走向。该生产工艺流程简单,且在一定程度上解决了深色版面毛孔多的问题,利于开发深色版面。而且,本发明所使用的熔块干粒采用三种不同熔点干粒的搭配,采用这样的搭配方式,便于在生产中可以有效地调整砖形及烧成温度。
较佳地,所述干粒A在40℃~600℃内的膨胀系数为7.3×10 -6~7.4×10 -6/℃,所述干粒B在40℃~600℃内的膨胀系数为6.6×10 -6~6.7×10 -6/℃,所述干粒C在40℃~600℃内的膨胀系数为6.9×10 -6~7.0×10 -6/℃。
较佳地,所述干粒釉含有:印刷粉:5%~7%、胶水:35%~38%、水:10%~13%。
较佳地,所述干粒釉的化学组成为:按质量百分比计,烧失:0.50%~2.00%,SiO 2:60.50%~65.00%、Al 2O 3:12.00%~14.00%、Fe 2O 3:0.05%~0.20%、TiO 2:0.05%~0.10%、CaO:9.00%~11.00%、MgO:1.00%~2.00%、K 2O:4.00%~8.00%、Na 2O:0.00%~0.05%、ZnO:1.87%~2.32%、ZrO 2:0.01%~0.03%。所述的该化学组成是指所有固体干粒的化学组成,不包括干粒釉中的印刷粉、胶水和水。
较佳地,所述干粒釉的比重为1.52~1.54,流速为32~35秒,施釉量为900~1200g/m 2
较佳地,所述干粒釉中干粒的颗粒级配为:60~80目:8%~12%,80~100目:6%~10%,100~120目:8%~15%,120~140目:8%~15%,140~250目:50%~60%,250~325目:1%~4%,325目以下:≤2%。
较佳地,施面釉前坯体的温度为65℃~70℃。
较佳地,面釉比重为1.46~1.47,施釉量为500~550g/m 2
较佳地,淋干粒釉前坯体温度为60℃~70℃。
较佳地,烧成周期为95~110分钟,最高烧成温度范围为1175℃~1223℃。
第二方面,本发明提供由上述任一制备方法制备的陶瓷砖。
有益效果
本发明的陶瓷砖具有高平镜面度、透感清晰的釉面,对于版面纹理细节复杂、深色版面的设计能实现釉面清晰的效果。
本发明的实施方式
以下通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。以下各百分含量如无特别说明均指质量百分含量。
首先,制备坯体。坯体可由公知的陶瓷原料按常规方法制备,例如依次进行坯料球磨、喷粉造粒、压机干压成型、干燥窑干燥,得到干燥坯。干燥时间可为1~1.2h,干燥坯水分可控制在0.5%以内。
然后,在坯体上施面釉。施面釉前坯体温度优选控制在65℃~70℃,在此温度范围内可以有效地保证砖坯出了喷釉柜后釉面是干燥的,从而减少由于釉面未干灰尘落入上面形成烧成缺陷的概率,提高产品的质量。面釉配方没有特别限定,可以采用本领域常用的面釉配方。一实施方式中,面釉的化学组成为:按质量计,烧失:3.00%~5.00%、SiO 2:57.00%~60.00%、Al 2O 3:23.00%~25.00%、Fe 2O 3:0.30%~0.40%、TiO 2:0.10%~0.20%、CaO:0.30%~0.40%、MgO:0.10%~0.30%、K 2O:4.00%~6.00%、Na 2O:2.00%~3.00%、ZrO 2:6.00%~12.00%。该化学组成的面釉白度较高,烧成温度范围较宽且多种陶瓷墨水的发色都较好。
施面釉方式包括但不限于喷釉、淋釉等。喷面釉比重可为1.46~1.47,施釉量可为500~550g/m 2
然后,在面釉上打印图案。打印图案的方式没有特别限定,可采用本领域常用的打印图案的方法,其中优选喷墨打印,这样可以得到更加清晰的图案。
接着,在砖坯上淋干粒釉。淋干粒釉前砖坯温度优选控制在60℃~70℃,由于深色版面墨量较大,对于淋上的釉浆不易排出水分,淋干粒釉前砖坯控制温度在这样的范围,利于砖坯及时排出水分,从而满足进窑烧制的条件,降低因水分不能及时排出出现炸砖的概率。
采用湿法淋浆干粒,在经过抛光过可获得高平镜面度、透感清晰的釉面,对于版面(生产产品中的设计图案)纹理细节复杂的设计也能清晰看到纹理走向,且在一定程度上解决了生产深色版面时容易在砖面产生许多毛孔的问题,利于开发深色版面。在对于深色版面中由于版面灰度不一致,在干法布撒干粒工艺中即使在后道有工序进行喷胶水固定,但是该方式易冲散干粒,造成干粒面不平整,在烧制后易出现釉面不平的现象。在湿法淋浆工艺中由于添加印刷粉、胶水、水物质混匀,能有效地防止出现干粒不均匀的现象,而且印刷粉具有助熔、提高高温流动性的作用,可以很好地调节由于深色版面不同灰度造成干粒熔不平的现象,在此基础上解决了干法布撒干粒工艺中深色版面毛孔多的问题。
干粒釉中含有三种固体干粒:干粒A、干粒B、干粒C。这三种干粒具有不同的熔点和不同的膨胀系数。所述干粒A的软化温度为1135℃~1175℃。所述干粒B的软化温度为980℃~1050℃。所述干粒C的软化温度为1020℃~1127℃。在实际陶瓷生产中,窑炉的烧成温度在陶瓷生产中温度的变化,对于产品的砖形影响较大,而通过调整陶瓷坯体基料是比较耗时、耗能源的一种方式,为了减少对产品的影响,可以通过具有这样的熔点的三种干粒的搭配,根据实际生产情况适当地调整高低温干粒的比例,改变干粒釉面的整体熔融温度,达到改善砖形的目的。这样的调整方式,利于在实际生产中节省由于调整陶瓷基料的成本与时间,陶瓷基料的稳定,在一定的程度上也能有效地保证产品在烧制后各项性能的稳定性。
干粒A在40℃~600℃内的膨胀系数可为7.3×10 -6~7.4×10 -6/℃,例如为7.3379×10 -6/℃。
干粒B在40℃~600℃内的膨胀系数可为6.6×10 -6~6.7×10 -6/℃,例如为6.6630×10 -6/℃。
干粒C在40℃~600℃内的膨胀系数为6.9×10 -6~7.0×10 -6/℃,例如为6.9141×10 -6/℃。
基于生产条件下,在实际生产中坯体的膨胀系数都是高于釉面的膨胀系数,而通过降低坯体的膨胀系数是比较困难的,通过具有这样的膨胀系数的三种干粒的搭配,可以给生产中对于釉面膨胀系数的调节提供更便捷的调整方式,使釉面膨胀系数的调整空间更宽。
一些实施方式中,干粒A的化学组成为:SiO 2:63.35%~64.21%、Al 2O 3:13.43%~13.98%、CaO:10.01%~11.32%、MgO:1.20%~1.33%、K 2O:4.87%~5.44%、Na 2O:0.0%~0.3%、ZnO:5.34%~6.74%、ZrO 2:0.20%~0.37%。
一些实施方式中,干粒B的化学组成为:SiO 2:58.73%~59.81%、Al 2O 3:10.90%~13.30%、CaO:11.62%~13.93%、MgO:0.52%~1.12%、K 2O:5.25%~6.23%、Na 2O:1.50%~1.96%、ZnO:4.34%~6.49%、ZrO 2:0.12%~0.29%。
一些实施方式中,干粒C的化学组成为:SiO 2:60.10%~62.35%、Al 2O 3:11.10%~11.70%、CaO:10.00%~11.52%、MgO:1.20%~1.75%、K 2O:5.10%~5.65%、Na 2O:1.92%~2.16%、ZnO:6.21%~6.84%、ZrO 2:0.25%~0.30%。
干粒釉中,干粒A的含量可为15%。干粒B的含量可为:12%~15%,例如为14%。干粒C的含量可为13%~17%,例如为15%。
干粒釉中,干粒A、干粒B和干粒C的含量之和可为40%~44%。
干粒釉中固体干粒熔块的颗粒级配可为:60~80目:8%~12%,80~100目:6%~10%,100~120目:8%~15%,120~140目:8%~15%,140~250目:50%~60%,250~325目:1%~4%,325目以下:≤2%。采用这样的颗粒级配可以使得干粒釉适合用钟罩淋的方式进行淋釉,比起直线淋釉器更能有效地把控整砖面干粒釉量的均匀性,使制品在烧制过程中获取更高的平整度。
干粒釉中还可以含有印刷粉:5%~7%、胶水:35%~38%、水:10%~13%。
胶水主要起到均匀分散干粒和调节浆料悬浮性的作用。所使用的胶水的表面张力与墨水张力相近(优选为相等)。例如,当墨水表面张力为28mN·m -1~34mN·m -1时,使胶水的表面张力也为28mN·m -1~34mN·m -1。胶水可使用该领域中常用的釉料胶水与高粘度(例如在2%的水溶液粘度中≥800~1200mPa·s)的羧甲基纤维素混合制成,其比例例如按照100:0.7~0.9(例如100:0.8)混合所得。
该实施方式中,干粒釉中含有较大量的胶水和较少量的水,从而有效地保证在生产使用过程中干粒釉浆的流动、悬浮性能,减少干粒熔块团聚、沉淀的现象。水含量在此范围保证了印刷粉的溶解性,溶解更加均匀,不会出现过饱和聚沉的现象。该范围的胶水含量不仅可以提高干粒釉的粘结性能,还能起到固定剂的作用,胶水表面张力的范围是根据墨水厂家提供的墨水表面张力(提供墨水表面张力数据为28mN·m -1~34mN·m -1)为依据,将胶水表面张力调整为与墨水张力相适应,从而保证了喷墨打印的设计图案不会因两者表面张力的差异大而出现排斥,引起打印图案处的干粒釉料往外收缩,干粒釉料不粘附在图案表面,造成产品在烧制后出现漏干粒釉料的缺陷。
印刷粉是指长石粉、石灰石粉、石英粉三种搭配使用。其中长石粉的含量可为45%~50%,石灰石粉的含量可为15%~17%,石英粉的含量可为35%~40%。印刷粉的作用是助熔,而且在该体系中能更好地调节干粒釉的烧成温度、高温流动性和干粒釉料的流速,保证浆料具有良好的流动性。
一些实施方式中,印刷粉的化学组成如表1所示。
表 1 印刷粉的化学组成(wt%)
IL(烧失) SiO 2 Al 2O 3 Fe 2O 3 TiO 2 CaO MgO K 2O Na 2O P 2O 5 SO 3
7.44 54.73 17.92 0.23 0.06 9.23 2.78 3.04 3.92 0.19 0.33
干粒釉熔块的化学组成可为:按质量百分比计,烧失:0.50%~2.00%,SiO 2:60.50%~65.00%、Al 2O 3:12.00%~14.00%、Fe 2O 3:0.05%~0.20%、TiO 2:0.05%~0.10%、CaO:9.00%~11.00%、MgO:1.00%~2.00%、K 2O:4.00%~8.00%、Na 2O:0.00%~0.05%、ZnO:1.87%~2.32%、ZrO 2:0.01%~0.03%。此处所述的该化学组成不包括印刷粉、胶水和水的化学组成。
优选实施方式中,干粒釉的比重为1.52~1.54,流速为32~35秒。这里的流速是指将8mm口径流速杯装满待测物,打开流速杯下面小孔,将待测物从开始到流尽后的时间记为待测物的流速。通过将干粒釉的比重和流速控制在上述范围,可以有效改善干粒釉浆沉淀的现象,使浆料具有良好的悬浮性与流动性。干粒釉的施釉量可为900~1200g/m 2
然后,将得到的砖坯干燥。干燥温度可控制在140℃~150℃,干燥后水分控制在1.0%以内。
接着,将砖坯烧成。烧成周期可为95~110分钟,由于干粒釉熔块配比关系可调整,因此其最高烧成温度范围可调整范围较宽,可为1135~1223℃。
然后进行抛光(全抛)。一些实施方式中,抛光线参数如表2所示。
表2 抛光线参数
目数 180 240 320 400 600 800 1000 1500 2000 3000
组数 3 9 4 3 4 4 4 4 4 3
压力(MPa) 2~3 2~3 2~3 2~3 2~3 2~3 2~3 2~3 2~3 2~3
表2中的目数是指模块的目数,组数是指模块的组数,压力是指抛光磨头压力。
采用表2所示的抛光线参数,可以改善灰色版面易出现抛黄边、漏底的概率。
抛光后还可以进行磨边、分级、打包入仓等后处理。
根据本发明制备方法得到的陶瓷砖,具有高平镜面度、透感清晰的釉面,与中国专利CN 109516691 A所涉及的干粒釉工艺相比,在产品具有相同镜面度的条件下,由于该发明对于胶水、印刷粉所具有的特性可以有效地确保干粒固体熔块在干粒釉料中分散的均匀性,实现在淋干粒釉过程中砖面整体干粒釉量各向均一性的效果,高粘度的粘结性也确保在釉面干燥后,防止干粒固体熔块被吹散的现象,保证入窑前干粒釉面的平整度,加上该干粒釉在高温熔融下具有较好的流动性,因此在烧制后可获取较高的平整度,对于产品在后期抛光工序中无需抛深即可获取高平镜面度的釉面效果,在同等条件下可节约生产成本。本发明在配制干粒釉过程中水分比重较中国专利CN 109516691 A较少,有效地保证在生产使用过程中干粒釉浆的流动、悬浮性能,减少干粒熔块沉淀的现象,同时有效减少了砖坯在淋浆过后干燥的周期,减少能耗,缩短生产周期。由于固体干粒熔块的颗粒级配关系,该工艺在生产过程中采用钟罩淋的方式,比起直线淋釉器更能有效地把控整砖面干粒釉量的均匀性,使制品在烧制过程中获取更高的平整度,同时本发明所使用的印刷粉是将长石粉、石灰石粉、石英粉搭配使用,使得干粒熔块在高温熔融时具有更好的流动性,促进釉面的平整度。釉面平整度越高在对于抛光工序中对于模块的损耗更小,延长模块的使用寿命,节约生产成本。
本发明在保证平整度的同时可获得釉面有效厚度为0.35~0.45mm。对于浅色的版面其釉面耐磨度可达4级,深色版面可达3级。
下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。
实施例1
1、压机压砖。
2、干燥窑干燥,干燥时间1h,干燥坯水分控制在0.5%以内。
3、喷面釉,喷面釉前砖坯温度为68℃;面釉比重1.46,施釉量500g/m 2
4、喷墨打印图案。
5、钟罩淋干粒釉,淋干粒釉前砖坯温度在65℃。干粒釉的各组分含量如表3所示。
表3 干粒釉的组分,所涉及的比例关系为质量比关系
材料 干粒A 干粒B 干粒C 印刷粉 胶水
比例(wt%) 15 14 15 7 36 13
干粒A的化学组成为:SiO 2:63.37%、Al 2O 3:13.57%、CaO:10.21%、MgO:1.33%、K 2O:5.04%、Na 2O:0.0%、ZnO:6.13%、ZrO 2:0.35%,干粒熔块A的软化温度为1135℃~1175℃,膨胀系数为7.3379×10 -6/℃。
干粒B的化学组成为:SiO 2:59.78%、Al 2O 3:12.48%、CaO:11.74%、MgO:1.07%、K 2O:6.21%、Na 2O:1.96%、ZnO:6.47%、ZrO 2:0.29%,干粒B的软化温度为980℃~1050℃,膨胀系数为6.6630×10 -6/℃。
干粒C的化学组成为:SiO 2:61.34%、Al 2O 3:11.49%、CaO:10.51%、MgO:1.75%、K 2O:5.64%、Na 2O:2.15%、ZnO:6.83%、ZrO 2:0.29%,干粒C的软化温度为1020℃~1127℃,膨胀系数为6.9141×10 -6/℃。
印刷粉由45%长石粉、17%石灰石粉、38%石英粉混合而得。
胶水是由釉料胶水(购自意达加精密陶瓷科技有限公司)与粘度为950mPa·s的羧甲基纤维素(购自荣盛化工有限公司)按照质量比100:0.8混合所得。
干粒釉熔块的化学组成为:烧失:1.50%、SiO 2:63.84%、Al 2O 3:13.73%、Fe 2O 3:0.05%、TiO 2:0.09%、CaO:10.84%、MgO:1.20%、K 2O:6.75%、Na 2O:0.02%、ZnO:1.97%、ZrO 2:0.01%。
干粒釉的颗粒级配为:60~80目:10%,80~100目:8%,100~120目:11%,120~140目:9%,140~250目:60%,250~325目:1%,325目以下:1%。
干粒釉的比重为1.53,流速为33秒,施釉量为1050g/m 2
6、窑前干燥,采用电窑干燥,干燥窑温度控制在145℃,干燥后水分控制在1.0%以内。
7、辊道窑低温快烧,烧成周期102min,最高烧成温度:1176℃。
8、抛光。抛光线参数如表2所示。
制得的陶瓷砖在保证平整度的同时可获得其釉面有效厚度为0.42mm,按照行业标准对有釉砖耐磨测试的方式,把试样切成12cm×12cm,放到有釉耐磨测试仪上,盖子固定在试样上,将不同直径的钢珠按配比配重后放进盖子里,再放3g金刚玉粉,再放20ml的水。经耐磨性能方法测试耐磨度可知,对于浅色的版面其釉面耐磨度可达4级,深色版面可达3级。
实施例2
所使用的干粒A、干粒B、干粒C、印刷粉及胶水的成分、以及除下述以外的工艺参数均与实施例1相同。区别于实例1,其干粒釉配比关系如下:
材料 干粒A 干粒B 干粒C 印刷粉 胶水
比例(wt%) 15 13 16 6 37 13
干粒釉熔块的化学组成为:烧失:1.52%、SiO 2:63.30%、Al 2O 3:13.53%、Fe 2O 3:0.15%、TiO 2:0.05%、CaO:10.94%、MgO:1.80%、K 2O:6.75%、Na 2O:0.02%、ZnO:1.93%、ZrO 2:0.01%。
干粒釉的颗粒级配为:60~80目:11%,80~100目:8%,100~120目:10%,120~140目:9%,140~250目:60%,250~325目:1%,325目以下:1%。
干粒釉的比重为1.54,流速为35秒,施釉量为900g/m 2
辊道窑低温快烧,烧成周期96min,最高烧成温度:1193℃。
抛光。抛光线参数如表2所示。
制得的陶瓷砖在保证平整度的同时可获得其釉面有效厚度为0.37mm,对于浅色的版面其釉面耐磨度可达4级,深色版面可达3级。
实施例3
所使用的干粒A、干粒B、干粒C、印刷粉及胶水的成分、以及除下述以外的工艺参数均与实施例1相同。区别于实例1,其干粒釉配比关系如下:
材料 干粒A 干粒B 干粒C 印刷粉 胶水
比例(wt%) 15 13 15 7 38 12
干粒釉熔块的化学组成为:烧失:1.45%、SiO 2:63.08%、Al 2O 3:13.93%、Fe 2O 3:0.13%、TiO 2:0.05%、CaO:11.00%、MgO:1.60%、K 2O:6.72%、Na 2O:0.02%、ZnO:2.01%、ZrO 2:0.01%。
干粒釉的颗粒级配为:60~80目:12%,80~100目:9%,100~120目:14%,120~140目:8%,140~250目:55%,250~325目:1%,325目以下:1%。
干粒釉的比重为1.52,流速为35秒,施釉量为1200g/m 2
辊道窑低温快烧,烧成周期98min,最高烧成温度范围:1186℃。
抛光。抛光线参数如表2所示。
制得的陶瓷砖在保证平整度的同时可获得其釉面有效厚度为0.44mm,对于浅色的版面其釉面耐磨度可达4级,深色版面可达3级。

Claims (8)

  1. 一种湿法淋浆工艺干粒陶瓷砖的制备方法,其特征在于,包括:
    在坯体上施面釉、喷墨打印图案后钟罩淋干粒釉,然后烧成,得到陶瓷砖,
    其中,所述干粒釉由:按质量百分比计,干粒A:15%、干粒B:12%~15%、干粒C:13%~17%、印刷粉:5%~7%、胶水:35%~38%、水:10%~13%组成,所述印刷粉由45%~50%长石粉、15%~17%石灰石粉、35%~40%石英粉组成,所述干粒釉中干粒的颗粒级配为:按质量百分比计,60~80目:8%~12%,80~100目:6%~10%,100~120目:8%~15%,120~140目:8%~15%,140~250目:50%~60%,250~325目:1%~4%,325目以下:≤2%,
    所述干粒A的软化温度为1135℃~1175℃,所述干粒B的软化温度为980℃~1050℃,所述干粒C的软化温度为1020℃~1127℃。
  2. 根据权利要求1所述的制备方法,其特征在于,所述干粒A在40℃~600℃内的膨胀系数为7.3×10 -6~7.4×10 -6/℃,所述干粒B在40℃~600℃内的膨胀系数为6.6×10 -6~6.7×10 -6/℃,所述干粒C在40℃~600℃内的膨胀系数为6.9×10 -6~7.0×10 -6/℃。
  3. 根据权利要求1所述的制备方法,其特征在于,所述干粒釉的化学组成为:按质量百分比计,烧失:0.50%~2.00%,SiO 2:60.50%~65.00%、Al 2O 3:12.00%~14.00%、Fe 2O 3:0.05%~0.20%、TiO 2:0.05%~0.10%、CaO:9.00%~11.00%、MgO:1.00%~2.00%、K 2O:4.00%~8.00%、Na 2O:0.00%~0.05%、ZnO:1.87%~2.32%、ZrO 2:0.01%~0.03%,所述化学组成是指所有固体干粒的化学组成,不包括干粒釉中的印刷粉、胶水和水。
  4. 根据权利要求1所述的制备方法,其特征在于,所述干粒釉的比重为1.52~1.54,流速为32~35秒,施釉量为900~1200g/m 2
  5. 根据权利要求1所述的制备方法,其特征在于,施面釉前坯体的温度为65℃~70℃,面釉比重为1.46~1.47,施釉量为500~550g/m 2
  6. 根据权利要求1所述的制备方法,其特征在于,淋干粒釉前坯体温度为60℃~70℃。
  7. 根据权利要求1至6中任一项所述的制备方法,其特征在于,烧成周期为95~110分钟,最高烧成温度范围为1135℃~1223℃。
  8. 一种由权利要求1至7中任一项所述的制备方法制备的陶瓷砖。
PCT/CN2019/120000 2019-05-17 2019-11-21 一种湿法淋浆工艺干粒陶瓷砖及其制备方法 WO2020233032A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19929369.7A EP3971155A4 (en) 2019-05-17 2019-11-21 DRY GRANULATE CERAMIC TILE FORMED FROM WET SPRAY SPRAY TREATMENT AND METHOD OF PREPARING THEREOF
JP2021558863A JP7288973B2 (ja) 2019-05-17 2019-11-21 湿式流し掛け工法による乾粒陶磁器質タイル及びその製造方法
US17/595,428 US20220204416A1 (en) 2019-05-17 2019-11-21 Dry granular ceramic tile from wet slurry spraying process and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910412550.7 2019-05-17
CN201910412550.7A CN109928779B (zh) 2019-05-17 2019-05-17 一种湿法淋浆工艺干粒陶瓷砖及其制备方法

Publications (1)

Publication Number Publication Date
WO2020233032A1 true WO2020233032A1 (zh) 2020-11-26

Family

ID=66991357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/120000 WO2020233032A1 (zh) 2019-05-17 2019-11-21 一种湿法淋浆工艺干粒陶瓷砖及其制备方法

Country Status (5)

Country Link
US (1) US20220204416A1 (zh)
EP (1) EP3971155A4 (zh)
JP (1) JP7288973B2 (zh)
CN (1) CN109928779B (zh)
WO (1) WO2020233032A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112608029A (zh) * 2020-12-28 2021-04-06 肇庆乐华陶瓷洁具有限公司 炫光仿古砖及其制备方法
CN112624803A (zh) * 2020-12-31 2021-04-09 卡罗比亚(中国)高新材料有限公司 具有低光泽防滑颗粒状陶瓷表面材料的陶瓷砖的生产工艺
CN113503297A (zh) * 2021-06-01 2021-10-15 王超杰 一种半导体用带腔体陶瓷部件高度结合制备装置
CN113650140A (zh) * 2021-09-01 2021-11-16 安徽磐盛新型材料科技有限公司 一种具有星光效果的瓷砖的制备方法
CN113799531A (zh) * 2021-10-21 2021-12-17 新明珠集团股份有限公司 一种精细凹凸面哑光瓷砖及其制备方法
CN114057397A (zh) * 2021-10-25 2022-02-18 蒙娜丽莎集团股份有限公司 一种细干粒岩板表面微光处理方法
CN114956871A (zh) * 2022-06-17 2022-08-30 江西唯美陶瓷有限公司 双峰级配釉料制灰黑色抛光的薄型岩板及釉料制备方法
CN115057728A (zh) * 2022-08-19 2022-09-16 广东兴辉陶瓷集团有限公司 定位剥开干粒瓷砖的生产工艺及其产品
CN117125967A (zh) * 2023-08-25 2023-11-28 福建省南安宝达建材有限公司 一种湿态止滑砖及其制作工艺

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109928779B (zh) * 2019-05-17 2019-08-23 蒙娜丽莎集团股份有限公司 一种湿法淋浆工艺干粒陶瓷砖及其制备方法
CN110316966A (zh) * 2019-08-02 2019-10-11 佛山市陶莹新型材料有限公司 一种大板用全抛干粒及其制备方法
CN110683766B (zh) * 2019-11-22 2022-02-08 重庆唯美陶瓷有限公司 一种全抛釉及其制备方法、黑色喷墨陶瓷砖及其制造方法
CN110862231B (zh) * 2019-11-26 2021-12-03 蒙娜丽莎集团股份有限公司 柔抛砖用干粒釉及其应用
CN112340989B (zh) * 2020-11-09 2022-07-12 广东东唯新材料有限公司 一种干粒釉瓷质砖及其制备方法
ES2940532A1 (es) * 2021-11-04 2023-05-08 Asitec Ceram S L Procedimiento e instalación correspondiente para la fabricación de losetas cerámicas
CN114213013B (zh) * 2021-12-06 2023-03-17 蒙娜丽莎集团股份有限公司 一种闪光干粒釉、闪光干粒抛陶瓷板及其制备方法
CN114163225B (zh) * 2021-12-23 2023-03-10 广西蒙娜丽莎新材料有限公司 一种超亚光效果陶瓷砖的制备方法
CN114380625A (zh) * 2021-12-31 2022-04-22 新明珠集团股份有限公司 一种通体岩板及其制备方法
CN115368167B (zh) * 2022-08-26 2023-05-30 佛山市东鹏陶瓷有限公司 一种耐磨抛釉砖及其制备方法
CN115403409B (zh) * 2022-08-29 2023-12-22 广东昊晟陶瓷有限公司 一种柔光防滑瓷砖的制备方法
CN115448753A (zh) * 2022-09-13 2022-12-09 福建省晋江市丹豪陶瓷有限公司 一种绒抛微钻质感砖及其制备方法
CN115872621B (zh) * 2022-12-12 2023-08-01 佛山市金竹林新型材料科技有限公司 一种钟乳石瓷砖及其制备方法
CN116178052B (zh) * 2023-01-03 2024-04-30 广东家美陶瓷有限公司 流体画艺术陶瓷砖的制备方法
CN118005430B (zh) * 2024-04-09 2024-06-25 佛山市东鹏陶瓷有限公司 一种光泽均匀的柔抛砖及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102040398A (zh) * 2010-11-17 2011-05-04 广东道氏标准制釉股份有限公司 一种抛晶砖的制备方法
WO2016185416A1 (en) * 2015-05-21 2016-11-24 Mariano Paganelli Method for decoration on ceramic tiles that are pressed but not dried
CN107935386A (zh) * 2017-11-15 2018-04-20 蒙娜丽莎集团股份有限公司 颗粒状干粒釉、颗粒状干粒釉布料仿石砖及其制备方法
CN108675637A (zh) * 2018-05-30 2018-10-19 东莞市唯美陶瓷工业园有限公司 通体防滑陶瓷砖及其制造方法
CN108863298A (zh) * 2018-07-17 2018-11-23 佛山高明顺成陶瓷有限公司 一种高硬度和高吸水率的炻瓷砖及其生产工艺
CN109516691A (zh) 2018-11-02 2019-03-26 广东萨米特陶瓷有限公司 一种深色图案的全抛光面陶瓷制品及其制备方法
CN109928779A (zh) * 2019-05-17 2019-06-25 蒙娜丽莎集团股份有限公司 一种湿法淋浆工艺干粒陶瓷砖及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102417373B (zh) 2011-09-06 2013-06-05 佛山市三水新明珠建陶工业有限公司 非水性油墨湿式釉下彩自锐抛光陶质釉面砖制造方法
CN103073335B (zh) 2013-01-29 2014-07-30 福建省晋江市舒适陶瓷有限公司 一种干挂建筑幕墙用喷墨陶板的制作方法
CN103288347B (zh) * 2013-06-18 2016-05-18 山东炳坤腾泰陶瓷科技股份有限公司 超平高透高亮一次烧成淋抛熔块及其制备和应用方法
CN105272375B (zh) 2015-10-29 2017-10-03 佛山市中成硅酸盐科技有限公司 一种耐磨高硬度的金刚釉、制备方法和应用
CN105294163B (zh) 2015-11-06 2017-12-08 蒙娜丽莎集团股份有限公司 一种喷墨高清瓷砖生产工艺
CN105622168B (zh) * 2015-12-23 2018-07-24 佛山市唯格瓷砖有限责任公司 一种防滑耐磨干粒及其在防滑耐磨瓷砖中的应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102040398A (zh) * 2010-11-17 2011-05-04 广东道氏标准制釉股份有限公司 一种抛晶砖的制备方法
WO2016185416A1 (en) * 2015-05-21 2016-11-24 Mariano Paganelli Method for decoration on ceramic tiles that are pressed but not dried
CN107935386A (zh) * 2017-11-15 2018-04-20 蒙娜丽莎集团股份有限公司 颗粒状干粒釉、颗粒状干粒釉布料仿石砖及其制备方法
CN108675637A (zh) * 2018-05-30 2018-10-19 东莞市唯美陶瓷工业园有限公司 通体防滑陶瓷砖及其制造方法
CN108863298A (zh) * 2018-07-17 2018-11-23 佛山高明顺成陶瓷有限公司 一种高硬度和高吸水率的炻瓷砖及其生产工艺
CN109516691A (zh) 2018-11-02 2019-03-26 广东萨米特陶瓷有限公司 一种深色图案的全抛光面陶瓷制品及其制备方法
CN109928779A (zh) * 2019-05-17 2019-06-25 蒙娜丽莎集团股份有限公司 一种湿法淋浆工艺干粒陶瓷砖及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3971155A4

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112608029A (zh) * 2020-12-28 2021-04-06 肇庆乐华陶瓷洁具有限公司 炫光仿古砖及其制备方法
CN112624803A (zh) * 2020-12-31 2021-04-09 卡罗比亚(中国)高新材料有限公司 具有低光泽防滑颗粒状陶瓷表面材料的陶瓷砖的生产工艺
CN113503297A (zh) * 2021-06-01 2021-10-15 王超杰 一种半导体用带腔体陶瓷部件高度结合制备装置
CN113650140A (zh) * 2021-09-01 2021-11-16 安徽磐盛新型材料科技有限公司 一种具有星光效果的瓷砖的制备方法
CN113799531A (zh) * 2021-10-21 2021-12-17 新明珠集团股份有限公司 一种精细凹凸面哑光瓷砖及其制备方法
CN114057397B (zh) * 2021-10-25 2023-02-17 蒙娜丽莎集团股份有限公司 一种细干粒岩板表面微光处理方法
CN114057397A (zh) * 2021-10-25 2022-02-18 蒙娜丽莎集团股份有限公司 一种细干粒岩板表面微光处理方法
CN114956871A (zh) * 2022-06-17 2022-08-30 江西唯美陶瓷有限公司 双峰级配釉料制灰黑色抛光的薄型岩板及釉料制备方法
CN114956871B (zh) * 2022-06-17 2023-08-04 江西唯美陶瓷有限公司 双峰级配釉料制灰黑色抛光的薄型岩板及釉料制备方法
CN115057728A (zh) * 2022-08-19 2022-09-16 广东兴辉陶瓷集团有限公司 定位剥开干粒瓷砖的生产工艺及其产品
CN115057728B (zh) * 2022-08-19 2022-11-01 广东兴辉陶瓷集团有限公司 定位剥开干粒瓷砖的生产工艺及其产品
CN117125967A (zh) * 2023-08-25 2023-11-28 福建省南安宝达建材有限公司 一种湿态止滑砖及其制作工艺
CN117125967B (zh) * 2023-08-25 2024-04-26 福建省南安宝达建材有限公司 一种湿态止滑砖及其制作工艺

Also Published As

Publication number Publication date
EP3971155A1 (en) 2022-03-23
CN109928779B (zh) 2019-08-23
EP3971155A4 (en) 2023-02-08
JP2022528878A (ja) 2022-06-16
JP7288973B2 (ja) 2023-06-08
US20220204416A1 (en) 2022-06-30
CN109928779A (zh) 2019-06-25

Similar Documents

Publication Publication Date Title
WO2020233032A1 (zh) 一种湿法淋浆工艺干粒陶瓷砖及其制备方法
CN109867446B (zh) 一种超平熔块干粒釉全抛砖及其制备方法
CN108911701B (zh) 哑光干粒釉面砖及其制备方法
CN110436963B (zh) 干粒釉及具有白色悬浮絮状物干粒陶瓷砖及其制备方法
CN111056818B (zh) 高透明抛光陶瓷厚板及其制备方法
CN109053226B (zh) 制备哑光干粒釉面砖的方法
CN110668792B (zh) 一种立体幻彩干粒抛陶瓷大板及其制备方法
CN108996905B (zh) 一种高硬度耐磨陶瓷砖及其制备方法
CN110862231B (zh) 柔抛砖用干粒釉及其应用
CN110978221B (zh) 解决灰色系抛釉砖抛光黄边问题的制备工艺
CN110550958A (zh) 一种细腻柔和哑光黑砖及其制备方法
CN105272160A (zh) 一次烧微晶玻璃陶瓷复合砖及其生产方法
CN115650769B (zh) 一种釉面超平、质感细腻的磨砂面薄型陶瓷板及其制备方法
CN110981200A (zh) 一种微晶釉料及其制备方法
CN113860739B (zh) 一种改性圆珠干粒超平薄型陶瓷板及其制备方法
CN108793748A (zh) 提高深色陶瓷产品生产砖型控制釉料、釉粉及制备方法
CN113400442A (zh) 采用实心粉料制作釉面砖的方法
CN114031423A (zh) 一种耐磨干粒抛岩板及其制备方法
CN109665871A (zh) 一种提高抛晶陶瓷砖表面耐磨性能的工艺方法
CN111018543B (zh) 一种一次烧成超大规格薄型瓷质板材及其生产方法
CN112390529A (zh) 一种瓷质哑光仿古砖及其制造方法
CN113480178B (zh) 一种亮光金属面釉及其在陶瓷砖中的应用
CN105218171A (zh) 一种带金属光泽层内墙瓷片的制造方法
CN113860854A (zh) 一种抗菌性能稳定持久的陶瓷板及其制备方法
CN105800934B (zh) 一种采用高温素坯淋釉方式施釉陶瓷的制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19929369

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021558863

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019929369

Country of ref document: EP