WO2020221149A1 - 上行定位的实现方法、装置和存储介质 - Google Patents

上行定位的实现方法、装置和存储介质 Download PDF

Info

Publication number
WO2020221149A1
WO2020221149A1 PCT/CN2020/086945 CN2020086945W WO2020221149A1 WO 2020221149 A1 WO2020221149 A1 WO 2020221149A1 CN 2020086945 W CN2020086945 W CN 2020086945W WO 2020221149 A1 WO2020221149 A1 WO 2020221149A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
positioning
measuring
measurement
attribute information
Prior art date
Application number
PCT/CN2020/086945
Other languages
English (en)
French (fr)
Inventor
毕程
袁弋非
陈诗军
徐万夫
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US17/607,355 priority Critical patent/US20220210761A1/en
Priority to KR1020217039032A priority patent/KR20220004153A/ko
Priority to EP20799302.3A priority patent/EP3965485A4/en
Publication of WO2020221149A1 publication Critical patent/WO2020221149A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0215Interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/003Locating users or terminals or network equipment for network management purposes, e.g. mobility management locating network equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/10Integrity
    • H04W12/104Location integrity, e.g. secure geotagging
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0221Receivers
    • G01S5/02213Receivers arranged in a network for determining the position of a transmitter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to a wireless communication network, for example, to a method, device, and storage medium for implementing uplink positioning.
  • the positioning technology Since Release 9 phase, the positioning technology has introduced the Third Generation Partnership Project (3GPP).
  • 3GPP Third Generation Partnership Project
  • the 4th Generation mobile communication system (4G) frequency band used is a low frequency frequency band, and a cyclic prefix (Cyclic Prefix) , CP) is longer; while the 5G band includes high frequency bands, the inter-symbol CP becomes shorter.
  • 4G 4th Generation mobile communication system
  • CP cyclic prefix
  • the 5G band includes high frequency bands, the inter-symbol CP becomes shorter.
  • LTE Long Term Evolution
  • the present application provides a method, device and storage medium for implementing uplink positioning, which reduces communication interference to other target nodes among adjacent measurement nodes.
  • the embodiment of the present application provides a method for implementing uplink positioning, which is applied to a positioning server, and the method includes:
  • first positioning attribute information corresponding to the first positioning instruction fed back by each measuring node where the first positioning attribute information includes: a measuring node identifier and random access information of a cell where the measuring node is located;
  • a random access instruction carrying the first positioning attribute information is sent to a target node, where the random access instruction is used to trigger the target node to send a random access signal to the measuring node to determine whether the target node is The communication distance between each of the measurement nodes.
  • the embodiment of the present application also provides a method for implementing uplink positioning, which is applied to a measuring node, and the method includes:
  • the first positioning attribute information is fed back to the positioning server, the first positioning attribute information is the attribute information of multiple measuring nodes that the target node is to establish communication with, and the first positioning attribute information includes: a measuring node identifier and Random access information of the cell where the measuring node is located.
  • the embodiment of the present application also provides a method for implementing uplink positioning, which is applied to a serving node, and the method includes:
  • a second set of measurement nodes determined according to the second positioning instruction is fed back to the positioning server.
  • the second set of measurement nodes includes at least two measurement nodes other than the serving node, and the target node is located at the end of the measurement node.
  • a serving cell provided by the serving node has established a communication connection with the target node;
  • the second positioning attribute information includes: a measuring node identifier and random access information of a cell where the measuring node is located;
  • the embodiment of the present application also provides a method for implementing uplink positioning, which is applied to a positioning server, and the method includes:
  • Receive a second set of measurement nodes fed back by the service node the second set of measurement nodes is determined according to the second positioning instruction, and the second set of measurement nodes includes at least two measurements other than the service node Node, the target node is located within the coverage of the measurement node;
  • the positioning attribute information is the attribute information of multiple measuring nodes that the target node wants to establish communication
  • the second positioning attribute information includes: the identification of the measuring node and the random access information of the cell where the measuring node is located.
  • the embodiment of the present application also provides a method for implementing uplink positioning, which is applied to a target node, and the method includes:
  • the embodiment of the present application also provides a device for implementing uplink positioning, which is applied to a positioning server, and the device includes:
  • a first sending module configured to send a first positioning instruction to a first set of measurement nodes, the first set of measurement nodes includes at least three measurement nodes, and the target node is located within the coverage of the measurement nodes;
  • the first receiving module is configured to receive first positioning attribute information corresponding to the first positioning instruction fed back by each measuring node, where the first positioning attribute information includes: the identification of the measuring node and the random access of the cell where the measuring node is located information;
  • the second sending module is configured to send a random access instruction carrying the first positioning attribute information to a target node, where the random access instruction is used to trigger the target node to send a random access signal to the measuring node, To determine the communication distance between the target node and each of the measurement nodes.
  • the embodiment of the present application also provides a device for implementing uplink positioning, which is applied to a measuring node, and the device includes:
  • the second receiving module is configured to receive the first positioning instruction sent by the positioning server
  • An extraction module configured to extract corresponding first positioning attribute information according to the first positioning instruction, where the first positioning attribute information includes: a measuring node identifier and random access information of a cell where the measuring node is located;
  • the first feedback module is configured to feed back the first positioning attribute information to the positioning server, where the first positioning attribute information is attribute information of a plurality of measurement nodes that the target node is to establish communication with, and the first positioning attribute
  • the information includes: the identification of the measuring node and the random access information of the cell where the measuring node is located.
  • the embodiment of the present application also provides a device for implementing uplink positioning, which is applied to a serving node, and the device includes:
  • the third receiving module is configured to receive the second positioning instruction sent by the positioning server
  • the second feedback module is configured to feed back a second set of measurement nodes determined according to the second positioning instruction to the positioning server, where the second set of measurement nodes includes at least two measurement nodes other than the serving node, and the target The node is located within the coverage of the measuring node, and a serving cell provided by the serving node has established a communication connection with the target node;
  • the fourth receiving module is configured to receive second positioning attribute information fed back by each measuring node, where the second positioning attribute information includes: the identification of the measuring node and the random access information of the cell where the measuring node is located;
  • the third sending module is configured to send downlink control information DCI carrying the second positioning attribute information to a target node, where the DCI is used to trigger the target node to send a random access signal to the measuring node to determine the The communication distance between the target node and the plurality of measurement nodes.
  • the embodiment of the present application also provides a device for implementing uplink positioning, which is applied to a positioning server, and the device includes:
  • a fourth sending module configured to send a second positioning instruction to a serving node, and a serving cell provided by the serving node has established a communication connection with the target node;
  • the fifth receiving module is configured to receive a second set of measurement nodes fed back by the serving node, the second set of measurement nodes is determined according to the second positioning instruction, and the second set of measurement nodes includes the other than the serving node At least two measurement nodes outside of the network, and the target node is located within the coverage of the measurement node;
  • the fifth sending module is configured to send a first positioning activation instruction carrying a service node identifier to each of the measuring nodes, where the first positioning activation instruction is used to trigger each of the measuring nodes to send the second positioning attribute information to
  • the second positioning attribute information is attribute information of multiple measuring nodes that the target node wants to establish communication with, and the second positioning attribute information includes: a measuring node identifier and random access information of a cell where the measuring node is located.
  • the embodiment of the present application also provides a device for implementing uplink positioning, which is applied to a target node, and the device includes:
  • the sixth receiving module is configured to receive the downlink control information DCI sent by the serving node, and a serving cell provided by the serving node has established a communication connection with the target node;
  • the sixth sending module is configured to send a random access signal to the corresponding measuring node according to the DCI, where the random access signal is used to determine the communication distance between the target node and each of the measuring nodes.
  • An embodiment of the present application further provides a storage medium that stores a computer program, and the computer program implements the method described in any embodiment of the present application when the computer program is executed by a processor.
  • Figure 1 is a schematic diagram of a communication scenario
  • Figure 2 is a flowchart of a method for implementing uplink positioning provided by an embodiment
  • FIG. 3 is a flowchart of another method for implementing uplink positioning provided by an embodiment
  • FIG. 4 is an interactive schematic diagram of an implementation method of uplink positioning provided by an embodiment
  • FIG. 5 is an interactive schematic diagram of another method for implementing uplink positioning according to an embodiment
  • FIG. 6 is a flowchart of another method for implementing uplink positioning provided by an embodiment
  • FIG. 7 is a flowchart of yet another method for implementing uplink positioning according to an embodiment
  • FIG. 8 is a flowchart of another method for implementing uplink positioning according to an embodiment
  • FIG. 9 is an interactive schematic diagram of yet another method for implementing uplink positioning according to an embodiment
  • FIG. 10 is a schematic diagram of a communication scenario provided by an embodiment
  • FIG. 11 is an interactive schematic diagram of yet another method for implementing uplink positioning according to an embodiment
  • FIG. 12 is an interactive schematic diagram of still another method for implementing uplink positioning according to an embodiment
  • FIG. 13 is an interactive schematic diagram of still another method for implementing uplink positioning according to an embodiment
  • FIG. 14 is a structural block diagram of a device for implementing uplink positioning according to an embodiment
  • 15 is a structural block diagram of another device for implementing uplink positioning according to an embodiment
  • 16 is a structural block diagram of another device for implementing uplink positioning according to an embodiment
  • FIG. 17 is a structural block diagram of another device for implementing uplink positioning according to an embodiment
  • FIG. 18 is a structural block diagram of another device for implementing uplink positioning according to an embodiment
  • Fig. 19 is a schematic structural diagram of a device provided by an embodiment.
  • FIG. 1 is a schematic diagram of a communication scenario. As shown in Figure 1, there are two measuring nodes in a communication system, namely measuring node A and measuring node B. The serving base station to which target node 1 belongs is measuring node A.
  • the symbol offset of the uplink positioning reference signal of the target node 1 reaching the adjacent measurement node B will exceed the CP length, which will affect the positioning of the target node 1 and affect the adjacent measurement nodes.
  • the communication of target node 2 in B causes interference.
  • an implementation method of uplink positioning is provided to avoid affecting the positioning of the target node, thereby achieving accurate positioning of the target node and reducing communication interference to terminals in adjacent measuring nodes.
  • the measurement node is a base station
  • the target node is a user terminal
  • the positioning server is a core network.
  • FIG. 2 is a flowchart of a method for implementing uplink positioning provided by the embodiment. The method is executed by the positioning server to realize the estimation of TA of multiple measuring nodes. As shown in Figure 2, the method provided in this embodiment includes step 101 to step 103:
  • Step 101 Send a first positioning instruction to a first set of measurement nodes.
  • the first set of measurement nodes includes at least three measurement nodes, and the target node is located within the coverage of the measurement nodes.
  • Step 102 Receive the first positioning attribute information corresponding to the first positioning instruction fed back by each measuring node.
  • the first positioning attribute information includes: the identification of the measuring node and the random access information of the cell where the measuring node is located.
  • Step 103 Send a random access instruction carrying the first positioning attribute information to the target node.
  • the random access instruction is used to trigger the target node to send a random access signal to the measuring node to determine the communication distance between the target node and each measuring node.
  • the positioning server gathers the first measuring node Send the first positioning instruction.
  • the first measurement node set includes at least three measurement nodes, and the target node is located within the coverage of multiple measurement nodes, that is, the communication range of all measurement nodes in the first measurement node set can cover the target node.
  • the first positioning instruction is an instruction to report the identification of each measuring node and the random access information of the serving cell where each measuring node is located.
  • Each measuring node in the first measuring node set receives the first positioning instruction, and each measuring node reports its own measuring node identification and random access information of the serving cell to the positioning server.
  • the positioning server After the positioning server receives the identification of its own measuring node and the random access information of the cell where each measuring node is located, the positioning server issues a random access instruction to the target node, so that the target node will identify
  • the identification of each measuring node and the random access information of the cell in which it is located are used to transmit random access signals to the corresponding measuring node.
  • the random access information includes physical random access channel (Physical Random Access Channel, PRACH) channel resource allocation information and supported preamble (Preamble) information.
  • PRACH Physical Random Access Channel
  • Preamble supported preamble
  • the Preamble information is a Preamble code, a total of 64 bits, which is the actual content sent by the user equipment in the PRACH, and consists of a cyclic prefix CP with a length of Tcp and a sequence (Sequence) with a length of Tseq.
  • the target node After the target node transmits a random access signal to each measuring node in the first measuring node set, the time when each measuring node receives the random access signal can be calculated to obtain the communication between the target node and each measuring node Distance, and then can realize the positioning of the target node.
  • the transmission time of the target node’s signal to the corresponding measurement node After determining the communication distance between the target node and each measurement node, the transmission time of the target node’s signal to the corresponding measurement node can be adjusted according to each communication distance to ensure that the arrival time of the target node’s signal to each measurement node is the same , To avoid communication interference to other target nodes among adjacent measurement nodes.
  • step 103 when one measuring node in the first measuring node set is a serving node, step 103 includes step 1031 to step 1032:
  • Step 1031 Send the first positioning attribute information to the service node.
  • the serving node is the base station cell where the target node currently has established communication.
  • Step 1032 the serving node sends the downlink control information DCI carrying the first positioning attribute information to the target node.
  • the definition server may send the identification of each measuring node in the first measuring node set and the random access information of the cell where the measuring node is located to
  • the serving node sends the identification of each measuring node and the random access information of the cell where each measuring node is located to the target node through the serving node.
  • the serving node after the serving node receives the identification of each measuring node and the random access information of the cell where each measuring node is located, the serving node will configure at least two downlink control information (Downlink Control Information, DCI), and set the DCI It is sent to the target node, and the DCI information is used to trigger the target node to transmit a random access signal to each measuring node to determine the communication distance from the target node to each measuring node.
  • DCI Downlink Control Information
  • the number of downlink control information is the same as the number of measuring nodes, that is, each downlink control information corresponds to the first positioning attribute information of a measuring node.
  • FIG. 3 is a flowchart of another method for implementing uplink positioning provided by the embodiment.
  • the method is executed by a measuring node to realize TA estimation of multiple measuring nodes.
  • the method provided in this embodiment includes step 201 to step 203:
  • Step 201 Receive a first positioning instruction sent by a positioning server.
  • Step 202 Extract corresponding first positioning attribute information according to the first positioning instruction.
  • the first positioning attribute information includes: the identification of the measuring node and the random access information of the cell where the measuring node is located.
  • Step 203 Feed back the first positioning attribute information to the positioning server.
  • the first positioning attribute information is attribute information of multiple measurement nodes that the target node wants to establish communication, and the first positioning attribute information includes: the identification of the measurement node and the random access information of the cell where the measurement node is located.
  • each measuring node in the first measuring node set receives the first positioning instruction sent by the positioning server, each measuring node identifies and extracts its own measuring node identification and the random number of the cell where it is located from the preset database.
  • the access information is sent to the positioning server to forward the measurement node identification and the random access information of the cell where it is located to the target node through the positioning server, so that the target node transmits a random access signal to each measurement node.
  • FIG. 4 is an interactive schematic diagram of a method for implementing uplink positioning provided by the embodiment.
  • the method provided in this embodiment is suitable for estimating the TA of multiple measuring nodes in a scenario where the random access instruction is directly sent to the target node through the positioning server.
  • the method includes step 301-step 304:
  • Step 301 Send a first positioning instruction.
  • Step 302 Receive first positioning attribute information.
  • Step 303 Send the random access instruction to the target node.
  • Step 304 Transmit a random access signal.
  • the positioning server sends the first positioning instruction to each measuring node in the first measuring node set. After receiving the first positioning instruction, each measuring node reports its own measuring node identification and the random access of the cell where it is located. Input information to the positioning server; after the positioning server receives the identification of each measuring node and the random access information of the cell where each measuring node is located, the positioning server issues a random access instruction to the target node, and the random access is received at the target node After the instruction, a random access signal is transmitted to each measuring node through the identification of each measuring node and the random access information of the cell where each measuring node is located.
  • the random access instruction is a positioning measurement activation instruction, which triggers each measuring node to start receiving the random access signal sent by the target node.
  • FIG. 5 is an interactive schematic diagram of another method for implementing uplink positioning provided by the embodiment.
  • the method provided in this embodiment is suitable for estimating TA of multiple measuring nodes in a scenario where a random access instruction is sent to a target node through a serving node.
  • one measurement node in the first set of measurement nodes is a service node.
  • the method includes steps 401-405:
  • Step 401 Send a first positioning instruction.
  • Step 402 Report the first positioning attribute information.
  • Step 403 Send the first positioning attribute information.
  • Step 404 Send DCI.
  • Step 405 Transmit a random access signal.
  • the serving node may send its own node identification and random access information of the cell where it is located to the positioning server to send the service
  • the node identification of the node and the random access information of the cell where it is located are stored in the positioning server for subsequent retrieval, use or query.
  • the serving node sends the identification of each measuring node in the first set of measuring nodes and the random access information of the cell where each measuring node is located to the target node, it also needs to send the identification of the serving node's own node and the random access of the cell where it is located.
  • the information is sent to the target node so that the target node can transmit a random access signal to the serving node and each measuring node.
  • FIG. 6 is a flowchart of another method for implementing uplink positioning provided by the embodiment. This method is executed by a service node to realize TA estimation of multiple measuring nodes. As shown in Figure 6, the method provided in this embodiment includes steps 501-504:
  • Step 501 Receive a second positioning instruction sent by the positioning server.
  • Step 502 Feed back the second measurement node set determined according to the second positioning instruction to the positioning server.
  • the second set of measurement nodes includes at least two measurement nodes other than the serving node, the target node is located within the coverage of the measurement node, and a serving cell provided by the serving node has established a communication connection with the target node.
  • Step 503 Receive second positioning attribute information fed back by each measuring node.
  • the second positioning attribute information includes: the identification of the measuring node and the random access information of the cell where the measuring node is located.
  • Step 504 Send the DCI carrying the second positioning attribute information to the target node.
  • DCI is used to trigger the target node to send a random access signal to the measuring node to determine the communication distance between the target node and each measuring node.
  • the positioning server sends a second positioning instruction to the serving node, and the serving node selects at least two measuring nodes to be used according to the second positioning instruction, and reports each measuring node to the positioning server , So that the positioning server issues a first positioning activation instruction to each measuring node to trigger each measuring node to send its second positioning attribute information to the serving node.
  • the first positioning activation instruction is used to trigger each measuring node to feed back the second positioning attribute information to the service node.
  • the serving node receives the second positioning attribute information of each measuring node, the second positioning attribute information is configured to obtain at least two DCIs.
  • Each DCI is delivered to the target node to trigger the target node to transmit a random access signal to the serving node and each measuring node to determine the communication distance between the target node and each measuring node.
  • a one-to-one correspondence can be set between the DCI and the measurement node identification, that is, each measurement node
  • the identifier corresponds to a DCI.
  • FIG. 7 is a flowchart of yet another method for implementing uplink positioning provided by the embodiment.
  • the method is executed by the positioning server to realize the estimation of TA of multiple measuring nodes.
  • the method provided in this embodiment includes steps 601-603:
  • Step 601 Send a second positioning instruction to the service node.
  • a serving cell provided by the serving node has established a communication connection with the target node.
  • Step 602 Receive a second set of measurement nodes fed back by the serving node.
  • the second set of measurement nodes is determined according to the second positioning instruction, the second set of measurement nodes includes at least two measurement nodes except the service node, and the target node is located within the coverage of the measurement node.
  • Step 603 Send a first positioning activation instruction carrying the service node identifier to each measuring node.
  • the first positioning activation instruction is used to trigger each measuring node to send second positioning attribute information to the serving node.
  • the second positioning attribute information is the attribute information of multiple measuring nodes that the target node wants to establish communication with, and the second positioning attribute information includes: The identification of the measuring node and the random access information of the cell where the measuring node is located.
  • the service node identification in order to facilitate each measuring node to be able to send its own second positioning attribute information to the serving node, when the positioning server issues the first positioning activation instruction to each measuring node, the service node identification will also be issued To each measurement node.
  • FIG. 8 is a flowchart of another method for implementing uplink positioning provided by the embodiment. This method is executed by the target node to realize TA estimation of multiple measuring nodes. As shown in Figure 8, the method provided in this embodiment includes step 701-step 702:
  • Step 701 Receive the DCI sent by the serving node.
  • a serving cell provided by the serving node has established a communication connection with the target node.
  • Step 702 Send a random access signal to the corresponding measurement node according to the DCI.
  • the random access signal is used to determine the communication distance between the target node and each measuring node.
  • the serving node determines the second positioning attribute information of each measuring node to be used
  • the second positioning attribute information is configured to obtain the corresponding DCI
  • the target node is based on each measuring node identifier and each measuring node identification in the DCI.
  • the random access information of the cell where the measuring node is located, and the random access signal is transmitted to the corresponding measuring node.
  • the serving node can also be used as a measuring node, that is, the target node also needs to transmit a random access signal to the serving node.
  • FIG. 9 is an interactive schematic diagram of yet another method for implementing uplink positioning provided by the embodiment.
  • This embodiment uses interactive communication between the target node, the serving node, the positioning server, and the measuring node to describe the implementation method of uplink positioning.
  • the method in this embodiment includes step 801 to step 80:
  • Step 801 Issue a second positioning instruction.
  • Step 802 Feed back the second measurement node set.
  • the second set of measurement nodes includes at least two measurement nodes other than the serving node, the target node is located within the coverage of the measurement node, and a serving cell provided by the serving node has established a communication connection with the target node.
  • Step 803 Send a first positioning activation instruction carrying the service node identifier.
  • Step 804 Send the second positioning attribute information.
  • the second positioning attribute information includes: the identification of the measuring node and the random access information of the cell where the measuring node is located.
  • Step 805 Configure DCI according to the second positioning attribute information.
  • DCI is used to trigger the target node to send a random access signal to the measuring node to determine the communication distance between the target node and each measuring node.
  • Step 806 Send DCI.
  • Step 807 Transmit a random access signal.
  • the random access signal is used to determine the communication distance between the target node and each measuring node.
  • the positioning server issues a second positioning instruction to the service node, and after receiving the second positioning instruction, the service node selects at least two measurement nodes used and reports them to the positioning server, and the positioning server gives each measurement node
  • the first positioning activation instruction carrying the service node identifier is issued.
  • each measurement node After each measurement node receives the first positioning activation instruction, it sends its own second positioning attribute information to the service node, and the service node receives the information sent by each measurement node.
  • the serving node configures DCI and sends it to the target node to activate the target node to transmit a random access signal to each measuring node to determine the communication distance from the target node to each measuring node.
  • the target transmit power corresponding to the uplink positioning reference signal sent by the target node needs to be adjusted.
  • the method further includes: receiving the uplink positioning reference signal determined according to the first configuration information sent by the target node, and each uplink positioning reference signal
  • the first configuration information includes: multiple spatial correlations, multiple preset downlink positioning reference signals, and multiple third positioning attribute information
  • the spatial correlation is used to characterize each preset downlink positioning reference signal
  • the third positioning attribute information includes: path loss measurement signal type, path loss measurement signal identifier, path loss measurement signal time-frequency resource, path loss measurement signal transmission power, and path loss measurement signal sequence
  • the power adjustment parameter is determined according to the received strength of the uplink positioning reference signal; the power adjustment parameter is returned to the target node, and the power adjustment parameter is used to adjust the current transmission power of the uplink positioning reference signal sent by the target node to the corresponding measuring node to the target transmission power.
  • the target node performs beam matching according to the third positioning attribute information of each measuring node, and combines the spatial correlation between the uplink positioning reference signal and the preset downlink positioning reference signal to determine the transmit beam and the corresponding uplink positioning reference signal.
  • the current transmit power and then the target node sends an uplink positioning reference signal to the serving node according to the transmit beam and current transmit power.
  • the uplink positioning reference signal is a signal corresponding to multiple measurement nodes, that is, in order to enable the serving node to correspond the received power adjustment parameter with the uplink positioning reference signal and the measurement node, the target node sends the uplink positioning reference signal to the serving node At the same time, the relationship between each uplink positioning reference signal and the corresponding measurement node needs to be sent.
  • each measuring node After each measuring node receives the corresponding uplink positioning reference signal sent by the target node, each measuring node determines the power adjustment parameter according to the received strength of the received uplink positioning reference signal, so that the target node will send to the corresponding measuring node
  • the current transmission power of the uplink positioning reference signal is adjusted to the target transmission power, so as to ensure the accuracy of the transmission power of the uplink positioning reference signal transmitted by the target node, which not only avoids excessive transmission power and waste of resources, but also avoids excessive transmission power. As a result, the uplink positioning reference signal cannot be received accurately.
  • determining the power adjustment parameter according to the received strength of the uplink positioning reference signal includes: determining the power adjustment parameter according to the received strength of the corresponding uplink positioning reference signal by the measuring node; and receiving the power adjustment parameter returned by each measuring node.
  • each measuring node After each measuring node receives the uplink positioning reference signal sent by the target node, each measuring node determines the corresponding power adjustment parameter according to the received strength of the received uplink positioning reference signal, and returns the power adjustment parameter To the serving node to send the power adjustment parameter to the target node through the serving node.
  • the method before receiving the uplink positioning reference signal determined according to the first configuration information sent by the target node, the method further includes: receiving a positioning configuration instruction and third positioning attribute information sent by a positioning server, where the positioning configuration instruction carries preset downlink positioning of multiple measuring nodes Reference signal; Determine the spatial correlation of the corresponding uplink signal resource according to the preset downlink positioning reference signal of the measuring node; Send the first configuration information to the target node, the first configuration information includes multiple spatial correlations and multiple preset downlink positioning Reference signal and multiple third positioning attribute information.
  • the serving node When the serving node receives the positioning configuration instruction sent by the positioning server, it configures the uplink positioning reference signal of each measuring node, that is, the space corresponding to the uplink signal resource is determined according to the preset downlink positioning reference signal of each measuring node Correlation, where spatial correlation is used to characterize the correlation between the uplink positioning reference signal and the preset downlink positioning reference signal, that is, the transmission channel and time-frequency resource used by each uplink positioning reference signal and the corresponding preset downlink positioning reference signal Etc. are the same, but the direction of signal transmission is opposite.
  • the third positioning attribute information is sent by multiple measuring nodes.
  • the corresponding third positioning attribute information may be directly sent to the service node through multiple measuring nodes.
  • the method further includes: in the case of receiving radio resource management (Radio Resource Management, RRM) measurement information sent by the target node , Sending a third positioning instruction to the first measurement node set, the first measurement node set includes at least three measurement nodes, the target node is located within the coverage of the measurement node, and the RRM measurement information includes: the type of downlink positioning reference signal of the serving node, The identity of the cell and the location of the time-frequency domain resource; the third positioning attribute information corresponding to the third positioning instruction fed back by each measuring node is received, and the third positioning attribute information is the signal parameter used by multiple measuring nodes for path loss measurement Information, the third positioning attribute information includes: path loss measurement signal type, path loss measurement signal identification, path loss measurement signal time-frequency resource, path loss measurement signal transmission power and path loss measurement signal sequence; according to RRM measurement information and third positioning The attribute information determines the preset downlink positioning reference signal of the corresponding measuring node; the
  • the positioning server when the target node that needs to be positioned sends its own RRM measurement information to the positioning service, the positioning server sends a third positioning instruction to the multiple measuring nodes used to obtain the sum of each measuring node The third positioning attribute information corresponding to the three positioning instructions.
  • the positioning server combines the RRM measurement result of the target node and the path loss measurement signal available to each measurement node to identify the preset downlink corresponding to each measurement node that may be better identified by the target node Positioning reference signal.
  • the path loss measurement signal is determined by each measurement node according to the corresponding third positioning attribute information.
  • the positioning server sends the determined preset downlink positioning reference signal corresponding to each measuring node and the third positioning attribute information to the serving node.
  • the method further includes: receiving first configuration information sent by the serving node, where the first configuration information includes multiple spatial correlations and multiple preset downlink locations Reference signal and multiple third positioning attribute information; determine the transmit beam and current transmit power of the uplink positioning reference signal according to the first configuration information; send the uplink positioning reference signal to the serving node according to the transmit beam and current transmit power, and each uplink positioning The relationship between the reference signal and the corresponding measurement node; receiving the power adjustment parameter corresponding to each uplink positioning reference signal returned by the serving node; determining the target transmit power of the uplink positioning reference signal according to the power adjustment parameter.
  • the target node determines the transmit beam and current transmit power of the uplink positioning reference signal sent to each measuring node according to the first configuration information, and according to the transmit beam and current
  • the transmit power sends the corresponding uplink positioning reference signal to the serving node and each measuring node.
  • the serving node and each measuring node determine the corresponding power adjustment parameters according to the received strength of the uplink positioning reference signal.
  • Each measuring node will The power adjustment parameter is fed back to the serving node, so that the power adjustment parameter of each measurement node corresponding to the uplink positioning reference signal is sent to the target node through the serving node, so that the target node adjusts the current transmit power of each uplink positioning reference signal to the corresponding Target transmit power.
  • the method before receiving the first configuration information sent by the serving node, the method further includes: sending RRM measurement information to the serving node, where the RRM measurement information includes: the type of downlink positioning reference signal of the serving node, the identity of the cell, and the time The location of the frequency domain resource.
  • the target node that needs to be positioned can send the RRM information directly to the positioning server, so that the positioning server combines the RRM measurement results with the path loss measurement signals available to multiple measurement nodes to identify each node that may be better identified by the target node.
  • the target node that needs to be located may also send the RRM signal to the serving node.
  • the serving node may use the RRM measurement result With the path loss measurement signal available for each measurement node, the preset downlink reference signal corresponding to each measurement node that may be better identified by the target node is identified.
  • determining the transmission beam and current transmission power of the uplink positioning reference signal according to the first configuration information includes: determining the transmission beam corresponding to the uplink positioning reference signal according to the spatial correlation and the preset downlink positioning reference signal; The positioning attribute information determines the current transmit power of the corresponding uplink positioning reference signal.
  • the target node determines the transmission beam of the uplink positioning reference signal transmitted by the target node to the corresponding measuring node according to each preset downlink positioning reference signal and the corresponding spatial correlation, and according to the path loss measurement signal corresponding to the measuring node The current transmission power of the corresponding uplink positioning reference signal is determined so that the target node transmits the uplink positioning reference signal to the corresponding measurement node according to the transmission beam and current transmission power of the corresponding uplink signal resource transmitted to each measurement node.
  • FIG. 10 is a schematic diagram of a communication scenario provided by the embodiment.
  • a target node is set, and the serving base station of the target node is set as measuring node A.
  • the target node can measure the downlink channel state information reference signal (Channel State Information--Reference Signal, CSI-RS) of measurement node A, measurement node B, measurement node C, and measurement node D
  • CSI-RS Channel State Information--Reference Signal
  • the positioning server selects measurement node A and measurement Node B, measuring node C, and measuring node D are used as measuring nodes for uplink positioning, that is, transmitting nodes.
  • CSI-RS Channel State Information--Reference Signal
  • FIG. 11 is an interactive schematic diagram of still another method for implementing uplink positioning provided by the embodiment. As shown in Figure 11, the method includes:
  • Step 901 Report RRM measurement information.
  • Step 903 Send a third positioning instruction.
  • Step 905 Report the third positioning attribute information.
  • Step 907 Determine the preset downlink positioning reference signal of each measuring node.
  • Step 909 Send a positioning configuration instruction.
  • Step 911 Send a second positioning activation instruction.
  • Step 913 Configure an uplink positioning reference signal, and determine the spatial correlation of the corresponding uplink signal resource according to the preset downlink positioning reference signal.
  • Step 915 Send the first configuration information.
  • Step 917 Determine the transmit beam and current transmit power of the uplink positioning reference signal.
  • Step 919 Send the uplink positioning reference signal and the corresponding relationship between each uplink positioning reference signal and the measuring node.
  • Step 921 Measure the uplink positioning reference signal to determine power adjustment parameters.
  • Step 923 Send the power adjustment parameter to the serving node.
  • Step 925 Send the power adjustment parameter to the target node.
  • Step 927 Adjust the transmit power of the uplink positioning reference signal to the target transmit power according to the power adjustment parameter.
  • Step 929 Transmit the uplink positioning reference signal according to the target transmit power.
  • Step 931 Report the measurement result.
  • Step 933 Calculate the positioning result.
  • the target node that needs to be positioned reports the RRM measurement information to the positioning server.
  • the RRM measurement information includes the downlink positioning reference signal type of the serving node, the cell identifier, and the location of the time-frequency domain resource.
  • the target node can measure the downlink CSI-RS of the four base stations A, B, C, and D.
  • the positioning server selects base stations A, B, C, and D as measurement nodes used for this positioning.
  • the measuring node A is the serving base station, that is, the serving node.
  • the positioning server sends a third positioning instruction to measuring node A as the serving base station and all measuring nodes used for positioning this time, requesting each measuring node to report corresponding third positioning attribute information, and the third positioning attribute information is multiple measuring nodes
  • Signal parameter information used for path loss measurement includes: path loss measurement signal type, path loss measurement signal identifier, path loss measurement signal time-frequency resource, path loss measurement signal transmission power, and path loss measurement signal
  • the sequence also includes the location information of the measurement node.
  • the service node and each measurement node report the corresponding third positioning attribute information according to the third positioning instruction.
  • the positioning server combines the RRM measurement result of the target node and the path loss measurement signal available to each measurement node to identify that it may be better recognized by the target node
  • the preset downlink reference signal corresponding to each measuring node The preset downlink reference signal corresponding to each measuring node.
  • the CSI-RS A , CIS-RS B , CSI-RS C , and CSI-RS D of measurement nodes A, B, C, and D are obtained by comparing RRM measurement results. These four signals can be used as their own Corresponding to the measurement of the path loss signal of the measuring node, it can be detected by the target node for RRM measurement.
  • CSI-RS A corresponds to the CIS-RS of measurement node A
  • CSI-RS B corresponds to the CIS-RS of measurement node B
  • CSI-RS C corresponds to the CIS-RS of measurement node C
  • CSI-RS D corresponds to the measurement node D CIS-RS.
  • the positioning server sends a positioning configuration instruction, that is, an uplink positioning reference signal configuration instruction, to the serving node (measurement node A).
  • This instruction informs the serving node to start configuring the uplink positioning reference signal for the target node.
  • the instruction indicates that CSI-RS A , CIS-RS B , CSI-RS C , and CSI-RS D are preset downlink reference signals from measurement nodes A, B, C, and D respectively, that is, ideal downlink signals.
  • a second positioning activation instruction is sent to the measuring nodes A, B, C, and D to instruct the measuring nodes A, B, C, and D to start measuring the uplink positioning reference signal of the target node.
  • the measuring nodes A, B, C, and D measure the uplink positioning reference signal from the target node and report the measurement result to the positioning server, and the positioning server performs position calculation.
  • the serving node configures the target node with downlink positioning reference signal resources of measurement nodes A, B, C, and D as resource 1, resource 2, resource 3, and resource 4, respectively.
  • the downlink path loss measurement signal of resource 1 is CSI-RS A
  • the downlink path loss measurement signal of resource 2 is CIS-RS B
  • the downlink path loss measurement signal of resource 3 is CSI-RS C
  • the downlink path loss measurement signal of resource 4 Is CSI-RS D
  • resource 1 has spatial correlation with signal CSI-RS A
  • resource 2 has spatial correlation with signal CIS-RS B
  • resource 3 has spatial correlation with signal CSI-RS C
  • resource 4 has spatial correlation with signal CSI-RS D has spatial correlation.
  • Send the first configuration information including multiple spatial correlations, multiple preset downlink positioning reference signals, and multiple third positioning attribute information to the target node.
  • the target node knows the best receiving beams of multiple downlink positioning reference signals. Since the uplink signal resource corresponding to each uplink positioning reference signal has a spatial correlation with its own corresponding CSI-RS, the target node can know the best transmission beam of each uplink signal resource to point to the corresponding measurement node. The target node transmits the uplink positioning reference signal to the corresponding measurement node, and at the same time reports the corresponding relationship between the corresponding measurement node and the CSI-RS.
  • Each measuring node measures the uplink positioning reference signal transmitted by the target node, and configures the power adjustment parameters according to the received strength.
  • the adjacent measuring nodes (measurement nodes B, C, D) of the serving node (measurement node A) Send the power adjustment parameter to the serving node.
  • the service node configures the power control parameters of resource 1 according to its own measurement, and at the same time configures the power control parameters received from measurement node B to resource 2, configures the power control parameters from measurement node C to resource 3, and configures the power control parameters from measurement node D
  • the power control parameter is configured to resource 4, and the resource adjustment parameter is sent to the target node.
  • the target node adjusts the transmission power corresponding to the resources 1, 2, 3, and 4 according to the received power adjustment parameter to adjust to the target transmission power.
  • FIG. 12 is an interactive schematic diagram of still another method for implementing uplink positioning provided by the embodiment. As shown in Figure 12, the method includes:
  • Step 1001 Report RRM measurement information.
  • Step 1003 Send a third positioning instruction.
  • Step 1005 Report the third positioning attribute information.
  • Step 1007 Determine the preset downlink positioning reference signal of each measuring node.
  • Step 1009 Send a positioning configuration instruction.
  • Step 1011 Send a second positioning activation instruction.
  • Step 1013 Configure the uplink positioning reference signal, and determine the spatial correlation of the corresponding uplink signal resource according to the preset downlink positioning reference signal.
  • Step 1015 Send the first configuration information.
  • Step 1017 Determine the transmit beam and current transmit power of the uplink positioning reference signal.
  • Step 1019 Send the uplink positioning reference signal and the corresponding relationship between each uplink positioning reference signal and the measuring node.
  • Step 1021 Measure the uplink positioning reference signal to determine the power adjustment parameter.
  • Step 1023 Send the power adjustment parameter to the serving node.
  • Step 1025 Send the power adjustment parameter to the target node.
  • Step 1027 Adjust the transmit power of the uplink positioning reference signal to the target transmit power according to the power adjustment parameter.
  • Step 1029 Transmit an uplink positioning reference signal according to the target transmit power.
  • Step 1031 report the measurement result.
  • Step 1033 Calculate the positioning result.
  • Step 1001 to step 1033 correspond to step 901 to step 933 respectively.
  • the difference is: when the target node reports the RRM measurement information, it can directly report the RRM measurement information to the service node, and when each measurement node reports the third positioning attribute information, it can directly report to the service node, avoiding the third positioning
  • the transfer of attribute information in the positioning server reduces the transmission delay.
  • the preset downlink positioning reference signal of each measuring node may be determined by the serving node.
  • FIG. 13 is an interactive schematic diagram of still another method for implementing uplink positioning provided by the embodiment. As shown in Figure 13, the method includes:
  • Step 1101 Report RRM measurement information.
  • Step 1102 TA estimation of multiple measuring nodes.
  • Step 1103 Send a third positioning instruction.
  • Step 1105 Report the third positioning attribute information.
  • Step 1107 Determine the preset downlink positioning reference signal of each measuring node.
  • Step 1109 Send a positioning configuration instruction.
  • Step 1111 send a second positioning activation instruction.
  • Step 1113 Configure the uplink positioning reference signal, and determine the spatial correlation of the corresponding uplink signal resource according to the preset downlink positioning reference signal.
  • Step 1115 Send the first configuration information.
  • Step 1117 Determine the transmit beam and current transmit power of the uplink positioning reference signal.
  • Step 1119 Send the uplink positioning reference signal and the corresponding relationship between each uplink positioning reference signal and the measuring node.
  • Step 1121 measure the uplink positioning reference signal, and determine the power adjustment parameter.
  • Step 1123 Send the power adjustment parameter to the serving node.
  • Step 1125 Send the power adjustment parameter to the target node.
  • Step 1127 Adjust the transmit power of the uplink positioning reference signal to the target transmit power according to the power adjustment parameter.
  • Step 1129 Transmit an uplink positioning reference signal according to the target transmit power.
  • Step 1131 Report the measurement result.
  • Step 1133 Calculate the positioning result.
  • Steps 1101 to 1133 correspond to steps 901 to 933 respectively.
  • step 1102 is added to implement TA estimation for multiple measurement nodes.
  • the implementation of TA estimation of multiple measuring nodes is shown in the scheme of determining the communication distance from the target node to each measuring node in the above-mentioned embodiment, which will not be repeated here.
  • the serving node After determining the TA value of each measuring node, the serving node sends the TA value of each measuring node to the target node, so that when the target node transmits the uplink positioning reference signal, the corresponding TA is used for each uplink signal resource
  • the value is sent, that is, the step of transmitting the uplink positioning reference signal in step 1119, and the TA value corresponding to the uplink signal resource of each measuring node is used to send the uplink positioning reference signal.
  • transmit power control is only performed on the serving node.
  • the service node After the service node receives the positioning activation instruction from the positioning server, the service node selects the used measurement node and sends it to the positioning server.
  • the serving node configures the uplink signal resource corresponding to the uplink positioning reference signal used by the target node, specifies the uplink signal resource of the uplink positioning reference signal corresponding to itself, and determines the initial transmit power and path loss measurement signal information of the uplink signal resource.
  • the target node measures the path loss measurement signal of the serving node, performs beam matching, determines the transmit power and direction of the uplink signal resource corresponding to the uplink positioning reference signal sent to the serving node, and transmits the uplink positioning reference to other measuring nodes
  • the transmit power of the uplink signal resource corresponding to the signal is full power transmission.
  • the serving node After receiving the uplink positioning reference signal of the target node, the serving node performs transmit power control on the uplink signal resource corresponding to the uplink positioning reference signal.
  • FIG. 14 is a structural block diagram of a device for implementing uplink positioning provided by the embodiment.
  • the device for implementing uplink positioning provided in this embodiment includes: a first sending module 1201, a first receiving module 1202, and a second sending module 1203.
  • the first sending module 1201 is configured to send a first positioning instruction to a first set of measurement nodes.
  • the first set of measurement nodes includes at least three measurement nodes, and the target node is located within the coverage of the measurement nodes.
  • the first receiving module 1202 is configured to receive first positioning attribute information corresponding to the first positioning instruction fed back by each measuring node.
  • the first positioning attribute information includes: the identification of the measuring node and the random access information of the cell where the measuring node is located.
  • the second sending module 1203 is configured to send a random access instruction carrying the first positioning attribute information to the target node.
  • the random access instruction is used to trigger the target node to send a random access signal to the measuring node to determine the target node and each Measure the communication distance between nodes.
  • the device for realizing uplink positioning provided in this embodiment is the device for realizing uplink positioning in the embodiment shown in FIG. 2.
  • the principle and technical effect of the device for realizing uplink positioning provided in this embodiment are similar, and will not be repeated here.
  • the second sending module 1203 when one measuring node in the first measuring node set is a serving node, the second sending module 1203 includes:
  • the first sending unit is configured to send the first positioning attribute information to a serving node, and the serving node is a base station cell where the target node currently has established communication.
  • the second sending unit is configured to send the downlink control information DCI carrying the first positioning attribute information to the target node through the serving node.
  • FIG. 15 is a structural block diagram of another apparatus for implementing uplink positioning provided by the embodiment.
  • the device for implementing uplink positioning provided in this embodiment includes: a second receiving module 1301, an extraction module 1302, and a first feedback module 1303.
  • the second receiving module 1301 is configured to receive the first positioning instruction sent by the positioning server.
  • the extraction module 1302 is configured to extract corresponding first positioning attribute information according to the first positioning instruction, where the first positioning attribute information includes: the identification of the measuring node and the random access information of the cell where the measuring node is located.
  • the first feedback module 1303 is configured to feed back first positioning attribute information to the positioning server.
  • the first positioning attribute information is attribute information of multiple measuring nodes that the target node wants to establish communication with, and the first positioning attribute information includes: measuring node identification and Random access information of the cell where the measuring node is located.
  • the device for realizing uplink positioning provided in this embodiment is the device for realizing uplink positioning in the embodiment shown in FIG. 3.
  • the implementation principle and technical effect of the device for realizing uplink positioning provided in this embodiment are similar, and will not be repeated here.
  • FIG. 16 is a structural block diagram of another device for implementing uplink positioning provided by the embodiment. As shown in FIG. 16, the device for implementing uplink positioning provided in this embodiment includes:
  • the third receiving module 1401 is configured to receive the second positioning instruction sent by the positioning server.
  • the second feedback module 1402 is configured to feed back a second set of measurement nodes determined according to the second positioning instruction to the positioning server.
  • the second set of measurement nodes includes at least two measurement nodes other than the service node, and the target node is located at the end of the measurement node.
  • a serving cell provided by the serving node has established a communication connection with the target node.
  • the fourth receiving module 1403 is configured to receive second positioning attribute information fed back by each measuring node, where the second positioning attribute information includes: the identification of the measuring node and random access information of the cell where the measuring node is located.
  • the third sending module 1404 is configured to send the downlink control information DCI carrying the second positioning attribute information to the target node.
  • the DCI is used to trigger the target node to send a random access signal to the measuring node to determine the difference between the target node and each measuring node. Communication distance between.
  • the device for realizing uplink positioning further includes:
  • the seventh receiving module is configured to receive the uplink positioning reference signal determined according to the first configuration information sent by the target node after the downlink control information DCI carrying the second positioning attribute information is sent to the target node, and each The corresponding relationship between the uplink positioning reference signal and the measurement node.
  • the first configuration information includes: multiple spatial correlations, multiple preset downlink positioning reference signals, and multiple third positioning attribute information.
  • the spatial correlation is used to characterize each preset The correlation between the downlink positioning reference signal and the corresponding uplink positioning reference signal.
  • the third positioning attribute information includes: path loss measurement signal type, path loss measurement signal identifier, path loss measurement signal time-frequency resource, path loss measurement signal transmission power and path loss Measurement signal sequence.
  • the first determining module is configured to determine the power adjustment parameter according to the received strength of the uplink positioning reference signal.
  • the first return module is configured to return the power adjustment parameter to the target node, and the power adjustment parameter is used to adjust the current transmission power of the uplink positioning reference signal sent by the target node to the corresponding measuring node to the target transmission power.
  • the first determining module includes:
  • the first determining unit is configured to determine the power adjustment parameter according to the received strength of the corresponding uplink positioning reference signal by the measuring node.
  • the first receiving unit is configured to receive the power adjustment parameter returned by each measuring node.
  • the device for realizing uplink positioning further includes:
  • the eighth receiving module is configured to receive the positioning configuration instruction and third positioning attribute information sent by the positioning server before the receiving the uplink positioning reference signal sent by the target node and determined according to the first configuration information, where the positioning configuration instruction carries multiple information.
  • the second determining module is configured to determine the spatial correlation of the corresponding uplink signal resource according to the preset downlink positioning reference signal of the measuring node.
  • the seventh sending module is configured to send first configuration information to the target node, where the first configuration information includes multiple spatial correlations, multiple preset downlink positioning reference signals, and multiple third positioning attribute information.
  • the third positioning attribute information is sent by multiple measuring nodes.
  • the device for realizing uplink positioning provided in this embodiment is the device for realizing uplink positioning in the embodiment shown in FIG.
  • FIG. 17 is a structural block diagram of still another device for implementing uplink positioning provided by the embodiment.
  • the device for implementing uplink positioning provided in this embodiment includes: a fourth sending module 1501, a fifth receiving module 1502, and a fifth sending module 1503.
  • the fourth sending module 1501 is configured to send a second positioning instruction to the serving node, and a serving cell provided by the serving node has established a communication connection with the target node.
  • the fifth receiving module 1502 is configured to receive a second set of measurement nodes fed back by the serving node, the second set of measurement nodes is determined according to the second positioning instruction, and the second set of measurement nodes includes at least two measurement nodes other than the serving node Node, the target node is located within the coverage of the measuring node.
  • the fifth sending module 1503 is configured to send a first positioning activation instruction carrying a service node identifier to each measuring node.
  • the first positioning activation instruction is used to trigger each measuring node to send the second positioning attribute information to the service node.
  • the positioning attribute information is attribute information of multiple measuring nodes that the target node wants to establish communication, and the second positioning attribute information includes: the identification of the measuring node and the random access information of the cell where the measuring node is located.
  • the device for realizing uplink positioning further includes:
  • the eighth sending module is configured to send the first positioning activation instruction carrying the service node identifier to each of the measuring nodes, and upon receiving the radio resource management RRM measurement information sent by the target node, send the first
  • the measuring node set sends a third positioning instruction, the first measuring node set includes at least three measuring nodes, the target node is located within the coverage of the measuring node, and the RRM measurement information includes: the downlink positioning reference signal of the serving node. Type, cell identification, location of time-frequency domain resources.
  • the ninth receiving module is configured to receive third positioning attribute information corresponding to the third positioning instruction fed back by each measuring node, where the third positioning attribute information is signal parameter information used by multiple measuring nodes for path loss measurement
  • the third positioning attribute information includes: a path loss measurement signal type, a path loss measurement signal identifier, a path loss measurement signal time-frequency resource, a path loss measurement signal transmission power, and a path loss measurement signal sequence.
  • the third determining module is configured to determine the preset downlink positioning reference signal of the corresponding measurement node according to the RRM measurement information and the third positioning attribute information.
  • the tenth sending module is configured to send the positioning configuration instruction and the third positioning attribute information to the serving node, where the positioning configuration instruction carries preset downlink positioning reference signals of multiple measuring nodes.
  • the device for realizing uplink positioning provided in this embodiment is the device for realizing uplink positioning in the embodiment shown in FIG. 7.
  • the principle and technical effect of the device for realizing uplink positioning provided in this embodiment are similar, and will not be repeated here.
  • FIG. 18 is a structural block diagram of another apparatus for implementing uplink positioning provided by the embodiment.
  • the device for implementing uplink positioning provided in this embodiment includes: a sixth receiving module 1601 and a sixth sending module 1602.
  • the sixth receiving module 1601 is configured to receive the downlink control information DCI sent by the serving node, and a serving cell provided by the serving node has established a communication connection with the target node.
  • the sixth sending module 1602 is configured to send a random access signal to the corresponding measurement node according to DCI, and the random access signal is used to determine the communication distance between the target node and each measurement node.
  • the device for realizing uplink positioning further includes:
  • the tenth receiving module is configured to receive first configuration information sent by the serving node after the random access signal is sent to the corresponding measuring node according to the DCI, where the first configuration information includes multiple spatial correlations and multiple presets Downlink positioning reference signal and multiple third positioning attribute information.
  • the fourth determining module is configured to determine the transmit beam and current transmit power of the uplink positioning reference signal according to the first configuration information.
  • the eleventh sending module is configured to send uplink positioning reference signals to the serving node according to the transmit beam and current transmit power, and the corresponding relationship between each uplink positioning reference signal and the measuring node.
  • the eleventh receiving module is configured to receive the power adjustment parameter corresponding to each uplink positioning reference signal returned by the serving node.
  • the fifth determining module is configured to determine the target transmit power of the uplink positioning reference signal according to the power adjustment parameter.
  • the device for realizing uplink positioning further includes:
  • the twelfth sending module is configured to send radio resource management RRM measurement information to the serving node before the receiving serving node sends the first configuration information, where the RRM measurement information includes: the type and location of the downlink positioning reference signal of the serving node. Cell ID and location of time-frequency domain resources.
  • the fourth determining module includes:
  • the second determining unit is configured to determine the transmit beam corresponding to the uplink positioning reference signal according to the spatial correlation and the preset downlink positioning reference signal.
  • the third determining unit is configured to determine the current transmit power of the corresponding uplink positioning reference signal according to the third positioning attribute information.
  • the device for implementing uplink positioning is the device for implementing uplink positioning in the embodiment shown in FIG.
  • FIG. 19 is a schematic structural diagram of a device provided by the embodiment.
  • the device provided by this application includes a processor 1701 and a memory 1702.
  • the number of processors 1801 in the device may be one or more, and one processor 1701 is taken as an example in FIG. 19.
  • the number of memories 1702 in the device may be one or more.
  • One memory 1702 is taken as an example in FIG. 19.
  • the processor 1701 and the memory 1702 of the device may be connected through a bus or in other ways. In FIG. 19, the connection through a bus is taken as an example.
  • the device is a positioning server.
  • the memory 1702 can be configured to store software programs, computer-executable programs, and modules, such as program instructions/modules corresponding to the device described in any embodiment of the present application (for example, the The first sending module 1201, the first receiving module 1202, and the second sending module 1203).
  • the memory 1702 may include a program storage area and a data storage area.
  • the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the device, and the like.
  • the memory 1702 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the memory 1702 may include a memory remotely provided with respect to the processor 1701, and these remote memories may be connected to the device through a network. Examples of the aforementioned networks include but are not limited to the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the positioning server provided above may be configured to execute the method for implementing uplink positioning applied to the positioning server provided by any of the above embodiments, and has corresponding functions and effects.
  • the method for implementing uplink positioning of the measuring node provided in any of the embodiments can be executed, with corresponding functions and effects.
  • the method for implementing uplink positioning of the serving node provided in any of the embodiments can be executed, with corresponding functions and effects.
  • the method for implementing uplink positioning of the target node when the device is a target node, the method for implementing uplink positioning of the target node provided in any of the embodiments can be executed, and has corresponding functions and effects.
  • the term user terminal encompasses any suitable type of wireless user equipment, such as mobile phones, portable data processing devices, portable web browsers, or vehicular mobile stations.
  • the various embodiments of the present application can be implemented in hardware or dedicated circuits, software, logic or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor or other computing device, although the application is not limited thereto.
  • an embodiment of the present application provides a storage medium containing computer-executable instructions, which are used to implement an implementation method of uplink positioning applied to a positioning server when the computer-executable instructions are executed by a computer processor.
  • a storage medium containing computer-executable instructions provided in the embodiments of the present application is not limited to the above-mentioned method and operation of the uplink positioning of the positioning server, and can also execute the operations described in any of the embodiments of the present application. Provide relevant operations in the implementation method of uplink positioning of the positioning server, and have corresponding functions and effects.
  • an embodiment of the present application provides a storage medium containing computer-executable instructions, which are used to implement an implementation method of uplink positioning applied to a measurement node when the computer-executable instructions are executed by a computer processor.
  • an embodiment of the present application provides a storage medium containing computer-executable instructions, which are used to implement an implementation method of uplink positioning applied to a serving node when the computer-executable instructions are executed by a computer processor.
  • the embodiment of the present application provides a storage medium containing computer-executable instructions, which are used to implement an implementation method for uplink positioning applied to a target node when the computer-executable instructions are executed by a computer processor.
  • Computer program instructions can be assembly instructions, Instruction Set Architecture (IsA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or written in any combination of one or more programming languages Source code or object code.
  • IsA Instruction Set Architecture
  • the block diagram of any logical flow in the drawings of the present application may represent program steps, or may represent interconnected logic circuits, modules, and functions, or may represent a combination of program steps and logic circuits, modules, and functions.
  • the computer program can be stored on the memory.
  • the memory can be of any type suitable for the local technical environment and can be implemented by any suitable data storage technology, such as but not limited to read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), optical Memory devices and systems (Digital Video Disc (DVD) or Compact Disk (CD)), etc.
  • Computer-readable media may include non-transitory storage media.
  • the data processor can be of any type suitable for the local technical environment, such as but not limited to general-purpose computers, special-purpose computers, microprocessors, digital signal processing (DSP), application-specific integrated circuits (ASICs) ), programmable logic devices (Field-Programmable Gate Array, FPGA) and processors based on multi-core processor architecture.
  • DSP digital signal processing
  • ASICs application-specific integrated circuits
  • FPGA Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提出一种上行定位的实现方法、装置和存储介质。该方法包括:向第一测量节点集合发送第一定位指令,其中,第一测量节点集合包括至少三个测量节点,目标节点位于测量节点的覆盖范围内;接收每个测量节点反馈的与第一定位指令对应的第一定位属性信息,其中,第一定位属性信息包括:测量节点标识和测量节点所在小区的随机接入信息;将携带第一定位属性信息的随机接入指令发送至目标节点,其中,随机接入指令用于触发目标节点向测量节点发送随机接入信号,以确定目标节点与每个测量节点之间的通信距离。

Description

上行定位的实现方法、装置和存储介质
本申请要求在2019年04月29日提交中国专利局、申请号为201910360386.X的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信网络,例如涉及一种上行定位的实现方法、装置和存储介质。
背景技术
自版本(Release)9阶段开始,定位技术中引入第三代合作伙伴计划(Third Generation Partnership Project,3GPP)。在上行定位技术中,需多个测量节点接收来自同一目标节点的信号,并且所采用的***移动通信***(the 4th Generation mobile communication system,4G)频带为低频频段,以及循环前缀(Cyclic Prefix,CP)较长;而5G频带包括高频频段,符号间CP变短,若沿用长期演进(Long Term Evolution,LTE)的上行参考信号的发送机制,将会对相邻测量节点中其它目标节点造成通信干扰。
发明内容
本申请提供一种上行定位的实现方法、装置和存储介质,降低了对相邻测量节点中其它目标节点的通信干扰。
本申请实施例提供一种上行定位的实现方法,应用于定位服务器,所述方法包括:
向第一测量节点集合发送第一定位指令,所述第一测量节点集合包括至少三个测量节点,目标节点位于所述测量节点的覆盖范围内;
接收每个测量节点反馈的与所述第一定位指令对应的第一定位属性信息,所述第一定位属性信息包括:测量节点标识和测量节点所在小区的随机接入信息;
将携带所述第一定位属性信息的随机接入指令发送至目标节点,所述随机接入指令用于触发所述目标节点向所述测量节点发送随机接入信号,以确定所述目标节点与每个所述测量节点之间的通信距离。
本申请实施例还提供一种上行定位的实现方法,应用于测量节点,所述方法包括:
接收定位服务器发送的第一定位指令;
根据所述第一定位指令提取对应的第一定位属性信息,所述第一定位属性信息包括:测量节点标识和测量节点所在小区的随机接入信息;
将所述第一定位属性信息反馈至所述定位服务器,所述第一定位属性信息为目标节点所要建立通信的多个测量节点的属性信息,所述第一定位属性信息包括:测量节点标识和测量节点所在小区的随机接入信息。
本申请实施例还提供一种上行定位的实现方法,应用于服务节点,所述方法包括:
接收定位服务器发送的第二定位指令;
将根据所述第二定位指令确定的第二测量节点集合反馈至所述定位服务器,所述第二测量节点集合包括除服务节点之外的至少两个测量节点,目标节点位于所述测量节点的覆盖范围内,所述服务节点提供的一个服务小区已与目标节点建立通信连接;
接收每个测量节点反馈的第二定位属性信息,所述第二定位属性信息包括:测量节点标识和测量节点所在小区的随机接入信息;
将携带所述第二定位属性信息的下行控制信息DCI发送至目标节点,所述DCI用于触发所述目标节点向所述测量节点发送随机接入信号,以确定所述目标节点与每个所述测量节点之间的通信距离。
本申请实施例还提供一种上行定位的实现方法,应用于定位服务器,所述方法包括:
向服务节点发送第二定位指令,所述服务节点提供的一个服务小区已与目标节点建立通信连接;
接收所述服务节点反馈的第二测量节点集合,所述第二测量节点集合是根据所述第二定位指令而确定的,所述第二测量节点集合包括除服务节点之外的至少两个测量节点,目标节点位于所述测量节点的覆盖范围内;
向每个所述测量节点发送携带服务节点标识的第一定位激活指令,所述第一定位激活指令用于触发每个所述测量节点将第二定位属性信息发送至服务节点,所述第二定位属性信息为目标节点所要建立通信的多个测量节点的属性信息,所述第二定位属性信息包括:测量节点标识和测量节点所在小区的随机接入信息。
本申请实施例还提供一种上行定位的实现方法,应用于目标节点,所述方法包括:
接收服务节点发送的下行控制信息DCI,所述服务节点提供的一个服务小区已与目标节点建立通信连接;
根据所述DCI向对应测量节点发送随机接入信号,所述随机接入信号用于确定所述目标节点与每个所述测量节点之间的通信距离。
本申请实施例还提供一种上行定位的实现装置,应用于定位服务器,所述装置包括:
第一发送模块,设置为向第一测量节点集合发送第一定位指令,所述第一测量节点集合包括至少三个测量节点,目标节点位于所述测量节点的覆盖范围内;
第一接收模块,设置为接收每个测量节点反馈的与所述第一定位指令对应的第一定位属性信息,所述第一定位属性信息包括:测量节点标识和测量节点所在小区的随机接入信息;
第二发送模块,设置为将携带所述第一定位属性信息的随机接入指令发送至目标节点,所述随机接入指令用于触发所述目标节点向所述测量节点发送随机接入信号,以确定所述目标节点与每个所述测量节点之间的通信距离。
本申请实施例还提供一种上行定位的实现装置,应用于测量节点,所述装置包括:
第二接收模块,设置为接收定位服务器发送的第一定位指令;
提取模块,设置为根据所述第一定位指令提取对应的第一定位属性信息,所述第一定位属性信息包括:测量节点标识和测量节点所在小区的随机接入信息;
第一反馈模块,设置为将所述第一定位属性信息反馈至所述定位服务器,所述第一定位属性信息为目标节点所要建立通信的多个测量节点的属性信息,所述第一定位属性信息包括:测量节点标识和测量节点所在小区的随机接入信息。
本申请实施例还提供一种上行定位的实现装置,应用于服务节点,所述装置包括:
第三接收模块,设置为接收定位服务器发送的第二定位指令;
第二反馈模块,设置为将根据所述第二定位指令确定的第二测量节点集合反馈至所述定位服务器,所述第二测量节点集合包括除服务节点之外的至少两个测量节点,目标节点位于所述测量节点的覆盖范围内,所述服务节点提供的一个服务小区已与目标节点建立通信连接;
第四接收模块,设置为接收每个测量节点反馈的第二定位属性信息,所述第二定位属性信息包括:测量节点标识和测量节点所在小区的随机接入信息;
第三发送模块,设置为将携带所述第二定位属性信息的下行控制信息DCI发送至目标节点,所述DCI用于触发所述目标节点向所述测量节点发送随机接入信号,以确定所述目标节点与多个所述测量节点之间的通信距离。
本申请实施例还提供一种上行定位的实现装置,应用于定位服务器,所述装置包括:
第四发送模块,设置为向服务节点发送第二定位指令,所述服务节点提供的一个服务小区已与目标节点建立通信连接;
第五接收模块,设置为接收所述服务节点反馈的第二测量节点集合,所述第二测量节点集合是根据所述第二定位指令而确定的,所述第二测量节点集合包括除服务节点之外的至少两个测量节点,目标节点位于所述测量节点的覆盖范围内;
第五发送模块,设置为向每个所述测量节点发送携带服务节点标识的第一定位激活指令,所述第一定位激活指令用于触发每个所述测量节点将第二定位属性信息发送至服务节点,所述第二定位属性信息为目标节点所要建立通信的多个测量节点的属性信息,所述第二定位属性信息包括:测量节点标识和测量节点所在小区的随机接入信息。
本申请实施例还提供一种上行定位的实现装置,应用于目标节点,所述装置包括:
第六接收模块,设置为接收服务节点发送的下行控制信息DCI,所述服务节点提供的一个服务小区已与目标节点建立通信连接;
第六发送模块,设置为根据所述DCI向对应测量节点发送随机接入信号,所述随机接入信号用于确定所述目标节点与每个所述测量节点之间的通信距离。
本申请实施例还提供一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本申请任一实施例所述的方法。
附图说明
图1是一种通信场景示意图;
图2是实施例提供的一种上行定位的实现方法的流程图;
图3是实施例提供的另一种上行定位的实现方法的流程图;
图4是实施例提供的一种上行定位的实现方法的交互示意图;
图5是实施例提供的另一种上行定位的实现方法的交互示意图;
图6是实施例提供的又一种上行定位的实现方法的流程图;
图7是实施例提供的再一种上行定位的实现方法的流程图;
图8是实施例提供的还一种上行定位的实现方法的流程图;
图9是实施例提供的又一种上行定位的实现方法的交互示意图;
图10是实施例提供的一种通信场景示意图;
图11是实施例提供的再一种上行定位的实现方法的交互示意图;
图12是实施例提供的还一种上行定位的实现方法的交互示意图;
图13是实施例提供的还一种上行定位的实现方法的交互示意图;
图14是实施例提供的一种上行定位的实现装置的结构框图;
图15是实施例提供的另一种上行定位的实现装置的结构框图;
图16是实施例提供的又一种上行定位的实现装置的结构框图;
图17是实施例提供的再一种上行定位的实现装置的结构框图;
图18是实施例提供的还一种上行定位的实现装置的结构框图;
图19是实施例提供的一种设备的结构示意图。
具体实施方式
下文中将结合附图对本申请的实施例进行说明。
在高频场景中,符号间CP变短,在不进行多个测量节点的时间提前量(Time Advance,TA)估计的情况下,会出现目标节点的上行定位参考信号和相邻测量节点中其它目标节点的信号达到该目标节点所在的测量节点的符号偏移超过CP长度的情况下,从而对定位性能造成影响,对相邻测量节点中目标节点的通信造成干扰。图1是一种通信场景示意图。如图1所示,在一个通信***中有两个测量节点,分别为测量节点A和测量节点B,目标节点1所属的服务基站为测量节点A,若不对测量节点A和测量节点B的TA进行估计,并且在高频场景下,目标节点1的上行定位参考信号到达相邻的测量节点B的符号偏移会超过CP长度,从而对目标节点1的定位造成影响,对相邻的测量节点B中目标节点2的通信造成干扰。
在本申请实施例中,提供一种上行定位的实现方法,避免对目标节点的定 位造成影响,从而实现对目标节点的准确定位,以及降低对相邻测量节点中终端的通信干扰。在实施例中,测量节点为基站,目标节点为用户终端,定位服务器为核心网。
在一实施例中,图2是实施例提供的一种上行定位的实现方法的流程图。该方法由定位服务器执行,以用于实现对多个测量节点的TA进行估计。如图2所示,本实施例提供的方法包括步骤101-步骤103:
步骤101、向第一测量节点集合发送第一定位指令。
第一测量节点集合包括至少三个测量节点,目标节点位于测量节点的覆盖范围内。
步骤102、接收每个测量节点反馈的与第一定位指令对应的第一定位属性信息。
第一定位属性信息包括:测量节点标识和测量节点所在小区的随机接入信息。
步骤103、将携带第一定位属性信息的随机接入指令发送至目标节点。
随机接入指令用于触发目标节点向测量节点发送随机接入信号,以确定目标节点与每个测量节点之间的通信距离。
在实施例中,在目标节点需要定位的情况下,比如,在目标节点向定位服务器发送上行定位请求,或者在需要通过定位服务器对目标节点进行定位的情况下,定位服务器向第一测量节点集合发送第一定位指令。其中,第一测量节点集合中包括至少三个测量节点,并且,目标节点位于多个测量节点的覆盖范围内,即第一测量节点集合中的所有测量节点的通信范围可以覆盖到目标节点。第一定位指令为上报每个测量节点标识和每个测量节点所在服务小区的随机接入信息的指令。在第一测量节点集合中的每个测量节点接收到第一定位指令,每个测量节点将自身的测量节点标识和所在服务小区的随机接入信息上报至定位服务器。在定位服务器接收到每个测量节点反馈的自身测量节点标识和所在小区的随机接入信息之后,定位服务器给目标节点下发随机接入指令,以使目标节点接收到随机接入指令之后,识别每个测量节点的标识和所在小区的随机接入信息,以向对应的测量节点发射随机接入信号。其中,随机接入信息包括物理随机接入信道(Physical Random Access Channel,PRACH)的信道资源分配信息和所支持的前导(Preamble)信息。其中,Preamble信息为Preamble码,共有64位,是用户设备在PRACH中发送的实际内容,由长度为Tcp的循环前缀CP和长度为Tseq的序列(Sequence)组成。
在目标节点向第一测量节点集合中的每个测量节点发射随机接入信号之 后,通过每个测量节点接收到随机接入信号的时间,可计算得到目标节点到每个测量节点之间的通信距离,进而可实现对目标节点的定位。在确定目标节点到每个测量节点的通信距离之后,可根据每个通信距离调整目标节点向对应测量节点发射信号的发射时间,以保证目标节点发送信号至每个测量节点的到达时间是相同的,以避免对相邻测量节点中其它目标节点的通信干扰。
在一实施例中,在第一测量节点集合中的一个测量节点为服务节点的情况下,步骤103包括步骤1031-步骤1032:
步骤1031、将第一定位属性信息发送至服务节点。
服务节点为目标节点当前已建立通信的基站小区。
步骤1032、通过服务节点将携带第一定位属性信息的下行控制信息DCI发送至目标节点。
在实施例中,在第一测量节点集合中的一个测量节点为服务节点的情况下,定义服务器可将第一测量节点集合中每个测量节点标识和测量节点所在小区的随机接入信息发送至服务节点,通过服务节点将每个测量节点标识和每个测量节点所在小区的随机接入信息发送至目标节点。一个实施例中,在服务节点接收到每个测量节点标识和每个测量节点所在小区的随机接入信息之后,服务节点会配置至少两个下行控制信息(Downlink Control Information,DCI),并将DCI下发至目标节点,通过DCI信息触发目标节点向每个测量节点发射随机接入信号,以确定目标节点到每个测量节点的通信距离。其中,下行控制信息的个数与测量节点的个数是相同的,即每个下行控制信息对应一个测量节点的第一定位属性信息。
在一实施例中,图3是实施例提供的另一种上行定位的实现方法的流程图。该方法由测量节点执行,以用于实现对多个测量节点的TA进行估计。如图3所示,本实施例提供的方法包括步骤201-步骤203:
步骤201、接收定位服务器发送的第一定位指令。
步骤202、根据第一定位指令提取对应的第一定位属性信息。
第一定位属性信息包括:测量节点标识和测量节点所在小区的随机接入信息。
步骤203、将第一定位属性信息反馈至定位服务器。
第一定位属性信息为目标节点所要建立通信的多个测量节点的属性信息,第一定位属性信息包括:测量节点标识和测量节点所在小区的随机接入信息。
在实施例中,在第一测量节点集合中的每个测量节点接收到定位服务器发 送的第一定位指令后,每个测量节点从预设数据库中识别提取自身的测量节点标识和所在小区的随机接入信息,并发送至定位服务器,以通过定位服务器将测量节点标识和所在小区的随机接入信息转发至目标节点,从而使目标节点向每个测量节点发射随机接入信号。
在一实施例中,图4是实施例提供的一种上行定位的实现方法的交互示意图。本实施例提供的方法适用于直接通过定位服务器将随机接入指令发送至目标节点的场景下,对多个测量节点的TA进行估计。如图4所示,该方法包括步骤301-步骤304:
步骤301、发送第一定位指令。
步骤302、接收第一定位属性信息。
步骤303、将随机接入指令发送至目标节点。
步骤304、发射随机接入信号。
在实施例中,定位服务器给第一测量节点集合中的每个测量节点发送第一定位指令,每个测量节点在接收到第一定位指令之后,上报自身的测量节点标识和所在小区的随机接入信息至定位服务器;在定位服务器接收到每个测量节点标识和每个测量节点所在小区的随机接入信息之后,定位服务器给目标节点下发随机接入指令,在目标节点接收到随机接入指令之后,通过每个测量节点标识和每个测量节点所在小区的随机接入信息,向每个测量节点发射随机接入信号。其中,随机接入指令为定位测量激活指令,即触发每个测量节点开始接收目标节点发送的随机接入信号。
在一实施例中,图5是实施例提供的另一种上行定位的实现方法的交互示意图。本实施例提供的方法适用于通过服务节点将随机接入指令发送至目标节点的场景下,对多个测量节点的TA进行估计。
在实施例中,第一测量节点集合中的一个测量节点为服务节点。如图5所示,该方法包括步骤401-步骤405:
步骤401、发送第一定位指令。
步骤402、上报第一定位属性信息。
步骤403、发送第一定位属性信息。
步骤404、发送DCI。
步骤405、发射随机接入信号。
在实施例中,在通过服务节点将携带第一定位属性信息的DCI发送至目标节点的情况下,服务节点可将自身的节点标识和所在小区的随机接入信息发送 至定位服务器,以将服务节点的节点标识和所在小区的随机接入信息存储至定位服务器,以便于后续调取使用或查询。在服务节点将第一测量节点集合中的每个测量节点标识和每个测量节点所在小区的随机接入信息发送至目标节点时,也需将服务节点的自身节点标识和所在小区的随机接入信息发送至目标节点,从而目标节点可向服务节点和每个测量节点发射随机接入信号。
一个实施例中,图6是实施例提供的又一种上行定位的实现方法的流程图。该方法由服务节点执行,以用于实现对多个测量节点的TA进行估计。如图6所示,本实施例提供的方法包括步骤501-步骤504:
步骤501、接收定位服务器发送的第二定位指令。
步骤502、将根据第二定位指令确定的第二测量节点集合反馈至定位服务器。
第二测量节点集合包括除服务节点之外的至少两个测量节点,目标节点位于测量节点的覆盖范围内,服务节点提供的一个服务小区已与目标节点建立通信连接。
步骤503、接收每个测量节点反馈的第二定位属性信息。
第二定位属性信息包括:测量节点标识和测量节点所在小区的随机接入信息。
步骤504、将携带第二定位属性信息的DCI发送至目标节点。
DCI用于触发目标节点向测量节点发送随机接入信号,以确定目标节点与每个测量节点之间的通信距离。
在实施例中,在所采用的用于目标节点定位的至少两个测量节点,是通过服务节点进行选择的。在需对目标节点进行上行定位的情况下,定位服务器向服务节点发送第二定位指令,服务节点根据第二定位指令选择所使用的至少两个测量节点,并将每个测量节点上报给定位服务器,以使定位服务器给每个测量节点下发第一定位激活指令,以触发每个测量节点将自身的第二定位属性信息发送至服务节点。其中,第一定位激活指令用于触发每个测量节点将第二定位属性信息反馈至服务节点。在服务节点接收到每个测量节点的第二定位属性信息之后,对第二定位属性信息进行配置,以得到至少两个DCI。将每个DCI下发至目标节点,以触发目标节点向服务节点和每个测量节点发射随机接入信号,以确定目标节点与每个测量节点之间的通信距离。其中,为了便于目标节点根据DCI识别得到对应的每个测量节点标识和每个测量节点所在小区的随机接入信号,可在DCI和测量节点标识之间设置一一对应关系,即每个测量节点标识对应一个DCI。
一个实施例中,图7是实施例提供的再一种上行定位的实现方法的流程图。该方法由定位服务器执行,以用于实现对多个测量节点的TA进行估计。如图7所示,本实施例提供的方法包括步骤601-步骤603:
步骤601、向服务节点发送第二定位指令。
服务节点提供的一个服务小区已与目标节点建立通信连接。
步骤602、接收服务节点反馈的第二测量节点集合。
第二测量节点集合是根据第二定位指令而确定的,第二测量节点集合包括除服务节点之外的至少两个测量节点,目标节点位于测量节点的覆盖范围内。
步骤603、向每个测量节点发送携带服务节点标识的第一定位激活指令。
第一定位激活指令用于触发每个测量节点将第二定位属性信息发送至服务节点,第二定位属性信息为目标节点所要建立通信的多个测量节点的属性信息,第二定位属性信息包括:测量节点标识和测量节点所在小区的随机接入信息。
在实施例中,为了便于每个测量节点能够将自身的第二定位属性信息发送至服务节点,在定位服务器给每个测量节点下发第一定位激活指令时,也会将服务节点标识下发至每个测量节点。
一个实施例中,图8是实施例提供的还一种上行定位的实现方法的流程图。该方法由目标节点执行,以用于实现对多个测量节点的TA进行估计。如图8所示,本实施例提供的方法包括步骤701-步骤702:
步骤701、接收服务节点发送的DCI。
服务节点提供的一个服务小区已与目标节点建立通信连接。
步骤702、根据DCI向对应测量节点发送随机接入信号。
随机接入信号用于确定目标节点与每个测量节点之间的通信距离。
在实施例中,在服务节点确定所使用的每个测量节点的第二定位属性信息之后,将第二定位属性信息配置得到对应的DCI,目标节点根据DCI中的每个测量节点标识和每个测量节点所在小区的随机接入信息,向对应的测量节点发射随机接入信号。其中,服务节点也可作为测量节点,即目标节点也需向服务节点发射随机接入信号。
一个实施例中,图9是实施例提供的又一种上行定位的实现方法的交互示意图。该实施例以在目标节点、服务节点、定位服务器、测量节点之间的交互通信,对上行定位的实现方法进行说明。如图9所示,该实施例中的方法包括步骤801-步骤80:
步骤801、下发第二定位指令。
步骤802、反馈第二测量节点集合。
第二测量节点集合包括除服务节点之外的至少两个测量节点,目标节点位于测量节点的覆盖范围内,服务节点提供的一个服务小区已与目标节点建立通信连接。
步骤803、发送携带服务节点标识的第一定位激活指令。
步骤804、发送第二定位属性信息。
第二定位属性信息包括:测量节点标识和测量节点所在小区的随机接入信息。
步骤805、根据第二定位属性信息配置DCI。
DCI用于触发目标节点向测量节点发送随机接入信号,以确定目标节点与每个测量节点之间的通信距离。
步骤806、发送DCI。
步骤807、发射随机接入信号。
随机接入信号用于确定目标节点与每个测量节点之间的通信距离。
在实施例中,定位服务器给服务节点下发第二定位指令,在服务节点接收到第二定位指令后,选择所使用的至少两个测量节点并上报给定位服务器,定位服务器给每个测量节点下发携带服务节点标识的第一定位激活指令,在每个测量节点接收到第一定位激活指令后,给服务节点发送自身的第二定位属性信息,在服务节点接收到每个测量节点发送的第二定位属性信息后,服务节点配置DCI,并下发给目标节点,以激活目标节点向每个测量节点发射随机接入信号,以确定目标节点到每个测量节点的通信距离。
一个实施例中,在目标节点向服务节点或每个测量节点发送随机接入信号之后,为了保证目标节点向服务节点或每个测量节点发送的上行定位参考信号的发射功率,能够匹配服务节点或对应测量节点的发射波束的功率,需调整目标节点所发送的对应上行定位参考信号的目标发射功率。在所述将携带所述第二定位属性信息的下行控制信息DCI发送至目标节点之后,还包括:接收目标节点发送的根据第一配置信息确定的上行定位参考信号,以及每个上行定位参考信号与对应测量节点的关系,第一配置信息包括:多个空间相关性、多个预设下行定位参考信号和多个第三定位属性信息,空间相关性用于表征每个预设下行定位参考信号与对应上行定位参考信号的相关性,第三定位属性信息包括:路损测量信号类型、路损测量信号标识、路损测量信号时频资源、路损测量信 号发射功率和路损测量信号序列;根据上行定位参考信号的接收强度确定功率调整参数;将功率调整参数返回至目标节点,功率调整参数用于将目标节点发送至对应测量节点的上行定位参考信号的当前发射功率调整至目标发射功率。
在实施例中,目标节点根据每个测量节点的第三定位属性信息进行波束匹配,并结合上行定位参考信号和预设下行定位参考信号的空间相关性,确定对应上行定位参考信号的发射波束和当前发射功率,然后目标节点按照发射波束和当前发射功率,向服务节点发送上行定位参考信号。其中,上行定位参考信号为多个测量节点对应的信号,即为了使得服务节点能够将接收到的功率调整参数与上行定位参考信号以及测量节点进行对应,在目标节点向服务节点发送上行定位参考信号的同时,也需发送每个上行定位参考信号与对应测量节点的关系。在每个测量节点接收到目标节点发送的对应上行定位参考信号之后,每个测量节点根据所接收到的上行定位参考信号的接收强度确定功率调整参数,以使目标节点将发送至对应测量节点的上行定位参考信号的当前发射功率调整至目标发射功率,从而保证目标节点发射上行定位参考信号的发射功率的准确性,既避免了发射功率过大,造成资源浪费,又避免了发射功率过小,造成无法准确地接收到上行定位参考信号。
在一实施例中,根据上行定位参考信号的接收强度确定功率调整参数,包括:通过测量节点根据对应上行定位参考信号的接收强度确定功率调整参数;接收每个测量节点返回的功率调整参数。
在实施例中,在每个测量节点接收到目标节点发送的上行定位参考信号之后,每个测量节点根据接收到的上行定位参考信号的接收强度确定对应的功率调整参数,并将功率调整参数返回至服务节点,以通过服务节点将功率调整参数发送至目标节点。
在一实施例中,为了使得服务节点能够根据第一配置信息确定上行定位参考信息,需得到第一配置信息。在接收目标节点发送的根据第一配置信息确定的上行定位参考信号之前,还包括:接收定位服务器发送的定位配置指令和第三定位属性信息,定位配置指令携带多个测量节点的预设下行定位参考信号;根据测量节点的预设下行定位参考信号确定对应上行信号资源的空间相关性;将第一配置信息发送至目标节点,第一配置信息包括多个空间相关性、多个预设下行定位参考信号和多个第三定位属性信息。
在服务节点在接收到定位服务器发送的定位配置指令的情况下,对每个测量节点的上行定位参考信号进行配置,即根据每个测量节点的预设下行定位参考信号确定对应上行信号资源的空间相关性,其中,空间相关性用于表征上行定位参考信号与预设下行定位参考信号的相关性,即每个上行定位参考信号和 对应预设下行定位参考信号所采用的传输信道、时频资源等是相同的,而信号的传输方向是相反的。在一实施例中,第三定位属性信息为多个测量节点发送的。
为了避免第三定位属性信息在定位服务器的中转,以降低传输时延,可通过多个测量节点直接将对应的第三定位属性信息发送至服务节点。
在一实施例中,在向每个测量节点发送携带服务节点标识的第一定位激活指令之后,还包括:在接收到目标节点发送的无线资源管理(Radio Resource Management,RRM)测量信息的情况下,向第一测量节点集合发送第三定位指令,第一测量节点集合包括至少三个测量节点,目标节点位于测量节点的覆盖范围内,RRM测量信息包括:所在服务节点的下行定位参考信号类型、所在小区标识、所在时频域资源的位置;接收每个测量节点反馈的与第三定位指令对应的第三定位属性信息,第三定位属性信息为多个测量节点用于路损测量的信号参数信息,第三定位属性信息包括:路损测量信号类型、路损测量信号标识、路损测量信号时频资源、路损测量信号发射功率和路损测量信号序列;根据RRM测量信息和第三定位属性信息确定对应测量节点的预设下行定位参考信号;将携带多个测量节点的预设下行定位参考信号的定位配置指令和第三定位属性信息发送至服务节点。
在实施例中,在需要定位的目标节点将自身的RRM测量信息发送至定位服务的情况下,定位服务器向所使用的多个测量节点发送第三定位指令,以得到每个测量节点的与第三定位指令对应的第三定位属性信息,定位服务器结合目标节点的RRM测量结果和每个测量节点可用的路损测量信号,识别可能被目标节点较好识别的每个测量节点对应的预设下行定位参考信号。其中,路损测量信号为每个测量节点根据对应的第三定位属性信息来确定的。定位服务器将确定的每个测量节点对应的预设下行定位参考信号和第三定位属性信息发送至服务节点。
在一实施例中,在根据DCI向对应测量节点发送随机接入信号之后,还包括:接收服务节点发送的第一配置信息,第一配置信息包括多个空间相关性、多个预设下行定位参考信号和多个第三定位属性信息;根据第一配置信息确定上行定位参考信号的发射波束和当前发射功率;按照发射波束和当前发射功率向服务节点发送上行定位参考信号,以及每个上行定位参考信号与对应测量节点的关系;接收服务节点返回的每个上行定位参考信号对应的功率调整参数;根据功率调整参数确定上行定位参考信号的目标发射功率。
在实施例中,目标节点在接收到定位服务器发送的第一配置信息,根据第一配置信息确定向每个测量节点发送的上行定位参考信号的发射波束和当前发 射功率,并按照发射波束和当前发射功率向服务节点和每个测量节点发送对应的上行定位参考信号,服务节点和每个测量节点根据接收到的上行定位参考信号的接收强度确定对应的功率调整参数,每个测量节点将对应的功率调整参数反馈至服务节点,以通过服务节点将每个测量节点对应上行定位参考信号的功率调整参数发送至目标节点,以使目标节点将每个上行定位参考信号的当前发射功率调整到对应的目标发射功率。
在一实施例中,在接收服务节点发送的第一配置信息之前,还包括:向服务节点发送RRM测量信息,RRM测量信息包括:所在服务节点的下行定位参考信号类型、所在小区标识、所在时频域资源的位置。
在实施例中,需要定位的目标节点可将RRM信息直接发送至定位服务器,以使得定位服务器结合RRM测量结果和多个测量节点可用的路损测量信号,识别可能被目标节点较好识别的每个测量节点对应的预设下行参考信号。
在一实施例中,需要定位的目标节点也可将RRM信号发送至服务节点,在多个测量节点将自身的第三定位属性信息直接发送至服务节点的情况下,服务节点可通过RRM测量结果和每个测量节点可用的路损测量信号,识别可能被目标节点较好识别的每个测量节点对应的预设下行参考信号。
在一实施例中,根据第一配置信息确定上行定位参考信号的发射波束和当前发射功率,包括:根据空间相关性和预设下行定位参考信号确定对应上行定位参考信号的发射波束;根据第三定位属性信息确定对应上行定位参考信号的当前发射功率。
在一实施例中,目标节点根据每个预设下行定位参考信号和对应空间相关性,确定目标节点发射至对应测量节点的上行定位参考信号的发射波束,并根据测量节点对应的路损测量信号确定对应上行定位参考信号的当前发射功率,以使得目标节点按照发射至每个测量节点对应上行信号资源的发射波束和当前发射功率,向对应的测量节点发射上行定位参考信号。
在一实施例中,图10是实施例提供的一种通信场景示意图。如图10所示,在通信场景中,设置有一个目标节点,并且目标节点的服务基站设置为测量节点A。假设目标节点可以测得测量节点A、测量节点B、测量节点C和测量节点D的下行信道状态信息参考信号(Channel State Information--Reference Signal,CSI-RS),定位服务器选择测量节点A、测量节点B、测量节点C和测量节点D作为上行定位所使用的测量节点,即发射节点。
在一实施例中,图11是实施例提供的再一种上行定位的实现方法的交互示意图。如图11所示,该方法包括:
步骤901、上报RRM测量信息。
步骤903、发送第三定位指令。
步骤905、上报第三定位属性信息。
步骤907、确定每个测量节点的预设下行定位参考信号。
步骤909、发送定位配置指令。
步骤911、发送第二定位激活指令。
步骤913、配置上行定位参考信号,并根据预设下行定位参考信号确定对应上行信号资源的空间相关性。
步骤915、发送第一配置信息。
步骤917、确定上行定位参考信号的发射波束和当前发射功率。
步骤919、发送上行定位参考信号,以及每个上行定位参考信号与测量节点的对应关系。
步骤921、对上行定位参考信号进行测量,确定功率调整参数。
步骤923、将功率调整参数发送至服务节点。
步骤925、将功率调整参数发送至目标节点。
步骤927、按照功率调整参数将上行定位参考信号的发射功率调整至目标发射功率。
步骤929、按照目标发射功率发射上行定位参考信号。
步骤931、上报测量结果。
步骤933、计算定位结果。
在实施例中,需要定位的目标节点将RRM测量信息上报给定位服务器,RRM测量信息包括所在服务节点的下行定位参考信号类型、所在小区标识、所在时频域资源的位置。在本实施例中,假设目标节点可以测得基站A、B、C、D四个节点的下行CSI-RS。定位服务器选定基站A、B、C、D为本次定位所使用的测量节点。其中,测量节点A为服务基站,即服务节点。
定位服务器给作为服务基站的测量节点A和所有本次用作定位的测量节点发送第三定位指令,要求每个测量节点上报对应的第三定位属性信息,第三定位属性信息为多个测量节点用于路损测量的信号参数信息,所述第三定位属性信息包括:路损测量信号类型、路损测量信号标识、路损测量信号时频资源、路损测量信号发射功率和路损测量信号序列,还包括测量节点的位置信息。
服务节点和每个测量节点根据第三定位指令上报对应的第三定位属性信息,定位服务器结合目标节点的RRM测量结果和每个测量节点可用的路损测量信号,识别可能被目标节点较好识别的每个测量节点对应的预设下行参考信号。本实施例中,通过RRM测量结果对比得到测量节点A、B、C、D的CSI-RS A,CIS-RS B,CSI-RS C,CSI-RS D,这四个信号既可以用作自身对应测量节点的路损信号测量,同时可以被目标节点检测到用作RRM测量。其中,CSI-RS A对应测量节点A的CIS-RS,CSI-RS B对应测量节点B的CIS-RS,CSI-RS C对应测量节点C的CIS-RS,CSI-RS D对应测量节点D的CIS-RS。
定位服务器给服务节点(测量节点A)发送定位配置指令,即上行定位参考信号配置指令。该指令通知服务节点开始给目标节点配置上行定位参考信号。同时在该指令中指示CSI-RS A,CIS-RS B,CSI-RS C,CSI-RS D是分别来自测量节点A、B、C、D的预设下行参考信号,即理想下行信号。同时给测量节点A、B、C、D发送第二定位激活指令,用于指示测量节点A、B、C、D开始测量目标节点的上行定位参考信号。测量节点A、B、C、D测量来自目标节点的上行定位参考信号并将测量结果上报给定位服务器,由定位服务器进行位置计算。
服务节点(测量节点A)给目标节点配置测量节点A、B、C、D的下行定位参考信号资源分别为资源1,资源2,资源3,资源4。资源1的下行路损测量信号为CSI-RS A,资源2的下行路损测量信号为CIS-RS B,资源3的下行路损测量信号为CSI-RS C,资源4的下行路损测量信号为CSI-RS D,且资源1与信号CSI-RS A有空间相关性,资源2与信号CIS-RS B有空间相关性,资源3与信号CSI-RS C有空间相关性,资源4与信号CSI-RS D有空间相关性。将包含多个空间相关性、多个预设下行定位参考信号和多个第三定位属性信息的第一配置信息发送给目标节点。
在所使用的路损测量信号与目标节点进行RRM测量的信号之间有一一对应关系,则该目标节点已知多个下行定位参考信号的最佳接收波束。由于每个上行定位参考信号对应的上行信号资源和自身对应的CSI-RS存在空间相关性,目标节点可以知道每个上行信号资源的最佳发射波束以指向对应的测量节点。目标节点发射上行定位参考信号至对应的测量节点,同时上报对应测量节点和CSI-RS的对应关系。
每个测量节点测量对目标节点发射的上行定位参考信号进行测量,根据接收强度的大小配置功率调整参数,其中,服务节点(测量节点A)的相邻测量节点(测量节点B、C、D)将该功率调整参数发送给服务节点。
服务节点根据自身测量对资源1进行功率控制参数配置,同时将接收到测量节点B的功率控制参数配置给资源2,将来自测量节点C的功率控制参数配 置给资源3,将来自测量节点D的功率控制参数配置给资源4,并将资源调整参数发送给目标节点。
目标节点根据接收到的功率调整参数调整资源1、2、3、4分别对应的发射功率,以调整至目标发射功率。
在一实施例中,图12是实施例提供的还一种上行定位的实现方法的交互示意图。如图12所示,该方法包括:
步骤1001、上报RRM测量信息。
步骤1003、发送第三定位指令。
步骤1005、上报第三定位属性信息。
步骤1007、确定每个测量节点的预设下行定位参考信号。
步骤1009、发送定位配置指令。
步骤1011、发送第二定位激活指令。
步骤1013、配置上行定位参考信号,并根据预设下行定位参考信号确定对应上行信号资源的空间相关性。
步骤1015、发送第一配置信息。
步骤1017、确定上行定位参考信号的发射波束和当前发射功率。
步骤1019、发送上行定位参考信号,以及每个上行定位参考信号与测量节点的对应关系。
步骤1021、对上行定位参考信号进行测量,确定功率调整参数。
步骤1023、将功率调整参数发送至服务节点。
步骤1025、将功率调整参数发送至目标节点。
步骤1027、按照功率调整参数将上行定位参考信号的发射功率调整至目标发射功率。
步骤1029、按照目标发射功率发射上行定位参考信号。
步骤1031、上报测量结果。
步骤1033、计算定位结果。
对上述步骤1001-步骤1033进行解释,如下:步骤1001-步骤1033分别与步骤901-步骤933一一对应。区别是:目标节点在上报RRM测量信息时,可直接将RRM测量信息上报至服务节点,并且,在每个测量节点上报第三定位属性信息时,可直接上报至服务节点,避免了第三定位属性信息在定位服务器的中 转,降低了传输时延。在直接将第三定位属性信息发送至服务节点的情况下,每个测量节点的预设下行定位参考信号可通过服务节点进行确定。对步骤1001-步骤1033的解释说明见上述实施例的步骤901-步骤933的描述,在此不再赘述。
在一实施例中,图13是实施例提供的还一种上行定位的实现方法的交互示意图。如图13所示,该方法包括:
步骤1101、上报RRM测量信息。
步骤1102、多个测量节点的TA估计。
步骤1103、发送第三定位指令。
步骤1105、上报第三定位属性信息。
步骤1107、确定每个测量节点的预设下行定位参考信号。
步骤1109、发送定位配置指令。
步骤1111、发送第二定位激活指令。
步骤1113、配置上行定位参考信号,并根据预设下行定位参考信号确定对应上行信号资源的空间相关性。
步骤1115、发送第一配置信息。
步骤1117、确定上行定位参考信号的发射波束和当前发射功率。
步骤1119、发送上行定位参考信号,以及每个上行定位参考信号与测量节点的对应关系。
步骤1121、对上行定位参考信号进行测量,确定功率调整参数。
步骤1123、将功率调整参数发送至服务节点。
步骤1125、将功率调整参数发送至目标节点。
步骤1127、按照功率调整参数将上行定位参考信号的发射功率调整至目标发射功率。
步骤1129、按照目标发射功率发射上行定位参考信号。
步骤1131、上报测量结果。
步骤1133、计算定位结果。
对上述步骤1101-步骤1133进行解释,如下:步骤1101-步骤1133分别与步骤901-步骤933一一对应。区别是:在目标节点上报RRM测量信息之后,增加步骤1102,以实现对多个测量节点的TA估计。其中,对多个测量节点的TA估计的实现方式见上述实施例中确定目标节点到每个测量节点的通信距离的方 案,在此不再赘述。在确定每个测量节点的TA值之后,通过服务节点将每个测量节点的TA值发送给目标节点,从而在目标节点发射上行定位参考信号的过程中,对每个上行信号资源使用对应的TA值进行发送,即步骤1119发射上行定位参考信号的步骤,采用每个测量节点的上行信号资源对应的TA值对上行定位参考信号进行发送。
在一实施例中,只对服务节点进行发射功率控制。在服务节点接收到定位服务器的定位激活指令之后,服务节点选择所使用的测量节点,发送给定位服务器。服务节点配置目标节点使用的上行定位参考信号对应的上行信号资源,指定与自身对应的上行定位参考信号的上行信号资源,确定上行信号资源的初始发射功率和路损测量信号信息。目标节点对服务节点的路损测量信号进行测量,并进行波束匹配,确定发送给服务节点的上行定位参考信号对应的上行信号资源的发射功率和发射方向,而发射给其它测量节点的上行定位参考信号对应的上行信号资源的发射功率是满功率发送。在服务节点接收到目标节点的上行定位参考信号之后,对该上行定位参考信号对应的上行信号资源进行发射功率控制。
在一实施例中,图14是实施例提供的一种上行定位的实现装置的结构框图。如图14所示,本实施例提供的一种上行定位的实现装置包括:第一发送模块1201、第一接收模块1202和第二发送模块1203。
第一发送模块1201,设置为向第一测量节点集合发送第一定位指令,第一测量节点集合包括至少三个测量节点,目标节点位于测量节点的覆盖范围内。
第一接收模块1202,设置为接收每个测量节点反馈的与第一定位指令对应的第一定位属性信息,第一定位属性信息包括:测量节点标识和测量节点所在小区的随机接入信息。
第二发送模块1203,设置为将携带第一定位属性信息的随机接入指令发送至目标节点,随机接入指令用于触发目标节点向测量节点发送随机接入信号,以确定目标节点与每个测量节点之间的通信距离。
本实施例提供的上行定位的实现装置为实现图2所示实施例的上行定位的实现装置,本实施例提供的上行定位的实现装置实现原理和技术效果类似,此处不再赘述。
在一实施例中,在所述第一测量节点集合中的一个测量节点为服务节点的情况下,第二发送模块1203,包括:
第一发送单元,设置为将所述第一定位属性信息发送至服务节点,所述服务节点为所述目标节点当前已建立通信的基站小区。
第二发送单元,设置为通过所述服务节点将携带所述第一定位属性信息的下行控制信息DCI发送至目标节点。
在一实施例中,图15是实施例提供的另一种上行定位的实现装置的结构框图。如图15所示,本实施例提供的一种上行定位的实现装置包括:第二接收模块1301、提取模块1302和第一反馈模块1303。
第二接收模块1301,设置为接收定位服务器发送的第一定位指令。
提取模块1302,设置为根据第一定位指令提取对应的第一定位属性信息,第一定位属性信息包括:测量节点标识和测量节点所在小区的随机接入信息。
第一反馈模块1303,设置为将第一定位属性信息反馈至定位服务器,第一定位属性信息为目标节点所要建立通信的多个测量节点的属性信息,第一定位属性信息包括:测量节点标识和测量节点所在小区的随机接入信息。
本实施例提供的上行定位的实现装置为实现图3所示实施例的上行定位的实现装置,本实施例提供的上行定位的实现装置实现原理和技术效果类似,此处不再赘述。
在一实施例中,图16是实施例提供的又一种上行定位的实现装置的结构框图。如图16所示,本实施例提供的一种上行定位的实现装置包括:
第三接收模块1401、第二反馈模块1402、第四接收模块1403和第三发送模块1404。
第三接收模块1401,设置为接收定位服务器发送的第二定位指令。
第二反馈模块1402,设置为将根据第二定位指令确定的第二测量节点集合反馈至定位服务器,第二测量节点集合包括除服务节点之外的至少两个测量节点,目标节点位于测量节点的覆盖范围内,服务节点提供的一个服务小区已与目标节点建立通信连接。
第四接收模块1403,设置为接收每个测量节点反馈的第二定位属性信息,第二定位属性信息包括:测量节点标识和测量节点所在小区的随机接入信息。
第三发送模块1404,设置为将携带第二定位属性信息的下行控制信息DCI发送至目标节点,DCI用于触发目标节点向测量节点发送随机接入信号,以确定目标节点与每个测量节点之间的通信距离。
在一实施例中,上行定位的实现装置,还包括:
第七接收模块,设置为在所述将携带所述第二定位属性信息的下行控制信息DCI发送至目标节点之后,接收目标节点发送的根据第一配置信息确定的上行定位参考信号,以及每个上行定位参考信号与测量节点的对应关系,第一配 置信息包括:多个空间相关性、多个预设下行定位参考信号和多个第三定位属性信息,空间相关性用于表征每个预设下行定位参考信号与对应上行定位参考信号的相关性,第三定位属性信息包括:路损测量信号类型、路损测量信号标识、路损测量信号时频资源、路损测量信号发射功率和路损测量信号序列。
第一确定模块,设置为根据所述上行定位参考信号的接收强度确定功率调整参数。
第一返回模块,设置为将所述功率调整参数返回至所述目标节点,所述功率调整参数用于将目标节点发送至对应所述测量节点的上行定位参考信号的当前发射功率调整至目标发射功率。
在一实施例中,第一确定模块,包括:
第一确定单元,设置为通过所述测量节点根据对应上行定位参考信号的接收强度确定功率调整参数。
第一接收单元,设置为接收每个测量节点返回的功率调整参数。
在一实施例中,上行定位的实现装置,还包括:
第八接收模块,设置为在所述接收目标节点发送的根据第一配置信息确定的上行定位参考信号之前,接收定位服务器发送的定位配置指令和第三定位属性信息,所述定位配置指令携带多个测量节点的预设下行定位参考信号。
第二确定模块,设置为根据测量节点的预设下行定位参考信号确定对应上行信号资源的空间相关性。
第七发送模块,设置为将第一配置信息发送至所述目标节点,第一配置信息包括多个空间相关性、多个预设下行定位参考信号和多个第三定位属性信息。
在一实施例中,所述第三定位属性信息为多个测量节点发送的。
本实施例提供的上行定位的实现装置为实现图6所示实施例的上行定位的实现装置,本实施例提供的上行定位的实现装置实现原理和技术效果类似,此处不再赘述。
在一实施例中,图17是实施例提供的再一种上行定位的实现装置的结构框图。如图17所示,本实施例提供的一种上行定位的实现装置包括:第四发送模块1501、第五接收模块1502和第五发送模块1503。
第四发送模块1501,设置为向服务节点发送第二定位指令,服务节点提供的一个服务小区已与目标节点建立通信连接。
第五接收模块1502,设置为接收服务节点反馈的第二测量节点集合,第二测量节点集合是根据第二定位指令而确定的,第二测量节点集合包括除服务节 点之外的至少两个测量节点,目标节点位于测量节点的覆盖范围内。
第五发送模块1503,设置为向每个测量节点发送携带服务节点标识的第一定位激活指令,第一定位激活指令用于触发每个测量节点将第二定位属性信息发送至服务节点,第二定位属性信息为目标节点所要建立通信的多个测量节点的属性信息,第二定位属性信息包括:测量节点标识和测量节点所在小区的随机接入信息。
在一实施例中,上行定位的实现装置,还包括:
第八发送模块,设置为在所述向每个所述测量节点发送携带服务节点标识的第一定位激活指令之后,在接收到目标节点发送的无线资源管理RRM测量信息的情况下,向第一测量节点集合发送第三定位指令,所述第一测量节点集合包括至少三个测量节点,目标节点位于所述测量节点的覆盖范围内,所述RRM测量信息包括:所在服务节点的下行定位参考信号类型、所在小区标识、所在时频域资源的位置。
第九接收模块,设置为接收每个测量节点反馈的与所述第三定位指令对应的第三定位属性信息,所述第三定位属性信息为多个测量节点用于路损测量的信号参数信息,所述第三定位属性信息包括:路损测量信号类型、路损测量信号标识、路损测量信号时频资源、路损测量信号发射功率和路损测量信号序列。
第三确定模块,设置为根据所述RRM测量信息和所述第三定位属性信息确定对应测量节点的预设下行定位参考信号。
第十发送模块,设置为将定位配置指令和第三定位属性信息发送至服务节点,定位配置指令携带多个测量节点的预设下行定位参考信号。
本实施例提供的上行定位的实现装置为实现图7所示实施例的上行定位的实现装置,本实施例提供的上行定位的实现装置实现原理和技术效果类似,此处不再赘述。
一个实施例中,图18是实施例提供的还一种上行定位的实现装置的结构框图。如图18所示,本实施例提供的一种上行定位的实现装置包括:第六接收模块1601和第六发送模块1602。
第六接收模块1601,设置为接收服务节点发送的下行控制信息DCI,服务节点提供的一个服务小区已与目标节点建立通信连接。
第六发送模块1602,设置为根据DCI向对应测量节点发送随机接入信号,随机接入信号用于确定目标节点与每个测量节点之间的通信距离。
在一实施例中,上行定位的实现装置,还包括:
第十接收模块,设置为在所述根据所述DCI向对应测量节点发送随机接入信号之后,接收服务节点发送的第一配置信息,第一配置信息包括多个空间相关性、多个预设下行定位参考信号和多个第三定位属性信息。
第四确定模块,设置为根据所述第一配置信息确定上行定位参考信号的发射波束和当前发射功率。
第十一发送模块,设置为按照所述发射波束和当前发射功率向服务节点发送上行定位参考信号,以及每个上行定位参考信号与测量节点的对应关系。
第十一接收模块,设置为接收服务节点返回的每个上行定位参考信号对应的功率调整参数。
第五确定模块,设置为根据所述功率调整参数确定上行定位参考信号的目标发射功率。
在一实施例中,上行定位的实现装置,还包括:
第十二发送模块,设置为在所述接收服务节点发送第一配置信息之前,向服务节点发送无线资源管理RRM测量信息,所述RRM测量信息包括:所在服务节点的下行定位参考信号类型、所在小区标识、所在时频域资源的位置。
在一实施例中,第四确定模块,包括:
第二确定单元,设置为根据所述空间相关性和预设下行定位参考信号确定对应上行定位参考信号的发射波束。
第三确定单元,设置为根据第三定位属性信息确定对应上行定位参考信号的当前发射功率。
本实施例提供的上行定位的实现装置为实现图8所示实施例的上行定位的实现装置,本实施例提供的上行定位的实现装置实现原理和技术效果类似,此处不再赘述。
一个实施例中,图19是实施例提供的一种设备的结构示意图。如图19所示,本申请提供的设备,包括:处理器1701以及存储器1702。该设备中处理器1801的数量可以是一个或者多个,图19中以一个处理器1701为例。该设备中存储器1702的数量可以是一个或者多个,图19中以一个存储器1702为例。该设备的处理器1701以及存储器1702可以通过总线或者其他方式连接,图19中以通过总线连接为例。实施例中,该设备为定位服务器。
存储器1702作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请任意实施例所述的设备对应的程序指令/模块(例如,唤醒终端的装置中的第一发送模块1201、第一接收模块1202和第二发 送模块1203)。存储器1702可包括存储程序区和存储数据区,其中,存储程序区可存储操作***、至少一个功能所需的应用程序;存储数据区可存储根据设备的使用所创建的数据等。此外,存储器1702可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器1702可包括相对于处理器1701远程设置的存储器,这些远程存储器可以通过网络连接至设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
上述提供的定位服务器可设置为执行上述任意实施例提供的应用于定位服务器的上行定位的实现的方法,具备相应的功能和效果。
在一实施例中,当设备为测量节点时,可执行任意实施例所提供的应用于测量节点的上行定位的实现的方法,具备相应的功能和效果。
在一实施例中,当设备为服务节点时,可执行任意实施例所提供的应用于服务节点的上行定位的实现的方法,具备相应的功能和效果。
在一实施例中,当设备为目标节点时,可执行任意实施例所提供的应用于目标节点的上行定位的实现的方法,具备相应的功能和效果。
术语用户终端涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
在一实施例中,本申请实施例提供一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行应用于定位服务器的上行定位的实现方法。当然,本申请实施例所提供的一种包含计算机可执行指令的存储介质,其计算机可执行指令不限于如上所述的定位服务器的上行定位的实现方法操作,还可以执行本申请任意实施例所提供的定位服务器的上行定位的实现方法中的相关操作,且具备相应的功能和效果。
在一实施例中,本申请实施例提供一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行应用于测量节点的上行定位的实现方法。
在一实施例中,本申请实施例提供一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行应用于服务节点的上行定位的实现方法。
在一实施例中,本申请实施例提供一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行应用于目标节点的上行定位的实现方法。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(Instruction set Architecture,IsA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(Read-Only Memory,ROM)、随机访问存储器(Random Access Memory,RAM)、光存储器装置和***(数码多功能光碟(Digital Video Disc,DVD)或光盘(Compact Disk,CD))等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital signal Processing,DSP)、专用集成电路(Application specific Integrated Circuit,ASIC)、可编程逻辑器件(Field-Programmable Gate Array,FPGA)以及基于多核处理器架构的处理器。

Claims (20)

  1. 一种上行定位的实现方法,应用于定位服务器,包括:
    向第一测量节点集合发送第一定位指令,其中,所述第一测量节点集合包括至少三个测量节点,目标节点位于所述测量节点的覆盖范围内;
    接收每个测量节点反馈的与所述第一定位指令对应的第一定位属性信息,其中,所述第一定位属性信息包括:测量节点标识和测量节点所在小区的随机接入信息;
    将携带所述第一定位属性信息的随机接入指令发送至所述目标节点,其中,所述随机接入指令用于触发所述目标节点向所述测量节点发送随机接入信号,以确定所述目标节点与每个测量节点之间的通信距离。
  2. 根据权利要求1所述的方法,其中,在所述第一测量节点集合中的一个测量节点为服务节点的情况下,所述将携带所述第一定位属性信息的随机接入指令发送至所述目标节点,包括:
    将所述第一定位属性信息发送至所述服务节点,其中,所述服务节点为与所述目标节点已建立通信的基站小区;
    通过所述服务节点将携带所述第一定位属性信息的下行控制信息DCI发送至所述目标节点。
  3. 一种上行定位的实现方法,应用于测量节点,包括:
    接收定位服务器发送的第一定位指令;
    根据所述第一定位指令提取对应的第一定位属性信息,其中,所述第一定位属性信息为目标节点所要建立通信的多个测量节点的属性信息,所述第一定位属性信息包括:测量节点标识和测量节点所在小区的随机接入信息;
    将所述第一定位属性信息反馈至所述定位服务器。
  4. 一种上行定位的实现方法,应用于服务节点,包括:
    接收定位服务器发送的第二定位指令;
    将根据所述第二定位指令确定的第二测量节点集合反馈至所述定位服务器,其中,所述第二测量节点集合包括除所述服务节点之外的至少两个测量节点,目标节点位于所述测量节点的覆盖范围内,所述服务节点提供的一个服务小区已与所述目标节点建立通信连接;
    接收每个测量节点反馈的第二定位属性信息,其中,所述第二定位属性信息包括:测量节点标识和测量节点所在小区的随机接入信息;
    将携带所述第二定位属性信息的下行控制信息DCI发送至所述目标节点, 其中,所述DCI用于触发所述目标节点向所述测量节点发送随机接入信号,以确定所述目标节点与每个测量节点之间的通信距离。
  5. 根据权利要求4所述的方法,在所述将携带所述第二定位属性信息的DCI发送至所述目标节点之后,还包括:
    接收所述目标节点发送的根据第一配置信息确定的上行定位参考信号,以及每个上行定位参考信号与测量节点的对应关系,其中,所述第一配置信息包括:多个空间相关性、多个预设下行定位参考信号和多个第三定位属性信息,所述空间相关性用于表征每个预设下行定位参考信号与对应上行定位参考信号的相关性,所述第三定位属性信息包括:路损测量信号类型、路损测量信号标识、路损测量信号时频资源、路损测量信号发射功率和路损测量信号序列;
    根据所述上行定位参考信号的接收强度确定功率调整参数;
    将所述功率调整参数返回至所述目标节点,其中,所述功率调整参数用于将所述目标节点发送至对应测量节点的上行定位参考信号的发射功率调整至目标发射功率。
  6. 根据权利要求5所述的方法,其中,所述根据所述上行定位参考信号的接收强度确定功率调整参数,包括:
    通过所述测量节点根据对应上行定位参考信号的接收强度确定功率调整参数;
    接收每个测量节点返回的功率调整参数。
  7. 根据权利要求5所述的方法,在所述接收所述目标节点发送的根据第一配置信息确定的上行定位参考信号之前,还包括:
    接收所述定位服务器发送的定位配置指令和第三定位属性信息,其中,所述定位配置指令携带多个测量节点的预设下行定位参考信号;
    根据所述多个测量节点的预设下行定位参考信号确定对应上行信号资源的空间相关性;
    将所述第一配置信息发送至所述目标节点,其中,所述第一配置信息包括多个空间相关性、多个预设下行定位参考信号和多个第三定位属性信息。
  8. 根据权利要求7所述的方法,其中,所述第三定位属性信息为多个测量节点发送的。
  9. 一种上行定位的实现方法,应用于定位服务器,包括:
    向服务节点发送第二定位指令,其中,所述服务节点提供的一个服务小区已与目标节点建立通信连接;
    接收所述服务节点反馈的第二测量节点集合,其中,所述第二测量节点集合是根据所述第二定位指令而确定的,所述第二测量节点集合包括除所述服务节点之外的至少两个测量节点,所述目标节点位于所述测量节点的覆盖范围内;
    向每个测量节点发送携带服务节点标识的第一定位激活指令,其中,所述第一定位激活指令用于触发每个测量节点将第二定位属性信息发送至所述服务节点,所述第二定位属性信息为所述目标节点所要建立通信的多个测量节点的属性信息,所述第二定位属性信息包括:测量节点标识和测量节点所在小区的随机接入信息。
  10. 根据权利要求9所述的方法,在所述向每个测量节点发送携带服务节点标识的第一定位激活指令之后,还包括:
    在接收到所述目标节点发送的无线资源管理RRM测量信息的情况下,向第一测量节点集合发送第三定位指令,其中,所述第一测量节点集合包括至少三个测量节点,所述目标节点位于所述测量节点的覆盖范围内,所述RRM测量信息包括:所在服务节点的下行定位参考信号类型、所在小区标识、所在时频域资源的位置;
    接收每个测量节点反馈的与所述第三定位指令对应的第三定位属性信息,其中,所述第三定位属性信息为多个测量节点用于路损测量的信号参数信息,所述第三定位属性信息包括:路损测量信号类型、路损测量信号标识、路损测量信号时频资源、路损测量信号发射功率和路损测量信号序列;
    根据所述RRM测量信息和所述第三定位属性信息确定对应测量节点的预设下行定位参考信号;
    将定位配置指令和所述第三定位属性信息发送至所述服务节点,其中,所述定位配置指令携带多个测量节点的预设下行定位参考信号。
  11. 一种上行定位的实现方法,应用于目标节点,包括:
    接收服务节点发送的下行控制信息DCI,其中,所述服务节点提供的一个服务小区已与所述目标节点建立通信连接;
    根据所述DCI向对应测量节点发送随机接入信号,其中,所述随机接入信号用于确定所述目标节点与每个测量节点之间的通信距离。
  12. 根据权利要求11所述的方法,在所述根据所述DCI向对应测量节点发送随机接入信号之后,还包括:
    接收所述服务节点发送的第一配置信息,其中,所述第一配置信息包括多个空间相关性、多个预设下行定位参考信号和多个第三定位属性信息;
    根据所述第一配置信息确定上行定位参考信号的发射波束和发射功率;
    按照所述发射波束和所述发射功率向所述服务节点发送上行定位参考信号,以及每个上行定位参考信号与测量节点的对应关系;
    接收所述服务节点返回的每个上行定位参考信号对应的功率调整参数;
    根据所述功率调整参数确定上行定位参考信号的目标发射功率。
  13. 根据权利要求12所述的方法,在所述接收所述服务节点发送的第一配置信息之前,还包括:
    向所述服务节点发送无线资源管理RRM测量信息,其中,所述RRM测量信息包括:所在服务节点的下行定位参考信号类型、所在小区标识、所在时频域资源的位置。
  14. 根据权利要求12所述的方法,其中,所述根据所述第一配置信息确定上行定位参考信号的发射波束和发射功率,包括:
    根据所述空间相关性和所述预设下行定位参考信号确定对应上行定位参考信号的发射波束;
    根据所述第三定位属性信息确定对应上行定位参考信号的发射功率。
  15. 一种上行定位的实现装置,应用于定位服务器,包括:
    第一发送模块,设置为向第一测量节点集合发送第一定位指令,其中,所述第一测量节点集合包括至少三个测量节点,目标节点位于所述测量节点的覆盖范围内;
    第一接收模块,设置为接收每个测量节点反馈的与所述第一定位指令对应的第一定位属性信息,其中,所述第一定位属性信息包括:测量节点标识和测量节点所在小区的随机接入信息;
    第二发送模块,设置为将携带所述第一定位属性信息的随机接入指令发送至所述目标节点,其中,所述随机接入指令用于触发所述目标节点向所述测量节点发送随机接入信号,以确定所述目标节点与每个测量节点之间的通信距离。
  16. 一种上行定位的实现装置,应用于测量节点,包括:
    第二接收模块,设置为接收定位服务器发送的第一定位指令;
    提取模块,设置为根据所述第一定位指令提取对应的第一定位属性信息,其中,所述第一定位属性信息为目标节点所要建立通信的多个测量节点的属性信息,所述第一定位属性信息包括:测量节点标识和测量节点所在小区的随机接入信息;
    第一反馈模块,设置为将所述第一定位属性信息反馈至所述定位服务器。
  17. 一种上行定位的实现装置,应用于服务节点,包括:
    第三接收模块,设置为接收定位服务器发送的第二定位指令;
    第二反馈模块,设置为将根据所述第二定位指令确定的第二测量节点集合反馈至所述定位服务器,其中,所述第二测量节点集合包括除所述服务节点之外的至少两个测量节点,目标节点位于所述测量节点的覆盖范围内,所述服务节点提供的一个服务小区已与所述目标节点建立通信连接;
    第四接收模块,设置为接收每个测量节点反馈的第二定位属性信息,其中,所述第二定位属性信息包括:测量节点标识和测量节点所在小区的随机接入信息;
    第三发送模块,设置为将携带所述第二定位属性信息的下行控制信息DCI发送至所述目标节点,其中,所述DCI用于触发所述目标节点向所述测量节点发送随机接入信号,以确定所述目标节点与每个测量节点之间的通信距离。
  18. 一种上行定位的实现装置,应用于定位服务器,包括:
    第四发送模块,设置为向服务节点发送第二定位指令,其中,所述服务节点提供的一个服务小区已与目标节点建立通信连接;
    第五接收模块,设置为接收所述服务节点反馈的第二测量节点集合,其中,所述第二测量节点集合是根据所述第二定位指令而确定的,所述第二测量节点集合包括除所述服务节点之外的至少两个测量节点,所述目标节点位于所述测量节点的覆盖范围内;
    第五发送模块,设置为向每个测量节点发送携带服务节点标识的第一定位激活指令,其中,所述第一定位激活指令用于触发每个测量节点将第二定位属性信息发送至所述服务节点,所述第二定位属性信息为所述目标节点所要建立通信的多个测量节点的属性信息,所述第二定位属性信息包括:测量节点标识和测量节点所在小区的随机接入信息。
  19. 一种上行定位的实现装置,应用于目标节点,包括:
    第六接收模块,设置为接收服务节点发送的下行控制信息DCI,其中,所述服务节点提供的一个服务小区已与所述目标节点建立通信连接;
    第六发送模块,设置为根据所述DCI向对应测量节点发送随机接入信号,其中,所述随机接入信号用于确定所述目标节点与每个所述测量节点之间的通信距离。
  20. 一种存储介质,存储有计算机程序,所述计算机程序被处理器执行时实 现权利要求1-14任一项所述的上行定位的实现方法。
PCT/CN2020/086945 2019-04-29 2020-04-26 上行定位的实现方法、装置和存储介质 WO2020221149A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/607,355 US20220210761A1 (en) 2019-04-29 2020-04-26 Method and apparatus for realizing uplink positioning, and storage medium
KR1020217039032A KR20220004153A (ko) 2019-04-29 2020-04-26 업링크 포지셔닝 구현 방법, 장치 및 저장매체
EP20799302.3A EP3965485A4 (en) 2019-04-29 2020-04-26 METHOD AND DEVICE FOR REALIZING UPLINK POSITIONING AND STORAGE MEDIUM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910360386.X 2019-04-29
CN201910360386.XA CN110536412B (zh) 2019-04-29 2019-04-29 上行定位的实现方法、装置和存储介质

Publications (1)

Publication Number Publication Date
WO2020221149A1 true WO2020221149A1 (zh) 2020-11-05

Family

ID=68659794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086945 WO2020221149A1 (zh) 2019-04-29 2020-04-26 上行定位的实现方法、装置和存储介质

Country Status (5)

Country Link
US (1) US20220210761A1 (zh)
EP (1) EP3965485A4 (zh)
KR (1) KR20220004153A (zh)
CN (1) CN110536412B (zh)
WO (1) WO2020221149A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110536412B (zh) * 2019-04-29 2023-03-24 中兴通讯股份有限公司 上行定位的实现方法、装置和存储介质
WO2021227015A1 (en) * 2020-05-15 2021-11-18 Apple Inc. Systems and methods for control signaling for beam searching latency reduction
EP4195563A1 (en) * 2020-08-05 2023-06-14 Datang Mobile Communications Equipment Co., Ltd. Measurement method and apparatus for positioning, and storage medium
CN112004189B (zh) * 2020-08-27 2021-04-27 苏州智铸通信科技股份有限公司 一种对终端设备进行定位的方法、装置、存储介质及基站
CN115550833A (zh) * 2021-06-30 2022-12-30 乐鑫信息科技(上海)股份有限公司 Wi-Fi定位方法和***
WO2023206027A1 (zh) * 2022-04-25 2023-11-02 北京小米移动软件有限公司 能力信息发送、能力确定方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018217323A1 (en) * 2017-05-26 2018-11-29 Qualcomm Incorporated Systems and methods for positioning mobile devices in a fifth generation wireless network
US20190053071A1 (en) * 2017-08-10 2019-02-14 Qualcomm Incorporated Uplink-based positioning reference signaling in multi-beam systems
CN110536412A (zh) * 2019-04-29 2019-12-03 中兴通讯股份有限公司 上行定位的实现方法、装置和存储介质

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101772159A (zh) * 2008-12-30 2010-07-07 华为技术有限公司 用户设备定位方法和通信装置
CN103348746B (zh) * 2011-02-11 2017-05-24 黑莓有限公司 时间提前的随机接入信道发送
CN103139905B (zh) * 2011-11-29 2016-07-13 华为技术有限公司 对用户设备进行定位的方法和装置
CN103582117B (zh) * 2012-08-03 2017-05-24 电信科学技术研究院 应用于多载波***的终端定位方法及设备
CN105578404B (zh) * 2014-10-17 2021-05-11 中兴通讯股份有限公司 一种定位方法及相应的终端、***
WO2018159967A1 (ko) * 2017-02-28 2018-09-07 엘지전자 주식회사 무선 통신 시스템에서의 단말 포지셔닝 방법 및 이를 위한 장치
EP3697140A1 (en) * 2017-05-04 2020-08-19 Ofinno, LLC Rach power offset
CN107404749B (zh) * 2017-06-30 2020-05-08 上海华为技术有限公司 一种通信连接方法及基站
CN109526003B (zh) * 2018-03-05 2020-04-03 大唐联仪科技有限公司 对目标终端的上行信号进行检测的方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018217323A1 (en) * 2017-05-26 2018-11-29 Qualcomm Incorporated Systems and methods for positioning mobile devices in a fifth generation wireless network
US20190053071A1 (en) * 2017-08-10 2019-02-14 Qualcomm Incorporated Uplink-based positioning reference signaling in multi-beam systems
CN110536412A (zh) * 2019-04-29 2019-12-03 中兴通讯股份有限公司 上行定位的实现方法、装置和存储介质

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "RAT Dependent NR Positioning Solutions", 3GPP TSG-RAN WG1 #95 R1-1813592, 2 November 2018 (2018-11-02), XP051479931, DOI: 20200617181003X *
ERICSSON: "RAT Dependent NR Positioning Solutions", 3GPP TSG-RAN WG1 #95 R1-1813592, 2 November 2018 (2018-11-02), XP051479931, DOI: 20200617181246Y *
See also references of EP3965485A4
VIVO: "Views on NR Uplink Positioning Techniques", 3GPP TSG RAN WG1 #96 R1-1901715, 16 February 2019 (2019-02-16), XP051599411, DOI: 20200617181137X *
VIVO: "Views on NR Uplink Positioning Techniques", 3GPP TSG RAN WG1 #96 R1-1901715, 16 February 2019 (2019-02-16), XP051599411, DOI: 20200617181254Y *

Also Published As

Publication number Publication date
EP3965485A1 (en) 2022-03-09
EP3965485A4 (en) 2023-01-11
KR20220004153A (ko) 2022-01-11
US20220210761A1 (en) 2022-06-30
CN110536412B (zh) 2023-03-24
CN110536412A (zh) 2019-12-03

Similar Documents

Publication Publication Date Title
WO2020221149A1 (zh) 上行定位的实现方法、装置和存储介质
US11064492B2 (en) Resource configuration method and apparatus
US20220191880A1 (en) Bandwidth part switching method and apparatus, serving node, user terminal, and medium
EP3817443A1 (en) Method executed by user equipment, and user equipment
CN116347631A (zh) 一种信息处理方法、装置、设备和存储介质
WO2021121208A1 (zh) 定时提前量的确定方法、装置、设备及介质
US11265840B2 (en) Data transmission and management for positioning mobile devices
KR102335102B1 (ko) 랜덤 액세스를 위한 전력 제어 향상
US20210306985A1 (en) Multi-Source Quasi Collocation of Reference Signals
JP7488320B2 (ja) 2ステップのランダムアクセス手順のための方法、基地局及び端末デバイス
US20220345273A1 (en) Method for reference signal transmission, method for reference signal reception, and apparatus for communication
WO2019109358A1 (en) Reporting user equipment capabilities under multiple network connections
US10728898B2 (en) Method for use in transmitting signal, terminal device, and network device
US11329926B2 (en) Measuring transmission delay
WO2019191913A1 (en) Measuring transmission delay
US20220321187A1 (en) Channel State Information Processing Method and Apparatus, and Channel State Information Receiving Method and Apparatus
US11496950B2 (en) Method for determining parameter set of cell, method for sending parameter set of cell, device, and system
JP2021508959A (ja) 測定間隔の設定方法、ネットワークデバイス及び端末デバイス
WO2018103050A1 (zh) 用于随机接入的方法和设备
US10516991B2 (en) Wireless device, network node, and methods and computer programs for the same
US11310704B2 (en) Secondary communication node change
WO2019205925A1 (zh) 通信方法及通信装置
WO2017166043A1 (en) Method for performing random access, and associated terminal device
CN112543081B (zh) 一种数据处理的方法及装置
WO2023226732A1 (zh) 信号的发送方法及装置、信号的接收方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20799302

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217039032

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020799302

Country of ref document: EP

Effective date: 20211129