WO2020217768A1 - 構造体の製造方法および中間構造体 - Google Patents

構造体の製造方法および中間構造体 Download PDF

Info

Publication number
WO2020217768A1
WO2020217768A1 PCT/JP2020/011151 JP2020011151W WO2020217768A1 WO 2020217768 A1 WO2020217768 A1 WO 2020217768A1 JP 2020011151 W JP2020011151 W JP 2020011151W WO 2020217768 A1 WO2020217768 A1 WO 2020217768A1
Authority
WO
WIPO (PCT)
Prior art keywords
etched
region
etching
conductive member
conductive
Prior art date
Application number
PCT/JP2020/011151
Other languages
English (en)
French (fr)
Inventor
文正 堀切
福原 昇
Original Assignee
株式会社サイオクス
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019113773A external-priority patent/JP7254639B2/ja
Application filed by 株式会社サイオクス, 住友化学株式会社 filed Critical 株式会社サイオクス
Priority to US17/605,834 priority Critical patent/US11393693B2/en
Priority to CN202080030627.5A priority patent/CN113728418A/zh
Publication of WO2020217768A1 publication Critical patent/WO2020217768A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • H01L21/30612Etching of AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3063Electrolytic etching
    • H01L21/30635Electrolytic etching of AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3081Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their composition, e.g. multilayer masks, materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3083Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32134Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by liquid etching only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32139Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67075Apparatus for fluid treatment for etching for wet etching
    • H01L21/67086Apparatus for fluid treatment for etching for wet etching with the semiconductor substrates being dipped in baths or vessels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/764Air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT

Definitions

  • the present invention relates to a method for manufacturing a structure and an intermediate structure.
  • Group III nitrides such as gallium nitride (GaN) are used as materials for manufacturing semiconductor devices such as light emitting devices and transistors.
  • Photoelectrochemical (PEC) etching has been proposed as an etching technique for forming various structures on group III nitrides such as GaN (see, for example, Non-Patent Document 1).
  • PEC etching is wet etching with less damage than general dry etching, and damage such as neutral particle beam etching (see, for example, Non-Patent Document 2) and atomic layer etching (see, for example, Non-Patent Document 3). It is preferable in that the apparatus is simpler than the special dry etching with less.
  • One object of the present invention is to provide a technique for satisfactorily advancing PEC etching on a group III nitride.
  • An object to be etched which has a surface to be etched made of a conductive Group III nitride and has a region to be etched arranged on the surface to be etched, and an object to be etched, which is electrically connected to the region to be etched.
  • An object to be processed comprising a conductive member provided so as to be in contact with at least a part of the surface of the conductive region, and a mask formed on the surface to be etched and made of a non-conductive material.
  • the process of preparation and The object to be treated is immersed in an alkaline or acidic etching solution containing peroxodisulfate ion as an oxidant for receiving electrons, and the object to be etched and the conductive member are in contact with the etching solution.
  • a method for manufacturing a structure is provided in which the edge defining the region to be etched does not include the edge of the conductive member and is composed of the edge of the mask.
  • An object to be etched which has a surface to be etched made of a conductive group III nitride and a region to be etched is arranged on the surface to be etched.
  • a conductive member provided so as to be in contact with at least a part of the surface of the conductive region electrically connected to the region to be etched of the object to be etched.
  • An intermediate structure is provided in which the edge defining the region to be etched does not include the edge of the conductive member and is composed of the edge of the mask.
  • a technique for successfully advancing PEC etching on group III nitrides is provided.
  • FIG. 1A is a schematic cross-sectional view illustrating an object to be processed according to the first embodiment of the present invention
  • FIG. 1B is a schematic cross-sectional view showing an example of an object to be etched according to the first embodiment.
  • FIG. 1 (c) is a schematic view of a PEC etching apparatus illustrating the PEC etching step according to the first embodiment.
  • 2 (a) to 2 (c) are schematic cross-sectional views showing a first example of a method for forming a cathode pad.
  • 3 (a) to 3 (c) are schematic cross-sectional views showing a second example of a method for forming a cathode pad.
  • FIG. 4 (a) to 4 (f) are photographs showing the first to sixth processed objects of the experimental example relating to the PEC etching of the first embodiment.
  • 5 (a) and 5 (b) are graphs showing the results of PEC etching in the experimental example.
  • FIG. 6A is a schematic cross-sectional view illustrating the structure according to the second embodiment
  • FIG. 6B is a schematic cross-sectional view showing an example of the etching target according to the second embodiment
  • 7 (a) and 7 (b) are schematic cross-sectional views and schematic plan views illustrating the object to be processed according to the second embodiment, respectively
  • FIG. 7 (c) is PEC etching according to the second embodiment. It is the schematic of the PEC etching apparatus which illustrates the process.
  • FIG. 8 (a) and 8 (b) are schematic plan views of the object to be processed, showing an example in which the cathode pad is arranged along the outer circumference of the object to be etched.
  • FIG. 9 is a schematic cross-sectional view conceptually illustrating an embodiment in which a cathode pad is provided on an etching object having a conductive substrate.
  • 10 (a) to 10 (d) are schematic cross-sectional views showing the objects to be processed in the preliminary experiment.
  • FIG. 11 is a graph showing the results of PEC etching in the preliminary experiment.
  • FIG. 12 (a) and 12 (b) are schematic cross-sectional views illustrating an embodiment in which the cathode pad is arranged so that the edge of the cathode pad is the edge of the mask defining the region to be etched. And a plan view. 13 (a) and 13 (b) illustrate an embodiment in which the non-conductive mask and the cathode pad are arranged so that the edge of the non-conductive mask becomes the edge of the mask defining the region to be etched. It is a schematic cross-sectional view and a plan view.
  • FIG. 14 is a photograph showing the result of PEC etching using a Ti mask.
  • FIGS. 15 (a) is a photograph showing a processing object on which a non-conductive mask and a cathode pad are formed, and FIGS. 15 (b) and 15 (c) are in the upper right circle of FIG. 15 (a). It is an enlarged photograph of a part of the area shown in.
  • This manufacturing method includes an etching step (hereinafter, also referred to as a PEC etching step) using photoelectrochemical (PEC) etching on an etching target 10 (hereinafter, also referred to as a wafer 10) which is a material of the structure.
  • PEC etching is also simply referred to as etching.
  • the wafer 10 has a substrate 11 and a group III nitride layer 12 (hereinafter, also referred to as epi layer 12) formed on the substrate 11 (see FIG. 1A).
  • the upper surface of the epi layer 12 constitutes the surface to be etched 20 to be etched.
  • the surface to be etched 20 is made of a conductive group III nitride.
  • a region 21 to be etched is arranged on the surface 20 to be etched.
  • the object to be PEC-etched that is, the object to be immersed (contacted) in the etching solution 201 is referred to as the object 100 to be processed.
  • the object to be processed 100 can be regarded as an intermediate stage structure (intermediate structure) for obtaining the final structure.
  • the object to be processed 100 may have at least a wafer 10 and may further have a mask 50 or the like as a member required for the PEC etching process.
  • the mask 50 is formed in a pattern in which the region 21 to be etched is opened on the surface 20 to be etched of the wafer 10. That is, the mask 50 is arranged at a position defining the region 21 to be etched.
  • 10 (a) to 10 (d) are schematic cross-sectional views showing the object to be processed 100 in the preliminary experiment.
  • PEC etching was performed with the object 100 to be treated immersed in the etching solution 201 contained in the container 210.
  • etching solution 201 an acidic solution obtained by mixing 0.1 M aqueous solution of phosphoric acid (H 3 PO 4 ) and 0.05 M aqueous solution of K 2 S 2 O 8 at a ratio of 1: 1 was used.
  • the surface 20 to be etched was irradiated with ultraviolet (UV) light 221 via the etching solution 201.
  • the irradiation wavelength of the UV light 221 was 260 nm, and the irradiation intensity (I) was 4 mW / cm 2 .
  • the distance L ( electrolyte ) from the surface 20 to be etched to the upper surface 202 of the etching solution 201 was set to 5 mm.
  • the mask 50 was made of silicon oxide (SiO 2 ), which is a non-conductive material.
  • 10 (a) to 10 (d) show the situations of the first to fourth preliminary experiments, respectively.
  • an n-type conductive gallium nitride (GaN) substrate was used as the substrate 11 of the wafer 10.
  • a semi-insulating sapphire substrate was used as the substrate 11 of the wafer 10.
  • the "electrically conductive”, for example, a specific resistance refers to a state less than 10 5 [Omega] cm
  • the term "semi-insulating" for example, a specific resistance refers to a state is 10 5 [Omega] cm or more.
  • an n-type conductive GaN layer was grown on the substrate 11 as the epi layer 12.
  • the region 21 to be etched is defined as a portion exposed to the etching solution 201.
  • the region 21 to be etched is considered to function as an anode for PEC etching, as will be described later.
  • the portion exposed to the etching solution 201 is considered to be able to function as a cathode for PEC etching, as will be described later. ..
  • the region that can function as the cathode for PEC etching is hereinafter referred to as the cathode region 40.
  • the cathode region 40 is shown by a thick line in FIGS. 10 (a) to 10 (d). The fact that the cathode region 40 is shown by a thick line is the same in FIGS. 1 (a) and 9 which will be described later.
  • the object 100 to be processed was placed on the support member (spacer) 240 in such a manner that the bottom surface of the conductive GaN substrate 11 was exposed to the etching solution 201.
  • the side surfaces of the substrate 11 and the epi layer 12 and the bottom surface of the substrate 11 form the cathode region 40.
  • the object 100 to be processed was placed on the bottom surface of the container 210 so that the bottom surface of the conductive GaN substrate 11 was not exposed to the etching solution 201.
  • the side surfaces of the substrate 11 and the epi layer 12 form the cathode region 40.
  • the object to be treated 100 was placed on the bottom surface of the container 210 as in the second preliminary experiment.
  • the surface of the substrate 11 does not become the cathode region 40 even if it is exposed to the etching solution 201, and only the side surface of the epi layer 12 is the cathode region 40.
  • the object to be treated 100 was placed on the bottom surface of the container 210 as in the second preliminary experiment.
  • the object 100 to be processed in the fourth preliminary experiment has a resist coat 60 in addition to the wafer 10 and the mask 50.
  • the resist coat 60 is formed so as to cover the side surface of the wafer 10, that is, the side surface of the substrate 11 and the epi layer 12, and the bottom surface of the wafer 10, that is, the bottom surface of the substrate 11. Since the resist coat 60 is peeled off when the alkaline etching solution 201 is used, the acidic etching solution 201 is used in this preliminary experiment.
  • the conductive GaN substrate 11 is used as in the first and second preliminary experiments, but since the resist coat 60 is formed, the side surfaces of the substrate 11 and the epi layer 12 and the substrate Neither of the bottom surfaces of 11 is exposed to the etching solution 201. Therefore, in the fourth preliminary experiment, the cathode region 40 does not exist.
  • a 6 mm square GaN substrate 11 having a thickness of 0.4 mm was used, and the n-type impurity concentration was 1 ⁇ 10 16 / cm as the epi layer 12 on the GaN substrate 11.
  • a GaN layer (n-GaN) having a thickness of 3 and a thickness of 10 ⁇ m was formed.
  • a 6 mm square sapphire substrate 11 having a thickness of 0.4 mm was used, and a GaN layer (un-GaN) having a thickness of 3 ⁇ m to which impurities were not added was used as the epi layer 12 on the sapphire substrate 11.
  • a laminate was formed with a GaN layer (n-GaN) having an n-type impurity concentration of 1.2 ⁇ 10 16 / cm 3 and a thickness of 2 ⁇ m (similar to the structure shown in FIG. 1 (b) described later).
  • the area of the cathode region 40 in the third preliminary experiment is 0.00048 cm 2 (the area of the side surface of n-GaN which is the conductive portion of the epi layer 12).
  • SO 4 * radical By irradiation with UV light 221 to the surface to be etched 20 on which an etching liquid 201, ion radical sulfate - can be generated (SO 4 * radical). SO 4 - * radicals in the etching solution 201 is presumed to be present spreads from the etched surface 20 to some extent downwards. Of cathode region 40 (a region that can function as a cathode of the PEC etching), SO 4 - * region radical is present, considered to be a region functioning as effectively cathode (effective cathode region).
  • the sides of the epi layer 12 and the sides of the substrate 11 are considered to be effective cathode regions. Further, in the third preliminary experiment, the side surface of the epi layer 12 is considered to be an effective cathode region.
  • SO 4 - * radicals until the bottom surface near the center of the substrate 11 without reaching, is presumed to be present in the outer peripheral portion of the bottom surface of the substrate 11. That is, in the first preliminary experiment, it is presumed that the effective cathode region on the bottom surface of the substrate 11 is the outer peripheral portion of the bottom surface of the substrate 11. Based on the results shown in FIG.
  • the outer peripheral portion of the bottom surface of the substrate 11 having a width of about 0.4 mm is an effective cathode region.
  • the effective area of the cathode region in the first preliminary experiment is estimated to be 0.192 cm 2 .
  • FIG. 11 is a graph showing the results of PEC etching in the preliminary experiment.
  • the horizontal axis represents the area of the effective cathode region (Cathode area), and the vertical axis represents the etching rate.
  • the result of the first preliminary experiment is shown as "with spacer”
  • the result of the second preliminary experiment is shown as "w / o spacer”
  • the result of the third preliminary experiment is shown as "on SAP”
  • the result of the fourth preliminary experiment is shown. Is referred to as "Side & back resist coat”.
  • the cathode region 40 can be widely provided by utilizing the side surface or the bottom surface of the substrate 11, so that it is easy to increase the etching rate.
  • the third preliminary experiment it is difficult to increase the etching rate because the cathode region 40 is composed of a narrow region only on the side surface of the epi layer 12 by using the semi-insulating substrate 11.
  • etching hardly progresses as in the fourth preliminary experiment in which the cathode region 40 does not exist.
  • the mask 50 is made of a conductive material, the surface of the mask 50 acts as the cathode region 40. This is because the mask 50 is electrically connected to the region 21 to be etched. In such a case, it is possible to increase the etching rate as compared with the case where the mask 50 is made of a non-conductive material.
  • an epi layer 12 is grown on a semi-insulating substrate 11 such as a sapphire substrate, a silicon carbide (SiC) substrate, and a semi-insulating GaN substrate. You may want to use the wafer 10. Further, in such a case, it may be desired to form the mask 50 with a non-conductive material such as a resist or silicon oxide.
  • a semi-insulating substrate 11 such as a sapphire substrate, a silicon carbide (SiC) substrate, and a semi-insulating GaN substrate.
  • the inventor of the present application proposes a technique capable of satisfactorily advancing PEC etching even in such a case.
  • FIG. 1A is a schematic cross-sectional view illustrating the object 100 to be processed according to the first embodiment.
  • the object to be processed 100 is prepared.
  • the object 100 to be processed according to the present embodiment has a cathode pad (conductive member) 30 in addition to the wafer 10 and the mask 50.
  • a semi-insulating substrate for example, a sapphire substrate, a SiC substrate, a (semi-insulating) GaN substrate, or the like is used.
  • the mask 50 is made of a non-conductive material such as resist, silicon oxide and the like. The shape, width, etching depth, etc. of the region 21 to be etched may be appropriately selected as necessary.
  • the mask 50 is arranged at a position defining the region 21 to be etched (the edge defining the region 21 to be etched is configured to include the edge of the mask 50).
  • the cathode pad 30 is a conductive member made of a conductive material.
  • the cathode pad 30 is provided so as to come into contact with at least a part of the surface of the conductive region of the wafer 10 which is electrically connected to the region 21 to be etched.
  • the cathode pad 30 illustrated in FIG. 1A is preferably in contact with the mask 50 in a region included in the mask 50 in a plan view on the surface to be etched 20 (a gap between the mask 50 and the cathode pad 30). The surface to be etched 20 is not exposed).
  • the cathode pad 30 is not arranged at a position defining the region 21 to be etched.
  • the cathode pad 30 is not arranged at a position defining the region 21 to be etched" means that at least a part of the cathode pad 30 is "not arranged at a position defining the region 21 to be etched", that is, the cathode.
  • the pad 30 has a portion that does not function as a mask that defines the region 21 to be etched (the region 21 to be etched is not defined only by the cathode pad 30 as a mask, and the edge that defines the region 21 to be etched is the cathode. It means that it is not composed only of the edge of the pad 30).
  • the arrangement of the cathode pads 30 may be appropriately adjusted as needed.
  • the cathode pad 30 may be arranged in a region not included in the mask 50 in a plan view.
  • the edge of the cathode pad 30 may have a portion included in the edge defining the region 21 to be etched, or may have a portion not included in the edge defining the region 21 to be etched.
  • a material having a low Schottky barrier height with respect to the surface to be etched 20 and having resistance to the etching solution 201 (against alkali or acid) is preferably used.
  • a metal such as titanium (Ti) is preferably used.
  • Ti titanium
  • Ti / Au in which gold (Au) is laminated on Ti, nickel (Ni), platinum (Pt), single-layer Au, or the like can also be used.
  • the upper surface of the cathode pad 30 When the object 100 to be processed is immersed in the etching solution 201, the upper surface of the cathode pad 30 is exposed to the etching solution 201. Therefore, the upper surface of the cathode pad 30 acts as the cathode region 40. As described above, in the present embodiment, in addition to the side surface of the epi layer 12, the upper surface of the cathode pad 30 also constitutes the cathode region 40.
  • the cathode region 40 becomes wider than in the case where the cathode pad 30 is not provided.
  • PEC etching can proceed more satisfactorily as compared with the case where the cathode pad 30 is not provided.
  • the cathode pad 30 of the present embodiment since the upper surface of the cathode pad 30 can be used as the cathode region 40, it is easy to provide the cathode region 40 widely. Further, since the cathode pad 30 is provided on the surface to be etched 20, SO 4 is produced by irradiating the UV light 221 onto the surface to be etched 20 - * radicals, the cathode pad 30 more reliably It can be present near the upper surface. This makes it easy to use the upper surface of the cathode pad 30 as an effective cathode region.
  • FIG. 1B is a schematic cross-sectional view showing an example of the structure of the wafer 10 (used in an experimental example described later).
  • the substrate 11 is a sapphire substrate.
  • the epi layer 12 has a thickness of a GaN layer (un-GaN) having a thickness of 3 ⁇ m without impurities and a carrier concentration (net donor concentration) of 1.2 ⁇ 10 16 / cm 3 with n-type impurities added. Is composed of a stack of a 2 ⁇ m GaN layer (n-GaN).
  • FIG. 1C is a schematic cross-sectional view of the PEC etching apparatus 200 showing the PEC etching process.
  • the PEC etching apparatus 200 includes a container 210 for accommodating the etching solution 201 and a light source 220 for emitting ultraviolet (UV) light 221.
  • UV ultraviolet
  • the object to be processed 100 is immersed in the etching solution 201, and with the region 21 to be etched and the cathode pad 30 in contact with the etching solution 201, UV light 221 is passed through the etching solution 201 to the surface 20 to be etched.
  • the group III nitride constituting the region to be etched 21 is etched by irradiating with. Details of the etching solution 201, UV light 221 and the mechanism of PEC etching will be described later.
  • the method for manufacturing the structure may include steps such as electrode formation and protective film formation as other steps.
  • FIGS. 2 (a) to 2 (c) are schematic cross-sectional views showing a first example of a method for forming the cathode pad 30.
  • the cathode pad 30 is formed before the formation of the mask 50.
  • a resist is exemplified as the material of the mask 50.
  • a cathode pad 30 is formed on the surface to be etched 20 of the wafer 10 by, for example, Ti by using lift-off or the like.
  • a resist film 51 is formed on the entire surface of the surface to be etched 20 so as to cover the cathode pad 30.
  • the mask 50 is formed by patterning the resist film 51.
  • the mask 50 has an opening for exposing the region 21 to be etched and an opening for exposing the upper surface of the cathode pad 30.
  • 3 (a) to 3 (c) are schematic cross-sectional views showing a second example of a method for forming the cathode pad 30.
  • the cathode pad 30 is formed after the formation of the mask 50.
  • Silicon oxide is exemplified as the material of the mask 50.
  • a silicon oxide film is formed on the entire surface of the surface 20 to be etched of the wafer 10, and then the silicon oxide film is patterned by photolithography and etching to form the mask 50. To do.
  • the mask 50 has an opening for exposing the region 21 to be etched and has an opening in the region where the cathode pad 30 should be formed.
  • a resist pattern 70 for lift-off is formed so as to cover the region 21 to be etched and expose the region where the cathode pad 30 should be formed. Then, for example, a Ti film 31 is formed on the entire surface of the surface to be etched 20.
  • the cathode pad 30 is formed in the region where the cathode pad 30 should be formed by lift-off, that is, by removing the unnecessary portion of the Ti film 31 together with the resist pattern 70. Do (leave).
  • the mask 50 when the mask 50 is formed of silicon oxide, hydrofluoric acid is preferably used for etching when forming the mask 50. Due to this, if the mask 50 is formed after the cathode pad 30 is formed, there is a concern that the cathode pad 30 may be etched. By forming the cathode pad 30 after the formation of the mask 50 as in the second example, such unnecessary etching of the cathode pad 30 can be avoided.
  • GaN is exemplified as a group III nitride to be etched.
  • the etching solution 201 contains oxygen used for producing an oxide of a Group III element contained in the Group III nitride constituting the region 21 to be etched, and further contains an oxidizing agent that receives electrons, and is an alkaline or acidic etching. Liquid 201 is used.
  • the oxidizing agent peroxodisulfate ion (S 2 O 8 2-) are exemplified.
  • the etching solution 201 was mixed aqueous solution of potassium hydroxide (KOH) and potassium peroxodisulfate (K 2 S 2 O 8) and the aqueous solution include those showing alkalinity at the start of etching.
  • KOH potassium hydroxide
  • K 2 S 2 O 8 potassium peroxodisulfate
  • Such an etching solution 201 is prepared, for example, by mixing 0.01 M KOH aqueous solution and 0.05 M K 2 S 2 O 8 aqueous solution 1: 1.
  • the concentration of the KOH aqueous solution, the concentration of the K 2 S 2 O 8 aqueous solution, and the mixing ratio of these aqueous solutions may be appropriately adjusted as necessary.
  • the etching solution 201 which is a mixture of the KOH aqueous solution and the K 2 S 2 O 8 aqueous solution, can be made acidic at the start of etching, for example, by lowering the concentration of the KOH aqueous solution.
  • the PEC etching mechanism when the etching solution 201 of the first example is used will be described.
  • the generated holes decompose GaN into Ga 3+ and N 2 (Chemical formula 1), and further, Ga 3+ is oxidized by hydroxide ions (OH ⁇ ) to generate gallium oxide (Ga 2 O 3 ). (Chemical 2).
  • the produced Ga 2 O 3 is dissolved in an alkali or an acid. In this way, PEC etching of GaN is performed.
  • the generated holes react with water and the water is decomposed to generate oxygen (Chemical Formula 3).
  • the etching solution 201 there is a mixture of an aqueous solution of phosphoric acid (H 3 PO 4 ) and an aqueous solution of potassium persulfate (K 2 S 2 O 8 ), which shows acidity at the start of etching. ..
  • Such an etching solution 201 is prepared, for example, by mixing 0.01 M aqueous solution of H 3 PO 4 and 0.05 M aqueous solution of K 2 S 2 O 8 at a ratio of 1: 1.
  • the concentration of the H 3 PO 4 aqueous solution, the concentration of the K 2 S 2 O 8 aqueous solution, and the mixing ratio of these aqueous solutions may be appropriately adjusted as necessary.
  • the etching solution 201 in which the H 3 PO 4 aqueous solution and the K 2 S 2 O 8 aqueous solution are mixed is acidic at an arbitrary mixing ratio. Is. It is preferable that the etching solution 201 is acidic from the viewpoint of facilitating the use of the resist mask as the mask 50.
  • the region 21 to be etched where PEC etching of GaN occurs is considered to function as an anode in which holes are consumed.
  • electrons are consumed on the surface of the conductive region of the object to be processed 100, which is electrically connected to the region 21 to be etched, exposed to the etching solution 201. It is thought to function as a cathode to be (released).
  • SO 4 from S 2 O 8 2- - As a method of generating a * radicals, irradiation of UV light 221, and may be at least one of heating.
  • S 2 O 8 2-by by increasing the light absorption SO 4 - To * radical efficiently generated the wavelength of the UV light 221, be less than 200nm or 310nm Is preferable.
  • the etching solution 201 S 2 O 8 2- from SO 4 - * that generate a radical efficiently performed from the viewpoint, it is preferable that the wavelength of the UV light 221 is 200 nm or more and less than 310 nm. From S 2 O 8 2- SO 4 - generating a * radicals, when performing the heating, the wavelength of the UV light 221, may be (at 365nm or less) 310 nm or more.
  • the distance L from the surface to be etched 20 of the wafer 10 to the upper surface 202 of the etching solution 201 for example, a 5mm or less than 100mm It is preferable to do so.
  • Distance L is, for example, excessively short and less than 5 mm, SO 4 are produced in the wafer 10 above the etching solution 201 - amount of * radicals, may become unstable due to fluctuation of the distance L.
  • the distance L is, for example, 100mm than the excessively long, in the wafer 10 above the etching solution 201, does not contribute to the PEC etching, wasting many SO 4 - * Since radicals are produced, the use of the etching solution 201 Efficiency is reduced.
  • PEC etching can also be performed on group III nitrides other than the exemplified GaN.
  • the group III element contained in the group III nitride is at least one of aluminum (Al), gallium (Ga) and indium (In).
  • the concept of PEC etching for the Al component or In component in the group III nitride is the same as the concept described for the Ga component with reference to (Chemical formula 1) and (Chemical formula 2), or (Chemical formula 7). That is, PEC etching can be performed by generating holes by irradiating with UV light 221 to generate an oxide of Al or an oxide of In, and dissolving these oxides in an alkali or an acid.
  • the wavelength of the UV light 221 (365 nm or less) may be appropriately changed depending on the composition of the group III nitride to be etched. Based on the PEC etching of GaN, when Al is contained, UV light having a shorter wavelength may be used, and when In is contained, UV light having a longer wavelength can also be used.
  • the mask 50 and the cathode pad 30 are formed on the surface 20 to be etched of the 6 mm square wafer 10 having the laminated structure as described with reference to FIG. 1 (b), and the area of the cathode pad 30 is formed. It was examined how the progress of PEC etching changes by changing the above.
  • etching solution 201 a mixture of 0.01 M KOH aqueous solution and 0.05 M K 2 S 2 O 8 aqueous solution at a ratio of 1: 1 was used.
  • the surface 20 to be etched was irradiated with UV light 221 via the etching solution 201.
  • the irradiation wavelength of the UV light 221 was 260 nm, and the irradiation intensity (I) was 4 mW / cm 2 .
  • the distance L ( electrolyte ) from the surface 20 to be etched to the upper surface 202 of the etching solution 201 was set to 5 mm.
  • FIGS. 4 (a) to 4 (e) show the mask 50 and the cathode pad 30 formed on the first to fifth processing objects (hereinafter, also referred to as the first to fifth samples) of this experimental example, respectively. It is a photograph showing a pattern.
  • a mask 50 having an opening region having the same shape was formed from silicon oxide (SiO 2 ).
  • the forming region of the mask 50 is shown as a dark region.
  • the bright region indicates the opening region of the mask 50, that is, the region 21 to be etched.
  • the portion indicated by “Ti” indicates the cathode pad 30 formed of Ti.
  • the area of the portion indicated by "Ti" that is, the area of the cathode pad 30 is increased.
  • the numerical value shown in the upper part is the ratio of the area of the upper surface of the cathode pad 30 to the total area (36 mm 2 ) of the surface to be etched 20 of 6 mm square (hereinafter referred to as the cathode ratio). Also called).
  • the cathode ratios of the first to fifth samples are 0.0056 (0.6%), 0.011 (1.1%), 0.022 (2.2%), and 0.044 (4.4), respectively. %) And 0.078 (7.8%).
  • FIG. 4 (f) is a photograph showing the pattern of the mask 50 of the sixth object to be processed (hereinafter, also referred to as the sixth sample).
  • Ti formed a mask 50 having an opening region having the same shape as the first to fifth samples.
  • the cathode pad 30 was not formed in the sixth sample.
  • the sixth sample does not have a cathode pad 30, the mask 50 itself is formed of Ti and acts as a cathode region 40. Therefore, in the mask 50 having an opening region having the same shape as the first to fifth samples, the cathode pad It corresponds to the case where the area of 30 is expanded to the limit.
  • the sixth sample corresponds to a cathode ratio of 0.504 (50.4%).
  • FIGS. 5 (a) and 5 (b) are graphs showing the results of this experimental example.
  • FIG. 5A shows the dependence of the etching depth on the etching time of the first to sixth samples.
  • FIG. 5B shows the dependence of the etching rate on the cathode area (value in which the cathode ratio is converted into the area) of the first to sixth samples.
  • the etching rate is an average value in an etching time of 120 minutes.
  • the etching depth per unit time that is, the etching rate can be improved by forming the cathode pad 30. Further, it can be seen that the etching rate can be improved by increasing the cathode ratio (widening the cathode area).
  • the guideline for the preferable size of the cathode pad 30 can be said as follows, for example.
  • the cathode ratio that is, the ratio of the cathode area (the area where the cathode pad 30 contacts the etching solution 201) to the entire area of the surface to be etched 20 is preferably 1% or more, and preferably 2% or more. More preferably, it is more preferably 4% or more, further preferably 8% or more.
  • the guideline for the preferable size of the cathode pad 30 can be said as follows, for example.
  • the cathode area (the area where the cathode pad 30 contacts the etching solution 201) is based on the area of the cathode region 40 when the cathode pad 30 is not provided, that is, the total area of the side surface (of the conductive portion) of the epi layer 12. Also preferably wide.
  • HEMT high electron mobility transistor
  • FIG. 6A is a schematic cross-sectional view illustrating the structure 150 (hereinafter, also referred to as HEMT150) according to the second embodiment.
  • FIG. 6B is a schematic cross-sectional view illustrating the wafer 10 used as the material of HEMT150.
  • the epi layer 12 includes, for example, a nucleation layer 12a made of aluminum nitride (AlN), a 1.2 ⁇ m-thick channel layer 12b made of GaN, and a thickness of gallium nitride (AlGaN).
  • a laminated structure of a barrier layer 12c having a diameter of 24 nm and a cap layer 12d having a thickness of 5 nm made of GaN is used.
  • Two-dimensional electron gas (2DEG) serving as a channel of HEMT150 is generated in the laminated portion of the channel layer 12b and the barrier layer 12c.
  • 2DEG Two-dimensional electron gas
  • the source electrode 151, the gate electrode 152, and the drain electrode 153 of HEMT150 are formed on the upper surface of the cap layer 12d.
  • a protective film 154 is formed so as to have an opening on the upper surfaces of the source electrode 151, the gate electrode 152, and the drain electrode 153.
  • the HEMT 150 has an element separation groove 160 that separates adjacent elements.
  • the element separation groove 160 is provided so that the bottom surface thereof is arranged at a position deeper than the upper surface of the channel layer 12b, that is, 2DEG is divided by the element separation groove 160 between adjacent elements. ..
  • FIG. 7A is a schematic cross-sectional view illustrating the object to be processed 100 when PEC etching for forming the element separation groove 160 is performed.
  • FIG. 7B is a schematic plan view of the object to be processed 100.
  • FIG. 7C is a schematic cross-sectional view of the PEC etching apparatus 200 showing the PEC etching process.
  • the object to be processed 100 of this example has a structure in which a mask 50 for PEC etching is formed on a member at a stage where the source electrode 151 and the drain electrode 153 are formed on the wafer 10.
  • the source electrode 151 and the drain electrode 153 are used as the cathode pad 30.
  • the cathode pad 30 (source electrode 151 and drain electrode 153) is formed of, for example, Ti / Al / Au in which aluminum (Al) is laminated on Ti and Au is further laminated on Al.
  • the mask 50 is formed on the surface to be etched 20 which is the upper surface of the cap layer 12d, has an opening for exposing the region 21 to be etched, and has an opening for exposing the upper surface of the cathode pad 30 (source electrode 151 and drain electrode 153).
  • the region 21 to be etched is a region in which the element separation groove 160 should be formed, and is arranged in a grid pattern so as to surround each HEMT element in a plan view.
  • the mask 50 is formed of, for example, a resist.
  • As the etching solution 201 an acidic one is preferably used (from the start of etching).
  • the group III nitride constituting the region 21 to be etched is etched to a position deeper than the upper surface of the channel layer 12b to form a recess used as the element separation groove 160.
  • the mask 50 is removed, the gate electrode 152 is formed, and the protective film 154 is formed. In this way, HEMT150 is manufactured.
  • the element of the HEMT 150 is used. It is easy to form the separation groove 160 by PEC etching.
  • a mask 50 made of a non-conductive material (hereinafter, also referred to as a non-conductive mask 50) is used by providing the cathode pad 30, PEC Etching can proceed satisfactorily.
  • a part of the edge of the mask defining the region 21 to be etched may be formed by the edge of the cathode pad 30.
  • all the edges of the mask defining the region 21 to be etched 21 are used. It is preferable that the portion is composed of the edge of the non-conductive mask 50 without including the edge of the cathode pad 30.
  • the cathode pad 30 is arranged inside the non-conductive mask 50 (on the side opposite to the region 21 to be etched), that is, the entire circumference of the cathode pad 30 is non-conductive. It is obtained by arranging the cathode pad 30 so as to be surrounded by the sex mask 50 (see, for example, FIG. 7B).
  • FIG. 12 (a) and 12 (b) exemplify an embodiment in which the cathode pad 30 is arranged so that the edge 35 of the cathode pad 30 becomes the edge 85 of the mask 80 that defines the region 21 to be etched.
  • a schematic cross-sectional view and a plan view (a view showing a portion where the edge 85 of the mask 80 is composed of the edge 35 of the cathode pad 30).
  • the edge of the recess 22 is ideally formed along the edge 85 of the mask 80, that is, the edge 35 of the cathode pad 30 (the edge 23a of the recess 22 in the ideal case is indicated by a broken line).
  • the recess 22 is actually located at a position distant from the edge 35 of the cathode pad 30 to the outside (toward the region 21 to be etched) and has a disordered shape in which the distance from the edge 35 is not constant. It was found that the edge 23 was formed. It is presumed that the reason for this is that the cathode pad 30 is conductive and a depletion layer is formed on the surface to be etched 20 in the vicinity of the cathode pad 30.
  • the non-conductive mask 50 and the cathode pad 30 are provided so that the edge 55 of the non-conductive mask 50 becomes the edge 85 of the mask 80 defining the region 21 to be etched.
  • the cathode pad 30 is arranged inside the non-conductive mask 50 (on the side opposite to the region 21 to be etched).
  • the (shortest) distance (hereinafter referred to as offset distance) between the edge 85 of the mask 80, that is, the edge 55 of the non-conductive mask 50 and the edge 35 of the cathode pad 30 is set to D OFF .
  • the inventor of the present application suppresses the influence of the depletion layer caused by the cathode pad 30 by lengthening the offset distance Doff to some extent or more, and positions the position along the edge 85 of the mask 80 (edge 55 of the non-conductive mask 50). It was found that the edge 23 of the recess 22 can be formed.
  • the offset distance D OFF is preferably 5 ⁇ m or more, and more preferably 10 ⁇ m or more.
  • the upper limit of the offset distance D OFF is not particularly limited.
  • edge 85 of the mask 80 that defines the region 21 to be etched with the edge 55 of the non-conductive mask 50, the controllability of the shape of the edge 23 of the recess 22 formed by PEC etching is enhanced. be able to.
  • the cathode pad 30 is arranged inside the closed edge of the non-conductive mask 50 that defines the region 21 to be etched. (Depending on the device structure to be manufactured, etc.), the cathode pad 30 may be arranged outside the edge (see, for example, FIG. 15A described later). In such an embodiment, it becomes easier to secure a long offset distance D OFF from the edge of the non-conductive mask 50 defining the region 21 to be etched to the cathode pad 30.
  • FIG. 14 is a photograph showing the result of PEC etching using a Ti mask. Of the square-shaped areas shown in the photograph, the bright areas on the upper side and the right side indicate the Ti mask. A slightly dark region on the outside (lower or left side) of the Ti mask indicates an etched region 21 defined by the Ti mask. An irregularly shaped edge 23 of the formed recess 22 is observed in the region 21 to be etched.
  • FIG. 15A is a photograph showing a processing object 100 on which the non-conductive mask 50 and the cathode pad 30 are formed.
  • the cathode pad 30 is shown as a bright region and the non-conductive mask 50 is shown as a darker region than the cathode pad 30.
  • the region to be etched is defined by the non-conductive mask 50 and is shown as a darker (linear) region than the non-conductive mask 50.
  • the experimental conditions in the experimental example described with reference to FIGS. 15 (a) to 15 (c) are shown in FIG. 4 (a) in the first embodiment except that an aqueous K 2 S 2 O 8 solution was used as the etching solution.
  • the non-conductive mask 50 was made of SiO 2
  • the cathode pad 30 was made of Ti.
  • FIG. 15 (b) and 15 (c) are enlarged photographs of a part of the area shown in the upper right circle of FIG. 15 (a). Within the circle, a quadrangular annular region to be etched 21 is defined by the non-conductive mask 50. 15 (b) and 15 (c) show the upper right corner of the region 21 to be etched.
  • FIG. 15B is a photograph before PEC etching
  • FIG. 15C is a photograph after PEC etching.
  • the width of the portion of the region 21 to be etched extending in the left-right direction of the paper surface is 76 ⁇ m
  • the width of the portion extending in the vertical direction of the paper surface of the region 21 to be etched is , 45 ⁇ m.
  • the edge of the mask defining the region 21 to be etched does not include the edge of the cathode pad 30, and is composed of the edge of the non-conductive mask 50. That is, the cathode pad 30 is not arranged at a position defining the etching region 21. Further, the edge of the non-conductive mask 50 defining the region 21 to be etched is sufficiently separated from the cathode pad 30 (more than 5 ⁇ m or more than 10 ⁇ m) (see FIG. 15 (a)).
  • the recess 22 is formed in a form substantially matching the opening shape of the non-conductive mask 50, and is non-conductive.
  • the edge 23 of the recess 22 can be formed at a position along the edge of the sex mask 50. In this way, the edge defining the region 21 to be etched is formed by the edge of the non-conductive mask 50 without including the edge of the cathode pad 30, so that PEC etching with improved controllability of the shape of the recess 22 can be performed. It can be carried out.
  • the shape, size, arrangement, number, etc. of the cathode pads 30 may be variously adjusted as needed.
  • FIGS. 8 (a) and 8 (b) are schematic plan views of the object 100 to be processed, showing an example in which the cathode pad 30 is arranged along the outer circumference of the wafer 10. The edge of the wafer 10 is indicated by a thick line.
  • FIG. 8A shows an example in which the cathode pad 30 is arranged inside the wafer 10 in a plan view along the outer circumference of the wafer 10.
  • FIG. 8B shows an example in which the cathode pad 30 is arranged along the outer circumference of the wafer 10 so as to extend to the outside of the wafer 10 (protruding in an eaves shape) in a plan view.
  • the cathode pad 30 By arranging the cathode pad 30 to the outside of the wafer 10 as in the example shown in FIG. 8B, the area where the cathode pad 30 comes into contact with the etching solution 201 can be widened, so that the cathode region 40 can be made larger. Can be widely provided.
  • Such a structure is formed, for example, by adhering (or contacting) the cathode pad 30 prepared as a separate body to the wafer 10.
  • the substrate 11 of the wafer 10 is semi-insulating is illustrated, but the substrate 11 may be conductive. That is, the cathode pad 30 may be provided when the substrate 11 is conductive. When the substrate 11 is conductive, the cathode pad 30 can be arranged at any place on the surface of the substrate 11.
  • FIG. 9 is a schematic cross-sectional view conceptually illustrating an embodiment in which the cathode pad 30 is provided on the wafer 10 having the conductive substrate 11.
  • the cathode pad 30 can be placed on the top surface of the wafer 10 (ie, on the surface 20 to be etched), but also the cathode pad 30 on the side surface (of the substrate 11) of the wafer 10.
  • the cathode pad 30 can be arranged on the bottom surface (of the substrate 11) of the wafer 10.
  • the substrate 11 alone is conductive, the substrate 11 itself from which the epi layer 12 is omitted is used as the wafer 10, and the cathode pad 30 is arranged on the upper surface (of the substrate 11) of the wafer 10. Is also possible. Where on the surface of the conductive substrate 11 the cathode pad 30 is arranged may be appropriately selected as necessary.
  • the etchant 201 for example, as an etchant 201 is acidic in etching the beginning, it is also possible to use only aqueous K 2 S 2 O 8. In this case, the concentration of the K 2 S 2 O 8 aqueous solution may be, for example, 0.025 M.
  • the etching solution 201 may be stationary or may be flown (moved). When the etching solution 201 is flown, the same etching solution 201 may be circulated (the etching solution 201 is not replaced), or a new etching solution 201 may be continuously supplied (the etching solution 201 is replaced). There may be.
  • An object to be etched having a surface to be etched made of a conductive Group III nitride and having a region to be etched arranged on the surface to be etched, and an object to be etched, which is electrically connected to the region to be etched.
  • a step of preparing an object to be processed which comprises a conductive member provided so as to be in contact with at least a part of the surface of the conductive region connected to the.
  • the object to be treated is immersed in an alkaline or acidic etching solution containing an oxidizing agent that receives electrons, and the region to be etched and the conductive member are in contact with the etching solution, and the surface to be etched is exposed to the above.
  • Appendix 2 The object to be processed is A mask, which is formed on the surface to be etched and is made of a non-conductive material, is provided.
  • Appendix 3 The mask is composed of a resist.
  • Appendix 6 The object to be etched is used as a material for a high electron mobility transistor.
  • Appendix 7 The method for manufacturing a structure according to Appendix 6, wherein the recess formed by etching the region to be etched is used as an element separation groove of the high electron mobility transistor.
  • Appendix 10 The method for manufacturing a structure according to any one of Appendix 1 to 9, wherein the etching target includes a semi-insulating substrate.
  • Appendix 11 The method for manufacturing a structure according to Appendix 10, wherein the conductive member is provided on a group III nitride layer formed on the semi-insulating substrate.
  • the area of the conductive member in contact with the etching solution is preferably 1% or more, more preferably 2% or more, and further, with respect to the total area of the surface to be etched, which is the upper surface of the group III nitride layer.
  • Appendix 13 The method for producing a structure according to Appendix 11 or 12, wherein the area of the conductive member in contact with the etching solution is larger than the total area of the side surface of the group III nitride layer.
  • Appendix 14 The method for manufacturing a structure according to any one of Appendix 1 to 9, wherein the object to be etched includes a conductive substrate.
  • Appendix 15 The method for manufacturing a structure according to Appendix 14, wherein the conductive member is arranged on the surface of a group III nitride layer formed on the conductive substrate.
  • Appendix 16 The method for manufacturing a structure according to Appendix 14 or 15, wherein the conductive member is arranged on the surface of the conductive substrate.
  • An object to be etched which has a surface to be etched made of a conductive group III nitride and a region to be etched is arranged on the surface to be etched.
  • a conductive member provided so as to come into contact with at least a part of the surface of the conductive region electrically connected to the region to be etched of the object to be etched.
  • the region to be etched and the conductive member are immersed in an alkaline or acidic etching solution containing an oxidizing agent that receives electrons in contact with each other.
  • An intermediate structure in which the edge defining the region to be etched is not composed only of the edge of the conductive member (the conductive member is not arranged at a position defining the region to be etched).
  • Appendix 18 A mask, which is formed on the surface to be etched and is made of a non-conductive material, is provided.
  • Appendix 19 The intermediate structure according to Appendix 17 or 18, wherein the mask is composed of a resist.
  • Appendix 20 The object to be etched is used as a material for a high electron mobility transistor.
  • Appendix 21 The intermediate structure according to any one of Appendix 17 to 20, wherein the conductive member is arranged along the outer periphery of the object to be etched in a plan view.
  • Appendix 22 The intermediate structure according to Appendix 21, wherein the conductive member is arranged so as to extend to the outside of the etching target in a plan view.
  • Appendix 23 The intermediate structure according to any one of Appendix 17 to 22, wherein the etching target includes a semi-insulating substrate.
  • Appendix 24 The intermediate structure according to any one of Appendix 17 to 22, wherein the etching target includes a conductive substrate.
  • Appendix 25 The intermediate structure according to Appendix 24, wherein the conductive member is arranged on the surface of the conductive substrate.
  • the surface has a step of etching the group III nitride by irradiating the surface with ultraviolet light through the etching solution.
  • a method for processing a group III nitride crystal which comprises connecting (contacting) a conductive member that functions as a cathode that emits electrons to the etching solution to a part of a region other than the region to be etched.
  • Appendix 28 The method for manufacturing a structure according to Appendix 2, wherein the edge defining the region to be etched does not include the edge of the conductive member and is composed of the edge of the mask.
  • Appendix 29 The method for producing a structure according to Appendix 28, wherein the distance between the edge of the mask and the edge of the conductive member is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more.
  • Appendix 30 The method for manufacturing a structure according to Appendix 28 or 29, wherein the conductive member is arranged so that the entire circumference of the conductive member is surrounded by the mask in a plan view.
  • Appendix 32 The intermediate structure according to Appendix 31, wherein the distance between the edge of the mask and the edge of the conductive member is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more.
  • Appendix 33 The intermediate structure according to Appendix 31 or 32, wherein the conductive member is arranged so that the entire circumference of the conductive member is surrounded by the mask in a plan view.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Weting (AREA)
  • Led Devices (AREA)

Abstract

構造体の製造方法は、導電性のIII族窒化物で構成された被エッチング面を有し、被エッチング面上に被エッチング領域が配置されたエッチング対象物、エッチング対象物の、被エッチング領域と電気的に接続された導電性領域の表面の少なくとも一部と接触するように設けられた導電性部材、および、被エッチング面上に形成され、非導電性材料で構成されたマスク、を備える処理対象物を準備する工程と、処理対象物が、電子を受け取る酸化剤としてペルオキソ二硫酸イオンを含むアルカリ性または酸性のエッチング液に浸漬され、被エッチング領域および導電性部材が、エッチング液と接触した状態で、被エッチング面に、エッチング液を介して光を照射することにより、被エッチング領域を構成するIII族窒化物をエッチングする工程と、を有し、被エッチング領域を画定する縁は、導電性部材の縁を含まずに、マスクの縁で構成されている。

Description

構造体の製造方法および中間構造体
 本発明は、構造体の製造方法および中間構造体に関する。
 窒化ガリウム(GaN)等のIII族窒化物は、発光素子、トランジスタ等の半導体装置を製造するための材料として用いられている。
 GaN等のIII族窒化物に各種構造を形成するためのエッチング技術として、光電気化学(PEC)エッチングが提案されている(例えば非特許文献1参照)。PECエッチングは、一般的なドライエッチングと比べてダメージが少ないウェットエッチングであり、また、中性粒子ビームエッチング(例えば非特許文献2参照)、アトミックレイヤーエッチング(例えば非特許文献3参照)等のダメージの少ない特殊なドライエッチングと比べて装置が簡便である点で好ましい。
J. Murata et al., "Photo-electrochemical etching of free-standing GaN wafer surfaces grown by hydride vapor phase epitaxy", Electrochimica Acta 171 (2015) 89-95 S. Samukawa, JJAP, 45(2006)2395. T. Faraz, ECS J. Solid Stat. Scie.&Technol., 4, N5023 (2015).
 本発明の一目的は、III族窒化物に対するPECエッチングを良好に進行させるための技術を提供することである。
 本発明の一態様によれば、
 導電性のIII族窒化物で構成された被エッチング面を有し、前記被エッチング面上に被エッチング領域が配置されたエッチング対象物、前記エッチング対象物の、前記被エッチング領域と電気的に接続された導電性領域の表面の少なくとも一部と接触するように設けられた導電性部材、および、前記被エッチング面上に形成され、非導電性材料で構成されたマスク、を備える処理対象物を準備する工程と、
 前記処理対象物が、電子を受け取る酸化剤としてペルオキソ二硫酸イオンを含むアルカリ性または酸性のエッチング液に浸漬され、前記被エッチング領域および前記導電性部材が、前記エッチング液と接触した状態で、前記被エッチング面に、前記エッチング液を介して光を照射することにより、前記被エッチング領域を構成する前記III族窒化物をエッチングする工程と、
 を有し、
 前記被エッチング領域を画定する縁は、前記導電性部材の縁を含まずに、前記マスクの縁で構成されている、構造体の製造方法が提供される。
 本発明の他の態様によれば、
 導電性のIII族窒化物で構成された被エッチング面を有し、前記被エッチング面上に被エッチング領域が配置されたエッチング対象物と、
 前記エッチング対象物の、前記被エッチング領域と電気的に接続された導電性領域の表面の少なくとも一部と接触するように設けられた導電性部材と、
 前記被エッチング面上に形成され、非導電性材料で構成されたマスクと、
を備え、
 電子を受け取る酸化剤としてペルオキソ二硫酸イオンを含むアルカリ性または酸性のエッチング液に、前記被エッチング領域および前記導電性部材が接触した状態で浸漬され、
 前記被エッチング領域を画定する縁は、前記導電性部材の縁を含まずに、前記マスクの縁で構成されている、中間構造体が提供される。
 III族窒化物に対するPECエッチングを良好に進行させるための技術が提供される。
[規則91に基づく訂正 18.03.2020] 
図1(a)は、本発明の第1実施形態による処理対象物を例示する概略断面図であり、図1(b)は、第1実施形態によるエッチング対象物の一例を示す概略断面図であり、図1(c)は、第1実施形態によるPECエッチング工程を例示する、PECエッチング装置の概略図である。 図2(a)~図2(c)は、カソードパッドの形成方法の第1例を示す概略断面図である。 図3(a)~図3(c)は、カソードパッドの形成方法の第2例を示す概略断面図である。 図4(a)~図4(f)は、第1実施形態のPECエッチングに係る実験例の第1~第6の処理対象物を示す写真である。 図5(a)および図5(b)は、実験例におけるPECエッチングの結果を示すグラフである。 図6(a)は、第2実施形態による構造体を例示する概略断面図であり、図6(b)は、第2実施形態によるエッチング対象物の一例を示す概略断面図である。 図7(a)および図7(b)は、それぞれ、第2実施形態による処理対象物を例示する概略断面図および概略平面図であり、図7(c)は、第2実施形態によるPECエッチング工程を例示する、PECエッチング装置の概略図である。 図8(a)および図8(b)は、カソードパッドを、エッチング対象物の外周に沿って配置した例を示す、処理対象物の概略平面図である。 図9は、導電性の基板を有するエッチング対象物にカソードパッドを設ける態様を概念的に例示する概略断面図である。 図10(a)~図10(d)は、予備実験における、処理対象物を示す概略断面図である。 図11は、予備実験におけるPECエッチングの結果を示すグラフである。 図12(a)および図12(b)は、カソードパッドの縁が、被エッチング領域を画定するマスクの縁となるように、カソードパッドが配置されている態様を例示する、概略的な断面図および平面図である。 図13(a)および図13(b)は、非導電性マスクの縁が、被エッチング領域を画定するマスクの縁となるように、非導電性マスクおよびカソードパッドが配置されている態様を例示する、概略的な断面図および平面図である。 図14は、Tiマスクを用いたPECエッチングの結果を示す写真である。 図15(a)は、非導電性マスクおよびカソードパッドが形成された処理対象物を示す写真であり、図15(b)および図15(c)は、図15(a)の右上の円内に示す領域の一部を拡大した写真である。
<第1実施形態>
 本発明の第1実施形態による、構造体の製造方法について説明する。本製造方法は、当該構造体の材料となるエッチング対象物10(以下、ウエハ10ともいう)に対する、光電気化学(PEC)エッチングを用いたエッチング工程(以下、PECエッチング工程ともいう)を有する。PECエッチングを、以下単に、エッチングともいう。
 ウエハ10は、基板11と、基板11上に形成されたIII族窒化物層12(以下、エピ層12ともいう)と、を有する(図1(a)参照)。エピ層12の上面が、エッチングされるべき被エッチング面20を構成する。被エッチング面20は、導電性のIII族窒化物で構成されている。被エッチング面20上に、エッチングされるべき被エッチング領域21が配置されている。
 PECエッチング処理の対象物、つまり、エッチング液201に浸漬される(接触する)対象物を、処理対象物100と称する。処理対象物100は、最終的な構造体を得るための、中間段階の構造体(中間構造体)として捉えることができる。処理対象物100は、少なくともウエハ10を有し、さらに、PECエッチング処理に要する部材として、マスク50等を有してよい。マスク50は、ウエハ10の被エッチング面20上に、被エッチング領域21が開口したパターンで、形成されている。つまり、マスク50は、被エッチング領域21を画定する位置に配置されている。
 本実施形態による、構造体の製造方法の詳細について説明する前に、まず、予備的な検討のために行った実験(以下、予備実験ともいう)について説明する。予備実験では、処理対象物100の構造、配置等を変化させることにより、PECエッチングの進行状態がどのように変化するかを検討した。PECエッチング工程の詳細(図1(c)参照)、および、PECエッチングの機構の詳細((化1)~(化7)参照)については、後述する。
 図10(a)~図10(d)は、予備実験における、処理対象物100を示す概略断面図である。予備実験では、容器210に収容されたエッチング液201に処理対象物100を浸漬した状態で、PECエッチングを行った。
 エッチング液201としては、0.1Mのリン酸(HPO)水溶液と、0.05MのK水溶液と、を1:1で混合した酸性のものを用いた。被エッチング面20上に、エッチング液201を介して紫外(UV)光221を照射した。UV光221の照射波長は260nmとし、照射強度(I)は4mW/cmとした。被エッチング面20からエッチング液201の上面202までの距離L(delectrolyte)は、5mmとした。マスク50は、非導電性材料である酸化シリコン(SiO)で形成した。
 図10(a)~図10(d)は、それぞれ、第1~第4予備実験の状況を示す。第1、第2および第4予備実験では、ウエハ10の基板11として、n型導電性の窒化ガリウム(GaN)基板を用いた。第3予備実験では、ウエハ10の基板11として、半絶縁性のサファイア基板を用いた。ここで、「導電性」とは、例えば、比抵抗が10Ωcm未満である状態をいい、「半絶縁性」とは、例えば、比抵抗が10Ωcm以上である状態をいう。第1~第4予備実験のいずれも、エピ層12として、基板11上にn型導電性のGaN層を成長させた。
 エピ層12の上面である被エッチング面20のうち、エッチング液201に露出した部分として、被エッチング領域21が画定されている。被エッチング領域21は、後述のように、PECエッチングのアノードとして機能すると考えられる。
 被エッチング領域21と電気的に接続された、処理対象物100の導電性領域の表面のうち、エッチング液201に露出した部分は、後述のように、PECエッチングのカソードとして機能しうると考えられる。PECエッチングのカソードとして機能しうる領域を、以下、カソード領域40という。カソード領域40を、図10(a)~図10(d)において太線で示す。なお、カソード領域40を太線で示すことは、後述の図1(a)および図9でも同様である。
 図10(a)を参照する。第1予備実験では、導電性GaN基板11の底面がエッチング液201に露出する態様で、処理対象物100を支持部材(スペーサ)240上に配置した。第1予備実験では、基板11およびエピ層12の側面と、基板11の底面とが、カソード領域40を構成する。
 図10(b)を参照する。第2予備実験では、導電性GaN基板11の底面がエッチング液201に露出しない態様で、処理対象物100を容器210の底面上に配置した。第2予備実験では、基板11およびエピ層12の側面が、カソード領域40を構成する。
 図10(c)を参照する。第3予備実験では、第2予備実験と同様に、処理対象物100を容器210の底面上に配置した。第3予備実験では、半絶縁性サファイア基板11を用いているため、基板11の表面はエッチング液201に露出していてもカソード領域40とならず、エピ層12の側面のみが、カソード領域40を構成する。
 図10(d)を参照する。第4予備実験では、第2予備実験と同様に、処理対象物100を容器210の底面上に配置した。第4予備実験の処理対象物100は、ウエハ10およびマスク50に加え、レジストコート60を有する。レジストコート60は、ウエハ10の側面、つまり基板11およびエピ層12の側面と、ウエハ10の底面、つまり基板11の底面と、を覆うように形成されている。なお、アルカリ性のエッチング液201を用いるとレジストコート60が剥離してしまうため、本予備実験では、酸性のエッチング液201を用いている。
 第4予備実験では、第1および第2予備実験と同様に、導電性GaN基板11を用いているが、レジストコート60が形成されているために、基板11およびエピ層12の側面と、基板11の底面とが、いずれもエッチング液201に露出しない。このため、第4予備実験では、カソード領域40が存在しない。
 第1、第2および第4予備実験では、6mm角で厚さが0.4mmのGaN基板11を用い、GaN基板11上に、エピ層12として、n型不純物濃度が1×1016/cmであり厚さが10μmのGaN層(n-GaN)を形成した。第1、第2および第4予備実験のそれぞれにおけるカソード領域40の面積は、0.456cm、0.096cm、および、0cmとなる。なおここで、エピ層12はGaN基板11と比べて非常に薄いため、近似的に、エピ層12の側面によるカソード領域40の面積を0としている。第3予備実験では、6mm角で厚さが0.4mmのサファイア基板11を用い、サファイア基板11上に、エピ層12として、不純物が添加されない厚さ3μmのGaN層(un-GaN)と、n型不純物濃度が1.2×1016/cmであり厚さが2μmのGaN層(n-GaN)と、の積層を形成した(後述の図1(b)に示す構造と同様)。第3予備実験におけるカソード領域40の面積は、0.00048cm(エピ層12のうち、導電性部分であるn-GaNの側面の面積)となる。
 エッチング液201を介した被エッチング面20上へのUV光221の照射により、硫酸イオンラジカル(SO -*ラジカル)を生成させることができる。SO -*ラジカルは、エッチング液201中で、被エッチング面20からある程度下方まで広がって存在すると推測される。カソード領域40(PECエッチングのカソードとして機能しうる領域)のうち、SO -*ラジカルが存在する領域が、実効的にカソードとして機能する領域(実効的なカソード領域)になると考えられる。
 第1および第2予備実験において、エピ層12の側面および基板11の側面は、実効的なカソード領域であると考えられる。また、第3予備実験において、エピ層12の側面は、実効的なカソード領域であると考えられる。ただし、第1予備実験において、SO -*ラジカルは、基板11の底面中心近傍までは到達せずに、基板11の底面の外周部に存在すると推測される。つまり、第1予備実験において、基板11の底面における実効的なカソード領域は、基板11の底面の外周部であると推測される。以下の図11に示す結果を踏まえると、第1予備実験では、基板11の底面の、幅0.4mm程度の外周部が、実効的なカソード領域であると考えられる。第1予備実験における実効的なカソード領域の面積は、0.192cmと見積もられる。第2~第4予備実験における実効的なカソード領域の面積は、それぞれ、上記のカソード領域40の面積と等しく、0.096cm、0.00048cm、および、0cmとなる。
 図11は、予備実験におけるPECエッチングの結果を示すグラフである。横軸が、実効的なカソード領域の面積(Cathode area)を示し、縦軸が、エッチングレートを示す。第1予備実験の結果を「with spacer」と示し、第2予備実験の結果を「w/o spacer」と示し、第3予備実験の結果を「on SAP」と示し、第4予備実験の結果を「Side&back resist coat」と示す。
 この結果より、実効的なカソード領域の面積が広いほど、エッチングレートが高いことがわかる。またこのことから、アノードである被エッチング領域21のPECエッチングを良好に進行させるには、電気的なバランスを向上させるために、実効的なカソード領域の面積を広くすること、したがって、カソードとして機能しうる領域であるカソード領域40を広く設けておくこと、が好ましいと考えられる。
 第1および第2予備実験では、導電性の基板11を用いることで、基板11の側面または底面を利用してカソード領域40を広く設けることができるため、エッチングレートを高めることが容易である。これに対し、第3予備実験では、半絶縁性の基板11を用いることで、カソード領域40が、エピ層12の側面のみの狭い領域で構成されるため、エッチングレートを高めることが難しい。図11からわかるように、第3予備実験では、カソード領域40が存在しない第4予備実験と同様に、エッチングがほとんど進行していない。
 なお、半絶縁性の基板11を用いる場合であっても、マスク50が導電性材料で形成されている場合は、マスク50の表面が、カソード領域40として働く。マスク50は、被エッチング領域21と電気的に接続されているからである。このような場合、マスク50が非導電性材料で形成されている場合よりも、エッチングレートを高めることは可能である。
 III族窒化物を用いた半導体装置を製造するための材料として、サファイア基板、炭化シリコン(SiC)基板、半絶縁性GaN基板等の半絶縁性の基板11上に、エピ層12を成長させたウエハ10を利用したい場合がある。また、このような場合に、マスク50を、レジスト、酸化シリコン等の非導電性材料で形成したい場合がある。
 第3予備実験の結果からわかるように、半絶縁性の基板11を用い、さらに、マスク50を非導電性材料で形成する場合、PECエッチングを良好に進行させることは困難である。本願発明者は、このような場合であっても、PECエッチングを良好に進行させることができる技術を提案する。
 以下、第1実施形態による、構造体の製造方法の詳細について説明する。図1(a)は、第1実施形態による処理対象物100を例示する概略断面図である。まず、図1(a)に示すように、処理対象物100を準備する。本実施形態による処理対象物100は、ウエハ10と、マスク50と、に加えて、カソードパッド(導電性部材)30を有する。
 本実施形態では、基板11として、半絶縁性の基板、例えば、サファイア基板、SiC基板、(半絶縁性の)GaN基板等が用いられる。マスク50は、非導電性材料、例えば、レジスト、酸化シリコン等で形成される。被エッチング領域21の形状、広さ、エッチングされる深さ、等は、必要に応じ適宜選択されてよい。マスク50は、被エッチング領域21を画定する位置に配置されている(被エッチング領域21を画定する縁が、マスク50の縁を含んで構成されている)。
 カソードパッド30は、導電性材料で形成された導電性部材である。カソードパッド30は、被エッチング領域21と電気的に接続された、ウエハ10の導電性領域の表面の少なくとも一部と接触するように設けられている。図1(a)に例示するカソードパッド30は、被エッチング面20上の、平面視でマスク50に内包される領域に、好ましくはマスク50と接する状態で(マスク50とカソードパッド30との隙間に被エッチング面20が露出しない状態で)、配置されている。カソードパッド30は、被エッチング領域21を画定する位置に配置されていない。
 カソードパッド30が「被エッチング領域21を画定する位置に配置されていない」とは、カソードパッド30の少なくとも一部分が、「被エッチング領域21を画定する位置に配置されていない」こと、つまり、カソードパッド30は、被エッチング領域21を画定するマスクとして機能しない部分を有すること(被エッチング領域21は、カソードパッド30のみをマスクとして画定されてはおらず、被エッチング領域21を画定する縁が、カソードパッド30の縁のみによって構成されてはいないこと)を意味する。なお、カソードパッド30の配置態様は、必要に応じて適宜調整されてよい。例えば、平面視でマスク50に内包されない領域に、カソードパッド30が配置される場合があってもよい。カソードパッド30の縁は、被エッチング領域21を画定する縁に含まれる部分を有してもよく、被エッチング領域21を画定する縁に含まれない部分を有してもよい。
 カソードパッド30の材料としては、被エッチング面20に対するショットキー障壁高さが低く、エッチング液201に対する(アルカリまたは酸に対する)耐性を有する材料が好ましく用いられる。具体的には、金属、例えばチタン(Ti)が好ましく用いられる。また、Ti以外に例えば、Ti上に金(Au)が積層されたTi/Au、ニッケル(Ni)、プラチナ(Pt)、単層のAu等を用いることも可能である。
 処理対象物100が、エッチング液201に浸漬された際、カソードパッド30の上面が、エッチング液201に露出する。したがって、カソードパッド30の上面は、カソード領域40として働く。このように、本実施形態では、エピ層12の側面に加えて、カソードパッド30の上面も、カソード領域40を構成する。
 本実施形態では、カソードパッド30を設けたことにより、カソードパッド30を設けない場合と比べて、カソード領域40が広くなる。これにより、カソードパッド30を設けない場合と比べて、PECエッチングを良好に進行させることができる。
 本実施形態のカソードパッド30は、カソードパッド30の上面を、カソード領域40として利用できるため、カソード領域40を広く設けることが容易である。また、カソードパッド30が被エッチング面20上に設けられていることで、被エッチング面20上にUV光221を照射することで生成されるSO -*ラジカルを、より確実にカソードパッド30の上面近傍に存在させることができる。これにより、カソードパッド30の上面を実効的なカソード領域として利用することが容易になる。
 図1(b)は、ウエハ10の構造の一例(後述の実験例に用いたもの)を示す概略断面図である。基板11は、サファイア基板である。エピ層12は、不純物が添加されない厚さ3μmのGaN層(un-GaN)と、n型不純物が添加されキャリア濃度(正味のドナー濃度)が1.2×1016/cmであり厚さが2μmのGaN層(n-GaN)と、の積層で構成される。
 図1(c)は、PECエッチング工程を示す、PECエッチング装置200の概略断面図である。PECエッチング装置200は、エッチング液201を収容する容器210と、紫外(UV)光221を出射する光源220と、を有する。
 PECエッチング工程では、処理対象物100がエッチング液201に浸漬され、被エッチング領域21およびカソードパッド30がエッチング液201と接触した状態で、被エッチング面20に、エッチング液201を介してUV光221を照射することにより、被エッチング領域21を構成するIII族窒化物をエッチングする。エッチング液201、UV光221、および、PECエッチングの機構の詳細については、後述する。
 なお、構造体の製造方法は、必要に応じ、その他の工程として、電極形成、保護膜形成等の工程を有してもよい。
 次に、カソードパッド30の形成方法について、例示的に説明する。図2(a)~図2(c)は、カソードパッド30の形成方法の第1例を示す概略断面図である。第1例では、マスク50の形成の前に、カソードパッド30を形成する。マスク50の材料としては、レジストが例示される。
 まず、図2(a)に示すように、ウエハ10の被エッチング面20上に、リフトオフ等を用いて、例えばTiによりカソードパッド30を形成する。次に、図2(b)に示すように、カソードパッド30を覆うよう、被エッチング面20の全面上に、レジスト膜51を成膜する。次に、図2(c)に示すように、レジスト膜51をパターニングすることで、マスク50を形成する。マスク50は、被エッチング領域21を露出させる開口を有するとともに、カソードパッド30の上面を露出させる開口を有する。
 図3(a)~図3(c)は、カソードパッド30の形成方法の第2例を示す概略断面図である。第2例では、マスク50の形成の後に、カソードパッド30を形成する。マスク50の材料としては、酸化シリコンが例示される。
 まず、図3(a)に示すように、ウエハ10の被エッチング面20の全面上に酸化シリコン膜を形成した後、当該酸化シリコン膜をフォトリソグラフィおよびエッチングによりパターニングすることで、マスク50を形成する。マスク50は、被エッチング領域21を露出させる開口を有するとともに、カソードパッド30が形成されるべき領域に開口を有する。
 次に、図3(b)に示すように、被エッチング領域21を覆うとともに、カソードパッド30が形成されるべき領域を露出するように、リフトオフ用のレジストパターン70を形成する。そして、被エッチング面20の全面上に、例えばTi膜31を形成する。
 次に、図3(c)に示すように、リフトオフにより、つまり、レジストパターン70とともにTi膜31の不要部を除去することにより、カソードパッド30が形成されるべき領域に、カソードパッド30を形成する(残す)。
 例えば酸化シリコンでマスク50を形成する場合、マスク50を形成する際のエッチングに、フッ酸が好ましく用いられる。これに起因して、カソードパッド30の形成後にマスク50を形成すると、カソードパッド30までエッチングされる懸念がある。第2例のように、マスク50の形成の後にカソードパッド30を形成することで、このようなカソードパッド30の不要なエッチングを避けることができる。
 次に、エッチング液201、UV光221、および、PECエッチングの機構の詳細について説明する。エッチングされるIII族窒化物として、GaNが例示される。
 エッチング液201としては、被エッチング領域21を構成するIII族窒化物が含有するIII族元素の酸化物の生成に用いられる酸素を含み、さらに、電子を受け取る酸化剤を含む、アルカリ性または酸性のエッチング液201が用いられる。当該酸化剤として、ペルオキソ二硫酸イオン(S 2-)が例示される。
 エッチング液201の第1例としては、水酸化カリウム(KOH)水溶液とペルオキソ二硫酸カリウム(K)水溶液とを混合した、エッチングの開始時点でアルカリ性を示すものが挙げられる。このようなエッチング液201は、例えば、0.01MのKOH水溶液と、0.05MのK水溶液と、を1:1で混合することで調製される。KOH水溶液の濃度、K水溶液の濃度、および、これらの水溶液の混合比率は、必要に応じ適宜調整されてよい。なお、KOH水溶液とK水溶液とが混合されたエッチング液201は、例えばKOH水溶液の濃度を低くすることで、エッチングの開始時点で酸性を示すようにすることもできる。
 第1例のエッチング液201を用いる場合のPECエッチング機構について説明する。被エッチング面20に波長365nm以下のUV光221が照射されることによって、被エッチング領域21を構成するGaN中に、ホールと電子とが対で生成される。生成されたホールによりGaNがGa3+とNとに分解され(化1)、さらに、Ga3+が水酸化物イオン(OH)によって酸化されることで酸化ガリウム(Ga)が生成する(化2)。そして、生成されたGaが、アルカリまたは酸に溶解される。このようにして、GaNのPECエッチングが行われる。なお、生成されたホールが水と反応して、水が分解されることで、酸素が発生する(化3)。
Figure JPOXMLDOC01-appb-C000001
 
Figure JPOXMLDOC01-appb-C000002
 
Figure JPOXMLDOC01-appb-C000003
 
 また、Kが水に溶解することでペルオキソ二硫酸イオン(S 2-)が生成し(化4)、S 2-にUV光221が照射されることで硫酸イオンラジカル(SO -*ラジカル)が生成する(化5)。ホールと対で生成された電子が、SO -*ラジカルとともに水と反応して、水が分解されることで、水素が発生する(化6)。このように、本実施形態のPECエッチングでは、SO -*ラジカルを用いることで、GaN中にホールと対で生成された電子を消費させることができるため、PECエッチングを良好に進行させることができる。なお、(化6)に示されるように、PECエッチングの進行に伴い、硫酸イオン(SO 2-)が増加することで、エッチング液201の酸性は強くなっていく(pHは低下していく)。
Figure JPOXMLDOC01-appb-C000004
 
Figure JPOXMLDOC01-appb-C000005
 
Figure JPOXMLDOC01-appb-C000006
 
 エッチング液201の第2例としては、リン酸(HPO)水溶液とペルオキソ二硫酸カリウム(K)水溶液とを混合した、エッチングの開始時点で酸性を示すものが挙げられる。このようなエッチング液201は、例えば、0.01MのHPO水溶液と、0.05MのK水溶液と、を1:1で混合することで調製される。HPO水溶液の濃度、K水溶液の濃度、および、これらの水溶液の混合比率は、必要に応じ適宜調整されてよい。HPO水溶液およびK水溶液は、ともに酸性であるため、HPO水溶液とK水溶液とが混合されたエッチング液201は、任意の混合比率で酸性である。エッチング液201が酸性であることは、マスク50としてレジストマスクの使用を容易にする観点等から好ましい。
 第2例のエッチング液201を用いる場合のPECエッチング機構は、第1例のエッチング液201を用いる場合について説明した(化1)~(化3)が、(化7)に置き換わったものと推測される。つまり、GaNと、UV光221の照射で生成されたホールと、水と、が反応することで、Gaと、水素イオン(H)と、Nと、が生成する(化7)。そして、生成されたGaが、酸に溶解される。このようにして、GaNのPECエッチングが行われる。なお、(化4)~(化6)に示したような、ホールと対で生成された電子がS 2-により消費される機構は、第1例のエッチング液201を用いる場合と同様である。
Figure JPOXMLDOC01-appb-C000007
 
 (化1)および(化2)、または、(化7)から理解されるように、GaNのPECエッチングが生じる被エッチング領域21は、ホールが消費されるアノードとして機能すると考えられる。また、 (化6)から理解されるように、被エッチング領域21と電気的に接続された、処理対象物100の導電性領域の表面のうち、エッチング液201に露出した部分は、電子が消費される(放出される)カソードとして機能すると考えられる。
 (化5)に示すように、S 2-からSO -*ラジカルを生成する手法としては、UV光221の照射、および、加熱の少なくとも一方を用いることができる。UV光221の照射を用いる場合、S 2-による光吸収を大きくしてSO -*ラジカルを効率的に生成させるために、UV光221の波長を、200nm以上310nm未満とすることが好ましい。つまり、UV光221の照射により、ウエハ10においてIII族窒化物中にホールを生成させるとともに、エッチング液201においてS 2-からSO -*ラジカルを生成させることを、効率的に行う観点からは、UV光221の波長を、200nm以上310nm未満とすることが好ましい。S 2-からSO -*ラジカルを生成することを、加熱で行う場合は、UV光221の波長を、(365nm以下で)310nm以上としてもよい。
 UV光221の照射によりS 2-からSO -*ラジカルを生成させる場合、ウエハ10の被エッチング面20からエッチング液201の上面202までの距離Lは、例えば、5mm以上100mm以下とすることが好ましい。距離Lが、例えば5mm未満と過度に短いと、ウエハ10上方のエッチング液201において生成されるSO -*ラジカルの量が、距離Lの変動により不安定になる可能性がある。また、距離Lが、例えば100mm超と過度に長いと、ウエハ10上方のエッチング液201において、PECエッチングに寄与しない、無駄に多くのSO -*ラジカルが生成されるため、エッチング液201の利用効率が低下する。
 なお、PECエッチングは、例示したGaN以外のIII族窒化物に対しても行うことができる。III族窒化物が含有するIII族元素は、アルミニウム(Al)、ガリウム(Ga)およびインジウム(In)のうちの少なくとも1つである。III族窒化物におけるAl成分またはIn成分に対するPECエッチングの考え方は、Ga成分について(化1)および(化2)、または、(化7)を参照して説明した考え方と同様である。つまり、UV光221の照射によりホールを生成させることで、Alの酸化物またはInの酸化物を生成させ、これらの酸化物をアルカリまたは酸に溶解させることで、PECエッチングを行うことができる。UV光221の波長(365nm以下)は、エッチングの対象とするIII族窒化物の組成に応じて、適宜変更されてよい。GaNのPECエッチングを基準として、Alを含有する場合は、より短波長のUV光を用いればよく、Inを含有する場合は、より長波長のUV光も利用可能となる。
 次に、第1実施形態のPECエッチングに係る実験例について説明する。本実験例では、図1(b)を参照して説明したような積層構造を有する6mm角のウエハ10の被エッチング面20上に、マスク50およびカソードパッド30を形成し、カソードパッド30の面積を変化させることにより、PECエッチングの進行状態がどのように変化するかを検討した。
 エッチング液201としては、0.01MのKOH水溶液と、0.05MのK水溶液と、を1:1で混合したものを用いた。被エッチング面20上に、エッチング液201を介してUV光221を照射した。UV光221の照射波長は260nmとし、照射強度(I)は4mW/cmとした。被エッチング面20からエッチング液201の上面202までの距離L(delectrolyte)は、5mmとした。
 図4(a)~図4(e)は、それぞれ、本実験例の第1~第5の処理対象物(以下、第1~第5試料ともいう)に形成したマスク50およびカソードパッド30のパターンを示す写真である。第1~第5試料には、酸化シリコン(SiO)により、同一形状の開口領域を有するマスク50を形成した。図4(a)~図4(e)において、マスク50の形成領域が、暗い領域として示されている。
 図4(a)~図4(e)において、明るい領域は、マスク50の開口領域、つまり、被エッチング領域21を示す。ただし、図4(a)~図4(e)の明るい領域において、「Ti」と示した部分は、Tiで形成されたカソードパッド30を示す。第1~第5試料の順で、「Ti」と示した部分の面積、つまりカソードパッド30の面積を、広くしている。図4(a)~図4(e)において、上部に示した数値は、6mm角の被エッチング面20の全面積(36mm)に対する、カソードパッド30の上面の面積の比率(以下、カソード比率ともいう)を示す。第1~第5試料のカソード比率は、それぞれ、0.0056(0.6%)、0.011(1.1%)、0.022(2.2%)、0.044(4.4%)、および、0.078(7.8%)である。
 図4(f)は、第6の処理対象物(以下、第6試料ともいう)のマスク50のパターンを示す写真である。第6試料は、Tiにより、第1~第5試料と同一形状の開口領域を有するマスク50を形成した。また第6試料には、カソードパッド30を形成しなかった。第6試料は、カソードパッド30を有しないが、マスク50自体がTiで形成されておりカソード領域40として働くため、第1~第5試料と同一形状の開口領域を有するマスク50において、カソードパッド30の面積を極限まで広げたケースに対応する。第6試料は、カソード比率としては、0.504(50.4%)に対応する。
 図5(a)および図5(b)は、本実験例の結果を示すグラフである。図5(a)は、第1~第6試料の、エッチング時間に対するエッチング深さの依存性を示す。図5(b)は、第1~第6試料の、カソード面積(カソード比率を面積に換算した値)に対するエッチングレートの依存性を示す。エッチングレートは、120分間のエッチング時間における平均値である。
 図5(a)および図5(b)より、カソードパッド30を形成することで、単位時間当たりのエッチング深さ、つまりエッチングレートを向上させることが可能であることがわかる。また、カソード比率を高く(カソード面積を広く)することで、エッチングレートを向上させることが可能であることがわかる。
 カソードパッド30の好ましい広さの目安について、例えば以下のようにいうことができる。カソード比率、つまり、被エッチング面20の全体の面積に対する、カソード面積(カソードパッド30がエッチング液201と接触する面積)の比率は、1%以上とすることが好ましく、2%以上とすることがより好ましく、4%以上とすることがさらに好ましくは、8%以上とすることがさらに好ましい。
 カソードパッド30の好ましい広さの目安について、また例えば以下のようにいうことができる。カソード面積(カソードパッド30がエッチング液201と接触する面積)は、カソードパッド30が設けられない場合のカソード領域40の面積、つまり、エピ層12の(導電性部分の)側面の全体の面積よりも、広いことが好ましい。
<第2実施形態>
 次に、第2実施形態による、構造体の製造方法について説明する。第2実施形態では、製造される構造体150として、高電子移動度トランジスタ(HEMT)を例示する。
 図6(a)は、第2実施形態による構造体150(以下、HEMT150ともいう)を例示する概略断面図である。図6(b)は、HEMT150の材料として用いられるウエハ10を例示する概略断面図である。
 基板11としては、例えば、半絶縁性のSiC基板が用いられる。エピ層12としては、例えば、窒化アルミニウム(AlN)で構成された核生成層12aと、GaNで構成された厚さ1.2μmのチャネル層12bと、窒化アルミニウムガリウム(AlGaN)で構成された厚さ24nmの障壁層12cと、GaNで構成された厚さ5nmのキャップ層12dと、の積層構造が用いられる。チャネル層12bと障壁層12cとの積層部分に、HEMT150のチャネルとなる2次元電子ガス(2DEG)が生成されている。
 HEMT150の、ソース電極151、ゲート電極152およびドレイン電極153が、キャップ層12dの上面上に形成されている。ソース電極151、ゲート電極152およびドレイン電極153の上面上に開口を有するように、保護膜154が形成されている。
 HEMT150は、隣接する素子間を分離する素子分離溝160を有する。素子分離溝160は、その底面がチャネル層12bの上面よりも深い位置に配置されるように、つまり、隣接する素子間で、2DEGが素子分離溝160により分断されるように、設けられている。
 本実施形態では、PECエッチングにより、HEMT150の素子分離溝160を形成する態様を例示する。図7(a)は、素子分離溝160を形成するためのPECエッチングを行う際の、処理対象物100を例示する概略断面図である。図7(b)は、処理対象物100の概略平面図である。図7(c)は、PECエッチング工程を示す、PECエッチング装置200の概略断面図である。
 本例の処理対象物100は、ウエハ10上にソース電極151およびドレイン電極153が形成された段階の部材に、PECエッチング用のマスク50が形成された構造を有する。ソース電極151およびドレイン電極153が、カソードパッド30として利用される。カソードパッド30(ソース電極151およびドレイン電極153)は、例えば、Ti上にアルミニウム(Al)が積層され、さらにAl上にAuが積層されたTi/Al/Auにより形成される。
 マスク50は、キャップ層12dの上面である被エッチング面20上に形成され、被エッチング領域21を露出させる開口を有するとともに、カソードパッド30(ソース電極151およびドレイン電極153)の上面を露出させる開口を有する。被エッチング領域21は、素子分離溝160を形成すべき領域であり、平面視で各HEMT素子を取り囲むように、例えば格子状に配置される。
 マスク50は、例えばレジストで形成される。エッチング液201として、好ましくは(エッチング開始時点から)酸性のものが用いられる。被エッチング領域21を構成するIII族窒化物を、チャネル層12bの上面よりも深い位置までエッチングすることで、素子分離溝160として用いられる凹部を形成する。当該凹部(素子分離溝160)を形成した後、マスク50を除去し、ゲート電極152を形成し、保護膜154を形成する。このようにして、HEMT150が製造される。
 第2実施形態によれば、SiC基板等の半絶縁性の基板11を有するウエハ10を利用し、レジスト等の非導電性材料で形成されたマスク50を用いる場合であっても、HEMT150の素子分離溝160を、PECエッチングで形成することが容易である。
<第3実施形態>
 次に、第3実施形態による、構造体の製造方法について説明する。第3実施形態では、PECエッチングで形成される凹部の形状の制御性を高めるために好ましい、カソードパッド30の配置態様について説明する。
 第1実施形態および第2実施形態で説明したように、カソードパッド30を設けることにより、非導電性材料で形成されたマスク50(以下、非導電性マスク50ともいう)を用いる場合でも、PECエッチングを良好に進行させることができる。
 PECエッチングの進行を促進させる観点からは、被エッチング領域21を画定するマスクの縁の一部分が、カソードパッド30の縁で構成されていてもよい。ただし、以下に説明するように、本願発明者が得た知見によれば、PECエッチングで形成される凹部の形状の制御性を高める観点からは、被エッチング領域21を画定するマスクの縁の全部分が、カソードパッド30の縁を含まずに、非導電性マスク50の縁で構成されていることが好ましい。
 このような構成は、例えば、平面視において、非導電性マスク50の内側に(被エッチング領域21と反対側に)カソードパッド30を配置することにより、つまり、カソードパッド30の全周囲が非導電性マスク50に囲まれるようカソードパッド30を配置することにより、得られる(例えば図7(b)参照)。
 図12(a)および図12(b)は、カソードパッド30の縁35が、被エッチング領域21を画定するマスク80の縁85となるように、カソードパッド30が配置されている態様を例示する、概略的な断面図および平面図である(マスク80の縁85が、カソードパッド30の縁35で構成されている部分を示す図である)。
 カソードパッド30を利用することで、PECエッチングの進行が促進されるため、被エッチング領域21に凹部22を形成することができる。凹部22の縁は、理想的には、マスク80の縁85、つまりカソードパッド30の縁35に沿う位置に形成される(理想的な場合における凹部22の縁23aを破線で示す)。しかし、本態様のPECエッチングにより、実際には、カソードパッド30の縁35から外側に(被エッチング領域21側に)離れた位置に、縁35からの距離が一定しない乱れた形状で、凹部22の縁23が形成されることがわかった。この理由は、カソードパッド30が導電性であることに起因して、カソードパッド30近傍の被エッチング面20に空乏層が形成されるためと推測される。
 図13(a)および図13(b)は、非導電性マスク50の縁55が、被エッチング領域21を画定するマスク80の縁85となるように、非導電性マスク50およびカソードパッド30が配置されている態様を例示する、概略的な断面図および平面図である。本例では、非導電性マスク50の内側に(被エッチング領域21と反対側に)、カソードパッド30が配置されている。
 マスク80の縁85、つまり非導電性マスク50の縁55と、カソードパッド30の縁35と、の(最短の)距離(以下、オフセット距離という)をDOFFとする。本願発明者は、オフセット距離Doffをある程度以上長くすることにより、カソードパッド30に起因する空乏層の影響を抑制して、マスク80の縁85(非導電性マスク50の縁55)に沿う位置に、凹部22の縁23を形成できるという知見を得た。オフセット距離DOFFは、5μm以上とすることが好ましく、10μm以上とすることがより好ましい。オフセット距離DOFFの上限は、特に限定されない。
 このように、被エッチング領域21を画定するマスク80の縁85を、非導電性マスク50の縁55で構成することにより、PECエッチングにより形成される凹部22の縁23の形状の制御性を高めることができる。
 なお、図7(b)に例示する配置態様では、非導電性マスク50の、被エッチング領域21を画定する閉じた形状の縁の内側に、カソードパッド30が配置されているが、必要に応じて(作製する素子構造等に応じて)、カソードパッド30が、当該縁の外側に配置される態様としてもよい(例えば後述の図15(a)参照)。このような態様では、被エッチング領域21を画定する非導電性マスク50の縁からカソードパッド30までのオフセット距離DOFFを長く確保することが、より容易となる。
 以下、第3実施形態に係る実験例の結果について説明する。図14は、Tiマスクを用いたPECエッチングの結果を示す写真である。写真に示す四角形状の領域のうち、上辺部および右辺部の明るい領域が、Tiマスクを示す。Tiマスクの外側(下側あるいは左側)のやや暗い領域が、Tiマスクによって画定された被エッチング領域21を示す。被エッチング領域21内に、形成された凹部22の、乱れた形状を有する縁23が観察される。
 図15(a)は、非導電性マスク50およびカソードパッド30が形成された処理対象物100を示す写真である。カソードパッド30は、明るい領域として示され、非導電性マスク50は、カソードパッド30よりは暗い領域として示されている。被エッチング領域は、非導電性マスク50により画定されており、非導電性マスク50よりも暗い(線状の)領域として示されている。図15(a)~図15(c)を参照して説明する実験例における実験条件は、エッチング液としてK水溶液を用いた以外は、第1実施形態で図4(a)~図4(f)を参照して説明した実験例における実験条件(照射波長、照射強度および距離L)と同様である。非導電性マスク50はSiOで形成し、カソードパッド30はTiで形成した。
 図15(b)および図15(c)は、図15(a)の右上の円内に示す領域の一部を拡大した写真である。当該円内には、非導電性マスク50により、四角形の環状の被エッチング領域21が画定されている。図15(b)および図15(c)には、当該被エッチング領域21の右上の角部が示されている。図15(b)は、PECエッチング前の写真であり、図15(c)は、PECエッチング後の写真である。図15(b)に示されるように、当該被エッチング領域21の紙面左右方向に延在する部分の幅は、76μmであり、当該被エッチング領域21の紙面上下方向に延在する部分の幅は、45μmである。
 当該被エッチング領域21を画定するマスクの縁は、カソードパッド30の縁を含まずに、非導電性マスク50の縁で構成されている。つまり、カソードパッド30は、当該エッチング領域21を画定する位置に配置されていない。また、当該被エッチング領域21を画定する非導電性マスク50の縁は、カソードパッド30から充分に(5μm超または10μm超)離れている(図15(a)参照)。
 図15(b)と図15(c)とを比較してわかるように、本実験例では、非導電性マスク50の開口形状とほぼ一致する形態で、凹部22が形成されており、非導電性マスク50の縁に沿う位置に、凹部22の縁23を形成できている。このように、被エッチング領域21を画定する縁を、カソードパッド30の縁を含まずに、非導電性マスク50の縁で構成することにより、凹部22の形状の制御性を高めたPECエッチングを行うことができる。
<他の実施形態>
 以上、本発明の実施形態を具体的に説明した。しかしながら、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の変更、改良、組み合わせ等が可能である。
 例えば、カソードパッド30の形状、大きさ、配置、個数等は、必要に応じて様々に調整されてよい。
 図8(a)および図8(b)は、カソードパッド30を、ウエハ10の外周に沿って配置した例を示す、処理対象物100の概略平面図である。ウエハ10の縁を、太線で示す。
 一般に、ウエハ10の外周部には、素子が形成されないことが多い。このため、ウエハ10の外周部を利用してカソードパッド30を配置することで、ウエハ10の内部の広い領域を、素子形成のために利用することが容易になる。また、ウエハ10の外周部に沿ってカソードパッド30を配置することで、カソードパッド30を長く形成すること、つまり、カソードパッド30を広く形成することが、容易になる。
 図8(a)は、ウエハ10の外周に沿って、平面視上、ウエハ10の内側に、カソードパッド30を配置した例を示す。図8(b)は、ウエハ10の外周に沿って、平面視上、ウエハ10の外側まで延在するように(庇状に突き出すように)、カソードパッド30を配置した例を示す。図8(b)に示す例のように、カソードパッド30をウエハ10の外側まで配置することで、カソードパッド30がエッチング液201と接触する面積を広くすることができるため、カソード領域40をより広く設けることができる。このような構造は、例えば、別体として準備されたカソードパッド30をウエハ10に接着する(あるいは接触させる)ことで形成される。
 上述の第1、第2実施形態では、ウエハ10の基板11が半絶縁性である場合を例示したが、基板11は、導電性であってもよい。つまり、基板11が導電性である場合に、カソードパッド30を設けてもよい。基板11が導電性である場合、基板11の表面上の任意の場所に、カソードパッド30を配置することが可能である。
 図9は、導電性の基板11を有するウエハ10にカソードパッド30を設ける態様を概念的に例示する概略断面図である。基板11が導電性である場合、ウエハ10の上面上に(つまり被エッチング面20上に)カソードパッド30を配置することができるだけでなく、ウエハ10の(基板11の)側面上にカソードパッド30を配置することもでき、ウエハ10の(基板11の)底面上にカソードパッド30を配置することもできる。なお、このような場合、基板11のみでも導電性であるため、エピ層12が省略された基板11自体をウエハ10として、ウエハ10の(基板11の)上面上にカソードパッド30を配置する態様も考えられる。導電性の基板11の表面上のどこにカソードパッド30を配置するかは、必要に応じて適宜選択されてよい。
 エッチング液201としては、例えば、エッチング開始時点で酸性であるエッチング液201として、K水溶液のみを用いることも可能である。この場合、K水溶液の濃度は、例えば0.025Mとすればよい。
 また、上述の説明では、S 2-をペルオキソ二硫酸カリウム(K)から供給する態様を例示したが、S 2-は、その他例えば、ペルオキソ二硫酸ナトリウム(Na)、ペルオキソ二硫酸アンモニウム(過硫酸アンモニウム、(NH)等から供給するようにしてもよい。
 PECエッチングの際、エッチング液201は、静止させてもよいし、流しても(動かしても)よい。エッチング液201を流す場合、同じエッチング液201を循環させる(エッチング液201を交換しない)態様であってもよいし、新しいエッチング液201を連続的に供給する(エッチング液201を交換する)態様であってもよい。
<本発明の好ましい態様>
 以下、本発明の好ましい態様について付記する。
(付記1)
 導電性のIII族窒化物で構成された被エッチング面を有し、前記被エッチング面上に被エッチング領域が配置されたエッチング対象物、および、前記エッチング対象物の、前記被エッチング領域と電気的に接続された導電性領域の表面の少なくとも一部と接触するように設けられた導電性部材、を備える処理対象物を準備する工程と、
 前記処理対象物が、電子を受け取る酸化剤を含むアルカリ性または酸性のエッチング液に浸漬され、前記被エッチング領域および前記導電性部材が、前記エッチング液と接触した状態で、前記被エッチング面に、前記エッチング液を介して紫外光を照射することにより、前記被エッチング領域を構成する前記III族窒化物をエッチングする工程と、
 を有し、
 前記被エッチング領域を画定する縁は、前記導電性部材の縁のみによって構成されてはいない(前記導電性部材は、前記被エッチング領域を画定する位置に配置されていない)、構造体の製造方法。
(付記2)
 前記処理対象物は、
 前記被エッチング面上に形成され、非導電性材料で構成されたマスク、を備え、
 前記被エッチング領域を画定する縁は、前記マスクの縁を含んで構成されている(前記マスクは、前記被エッチング領域を画定する位置に配置されている)、付記1に記載の構造体の製造方法。
(付記3)
 前記マスクは、レジストで構成され、
 前記エッチング液は、酸性である、付記2に記載の構造体の製造方法。
(付記4)
 前記エッチング液は、酸性である、付記1~3のいずれか1つに記載の構造体の製造方法。
(付記5)
 前記導電性部材の、前記被エッチング面上に設けられた部分の上面が、前記エッチング液と接触した状態で、前記III族窒化物をエッチングする、付記1~4のいずれか1つに記載の構造体の製造方法。
(付記6)
 前記エッチング対象物は、高電子移動度トランジスタの材料として用いられ、
 前記導電性部材は、前記高電子移動度トランジスタの電極として用いられる、付記1~5のいずれか1つに記載の構造体の製造方法。
(付記7)
 前記被エッチング領域がエッチングされることで形成される凹部は、前記高電子移動度トランジスタの素子分離溝として用いられる、付記6に記載の構造体の製造方法。
(付記8)
 前記導電性部材は、平面視上、前記エッチング対象物の外周に沿って配置されている、付記1~7のいずれか1つに記載の構造体の製造方法。
(付記9)
 前記導電性部材は、平面視上、前記エッチング対象物の外側まで延在するように配置されている、付記1~8のいずれか1つに記載の構造体の製造方法。
(付記10)
 前記エッチング対象物は、半絶縁性基板を備える、付記1~9のいずれか1つに記載の構造体の製造方法。
(付記11)
 前記導電性部材は、前記半絶縁性基板上に形成されたIII族窒化物層上に設けられている、付記10に記載の構造体の製造方法。
(付記12)
 前記導電性部材が前記エッチング液と接触する面積は、前記III族窒化物層の上面である前記被エッチング面の全体の面積に対して、好ましくは1%以上、より好ましくは2%以上、さらに好ましくは4%以上、さらに好ましくは8%以上である、付記11に記載の構造体の製造方法。
(付記13)
 前記導電性部材が前記エッチング液と接触する面積は、前記III族窒化物層の側面の全体の面積よりも広い、付記11または12に記載の構造体の製造方法。
(付記14)
 前記エッチング対象物は、導電性基板を備える、付記1~9のいずれか1つに記載の構造体の製造方法。
(付記15)
 前記導電性部材は、前記導電性基板上に形成されたIII族窒化物層の表面上に配置されている、付記14に記載の構造体の製造方法。
(付記16)
 前記導電性部材は、前記導電性基板の表面上に配置されている、付記14または15に記載の構造体の製造方法。
(付記17)
 導電性のIII族窒化物で構成された被エッチング面を有し、前記被エッチング面上に被エッチング領域が配置されたエッチング対象物と、
 前記エッチング対象物の、前記被エッチング領域と電気的に接続された導電性領域の表面の少なくとも一部と接触するように設けられた導電性部材と、を備え、
 電子を受け取る酸化剤を含むアルカリ性または酸性のエッチング液に、前記被エッチング領域および前記導電性部材が接触した状態で浸漬され、
 前記被エッチング領域を画定する縁は、前記導電性部材の縁のみによって構成されてはいない(前記導電性部材は、前記被エッチング領域を画定する位置に配置されていない)、中間構造体。
(付記18)
 前記被エッチング面上に形成され、非導電性材料で構成されたマスク、を備え、
 前記被エッチング領域を画定する縁は、前記マスクの縁を含んで構成されている(前記マスクは、前記被エッチング領域を画定する位置に配置されている)、付記17に記載の中間構造体。
(付記19)
 前記マスクは、レジストで構成されている、付記17または18に記載の中間構造体。
(付記20)
 前記エッチング対象物は、高電子移動度トランジスタの材料として用いられ、
 前記導電性部材は、前記高電子移動度トランジスタの電極として用いられる、付記17~19のいずれか1つに記載の中間構造体。
(付記21)
 前記導電性部材は、平面視上、前記エッチング対象物の外周に沿って配置されている、付記17~20のいずれか1つに記載の中間構造体。
(付記22)
 前記導電性部材は、平面視上、前記エッチング対象物の外側まで延在するように配置されている、付記21に記載の中間構造体。
(付記23)
 前記エッチング対象物は、半絶縁性基板を備える、付記17~22のいずれか1つに記載の中間構造体。
(付記24)
 前記エッチング対象物は、導電性基板を備える、付記17~22のいずれか1つに記載の中間構造体。
(付記25)
 前記導電性部材は、前記導電性基板の表面上に配置されている、付記24に記載の中間構造体。
(付記26)
 前記被エッチング面に、前記エッチング液を介して、紫外光が照射される、付記17~25のいずれか1つに記載の中間構造体。
(付記27)
 III族窒化物で構成された結晶をエッチング液に浸漬した状態で電気化学的にエッチングを行う方法であって、
 前記III族窒化物の表面に被エッチング領域と、被エッチング領域以外の領域を画定する工程と、
 前記表面に、前記エッチング液を介して紫外光を照射することにより、前記III族窒化物をエッチングする工程と、を有し、
 前記被エッチング領域以外の領域の一部に、前記エッチング液に電子を放出するカソードとして機能する導電性部材を接続する(接触させる)ことを特徴とする、III族窒化物結晶の加工方法。
(付記28)
 前記被エッチング領域を画定する縁は、前記導電性部材の縁を含まずに、前記マスクの縁で構成されている、付記2に記載の構造体の製造方法。
(付記29)
 前記マスクの縁と、前記導電性部材の縁と、の距離が、好ましくは5μm以上、より好ましくは10μm以上である、付記28に記載の構造体の製造方法。
(付記30)
 平面視において、前記導電性部材の全周囲が、前記マスクに囲まれるように、前記導電性部材が配置されている、付記28または29に記載の構造体の製造方法。
(付記31)
 前記被エッチング領域を画定する縁は、前記導電性部材の縁を含まずに、前記マスクの縁で構成されている、付記18に記載の中間構造体。
(付記32)
 前記マスクの縁と、前記導電性部材の縁と、の距離が、好ましくは5μm以上、より好ましくは10μm以上である、付記31に記載の中間構造体。
(付記33)
 平面視において、前記導電性部材の全周囲が、前記マスクに囲まれるように、前記導電性部材が配置されている、付記31または32に記載の中間構造体。
10…エッチング対象物、20…被エッチング面、21…被エッチング領域、30…カソードパッド、50…マスク、100…処理対象物、150…構造体、200…PECエッチング装置、201…エッチング液、202…エッチング液の上面、210…容器、220…光源、221…UV光

Claims (23)

  1.  導電性のIII族窒化物で構成された被エッチング面を有し、前記被エッチング面上に被エッチング領域が配置されたエッチング対象物、前記エッチング対象物の、前記被エッチング領域と電気的に接続された導電性領域の表面の少なくとも一部と接触するように設けられた導電性部材、および、前記被エッチング面上に形成され、非導電性材料で構成されたマスク、を備える処理対象物を準備する工程と、
     前記処理対象物が、電子を受け取る酸化剤としてペルオキソ二硫酸イオンを含むアルカリ性または酸性のエッチング液に浸漬され、前記被エッチング領域および前記導電性部材が、前記エッチング液と接触した状態で、前記被エッチング面に、前記エッチング液を介して光を照射することにより、前記被エッチング領域を構成する前記III族窒化物をエッチングする工程と、
     を有し、
     前記被エッチング領域を画定する縁は、前記導電性部材の縁を含まずに、前記マスクの縁で構成されている、構造体の製造方法。
  2.  前記マスクの、前記被エッチング領域を画定する縁と、前記導電性部材の縁と、の距離が、5μm以上である、請求項1に記載の構造体の製造方法。
  3.  前記被エッチング領域を構成する前記III族窒化物をエッチングする工程では、前記被エッチング領域を画定する縁に沿う位置に、前記エッチングによる凹部の縁が形成されるように、前記エッチングが行われる、請求項1または2に記載の構造体の製造方法。
  4.  前記マスクは、レジストで構成され、
     前記エッチング液は、酸性である、請求項1~3のいずれか1項に記載の構造体の製造方法。
  5.  前記導電性部材の、前記被エッチング面上に設けられた部分の上面が、前記エッチング液と接触した状態で、前記III族窒化物をエッチングする、請求項1~4のいずれか1項に記載の構造体の製造方法。
  6.  前記エッチング対象物は、高電子移動度トランジスタの材料として用いられ、
     前記導電性部材は、前記高電子移動度トランジスタの電極として用いられる、請求項1~5のいずれか1項に記載の構造体の製造方法。
  7.  前記被エッチング領域がエッチングされることで形成される凹部は、前記高電子移動度トランジスタの素子分離溝として用いられる、請求項6に記載の構造体の製造方法。
  8.  前記導電性部材は、平面視上、前記エッチング対象物の外周に沿って配置されている、請求項1~7のいずれか1項に記載の構造体の製造方法。
  9.  前記エッチング対象物は、半絶縁性基板を備える、請求項1~8のいずれか1項に記載の構造体の製造方法。
  10.  前記導電性部材は、前記半絶縁性基板上に形成されたIII族窒化物層上に設けられている、請求項9に記載の構造体の製造方法。
  11.  前記導電性部材が前記エッチング液と接触する面積は、前記III族窒化物層の上面である前記被エッチング面の全体の面積に対して、1%以上である、請求項10に記載の構造体の製造方法。
  12.  前記エッチング対象物は、導電性基板を備える、請求項1~8のいずれか1項に記載の構造体の製造方法。
  13.  前記導電性部材は、前記導電性基板の表面上に配置されている、請求項12に記載の構造体の製造方法。
  14.  導電性のIII族窒化物で構成された被エッチング面を有し、前記被エッチング面上に被エッチング領域が配置されたエッチング対象物と、
     前記エッチング対象物の、前記被エッチング領域と電気的に接続された導電性領域の表面の少なくとも一部と接触するように設けられた導電性部材と、
     前記被エッチング面上に形成され、非導電性材料で構成されたマスクと、
    を備え、
     電子を受け取る酸化剤としてペルオキソ二硫酸イオンを含むアルカリ性または酸性のエッチング液に、前記被エッチング領域および前記導電性部材が接触した状態で浸漬され、
     前記被エッチング領域を画定する縁は、前記導電性部材の縁を含まずに、前記マスクの縁で構成されている、中間構造体。
  15.  前記マスクの、前記被エッチング領域を画定する縁と、前記導電性部材の縁と、の距離が、5μm以上である、請求項14に記載の中間構造体。
  16.  前記マスクは、レジストで構成されている、請求項14または15に記載の中間構造体。
  17.  前記エッチング対象物は、高電子移動度トランジスタの材料として用いられ、
     前記導電性部材は、前記高電子移動度トランジスタの電極として用いられる、請求項14~16のいずれか1項に記載の中間構造体。
  18.  前記導電性部材は、平面視上、前記エッチング対象物の外周に沿って配置されている、請求項14~17のいずれか1項に記載の中間構造体。
  19.  前記エッチング対象物は、半絶縁性基板を備える、請求項14~18のいずれか1項に記載の中間構造体。
  20.  前記エッチング対象物は、導電性基板を備える、請求項14~18のいずれか1項に記載の中間構造体。
  21.  前記導電性部材は、前記導電性基板の表面上に配置されている、請求項20に記載の中間構造体。
  22.  導電性のIII族窒化物で構成された被エッチング面を有し、前記被エッチング面上に被エッチング領域が配置されたエッチング対象物、および、前記エッチング対象物の、前記被エッチング領域と電気的に接続された導電性領域の表面の少なくとも一部と接触するように設けられた導電性部材、を備える処理対象物を準備する工程と、
     前記処理対象物が、電子を受け取る酸化剤を含むアルカリ性または酸性のエッチング液に浸漬され、前記被エッチング領域および前記導電性部材が、前記エッチング液と接触した状態で、前記被エッチング面に、前記エッチング液を介して光を照射することにより、前記被エッチング領域を構成する前記III族窒化物をエッチングする工程と、
     を有し、
     前記被エッチング領域を画定する縁は、前記導電性部材の縁のみによって構成されてはおらず、
     前記導電性部材は、平面視上、前記エッチング対象物の外周に沿って配置されている、構造体の製造方法。
  23.  導電性のIII族窒化物で構成された被エッチング面を有し、前記被エッチング面上に被エッチング領域が配置されたエッチング対象物と、
     前記エッチング対象物の、前記被エッチング領域と電気的に接続された導電性領域の表面の少なくとも一部と接触するように設けられた導電性部材と、
    を備え、
     電子を受け取る酸化剤を含むアルカリ性または酸性のエッチング液に、前記被エッチング領域および前記導電性部材が接触した状態で浸漬され、
     前記被エッチング領域を画定する縁は、前記導電性部材の縁のみによって構成されてはおらず、
     前記導電性部材は、平面視上、前記エッチング対象物の外周に沿って配置されている中間構造体。
PCT/JP2020/011151 2019-04-26 2020-03-13 構造体の製造方法および中間構造体 WO2020217768A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/605,834 US11393693B2 (en) 2019-04-26 2020-03-13 Structure manufacturing method and intermediate structure
CN202080030627.5A CN113728418A (zh) 2019-04-26 2020-03-13 结构体的制造方法和中间结构体

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019086052 2019-04-26
JP2019-086052 2019-04-26
JP2019113773A JP7254639B2 (ja) 2019-04-26 2019-06-19 素子の製造方法
JP2019-113773 2019-06-19

Publications (1)

Publication Number Publication Date
WO2020217768A1 true WO2020217768A1 (ja) 2020-10-29

Family

ID=72942529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/011151 WO2020217768A1 (ja) 2019-04-26 2020-03-13 構造体の製造方法および中間構造体

Country Status (2)

Country Link
US (1) US11393693B2 (ja)
WO (1) WO2020217768A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202221799A (zh) 2020-07-16 2022-06-01 日商賽奧科思股份有限公司 氮化物系高電子遷移率電晶體的製造方法及氮化物系高電子遷移率電晶體
JP7509621B2 (ja) 2020-07-16 2024-07-02 住友化学株式会社 窒化物系高電子移動度トランジスタの製造方法および窒化物系高電子移動度トランジスタ
CN117423716B (zh) * 2023-12-19 2024-04-09 合肥晶合集成电路股份有限公司 背照式半导体结构刻蚀方法及刻蚀装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007519230A (ja) * 2003-12-05 2007-07-12 インターナショナル・レクティファイヤ・コーポレーション Iii族窒化物素子の分離のための構造および方法
JP2010212718A (ja) * 2004-11-02 2010-09-24 Regents Of The Univ Of California 電解質に対する半導体構造の局部的な電気化学的ポテンシャルの改変による光電気化学(pec)的エッチングの制御
JP2011035214A (ja) * 2009-08-03 2011-02-17 Fujitsu Ltd 化合物半導体装置の製造方法
JP2011520296A (ja) * 2008-05-12 2011-07-14 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア p側上方GaN系発光ダイオードの光電気化学粗面化
JP2015532009A (ja) * 2012-08-30 2015-11-05 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 発光ダイオードのための{20−2−1}半極性窒化ガリウムのpecエッチング

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6625260B1 (ja) * 2018-10-18 2019-12-25 株式会社サイオクス 構造体の製造方法および構造体の製造装置
WO2020217769A1 (ja) * 2019-04-26 2020-10-29 株式会社サイオクス 構造体の製造方法、構造体の製造装置および中間構造体
JP7261685B2 (ja) * 2019-07-30 2023-04-20 住友化学株式会社 構造体の製造方法
JP7261684B2 (ja) * 2019-07-30 2023-04-20 住友化学株式会社 構造体の製造方法
JP7221177B2 (ja) * 2019-09-05 2023-02-13 住友化学株式会社 構造体の製造方法および製造装置
JP6893268B1 (ja) * 2020-02-13 2021-06-23 株式会社サイオクス 構造体の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007519230A (ja) * 2003-12-05 2007-07-12 インターナショナル・レクティファイヤ・コーポレーション Iii族窒化物素子の分離のための構造および方法
JP2010212718A (ja) * 2004-11-02 2010-09-24 Regents Of The Univ Of California 電解質に対する半導体構造の局部的な電気化学的ポテンシャルの改変による光電気化学(pec)的エッチングの制御
JP2011520296A (ja) * 2008-05-12 2011-07-14 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア p側上方GaN系発光ダイオードの光電気化学粗面化
JP2011035214A (ja) * 2009-08-03 2011-02-17 Fujitsu Ltd 化合物半導体装置の製造方法
JP2015532009A (ja) * 2012-08-30 2015-11-05 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 発光ダイオードのための{20−2−1}半極性窒化ガリウムのpecエッチング

Also Published As

Publication number Publication date
US20220148883A1 (en) 2022-05-12
US11393693B2 (en) 2022-07-19

Similar Documents

Publication Publication Date Title
WO2020217768A1 (ja) 構造体の製造方法および中間構造体
JP5056753B2 (ja) 化合物半導体装置の製造方法及びエッチング液
JP6952983B2 (ja) エッチング方法及びエッチング装置
TWI837342B (zh) 結構體的製造方法以及中間結構體
JP2007048783A (ja) ショットキーダイオード及びその製造方法
JP4151560B2 (ja) 半導体装置の製造方法
US20110024799A1 (en) Compound semiconductor device and method of manufacturing same
JP4821778B2 (ja) 光電気化学エッチング装置
WO2021020040A1 (ja) 構造体の製造方法および構造体
US12002880B2 (en) Method for manufacturing nitride-based high electron mobility transistor and nitride-based high electron mobility transistor
JP2020184618A (ja) 構造体の製造方法
JP7509621B2 (ja) 窒化物系高電子移動度トランジスタの製造方法および窒化物系高電子移動度トランジスタ
Fariza et al. Role of energy-band offset in photo-electrochemical etching mechanism of p-GaN heterostructures
JP7261685B2 (ja) 構造体の製造方法
CN112420513A (zh) 湿法腐蚀实现凹栅增强型hemt器件的方法
WO2021095410A1 (ja) 半導体装置、および、構造体の製造方法
JP2008010781A (ja) Iii族窒化物半導体装置とその製造方法
Shiozaki et al. Improvements of electronic and optical characteristics of n-GaN-based structures by photoelectrochemical oxidation in glycol solution
JP2011049314A (ja) 半導体装置およびその製造方法
JP2020096015A (ja) 構造体の製造方法と製造装置、および光照射装置
JP2006080274A (ja) エッチング方法及び半導体装置の製造方法
JP5181522B2 (ja) 半導体装置とその製造方法
JP2017152513A (ja) 半導体装置の製造方法およびエッチング方法
KR20100019055A (ko) 수직형 mosfet 제조 시 트렌치 형성 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20793940

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20793940

Country of ref document: EP

Kind code of ref document: A1