WO2020216082A1 - 电池健康状态修正方法、装置、管理***以及存储介质 - Google Patents

电池健康状态修正方法、装置、管理***以及存储介质 Download PDF

Info

Publication number
WO2020216082A1
WO2020216082A1 PCT/CN2020/084335 CN2020084335W WO2020216082A1 WO 2020216082 A1 WO2020216082 A1 WO 2020216082A1 CN 2020084335 W CN2020084335 W CN 2020084335W WO 2020216082 A1 WO2020216082 A1 WO 2020216082A1
Authority
WO
WIPO (PCT)
Prior art keywords
ocv
soc
value
correction
battery cell
Prior art date
Application number
PCT/CN2020/084335
Other languages
English (en)
French (fr)
Inventor
杜明树
李世超
汤慎之
卢艳华
张伟
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP20794606.2A priority Critical patent/EP3779484B1/en
Publication of WO2020216082A1 publication Critical patent/WO2020216082A1/zh
Priority to US17/123,001 priority patent/US11656289B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • H02J7/0049Detection of fully charged condition
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to the field of battery technology, and in particular to a method, device, battery management system, and storage medium for correcting battery health.
  • the state of health (Stay Of Health, SOH) is an important parameter that reflects the performance and life of the battery.
  • the health state of the battery SOH often refers to the ratio of the capacity of the battery after aging to the capacity of the fresh battery.
  • the battery will inevitably undergo aging or deterioration during long-term use, resulting in a significant decrease in battery capacity. If the SOH is not corrected after the battery capacity is attenuated, the calculation error of the state of charge (SOC) of the battery may increase.
  • SOC state of charge
  • the commonly used method for detecting battery SOH is to obtain the SOC according to the OCV (open circuit voltage)-SOC curve look-up table, and calculate the cumulative charge and discharge capacity to estimate the actual capacity of the cell, and then estimate the SOH.
  • OCV open circuit voltage
  • the OCV-SOC curve changes with the aging of the battery, the estimated SOC has a large error, causing the estimated SOH to be inaccurate, and the reliability of SOH correction is low; in addition, some batteries have a hysteresis effect (That is, the charging OCV and the discharging OCV are inconsistent), the OCV-SOC curve will also change under different historical working conditions, which will also cause the estimated SOC to have a large error, resulting in the estimated SOH inaccurate, and the reliability of the SOH correction Lower.
  • a technical problem to be solved by the present disclosure is to provide a battery health state correction method, device, battery management system, and storage medium.
  • a method for correcting the state of health of a battery including: determining whether the current voltage value of a battery cell is within a corrected OCV section of the battery cell; wherein the corrected OCV section includes a non-decaying OCV At least one of the section and the non-hysteresis OCV section; if yes, use the current voltage value of the battery as the corrected voltage value; obtain the SOC correction value corresponding to the corrected voltage value, and use the SOC The correction value corrects the state of health SOH of the battery cell.
  • the modified OCV section corresponding to the battery cell is determined.
  • the determining the modified OCV section corresponding to the battery cell according to the mapping relationship information between the OCV and the SOC of the battery cell includes: determining the correction OCV section corresponding to the battery cell according to the OCV-SOC mapping relationship information.
  • the determining the OCV value corresponding to the correction area of the battery cell according to the OCV-SOC mapping relationship information includes: obtaining in advance a plurality of first battery cells at different aging degrees. OCV-SOC mapping relationship information, determine the first OCV value interval; use the preset first OCV interval value to obtain the first OCV detection value within the first OCV value interval; based on multiple first OCVs -SOC mapping relationship information obtains multiple first SOC values corresponding to the first OCV detection value, and if the difference between the maximum value and the minimum value in the multiple first SOC values is less than the first difference threshold, then This first OCV detection value is used as the non-attenuation OCV value corresponding to the non-attenuation zone.
  • said generating a corrected OCV section corresponding to said correction zone based on this OCV value includes: determining whether the difference between two adjacent non-attenuated OCV values is greater than the first OCV spacing value If not, the OCV area between the two adjacent non-attenuated OCV values is regarded as a non-attenuated OCV segment; wherein, the non-attenuated OCV segment includes at least one non-attenuated OCV segment.
  • the determining the OCV value corresponding to the correction area of the battery cell according to the OCV-SOC mapping relationship information includes: obtaining in advance the charging of the battery cell at the starting point of different states of charge At least one second OCV-SOC mapping relationship information, and at least one third OCV-SOC mapping relationship information for discharge, determine the second OCV value interval; use the preset second OCV interval value as the interval, in the second Obtain the second OCV detection value within the OCV value range; obtain the amount corresponding to the second OCV detection value based on the at least one second OCV-SOC mapping relationship information and the at least one third OCV-SOC mapping relationship information If the difference between the maximum value and the minimum value of the multiple second SOC values is less than the second difference threshold value, then this second OCV detection value is regarded as the non-hysteresis corresponding to the non-hysteresis zone. Return the OCV value.
  • the generating a modified OCV section corresponding to the modified region based on the OCV value includes: determining whether the difference between two adjacent non-hysteresis OCV values is greater than the second OCV interval If not, the OCV region between two adjacent non-hysteresis OCV values is regarded as a non-hysteresis voltage segment; wherein, the non-hysteresis OCV segment includes at least one non-hysteresis voltage segment .
  • the modified voltage value includes: at least two first current voltage values of the cells in the non-attenuating OCV section and/or non-hysteresis OCV section;
  • the correction of the state of health SOH of the battery includes: obtaining a first SOC correction value corresponding to the first current voltage value according to the current fourth OCV-SOC mapping relationship information; obtaining the difference between the two first SOC correction values The first SOC change amount, the first cumulative charge-discharge capacity change amount of the cell corresponding to the first SOC change amount; according to the first cumulative charge-discharge capacity change amount, the first SOC change The amount of SOH correction value.
  • the obtaining the SOH correction value according to the first cumulative charge and discharge capacity change and the first SOC change includes: comparing the first cumulative charge and discharge capacity change with the first The ratio of the SOC change amount is taken as the actual capacity of the battery cell, and the ratio of the actual capacity to the nominal capacity is taken as the SOH correction value.
  • the modified voltage value includes: the second current voltage value of the battery cell in the non-attenuating OCV section and/or non-hysteresis OCV section;
  • the correction of the SOH state of health includes: obtaining a second SOC correction value corresponding to the second current voltage value according to the current fourth OCV-SOC mapping relationship information; when the battery cell is in a fully charged state or is fully charged When the charge signal is applied, the first SOC full charge value is obtained, and the first full charge accumulated charge and discharge capacity corresponding to the first SOC full charge value is obtained; the first SOC full charge value and the second SOC correction value are obtained
  • the second SOC change amount obtains the SOH correction value.
  • the obtaining the SOH correction value according to the second cumulative charge and discharge capacity change and the second SOC change includes: comparing the second cumulative charge and discharge capacity change with the second The ratio of the SOC change amount is taken as the actual capacity of the battery cell, and the ratio of the actual capacity to the nominal capacity is taken as the SOH correction value.
  • the battery cell before the battery cell is in the fully charged state or the full charge signal is received, if multiple second current voltage values are obtained, then based on the fourth OCV-SOC mapping relationship information to obtain the 2. Multiple SOC correction values corresponding to the current voltage value, and the smallest SOC correction value among the multiple SOC correction values is used as the second SOC correction value.
  • the modified voltage value includes: the third current voltage value of the battery cell in the non-attenuating OCV section and/or non-hysteresis OCV section;
  • the correction of the state of health SOH of the SOH includes: obtaining a third SOC correction value corresponding to the third current voltage value based on the current fourth OCV-SOC mapping relationship information, and obtaining a third cumulative value corresponding to the third SOC correction value Charge and discharge capacity; when the battery cell is in a fully charged state or receives a full charge signal, obtain a second SOC full charge value, and obtain a second full charge cumulative charge and discharge capacity corresponding to the second SOC full charge value; according to the The corresponding relationship between the third cumulative charge and discharge capacity and the third SOC correction value, and the corresponding relationship between the second full charge cumulative charge and discharge capacity and the second SOC full charge value are linearly fitted to establish cumulative charge and discharge capacity
  • the linear relationship function with the SOC value, and the SOH correction value is obtained according to the linear relationship function.
  • the linear fitting process is performed; wherein, the linear The algorithm used in the fitting process includes: the least square method.
  • the obtaining the SOH correction value according to the linear relationship function includes: obtaining a fitting error of the linear relationship function; if it is determined that the fitting error is less than a preset error threshold, obtaining the linearity The slope corresponding to the relation function is taken as the SOH correction value.
  • the battery standing condition includes: the duration of no current in the external circuit of the battery cell exceeds a preset time threshold and the voltage change rate of the battery cell is less than one of the preset rate change thresholds. at least one.
  • a battery health status correction device including: a correction timing judgment module, configured to judge whether the current voltage value of the battery cell is within the correction OCV section; wherein the correction The OCV section includes at least one of a non-attenuating OCV section and a non-hysteresis OCV section; a state of health correction module is used to change the current voltage value of the battery cell within the corrected OCV section The current voltage value of the battery cell is used as the correction voltage value; the SOC correction value corresponding to the correction voltage value is obtained, and the SOC correction value is used to correct the state of health SOH of the battery cell.
  • it further includes: a correction area determination module, configured to determine the correction OCV section corresponding to the battery cell according to the mapping relationship information between the OCV and the SOC of the battery cell
  • a battery health status correction device including: a memory; and a processor coupled to the memory, the processor being configured to execute based on instructions stored in the memory The method described above.
  • a battery management system including: the battery health state correction device as described above.
  • a computer-readable storage medium stores computer instructions, and the instructions are executed by a processor to execute the method as described above.
  • the battery health state correction method, device, battery management system, and storage medium of the present disclosure determine the corrected OCV section. If the current voltage value of the battery cell is in the corrected OCV section, the current voltage value is used as the corrected voltage value to obtain the SOC Correction value and use this SOC correction value to correct SOH; this disclosure aims at battery aging and the hysteresis effect of battery charging and discharging.
  • FIG. 1 is a schematic flowchart of an embodiment of a method for correcting a battery health state according to the present disclosure
  • Fig. 2A is a schematic diagram of OCV-SOC curve changes before and after aging
  • Fig. 2B is a schematic diagram of comparison of OCV-SOC curves of charging and discharging cells with hysteresis effect
  • FIG. 3 is a schematic diagram of obtaining a non-decayed OCV segment in an embodiment of a method for correcting a battery state of health according to the present disclosure
  • FIG. 4 is a schematic diagram of obtaining non-hysteresis voltage segments in an embodiment of the method for correcting the state of health of a battery according to the present disclosure
  • FIG. 5 is a schematic diagram of the process of obtaining the SOH correction value according to another embodiment of the battery health correction method of the present disclosure
  • FIG. 6 is a schematic diagram of a process of obtaining an SOH correction value according to another embodiment of a method for correcting a battery health state of the present disclosure
  • FIG. 7 is a schematic diagram of the process of obtaining the SOH correction value according to another embodiment of the method for correcting the state of health of a battery of the present disclosure
  • FIG. 8 is a schematic diagram of a process of obtaining an SOH correction value according to another embodiment of a method for correcting a battery health state of the present disclosure
  • FIG. 9 is a schematic diagram of a process flow for obtaining an SOH correction value according to still another embodiment of a method for correcting a battery health state of the present disclosure.
  • FIG. 10 is a schematic diagram of a linear relationship function generated by fitting according to still another embodiment of the method for correcting the state of health of a battery of the present disclosure
  • FIG. 11 is a schematic diagram of modules in an embodiment of the battery health status correction device according to the present disclosure.
  • FIG. 12 is a schematic diagram of a module for determining a correction area in an embodiment of a battery health state correction device according to the present disclosure
  • FIG. 13 is a schematic diagram of a health state correction module in an embodiment of the battery health state correction device according to the present disclosure
  • FIG. 14 is a schematic diagram of modules of another embodiment of a battery health state correction device according to the present disclosure.
  • the OCV-SOC curve changes with the aging of the battery cell; for batteries such as lithium iron phosphate batteries, silicon anode system batteries, etc., there is a hysteresis of inconsistent charge OCV and discharge OCV As a result, the OCV-SOC curve under charging and discharging conditions will also change accordingly. Therefore, there may be large errors in estimating SOC and estimating SOH based on the OCV-SOC curve.
  • the change of the OCV-SOC curve does not occur in the entire SOC range, that is, during the battery aging process, there is a non-decay area where the OCV does not affect the battery aging. It is called the SOC non-decay zone; for the hysteresis effect of battery charging and discharging, the change of the OCV-SOC curve does not occur in the entire SOC range, that is, there is a non-hysteresis zone where OCV is not affected by the hysteresis effect, which can also be called It is the SOC non-hysteresis area.
  • the present disclosure provides a method for correcting the battery health status, which determines the corrected OCV section of the battery cell.
  • the OCV in the corrected OCV section is not affected by the hysteresis effect and is not affected by the change of the battery aging, that is, the battery aging, battery charging and discharging The two phenomena of hysteresis effect.
  • the changes of different OCV-SOC curves are basically similar.
  • the estimated SOC and estimated SOH can be improved reliability.
  • Fig. 1 is a schematic flowchart of an embodiment of a method for correcting a battery health state according to the present disclosure, as shown in Fig. 1:
  • Step 101 Determine whether the current voltage value of the battery cell is in the correct OCV section.
  • the cell is a cell of a lithium battery, etc.
  • the modified OCV section corresponding to the battery cell can be determined according to the mapping relationship information between the OCV and SOC of the battery cell.
  • the mapping relationship information between OCV and SOC can be various, such as OCV-SOC curve, OCV-SOC mapping relationship Table etc.
  • the modified OCV section includes at least one of a non-attenuating OCV section and a non-hysteresis OCV section.
  • the non-attenuation OCV zone is the OCV value range corresponding to the non-attenuation zone of the cell
  • the non-hysteresis OCV zone is the OCV value range corresponding to the non-hysteresis zone of the cell.
  • the voltage value can be obtained by detection or the voltage characteristic value can be estimated through a voltage estimation model. It can be judged whether the current voltage value is in the correction OCV section in a variety of scenarios, for example, during the charging or discharging process of the battery cell, or when the battery cell continues to work after no load.
  • Step 102 if yes, use the current voltage value of the cell as the corrected voltage value.
  • Step 103 Obtain a SOC correction value corresponding to the correction voltage value, and use the SOC correction value to correct the health state SOH of the battery cell.
  • the SOC correction value corresponding to the correction voltage value can be obtained through the OCV-SOC curve, OCV-SOC mapping relationship table, etc., and the SOC correction value can be used to correct the health state SOH of the battery cell.
  • the SOC correction value is the SOC value corresponding to the correction voltage value.
  • the battery health state correction method in the above embodiment overcomes the problem of low accuracy in obtaining SOC and performing SOH correction under the hysteresis effect of battery aging and battery charging and discharging, and can make the current voltage value of the battery cell in the corrected OCV zone During the period, estimate SOC and estimate SOH, which improves the reliability of SOH correction results.
  • the battery standing condition includes at least one of no current in the external circuit of the battery cell or the duration of the external circuit current being less than the current threshold exceeding a preset time threshold, and the voltage change rate of the battery cell being less than the preset rate change threshold.
  • the current threshold can be 1 ampere or the like.
  • the time threshold can be determined by the functional relationship between temperature and SOC and resting time or a mapping relationship table.
  • the external circuit includes a circuit for charging and discharging the battery cell. When the battery standing condition is met, it is judged whether the cell is in the non-attenuation zone or non-hysteresis zone at this time. If it is in the non-attenuation zone or non-hysteresis zone, it is considered that the SOH correction opportunity is satisfied at this time.
  • the non-attenuation area and non-hysteresis area are shown in Figures 2A and 2B.
  • the OCV-SOC mapping relationship information can be a pre-obtained OCV-SOC curve, OCV-SOC mapping relationship table, etc., based on this OCV value to generate and
  • the correction OCV section corresponding to the correction zone, the correction zone includes at least one of a non-attenuation zone and a non-hysteresis zone.
  • FIG. 3 is a schematic diagram of obtaining non-attenuated OCV segments in an embodiment of the method for correcting the battery state of health according to the present disclosure, as shown in FIG. 3:
  • Step 301 Obtain in advance multiple first OCV-SOC mapping relationship information of the battery cells under different aging degrees, and determine the first OCV value interval.
  • first OCV-SOC mapping tables under different aging degrees are obtained through offline measurements, and the maximum OCV value OCVmax and the minimum OCV value OCVmin in the first OCV-SOC mapping table are used to determine the upper limit of the OCV value range.
  • the lower limit determines the first OCV value interval.
  • Step 302 Obtain a first OCV detection value within the first OCV value interval by using a preset first OCV interval value.
  • Step 303 Obtain multiple first SOC values corresponding to the first OCV detection value based on multiple first OCV-SOC mapping relationship information.
  • step 304 if the difference between the maximum value and the minimum value of the plurality of first SOC values is less than the first difference threshold, use the first OCV detection value as the non-attenuation OCV value corresponding to the non-attenuation zone.
  • the first OCV detection value is obtained between OCVmax and OCVmin with the first OCV spacing values at equal intervals, and the first OCV detection value is obtained by looking up the table with multiple first OCV-SOC mapping relationship tables corresponding to each other. SOC value, judging whether the deviation value between the maximum value and the minimum value of the multiple first SOC values is less than the preset first difference threshold, if the deviation value is less than the first difference threshold, then the first OCV detection value is taken as The non-attenuation OCV value is added to the non-attenuation area value list.
  • Step 305 Determine whether the difference between two adjacent non-attenuated OCV values is greater than the first OCV interval value.
  • step 306 if not, the OCV area between the two adjacent non-attenuated OCV values is regarded as a non-attenuated OCV segment.
  • the non-attenuated OCV section includes at least one non-attenuated OCV section.
  • the non-attenuated OCV section may include all the non-attenuated OCV sections.
  • the multiple first OCV-SOC mapping relationship information may be multiple OCV-SOC mapping relationship tables for the same battery cell.
  • the value of the first OCV interval can be 5mV or 10mV.
  • the first OCV interval value at equal intervals is selected to obtain the first OCV detection value as 3.4V, 3.41V, 3.42V,..., 4.08V, 4.09V, 4.10V.
  • first OCV detection values are used to check the three first OCV-SOC mapping tables of A, B, and C to obtain three different first SOC values.
  • the first SOC values of 3.5V in Table A, Table B and Table C are 20%, 23% and 21%, and the deviation between the maximum value and the minimum value of the three first SOC values is 23% -20%
  • 3%, assuming that the preset first difference threshold is 5%, because 3% ⁇ 5%, the area corresponding to 3.5V is determined to be a non-attenuation zone, which is used as the non-attenuation OCV value.
  • the OCV area between the two adjacent non-attenuated OCV values is regarded as a non-attenuated OCV segment to obtain all non-attenuated OCV values
  • the OCV segments constitute non-attenuated OCV segments.
  • FIG. 4 is a schematic diagram of obtaining non-hysteresis voltage segments in an embodiment of the battery health state correction method according to the present disclosure, as shown in FIG. 4:
  • Step 401 Obtain in advance at least one second OCV-SOC mapping relationship information for battery cells to be charged at different starting points of charge states, and at least one third OCV-SOC mapping relationship information for discharging cells to determine a second OCV value range.
  • offline measurement is performed on the same battery cell to obtain at least one second OCV-SOC mapping table for charging and at least one third OCV-SOC mapping table for discharging under different starting points of charge states.
  • the maximum OCV value OCVmax and the minimum OCV value OCVmin in the second OCV-SOC mapping relationship table and the third OCV-SOC mapping relationship table are used to determine the upper and lower limits of the OCV range, and determine the second OCV value interval.
  • the SOC starting point for charging may be 0%, 10%, 90% SOC, etc.
  • the SOC starting point for discharging may be 10%, 20%, 100% SOC, etc.
  • Step 402 Obtain a second OCV detection value within the second OCV value interval by using a preset second OCV interval value.
  • Step 403 Obtain multiple second SOC values corresponding to the second OCV detection value based on at least one second OCV-SOC mapping relationship information and at least one third OCV-SOC mapping relationship information.
  • Step 404 If the difference between the maximum value and the minimum value of the plurality of second SOC values is less than the second difference threshold value, then this second OCV detection value is taken as the non-hysteresis OCV value corresponding to the non-hysteresis zone.
  • the second OCV detection value is obtained between OCVmax and OCVmin with the second OCV spacing value at equal intervals, and the second OCV detection value is obtained in at least one second OCV-SOC mapping relationship table and at least one third OCV- Corresponding multiple second SOC values in the SOC mapping table, determine whether the deviation between the maximum value and the minimum value in these second SOC values is less than the preset second difference threshold, and if the deviation is less than the second difference threshold ,
  • the second OCV detection value is regarded as the non-hysteresis OCV value and added to the non-hysteresis area value list.
  • Step 405 Determine whether the difference between two adjacent non-hysteresis OCV values is greater than the second OCV interval value.
  • Step 406 if not, the OCV area between the two adjacent non-hysteresis OCV values is regarded as the non-hysteresis voltage segment.
  • the non-hysteresis OCV section includes at least one non-hysteresis voltage segment.
  • the OCV difference between two adjacent non-hysteresis OCV values in the non-hysteresis area value list does not exceed the second OCV interval value, if so, the OCV area between the two non-hysteresis OCV values It is a non-hysteresis OCV segment. Repeat the above operations to obtain all non-hysteretic OCV segments to form a non-hysteretic OCV segment.
  • the two second OCV-SOC mapping tables are A and B, respectively, and the two third OCV-SOC mapping tables (discharging conditions) are C and D, respectively. table.
  • the second OCV detection value to check the four mapping tables of A, B, C, and D to obtain four second SOC values.
  • the second SOC values corresponding to 3.5V in the four mapping tables of A, B, C, D are 20%, 23%, 24%, 25%, and the maximum and minimum values of the four second SOC values
  • the deviation value of is
  • the OCV area between the two adjacent non-hysteresis OCV values is regarded as a non-hysteresis OCV segment to obtain all
  • the non-hysteretic OCV segments form a non-hysteretic OCV segment.
  • cells with mixed NCM and LMO systems use only non-attenuating OCV sections, LFP cells, etc. only use non-hysteresis OCV sections, silicon anode system cells, and anode parameters
  • Heterosilicon battery cells and the like can use only non-hysteresis OCV sections, or both non-attenuating OCV sections and non-hysteresis OCV sections.
  • NCM is a nickel-cobalt-manganese ternary cathode material
  • LMO is a lithium manganate cathode material
  • LFP is a lithium iron phosphate cathode material.
  • FIG. 5 is a schematic diagram of the process of obtaining the SOH correction value according to another embodiment of the battery health correction method of the present disclosure.
  • the correction voltage value includes: at least two in the non-attenuation OCV section and/or the non-hysteresis OCV section The first current voltage value of the battery cell; as shown in Figure 5:
  • Step 501 Obtain a first SOC correction value corresponding to the first current voltage value according to the current fourth OCV-SOC mapping relationship information.
  • the number of the first current voltage values may be two or more, and the current fourth OCV-SOC mapping relationship information may be the current OCV-SOC mapping relationship table, etc.
  • the fourth OCV-SOC mapping relationship information is an OCV-SOC mapping relationship table stored in the current vehicle.
  • Step 502 Obtain a first SOC change amount between the two first SOC correction values, and a first cumulative charge-discharge capacity change amount of the cell corresponding to the first SOC change amount.
  • the accumulated charge and discharge capacity may be accumulated charge capacity-accumulated discharge capacity.
  • the accumulated charge and discharge capacity can be obtained by a variety of methods, such as integrating the charge and discharge current function over time to obtain the accumulated charge and discharge capacity.
  • Step 503 Obtain an SOH correction value according to the first cumulative charge-discharge capacity change and the first SOC change.
  • the ratio of the first cumulative charge and discharge capacity change to the first SOC change is taken as the actual capacity of the battery cell, and the ratio of the actual capacity to the nominal capacity is taken as the SOH correction value.
  • FIG. 6 is a schematic diagram of the process of obtaining the SOH correction value according to another embodiment of the battery health correction method of the present disclosure, as shown in FIG. 6:
  • Step 601 It is judged whether the battery standing condition is satisfied, if yes, go to step 602, and if not, go back.
  • Step 602 Read the first current voltage value V0.
  • Step 603 Determine whether V0 is in the non-attenuating OCV section and/or non-hysteresis OCV section. If it is, it is determined that the first correction opportunity for SOH has occurred, and step 604 is performed, and if not, it returns.
  • Step 604 query the current OCV-SOC mapping relationship table according to V0 to obtain the first SOC correction value SOC0.
  • the current OCV-SOC mapping relationship table is the fourth OCV-SOC mapping relationship information.
  • Step 605 Store and record the current first cumulative charge and discharge capacity Q0 and SOC0.
  • Step 606 repeat step 601-step 603 until the next time the battery rest condition is met and the first current voltage is within the preset non-attenuating OCV section and/or non-hysteresis OCV section, it is determined that SOH occurs for the second time Correction opportunities.
  • Step 607 Read the first current voltage value V1, query the current OCV-SOC mapping relationship table according to V1, and obtain the first SOC correction value SOC1.
  • Step 608 Store and record the current first accumulated charge and discharge capacity Q1 and SOC1.
  • Step 609 Calculate and obtain the actual battery cell capacity Cap_Calc according to the ratio of the cumulative charge and discharge capacity change between the two correction opportunities to the corrected state of charge change.
  • Step 611 Update the current SOH output value and stored value.
  • the SOH correction value calculated in step 610 may be verified, and the SOH value satisfying the verification may be updated to the current SOH value and stored.
  • a variety of verification rules can be used to verify the SOH correction value.
  • the verification rule can be that the SOH value obtained this time is less than the SOH value obtained last time. By verifying the SOH correction value, only the SOH value that satisfies the verification is updated, which can avoid inaccurate SOH estimation and improve the accuracy of SOH correction. For example, when the SOH value calculated last time is 95%, if the corrected SOH value obtained this time is 96%, because 96% is greater than 95%, the verification rule is not met, and the current correction value is abandoned.
  • the update rule can be that the change in the SOH value obtained twice in a row cannot be greater than the set single update maximum SOH update value.
  • the correction voltage value includes: the battery cells in the non-attenuation OCV section and/or the non-hysteresis OCV section
  • the second current voltage value as shown in Figure 7:
  • Step 701 Obtain a second SOC correction value corresponding to the second current voltage value according to the current fourth OCV-SOC mapping relationship information.
  • Step 702 when the battery cell is in a fully charged state or a full charge signal is received, the first SOC full charge value is obtained, and the first full charge accumulated charge and discharge capacity corresponding to the first SOC full charge value is obtained.
  • the SOC full charge value is the SOC value when the battery cell is fully charged or when a full charge signal is received.
  • Step 703 Obtain the second SOC change amount between the first SOC full charge value and the second SOC correction value, and the second cumulative charge and discharge capacity change amount between the first full charge cumulative charge and discharge capacity and the second cumulative charge and discharge capacity .
  • Step 704 Obtain an SOH correction value according to the second cumulative charge-discharge capacity change and the second SOC change.
  • the ratio of the second cumulative charge and discharge capacity change to the second SOC change is used as the actual capacity of the cell, and the ratio between the actual capacity and the nominal capacity is used as the SOH correction value.
  • the second SOC correction value the correction voltage value corresponding to the smallest SOC correction value among the plurality of SOC correction values is used as the second SOC correction value.
  • the battery cell before the battery cell is in a fully charged state or receives a full charge signal, if a second current voltage value is obtained, no other second current voltage values are obtained; or, if a second current voltage value is obtained After the current voltage value, another second current voltage value is obtained, the SOC correction values corresponding to the two second current voltage values are compared, and the second current voltage value corresponding to the smaller SOC correction value is stored.
  • FIG. 8 is a schematic diagram of the process of obtaining the SOH correction value according to another embodiment of the battery health state correction method of the present disclosure, as shown in FIG. 8:
  • step 801 it is judged whether the battery standing condition is satisfied, if yes, go to step 802, if not, then return.
  • Step 802 Read the second current voltage value V0.
  • Step 803 Determine whether V0 is in the non-attenuated OCV section and/or non-hysteresis OCV section, if yes, go to step 804, if not, then return.
  • Step 804 query the current OCV-SOC mapping relationship table according to V0 to obtain the second SOC correction value SOC0.
  • the current OCV-SOC mapping relationship table is the fourth OCV-SOC mapping relationship information.
  • Step 805 Store and record the current accumulated charge and discharge capacity Q0 and SOC0.
  • step 806 when the battery cell is fully charged, the accumulated charge and discharge capacity Q1 of the fully charged core is stored and recorded, and the state of charge SOC1 of the fully charged core is stored and recorded.
  • the state of charge SOC1 of the fully charged core can be obtained through integration calculations, etc., or can be determined through offline calibration tests.
  • the capacity of the fully charged core is the actual capacity.
  • Step 809 Update the current SOH output value and stored value.
  • the SOH correction value calculated in step 808 can be verified and judged, and the SOH value that satisfies the verification can be updated to the current SOH value and stored.
  • the correction voltage value includes: the battery cells in the non-decaying OCV section and/or the non-hysteresis OCV section The third current voltage value; as shown in Figure 9:
  • Step 901 Obtain a third SOC correction value corresponding to the third current voltage value based on the current fourth OCV-SOC mapping relationship information, and obtain a third accumulated charge and discharge capacity corresponding to the third SOC correction value.
  • step 902 when the battery cell is in a fully charged state or a full charge signal is received, a second SOC full charge value is obtained, and a second full charge accumulated charge and discharge capacity corresponding to the second SOC full charge value is obtained.
  • Step 903 Perform a linear fitting process according to the correspondence between the third cumulative charge and discharge capacity and the third SOC correction value, and the correspondence between the second full charge cumulative charge and discharge capacity and the second SOC full charge value to establish the cumulative charge and discharge capacity and SOC The linear relationship function of the value.
  • Step 904 Obtain the SOH correction value according to the linear relationship function.
  • linear fitting processing is performed; algorithms used for linear fitting processing include: least squares method, etc.
  • the fitting error of the linear relationship function is obtained. If it is determined that the fitting error is less than the preset error threshold, the slope corresponding to the linear relationship function is obtained, and the slope is used as the SOH correction value.
  • the current voltage value V0 of the battery cell is read and judged Whether V0 is in the non-attenuating OCV section and/or non-hysteresis OCV section, if it is, the current voltage value V0 is the third current voltage value.
  • V0 query the current OCV-SOC mapping relationship table to obtain the first Three SOC correction value SOC0.
  • the third cumulative charge and discharge capacity Q0 corresponding to the third SOC correction value is obtained, and the third cumulative charge and discharge capacity Q0 and the corresponding third SOC correction value SOC0 are stored.
  • the calculated slope k is the SOH correction value.
  • the calculated SOH correction value is verified and judged, and the SOH value that meets the verification is updated to the current SOH value and stored.
  • the stored N groups of Q(k) and the corresponding SOC(k) are: [SOC(1),Q(1)],[SOC(2),Q(2)],...,[SOC(N -1),Q(N-1)],[SOC(N),Q(N)].
  • the slope k is used as the SOH correction value.
  • the present disclosure provides a battery health status correction device 110, including: a correction area determination module 1101, a correction timing determination module 1102, a health status correction module 1103, and a battery static determination module 1104 .
  • the correction area determination module 1101 determines the correction OCV section of the battery cell according to the mapping relationship information between the open circuit voltage OCV of the battery cell and the state of charge SOC.
  • the modified OCV section includes at least one of a non-attenuating OCV section and a non-hysteresis OCV section.
  • the correction area determination module 1101 determines the OCV value corresponding to the correction area of the cell according to the OCV-SOC mapping relationship information, where the correction area includes at least one of a non-attenuation area and a non-hysteresis area.
  • the correction area determination module 1101 generates a correction OCV section corresponding to the correction area based on the OCV value.
  • the correction timing judging module 1102 judges whether the current voltage value of the cell is within the corrected OCV section of the cell. If the current voltage value of the battery cell is in the corrected OCV section, the state of health correction module 1103 obtains the corrected voltage value and corrects the state of health SOH of the battery cell.
  • the battery standstill judgment module 1104 judges whether the battery standstill condition is satisfied, and if so, the correction timing judgment module 1102 judges whether the current voltage value of the battery cell is within the corrected OCV section.
  • the battery standing condition includes at least one of: no current in the external circuit of the battery cell or the duration of the external circuit current being less than the current threshold exceeds a preset time threshold and the voltage change rate of the battery cell is less than the preset rate change threshold.
  • the correction area determination module 1101 includes: a non-attenuation area determination unit 1201 and a non-hysteresis area determination unit 1202.
  • the non-attenuation area determination unit 1201 obtains in advance a plurality of first OCV-SOC mapping relationship information of the cells under different aging degrees, and determines the first OCV value interval.
  • the non-attenuation area determination unit 1201 obtains the first OCV detection value within the first OCV value interval by using the preset first OCV interval value.
  • the non-attenuation area determination unit 1201 obtains multiple first SOC values corresponding to the first OCV detection value based on multiple first OCV-SOC mapping relationship information, if the difference between the maximum value and the minimum value of the multiple first SOC values is less than For the first difference threshold, the first OCV detection value is taken as the non-attenuation OCV value corresponding to the non-attenuation zone.
  • the non-attenuated area determining unit 1201 determines whether the difference between two adjacent non-attenuated OCV values is greater than the first OCV spacing value, and if not, the OCV area between the two adjacent non-attenuated OCV values is regarded as a non-attenuated OCV segmentation.
  • the non-attenuated OCV section includes at least one non-attenuated OCV section.
  • the non-hysteresis area determination unit 1202 obtains in advance at least one second OCV-SOC mapping relationship information for the battery cell to be charged under different starting points of the state of charge, and at least one third OCV-SOC mapping relationship information for the discharge to determine the second OCV Value range.
  • the non-hysteresis area determination unit 1202 obtains the second OCV detection value within the second OCV value interval by using the preset second OCV interval value.
  • the non-hysteresis area determination unit 1202 obtains multiple second SOC values corresponding to the second OCV detection value based on at least one second OCV-SOC mapping relationship information and at least one third OCV-SOC mapping relationship information. The difference between the maximum value and the minimum value in the SOC value is less than the second difference threshold, the non-hysteresis area determination unit 1202 uses this second OCV detection value as the non-hysteresis OCV value corresponding to the non-hysteresis area.
  • the non-hysteresis area determination unit 1202 determines whether the difference between two adjacent non-hysteresis OCV values is greater than the second OCV interval value, and if not, the OCV area between the two adjacent non-hysteresis OCV values As a non-hysteresis voltage segment.
  • the non-hysteresis OCV section includes at least one non-hysteresis voltage segment.
  • the health status correction module 1103 includes: a first correction unit 1301, a second correction unit 1302, and a third correction unit 1303.
  • the corrected voltage value includes: the first current voltage value of at least two cells in the non-decaying OCV section and/or the non-hysteresis OCV section.
  • the first correction unit 1301 obtains the first SOC correction value corresponding to the first current voltage value according to the current fourth OCV-SOC mapping relationship information.
  • the first correction unit 1301 obtains the first SOC change amount between the two first SOC correction values, and the first cumulative charge and discharge capacity change amount of the cell corresponding to the first SOC change amount.
  • the first correction unit 1301 obtains the SOH correction value according to the first cumulative charge and discharge capacity change amount and the first SOC change amount.
  • the first correction unit 1301 uses the ratio of the first cumulative charge and discharge capacity change to the first SOC change as the actual capacity of the cell, and uses the ratio of the actual capacity to the nominal capacity as the SOH correction value.
  • the modified voltage value includes: the second current voltage value of the cell in the non-decaying OCV section and/or the non-hysteresis OCV section.
  • the second correction unit 1302 obtains the second SOC correction value corresponding to the second current voltage value according to the current fourth OCV-SOC mapping relationship information.
  • the second correction unit 1302 obtains the first SOC full charge value when the battery cell is in a fully charged state or receives a full charge signal, and obtains the first full charge accumulated charge and discharge capacity corresponding to the first SOC full charge value.
  • the second correction unit 1302 obtains the second SOC change amount between the first SOC full charge value and the second SOC correction value, and the second accumulated charge and discharge capacity between the first full charge accumulated charge and discharge capacity and the second accumulated charge and discharge capacity The amount of change.
  • the second correction unit 1302 obtains the SOH correction value according to the second cumulative charge and discharge capacity change amount and the second SOC change amount.
  • the second correction unit 1302 uses the ratio of the second cumulative charge and discharge capacity change to the second SOC change as the actual capacity of the cell, and uses the ratio of the actual capacity to the nominal capacity as the SOH correction value.
  • the second correction unit 1302 obtains multiple second current voltage values before the battery cell is in the fully charged state or receives the full charge signal, and then obtains the corresponding values to the multiple second current voltage values based on the fourth OCV-SOC mapping relationship information. Corresponding multiple SOC correction values.
  • the second correction unit 1302 uses the correction voltage value corresponding to the smallest SOC correction value among the plurality of SOC correction values as the second SOC correction value.
  • the corrected voltage value includes: the third current voltage value of the cell in the non-attenuating OCV section and/or the non-hysteresis OCV section.
  • the third correction unit 1303 obtains a third SOC correction value corresponding to the third current voltage value based on the current fourth OCV-SOC mapping relationship information, and obtains a third accumulated charge and discharge capacity corresponding to the third SOC correction value.
  • the third correction unit 1303 obtains the second SOC full charge value when the battery cell is in a fully charged state or receives a full charge signal, and obtains the second full charge accumulated charge and discharge capacity corresponding to the second SOC full charge value.
  • the third correction unit 1303 performs linear fitting processing according to the correspondence relationship between the third cumulative charge and discharge capacity and the third SOC correction value, and the correspondence relationship between the second full charge cumulative charge and discharge capacity and the second SOC full charge value to establish the cumulative charge and discharge capacity
  • the linear relationship function with the SOC value, and the SOH correction value is obtained according to the linear relationship function.
  • the third correction unit 1303 performs linear fitting processing, and the algorithms used for linear fitting processing include: Two multiplication and so on.
  • the third correction unit 1303 obtains the fitting error of the linear relationship function, and if it is determined that the fitting error is less than the preset error threshold, obtains the slope corresponding to the linear relationship function, and uses the slope as the SOH correction value.
  • FIG. 14 is a schematic diagram of modules of another embodiment of a battery health state correction device according to the present disclosure.
  • the device may include a memory 1401, a processor 1402, a communication interface 1403, and a bus 1404.
  • the memory 1401 is used to store instructions
  • the processor 1402 is coupled to the memory 1401, and the processor 1402 is configured to execute the above-mentioned battery health state correction method based on the instructions stored in the memory 1401.
  • the memory 1401 may be a high-speed RAM memory, a non-volatile memory (non-volatile memory), etc., and the memory 1401 may also be a memory array.
  • the storage 1401 may also be divided into blocks, and the blocks may be combined into a virtual volume according to certain rules.
  • the processor 1402 may be a central processing unit CPU, or an application specific integrated circuit (ASIC), or one or more integrated circuits configured to implement the battery health state correction method of the present disclosure.
  • the present disclosure provides a battery management system, including the battery health status correction device in any of the above embodiments.
  • the battery management system can be installed in a car, etc., to manage the battery.
  • the present disclosure provides a computer-readable storage medium, and the computer-readable storage medium stores computer instructions.
  • the instructions are executed by a processor, the battery health status correction method as in any of the above embodiments is implemented.
  • the battery health state correction method, device, battery management system, and storage medium in the above embodiments determine the corrected OCV section including the non-attenuated OCV section and the non-hysteresis OCV section, if the current voltage value of the battery cell is correcting the OCV In the section, the current voltage value is used as the corrected voltage value to obtain the SOC correction value and use the SOC correction value to correct the SOH; for the hysteresis effect of battery aging and battery charging and discharging, when the voltage value of the battery is being corrected In the OCV section, the changes of different OCV-SOC curves are basically similar.
  • Obtaining the SOC and performing SOH correction is basically not affected by the hysteresis effect and not affected by the change of battery aging; it can be realized when the battery cell is in the non-hysteresis area and non-attenuation area Obtain SOC and perform SOH correction at the same time, overcome the low accuracy of obtaining SOC and perform SOH correction under the hysteresis effect of battery aging and battery charging and discharging, improve the reliability of SOH correction results, and accurately estimate battery health To improve battery life and user experience.
  • the method and system of the present disclosure may be implemented in many ways.
  • the method and system of the present disclosure can be implemented by software, hardware, firmware or any combination of software, hardware, and firmware.
  • the above-mentioned order of the steps for the method is for illustration only, and the steps of the method of the present disclosure are not limited to the order specifically described above, unless otherwise specifically stated.
  • the present disclosure may also be implemented as programs recorded in a recording medium, and these programs include machine-readable instructions for implementing the method according to the present disclosure.
  • the present disclosure also covers a recording medium storing a program for executing the method according to the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种电池健康状态修正方法、装置、电池管理***以及存储介质。电池健康状态修正方法包括:判断电芯的当前电压值是否在电芯的修正OCV区段内(101),修正OCV区段包括非衰减OCV区段和非滞回OCV区段中的至少一个;如果是,则将电芯的当前电压值作为修正电压值(102);获得SOC修正值,对电芯的健康状态SOH进行修正(103)。不受滞回效应影响,不随电池老化变化影响,提升了SOH修正结果的可靠性,能够准确估算电池的健康程度,提高电池的使用寿命以及用户的使用感受度。

Description

电池健康状态修正方法、装置、管理***以及存储介质
本公开要求享有2019年04月25日提交的名称为“电池健康状态修正方法、装置、管理***以及存储介质”的中国专利申请CN201910338521.0的优先权,其全部内容通过引用并入本文中。
技术领域
本公开涉及电池技术领域,尤其涉及一种电池健康状态修正方法、装置、电池管理***以及存储介质。
背景技术
健康状态(Stay Of Health,SOH)是反应电池性能和寿命的重要参数,电池的健康状态SOH常指电池老化后容量与新鲜电芯容量比值。电池在长期使用中必然发生老化或者劣化,导致电池容量显著降低,如果电池容量衰减后,不对SOH进行修正,则可能导致电池的荷电状态(State of Charge,SOC)计算误差增大,此外以同样的充电电流进行充电时,实际倍率也会偏大,存在电流过流风险等问题。
目前,常用的对电池SOH的检测方法为根据OCV(开路电压)-SOC曲线查表获得SOC,并计算累计充放容量估算电芯的实际容量,进而估算SOH。但是,当OCV-SOC曲线随电池的老化发生变化时,估算出的SOC有较大误差,造成估算的SOH不准确,对于SOH进行修正的可靠性较低;此外,有些电池存在滞回效应(即充电OCV和放电OCV不一致),不同历史工况下OCV-SOC曲线也会随之变化,也会造成估算出的SOC有较大误差,造成估算的SOH不准确,对于SOH进行修正的可靠性较低。
发明内容
有鉴于此,本公开要解决的一个技术问题是提供一种电池健康状态修正方法、装置、电池管理***以及存储介质。
根据本公开的一个方面,提供一种电池健康状态修正方法,包括:判断电芯的当前电压值是否在所述电芯的修正OCV区段内;其中,所述修正OCV区段包括非衰减OCV区 段和非滞回OCV区段中的至少一个;如果是,则将所述电芯的当前电压值作为修正电压值;获得与所述修正电压值相对应的SOC修正值,使用所述SOC修正值对所述电芯的健康状态SOH进行修正。
在一个实施例中,判断是否满足电池静置条件;如果是,则判断所述电芯的当前电压值是否在所述修正OCV区段内。
在一个实施例中,根据电芯的OCV与SOC的映射关系信息,确定与所述电芯相对应的修正OCV区段。
在一个实施例中,所述根据电芯的OCV与SOC的映射关系信息、确定与所述电芯相对应的修正OCV区段包括:根据所述OCV-SOC映射关系信息确定与所述电芯的修正区相对应的OCV值,其中,所述修正区包括非衰减区和非滞回区中的至少一个;基于此OCV值生成与所述修正区相对应的修正OCV区段。
在一个实施例中,所述根据所述OCV-SOC映射关系信息确定与所述电芯的修正区相对应的OCV值,包括:预先获取所述电芯在不同老化程度下的多个第一OCV-SOC映射关系信息,确定第一OCV取值区间;以预设的第一OCV间距值为间隔,在所述第一OCV取值区间内获得第一OCV检测值;基于多个第一OCV-SOC映射关系信息获得与所述第一OCV检测值对应的多个第一SOC值,如果所述多个第一SOC值中的最大值和最小值之差小于第一差值阈值,则将此第一OCV检测值作为与所述非衰减区相对应的非衰减OCV值。
在一个实施例中,所述基于此OCV值生成与所述修正区相对应的修正OCV区段,包括:判断相邻的两个非衰减OCV值的差值是否大于所述第一OCV间距值,如果否,则将此相邻的两个非衰减OCV值之间的OCV区域作为非衰减OCV分段;其中,所述非衰减OCV区段包含至少一个非衰减OCV分段。
在一个实施例中,所述根据所述OCV-SOC映射关系信息确定与所述电芯的修正区相对应的OCV值,包括:预先获取所述电芯在不同荷电状态起点下进行充电的至少一个第二OCV-SOC映射关系信息、进行放电的至少一个第三OCV-SOC映射关系信息,确定第二OCV取值区间;以预设的第二OCV间距值为间隔,在所述第二OCV取值区间内获得第二OCV检测值;基于所述至少一个第二OCV-SOC映射关系信息和所述至少一个第三OCV-SOC映射关系信息获得与所述第二OCV检测值对应的多个第二SOC值,如果多个第二SOC值中的最大值和最小值之差小于第二差值阈值,则将此第二OCV检测值作为与所述非滞回区相对应的非滞回OCV值。
在一个实施例中,所述基于此OCV值生成与所述修正区域相对应的修正OCV区段,包括:判断相邻的两个非滞回OCV值的差值是否大于所述第二OCV间距值,如果否,则将此相邻的两个非滞回OCV值之间的OCV区域作为非滞回电压分段;其中,所述非滞回OCV区段包含至少一个非滞回电压分段。
在一个实施例中,所述修正电压值包括:至少两个处于所述非衰减OCV区段和/或非滞回OCV区段内的所述电芯的第一当前电压值;所述对所述电芯的健康状态SOH进行修正包括:根据当前的第四OCV-SOC映射关系信息获得与所述第一当前电压值相对应的第一SOC修正值;获得两个第一SOC修正值之间的第一SOC变化量、与所述第一SOC变化量相对应的所述电芯的第一累计充放电容量变化量;根据所述第一累计充放电容量变化量、所述第一SOC变化量获得SOH修正值。
在一个实施例中,所述根据所述第一累计充放电容量变化量、所述第一SOC变化量获得SOH修正值,包括:将所述第一累计充放电容量变化量与所述第一SOC变化量的比值作为所述电芯的实际容量,并将所述实际容量与标称容量的比值作为所述SOH修正值。
在一个实施例中,所述修正电压值包括:处于所述非衰减OCV区段和/或非滞回OCV区段内的所述电芯的第二当前电压值;所述对所述电芯的健康状态SOH进行修正包括:根据当前的第四OCV-SOC映射关系信息获得与所述第二当前电压值相对应的第二SOC修正值;在所述电芯为满充状态或接收到满充信号时,则获得第一SOC满充值,并获得与所述第一SOC满充值相对应的第一满充累计充放电容量;获得所述第一SOC满充值和所述第二SOC修正值之间的第二SOC变化量、所述第一满充累计充放电容量与所述第二累计充放电容量之间的第二累计充放电容量变化量;根据所述第二累计充放电容量变化量、所述第二SOC变化量获得SOH修正值。
在一个实施例中,所述根据所述第二累计充放电容量变化量、所述第二SOC变化量获得SOH修正值,包括:将所述第二累计充放电容量变化量与所述第二SOC变化量的比值作为所述电芯的实际容量,并将所述实际容量与标称容量的比值作为所述SOH修正值。
在一个实施例中,在所述电芯为满充状态或接收到满充信号之前,如果获得多个第二当前电压值,则基于所述第四OCV-SOC映射关系信息获得与多个第二当前电压值相对应的多个SOC修正值,将与此多个SOC修正值中的最小SOC修正值作为所述第二SOC修正值。
在一个实施例中,所述修正电压值包括:处于所述非衰减OCV区段和/或非滞回OCV区段内的所述电芯的第三当前电压值;所述对所述电芯的健康状态SOH进行修正包括: 基于当前的第四OCV-SOC映射关系信息获得与所述第三当前电压值相对应的第三SOC修正值,获得与第三SOC修正值相对应的第三累计充放电容量;在所述电芯为满充状态或接收到满充信号时,获得第二SOC满充值,获得与第二SOC满充值相对应的第二满充累计充放电容量;根据所述第三累计充放电容量与所述第三SOC修正值的对应关系、所述第二满充累计充放电容量与所述第二SOC满充值的对应关系进行线性拟合处理,建立累计充放电容量与SOC值的线性关系函数,根据所述线性关系函数获得SOH修正值。
在一个实施例中,如果所述第三SOC修正值的数量和所述第二SOC满充值的数量之和等于预设的数量阈值,则进行所述线性拟合处理;其中,进行所述线性拟合处理采用的算法包括:最小二乘法。
在一个实施例中,所述根据所述线性关系函数获得SOH修正值包括:获得所述线性关系函数的拟合误差;如果确定所述拟合误差小于预设的误差阈值,则获得所述线性关系函数对应的斜率,将所述斜率作为所述SOH修正值。
在一个实施例中,所述电池静置条件包括:所述电芯的外电路无电流的持续时间超过预设的时间阈值和所述电芯的电压变化速率小于预设的速率变化阈值中的至少一个。
根据本公开的另一方面,提供一种电池健康状态修正装置,包括:修正时机判断模块,用于判断所述电芯的当前电压值是否在所述修正OCV区段内;其中,所述修正OCV区段包括非衰减OCV区段和非滞回OCV区段中的至少一个;健康状态修正模块,用于如果所述电芯的当前电压值在所述修正OCV区段内,则将所述电芯的当前电压值作为修正电压值;获得与所述修正电压值相对应的SOC修正值,使用所述SOC修正值对所述电芯的健康状态SOH进行修正。
在一个实施例中,还包括:修正区域确定模块,用于根据所述电芯的OCV与SOC的映射关系信息,确定与所述电芯相对应的修正OCV区段
根据本公开的又一方面,提供一种电池健康状态修正装置,包括:存储器;以及耦接至所述存储器的处理器,所述处理器被配置为基于存储在所述存储器中的指令,执行如上所述的方法。
根据本公开的又一方面,提供一种电池管理***,包括:如上所述的电池健康状态修正装置。
根据本公开的再一方面,提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机指令,所述指令被处理器执行如上所述的方法。
本公开的电池健康状态修正方法、装置、电池管理***以及存储介质,确定修正OCV区段,如果电芯的当前电压值在修正OCV区段内,则将当前电压值作为修正电压值,获得SOC修正值并使用此SOC修正值对SOH进行修正;本公开针对电池老化、电池充放电的滞回效应现象,当电芯的电压值在修正OCV区段内时,不同的OCV-SOC曲线变化基本相似,获得SOC并进行SOH修正基本不受滞回效应影响、不随电池老化变化影响;本公开可以实现在电芯处于非滞回区、非衰减区时获得SOC并进行SOH修正,克服了在电池老化、电池充放电的滞回效应的影响下,获得SOC并进行SOH修正的精度低的问题,提升了SOH修正结果的可靠性,能够准确估算电池的健康程度,提高电池的使用寿命和安全性、以及用户的使用感受度。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为根据本公开的电池健康状态修正方法的一个实施例的流程示意图;
图2A老化前后OCV-SOC曲线变化的示意图,图2B为具有滞回效应电芯充放OCV-SOC曲线的对比示意图;
图3为根据本公开的电池健康状态修正方法的一个实施例中的获得非衰减OCV分段的示意图;
图4为根据本公开的电池健康状态修正方法的一个实施例中的获得非滞回电压分段的示意图;
图5为根据本公开的电池健康状态修正方法的另一个实施例的获得SOH修正值流程示意图;
图6为根据本公开的电池健康状态修正方法的另一个实施例的获得SOH修正值流程示意图;
图7为根据本公开的电池健康状态修正方法的又一个实施例的获得SOH修正值流程示意图;
图8为根据本公开的电池健康状态修正方法的又一个实施例的获得SOH修正值流程 示意图;
图9为根据本公开的电池健康状态修正方法的再一个实施例的获得SOH修正值流程示意图;
图10为根据本公开的电池健康状态修正方法的再一个实施例的拟合生成的线性关系函数的示意图;
图11为根据本公开的电池健康状态修正装置的一个实施例中的模块示意图;
图12为根据本公开的电池健康状态修正装置的一个实施例中的修正区域确定模块的模块示意图;
图13为根据本公开的电池健康状态修正装置的一个实施例中的健康状态修正模块的模块示意图
图14为根据本公开的电池健康状态修正装置的另一个实施例的模块示意图。
具体实施方式
下面参照附图对本公开进行更全面的描述,其中说明本公开的示例性实施例。下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。下面结合各个图和实施例对本公开的技术方案进行多方面的描述。
下文中的“第一”、“第二”等仅用于描述上相区别,并没有其他特殊的含义。
对于混合体系电芯、硅负极体系电芯等,OCV-SOC曲线随着电芯老化而发生变化;对于如磷酸铁锂电芯、硅负极体系电芯等,存在充电OCV和放电OCV不一致的滞回效应,在充电和放电工况下的OCV-SOC曲线也会随之变化,因此,基于OCV-SOC曲线估算SOC以及估算SOH可能会出现较大的误差。
根据电芯测试数据结果和分析表明,对于电池的老化现象,OCV-SOC曲线的变化并未发生在全部SOC区间,即在电池老化过程中,存在OCV不随电池老化影响的非衰减区,也可以称为SOC非衰减区;对于电池的充放电的滞回效应,OCV-SOC曲线的变化也并未发生在全部SOC区间,即存在OCV不受滞回效应影响的非滞回区,也可以称为SOC非滞回区。
本公开提供一种电池健康状态修正方法,确定电芯的修正OCV区段,在修正OCV区段中的OCV不受滞回效应影响、不随电池老化变化影响,即对于电池老化、电池充放 电的滞回效应这两种现象,在此修正OCV区段内,不同的OCV-SOC曲线变化基本相似,当电芯的当前电压值在修正OCV区段内时,进行估算SOC以及估算SOH,能够提高可靠性。
图1为根据本公开的电池健康状态修正方法的一个实施例的流程示意图,如图1所示:
步骤101,判断电芯的当前电压值是否在修正OCV区段。
电芯为锂电池的电芯等。可以根据电芯的OCV与SOC的映射关系信息,确定与电芯相对应的修正OCV区段,OCV与SOC的映射关系信息可以有多种,例如可以为OCV-SOC曲线、OCV-SOC映射关系表等。
修正OCV区段包括非衰减OCV区段和非滞回OCV区段中的至少一个。非衰减OCV区段为与电芯的非衰减区相对应的OCV取值范围,非滞回OCV区段为与电芯的非滞回区相对应的OCV取值范围。
获得电芯的当前电压值可以采用多种方式,例如,可以通过检测的方式获得电压值或通过电压估算模型估算电压特征值等。可以在多种场景下判断当前电压值是否在修正OCV区段,例如,在电芯充电或放电过程中,或在电芯持续无负载后重新工作时等。
步骤102,如果是,则将电芯的当前电压值作为修正电压值。
步骤103,获得与修正电压值相对应的SOC修正值,使用SOC修正值对电芯的健康状态SOH进行修正。
获得与修正电压值相对应的SOC修正值可以采用多种方式。例如,可以通过OCV-SOC曲线、OCV-SOC映射关系表等获得与修正电压值相对应的SOC修正值,可以使用多种方法使用SOC修正值对电芯的健康状态SOH进行修正。SOC修正值为与修正电压值相对应的SOC值。
上述实施例中的电池健康状态修正方法,克服了在电池老化、电池充放电的滞回效应下,获得SOC并进行SOH修正的精度低的问题,可以使电芯的当前电压值位于修正OCV区段内时,进行估算SOC以及估算SOH,提升了SOH修正结果的可靠性。
在一个实施例中,可以在电芯充电或放电的过程中、或电芯无负载静置一段时间后重新工作(例如车辆在停止一段时间后重新启动等)时,判断是否满足电池静置条件,如果是,则判断电芯的当前电压值是否在修正OCV区段内。电池静置条件可以有多种。例如,电池静置条件包括电芯的外电路无电流或外电路电流小于电流阈值的持续时间超过预设的时间阈值、电芯的电压变化速率小于预设的速率变化阈值中的至少一个。电流阈值可以为1安培等。
时间阈值可通过温度和SOC与静置时间的函数关系或映射关系表确定。外电路包括 对电芯充放电的电路等。当满足电池静置条件后,判断电芯此时是否处于非衰减区或非滞回区,如果处于非衰减区域或非滞回区域,则认为此时满足SOH修正机会。非衰减区域、非滞回区域如图2A、2B所示。
根据OCV-SOC映射关系信息确定与电芯的修正区相对应的OCV值,OCV-SOC映射关系信息可以为预先获得的OCV-SOC曲线、OCV-SOC映射关系表等,基于此OCV值生成与修正区相对应的修正OCV区段,修正区包括非衰减区和非滞回区中的至少一个。
图3为根据本公开的电池健康状态修正方法的一个实施例中的获得非衰减OCV分段的示意图,如图3所示:
步骤301,预先获取电芯在不同老化程度下的多个第一OCV-SOC映射关系信息,确定第一OCV取值区间。
例如,在线下通过测量获得不同老化程度下的多个第一OCV-SOC映射关系表,以第一OCV-SOC映射关系表中的最大OCV值OCVmax和最小OCV值OCVmin确定OCV取值范围的上下限,确定第一OCV取值区间。
步骤302,以预设的第一OCV间距值为间隔,在第一OCV取值区间内获得第一OCV检测值。
步骤303,基于多个第一OCV-SOC映射关系信息获得与第一OCV检测值对应的多个第一SOC值。
步骤304,如果多个第一SOC值中的最大值和最小值之差小于第一差值阈值,则将此第一OCV检测值作为与非衰减区相对应的非衰减OCV值。
例如,以等间距的第一OCV间距值在OCVmax和OCVmin之间获得第一OCV检测值,查表获得第一OCV检测值与多个第一OCV-SOC映射关系表中对应的多个第一SOC值,判断多个第一SOC值中最大值与最小值的偏差值是否小于预设的第一差值阈值,如果此偏差值小于第一差值阈值,则将此第一OCV检测值作为非衰减OCV值并加入非衰减区域值列表。
步骤305,判断相邻的两个非衰减OCV值的差值是否大于第一OCV间距值。
步骤306,如果否,则将此相邻的两个非衰减OCV值之间的OCV区域作为非衰减OCV分段。非衰减OCV区段包含至少一个非衰减OCV分段。
例如,判断非衰减区域值列表中相邻的两个非衰减OCV值的OCV差值是否不超过第一OCV间距值,如果是,则这两个非衰减OCV值之间的OCV区域可为非衰减OCV分段。重复进行上述操作,非衰减OCV区段可以包含全部非衰减OCV分段。
多个第一OCV-SOC映射关系信息可以是针对同一种电芯的多个OCV-SOC映射关系 表。第一OCV间距值的取值可以为5mV或10mV等。例如,在不同老化程度下的三个第一OCV-SOC映射关系表分别为A表、B表和C表,第一OCV间距值为10mV,在OCVmax=4.1V和OCVmin=3.4V之间以等间距的第一OCV间距值进行取点,得到第一OCV检测值为3.4V,3.41V,3.42V,…,4.08V,4.09V,4.10V。
分别用这些第一OCV检测值查A、B和C三个第一OCV-SOC映射关系表,得到三个不同的第一SOC值。例如,3.5V在A表、B表和C表中对应的第一SOC值为20%、23%和21%,则三个第一SOC值中最大值与最小值的偏差值为|23%-20%|=3%,假设预设的第一差值阈值为5%,因为3%<5%,所以确定3.5V对应的区域为非衰减区,作为非衰减OCV值。如果相邻的两个非衰减OCV值的差值不大于第一OCV间距值,则将此相邻的两个非衰减OCV值之间的OCV区域作为非衰减OCV分段,获得全部的非衰减OCV分段组成非衰减OCV区段。
图4为根据本公开的电池健康状态修正方法的一个实施例中的获得非滞回电压分段的示意图,如图4所示:
步骤401,预先获取电芯在不同荷电状态起点下进行充电的至少一个第二OCV-SOC映射关系信息、进行放电的至少一个第三OCV-SOC映射关系信息,确定第二OCV取值区间。
例如,对同一种电芯进行线下测量,获得不同荷电状态起点下进行充电的至少一个第二OCV-SOC映射关系表、进行放电的至少一个第三OCV-SOC映射关系表。以第二OCV-SOC映射关系表、第三OCV-SOC映射关系表中的最大OCV值OCVmax和最小OCV值OCVmin确定OCV范围上、下限,确定第二OCV取值区间。进行充电的SOC起点可以为0%、10%、90%SOC等,进行放电的SOC起点可以为10%、20%、100%SOC等。
步骤402,以预设的第二OCV间距值为间隔,在第二OCV取值区间内获得第二OCV检测值。
步骤403,基于至少一个第二OCV-SOC映射关系信息和至少一个第三OCV-SOC映射关系信息获得与第二OCV检测值对应的多个第二SOC值。
步骤404,如果多个第二SOC值中的最大值和最小值之差小于第二差值阈值,则将此第二OCV检测值作为与非滞回区相对应的非滞回OCV值。
例如,以等间距的第二OCV间距值在OCVmax和OCVmin之间获得第二OCV检测值,查表获得第二OCV检测值在至少一个第二OCV-SOC映射关系表和至少一个第三OCV-SOC映射关系表中对应的多个第二SOC值,判断这些第二SOC值中最大值与最小值的偏差值是否小于预设的第二差值阈值,如果此偏差值小于第二差值阈值,则将此第二 OCV检测值作为非滞回OCV值并加入非滞回区域值列表。
步骤405,判断相邻的两个非滞回OCV值的差值是否大于第二OCV间距值。
步骤406,如果否,则将此相邻的两个非滞回OCV值之间的OCV区域作为非滞回电压分段。非滞回OCV区段包含至少一个非滞回电压分段。
例如,判断非滞回区域值列表中相邻的两个非滞回OCV值的OCV差值是否不超过第二OCV间距值,如果是,则这两个非滞回OCV值之间的OCV区域为非滞回OCV分段。重复进行上述操作,获得全部的非滞回OCV分段组成非滞回OCV区段。
在一个实施例中,两条第二OCV-SOC映射关系表(充电工况)分别为A表和B表,两条第三OCV-SOC映射关系表(放电工况)分别为C表和D表。第二OCV间距值为10mV,在OCVmax=4.1V和OCVmin=3.4V之间以等间距的第二OCV间距值取点,得到第二OCV检测值为3.4V,3.41V,3.42V,…,4.08V,4.09V,4.10V。
使用第二OCV检测值查A、B、C、D四个映射关系表,得到四个第二SOC值。例如,3.5V在A、B、C、D四个映射关系表中对应的第二SOC值分别为20%、23%、24%、25%,四个第二SOC值中最大值与最小值的偏差值为|25%-20%|=5%。假设预设的第二差值阈值为5%,则5%>=5%,因此确定3.5V对应的区域不是非滞回区,不为非滞回OCV值。如果相邻的两个非滞回OCV值的差值不大于第二OCV间距值,则将此相邻的两个非滞回OCV值之间的OCV区域作为非滞回OCV分段,获得全部的非滞回OCV分段组成非滞回OCV区段。
在一个实施例中,在进行SOH修正时,NCM和LMO体系混杂的电芯等仅使用非衰减OCV区段,LFP电芯等仅使用非滞回OCV区段,硅负极体系电芯、负极参杂硅体系电芯等可以仅使用非滞回OCV区段,也可以同时使用非衰减OCV区段和非滞回OCV区段。其中,NCM为镍钴锰三元正极材料,LMO为锰酸锂正极材料,LFP为磷酸铁锂正极材料。
图5为根据本公开的电池健康状态修正方法的另一个实施例的获得SOH修正值流程示意图,修正电压值包括:至少两个处于非衰减OCV区段和/或非滞回OCV区段内的电芯的第一当前电压值;如图5所示:
步骤501,根据当前的第四OCV-SOC映射关系信息获得与第一当前电压值相对应的第一SOC修正值。
第一当前电压值的数量可以为两个或两个以上,当前的第四OCV-SOC映射关系信息可以为当前的OCV-SOC映射关系表等。例如,第四OCV-SOC映射关系信息为当前车内存储的OCV-SOC的映射关系表等。
步骤502,获得两个第一SOC修正值之间的第一SOC变化量、与第一SOC变化量相对应的电芯的第一累计充放电容量变化量。累计充放电容量可以为累计充电容量-累计放电容量。累计充放电容量可以采用多种方法获得,例如将充放电流函数在时间上进行积分运算,获得累计充放电容量。
步骤503,根据第一累计充放电容量变化量、第一SOC变化量获得SOH修正值。
根据第一累计充放电容量变化量、第一SOC变化量获得SOH修正值可以采用多种方法。例如,将第一累计充放电容量变化量与第一SOC变化量的比值作为电芯的实际容量,并将实际容量与标称容量的比值作为SOH修正值。
图6为根据本公开的电池健康状态修正方法的另一个实施例的获得SOH修正值流程示意图,如图6所示:
步骤601,判断是否满足电池静置条件,如果是,则进入步骤602,如果否,则返回。
步骤602,读取第一当前电压值V0。
步骤603,判断V0是否处于非衰减OCV区段和/或非滞回OCV区段内,如果是,确定出现SOH的第一次修正机会,进入步骤604,如果否,则返回。
步骤604,根据V0查询当前的OCV-SOC映射关系表获取第一SOC修正值为SOC0。当前的OCV-SOC映射关系表即为第四OCV-SOC映射关系信息。
步骤605,存储并记录当前的第一累计充放电容量Q0和SOC0。
步骤606,重复步骤601-步骤603,直到下一次满足电池静置条件且第一当前电压处于预设的非衰减OCV区段和/或非滞回OCV区段内,确定出现SOH的第二次修正机会。
步骤607,读取第一当前电压值V1,根据V1查询当前OCV-SOC的映射关系表,获取第一SOC修正值为SOC1。
步骤608,存储并记录当前的第一累计充放电容量Q1和SOC1。
步骤609,根据两次修正机会之间的累计充放电容量变化量和修正后的荷电状态变化量的比值,计算获得电芯实际容量Cap_Calc。
例如,Q1和Q0之间的差值为40Ah,SOC1和SOC0分别为80%和30%,则此时电芯的实际容量Cap_Calc为40Ah/(80%-30%)=80Ah。
步骤610,电芯的SOH=Cap_Calc/CR,其中CR为标称容量值,标称容量值可以为在出厂时预设的标准容量值。
步骤611,更新当前SOH输出值和存储值。
可以对步骤610计算得到的SOH修正值进行校验,对满足校验的SOH值更新为当前SOH值并存储。对SOH修正值进行校验可以采用多种校验规则,检验规则可以为本次获 得的SOH值小于上次获得的SOH值等。通过对SOH修正值进行校验,对满足校验的SOH值才进行更新,可以避免SOH估算不准确,能够提高SOH修正的精度。例如,当上次计算得到的SOH值为95%,如果本次计算得到的SOH修正值为96%,由于96%大于95%,则不满足校验规则,放弃本次修正值。
更新当前SOH值可以采用多种更新规则,更新规则可以为连续两次获得的SOH值的变化量不能大于设置的单次更新最大SOH更新值。通过设置更新规则,可以增加SOH修正的准确性,能够增加SOH修正结果的可靠性。例如,当上次计算得到的SOH值为95%,如果本次计算得到的SOH修正值为90%,由于95%大于90%,则满足校验规则;但是,预设的单次更新最大SOH更新值为3%,由于95%-90%>3%,因此,确定本次SOH修正值为95%-3%=92%。
图7为根据本公开的电池健康状态修正方法的又一个实施例的获得SOH修正值流程示意图,修正电压值包括:处于非衰减OCV区段和/或非滞回OCV区段内的电芯的第二当前电压值,如图7所示:
步骤701,根据当前的第四OCV-SOC映射关系信息获得与第二当前电压值相对应的第二SOC修正值。
步骤702,在电芯为满充状态或接收到满充信号时,则获得第一SOC满充值,并获得与第一SOC满充值相对应的第一满充累计充放电容量。
判断电芯为满充状态可以根据充电流程,当充电电压达到充电截止电压并持续时间超过时间阈值,则确定满充;或者,当前SOC计算模块计算得到的SOC达到预设的满充SOC阈值时,则确定满充。SOC满充值为在电芯为满充状态或接收到满充信号时的SOC值。
步骤703,获得第一SOC满充值和第二SOC修正值之间的第二SOC变化量、第一满充累计充放电容量与第二累计充放电容量之间的第二累计充放电容量变化量。
步骤704,根据第二累计充放电容量变化量、第二SOC变化量获得SOH修正值。
根据第二累计充放电容量变化量、第二SOC变化量获得SOH修正值可以采用多种方法。例如,将第二累计充放电容量变化量与第二SOC变化量的比值作为电芯的实际容量,并将实际容量与标称容量的比值作为SOH修正值。
在电芯为满充状态或接收到满充信号之前,如果获得多个第二当前电压值,则基于第四OCV-SOC映射关系信息获得与多个第二当前电压值相对应的多个SOC修正值,将与此多个SOC修正值中的最小SOC修正值相对应的修正电压值作为第二SOC修正值。
例如,在电芯为满充状态或接收到满充信号之前,如果在获得了一个第二当前电压值 后,则不再获取其他的第二当前电压值;或者,如果在获得了一个第二当前电压值后,获得了另一个第二当前电压值,将这两个第二当前电压值对应的SOC修正值进行比较,存储与较小的SOC修正值对应的第二当前电压值。
图8为根据本公开的电池健康状态修正方法的又一个实施例的获得SOH修正值流程示意图,如图8所示:
步骤801,判断是否满足电池静置条件,如果是,则进入步骤802,如果否,则返回。
步骤802,读取第二当前电压值V0。
步骤803,判断V0是否处于非衰减OCV区段和/或非滞回OCV区段内,如果是,进入步骤804,如果否,则返回。
步骤804,根据V0查询当前的OCV-SOC映射关系表获取第二SOC修正值为SOC0。当前的OCV-SOC映射关系表即为第四OCV-SOC映射关系信息。
步骤805,存储并记录当前的累计充放电容量Q0和SOC0。
步骤806,当电芯满充时,存储记录满充电芯累计充放电容量Q1,存储记录满充电芯的荷电状态SOC1。其中,满充电芯的荷电状态SOC1可通过积分运算等获得,也可以通过线下标定测试确定。
步骤807,满充电芯的容量Cap_Calc=(满充累计充放电容量Q1-满充前充分静置电芯累计充放电容量Q0)/(SOC1-SOC0)。满充电芯的容量即为实际容量。
步骤808,满充电芯的SOH=Cap_Calc/CR,其中CR为锂离子电池的标称容量值。将Cap_Calc与标称容量CR的比值作为SOH修正值。
步骤809,更新当前SOH输出值和存储值。可以对步骤808计算得到的SOH修正值进行校验判断,对满足校验的SOH值更新为当前SOH值并存储。
图9为根据本公开的电池健康状态修正方法的再一个实施例的获得SOH修正值流程示意图;修正电压值包括:处于非衰减OCV区段和/或非滞回OCV区段内的电芯的第三当前电压值;如图9所示:
步骤901,基于当前的第四OCV-SOC映射关系信息获得与第三当前电压值相对应的第三SOC修正值,获得与第三SOC修正值相对应的第三累计充放电容量。
步骤902,在电芯为满充状态或接收到满充信号时,获得第二SOC满充值,获得与第二SOC满充值相对应的第二满充累计充放电容量。
步骤903,根据第三累计充放电容量与第三SOC修正值的对应关系、第二满充累计充放电容量与第二SOC满充值的对应关系进行线性拟合处理,建立累计充放电容量与SOC值的线性关系函数。
步骤904,根据线性关系函数获得SOH修正值。
如果第三SOC修正值的数量和第二SOC满充值的数量之和大于或等于预设的数量阈值,则进行线性拟合处理;进行线性拟合处理采用的算法包括:最小二乘法等。获得线性关系函数的拟合误差,如果确定拟合误差小于预设的误差阈值,则获得线性关系函数对应的斜率,将斜率作为SOH修正值。
例如,实时记录电芯的累计充放电容量,记录累积充电容量和累计放电容量,累计充放电容量=累计充电容量-累计放电容量。在电芯充电或放电过程中,检测是否满足电池静置条件或是否电池组获得满充信号或达到满充判定条件,如果满足电池静置条件,则读取电芯的当前电压值V0,判断V0是否处于非衰减OCV区段和/或非滞回OCV区段内,如果是,则此当前电压值V0为第三当前电压值,根据V0查询当前的OCV-SOC的映射关系表,获得第三SOC修正值SOC0。获得与第三SOC修正值相对应的第三累计充放电容量Q0,存储第三累计充放电容量Q0和对应的第三SOC修正值SOC0。
当电池组满充信号置起或达到满充判定条件时,存储记录第二满充累计充放电容量Qi和对应的第二SOC满充值SOCi。如果第三SOC修正值的数量和第二SOC满充值的数量之和达到预设的数量阈值N,则此时存储有N组Q(k)和相对应的SOC(k),k=1,2,3…,N;Q(k)为第三累计充放电容量或第二满充累计充放电容量,SOC(k)为第三SOC修正值或第二SOC满充值。
对SOH的修正机会次数k超过了预设的所需点数N,例如,当存储有N组Q(k)和相对应的SOC(k),k=1,2,3…,N时,获得一个新的Q值和相对应的SOC值,其中,Q为新的第三累计充放电容量或第二满充累计充放电容量,SOC为新的第三SOC修正值或第二SOC满充值,则剔除原先存储的Q和对应的SOC值,存储新的Q值和相对应的SOC值。
剔除的方法可以有多种。例如:剔除存储时间最早的Q(k)和相对应的SOC(k);或者,通过判断存储的SOC(i)与剩余N-1点的SOC值的差异绝对值,将N点中SOC最为接近的两点剔除其中一点。例如,N为5,存储的SOC值分别为10%,11%,15%,30%,50%,则两两对比差值,得到10%与11%的点最为接近,因此舍弃11%或者舍弃10%,存储新的Q值和相对应的SOC值。
可以将存储的N组Q(k)和相对应的SOC(k)分别组成N维的向量y=[Q(1),Q(2),…,Q(N)]和向量x=[SOC(1),SOC(2),…,SOC(N)]。通过最小二乘法或其他拟合方法,拟合建立线性公式y=k*x+b,k和b分别为待定参数,获得线性公式的待定参数k和b,以及拟合误差ErrorValue。
当拟合误差ErrorValue小于预设的误差阈值C时,计算得到的斜率k即为SOH修正 值。将计算得到的SOH修正值进行校验判断,对满足校验的SOH值更新为当前SOH值并存储。
例如,存储的N组Q(k)和相对应的SOC(k)为:[SOC(1),Q(1)],[SOC(2),Q(2)],…,[SOC(N-1),Q(N-1)],[SOC(N),Q(N)]。如图10所示,将SOC(i)作为输入,Q(i)作为输出,通过最小二乘法或神经网络法、递推最小二乘法等方法线性拟合N个点,得到线性回归函数y=kx+b的参数值k和b。当拟合误差小于预设值时,将斜率k作为SOH修正值。
拟合误差指的是进行线性回归得到拟合函数y=k*x+b,采用这个拟合函数和相同的输入x,获得线性回归预估y值(记作y_est)与实际y值的差值绝对或者方差。例如,估算得到的y_est分别为100Ah,108Ah,120Ah,实际y值分别为99Ah,109Ah,120Ah,则拟合误差ErrorValue=1/3*(|100-99|+|108-109|+|120-120|),或
Figure PCTCN2020084335-appb-000001
当拟合误差ErrorValue大于预设的误差阈值C时,则放弃修正。
在一个实施例中,如图11所示,本公开提供一种电池健康状态修正装置110,包括:修正区域确定模块1101、修正时机判断模块1102、健康状态修正模块1103和电池静置判断模块1104。修正区域确定模块1101根据电芯的开路电压OCV与荷电状态SOC的映射关系信息,确定电芯的修正OCV区段。修正OCV区段包括非衰减OCV区段和非滞回OCV区段中的至少一个。
修正区域确定模块1101根据OCV-SOC映射关系信息确定与电芯的修正区相对应的OCV值,其中,修正区包括非衰减区和非滞回区中的至少一个。修正区域确定模块1101基于此OCV值生成与修正区相对应的修正OCV区段。
修正时机判断模块1102判断电芯的当前电压值是否在电芯的修正OCV区段内。如果电芯的当前电压值在修正OCV区段内,则健康状态修正模块1103获得修正电压值并对电芯的健康状态SOH进行修正。
在一个实施例中,电池静置判断模块1104判断是否满足电池静置条件,如果是,则修正时机判断模块1102判断电芯的当前电压值是否在修正OCV区段内。电池静置条件包括:电芯的外电路无电流或外电路电流小于电流阈值的持续时间超过预设的时间阈值和电芯的电压变化速率小于预设的速率变化阈值中的至少一个。
在一个实施例中,如图12所示,修正区域确定模块1101包括:非衰减区域确定单元1201和非滞回区域确定单元1202。非衰减区域确定单元1201预先获取电芯在不同老化程度下的多个第一OCV-SOC映射关系信息,确定第一OCV取值区间。非衰减区域确定单元1201以预设的第一OCV间距值为间隔,在第一OCV取值区间内获得第一OCV检测 值。
非衰减区域确定单元1201基于多个第一OCV-SOC映射关系信息获得与第一OCV检测值对应的多个第一SOC值,如果多个第一SOC值中的最大值和最小值之差小于第一差值阈值,则将此第一OCV检测值作为与非衰减区相对应的非衰减OCV值。
非衰减区域确定单元1201判断相邻的两个非衰减OCV值的差值是否大于第一OCV间距值,如果否,则将此相邻的两个非衰减OCV值之间的OCV区域作为非衰减OCV分段。非衰减OCV区段包含至少一个非衰减OCV分段。
非滞回区域确定单元1202预先获取电芯在不同荷电状态起点下进行充电的至少一个第二OCV-SOC映射关系信息、进行放电的至少一个第三OCV-SOC映射关系信息,确定第二OCV取值区间。非滞回区域确定单元1202以预设的第二OCV间距值为间隔,在第二OCV取值区间内获得第二OCV检测值。
非滞回区域确定单元1202基于至少一个第二OCV-SOC映射关系信息和至少一个第三OCV-SOC映射关系信息获得与第二OCV检测值对应的多个第二SOC值,如果多个第二SOC值中的最大值和最小值之差小于第二差值阈值,则非滞回区域确定单元1202将此第二OCV检测值作为与非滞回区相对应的非滞回OCV值。
非滞回区域确定单元1202判断相邻的两个非滞回OCV值的差值是否大于第二OCV间距值,如果否,则将此相邻的两个非滞回OCV值之间的OCV区域作为非滞回电压分段。非滞回OCV区段包含至少一个非滞回电压分段。
在一个实施例中,如图13所示,健康状态修正模块1103包括:第一修正单元1301、第二修正单元1302和第三修正单元1303。修正电压值包括:至少两个处于非衰减OCV区段和/或非滞回OCV区段内的电芯的第一当前电压值。
第一修正单元1301根据当前的第四OCV-SOC映射关系信息获得与第一当前电压值相对应的第一SOC修正值。第一修正单元1301获得两个第一SOC修正值之间的第一SOC变化量、与第一SOC变化量相对应的电芯的第一累计充放电容量变化量。第一修正单元1301根据第一累计充放电容量变化量、第一SOC变化量获得SOH修正值。
第一修正单元1301将第一累计充放电容量变化量与第一SOC变化量的比值作为电芯的实际容量,并将实际容量与标称容量的比值作为SOH修正值。
在一个实施例中,修正电压值包括:处于非衰减OCV区段和/或非滞回OCV区段内的电芯的第二当前电压值。第二修正单元1302根据当前的第四OCV-SOC映射关系信息获得与第二当前电压值相对应的第二SOC修正值。第二修正单元1302在电芯为满充状态或接收到满充信号时,则获得第一SOC满充值,并获得与第一SOC满充值相对应的第一 满充累计充放电容量。第二修正单元1302获得第一SOC满充值和第二SOC修正值之间的第二SOC变化量、第一满充累计充放电容量与第二累计充放电容量之间的第二累计充放电容量变化量。第二修正单元1302根据第二累计充放电容量变化量、第二SOC变化量获得SOH修正值。
第二修正单元1302将第二累计充放电容量变化量与第二SOC变化量的比值作为电芯的实际容量,并将实际容量与标称容量的比值作为SOH修正值。
第二修正单元1302在电芯为满充状态或接收到满充信号之前,如果获得多个第二当前电压值,则基于第四OCV-SOC映射关系信息获得与多个第二当前电压值相对应的多个SOC修正值。第二修正单元1302将与此多个SOC修正值中的最小SOC修正值相对应的修正电压值作为第二SOC修正值。
在一个实施例中,修正电压值包括:处于非衰减OCV区段和/或非滞回OCV区段内的电芯的第三当前电压值。第三修正单元1303基于当前的第四OCV-SOC映射关系信息获得与第三当前电压值相对应的第三SOC修正值,获得与第三SOC修正值相对应的第三累计充放电容量。
第三修正单元1303在电芯为满充状态或接收到满充信号时,获得第二SOC满充值,获得与第二SOC满充值相对应的第二满充累计充放电容量。第三修正单元1303根据第三累计充放电容量与第三SOC修正值的对应关系、第二满充累计充放电容量与第二SOC满充值的对应关系进行线性拟合处理,建立累计充放电容量与SOC值的线性关系函数,根据线性关系函数获得SOH修正值。
如果第三SOC修正值的数量和第二SOC满充值的数量之和大于或等于预设的数量阈值,则第三修正单元1303进行线性拟合处理,进行线性拟合处理采用的算法包括:最小二乘法等。第三修正单元1303获得线性关系函数的拟合误差,如果确定拟合误差小于预设的误差阈值,则获得线性关系函数对应的斜率,将斜率作为SOH修正值。
图14为根据本公开的电池健康状态修正装置的另一个实施例的模块示意图。如图140所示,该装置可包括存储器1401、处理器1402、通信接口1403以及总线1404。存储器1401用于存储指令,处理器1402耦合到存储器1401,处理器1402被配置为基于存储器1401存储的指令执行实现上述的电池健康状态修正方法。
存储器1401可以为高速RAM存储器、非易失性存储器(non-volatile memory)等,存储器1401也可以是存储器阵列。存储器1401还可能被分块,并且块可按一定的规则组合成虚拟卷。处理器1402可以为中央处理器CPU,或专用集成电路ASIC(Application Specific Integrated Circuit),或者是被配置成实施本公开的电池健康状态修正方法的一个或多个 集成电路。
在一个实施例中,本公开提供一种电池管理***,包括如上任一实施例中的电池健康状态修正装置。电池管理***可以安装在汽车上等,可以对电池进行管理。
在一个实施例中,本公开提供一种计算机可读存储介质,计算机可读存储介质存储有计算机指令,指令被处理器执行时实现如上任一个实施例中的电池健康状态修正方法。
上述实施例中的电池健康状态修正方法、装置、电池管理***以及存储介质,确定包括非衰减OCV区段、非滞回OCV区段的修正OCV区段,如果电芯的当前电压值在修正OCV区段内,则将当前电压值作为修正电压值,获得SOC修正值并使用此SOC修正值对SOH进行修正;针对电池老化、电池充放电的滞回效应现象,当电芯的电压值在修正OCV区段内时,不同的OCV-SOC曲线变化基本相似,获得SOC并进行SOH修正基本不受滞回效应影响、不随电池老化变化影响;可以实现在电芯处于非滞回区、非衰减区时获得SOC并进行SOH修正,克服了在电池老化、电池充放电的滞回效应下,获得SOC并进行SOH修正的精度低的问题,提升了SOH修正结果的可靠性,能够准确估算电池的健康程度,提高电池的使用寿命以及用户的使用感受度。
可能以许多方式来实现本公开的方法和***。例如,可通过软件、硬件、固件或者软件、硬件、固件的任何组合来实现本公开的方法和***。用于方法的步骤的上述顺序仅是为了进行说明,本公开的方法的步骤不限于以上具体描述的顺序,除非以其它方式特别说明。此外,在一些实施例中,还可将本公开实施为记录在记录介质中的程序,这些程序包括用于实现根据本公开的方法的机器可读指令。因而,本公开还覆盖存储用于执行根据本公开的方法的程序的记录介质。
本公开的描述是为了示例和描述起见而给出的,而并不是无遗漏的或者将本公开限于所公开的形式。很多修改和变化对于本领域的普通技术人员而言是显然的。选择和描述实施例是为了更好说明本公开的原理和实际应用,并且使本领域的普通技术人员能够理解本公开从而设计适于特定用途的带有各种修改的各种实施例。

Claims (22)

  1. 一种电池健康状态修正方法,包括:
    判断电芯的当前电压值是否在所述电芯的修正OCV区段内;其中,所述修正OCV区段包括非衰减OCV区段和非滞回OCV区段中的至少一个;
    如果是,则将所述电芯的当前电压值作为修正电压值;
    获得与所述修正电压值相对应的SOC修正值,使用所述SOC修正值对所述电芯的健康状态SOH进行修正。
  2. 如权利要求1所述的方法,其中,还包括:
    判断是否满足电池静置条件;
    如果是,则判断所述电芯的当前电压值是否在所述修正OCV区段内。
  3. 如权利要求2所述的方法,其中,还包括:
    根据所述电芯的OCV与SOC的映射关系信息,确定与所述电芯相对应的修正OCV区段。
  4. 如权利要求3所述的方法,其中,所述根据所述电芯的OCV与SOC的映射关系信息,确定与所述电芯相对应的修正OCV区段包括:
    根据所述OCV-SOC映射关系信息确定与所述电芯的修正区相对应的OCV值,其中,所述修正区包括非衰减区和非滞回区中的至少一个;
    基于此OCV值生成与所述修正区相对应的修正OCV区段。
  5. 如权利要求4所述的方法,其中,所述根据所述OCV-SOC映射关系信息确定与所述电芯的修正区相对应的OCV值包括:
    预先获取所述电芯在不同老化程度下的多个第一OCV-SOC映射关系信息,确定第一OCV取值区间;
    以预设的第一OCV间距值为间隔,在所述第一OCV取值区间内获得第一OCV检测值;
    基于多个第一OCV-SOC映射关系信息获得与所述第一OCV检测值对应的多个第一SOC值,如果所述多个第一SOC值中的最大值和最小值之差小于第一差值阈值,则将此第一OCV检测值作为与所述非衰减区相对应的非衰减OCV值。
  6. 如权利要求3所述的方法,其中,所述基于此OCV值生成与所述修正区相对应 的修正OCV区段包括:
    判断相邻的两个非衰减OCV值的差值是否大于所述第一OCV间距值,如果否,则将此相邻的两个非衰减OCV值之间的OCV区域作为非衰减OCV分段;其中,所述非衰减OCV区段包含至少一个非衰减OCV分段。
  7. 如权利要求4所述的方法,其中,所述根据所述OCV-SOC映射关系信息确定与所述电芯的修正区相对应的OCV值,包括:
    预先获取所述电芯在不同荷电状态起点下进行充电的至少一个第二OCV-SOC映射关系信息、进行放电的至少一个第三OCV-SOC映射关系信息,确定第二OCV取值区间;
    以预设的第二OCV间距值为间隔,在所述第二OCV取值区间内获得第二OCV检测值;
    基于所述至少一个第二OCV-SOC映射关系信息和所述至少一个第三OCV-SOC映射关系信息获得与所述第二OCV检测值对应的多个第二SOC值,如果多个第二SOC值中的最大值和最小值之差小于第二差值阈值,则将此第二OCV检测值作为与所述非滞回区相对应的非滞回OCV值。
  8. 如权利要求7所述的方法,其中,所述基于此OCV值生成与所述修正区域相对应的修正OCV区段包括:
    判断相邻的两个非滞回OCV值的差值是否大于所述第二OCV间距值,如果否,则将此相邻的两个非滞回OCV值之间的OCV区域作为非滞回电压分段;其中,所述非滞回OCV区段包含至少一个非滞回电压分段。
  9. 如权利要求2所述的方法,其中,所述修正电压值包括:至少两个处于所述非衰减OCV区段和/或非滞回OCV区段内的所述电芯的第一当前电压值;
    所述对所述电芯的健康状态SOH进行修正包括:
    根据当前的第四OCV-SOC映射关系信息获得与所述第一当前电压值相对应的第一SOC修正值;
    获得两个第一SOC修正值之间的第一SOC变化量、与所述第一SOC变化量相对应的所述电芯的第一累计充放电容量变化量;
    根据所述第一累计充放电容量变化量、所述第一SOC变化量获得SOH修正值。
  10. 如权利要求9所述的方法,其中,所述根据所述第一累计充放电容量变化量、所述第一SOC变化量获得SOH修正值,包括:
    将所述第一累计充放电容量变化量与所述第一SOC变化量的比值作为所述电芯的实际容量,并将所述实际容量与标称容量的比值作为所述SOH修正值。
  11. 如权利要求2所述的方法,其中,所述修正电压值包括:处于所述非衰减OCV区段和/或非滞回OCV区段内的所述电芯的第二当前电压值;
    所述对所述电芯的健康状态SOH进行修正包括:
    根据当前的第四OCV-SOC映射关系信息获得与所述第二当前电压值相对应的第二SOC修正值;
    在所述电芯为满充状态或接收到满充信号时,获得第一SOC满充值,并获得与所述第一SOC满充值相对应的第一满充累计充放电容量;
    获得所述第一SOC满充值和所述第二SOC修正值之间的第二SOC变化量、所述第一满充累计充放电容量与所述第二累计充放电容量之间的第二累计充放电容量变化量;
    根据所述第二累计充放电容量变化量、所述第二SOC变化量获得SOH修正值。
  12. 如权利要求11所述的方法,其中,所述根据所述第二累计充放电容量变化量、所述第二SOC变化量获得SOH修正值,包括:
    将所述第二累计充放电容量变化量与所述第二SOC变化量的比值作为所述电芯的实际容量,并将所述实际容量与标称容量的比值作为所述SOH修正值。
  13. 如权利要求11所述的方法,其中,还包括:
    在所述电芯为满充状态或接收到满充信号之前,如果获得多个第二当前电压值,则基于所述第四OCV-SOC映射关系信息获得与多个第二当前电压值相对应的多个SOC修正值,将与此多个SOC修正值中的最小SOC修正值作为所述第二SOC修正值。
  14. 如权利要求2所述的方法,其中,所述修正电压值包括:处于所述非衰减OCV区段和/或非滞回OCV区段内的所述电芯的第三当前电压值;
    所述对所述电芯的健康状态SOH进行修正包括:
    基于当前的第四OCV-SOC映射关系信息获得与所述第三当前电压值相对应的第三SOC修正值,获得与第三SOC修正值相对应的第三累计充放电容量;
    在所述电芯为满充状态或接收到满充信号时,获得第二SOC满充值,获得与第二SOC满充值相对应的第二满充累计充放电容量;
    根据所述第三累计充放电容量与所述第三SOC修正值的对应关系、所述第二满充累 计充放电容量与所述第二SOC满充值的对应关系进行线性拟合处理,建立累计充放电容量与SOC值的线性关系函数,根据所述线性关系函数获得SOH修正值。
  15. 如权利要求14所述的方法,其中,还包括:
    如果所述第三SOC修正值的数量和所述第二SOC满充值的数量之和等于预设的数量阈值,则进行所述线性拟合处理;
    其中,进行所述线性拟合处理采用的算法包括:最小二乘法。
  16. 如权利要求14所述的方法,其中,所述根据所述线性关系函数获得SOH修正值包括:
    获得所述线性关系函数的拟合误差;
    如果确定所述拟合误差小于预设的误差阈值,则获得所述线性关系函数对应的斜率,将所述斜率作为所述SOH修正值。
  17. 如权利要求2至16任一项所述的方法,其中,所述电池静置条件包括:所述电芯的外电路无电流的持续时间超过预设的时间阈值和所述电芯的电压变化速率小于预设的速率变化阈值中的至少一个。
  18. 一种电池健康状态修正装置,包括:
    修正时机判断模块,判断电芯的当前电压值是否在所述电芯的修正OCV区段内;其中,所述修正OCV区段包括非衰减OCV区段和非滞回OCV区段中的至少一个;
    健康状态修正模块,用于如果所述电芯的当前电压值在所述修正OCV区段内,则将所述电芯的当前电压值作为修正电压值;获得与所述修正电压值相对应的SOC修正值,使用所述SOC修正值对所述电芯的健康状态SOH进行修正。
  19. 如权利要求18所述的装置,其中,还包括:
    修正区域确定模块,用于根据所述电芯的OCV与SOC的映射关系信息,确定与所述电芯相对应的修正OCV区段。
  20. 一种电池健康状态修正装置,包括:
    存储器;以及耦接至所述存储器的处理器,所述处理器被配置为基于存储在所述存储器中的指令,执行如权利要求1至17中任一项所述的方法。
  21. 一种电池管理***,包括:
    如权利要求18至20任一项所述的电池健康状态修正装置。
  22. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机指令,所述指令被处理器执行如权利要求1至17中任一项所述的方法。
PCT/CN2020/084335 2019-04-25 2020-04-11 电池健康状态修正方法、装置、管理***以及存储介质 WO2020216082A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20794606.2A EP3779484B1 (en) 2019-04-25 2020-04-11 Method and apparatus for correcting state of health of battery, and management system and storage medium
US17/123,001 US11656289B2 (en) 2019-04-25 2020-12-15 Method and apparatus for correcting state of health of battery, management system, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910338521.0A CN110988690B (zh) 2019-04-25 2019-04-25 电池健康状态修正方法、装置、管理***以及存储介质
CN201910338521.0 2019-04-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/123,001 Continuation US11656289B2 (en) 2019-04-25 2020-12-15 Method and apparatus for correcting state of health of battery, management system, and storage medium

Publications (1)

Publication Number Publication Date
WO2020216082A1 true WO2020216082A1 (zh) 2020-10-29

Family

ID=70081642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/084335 WO2020216082A1 (zh) 2019-04-25 2020-04-11 电池健康状态修正方法、装置、管理***以及存储介质

Country Status (4)

Country Link
US (1) US11656289B2 (zh)
EP (1) EP3779484B1 (zh)
CN (1) CN110988690B (zh)
WO (1) WO2020216082A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113687249A (zh) * 2021-08-31 2021-11-23 南京盛腾汽车科技有限责任公司 电池soc和soh修正***、方法、计算机设备和计算机可读存储介质
CN116134694A (zh) * 2021-09-08 2023-05-16 宁德时代新能源科技股份有限公司 动力电池充电的方法和电池管理***

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11830988B2 (en) * 2021-12-13 2023-11-28 Enevate Corporation State-of-health balanced battery management system
CN110988690B (zh) * 2019-04-25 2021-03-09 宁德时代新能源科技股份有限公司 电池健康状态修正方法、装置、管理***以及存储介质
CN110988701B (zh) 2019-04-25 2021-04-30 宁德时代新能源科技股份有限公司 电池可用能量确定方法、装置、管理***以及存储介质
US11150305B2 (en) * 2019-09-04 2021-10-19 Karma Automotive Llc Method of estimating residual energy for a battery
CN113547955B (zh) * 2020-04-23 2023-06-16 宁德时代新能源科技股份有限公司 电池的充电控制方法、装置、电池管理***和介质
CN112505564A (zh) * 2020-11-16 2021-03-16 湖北亿纬动力有限公司 一种电池soc-ocv曲线的测定方法
CN112557933B (zh) * 2020-12-04 2023-06-30 湖北亿纬动力有限公司 一种计算电池健康状态的方法和装置
CN112698218B (zh) * 2021-01-12 2024-04-16 广州橙行智动汽车科技有限公司 一种电池健康状态获取方法及装置、存储介质
CN113176516A (zh) * 2021-03-05 2021-07-27 欣旺达电动汽车电池有限公司 容量预测方法、装置、电子设备及存储介质
CN113147630B (zh) * 2021-04-30 2023-04-25 江铃汽车股份有限公司 一种模式控制方法、***、可读存储介质及车辆
CN113614554A (zh) * 2021-06-17 2021-11-05 香港应用科技研究院有限公司 退役锂离子电池和电池模块的健康状态评估
CN113589188A (zh) * 2021-08-12 2021-11-02 湖北亿纬动力有限公司 一种电池寿命评估方法、装置及***
CN114114025B (zh) * 2021-09-30 2023-07-11 岚图汽车科技有限公司 一种动力电池健康状态检测方法及相关设备
CN117769655A (zh) * 2021-12-28 2024-03-26 宁德时代新能源科技股份有限公司 低压电池的状态校准方法及装置、电动车辆
CN115840148B (zh) * 2022-01-07 2024-01-23 宁德时代新能源科技股份有限公司 确定电池荷电状态的方法、装置、电子设备及存储介质
CN114889491A (zh) * 2022-05-05 2022-08-12 中国第一汽车股份有限公司 混合电池的控制方法、装置、存储介质及电子装置
EP4345948A1 (en) * 2022-09-28 2024-04-03 Volvo Truck Corporation Method for ageing analysis of mixed electrode lithium ion cell
DE102022127414A1 (de) * 2022-10-19 2024-04-25 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zum Bestimmen einer Kapazität einer HV-Batterie
CN116754980B (zh) * 2023-08-14 2024-01-05 宁德时代新能源科技股份有限公司 确定电池soh值的方法、装置、用电装置及存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2916422A1 (en) * 2014-03-04 2015-09-09 Sony Corporation Power storage module state estimation apparatus, battery pack, and method for estimating the state of a power storage module
WO2015158813A1 (fr) * 2014-04-16 2015-10-22 Renault S.A.S Procede d'estimation de l'etat de sante d'une batterie
CN105203963A (zh) * 2015-09-11 2015-12-30 同济大学 一种基于开路电压滞回特性的荷电状态的估计方法
CN107742755A (zh) * 2017-09-27 2018-02-27 安徽江淮汽车集团股份有限公司 电动汽车soh修正方法及装置
CN108196200A (zh) * 2018-01-28 2018-06-22 复旦大学 一种锂电池健康和荷电状态的联合模拟评估方法
CN108761343A (zh) * 2018-06-05 2018-11-06 华霆(合肥)动力技术有限公司 Soh校正方法及装置
CN109507611A (zh) * 2018-11-22 2019-03-22 安徽江淮汽车集团股份有限公司 一种电动汽车的soh修正方法及***
CN110988690A (zh) * 2019-04-25 2020-04-10 宁德时代新能源科技股份有限公司 电池健康状态修正方法、装置、管理***以及存储介质

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060098146A (ko) * 2005-03-09 2006-09-18 주식회사 엘지화학 온도에 따른 오픈 회로 전압 히스테레시스를 이용한 배터리의 잔존 용량 초기값 설정 방법
US7957921B2 (en) * 2008-02-19 2011-06-07 GM Global Technology Operations LLC Model-based estimation of battery hysteresis
KR100970841B1 (ko) * 2008-08-08 2010-07-16 주식회사 엘지화학 배터리 전압 거동을 이용한 배터리 용량 퇴화 추정 장치 및방법
CN103797374B (zh) * 2011-09-30 2017-02-01 Kpit技术有限责任公司 用于电池监控的***和方法
FR2987703B1 (fr) * 2012-03-02 2014-12-12 Accumulateurs Fixes Methode et systeme d'estimation de l'etat de charge d'un element electrochimique au lithium comprenant une electrode positive de type phosphate lithie
JPWO2014083856A1 (ja) * 2012-11-30 2017-01-05 三洋電機株式会社 電池管理装置、電源装置およびsoc推定方法
US10664562B2 (en) * 2013-02-24 2020-05-26 Fairchild Semiconductor Corporation and University of Connecticut Battery state of charge tracking, equivalent circuit selection and benchmarking
CN103399278B (zh) * 2013-07-31 2016-03-23 清华大学 电池单体的容量和荷电状态的估计方法
JP6182025B2 (ja) * 2013-09-05 2017-08-16 カルソニックカンセイ株式会社 バッテリの健全度推定装置および健全度推定方法
CN103616646B (zh) * 2013-12-02 2016-04-06 惠州市亿能电子有限公司 一种利用ocv-soc曲线修正soc的方法
CN104535932B (zh) * 2014-12-20 2017-04-19 吉林大学 一种锂离子电池荷电状态估计方法
CN106324507A (zh) * 2015-06-26 2017-01-11 北汽福田汽车股份有限公司 动力电池的性能检测方法及***
JP6939057B2 (ja) * 2017-04-27 2021-09-22 トヨタ自動車株式会社 車載の電池システムおよび電池の経年劣化推定方法
CN107271906B (zh) * 2017-05-31 2019-10-18 宁德时代新能源科技股份有限公司 电池包健康度估算方法和装置
CN107742855A (zh) 2017-08-29 2018-02-27 湖南城市学院 一种三维布线设备
CN108061863A (zh) * 2017-12-13 2018-05-22 宁德时代新能源科技股份有限公司 检测电池的方法及装置、计算机可读存储介质、电池管理***
CN108470944B (zh) * 2018-03-09 2019-12-24 华霆(合肥)动力技术有限公司 调整电池设计的方法及装置
CN109669133B (zh) * 2019-01-18 2020-07-28 北京交通大学 一种动力锂电池寿命数据后台挖掘分析方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2916422A1 (en) * 2014-03-04 2015-09-09 Sony Corporation Power storage module state estimation apparatus, battery pack, and method for estimating the state of a power storage module
WO2015158813A1 (fr) * 2014-04-16 2015-10-22 Renault S.A.S Procede d'estimation de l'etat de sante d'une batterie
CN105203963A (zh) * 2015-09-11 2015-12-30 同济大学 一种基于开路电压滞回特性的荷电状态的估计方法
CN107742755A (zh) * 2017-09-27 2018-02-27 安徽江淮汽车集团股份有限公司 电动汽车soh修正方法及装置
CN108196200A (zh) * 2018-01-28 2018-06-22 复旦大学 一种锂电池健康和荷电状态的联合模拟评估方法
CN108761343A (zh) * 2018-06-05 2018-11-06 华霆(合肥)动力技术有限公司 Soh校正方法及装置
CN109507611A (zh) * 2018-11-22 2019-03-22 安徽江淮汽车集团股份有限公司 一种电动汽车的soh修正方法及***
CN110988690A (zh) * 2019-04-25 2020-04-10 宁德时代新能源科技股份有限公司 电池健康状态修正方法、装置、管理***以及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3779484A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113687249A (zh) * 2021-08-31 2021-11-23 南京盛腾汽车科技有限责任公司 电池soc和soh修正***、方法、计算机设备和计算机可读存储介质
CN113687249B (zh) * 2021-08-31 2024-04-30 南京盛腾汽车科技有限责任公司 电池soc和soh修正***、方法、计算机设备和计算机可读存储介质
CN116134694A (zh) * 2021-09-08 2023-05-16 宁德时代新能源科技股份有限公司 动力电池充电的方法和电池管理***
CN116134694B (zh) * 2021-09-08 2024-01-26 宁德时代新能源科技股份有限公司 动力电池充电的方法和电池管理***

Also Published As

Publication number Publication date
CN110988690B (zh) 2021-03-09
US11656289B2 (en) 2023-05-23
CN110988690A (zh) 2020-04-10
EP3779484A1 (en) 2021-02-17
EP3779484A4 (en) 2021-08-25
US20210141028A1 (en) 2021-05-13
EP3779484B1 (en) 2022-11-30

Similar Documents

Publication Publication Date Title
WO2020216082A1 (zh) 电池健康状态修正方法、装置、管理***以及存储介质
WO2020259355A1 (zh) 电池荷电状态确定方法、装置、管理***以及存储介质
CN107991623B (zh) 一种考虑温度和老化程度的电池安时积分soc估计方法
US20230204674A1 (en) Method and device for determining available capacity of battery, management system, and storage medium
JP5818878B2 (ja) リチウムイオン電池充電状態の算出方法
WO2015188610A1 (zh) 电池荷电状态估算方法和装置
WO2017119393A1 (ja) 状態推定装置、状態推定方法
WO2021258657A1 (zh) 一种电池健康状态获取方法及装置、存储介质
US20240159836A1 (en) Method and device for calibrating soc at tail end of charging or discharging of energy storage system
US20230029223A1 (en) Method for determining full-charge capacity of battery pack, method for determining state of health of battery pack, system, and apparatus
JP7326237B2 (ja) 複数の電池に関する判定装置、蓄電システム、判定方法及び判定プログラム
CN113009346A (zh) 电池***及其soc值修正方法
WO2020216081A1 (zh) 电池可用能量确定方法、装置、管理***以及存储介质
EP4123783B1 (en) Method for determining state of charge of battery, and battery management system and electric apparatus
CN117250514A (zh) 一种动力电池***全生命周期soc的修正方法
CN112394290A (zh) 电池包soh的估算方法、装置、计算机设备和存储介质
WO2023053195A1 (ja) 蓄電池管理装置および蓄電池の管理方法
JP2021144886A (ja) 電池管理装置、電池管理システム及び電池管理方法
CN114636936B (zh) 一种铅酸电池充电阶段soc预测曲线的修正方法及装置
WO2019037012A1 (zh) 电池和电池包的荷电状态的估计方法及利用此荷电状态估计方法的电池管理***、电池以及电动汽车
JP7188327B2 (ja) 電池状態推定装置
CN116559675A (zh) 电流传感器误差辨识方法、装置及电池***
KR20240091604A (ko) 배터리 노화상태 추정 장치 및 방법
CN115465151A (zh) 一种电池均衡剩余时间的计算方法、装置及电池管理***
CN118226299A (zh) 电池***荷电状态修正方法、装置、电子设备及存储介质

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020794606

Country of ref document: EP

Effective date: 20201112

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20794606

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE