WO2020213591A1 - ストラドルドビークル - Google Patents

ストラドルドビークル Download PDF

Info

Publication number
WO2020213591A1
WO2020213591A1 PCT/JP2020/016384 JP2020016384W WO2020213591A1 WO 2020213591 A1 WO2020213591 A1 WO 2020213591A1 JP 2020016384 W JP2020016384 W JP 2020016384W WO 2020213591 A1 WO2020213591 A1 WO 2020213591A1
Authority
WO
WIPO (PCT)
Prior art keywords
saddle
frame structure
power generation
vehicle
power
Prior art date
Application number
PCT/JP2020/016384
Other languages
English (en)
French (fr)
Inventor
京平 金子
直樹 北村
靖史 竹本
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to JP2021514161A priority Critical patent/JP7334240B2/ja
Priority to EP20791350.0A priority patent/EP3950481A4/en
Publication of WO2020213591A1 publication Critical patent/WO2020213591A1/ja
Priority to US17/505,492 priority patent/US20220033027A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/15Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with additional electric power supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K11/00Motorcycles, engine-assisted cycles or motor scooters with one or two wheels
    • B62K11/02Frames
    • B62K11/04Frames characterised by the engine being between front and rear wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K25/00Axle suspensions
    • B62K25/02Axle suspensions for mounting axles rigidly on cycle frame or fork, e.g. adjustably
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M23/00Transmissions characterised by use of other elements; Other transmissions
    • B62M23/02Transmissions characterised by use of other elements; Other transmissions characterised by the use of two or more dissimilar sources of power, e.g. transmissions for hybrid motorcycles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M7/00Motorcycles characterised by position of motor or engine
    • B62M7/02Motorcycles characterised by position of motor or engine with engine between front and rear wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B41/00Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
    • F02B41/02Engines with prolonged expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B61/00Adaptations of engines for driving vehicles or for driving propellers; Combinations of engines with gearing
    • F02B61/02Adaptations of engines for driving vehicles or for driving propellers; Combinations of engines with gearing for driving cycles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/142Emission reduction of noise acoustic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/10Road Vehicles
    • B60Y2200/12Motorcycles, Trikes; Quads; Scooters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the present invention relates to a saddle-mounted vehicle.
  • Patent Document 1 describes a saddle-mounted vehicle in which an engine unit including an engine and a gear case is fixed to a frame body.
  • an engine unit is fixed to a frame body to form a frame structure, and the engine unit is used as a rigid member of the frame body.
  • the saddle-mounted vehicle of Patent Document 1 uses the engine unit as a rigid member of the frame body. As a result, the rigidity of the entire frame structure is increased. However, in the saddle-mounted vehicle described in Patent Document 1, the engine unit is fixed to the frame body. Therefore, the vibration from the engine is transmitted to the entire saddle-type vehicle via the frame body.
  • An object of the present invention is to provide a saddle-type vehicle that suppresses vibration transmitted from an engine to a frame body while having high responsiveness to an input.
  • the present inventors have studied in detail about suppressing vibration transmitted from the engine unit to the frame body in a saddle-mounted vehicle. As a result, the present inventors have found the following.
  • the engine unit is attached to a diamond-shaped frame body composed of a side tube and a pivot tube.
  • the upper part of the engine is attached to the side tube of the diamond-shaped frame body by an elastic mount.
  • the rear part of the engine unit is fixed to the pivot tube of the diamond-shaped frame body by a rigid mount.
  • the present inventors have studied in more detail about suppressing vibration transmitted from the engine to the frame body in a saddle-mounted vehicle.
  • the present inventors considered separating the driving part of the vehicle from the engine unit. More specifically, the engine unit of the saddle-type vehicle is separated into a power generation engine for generating power and a drive unit including a motor for driving the saddle-type vehicle by making a series hybrid. Then, the power generation engine is swingably attached to the vehicle frame structure separately from the drive unit.
  • the drive unit does not generate vibration like an engine. Therefore, the drive unit can be supported by the vehicle frame structure. Vibration is generated in the power generation engine. Therefore, the power generation engine can be oscillatingly attached to the vehicle frame structure to suppress vibration transmitted to the vehicle frame structure.
  • the power generation engine is swingably supported by the vehicle frame structure, and the drive unit is supported by the vehicle frame structure separately from the power generation engine, thereby achieving high responsiveness to input. At the same time, it is possible to suppress the vibration transmitted to the saddle-mounted vehicle.
  • the saddle-type vehicle of the present invention completed based on the above findings has the following configurations.
  • the saddle-mounted vehicle is The frame body that constitutes the vehicle frame structure and A drive unit that includes a drive motor that receives power and outputs power, The drive wheels driven by the power output from the drive motor, The power generation engine installed so as not to mechanically supply the output engine power to the drive wheels, and the power transmission medium fixed to the power generation engine and having flexibility are electrically connected to the above.
  • a power generation unit including a generator that converts engine power output from a power generation engine into electric power and supplies the electric power to the drive motor via the electric power transmission medium is provided, thereby making a series hybrid.
  • the power generation engine is swingably supported by the vehicle frame structure, while the drive unit is supported by the vehicle frame structure separately from the power generation engine. There is.
  • the saddle-mounted vehicle of (1) includes a frame body, a drive unit, drive wheels, and a power generation unit.
  • the frame body constitutes the vehicle frame structure.
  • the drive unit includes a drive motor that receives electric power and outputs electric power.
  • the drive wheels are driven by the power output from the drive motor.
  • the power generation unit includes a power generation engine and a generator.
  • the power generation engine is swingably supported by the vehicle frame structure.
  • the engine power output by the power generation engine is not mechanically transmitted to the drive wheels. Therefore, the drive wheels are driven by the power output from the drive motor.
  • the generator is connected to a flexible power transmission medium.
  • the generator converts the engine power output from the power generation engine into electric power, and supplies the converted electric power to the drive motor via the power transmission medium.
  • the drive wheels are driven by the motor power output from the drive motor.
  • the engine power output from the power generation engine is not mechanically transmitted to the drive wheels.
  • the power generation engine is swingably supported by the frame structure, and the generator is connected to a flexible power transmission medium.
  • the drive unit is supported by the vehicle frame structure separately from the power generation engine that is swingably supported by the vehicle frame structure.
  • the saddle-mounted vehicle can adopt the following configuration.
  • the saddle-mounted vehicle of (1) The vehicle frame structure is composed of any one of the frame structure itself or a combination of the frame structure and the rear arm, and when the vehicle frame structure is the frame structure itself, the frame structure When the vehicle frame structure itself rotatably supports the drive wheels and the vehicle frame structure is a combination of the frame structure and the rear arm, the rear arm rotatably supports the drive wheels and the frame structure. It is swingably supported around the support portion via the support portion.
  • the power generation engine is swingably supported by the vehicle frame structure at a plurality of locations in the side view of the vehicle so as to perform translational reciprocating motion or substantially translational reciprocating motion, while the drive unit generates the power generation. Separately from the engine, it is fixed to the vehicle frame structure without an elastic member.
  • the substantial translational reciprocating motion means a motion including at least a translational reciprocating motion component, and may include other motion components, for example, at least one component of the translational rotational motion component and the rotational motion component.
  • the saddle-mounted vehicle can adopt the following configuration.
  • the power generation engine is supported by the vehicle frame structure via elastic members at a plurality of locations in a side view of the vehicle.
  • the power generation engine is supported by the frame structure via an elastic member.
  • the saddle-mounted vehicle of (3) can suppress the vibration of the power generation engine from being transmitted to the frame body.
  • the saddle-mounted vehicle can adopt the following configuration. (4) The saddle-mounted vehicle of (1) The power generation engine is supported by the vehicle frame structure via link members at at least three points in the side view of the vehicle.
  • the power generation engine is attached to the frame structure via the link member. Therefore, in the saddle-mounted vehicle of (4), it is possible to suppress the transmission of the vibration of the power generation engine in the vertical direction and the front-rear direction to the frame structure. Therefore, the saddle-mounted vehicle of (4) can efficiently suppress the vibration of the power generation engine from being transmitted to the frame body by having the link member.
  • the saddle-mounted vehicle can adopt the following configuration. (5)
  • the saddle-mounted vehicle of (4) At least one of the link members is attached to the vehicle frame structure or the power generation engine via an elastic member.
  • the elastic member can suppress excessive swing of the link member. Therefore, in the saddle-mounted vehicle of (5), it is possible to prevent the power generation engine from swinging significantly in the vertical direction and the front-rear direction.
  • the saddle-mounted vehicle can adopt the following configuration.
  • (6) A saddle-mounted vehicle according to any one of (2) to (5).
  • the power generation engine includes a balancer.
  • the power generation engine is equipped with a balancer.
  • the saddle-mounted vehicle of (6) can efficiently absorb the vibration of the power generation engine.
  • the saddle-mounted vehicle can adopt the following configuration.
  • the vehicle frame structure is Frame structure and It comprises a rear arm that rotatably supports the drive wheels and is swingably supported around the support portion via a support portion in the frame structure.
  • the saddle-mounted vehicle is With the front wheels A front suspension that rotatably supports the front wheels and is supported by the frame body, With the rear arm
  • the drive unit is fixed to the rear arm without forming the frame structure.
  • the engine unit of the saddle-type vehicle is made into a series hybrid to form a power generation engine for generating power and a drive unit including a motor for driving the saddle-type vehicle. Can be separated.
  • the power generation engine is swingably attached to the frame body. Vibration is generated in the power generation engine. Therefore, the power generation engine can be oscillatingly attached to at least one of the frame body and the drive unit of the saddle-type vehicle to suppress the vibration transmitted to the frame body and the drive unit of the saddle-type vehicle.
  • the drive unit is fixed to the rear arm of the saddle-mounted vehicle. Therefore, according to the saddle-mounted vehicle of (7), the vehicle body of the saddle-mounted vehicle can be compactly configured. The drive unit does not generate vibration like an engine. Therefore, in the saddle-mounted vehicle (7), vibration is not transmitted to the frame body even if the drive unit is fixed to the rear arm.
  • the saddle-mounted vehicle can adopt the following configuration.
  • the frame body receives a load from the front wheels via an attenuator provided on the front suspension, and receives a load from the drive wheels via an attenuator attached to the frame body and the rear arm.
  • the frame body supports the front suspension that rotatably supports the front wheels, and swingably supports the rear arm that rotatably supports the drive wheels.
  • An example of a front suspension is a front fork.
  • the frame body rotatably supports the front fork.
  • the saddle-mounted vehicle can adopt the following configuration. (9) A saddle-mounted vehicle according to any one of (1) to (6).
  • the drive unit is fixed to the frame body without an elastic member.
  • the power source of the saddle-mounted vehicle is separated into a power generation engine for generating electricity and a drive unit including a motor for driving the saddle-mounted vehicle.
  • the drive unit does not generate vibration like an engine. Therefore, the drive unit can be fixed to the frame body of the saddle-type vehicle by a rigid mount as a member having rigidity. Even in this case, the vibration transmitted to the frame body and the drive unit of the saddle-mounted vehicle can be suppressed.
  • the rigidity of the saddle-type vehicle is further increased, and the vibration transmitted to the saddle-type vehicle is suppressed. Further suppression is possible.
  • the saddle-mounted vehicle can adopt the following configuration.
  • the vehicle frame structure is Frame structure and It comprises a rear arm that rotatably supports the drive wheels and is swingably supported around the support portion via a support portion on the frame.
  • the saddle-mounted vehicle is With the front wheels
  • a front suspension that rotatably supports the front wheels and is supported by the frame body, With the rear arm
  • the frame body and the drive unit are integrally fixed to each other without the elastic member, receive a load from the front wheels via the front suspension, and receive the load from the front wheels via the rear arm. Constructs a frame structure that receives the load from.
  • the frame body and the drive unit are integrated to form a highly rigid frame structure.
  • the frame structure rotatably supports the front suspension that rotatably supports the front wheels and swingably supports the rear arm that rotatably supports the drive wheels.
  • An example of a front suspension is a front fork.
  • the frame body rotatably supports the front fork.
  • the saddle-mounted vehicle can adopt the following configuration. (11) The saddle-mounted vehicle of (10).
  • the frame structure receives a load from the drive wheels via the frame structure and an attenuator attached to the rear arm, and receives a load from the front wheels via the attenuator of the front suspension.
  • the impact received by the frame structure from the front wheels via the front suspension and the impact received from the drive wheels via the rear arm during traveling are absorbed by the attenuator.
  • both the vibration of the power generation engine and the impact from the front wheels and the drive wheels can be suppressed from being transmitted to the entire saddle-type vehicle via the highly rigid frame structure.
  • connection and “coupled” are not limited to physical or mechanical connections or connections, but can include direct or indirect electrical connections or connections.
  • all terms used herein, including technical and scientific terms, have the same meaning as commonly understood by those skilled in the art to which the present invention belongs. Terms such as those defined in commonly used dictionaries should be construed to have meaning consistent with the relevant technology and in the context of the present disclosure and are expressly defined herein. Unless it is, it will not be interpreted in an ideal or overly formal sense. It is understood that the description of the present invention discloses a number of techniques and steps. Each of these has its own interests, and each may be used in conjunction with one or more of the other disclosed techniques, or in some cases all.
  • a saddle-type vehicle is a vehicle in which the driver sits across the saddle.
  • the saddle-mounted vehicle include a scooter type, a moped type, an off-road type, and an on-road type motorcycle.
  • the saddle-mounted vehicle is not limited to a motorcycle, and may be, for example, a motorcycle, an ATV (All-Terrain Vehicle), or the like.
  • a tricycle may have two front wheels and one rear wheel, or may have one front wheel and two rear wheels.
  • the drive wheels of the saddle-mounted vehicle may be rear wheels or front wheels. Further, the drive wheels of the saddle-mounted vehicle may be both rear wheels and front wheels. The drive wheels are driven only by the mechanical power output from the drive motor among the mechanical power output from the power generation engine or the drive motor.
  • Such a saddle-mounted vehicle is a series hybrid saddle-mounted vehicle.
  • the saddle-mounted vehicle is configured to be able to turn in a lean posture.
  • a saddle-mounted vehicle configured to be able to turn in a lean posture is configured to turn in a posture tilted inward of a curve.
  • the saddle-mounted vehicle configured to be able to turn in a lean posture opposes the centrifugal force applied to the saddle-mounted vehicle during turning.
  • Examples of the saddle-mounted vehicle configured to be able to turn in a lean posture include a motorcycle and a motorcycle.
  • lightness is required, so the responsiveness of progress to the starting operation is important.
  • the frame body forms the skeleton of a saddle-type vehicle, and supports mounting parts of the saddle-type vehicle such as an engine, a power generation unit, a drive unit, a battery, and a fuel tank.
  • the frame body is composed of a head pipe and a girder portion fixed to the head pipe.
  • the frame body may be composed of a head pipe, a girder portion, and other parts, or may be composed of parts other than the head pipe and the girder portion.
  • the girder portion may be composed of a single pipe, or may be composed of a combination of a plurality of pipes. Further, the girder portion may be composed of a structure other than a pipe such as a plate.
  • the frame body examples include, but are not limited to, a single gradel type, a double gradel type, a diamond type, and a monocoque type.
  • the frame structure constitutes the vehicle frame structure.
  • the vehicle frame structure is a structure that receives loads from the front wheels and the rear wheels.
  • the vehicle frame structure includes a frame structure and a rear arm. If the saddle-mounted vehicle does not have a rear arm, the vehicle frame structure is the frame structure itself. That is, the vehicle frame structure is either the frame structure itself or a combination of the frame structure and the rear arm.
  • the frame structure may have parts other than the frame body.
  • the frame body and a drive unit rigidly fixed to the frame body may form the frame structure.
  • the drive unit is not limited to this, and for example, the frame structure may not be formed. In this case, the drive unit does not function as a structure that receives loads from the front and rear wheels.
  • the power generation engine is a reciprocating engine that outputs the power generated by the combustion of gas as the torque and rotation speed of the crankshaft.
  • the power generation engine includes, for example, a single cylinder engine and an engine having two or more cylinders. Further, the power generation engine includes, but is not limited to, a rotary engine and a gas turbine engine, in addition to a reciprocating engine that outputs power generated by combustion of gas as torque and rotation speed of a crankshaft.
  • the generator is a rotating electric machine that can generate electricity.
  • the generator may function as a starting motor.
  • the generator may be a rotary electric machine different from the starting motor.
  • the generator may be an outer rotor type or an inner rotor type.
  • the generator may be an axial gap type instead of the radial gap type.
  • the rotor comprises a permanent magnet.
  • the configuration in which the generator is driven by the power generation engine is, for example, a power transmission mechanism provided so as to interlock with the crankshaft of the power generation engine so that the driven shaft of the generator rotates at a fixed speed ratio. It is connected to the crankshaft of the power generation engine via. Further, the generator may be directly connected to the crankshaft of the power generation engine without using a power transmission mechanism.
  • the drive motor is a rotary electric machine that can operate the motor.
  • the drive motor may be, for example, a rotary electric machine capable of both power generation and motor operation.
  • the drive motor may be an outer rotor type or an inner rotor type. Further, the drive motor may be an axial gap type instead of the radial gap type.
  • the rotor comprises a permanent magnet.
  • the drive unit is a component that receives the electric power supplied from the generator and outputs it as rotational power.
  • the drive unit includes a drive motor.
  • the drive unit may include a speed reducer, a drive sprocket for a chain, or a pulley for a chain belt.
  • the flexible power transmission medium includes at least a member that does not transmit vibration.
  • Examples of the power transmission medium include electric wires and cables.
  • the flexible power transmission medium may be a combination of a flexible member and a rigid body.
  • the flexible power transmission medium may be a combination of an electric wire and a circuit board.
  • Supporting means that the supporting part receives the load of the supported part directly or indirectly. Being supported means that the supported parts directly or indirectly apply a load to the supported parts. Directly here, it means that the supporting part comes into contact with the supported part and receives a load. Indirectly, it also means that the supporting component receives a load through another component without contacting the supported component.
  • the contact points between the supporting component and the supported component may be fixed, for example.
  • the supporting component and the supported component may be oscillatingly connected, for example. Further, the supporting component and the supported component may be rotatably connected, for example.
  • the connecting portion between the supporting component and the supported component may be directly connected to each other.
  • the connecting portion between the supporting component and the supported component may be connected to each other via, for example, an elastic member or a bearing.
  • Rigid fixing means that the supported part is directly or indirectly fixed to the supported part without the intervention of a movable part made of an elastic member, a cushioning member, or the like.
  • the supported component is fixed, for example, to the supporting component.
  • the rear arm is a part that connects the rear wheel and the frame structure.
  • the rear arm rotatably supports the rear wheels. If the rear wheels are drive wheels, the rear arm rotatably supports the drive wheels.
  • the rear arm is swingably supported by the frame structure.
  • the front suspension is a component that connects the front wheels and the frame structure.
  • the front suspension rotatably supports the front wheels.
  • the front fork as an example of the front suspension, is rotatably supported by the frame structure.
  • the front suspension includes an attenuator. The attenuator absorbs vibrations and / or shocks input from the front wheels.
  • the elastic member is, for example, rubber, inner and outer cylinder bushes, or rubber bushes.
  • the elastic member may be, for example, damper rubber.
  • the elastic member is a member having elasticity.
  • the elastic member includes, for example, a cushioning member, a vibration damping member, a vibration damping member, and the like.
  • the link member is a component that constitutes the link mechanism.
  • the link member is a connector that connects at least two parts.
  • the link member rotates or swings with respect to at least one of the connecting parts.
  • the fittings that are fixed to all parts are not included in the link member.
  • the link member has at least two connecting portions. Of the at least two connecting portions, at least one connecting portion is formed in a bearing having a rotatable mounting shaft.
  • the mounting shaft penetrates the bearing formed on the link member.
  • the link member is formed so as to be freely rotatable about a mounting shaft penetrating the bearing. Further, the mounting shaft may be inserted into at least one of the two connecting portions via the inner and outer cylinder bushes. In this case, the link member swings with respect to the mounting shaft penetrating the inner and outer cylinder bushes.
  • the balancer is, for example, a uniaxial primary balancer that suppresses the primary inertial force of the engine.
  • the balancer is not limited to the uniaxial primary balancer, and may be a balancer that exhibits other functions. Examples of the balancer exhibiting other functions include a primary couple balancer, a biaxial primary balancer, a uniaxial secondary balancer, and a biaxial secondary balancer.
  • the balancer the optimum type of balancer is selected depending on the type of the power generation engine and the mounting method of the power generation engine.
  • FIG. 2 is a cross-sectional view taken along the line II of FIG. It is sectional drawing in II-II of FIG. It is a left side view which shows the motor unit of the saddle type vehicle of FIG. It is sectional drawing in III-III of FIG. It is a left side view which shows the vehicle frame structure and the power generation unit of the saddle type vehicle of FIG. It is a top view which shows the vehicle frame structure and the power generation unit of the saddle type vehicle of FIG. It is a right side view which shows the vehicle frame structure and the power generation unit of the saddle type vehicle of FIG. It is an external view which shows the saddle type vehicle which concerns on 2nd Embodiment of this invention.
  • FIG. 1 is a left side view showing a saddle-mounted vehicle 1 according to the first embodiment of the present invention.
  • FIG. 1 shows a state in which the vehicle body cover in the left direction is removed in the left-right direction of the saddle-mounted vehicle 1.
  • the outline of the saddle-mounted vehicle 1 of the present embodiment will be described with reference to FIG.
  • the arrow F in FIG. 1 indicates the forward direction of the saddle-mounted vehicle 1.
  • the forward direction is the direction in which the saddle-mounted vehicle 1 travels.
  • the arrow B indicates the backward direction.
  • the arrow F and the arrow B represent the front-rear direction FB in the saddle-mounted vehicle 1.
  • the front direction F, the rear direction B, and the front-rear direction FB are parallel to the horizontal plane in the upright state of the saddle-mounted vehicle 1.
  • the arrow U indicates an upward direction.
  • the arrow D indicates a downward direction.
  • the arrow U and the arrow D represent the vertical UD in the saddle-mounted vehicle 1.
  • the upward direction U, the downward direction D, and the vertical direction UD are parallel to the vertical direction of the saddle-mounted vehicle 1 in the upright state.
  • the right and left directions of the rider in the lean vehicle are indicated by arrows L and R shown in FIG.
  • the arrow L and the arrow R represent the left-right direction LR in the saddle-mounted vehicle 1.
  • the direction of the device included in the saddle-mounted vehicle 1 will be described in the above-described direction in the state of being attached to the saddle-mounted vehicle 1.
  • the saddle-type vehicle 1 of FIG. 1 is a series hybrid-type saddle-type vehicle in which a generator is driven by a power generation engine and drive wheels are driven by the electric power of the generator.
  • the saddle-mounted vehicle 1 of FIG. 1 includes a frame main body 110.
  • the frame body 110 constitutes the vehicle frame structure 10.
  • the frame body 110 forms the skeleton of the saddle-mounted vehicle 1 and serves as a base for supporting the mounted parts of the saddle-mounted vehicle 1.
  • the saddle-mounted vehicle 1 includes a drive unit 50.
  • the drive unit 50 includes a drive motor 51.
  • the drive motor 51 receives power and outputs power.
  • the drive unit 50 includes a gearbox 53.
  • the gearbox 53 has rigidity and houses a power transmission mechanism 531 (see FIG. 6) that shifts the rotational power from the drive motor 51 by a predetermined gear ratio.
  • the gearbox 53 supports the drive motor 51.
  • the drive unit 50 is supported by the vehicle frame structure 10.
  • the vehicle frame structure 10 supports the load of the saddle-mounted vehicle 1 acting between the front wheels 22 and the rear wheels 32.
  • the saddle-mounted vehicle 1 includes a power generation unit 40.
  • the power generation unit 40 includes a power generation engine 41 and a generator 42. As shown in FIG. 1, the power generation engine 41 is swingably supported by the vehicle frame structure 10 so as not to form the vehicle frame structure 10.
  • the power generation engine 41 has a rotatable crankshaft 411 (not shown).
  • the power generation engine 41 outputs the power generated by the combustion of gas as the torque and rotation speed of the crankshaft 411.
  • the power output by the power generation engine 41 is the engine power. However, the power generation engine 41 does not mechanically transmit the output power (engine power) to the rear wheels 32.
  • the generator 42 is provided so as to interlock with the crankshaft 411.
  • the generator 42 is electrically connected to the flexible power transmission medium 46.
  • the power transmission medium 46 is an electric wire.
  • the generator 42 converts the power from the power generation engine 41 into electric power.
  • the generator 42 supplies the converted electric power to the drive motor 51 via the electric power transmission medium 46.
  • the saddle-mounted vehicle 1 includes a front fork 21 and front wheels 22.
  • the front wheel 22 is rotatably supported by the front fork 21.
  • the front fork 21 is rotatably supported by the frame body 110.
  • the front fork 21 is an example of a front suspension. That is, the frame body 110 supports the front suspension. Further, the front wheels 22 are rotatably supported by the front suspension.
  • the vehicle frame structure 10 receives a load from the front wheels 22 via the front fork 21.
  • the front fork 21 has an attenuator 23. The attenuator 23 reduces the vibration transmitted from the front wheel 22 to the frame body 110 via the front fork 21.
  • the saddle-mounted vehicle 1 is provided with a rear wheel 32.
  • the rear wheel 32 is driven only by the power output from the drive motor 51. That is, the power of the power generation engine 41 is not mechanically transmitted to the rear wheels 32.
  • the rear wheel 32 is a driving wheel. That is, the drive motor 51 drives the drive wheels.
  • the saddle-mounted vehicle 1 is equipped with a battery 60.
  • the battery 60 stores the electric power generated by the generator 42 and supplies the stored electric power to the drive motor 51.
  • the saddle-mounted vehicle 1 is made into a series hybrid by being configured as described above.
  • the power generation engine 41 is swingably supported by the vehicle frame structure 10
  • the drive unit 50 is separated from the power generation engine 41 by the vehicle frame structure. It is configured to be supported by 10.
  • the rear wheels 32 which are the drive wheels, are driven by the motor power output from the drive motor 51.
  • the engine power output from the power generation engine 41 is not mechanically transmitted to the rear wheels 32.
  • the power generation engine 41 is swingably supported by the frame structure 11, and the generator 42 is connected to the flexible power transmission medium 46.
  • the drive unit 50 is supported by the vehicle frame structure 10 separately from the power generation engine 41 that is swingably supported by the vehicle frame structure 10.
  • FIG. 2 is a left side view showing a power generation engine 41 and a generator 42 of the power generation unit 40 of the saddle-mounted vehicle 1 of FIG.
  • FIG. 3 is a cross-sectional view taken along the line II of FIG.
  • FIG. 4 is a cross-sectional view taken along the line II-II of FIG.
  • the power generation engine 41 is provided with a throttle valve 412, a fuel injection device 413, a spark plug 414, and a crankshaft 411.
  • the power generation engine 41 is an internal combustion engine.
  • the power generation engine 41 moves the piston 415 up and down to give rotational power to the crankshaft 411 by a combustion operation of burning a mixed gas of fuel and air.
  • the power generation engine 41 outputs rotational power.
  • the throttle valve 412 and the fuel injection device 413 adjust the rotational power output from the power generation engine 41 by adjusting the amounts of air and fuel supplied.
  • the rotational power output from the power generation engine 41 is converted into electric power by the generator 42.
  • the electric power converted by the generator 42 is supplied to the drive motor 51 and output again as rotational power.
  • the power generation engine 41 has a balancer 416.
  • the balancer 416 is a uniaxial primary balancer.
  • a drive gear 411a attached to the crankshaft 411 is driven via a driven gear 416b attached to the balancer shaft 416a.
  • the balancer 416 can suppress the primary inertial force of the power generation engine 41.
  • the generator 42 is a permanent magnet type three-phase brushless type generator.
  • the generator 42 has a rotor 421 and a stator 422.
  • the generator 42 of this embodiment is a radial gap type.
  • the rotor 421 is an inner rotor.
  • the stator 422 is an outer stator. That is, the generator 42 is an inner rotor type.
  • the rotor 421 has a driven shaft 421a and a plurality of permanent magnet portions 421b.
  • the plurality of permanent magnet portions 421b are provided on the outer peripheral surface of the driven shaft 421a.
  • the plurality of permanent magnet portions 421b are provided so that the north pole and the south pole are alternately arranged in the circumferential direction of the generator 42.
  • the plurality of permanent magnet portions 421b are provided closer to the center than the stator 422 in the radial direction of the generator 42.
  • the stator 422 has a stator core 422a and a plurality of phase stator windings 422b.
  • the stator core 422a has a cylindrical yoke and a plurality of tooth portions provided so as to extend inward at intervals in the circumferential direction of the yoke.
  • the stator winding 422b is wound around each of the plurality of teeth.
  • Each of the plurality of stator windings 422b belongs to any of U-phase, V-phase, and W-phase.
  • the stator windings 422b are arranged so as to be arranged in the order of, for example, U phase, V phase, and W phase.
  • the generator 42 is connected via the power transmission mechanism 423 so as to interlock with the crankshaft 411 of the power generation engine 41.
  • the rotor 421 is connected to the crankshaft 411 so as to rotate at a fixed speed ratio with respect to the crankshaft 411.
  • the generator 42 is driven by the power generation engine 41 to generate power.
  • FIG. 5 is a left side view showing the drive unit 50 of the saddle-mounted vehicle 1 of FIG.
  • FIG. 6 is a cross-sectional view taken along the line III-III of FIG.
  • the drive unit 50 includes a drive motor 51, a control unit 52, and a gearbox 53.
  • the drive motor 51 is a permanent magnet type three-phase brushless motor.
  • the drive motor 51 also functions as a permanent magnet type three-phase brushless generator.
  • the drive motor 51 is a radial gap type having an inner rotor 511 and an outer stator 512.
  • the drive motor 51 drives the rear wheels 32 (see FIG. 1) as a vehicle drive motor. At this time, the drive motor 51 receives power from at least one of the generator 42 (see FIG. 2) and the battery 60 (see FIG. 1) of the power generation unit 40.
  • the drive motor 51 outputs rotational power from the supplied electric power to drive the rear wheels 32 via the power transmission mechanism 531 of the gearbox 53.
  • the power output by the drive motor 51 is the motor power.
  • the control unit 52 includes a drive control unit 521 and a power supply control unit 522.
  • the drive control unit 521 includes an inverter module 521a including an inverter and a motor controller, and a mounting board 521b.
  • the power control unit 522 includes a converter module 522a including a converter and a power generation controller, and a mounting board 522b.
  • the drive motor 51 of the drive unit 50, the battery 60, and the converter module 522a of the power supply control unit 522 are connected to the inverter module 521a of the drive control unit 521.
  • the motor controller of the inverter module 521a controls the inverter according to the operation amount of the accelerator grip, converts the current and voltage output from the battery 60 and / or the generator 42 into three-phase AC, and flows to the drive motor 51. Controls current and voltage.
  • the generator 42 of the power generation unit 40 and the battery 60 are connected to the converter module 522a of the power supply control unit 522.
  • the power generation controller of the converter module 522a controls the converter to rectify the three-phase alternating current output from the generator 42 and control the voltage.
  • the gearbox 53 houses the power transmission mechanism 531 and the output shaft 534.
  • a drive pulley 535 is attached to the output shaft 534.
  • the power transmission mechanism 531 constitutes a speed reducer.
  • the power transmission mechanism 531 decelerates the power output from the drive motor 51 by a predetermined gear ratio and transmits it to the rear wheels 32. Specifically, the rotational power from the drive motor 51 is decelerated by the power transmission mechanism 531 and transmitted to the output shaft 534.
  • the rotational power transmitted to the output shaft 534 is transmitted to the drive shaft of the rear wheels 32, which are the drive wheels, via the drive pulley 535 and the belt chain 54.
  • FIG. 7 is a left side view showing the vehicle frame structure 10 and the power generation unit 40 of the saddle-mounted vehicle 1 of FIG.
  • FIG. 8 is a top view showing the vehicle frame structure 10 and the power generation unit 40 of the saddle-mounted vehicle 1 of FIG.
  • FIG. 9 is a right side view showing the vehicle frame structure 10 and the power generation unit 40 of the saddle-mounted vehicle 1 of FIG. The relationship between the support of the vehicle frame structure 10 and the power generation unit 40 will be described with reference to FIGS. 7 to 9.
  • the drive unit 50 is rigidly fixed to the frame body 110 without an elastic member.
  • the drive unit 50 is integrated with the frame body 110 to form the frame structure 11. That is, the drive unit 50 is rigidly fixed to the frame body 110 without an elastic member, thereby forming the frame structure 11.
  • the vehicle frame structure 10 is composed of the frame structure 11. That is, the vehicle frame structure 10 is composed of a frame body 110 and a drive unit 50.
  • the frame structure 11 supports the load of the saddle-mounted vehicle 1 acting between the front wheels 22 and the rear wheels 32.
  • the frame structure 11 does not have a movable portion that supports the load of the saddle-mounted vehicle 1.
  • the saddle-mounted vehicle 1 is provided with a rear arm 31.
  • the rear arm 31 is swingably supported by the frame body 110 or the drive unit 50, that is, the frame structure 11.
  • the rear arm 31 rotatably supports the rear wheels 32, which are the driving wheels.
  • the frame structure 11 and the rear arm 31 are connected by an attenuator (not shown).
  • the attenuator absorbs the vibration transmitted from the rear arm 31 to the frame structure 11. As a result, the vibration transmitted from the rear wheel 32 to the frame structure 11 via the rear arm 31 is reduced.
  • the frame body 110 includes a first girder portion 111, a second girder portion 112, and a head pipe 113.
  • the first girder portion 111 is arranged in the left direction L in the left-right direction LR of the saddle-mounted vehicle 1.
  • the second girder portion 112 is arranged in the right direction R in the left-right direction LR of the saddle-mounted vehicle 1.
  • the first girder portion 111 and the second girder portion 112 are coupled to the head pipe 113 in the front direction F in the front-rear direction FB of the saddle-mounted vehicle 1.
  • the power generation unit 40 is arranged between the first girder portion 111 of the frame main body 110 and the second girder portion 112.
  • the first girder portion 111 is arranged in the left direction L of the power generation unit 40
  • the second girder portion 112 is arranged in the right direction R of the power generation unit 40. ..
  • the power generation engine 41 of the power generation unit 40 is attached via the link members 114, 536 and 537 at at least three points of the frame body 110 and the gearbox 53 of the vehicle frame structure 10, and four points in the present embodiment.
  • the link member 114 is located between the surface of the first girder portion 111 facing the right direction R and the surface of the second girder portion 112 facing the left direction L in the left-right direction LR of the saddle-mounted vehicle 1. Be placed.
  • the link member 114 shown in the example of the present embodiment is a second girder portion 114 arranged relatively to the right from the position of the first girder portion 111 arranged relatively to the left in the left-right direction LR of the saddle-mounted vehicle 1.
  • the link member 114 is swingably attached to the attachment shaft 451 provided in the attachment portion 431 of the power generation engine 41 of the power generation unit 40 via the elastic member 441.
  • the mounting shaft 451 is fixed to the mounting portion 431 of the power generation engine 41.
  • the link member 114 is swingably attached to the attachment shaft 455 provided on the attachment portion 111a of the first girder portion 111 via the elastic member 445.
  • the mounting shaft 455 is fixed to the mounting portion 111a of the first girder portion 111.
  • the link member 114 is attached to the attachment shaft 461 provided in the attachment portion 111b of the first girder portion 111.
  • the mounting shaft 461 is supported by a bearing 471 provided on the link member 114.
  • the bearing 471 is provided so that the link member 114 rotates about a straight line extending from the rotation center of the bearing 471 in the left-right direction LR of the saddle-mounted vehicle 1.
  • the mounting shaft 461 is fixed to the mounting portion 111b of the first girder portion 111.
  • the link member 114 is swingably attached to a mounting shaft 452 provided on a mounting portion 432 of the power generation engine 41 of the power generation unit 40 via an elastic member 442.
  • the mounting shaft 452 is fixed to the mounting portion 432 of the power generation engine 41.
  • the link member 114 is swingably attached to the attachment shaft 456 provided on the attachment portion 112a of the second girder portion 112 via the elastic member 446.
  • the mounting shaft 456 is fixed to the mounting portion 112a of the second girder portion 112.
  • the link member 114 is attached to the attachment shaft 462 provided in the attachment portion 112b of the second girder portion 112.
  • the mounting shaft 462 is supported by a bearing 472 provided on the link member 114.
  • the bearing 472 is provided so that the link member 114 rotates about a straight line extending from the center of rotation of the bearing 472 in the left-right direction LR of the saddle-mounted vehicle 1.
  • the mounting shaft 462 is fixed to the mounting portion 112b of the second girder portion 112.
  • the mounting shafts 451 and 452, 455, 456, 461 and 462 are, for example, pins.
  • the mounting shafts 451 and 452, 455, 456, 461 and 462 may be, for example, bolts.
  • the axes of the mounting shafts 451 and 452, 455, 456, 461 and 462 extend in the left-right direction LR of the saddle-mounted vehicle 1.
  • the elastic members 441, 442, 445 and 446 are, for example, inner and outer cylinder bushes.
  • the mounting portions 431 and 432 of the power generation engine 41 are provided in the front region of the power generation engine 41 in the front-rear direction FB of the saddle-mounted vehicle 1.
  • the mounting portion 431 is arranged in the left direction L of the power generation engine 41 in the left-right direction LR of the saddle-mounted vehicle 1.
  • the mounting portion 432 is arranged in the right direction R of the power generation engine 41 in the left-right direction LR of the saddle-mounted vehicle 1.
  • the mounting portions 111a and 111b of the first girder portion 111 are provided on the surface of the saddle-mounted vehicle 1 in the left-right direction LR facing the right direction R of the first girder portion 111.
  • the mounting portions 112a and 112b of the second girder portion 112 are provided on the surface of the second girder portion 112 facing the left direction L in the left-right direction LR of the saddle-mounted vehicle 1.
  • the link member 536 is swingably attached to the attachment shaft 453 provided in the attachment portion 433 of the power generation engine 41 of the power generation unit 40 via the elastic member 443.
  • the mounting shaft 453 is fixed to the mounting portion 433 of the power generation engine 41.
  • the link member 536 is swingably attached to the attachment shaft 457 provided in the attachment portion 538a of the gearbox 53 via the elastic member 447.
  • the mounting shaft 457 is fixed to the mounting portion 538a of the gearbox 53.
  • the link member 536 is attached to the attachment shaft 463 provided in the attachment portion 538b of the gearbox 53.
  • the mounting shaft 463 is supported by a bearing 473 provided on the link member 536.
  • the bearing 473 is provided so that the link member 536 rotates about a straight line extending from the center of rotation of the bearing 473 in the left-right direction LR of the saddle-mounted vehicle 1.
  • the mounting shaft 463 is fixed to the mounting portion 538b of the gearbox 53.
  • the link member 537 is swingably attached to the attachment shaft 454 provided in the attachment portion 434 of the power generation engine 41 of the power generation unit 40 via the elastic member 444.
  • the mounting shaft 454 is fixed to the mounting portion 434 of the power generation engine 41.
  • the link member 537 is attached to the attachment shaft 464 provided in the attachment portion 539 of the gearbox 53.
  • the mounting shaft 464 is supported by a bearing 474 provided on the link member 537.
  • the bearing 474 is provided so that the link member 537 rotates about a straight line extending from the center of rotation of the bearing 474 in the left-right direction LR of the saddle-mounted vehicle 1.
  • the mounting shaft 464 is fixed to the mounting portion 539 of the gearbox 53.
  • the mounting shafts 453, 454, 457, 463 and 464 are, for example, pins.
  • the mounting shafts 453, 454, 457, 463 and 464 may be, for example, bolts.
  • the axes of the mounting shafts 453, 454, 457, 463 and 464 extend in the left-right direction LR of the saddle-mounted vehicle 1.
  • the elastic members 443, 444, and 447 are, for example, inner and outer cylinder bushes.
  • the mounting portions 431 and 432 of the power generation engine 41 are provided in the lower and front regions of the power generation engine 41 in the vertical direction UD and the front-rear direction FB of the saddle-type vehicle 1.
  • the mounting portion 433 of the power generation engine 41 is provided in the upper and rear regions of the power generation engine 41 in the vertical direction UD and the front-rear direction FB of the saddle-mounted vehicle 1.
  • the mounting portion 434 of the power generation engine 41 is provided in the lower and rear regions of the power generation engine 41 in the vertical direction UD and the front-rear direction FB of the saddle-mounted vehicle 1.
  • the mounting portions 538a, 538b and 539 of the gearbox 53 are provided in the front region of the gearbox 53.
  • the link member 114 rotates about a straight line extending in the left-right direction LR of the saddle-mounted vehicle 1 from the mounting shaft 461 supported by the bearing 471 and the mounting shaft 462 supported by the bearing 472 as the central axis.
  • the link member 536 rotates about a straight line extending from the mounting shaft 463 supported by the bearing 473 in the left-right direction LR of the saddle-mounted vehicle 1 as a central axis.
  • the link member 537 rotates about a straight line extending from the mounting shaft 464 supported by the bearing 474 in the left-right direction LR of the saddle-mounted vehicle 1 as a central axis.
  • the link member 114 is attached to the power generation engine 41 via the elastic members 441 and 442.
  • the link members 536 and 537 are attached to the power generation engine 41 via the elastic members 443 and 444, respectively. Therefore, the power generation engine 41 rotates about a straight line extending from the center of gravity G in the left-right direction LR of the saddle-mounted vehicle 1. As a result, the power generation engine 41 of the saddle-mounted vehicle 1 can suppress the transmission of vibrations in the vertical direction UD and the front-rear direction FB of the saddle-mounted vehicle 1 to the frame structure 10. Further, the power generation engine 41 suppresses the primary inertial force of the power generation engine 41 by the balancer 416. Therefore, in the saddle-mounted vehicle 1 of the present embodiment, the vibration of the power generation engine 41 is efficiently transmitted to the vehicle frame structure 10 by combining the link members 114, 536 and 537 and the balancer 416. Can be suppressed.
  • the link member 114 is attached to the frame body 110 via the elastic members 445 and 446.
  • the link member 536 is attached to the gearbox 53 via the elastic member 447.
  • the gearbox 53 is rigidly fixed to the rear end of the frame body 110 at four points in the front-rear direction FB of the saddle-mounted vehicle 1 including the front direction and the rear direction.
  • the frame main body 110 is fixed in contact with the gearbox 53 at four points of the mounting portions 561 to 564 of the gearbox 53 of FIGS. 7 to 9 without the need for an elastic member such as a rubber bush. ..
  • the mounting portion 561 is provided at the upper left portion of the gearbox 53
  • the mounting portion 562 is provided at the lower left portion of the gearbox 53.
  • the mounting portion 563 is provided in the upper right portion of the gearbox 53
  • the mounting portion 564 is provided in the lower right portion of the gearbox 53.
  • the frame body 110 is fixed with bolts at the mounting portions 561 to 564 of the gearbox 53.
  • the gearbox 53 Since the gearbox 53 is rigidly fixed to the frame body 110, it constitutes the frame structure 11 integrally with the frame body 110. As a result, the gearbox 53, together with the frame body 110, forms the skeleton of the saddle-mounted vehicle 1 and can receive the loads from the front wheels 22, the rear wheels 32, and the power generation unit 40.
  • the gearbox 53 of the drive unit 50 is rigidly fixed to the frame body 110 without an elastic member, thereby forming the frame structure 11.
  • the saddle-mounted vehicle 1 can use the gearbox 53 as a rigid member of the frame structure 11, and can increase the rigidity of the saddle-mounted vehicle.
  • the rear wheels 32 which are the driving wheels, are driven only by the power output from the drive motor 51, and the power output from the power generation engine 41 is not transmitted.
  • the power generation engine 41 is swingably supported by the frame body 110, and the generator 42 and the drive motor 51 of the power generation unit are made of a power transmission medium that is flexible and does not transmit vibration. It is connected. Therefore, in the saddle-type vehicle 1, the vibration of the power generation engine 41 is transmitted to the entire saddle-type vehicle via the frame structure 11 including the frame body 110 and the drive unit 50 while increasing the rigidity of the frame structure 11. Can be suppressed.
  • the rear arm 31 is swingably supported by the gearbox 53 at two points of mounting portions 571 and 572 provided in the gearbox 53 of FIGS. 7 to 9.
  • the mounting portion 571 is provided on the left portion of the gearbox 53
  • the mounting portion 572 is provided on the right portion of the gearbox 53.
  • the output shaft 534 of the power transmission mechanism 531 penetrates the mounting portion 571 and the rear arm 31.
  • the mounting bolt 573 (see FIG. 8) penetrates the rear arm 31 and is inserted into the mounting hole provided in the mounting portion 572 of the gearbox.
  • FIG. 10 is an external view showing a saddle-mounted vehicle 200 according to a second embodiment of the present invention.
  • FIG. 10A is a left side view of the saddle-mounted vehicle 200
  • FIG. 10B is an enlarged right-side view showing a part of the engine mount of the saddle-mounted vehicle 200.
  • FIG. 10 shows a state in which the left body cover of the saddle-mounted vehicle 200 is removed.
  • the saddle-mounted vehicle 1 according to the first embodiment and the first embodiment are different in the configuration of the drive unit 250 and the support method of the frame main body 2110 and the power generation unit 240 and the drive unit 250.
  • the present embodiment and the first embodiment will be described.
  • the vehicle frame structure 210 is composed of the frame structure 211 and the rear arm 231. Further, the frame structure 211 is composed of only the frame body 2110.
  • the rear arm 231 is swingably supported by the frame body 2110.
  • the rear arm 231 rotatably supports the rear wheel 232, and is rotatably supported around the support portion 233 by the frame structure 211 via the support portion 233.
  • the gearbox 253 is attached to the rear arm 231. Further, the gearbox 253 may form a rear arm 231.
  • the drive motor 251 is attached to the gearbox 253, that is, the rear arm 231.
  • the drive motor 251 supplies electric power converted from engine power from the generator 242 of the power generation unit 241 electrically connected to the electric power transmission medium 246 via the electric power transmission medium 246.
  • the drive unit 250 is not fixed to the frame body 2110. That is, in the present embodiment, the drive unit 250 does not form the frame structure 211.
  • the power generation engine 241 of the power generation unit 240 is attached via at least three points of the frame body 2110 which is the frame structure 211, and in this embodiment, four points of link members.
  • the link member 2114 is arranged between the first girder portion 2111 and the second girder portion 2112 in the left-right direction LR of the saddle-mounted vehicle 200.
  • the link member 2114 shown in the example of the present embodiment is a second girder portion 2114 arranged relatively to the right from the position of the first girder portion 2111 arranged relatively to the left in the left-right direction LR of the saddle-mounted vehicle 1. It is a member that extends in the left-right direction LR to the position of the girder portion 2112.
  • the link member 2114 is swingably attached to the attachment shaft 2451 provided in the attachment portion 2431 of the power generation engine 241 of the power generation unit 240 via the elastic member 2441.
  • the mounting shaft 2451 is fixed to the mounting portion 2431 of the power generation engine 241. Further, the link member 2114 is swingably attached to the attachment shaft 2455 provided on the attachment portion 2111a of the first girder portion 2111 via the elastic member 2445. The mounting shaft 2455 is fixed to the mounting portion 2111a of the first girder portion 2111. Further, the link member 2114 is attached to the attachment shaft 2461 provided in the attachment portion 2111b of the first girder portion 2111. The mounting shaft 2461 is supported by a bearing 2471 provided on the link member 2114. The bearing 2471 is provided so that the link member 2114 rotates about a straight line extending from the rotation center of the bearing 2471 in the left-right direction LR of the saddle-mounted vehicle 200 as a central axis. The mounting shaft 2461 is fixed to the mounting portion 2111b of the first girder portion 2111.
  • the link member 2114 is swingably attached to the attachment shaft 2452 provided in the attachment portion 2432 of the power generation engine 241 of the power generation unit 240 via the elastic member 2442.
  • the mounting shaft 2452 is fixed to the mounting portion 2432 of the power generation engine 241.
  • the link member 2114 is swingably attached to the attachment shaft 2456 provided on the attachment portion 2112a of the second girder portion 2112 via the elastic member 2446.
  • the mounting shaft 2456 is fixed to the mounting portion 2112a of the second girder portion 2112.
  • the link member 2114 is attached to the attachment shaft 2462 provided in the attachment portion 2112b of the second girder portion 2112.
  • the mounting shaft 2462 is supported by a bearing 2472 provided on the link member 2114.
  • the bearing 2472 is provided so that the link member 2114 rotates about a straight line extending from the center of rotation of the bearing 2472 in the left-right direction LR of the saddle-mounted vehicle 200 as a central axis.
  • the mounting shaft 2462 is fixed to the mounting portion 2112b of the second girder portion 2112.
  • the link member 2115 is swingably attached to the attachment shaft 2453 provided in the attachment portion 2433 of the power generation engine 241 of the power generation unit 240 via the elastic member 2443.
  • the mounting shaft 2453 is fixed to the mounting portion 2433 of the power generation engine 241.
  • the link member 2115 is swingably attached to the attachment shaft 2457 provided on the attachment portion 2111c of the first girder portion 2111 via the elastic member 2447.
  • the mounting shaft 2457 is fixed to the mounting portion 2111c of the first girder portion 2111.
  • the link member 2115 is attached to the attachment shaft 2464 provided in the attachment portion 2111d of the first girder portion 2111.
  • the mounting shaft 2464 is supported by a bearing 2473 provided on the link member 2115.
  • the bearing 2473 is provided so that the link member 2115 rotates about a straight line extending from the rotation center of the bearing 2473 in the left-right direction LR of the saddle-mounted vehicle 200 as a central axis.
  • the mounting shaft 2464 is fixed to the mounting portion 2111d of the first girder portion 2111.
  • the link member 2116 is swingably attached to the attachment shaft 2454 provided in the attachment portion 2434 of the power generation engine 241 of the power generation unit 240 via the elastic member 2444.
  • the mounting shaft 2454 is fixed to the mounting portion 2434 of the power generation engine 241.
  • the link member 2116 is attached to the attachment shaft 2464 provided in the attachment portion 2111e of the first girder portion 2111.
  • the mounting shaft 2464 is supported by a bearing 2474 provided on the link member 2116.
  • the bearing 2474 is provided so that the link member 2116 rotates about a straight line extending from the center of rotation of the bearing 2474 in the left-right direction LR of the saddle-mounted vehicle 200 as a central axis.
  • the mounting shaft 2464 is fixed to the mounting portion 2111e of the first girder portion 2111.
  • the mounting shafts 2451 to 2457 and 2461 to 2464 are, for example, pins.
  • the mounting shafts 2451 to 2457 and 2461 to 2464 may be, for example, bolts.
  • the axes of the mounting shafts 2451 to 2457 and 2461 to 2464 extend in the left-right direction LR of the saddle-mounted vehicle 1.
  • the elastic members 2441 to 2447 are, for example, inner and outer cylinder bushes.
  • the mounting portions 2431 and 2432 of the power generation engine 241 are provided in the lower and front regions of the power generation engine 241 in the vertical UD and the front-rear direction FB of the saddle-mounted vehicle 200.
  • the mounting portion 2433 of the power generation engine 241 is provided in the upper and rear regions of the power generation engine 241 in the vertical direction UD and the front-rear direction FB of the saddle-mounted vehicle 200.
  • the mounting portion 2434 of the power generation engine 241 is provided in the lower and rear regions of the power generation engine 241 in the vertical direction UD and the front-rear direction FB of the saddle-mounted vehicle 200.
  • the mounting portion 2431 is arranged in the left direction L of the power generation engine 241 in the left-right direction LR of the saddle-mounted vehicle 200.
  • the mounting portion 2432 is arranged in the right direction R of the power generation engine 241 in the left-right direction LR of the saddle-mounted vehicle 200.
  • the link member 2114 rotates about a straight line extending from the mounting shaft 2461 supported by the bearing 2471 and the mounting shaft 2462 supported by the bearing 2472 in the left-right direction LR of the saddle-mounted vehicle 200 as the central axis.
  • the link member 2115 rotates about a straight line extending from the mounting shaft 2463 supported by the bearing 2473 in the left-right direction LR of the saddle-mounted vehicle 200 as a central axis.
  • the link member 2116 rotates about a straight line extending from the mounting shaft 2464 supported by the bearing 2474 in the left-right direction LR of the saddle-mounted vehicle 200 as a central axis.
  • the link members 2114 to 2116 are attached to the power generation engine 241 via the elastic members 2441 to 2444, respectively.
  • the power generation engine 241 of the saddle-type vehicle 200 can suppress the transmission of vibrations in the vertical direction UD and the front-rear direction FB of the saddle-type vehicle 200 to the frame structure 211 (that is, the frame body 2110). .. Further, the power generation engine 241 suppresses the primary inertial force of the power generation engine 241 by providing a balancer. Therefore, the saddle-mounted vehicle 200 of the present embodiment efficiently transmits the vibration of the power generation engine 241 to the frame structure 211 by combining the link members 2114 to 2116 and the balancer of the power generation engine. Can be suppressed.
  • the link member 2114 is attached to the frame body 2110 via the elastic members 2445 and 2446.
  • the link member 2115 is attached to the frame body 2110 via the elastic member 2447.
  • the elastic members 2445 to 2447 serve as a stopper for suppressing excessive rocking, and the saddle-type vehicle 200 swings significantly in the vertical direction UD and the front-rear direction FB. Can be suppressed.
  • control unit 252 may or may not be included in the drive unit 250. That is, in the present embodiment, the control unit 252 may be integrated with the drive unit 250 to form the rear arm 231 or may be attached to the frame body 2110 of the saddle-mounted vehicle 1.
  • the drive unit 250 can be configured not to include the gearbox 253.
  • the drive motor 251 is attached to the rear arm 231 and the central shaft of the rear wheel 232 is directly connected to the output shaft of the drive motor 251. That is, the drive motor 251 is configured as an in-wheel motor of the rear wheel 232.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Automatic Cycles, And Cycles In General (AREA)

Abstract

入力に対する高い応答性を有しつつ、エンジンからフレーム本体に伝わる振動を抑制するストラドルドビークルを提供する。本発明のストラドルドビークルは、フレーム本体と、駆動ユニットと、駆動輪と、発電ユニットとを含む。フレーム本体は、車両フレーム構造体を構成する。駆動ユニットは、電力を受けてモータパワーを出力する駆動モータを含む。駆動輪は、駆動モータから出力されたモータパワーによって駆動される。発電ユニットは、出力したパワーを駆動輪に伝達しない発電用エンジン、及び、発電用エンジンに固定されるとともに可撓性を有する電力伝送媒体と電気的に接続され、発電用エンジンから出力されたエンジンパワーを電力に変換して駆動モータに向け電力を供給する発電機を含む。これにより、ストラドルドビークルは、シリーズハイブリッド化されると共に、発電用エンジンが、車両フレーム構造体に揺動可能に支持される一方、駆動ユニットが、発電用エンジンとは別に、車両フレーム構造体に支持されるように構成されている。

Description

ストラドルドビークル
 本発明は、鞍乗型車両に関する。
 特許文献1には、フレーム本体にエンジンとギアケースを含むエンジンユニットを固定した鞍乗型車両が記載されている。特許文献1の鞍乗型車両は、フレーム本体にエンジンユニットを固定してフレーム構造体を構成し、エンジンユニットをフレーム本体の剛性メンバーとして使用している。
特許第3992798号公報
 特許文献1の鞍乗型車両は、エンジンユニットをフレーム本体の剛性メンバーとして使用する。これにより、フレーム構造体全体の剛性を高めている。しかし、特許文献1に記載の鞍乗型車両は、エンジンユニットがフレーム本体に固定されている。そのため、エンジンからの振動がフレーム本体を介して鞍乗型車両全体に伝わってしまう。
 エンジンを搭載する鞍乗型車両においては、入力に対する高い応答性を実現しながら、エンジンユニットからフレーム本体に伝わる振動を抑制することが求められる。
 本発明の目的は、入力に対する高い応答性を有しつつ、エンジンからフレーム本体に伝わる振動を抑制する鞍乗型車両を提供することである。
 本発明者らは、鞍乗型車両において、エンジンユニットからフレーム本体に伝わる振動を抑制することについて詳細に検討した。この結果、本発明者らは、次のことが分かった。
 鞍乗型車両のフレーム本体の剛性を高めるために、例えば、エンジンユニットの一部を使用することが考えられる。例えば、サイドチューブとピボットチューブにより構成されたダイヤモンド型のフレーム本体にエンジンユニットを取付ける。この時、ダイヤモンド型のフレーム本体のサイドチューブに、エンジンの上部を弾性マウントにより取付ける。また、ダイヤモンド型のフレーム本体のピボットチューブにエンジンユニットの後部をリジッドマウントにより固定する。
 このように鞍乗型車両のダイヤモンド型のフレーム本体にエンジンユニットを取付けることにより、鞍乗型車両のフレーム本体の剛性を高め、且つ振動を抑制することが考えられる。
 しかし、上述のフレーム本体へのエンジンユニット取付方法においては、エンジンユニットの一部が固定されているため、未だに一部の振動が鞍乗型車両全体に伝わってしまう。
 本発明者らは、上述のようにエンジンユニットをフレーム本体に配した鞍乗型車両には、さらなるエンジンの振動がフレーム本体へ伝達されることを抑制することが望ましいことが分かった。
 本発明者らは、鞍乗型車両において、エンジンからフレーム本体に伝わる振動を抑制することについて、更に詳細に検討した。この検討の中で、本発明者らは、エンジンユニットから車両の駆動部分を分離することについて検討した。より詳細には、鞍乗型車両のエンジンユニットを、シリーズハイブリッド化することにより、発電を行う発電用エンジンと、鞍乗型車両を駆動するモータを含む駆動ユニットとに分離する。そして、発電用エンジンは、駆動ユニットとは別に、車両フレーム構造体に揺動可能に取付けられる。駆動ユニットでは、エンジンのような振動が発生しない。そのため、駆動ユニットは、車両フレーム構造体に支持されることができる。発電用エンジンでは、振動が発生する。そのため、発電用エンジンは、車両フレーム構造体に揺動可能に取付けることにより、車両フレーム構造体に伝わる振動を抑制することができる。その結果、エンジンの振動による影響を防止又は低減しつつ、駆動ユニットから駆動輪へ動力を伝達することができる。さらに、車両フレーム構造体に揺動可能に支持される発電用エンジンとは別に、駆動ユニットが車両フレーム構造体に支持されるので、駆動ユニットから駆動輪への動力伝達が、発電用エンジンの車両フレーム構造体への揺動可能な支持による影響を受けることが、防止又は抑制されることができる。その結果、駆動ユニットから駆動輪への動力伝達が効率的に行われ、車両として、入力に対する高い応答性を実現することが可能となる。
 このように、発電用エンジンが車両フレーム構造体に揺動可能に支持されると共に、発電用エンジンと別に、駆動ユニットは車両フレーム構造体に支持されることにより、入力に対する高い応答性を実現しつつ、鞍乗型車両に伝わる振動を抑制することが可能となる。
 以上の知見に基づいて完成した本発明の鞍乗型車両は、次の構成を備える。
 (1) 鞍乗型車両であって、
 前記鞍乗型車両は、
 車両フレーム構造体を構成するフレーム本体と、
 電力を受けてパワーを出力する駆動モータを含む駆動ユニットと、
 前記駆動モータから出力されたパワーによって駆動される駆動輪と、
 出力するエンジンパワーを前記駆動輪に機械的に供給しないように設置された発電用エンジン、及び、前記発電用エンジンに固定されるとともに可撓性を有する電力伝送媒体と電気的に接続され、前記発電用エンジンから出力されたエンジンパワーを電力に変換し前記電力を前記電力伝送媒体を介して前記駆動モータに向け供給する発電機を含む、発電ユニットと
を備え、これにより、シリーズハイブリッド化されると共に、前記発電用エンジンが、前記車両フレーム構造体に揺動可能に支持される一方、前記駆動ユニットが、前記発電用エンジンとは別に、前記車両フレーム構造体に支持されるように構成されている。
 (1)の鞍乗型車両は、フレーム本体と、駆動ユニットと、駆動輪と、発電ユニットとを備える。フレーム本体は、車両フレーム構造体を構成する。駆動ユニットは、電力を受けてパワーを出力する駆動モータを含む。駆動輪は、駆動モータから出力されたパワーによって駆動される。
 発電ユニットは、発電用エンジンと、発電機とを含む。発電用エンジンは、車両フレーム構造体に揺動可能に支持される。発電用エンジンにより出力されるエンジンパワーは、機械的に駆動輪に伝達されない。そのため、駆動輪は、駆動モータから出力されたパワーによって駆動される。発電機は、可撓性を有する電力伝送媒体に接続される。発電機は、発電用エンジンから出力されたエンジンパワーを電力に変換し、変換した電力を電力伝送媒体を介して駆動モータに供給する。
 (1)の鞍乗型車両によれば、駆動輪は、駆動モータから出力されたモータパワーによって駆動される。駆動輪は、発電用エンジンから出力されたエンジンパワーが機械的に伝達されない。また、発電用エンジンがフレーム構造体に揺動可能に支持されており、発電機は可撓性を有する電力伝送媒体に接続されている。駆動ユニットは、車両フレーム構造体に揺動可能に支持される発電用エンジンとは別に、車両フレーム構造体に支持される。
これにより、(1)の鞍乗型車両は、入力に対する高い応答性を実現しつつ、鞍乗型車両に伝わる振動を抑制することが可能となる。
 本発明の一つの観点によれば、鞍乗型車両は、以下の構成を採用できる。
 (2) (1)の鞍乗型車両であって、
 前記車両フレーム構造体は、フレーム構造体そのもの、又はフレーム構造体とリアアームとの組合せのいずれか1つからなり、前記車両フレーム構造体が前記フレーム構造体そのものである場合には、前記フレーム構造体自体が前記駆動輪を回転可能に支持し、前記車両フレーム構造体が前記フレーム構造体と前記リアアームとの組合せからなる場合、前記リアアームは、前記駆動輪を回転可能に支持し、前記フレーム構造体に支持部を介して前記支持部周りに揺動可能に支持され、
 前記発電用エンジンは、前記車両フレーム構造体に車両側面視における複数箇所で、並進往復運動又は実質的に並進往復運動を行うように揺動可能に支持される一方、前記駆動ユニットは、前記発電用エンジンとは別に、前記車両フレーム構造体に弾性部材を介さずに固定される。
 (2)の鞍乗型車両によれば、入力に対する高い応答性と、鞍乗型車両に伝わる振動の抑制とを、より高いレベルで実現可能となる。なお、実質的な並進往復運動とは、少なくとも並進往復運動成分を含む運動をいい、他の運動成分、例えば、並進回転運動成分及び回転運動成分の少なくとも1種の成分を含んでいてもよい。
 本発明の一つの観点によれば、鞍乗型車両は、以下の構成を採用できる。
 (3) (1)の鞍乗型車両であって、
 前記発電用エンジンは、車両側面視における複数箇所で弾性部材を介して前記車両フレーム構造体に支持される。
 (3)の鞍乗型車両によれば、発電用エンジンが弾性部材を介してフレーム構造体に支持される。これにより、(3)の鞍乗型車両は、発電用エンジンの振動がフレーム本体に伝達するのを抑制することができる。
 本発明の一つの観点によれば、鞍乗型車両は、以下の構成を採用できる。
 (4) (1)の鞍乗型車両であって、
 前記発電用エンジンは、車両側面視における少なくとも3箇所でリンク部材を介して前記車両フレーム構造体に支持される。
 (4)の鞍乗型車両では、発電用エンジンがリンク部材を介してフレーム構造体に取付けられる。従って、(4)の鞍乗型車両では、発電用エンジンの上下方向及び前後方向における振動がフレーム構造体に伝達することを抑制することができる。従って、(4)の鞍乗型車両は、リンク部材を有することにより、発電用エンジンの振動がフレーム本体に伝達されるのを効率的に抑制することができる。
 本発明の一つの観点によれば、鞍乗型車両は、以下の構成を採用できる。
 (5) (4)の鞍乗型車両であって、
 前記リンク部材のうちの少なくとも一つは、弾性部材を介して前記車両フレーム構造体又は前記発電用エンジンに取付けられる。
 (5)の鞍乗型車両では、弾性部材がリンク部材の過度の揺動を抑制することができる。従って、(5)の鞍乗型車両は、発電用エンジンが上下方向及び前後方向に大きく揺動することを抑制することができる。
 本発明の一つの観点によれば、鞍乗型車両は、以下の構成を採用できる。
 (6) (2)から(5)の何れか1の鞍乗型車両であって、
 前記発電用エンジンは、バランサを備える。
 (6)の鞍乗型車両によれば、発電用エンジンがバランサを備える。これにより、(6)の鞍乗型車両は、発電用エンジンの振動を効率よく吸収することができる。
 本発明の一つの観点によれば、鞍乗型車両は、以下の構成を採用できる。
 (7) (1)から(6)の何れか1の鞍乗型車両であって、
 前記車両フレーム構造体は、
フレーム構造体と、
前記駆動輪を回転可能に支持し、前記フレーム構造体に支持部を介して前記支持部周りに揺動可能に支持されるリアアームとからなり、
 前記鞍乗型車両は、
 前輪と、
 前記前輪を回転可能に支持し、前記フレーム本体に支持されるフロントサスペンションと、
 前記リアアームと
を備え、
 前記駆動ユニットは、前記フレーム構造体を構成すること無しに前記リアアームに固定される。
 (7)の鞍乗型車両によれば、鞍乗型車両のエンジンユニットを、シリーズハイブリッド化することにより、発電を行う発電用エンジンと、鞍乗型車両を駆動するモータを含む駆動ユニットとに分離できる。そして、発電用エンジンは、フレーム本体に揺動可能に取付けられる。発電用エンジンでは、振動が発生する。そのため、発電用エンジンは、鞍乗型車両のフレーム本体及び駆動ユニットの少なくとも一つに揺動可能に取付けることにより、鞍乗型車両のフレーム本体及び駆動ユニットに伝わる振動を抑制することができる。これに対し、駆動ユニットは、鞍乗型車両のリアアームに固定される。従って、(7)の鞍乗型車両によれば、鞍乗型車両の車体をコンパクトに構成できる。駆動ユニットでは、エンジンのような振動が発生しない。そのため、(7)の鞍乗型車両では、駆動ユニットをリアアームに固定したとしても、フレーム本体に振動が伝達されない。
 本発明の一つの観点によれば、鞍乗型車両は、以下の構成を採用できる。
 (8) (7)の鞍乗型車両であって、
 前記フレーム本体は、前記フロントサスペンションに設けられた減衰器を介して前記前輪からの荷重を受け、前記フレーム本体と前記リアアームに取付けられた減衰器を介して前記駆動輪からの荷重を受ける。
 (8)の鞍乗型車両によれば、フレーム本体は、前輪を回転可能に支持するフロントサスペンションを支持し、駆動輪を回転可能に支持するリアアームを揺動可能に支持する。フロントサスペンションの一例としては、フロントフォークが挙げられる。フレーム本体は、フロントフォークを回転可能に支持する。これにより、剛性の高いフレーム構造体が、前輪及び駆動輪からの荷重を受けつつ、発電用エンジンの振動が鞍乗型車両全体に伝わるのを抑制することができる。
 本発明の一つの観点によれば、鞍乗型車両は、以下の構成を採用できる。
 (9) (1)から(6)の何れか1の鞍乗型車両であって、
 前記駆動ユニットは、前記フレーム本体に弾性部材を介することなく固定される。
 (9)の鞍乗型車両では、鞍乗型車両の動力源が、発電を行う発電用エンジンと、鞍乗型車両を駆動するモータを含む駆動ユニットとに分離されている。駆動ユニットでは、エンジンのような振動が発生しない。そのため、駆動ユニットは、剛性を有するメンバーとして、鞍乗型車両のフレーム本体にリジッドマウントにより固定されることができる。この場合でも、鞍乗型車両のフレーム本体及び駆動ユニットに伝わる振動を抑制することができる。
 (9)の鞍乗型車両のように鞍乗型車両のフレーム本体に発電用エンジンと駆動ユニットとを取付けることにより、鞍乗型車両の剛性を更に高め、且つ鞍乗型車両に伝わる振動を更に抑制することが可能となる。
 本発明の一つの観点によれば、鞍乗型車両は、以下の構成を採用できる。
 (10) (9)の鞍乗型車両であって、
 前記車両フレーム構造体は、
フレーム構造体と、
前記駆動輪を回転可能に支持し、前記フレームに支持部を介して前記支持部周りに揺動可能に支持されるリアアームとからなり、
 前記鞍乗型車両は、
 前輪と、
 前記前輪を回転可能に支持し、前記フレーム本体に支持されるフロントサスペンションと、
 前記リアアームと
を備え、
 前記フレーム本体と前記駆動ユニットとは、前記弾性部材を介することなく互いに固定されることにより一体となって、前記フロントサスペンションを介して前記前輪からの荷重を受け、前記リアアームを介して前記駆動輪からの荷重を受けるフレーム構造体を構成する。
 (10)の鞍乗型車両によれば、フレーム本体と駆動ユニットが一体となって、剛性の高いフレーム構造体を構成する。フレーム構造体は、前輪を回転可能に支持するフロントサスペンションを支持し、駆動輪を回転可能に支持するリアアームを揺動可能に支持する。フロントサスペンションの一例としては、フロントフォークが挙げられる。フレーム本体は、フロントフォークを回転可能に支持する。これにより、剛性の高いフレーム構造体が、前輪及び駆動輪からの荷重を受けつつ、発電用エンジンの振動が鞍乗型車両全体に伝わるのを抑制することができる。
 本発明の一つの観点によれば、鞍乗型車両は、以下の構成を採用できる。
 (11) (10)の鞍乗型車両であって、
 前記フレーム構造体は、前記フレーム構造体と前記リアアームに取付けられた減衰器を介して前記駆動輪からの荷重を受け、前記フロントサスペンションの減衰器を介して前記前輪からの荷重を受ける。
 (11)の鞍乗型車両によれば、走行時においてフレーム構造体がフロントサスペンションを介して前輪から受ける衝撃及びリアアームを介して駆動輪から受ける衝撃が、減衰器で吸収される。これにより、発電用エンジンの振動、前輪及び駆動輪からの衝撃の双方が、剛性の高いフレーム構造体を介して鞍乗型車両全体に伝わることを抑制することができる。
 本明細書にて使用される専門用語は特定の実施例のみを定義する目的であって発明を制限する意図を有しない。本明細書にて使用される用語「及び/又は」は一つの、又は複数の関連した列挙された構成物のあらゆる又は全ての組み合わせを含む。本明細書中で使用される場合、用語「含む、備える(including)」「含む、備える(comprising)」又は「有する(having)」及びその変形の使用は、記載された特徴、工程、操作、要素、成分及び/又はそれらの等価物の存在を特定するが、ステップ、動作、要素、コンポーネント、及び/又はそれらのグループのうちの1つ又は複数を含むことができる。本明細書中で使用される場合、用語「取付けられた」、「接続された」、「結合された」及び/又はそれらの等価物は広く使用され、直接的及び間接的な取付け、接続及び結合の両方を包含する。更に、「接続された」及び「結合された」は、物理的又は機械的な接続又は結合に限定されず、直接的又は間接的な電気的接続又は結合を含むことができる。他に定義されない限り、本明細書で使用される全ての用語(技術用語および科学用語を含む)は、本発明が属する当業者によって一般的に理解されるのと同じ意味を有する。一般的に使用される辞書に定義された用語のような用語は、関連する技術及び本開示の文脈における意味と一致する意味を有すると解釈されるべきであり、本明細書で明示的に定義されていない限り、理想的又は過度に形式的な意味で解釈されることはない。本発明の説明においては、技術及び工程の数が開示されていると理解される。これらの各々は個別の利益を有し、それぞれは、他の開示された技術の1つ以上、又は、場合によっては全てと共に使用することもできる。従って、明確にするために、この説明は、不要に個々のステップの可能な組み合わせを全て繰り返すことを控える。それにもかかわらず、明細書及び特許請求の範囲は、そのような組み合わせが全て本発明及び請求項の範囲内にあることを理解して読まれるべきである。
 本明細書では、新しい鞍乗型車両について説明する。以下の説明では、説明の目的で、本発明の完全な理解を提供するために多数の具体的な詳細を述べる。しかしながら、当業者には、これらの特定の詳細なしに本発明を実施できることが明らかである。本開示は、本発明の例示として考慮されるべきであり、本発明を以下の図面又は説明によって示される特定の実施形態に限定することを意図するものではない。
 鞍乗型車両(straddled vehicle)とは、運転者がサドルに跨って着座する形式のビークルをいう。鞍乗型車両としては、例えば、スクータ型、モペット型、オフロード型、オンロード型の自動二輪車が挙げられる。また、鞍乗型車両としては、自動二輪車に限定されず、例えば、自動三輪車、ATV(All-Terrain Vehicle)等であってもよい。自動三輪車は、2つの前輪と1つの後輪とを備えていてもよく、1つの前輪と2つの後輪とを備えていてもよい。鞍乗型車両の駆動輪は、後輪であってもよく、前輪であってもよい。また、鞍乗型車両の駆動輪は、後輪及び前輪の双方であってもよい。駆動輪は、発電用エンジン又は駆動モータから出力される機械的なパワーのうち、駆動モータから出力される機械的パワーのみによって駆動される。このような鞍乗型車両は、シリーズハイブリッド式鞍乗型車両である。
 また、鞍乗型車両は、リーン姿勢で旋回可能に構成されていることが好ましい。リーン姿勢で旋回可能に構成された鞍乗型車両は、カーブの内側に傾いた姿勢で旋回するように構成される。これにより、リーン姿勢で旋回可能に構成された鞍乗型車両は、旋回時に鞍乗型車両に加わる遠心力に対抗する。リーン姿勢で旋回可能に構成された鞍乗型車両としては、例えば、自動二輪車及び自動三輪車が挙げられる。リーン姿勢で旋回可能に構成された鞍乗型車両では、軽快性が求められるため、発進の操作に対する進行の応答性が重要視される。
 フレーム本体は、鞍乗型車両の骨格をなし、エンジン、発電ユニット、駆動ユニット、バッテリ、及び燃料タンク等の鞍乗型車両の搭載部品等を支持する。フレーム本体は、ヘッドパイプと、ヘッドパイプに固定された桁部とから構成される。フレーム本体は、ヘッドパイプ及び桁部と、それ以外の部品とにより構成されていてもよく、また、ヘッドパイプ及び桁部以外の部品により構成されていてもよい。桁部は、単一のパイプから構成されてもよく、また、複数のパイプの組み合わせで構成されてもよい。また、桁部は、板等のパイプ以外の構造物により構成されてもよい。フレーム本体は、例えば、シングルグレードル型、ダブルグレードル型、ダイヤモンド型、及びモノコック型等が挙げられるが、これらに限定されない。
 フレーム構造体は、車両フレーム構造体を構成する。車両フレーム構造体は、前輪及び後輪からの荷重を受ける構造体である。鞍乗型車両がリアアームを備える場合、車両フレーム構造体は、フレーム構造体とリアアームとからなる。鞍乗型車両がリアアームを備えない場合、車両フレーム構造体は、フレーム構造体自体である。即ち、車両フレーム構造体は、フレーム構造体そのもの、又はフレーム構造体とリアアームとの組合せ、のいずれかである。なお、フレーム構造体は、フレーム本体以外の部品を有してもよい。例えば、フレーム本体及びフレーム本体にリジッドに固定された駆動ユニットがフレーム構造体を構成してもよい。駆動ユニットは、これに限られず例えば、フレーム構造体を構成しなくともよい。この場合、駆動ユニットは、前輪及び後輪からの荷重を受ける構造体として機能しない。
 発電用エンジンは、ガスの燃焼によって生じるパワーをクランク軸のトルク及び回転速度として出力する往復動機関である。発電用エンジンは、例えば、単気筒エンジン及び2以上の気筒を有するエンジンを含む。また、発電用エンジンは、ガスの燃焼によって生じるパワーをクランク軸のトルク及び回転速度として出力する往復動機関の他、例えば、ロータリーエンジン、及びガスタービンエンジンがあげられるが、これらに限定されない。
 発電機は、発電が可能な回転電機である。発電機は、始動モータとして機能してもよい。但し、発電機は、始動モータと異なる回転電機であってもよい。発電機は、アウターロータ型でもよく、また、インナーロータ型でもよい。また、発電機は、ラジアルギャップ型でなく、アキシャルギャップ型でもよい。一つの実施形態によれば、発電機では、ロータが、永久磁石を備えている。
 発電機が、発電用エンジンで駆動される構成とは、例えば、発電用エンジンのクランク軸と連動するよう設けられ、発電機の被駆動軸が、固定された速度比で回転するよう動力伝達機構を介して発電用エンジンのクランク軸に接続されることである。また、発電機が、動力伝達機構を介さずに発電用エンジンのクランク軸と直結されていてもよい。
 駆動モータは、モータ動作が可能な回転電機である。駆動モータは、例えば発電とモータ動作の双方が可能な回転電機であってもよい。駆動モータは、アウターロータ型でもよく、また、インナーロータ型でもよい。また、駆動モータは、ラジアルギャップ型でなく、アキシャルギャップ型でもよい。一つの実施形態によれば、駆動モータでは、ロータが、永久磁石を備えている。
 駆動ユニットは、発電機から供給される電力を受けて、回転パワーとして出力する部品である。駆動ユニットは、駆動モータを備える。駆動ユニットは、駆動モータの他に、減速機、チェーン用のドライブスプロケット、又はチェーンベルト用のプーリを備えていてもよい。
 可撓性を有する電力伝送媒体は、振動を伝達しない部材を少なくとも含んでいる。電力伝送媒体は、例えば電線及びケーブル等が挙げられる。但し、可撓性を有する電力伝送媒体は、可撓性を有する部材と、剛体との組み合わせであってもよい。例えば可撓性を有する電力伝送媒体は、電線と回路基板との組み合わせであってもよい。
 支持するとは、支持する部品が支持される部品の荷重を直接的又は間接的に受けることをいう。支持されるとは、支持される部品が支持する部品に直接的又は間接的に荷重をかけることをいう。ここで直接的は、支持する部品が支持される部品と接触して荷重を受けることを意味する。また、間接的は、支持する部品が支持される部品と接触せずに他の部品を介して荷重を受けることを意味する。支持する部品と支持される部品の接点は、例えば、固定されていてもよい。支持する部品と支持される部品は、例えば、揺動可能に接続されていてもよい。また、支持する部品と支持される部品は、例えば、回転可能に接続されていてもよい。支持する部品と支持される部品の接続部分は、直接部品同士が接続されていてもよい。支持する部品と支持される部品の接続部分は、例えば弾性部材、ベアリング等を介して部品同士が接続されていてもよい。
 リジッドに固定されるとは、弾性部材又は緩衝部材等からなる可動部分を介することなく、支持される部品が支持する部品と直接的に又は間接的に固定されることである。支持される部品は、例えば、支持する部品と固定される。
 リアアームは、後輪とフレーム構造体とをつなぐ部品である。リアアームは後輪を回転可能に支持する。後輪が駆動輪である場合には、リアアームは駆動輪を回転可能に支持する。リアアームは、フレーム構造体に揺動可能に支持される。
 フロントサスペンションは、前輪とフレーム構造体とをつなぐ部品である。フロントサスペンションは、前輪を回転可能に支持する。フロントサスペンションの一例としてのフロントフォークは、フレーム構造体に回転可能に支持される。フロントサスペンションは、減衰器を含む。減衰器は、前輪から入力される振動及び/又は衝撃を吸収する。
 弾性部材は、例えばゴム、内外筒ブッシュ又はラバーブッシュである。弾性部材は、例えばダンパーゴムであってもよい。弾性部材は、弾性を有する部材である。弾性部材は、例えば、緩衝部材、制振部材、防振部材等を含む。
 リンク部材は、リンク機構を構成する部品である。リンク部材は、少なくとも2つの部品を接続する接続具である。リンク部材は、接続する部品の少なくとも一つに対して、回転または揺動する。すべての部品に対して固定される接続具は、リンク部材に含まれない。リンク部材は、少なくとも2つの接続部分を有している。少なくとも2つの接続部分のうち、少なくとも1つの接続部分は、取付軸が回転可能なベアリング(軸受)に形成される。取付軸は、リンク部材に形成されたベアリングを貫通する。リンク部材は、ベアリングを貫通する取付軸を中心として自由に回転可能に形成される。また、少なくとも2つの接続部分のうち、少なくとも1つの接続部分は、内外筒ブッシュを介して取付軸が挿入されてもよい。この場合、リンク部材は、内外筒ブッシュを貫通する取付軸に対して揺動する。
 バランサは、例えばエンジンの一次慣性力を抑制する、一軸一次バランサである。但し、バランサは、一軸一次バランサに限られず、他の機能を発揮するバランサであってもよい。他の機能を発揮するバランサは、例えば一次偶力バランサ、二軸一次バランサ、一軸二次バランサ、二軸二次バランサ等があげられる。バランサは、発電用エンジンの種類及び発電用エンジンのマウント方法によって最適な種類のバランサが選択される。
 本発明によれば、入力に対する高い応答性を有しつつ、エンジンからフレーム本体に伝わる振動を抑制する鞍乗型車両を提供することができる。
本発明の第1実施形態に係る鞍乗型車両を示す左側面図である。 図1の鞍乗型車両の発電ユニットを示す左側面図である。 図2のI-Iにおける断面図である。 図2のII-IIにおける断面図である。 図1の鞍乗型車両のモータユニットを示す左側面図である。 図5のIII-IIIにおける断面図である。 図1の鞍乗型車両の車両フレーム構造体及び発電ユニットを示す左側面図である。 図1の鞍乗型車両の車両フレーム構造体及び発電ユニットを示す上面図である。 図1の鞍乗型車両の車両フレーム構造体及び発電ユニットを示す右側面図である。 本発明の第2実施形態に係る鞍乗型車両を示す外観図である。
 以下、本発明を、好ましい実施形態に基づいて図面を参照しつつ説明する。
 [第1実施形態]
 図1は、本発明の第1実施形態に係る鞍乗型車両1を示す左側面図である。図1は、鞍乗型車両1の左右方向において左方向の車体カバーを外した状態を示している。
 図1を参照して、本実施形態の鞍乗型車両1の概要を説明する。図1における矢印Fは、鞍乗型車両1における前方向を示している。前方向は、鞍乗型車両1が走行する方向である。矢印Bは、後方向を示している。矢印F及び矢印Bは、鞍乗型車両1における前後方向FBを表している。前方向F、後方向B、及び前後方向FBは、鞍乗型車両1の直立状態における水平面と平行である。矢印Uは上方向を示している。矢印Dは下方向を示している。矢印U及び矢印Dは、鞍乗型車両1における上下方向UDを表している。上方向U、下方向D及び上下方向UDは、鞍乗型車両1の直立状態における鉛直方向と平行である。リーン車両に乗車したライダーの右方向と左方向を図5に表す矢印L及び矢印Rで示す。矢印L及び矢印Rは、鞍乗型車両1における左右方向LRを表している。
 本明細書において、鞍乗型車両1が有する装置についての方向は、鞍乗型車両1に取付けられた状態での上述した方向で説明される。
 図1の鞍乗型車両1は、発電用エンジンにより発電機を駆動し、発電機の電力により、駆動輪を駆動する、シリーズハイブリッド式鞍乗型車両である。
 図1の鞍乗型車両1は、フレーム本体110を備える。フレーム本体110は、車両フレーム構造体10を構成する。フレーム本体110は、鞍乗型車両1の骨格をなし、鞍乗型車両1の搭載部品を支持する土台となる。
 鞍乗型車両1は、駆動ユニット50を備える。駆動ユニット50は、駆動モータ51を含む。駆動モータ51は、電力の供給を受けてパワーを出力する。
 駆動ユニット50は、ギアボックス53を含む。ギアボックス53は、剛性を有し、駆動モータ51からの回転パワーを所定の変速比により変速する動力伝達機構531(図6参照)を収容する。ギアボックス53は、駆動モータ51を支持する。
 図1に示すように、駆動ユニット50は、車両フレーム構造体10に支持される。車両フレーム構造体10は、前輪22と後輪32の間で作用する、鞍乗型車両1の荷重を支持する。
 鞍乗型車両1は、発電ユニット40を備える。発電ユニット40は、発電用エンジン41と発電機42とを備える。図1に示すように、発電用エンジン41は、車両フレーム構造体10を構成しないように車両フレーム構造体10に揺動可能に支持される。発電用エンジン41は、図示しない回転可能なクランク軸411を有する。発電用エンジン41は、ガスの燃焼によって生じるパワーをクランク軸411のトルク及び回転速度として出力する。発電用エンジン41が出力するパワーはエンジンパワーである。但し、発電用エンジン41は、出力したパワー(エンジンパワー)を後輪32に機械的に伝達しない。
 発電機42は、クランク軸411と連動するよう設けられている。発電機42は、可撓性を有する電力伝送媒体46と電気的に接続されている。電力伝送媒体46は、電線である。発電機42は、発電用エンジン41からのパワーを電力に変換する。発電機42は、変換した電力を、電力伝送媒体46を介して駆動モータ51に向け供給する。
 鞍乗型車両1は、フロントフォーク21と、前輪22とを備える。前輪22は、フロントフォーク21に回転可能に支持される。フロントフォーク21は、フレーム本体110に回転可能に支持される。フロントフォーク21は、フロントサスペンションの一例である。即ち、フレーム本体110は、フロントサスペンションを支持する。また、前輪22は、フロントサスペンションに回転可能に支持される。車両フレーム構造体10は、フロントフォーク21を介して、前輪22からの荷重を受ける。フロントフォーク21は、減衰器23を有する。減衰器23は、前輪22からフロントフォーク21を介してフレーム本体110に伝わる振動を軽減する。
 鞍乗型車両1は、後輪32を備える。後輪32は、駆動モータ51から出力されたパワーのみによって駆動される。つまり、発電用エンジン41のパワーは、機械的に後輪32に伝達されない。後輪32は、駆動輪である。即ち、駆動モータ51は、駆動輪を駆動する。
 鞍乗型車両1は、バッテリ60を備える。バッテリ60は、発電機42により発電された電力を貯蔵し、貯蔵した電力を駆動モータ51に供給する。
 鞍乗型車両1は、上述の通り構成されることにより、シリーズハイブリッド化される。これと共に、鞍乗型車両1は、発電用エンジン41が、車両フレーム構造体10に揺動可能に支持され、これに対し、駆動ユニット50が、発電用エンジン41とは別に、車両フレーム構造体10に支持されるように構成されている。
 鞍乗型車両1によれば、駆動輪である後輪32は、駆動モータ51から出力されたモータパワーによって駆動される。後輪32は、発電用エンジン41から出力されたエンジンパワーが機械的に伝達されない。また、発電用エンジン41がフレーム構造体11に揺動可能に支持されており、発電機42は可撓性を有する電力伝送媒体46に接続されている。駆動ユニット50は、車両フレーム構造体10に揺動可能に支持される発電用エンジン41とは別に、車両フレーム構造体10に支持される。これにより、鞍乗型車両1は、入力に対する高い応答性を実現しつつ、鞍乗型車両1に伝わる振動を抑制することが可能となる。
 [各部詳細]
 図2は、図1の鞍乗型車両1の発電ユニット40の発電用エンジン41及び発電機42を示す左側面図である。図3は、図2のI-Iにおける断面図である。図4は、図2のII-IIにおける断面図である。
 発電用エンジン41には、スロットル弁412と、燃料噴射装置413と、点火プラグ414と、クランク軸411が設けられている。発電用エンジン41は、内燃機関である。発電用エンジン41は、燃料と空気の混合ガスを燃焼する燃焼動作によって、ピストン415を上下動させてクランク軸411に回転パワーを与える。これにより、発電用エンジン41は、回転パワーを出力する。スロットル弁412と燃料噴射装置413とは、供給される空気及び燃料の量を調整することによって、発電用エンジン41から出力される回転パワーを調節する。発電用エンジン41から出力された回転パワーは、発電機42により電力に変換される。発電機42により変換された電力は、駆動モータ51に供給されて再び回転パワーとして出力される。
 発電用エンジン41は、バランサ416を有する。本実施形態において、バランサ416は、1軸一次バランサである。バランサ416は、クランク軸411に取付けられた駆動ギア411aが、バランサ軸416aに取付けられた被駆動ギア416bを介して駆動する。バランサ416により、発電用エンジン41の一次慣性力を抑制することができる。
 発電機42は、永久磁石式三相ブラシレス型発電機である。発電機42は、ロータ421と、ステータ422とを有する。本実施形態の発電機42は、ラジアルギャップ型である。ロータ421はインナーロータである。ステータ422はアウターステータである。即ち、発電機42は、インナーロータ型である。
 ロータ421は、被駆動軸421aと、複数の永久磁石部421bとを有する。複数の永久磁石部421bは、被駆動軸421aの外周面に設けられている。複数の永久磁石部421bは、発電機42の周方向にN極とS極とが交互に配置されるように設けられている。複数の永久磁石部421bは、発電機42の径方向でステータ422よりも中心の方に設けられている。
 ステータ422は、ステータコア422aと、複数相のステータ巻線422bとを有する。ステータコア422aは、円筒状のヨークと、ヨークの周方向に間隔を空けて内方向に向かって延びるように設けられた複数の歯部とを有する。ステータ巻線422bは、複数の歯部にそれぞれ巻き付けられている。複数のステータ巻線422bのそれぞれは、U相、V相、W相の何れかに属する。ステータ巻線422bは、例えば、U相、V相、W相の順に並ぶように配置される。
 本実施形態においては、発電機42は、動力伝達機構423を介して発電用エンジン41のクランク軸411と連動するように接続されている。詳細には、ロータ421が、クランク軸411に対し固定された速度比で回転するようクランク軸411と接続されている。発電機42は、発電用エンジン41が燃焼動作する場合に、発電用エンジン41に駆動されて発電する。
 図5は、図1の鞍乗型車両1の駆動ユニット50を示す左側面図である。図6は、図5のIII-IIIにおける断面図である。駆動ユニット50は、駆動モータ51と、コントロールユニット52と、ギアボックス53とを含む。
 駆動モータ51は、永久磁石式三相ブラシレス型モータである。駆動モータ51は、永久磁石式三相ブラシレス型発電機としても機能する。駆動モータ51は、インナーロータ511と、アウターステータ512とを有するラジアルギャップ型である。
 駆動モータ51は、車両駆動用モータとして後輪32(図1参照)を駆動する。この時、駆動モータ51は、発電ユニット40の発電機42(図2参照)及びバッテリ60(図1参照)の少なくとも一つから電力の供給を受ける。駆動モータ51は、供給された電力により回転パワーを出力して、ギアボックス53の動力伝達機構531を介して後輪32を駆動する。駆動モータ51が出力するパワーはモータパワーである。
 コントロールユニット52は、駆動コントロールユニット521と、電源コントロールユニット522とを含む。駆動コントロールユニット521は、インバータ及びモータコントローラを含むインバータモジュール521aと、取付ボード521bとを含む。電源コントロールユニット522は、コンバータ及び発電コントローラを含むコンバータモジュール522aと、取付ボード522bとを含む。
 駆動コントロールユニット521のインバータモジュール521aには、駆動ユニット50の駆動モータ51と、バッテリ60と、電源コントロールユニット522のコンバータモジュール522aとが接続されている。インバータモジュール521aのモータコントローラは、アクセルグリップの操作量に応じてインバータを制御して、バッテリ60及び/又は発電機42から出力される電流及び電圧の三相交流への変換及び駆動モータ51に流れる電流及び電圧の制御を行う。
 電源コントロールユニット522のコンバータモジュール522aには、発電ユニット40の発電機42と、バッテリ60とが接続されている。コンバータモジュール522aの発電コントローラは、コンバータを制御することによって、発電機42から出力される三相交流の整流及び電圧の制御を行う。
 ギアボックス53は、動力伝達機構531と、出力軸534が収容される。出力軸534には、駆動プーリ535が取付けられる。動力伝達機構531は、減速機を構成する。動力伝達機構531は、駆動モータ51から出力されたパワーを所定の変速比により減速して、後輪32に伝達する。詳細には、駆動モータ51からの回転パワーは、動力伝達機構531により減速されて、出力軸534に伝達される。出力軸534に伝達された回転パワーは、駆動プーリ535及びベルトチェーン54を介して駆動輪である後輪32の駆動軸に伝達される。
 図7は、図1の鞍乗型車両1の車両フレーム構造体10及び発電ユニット40を示す左側面図である。図8は、図1の鞍乗型車両1の車両フレーム構造体10及び発電ユニット40を示す上面図である。図9は、図1の鞍乗型車両1の車両フレーム構造体10及び発電ユニット40を示す右側面図である。図7乃至図9を用いて、車両フレーム構造体10及び発電ユニット40のそれぞれの支持の関係について説明する。
 本実施形態において、駆動ユニット50は、フレーム本体110に弾性部材を介することなくリジッドに固定される。これにより、駆動ユニット50は、フレーム本体110と一体となって、フレーム構造体11を構成する。即ち、駆動ユニット50は、フレーム本体110に弾性部材を介することなくリジッドに固定されることにより、フレーム構造体11を構成する。本実施形態において、車両フレーム構造体10は、フレーム構造体11により構成される。即ち、車両フレーム構造体10は、フレーム本体110と駆動ユニット50とから構成される。フレーム構造体11は、前輪22と後輪32の間で作用する、鞍乗型車両1の荷重を支持する。フレーム構造体11は、鞍乗型車両1の荷重を支持する可動部を有さない。
 鞍乗型車両1は、リアアーム31を備える。リアアーム31は、フレーム本体110又は駆動ユニット50、即ちフレーム構造体11に揺動可能に支持される。リアアーム31は、駆動輪である後輪32を回転可能に支持する。フレーム構造体11とリアアーム31とは、図示しない減衰器により接続される。減衰器はリアアーム31からフレーム構造体11に伝わる振動を吸収する。これにより、後輪32からリアアーム31を介してフレーム構造体11に伝わる振動が軽減される。
 フレーム本体110は、第1の桁部111と、第2の桁部112と、ヘッドパイプ113とを備える。第1の桁部111は、鞍乗型車両1の左右方向LRにおいて、左方向Lに配置される。第2の桁部112は、鞍乗型車両1の左右方向LRにおいて、右方向Rに配置される。第1の桁部111と第2の桁部112とは、鞍乗型車両1の前後方向FBにおいて、前方向Fでヘッドパイプ113に結合する。
 発電ユニット40は、フレーム本体110の第1の桁部111と、第2の桁部112との間に配置される。言い換えると、鞍乗型車両1の左右方向LRにおいて、発電ユニット40の左方向Lに第1の桁部111が配置され、発電ユニット40の右方向Rに第2の桁部112が配置される。
 発電ユニット40の発電用エンジン41は、車両フレーム構造体10のフレーム本体110及びギアボックス53の少なくとも3点、本実施形態においては4点において、リンク部材114、536及び537を介して取付けられる。
 リンク部材114は、鞍乗型車両1の左右方向LRにおいて、第1の桁部111の右方向Rを向いた面と、第2の桁部112の左方向Lを向いた面との間に配置される。本実施形態の例に示すリンク部材114は、鞍乗型車両1の左右方向LRにおいて相対的に左に配置された第1の桁部111の位置から相対的に右に配置された第2の桁部112の位置まで、左右方向LRに延びる部材である。
 リンク部材114は、発電ユニット40の発電用エンジン41の取付部431に設けられた取付軸451に弾性部材441を介して揺動可能に取付けられる。取付軸451は、発電用エンジン41の取付部431に固定される。また、リンク部材114は、第1の桁部111の取付部111aに設けられた取付軸455に弾性部材445を介して揺動可能に取付けられる。取付軸455は、第1の桁部111の取付部111aに固定される。また、リンク部材114は、第1の桁部111の取付部111bに設けられた取付軸461に取付けられる。取付軸461は、リンク部材114に設けられたベアリング471に支持される。ベアリング471は、ベアリング471の回転中心から鞍乗型車両1の左右方向LRに伸びる直線を中心軸としてリンク部材114が回転するように設けられる。取付軸461は、第1の桁部111の取付部111bに固定される。
 リンク部材114は、発電ユニット40の発電用エンジン41の取付部432に設けられた取付軸452に弾性部材442を介して揺動可能に取付けられる。取付軸452は、発電用エンジン41の取付部432に固定される。また、リンク部材114は、第2の桁部112の取付部112aに設けられた取付軸456に弾性部材446を介して揺動可能に取付けられる。取付軸456は、第2の桁部112の取付部112aに固定される。また、リンク部材114は、第2の桁部112の取付部112bに設けられた取付軸462に取付けられる。取付軸462は、リンク部材114に設けられたベアリング472に支持される。ベアリング472は、ベアリング472の回転中心から鞍乗型車両1の左右方向LRに伸びる直線を中心軸としてリンク部材114が回転するように設けられる。取付軸462は、第2の桁部112の取付部112bに固定される。
 取付軸451、452、455、456、461及び462は、例えばピンである。取付軸451、452、455、456、461及び462は、例えばボルトであってもよい。取付軸451、452、455、456、461及び462の軸線は、鞍乗型車両1の左右方向LRに伸びる。弾性部材441、442、445及び446は、例えば内外筒ブッシュである。
 発電用エンジン41の取付部431及び432は、鞍乗型車両1の前後方向FBにおいて、発電用エンジン41の前部の領域に設けられる。取付部431は、鞍乗型車両1の左右方向LRにおいて、発電用エンジン41の左方向Lに配置される。取付部432は、鞍乗型車両1の左右方向LRにおいて、発電用エンジン41の右方向Rに配置される。第1の桁部111の取付部111a及び111bは、鞍乗型車両1の左右方向LRにおいて、第1の桁部111の右方向Rを向いた面に設けられる。第2の桁部112の取付部112a及び112bは、鞍乗型車両1の左右方向LRにおいて、第2の桁部112の左方向Lを向いた面に設けられる。
 リンク部材536は、発電ユニット40の発電用エンジン41の取付部433に設けられた取付軸453に弾性部材443を介して揺動可能に取付けられる。取付軸453は、発電用エンジン41の取付部433に固定される。また、リンク部材536は、ギアボックス53の取付部538aに設けられた取付軸457に弾性部材447を介して揺動可能に取付けられる。取付軸457は、ギアボックス53の取付部538aに固定される。また、リンク部材536は、ギアボックス53の取付部538bに設けられた取付軸463に取付けられる。取付軸463は、リンク部材536に設けられたベアリング473に支持される。ベアリング473は、ベアリング473の回転中心から鞍乗型車両1の左右方向LRに伸びる直線を中心軸としてリンク部材536が回転するように設けられる。取付軸463は、ギアボックス53の取付部538bに固定される。
 リンク部材537は、発電ユニット40の発電用エンジン41の取付部434に設けられた取付軸454に弾性部材444を介して揺動可能に取付けられる。取付軸454は、発電用エンジン41の取付部434に固定される。また、リンク部材537は、ギアボックス53の取付部539に設けられた取付軸464に取付けられる。取付軸464は、リンク部材537に設けられたベアリング474に支持される。ベアリング474は、ベアリング474の回転中心から鞍乗型車両1の左右方向LRに伸びる直線を中心軸としてリンク部材537が回転するように設けられる。取付軸464は、ギアボックス53の取付部539に固定される。
 取付軸453、454、457、463及び464は、例えばピンである。取付軸453、454、457、463及び464は、例えばボルトであってもよい。取付軸453、454、457、463及び464の軸線は、鞍乗型車両1の左右方向LRに伸びる。弾性部材443、444、447は、例えば内外筒ブッシュである。
 発電用エンジン41の取付部431及び432は、鞍乗型車両1の上下方向UD及び前後方向FBにおいて、発電用エンジン41の下部及び前部の領域に設けられる。発電用エンジン41の取付部433は、鞍乗型車両1の上下方向UD及び前後方向FBにおいて、発電用エンジン41の上部及び後部の領域に設けられる。発電用エンジン41の取付部434は、鞍乗型車両1の上下方向UD及び前後方向FBにおいて、発電用エンジン41の下部及び後部の領域に設けられる。ギアボックス53の取付部538a、538b及び539は、ギアボックス53の前部の領域に設けられる。
 リンク部材114は、ベアリング471に支持された取付軸461及びベアリング472に支持された取付軸462から鞍乗型車両1の左右方向LRに伸びる直線を中心軸として回転する。リンク部材536は、ベアリング473に支持された取付軸463から鞍乗型車両1の左右方向LRに伸びる直線を中心軸として回転する。リンク部材537は、ベアリング474に支持された取付軸464から鞍乗型車両1の左右方向LRに伸びる直線を中心軸として回転する。また、リンク部材114は、弾性部材441及び442を介して発電用エンジン41に取付けられる。リンク部材536及び537は、それぞれ弾性部材443及び444を介して発電用エンジン41に取付けられる。従って、発電用エンジン41は、重心Gから鞍乗型車両1の左右方向LRに伸びる直線を中心軸として回転する。これにより、鞍乗型車両1の発電用エンジン41は、鞍乗型車両1の上下方向UD及び前後方向FBにおける振動がフレーム構造体10に伝達することを抑制することができる。また、発電用エンジン41は、バランサ416により、発電用エンジン41の一次慣性力を抑制する。従って、本実施形態の鞍乗型車両1は、リンク部材114、536及び537と、バランサ416とを組み合わせることにより、効率的に発電用エンジン41の振動が車両フレーム構造体10に伝達されるのを抑制することができる。
 リンク部材114は、弾性部材445及び446を介してフレーム本体110に取付けられる。リンク部材536は、弾性部材447を介してギアボックス53に取付けられる。これにより、鞍乗型車両1の発電用エンジン41は、弾性部材445~447が過度の揺動を抑制するストッパとなり、鞍乗型車両1の上下方向UD及び前後方向FBに大きく揺動することを抑制することができる。
 ギアボックス53は、前方向及び後方向を含む鞍乗型車両1の前後方向FBにおいて、フレーム本体110の後端部に、4点でリジッドに固定される。詳細には、図7乃至図9のギアボックス53の取付部561から564の4点において、フレーム本体110が、ゴムブッシュ等の弾性部材を介することなく、ギアボックス53と接触して固定される。ここで、取付部561は、ギアボックス53の左上部に設けられ、取付部562は、ギアボックス53の左下部に設けられる。また、取付部563は、ギアボックス53の右上部に設けられ、取付部564は、ギアボックス53の右下部に設けられる。支持方法は、例えばギアボックス53の取付部561から564において、フレーム本体110をボルトで固定する。
 ギアボックス53は、フレーム本体110にリジッドに固定されるため、フレーム本体110と一体となってフレーム構造体11を構成する。これにより、ギアボックス53は、フレーム本体110とともに、鞍乗型車両1の骨格を形成し、前輪22、後輪32、及び発電ユニット40からの荷重を受けることができる。
 鞍乗型車両1では、駆動ユニット50のギアボックス53が、フレーム本体110に弾性部材を介することなくリジッドに固定されることによりフレーム構造体11を構成する。これにより、鞍乗型車両1は、ギアボックス53をフレーム構造体11の剛性メンバーとして使用でき、鞍乗型車両の剛性を高めることができる。
 また、鞍乗型車両1では、駆動輪である後輪32が、駆動モータ51から出力されたパワーのみによって駆動され、発電用エンジン41から出力されたパワーが伝達されない。これに対し、発電用エンジン41は、フレーム本体110に揺動可能に支持されており、発電ユニットの発電機42と駆動モータ51とは、可撓性を有し振動を伝達しない電力伝送媒体により接続されている。従って、鞍乗型車両1は、フレーム構造体11の剛性を高めつつ、発電用エンジン41の振動が、フレーム本体110及び駆動ユニット50を含むフレーム構造体11を介して鞍乗型車両全体に伝わることを抑制することができる。
 図7乃至図9のギアボックス53に設けられた取付部571及び572の2点において、リアアーム31が、ギアボックス53に揺動可能に支持される。ここで、取付部571は、ギアボックス53の左部に設けられ、取付部572は、ギアボックス53の右部に設けられる。詳細には、動力伝達機構531の出力軸534が取付部571及びリアアーム31を貫通している。また、取付ボルト573(図8参照)が、リアアーム31を貫通し、ギアボックスの取付部572に設けられた取付穴に挿入される。
 [第2実施形態]
 図10は、本発明の第2実施形態に係る鞍乗型車両200を示す外観図である。ここで、図10(a)は鞍乗型車両200の左側面図であり、図10(b)は、鞍乗型車両200のエンジンマウントの一部を拡大して示す右側面図である。図10は、鞍乗型車両200の左の車体カバーを外した状態を示している。本実施形態と第1実施形態に係る鞍乗型車両1とは、駆動ユニット250の構成並びにフレーム本体2110と発電ユニット240及び駆動ユニット250との支持方法において異なる。以下、本実施形態と第1実施形態との差異についてのみ説明する。
 本実施形態において、車両フレーム構造体210は、フレーム構造体211と、リアアーム231とにより構成される。また、フレーム構造体211は、フレーム本体2110のみから構成される。リアアーム231は、揺動可能にフレーム本体2110に支持される。リアアーム231は、後輪232を回転可能に支持し、フレーム構造体211に支持部233を介して支持部233周りに揺動可能に支持される。ギアボックス253は、リアアーム231に取り付けられる。また、ギアボックス253は、リアアーム231を構成してもよい。駆動モータ251は、ギアボックス253、即ちリアアーム231に取付けられる。駆動モータ251は、電力伝送媒体246に電気的に接続された発電ユニット241の発電機242から、エンジンパワーから変換された電力を、電力伝送媒体246を介し供給される。本実施形態において、駆動ユニット250は、フレーム本体2110に固定されない。即ち、本実施形態において、駆動ユニット250は、フレーム構造体211を構成しない。
 発電ユニット240の発電用エンジン241は、フレーム構造体211であるフレーム本体2110の少なくとも3点、本実施形態においては4点リンク部材を介して取付けられる。
 リンク部材2114は、鞍乗型車両200の左右方向LRにおいて、第1の桁部2111と、第2の桁部2112との間に配置される。本実施形態の例に示すリンク部材2114は、鞍乗型車両1の左右方向LRにおいて相対的に左に配置された第1の桁部2111の位置から相対的に右に配置された第2の桁部2112の位置まで、左右方向LRに延びる部材である。
 図10(a)に示すように、リンク部材2114は、発電ユニット240の発電用エンジン241の取付部2431に設けられた取付軸2451に弾性部材2441を介して揺動可能に取付けられる。取付軸2451は、発電用エンジン241の取付部2431に固定される。また、リンク部材2114は、第1の桁部2111の取付部2111aに設けられた取付軸2455に弾性部材2445を介して揺動可能に取付けられる。取付軸2455は、第1の桁部2111の取付部2111aに固定される。また、リンク部材2114は、第1の桁部2111の取付部2111bに設けられた取付軸2461に取付けられる。取付軸2461は、リンク部材2114に設けられたベアリング2471に支持される。ベアリング2471は、ベアリング2471の回転中心から鞍乗型車両200の左右方向LRに伸びる直線を中心軸としてリンク部材2114が回転するように設けられる。取付軸2461は、第1の桁部2111の取付部2111bに固定される。
 また、図10(b)に示すように、リンク部材2114は、発電ユニット240の発電用エンジン241の取付部2432に設けられた取付軸2452に弾性部材2442を介して揺動可能に取付けられる。取付軸2452は、発電用エンジン241の取付部2432に固定される。また、リンク部材2114は、第2の桁部2112の取付部2112aに設けられた取付軸2456に弾性部材2446を介して揺動可能に取付けられる。取付軸2456は、第2の桁部2112の取付部2112aに固定される。また、リンク部材2114は、第2の桁部2112の取付部2112bに設けられた取付軸2462に取付けられる。取付軸2462は、リンク部材2114に設けられたベアリング2472に支持される。ベアリング2472は、ベアリング2472の回転中心から鞍乗型車両200の左右方向LRに伸びる直線を中心軸としてリンク部材2114が回転するように設けられる。取付軸2462は、第2の桁部2112の取付部2112bに固定される。
 図10(a)に示すように、リンク部材2115は、発電ユニット240の発電用エンジン241の取付部2433に設けられた取付軸2453に弾性部材2443を介して揺動可能に取付けられる。取付軸2453は、発電用エンジン241の取付部2433に固定される。また、リンク部材2115は、第1の桁部2111の取付部2111cに設けられた取付軸2457に弾性部材2447を介して揺動可能に取付けられる。取付軸2457は、第1の桁部2111の取付部2111cに固定される。また、リンク部材2115は、第1の桁部2111の取付部2111dに設けられた取付軸2463に取付けられる。取付軸2463は、リンク部材2115に設けられたベアリング2473に支持される。ベアリング2473は、ベアリング2473の回転中心から鞍乗型車両200の左右方向LRに伸びる直線を中心軸としてリンク部材2115が回転するように設けられる。取付軸2463は、第1の桁部2111の取付部2111dに固定される。
 図10(a)に示すように、リンク部材2116は、発電ユニット240の発電用エンジン241の取付部2434に設けられた取付軸2454に弾性部材2444を介して揺動可能に取付けられる。取付軸2454は、発電用エンジン241の取付部2434に固定される。また、リンク部材2116は、第1の桁部2111の取付部2111eに設けられた取付軸2464に取付けられる。取付軸2464は、リンク部材2116に設けられたベアリング2474に支持される。ベアリング2474は、ベアリング2474の回転中心から鞍乗型車両200の左右方向LRに伸びる直線を中心軸としてリンク部材2116が回転するように設けられる。取付軸2464は、第1の桁部2111の取付部2111eに固定される。
 取付軸2451~2457及び2461~2464は、例えばピンである。取付軸2451~2457及び2461~2464は、例えばボルトであってもよい。取付軸2451~2457及び2461~2464の軸線は、鞍乗型車両1の左右方向LRに伸びる。弾性部材2441~2447は、例えば内外筒ブッシュである。
 発電用エンジン241の取付部2431及び2432は、鞍乗型車両200の上下方向UD及び前後方向FBにおいて、発電用エンジン241の下部及び前部の領域に設けられる。発電用エンジン241の取付部2433は、鞍乗型車両200の上下方向UD及び前後方向FBにおいて、発電用エンジン241の上部及び後部の領域に設けられる。発電用エンジン241の取付部2434は、鞍乗型車両200の上下方向UD及び前後方向FBにおいて、発電用エンジン241の下部及び後部の領域に設けられる。取付部2431は、鞍乗型車両200の左右方向LRにおいて、発電用エンジン241の左方向Lに配置される。取付部2432は、鞍乗型車両200の左右方向LRにおいて、発電用エンジン241の右方向Rに配置される。
 リンク部材2114は、ベアリング2471に支持された取付軸2461及びベアリング2472に支持された取付軸2462から鞍乗型車両200の左右方向LRに伸びる直線を中心軸として回転する。リンク部材2115は、ベアリング2473に支持された取付軸2463から鞍乗型車両200の左右方向LRに伸びる直線を中心軸として回転する。リンク部材2116は、ベアリング2474に支持された取付軸2464から鞍乗型車両200の左右方向LRに伸びる直線を中心軸として回転する。また、リンク部材2114~2116は、それぞれ弾性部材2441~2444を介して発電用エンジン241に取付けられる。従って、鞍乗型車両200の発電用エンジン241は、鞍乗型車両200の上下方向UD及び前後方向FBにおける振動がフレーム構造体211(即ちフレーム本体2110)に伝達することを抑制することができる。また、発電用エンジン241は、バランサを設けることにより、発電用エンジン241の一次慣性力を抑制する。従って、本実施形態の鞍乗型車両200は、リンク部材2114~2116と、発電用エンジンのバランサとを組み合わせることにより、発電用エンジン241の振動がフレーム構造体211に伝達されるのを効率的に抑制することができる。
 リンク部材2114は、弾性部材2445及び2446を介してフレーム本体2110に取付けられる。リンク部材2115は、弾性部材2447を介してフレーム本体2110に取付けられる。これにより、鞍乗型車両200の発電用エンジン241は、弾性部材2445~2447が過度の揺動を抑制するストッパとなり、鞍乗型車両200の上下方向UD及び前後方向FBに大きく揺動することを抑制することができる。
 本実施形態において、コントロールユニット252は、駆動ユニット250に含まれてもよいし、含まれなくてもよい。即ち、本実施形態において、コントロールユニット252は、駆動ユニット250と一体となってリアアーム231を構成してもよいし、鞍乗型車両1のフレーム本体2110に取付けられてもよい。
 (変形例)
 駆動ユニット250は、ギアボックス253を含まないように構成できる。本実施形態の変形例において、駆動モータ251は、リアアーム231に取付けられ、駆動モータ251の出力軸に後輪232の中心軸が直接に接続される。即ち、駆動モータ251は、後輪232のインホイールモータとして構成される。
 1、200  鞍乗型車両
 10、210  車両フレーム構造体 11、211  フレーム構造体
 21、221  フロントフォーク
 22、222  前輪
 31、231  リアアーム
 32、232  後輪
 40、240  発電ユニット
 41、241  発電用エンジン
 42、242  発電機
 50、250  駆動ユニット
 51、251  駆動モータ
 52、252  コントロールユニット
 53、253  ギアボックス
 60、260  バッテリ
 110、2110  フレーム本体

Claims (11)

  1. 鞍乗型車両であって、
     前記鞍乗型車両は、
     車両フレーム構造体を構成するフレーム本体と、
     電力を受けてパワーを出力する駆動モータを含む駆動ユニットと、
     前記駆動モータから出力されたパワーによって駆動される駆動輪と、
     出力するエンジンパワーを前記駆動輪に機械的に供給しないように設置された発電用エンジン、及び、前記発電用エンジンに固定されるとともに可撓性を有する電力伝送媒体と電気的に接続され、前記発電用エンジンから出力されたエンジンパワーを電力に変換し前記電力を前記電力伝送媒体を介して前記駆動モータに向け供給する発電機を含む、発電ユニットと
    を備え、これにより、シリーズハイブリッド化されると共に、前記発電用エンジンが、前記車両フレーム構造体に揺動可能に支持される一方、前記駆動ユニットが、前記発電用エンジンとは別に、前記車両フレーム構造体に支持されるように構成されている。
  2.  請求項1に記載の鞍乗型車両であって、
     前記車両フレーム構造体は、フレーム構造体そのもの、又はフレーム構造体とリアアームとの組合せのいずれか1つからなり、前記車両フレーム構造体が前記フレーム構造体そのものである場合には、前記フレーム構造体自体が前記駆動輪を回転可能に支持し、前記車両フレーム構造体が前記フレーム構造体と前記リアアームとの組合せからなる場合、前記リアアームは、前記駆動輪を回転可能に支持し、前記フレーム構造体に支持部を介して前記支持部周りに揺動可能に支持され、
     前記発電用エンジンは、前記車両フレーム構造体に車両側面視における複数箇所で、並進往復運動又は実質的に並進往復運動を行うように揺動可能に支持される一方、前記駆動ユニットは、前記発電用エンジンとは別に、前記車両フレーム構造体に弾性部材を介さずに固定される。
  3.  請求項1に記載の鞍乗型車両であって、
     前記発電用エンジンは、車両側面視における複数箇所で弾性部材を介して前記車両フレーム構造体に支持される。
  4.  請求項1に記載の鞍乗型車両であって、
     前記発電用エンジンは、車両側面視における少なくとも3箇所でリンク部材を介して前記車両フレーム構造体に支持される。
  5.  請求項4に記載の鞍乗型車両であって、
     前記リンク部材のうちの少なくとも一つは、弾性部材を介して前記車両フレーム構造体又は前記発電用エンジンに取付けられる。
  6.  請求項2から5の何れか1項に記載の鞍乗型車両であって、
     前記発電用エンジンは、バランサを備える。
  7.  請求項1から6の何れか1項に記載の鞍乗型車両であって、
     前記車両フレーム構造体は、
    フレーム構造体と、
    前記駆動輪を回転可能に支持し、前記フレーム構造体に支持部を介して前記支持部周りに揺動可能に支持されるリアアームとからなり、
     前記鞍乗型車両は、
     前輪と、
     前記前輪を回転可能に支持し、前記フレーム本体に支持されるフロントサスペンションと、
     前記リアアームと
    を備え、
     前記駆動ユニットは、前記フレーム構造体を構成すること無しに前記リアアームに固定される。
  8.  請求項7に記載の鞍乗型車両であって、
     前記フレーム本体は、前記フロントサスペンションに設けられた減衰器を介して前記前輪からの荷重を受け、前記フレーム本体と前記リアアームに取付けられた減衰器を介して前記駆動輪からの荷重を受ける。
  9.  請求項1から6の何れか1項に記載の鞍乗型車両であって、
     前記駆動ユニットは、前記フレーム本体に弾性部材を介することなく固定される。
  10.  請求項9に記載の鞍乗型車両であって、
     前記車両フレーム構造体は、
    フレーム構造体と、
    前記駆動輪を回転可能に支持し、前記フレームに支持部を介して前記支持部周りに揺動可能に支持されるリアアームとからなり、
     前記鞍乗型車両は、
     前輪と、
     前記前輪を回転可能に支持し、前記フレーム本体に支持されるフロントサスペンションと、
     前記リアアームと
    を備え、
     前記フレーム本体と前記駆動ユニットとは、前記弾性部材を介することなく互いに固定されることにより一体となって、前記フロントサスペンションを介して前記前輪からの荷重を受け、前記リアアームを介して前記駆動輪からの荷重を受けるフレーム構造体を構成する。
  11.  請求項10に記載の鞍乗型車両であって、
     前記フレーム構造体は、前記フレーム構造体と前記リアアームに取付けられた減衰器を介して前記駆動輪からの荷重を受け、前記フロントサスペンションの減衰器を介して前記前輪からの荷重を受ける。
PCT/JP2020/016384 2019-04-19 2020-04-14 ストラドルドビークル WO2020213591A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021514161A JP7334240B2 (ja) 2019-04-19 2020-04-14 ストラドルドビークル
EP20791350.0A EP3950481A4 (en) 2019-04-19 2020-04-14 STRAIGHT SEAT VEHICLE
US17/505,492 US20220033027A1 (en) 2019-04-19 2021-10-19 Straddled vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-080270 2019-04-19
JP2019080270 2019-04-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/505,492 Continuation-In-Part US20220033027A1 (en) 2019-04-19 2021-10-19 Straddled vehicle

Publications (1)

Publication Number Publication Date
WO2020213591A1 true WO2020213591A1 (ja) 2020-10-22

Family

ID=72837533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/016384 WO2020213591A1 (ja) 2019-04-19 2020-04-14 ストラドルドビークル

Country Status (4)

Country Link
US (1) US20220033027A1 (ja)
EP (1) EP3950481A4 (ja)
JP (1) JP7334240B2 (ja)
WO (1) WO2020213591A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004122854A (ja) * 2002-09-30 2004-04-22 Honda Motor Co Ltd 揺動機構付き3輪車
WO2005063559A1 (ja) * 2003-12-25 2005-07-14 Yamaha Hatsudoki Kabushiki Kaisha 電動車両
JP3992798B2 (ja) 1997-08-28 2007-10-17 ヤマハ発動機株式会社 自動二輪車のエンジン懸架装置
WO2012090243A1 (ja) * 2010-12-27 2012-07-05 川崎重工業株式会社 電動二輪車

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61187533A (ja) * 1985-02-14 1986-08-21 Yamaha Motor Co Ltd 自動二輪車のエンジン回り構造
JP3942772B2 (ja) 1999-10-08 2007-07-11 ヤマハ発動機株式会社 シリーズハイブリッド式電動二輪車
JP3942774B2 (ja) * 1999-10-14 2007-07-11 ヤマハ発動機株式会社 シリーズハイブリッド式電動二輪車
US7469760B2 (en) * 2000-03-02 2008-12-30 Deka Products Limited Partnership Hybrid electric vehicles using a stirling engine
JP4041468B2 (ja) * 2004-02-17 2008-01-30 ヤマハ発動機株式会社 ハイブリッド車両
JP2018012346A (ja) * 2015-10-02 2018-01-25 ヤマハ発動機株式会社 ビークル、及びビークル駆動用エンジン発電ユニット
JP6570095B2 (ja) * 2016-09-22 2019-09-04 トップ フライト テクノロジーズ, インコーポレイテッド 乗り物推進のための発電および分配

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3992798B2 (ja) 1997-08-28 2007-10-17 ヤマハ発動機株式会社 自動二輪車のエンジン懸架装置
JP2004122854A (ja) * 2002-09-30 2004-04-22 Honda Motor Co Ltd 揺動機構付き3輪車
WO2005063559A1 (ja) * 2003-12-25 2005-07-14 Yamaha Hatsudoki Kabushiki Kaisha 電動車両
WO2012090243A1 (ja) * 2010-12-27 2012-07-05 川崎重工業株式会社 電動二輪車

Also Published As

Publication number Publication date
JP7334240B2 (ja) 2023-08-28
EP3950481A1 (en) 2022-02-09
US20220033027A1 (en) 2022-02-03
EP3950481A4 (en) 2022-06-15
JPWO2020213591A1 (ja) 2020-10-22

Similar Documents

Publication Publication Date Title
JP4667090B2 (ja) ハイブリッド車両の駆動ユニット、ハイブリッド車両及び二輪車
KR100946491B1 (ko) 하이브리드 차량용 동력전달장치
JP5422749B2 (ja) 電動車両の動力装置
CA2791059C (en) Hybrid saddle-type vehicle
WO2020213590A1 (ja) シリーズハイブリッド式ストラドルドビークル
US20080257632A1 (en) Electric component arrangement structure for vehicle, vehicle having the same, and method for arranging electric component in vehicle
CN110799416B (zh) 两轮车辆的驱动***
JP2020175822A (ja) シリーズハイブリッド式鞍乗型車両
JP7258126B2 (ja) シリーズハイブリッド式ストラドルドビークル
US20220033034A1 (en) Straddled vehicle
WO2020213591A1 (ja) ストラドルドビークル
CN101229838B (zh) 跨乘式车辆
JP2023171528A (ja) 鞍乗型電動車両
WO2022162903A1 (ja) シリーズハイブリッド式ストラドルドビークル
WO2021014489A1 (ja) ビークル
TW202306804A (zh) 串聯混合動力式跨坐型車輛
JPS61187533A (ja) 自動二輪車のエンジン回り構造
JP7302403B2 (ja) ハイブリッド駆動装置
JP7461922B2 (ja) シリーズハイブリッド化エンジン駆動電力供給ユニット及び電動移動体
JP2011078258A (ja) 電動発電機の支持構造
JP2004034777A (ja) 自動二輪車のプロペラシャフト
US20240239177A1 (en) Drive unit
JP7093890B2 (ja) 鞍乗型電動車両
TW200526436A (en) Arrangement structure of bearings
JPS61258926A (ja) 鞍乗型車両のエンジン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20791350

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021514161

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020791350

Country of ref document: EP

Effective date: 20211027