WO2020199348A1 - 一种高分子改性纳米碳酸钙及其制备方法和应用 - Google Patents

一种高分子改性纳米碳酸钙及其制备方法和应用 Download PDF

Info

Publication number
WO2020199348A1
WO2020199348A1 PCT/CN2019/091134 CN2019091134W WO2020199348A1 WO 2020199348 A1 WO2020199348 A1 WO 2020199348A1 CN 2019091134 W CN2019091134 W CN 2019091134W WO 2020199348 A1 WO2020199348 A1 WO 2020199348A1
Authority
WO
WIPO (PCT)
Prior art keywords
calcium carbonate
calcium
nano
polymer
acrylic emulsion
Prior art date
Application number
PCT/CN2019/091134
Other languages
English (en)
French (fr)
Inventor
尹应武
黄剑岚
廖翠莺
叶李艺
吐松
赵玉芬
Original Assignee
厦门大学
宁波大学
北京紫光英力化工技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门大学, 宁波大学, 北京紫光英力化工技术有限公司 filed Critical 厦门大学
Publication of WO2020199348A1 publication Critical patent/WO2020199348A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/02Compounds of alkaline earth metals or magnesium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/10Treatment with macromolecular organic compounds

Definitions

  • the invention belongs to the field of nano material production, and specifically relates to a polymer modified nano calcium carbonate series product and a production method.
  • ultrafine calcium carbonate brings quantum size effect, small size effect, surface effect and macroscopic quantum effect that ordinary calcium carbonate does not have due to its nanometer size. It is widely used in plastics, rubber, coatings, sealants, inks, papermaking and other products as fillers, additives, reinforcing agents and brighteners. It has the effects of saving masterbatch, increasing capacity, reducing cost, improving product quality, and increasing product added value.
  • the development of new nano-calcium carbonate products and new production processes with uniform particles, easy dispersion, large addition, good performance, and low production cost has always been the focus of technology research and development in the calcium carbonate industry and composite materials.
  • Polypropylene (PP) is a typical representative of synthetic materials. Among the five general plastics, it has the advantages of good chemical stability, heat resistance, easy processing, and high frequency insulation, and it has a wide range of uses. In order to increase the wear resistance, hardness and cost of PP materials, cheap inorganic fillers such as calcium carbonate are usually added. Studies have shown that calcium carbonate has an obvious anisotropic nucleation effect on the crystallization of PP. Nano calcium carbonate filled with PP with a small particle size can significantly improve the mechanical properties of composite materials such as strength and toughness. The production cost of nano calcium carbonate is high and difficult to disperse and easy to agglomerate.
  • the characteristics of the material lead to a rapid decline in the strength and toughness of the material, and the use performance is quickly close to ordinary light calcium, which makes it impossible to add a large amount. Therefore, the current addition of nanomaterials in PP generally does not exceed 10%.
  • the primary strategy to solve the uniform dispersion of nanometer calcium carbonate is to synthesize the more uniform nanometer calcium carbonate and the smaller the particle size, the better.
  • the particle size of the nanometer calcium carbonate produced by the current process is usually about 50 nanometers, and the uniformity is relatively poor, that is, it is produced by the glycine method.
  • the particle size of nano calcium carbonate is also above 15 nanometers.
  • a calcium carbonate synthesis process or a wet modification with stearic acid added after synthesis or a dry process in which dry calcium carbonate powder is added to stearic acid and heated and mixed to coat calcium carbonate particles By reducing the particle size and increasing the lipophilicity, the dispersibility of the product can be improved to a certain extent, but the effect is limited, especially the strength reduction is large, it is difficult to achieve the effect of low-cost production, large-scale addition, and strengthening and toughening at the same time.
  • the present invention provides a modified nano-calcium carbonate product and a production process that are innovatively developed by changing ideas.
  • the present invention provides a new product series of modified nano calcium carbonate that is easy to produce, low cost and good performance.
  • the preliminary application results show that modified vaterite and calcite calcium carbonate are used in composite materials represented by polypropylene , It can significantly improve or maintain the toughness and strength of the material in the case of high addition, showing a huge application development potential.
  • the present invention provides a nano calcium carbonate prepared by using a synthetic or natural polymer modifier as a crystallization control template and an in-situ modifier.
  • the nano calcium carbonate is calcite type nano calcium carbonate or vaterite type.
  • Nano calcium carbonate, nano calcium carbonate is a paste or dry powder that is filtered and washed;
  • the polymer modifier is a water-soluble polymer modifier or a polymer modifier that can form an emulsion;
  • the sex agent is a hydrophilic polymer or lipophilic polymer, including but not limited to styrene-acrylic emulsion, sodium lignin, pure acrylic emulsion, silicone pure acrylic emulsion, fluorine pure acrylic emulsion, polyvinyl alcohol, polyethylene glycol, One or more of urinary resin, phenolic resin, lignosulfonate or cellulose sulfonate.
  • the nanometer calcium carbonate is prepared by a glycine method or a direct carbonization method, wherein the glycine method is prepared by in-situ modification with 5% styrene-acrylic emulsion or 10% sodium lignin to obtain vaterite type Calcium carbonate, the average crystal grain diameter d of the calcium carbonate can be controlled below 10nm, the oil absorption value is about 80g/100g or about 105g/100g, and the specific surface area S is above 20m 2 /g; the direct carbonization method is used 1% styrene-acrylic emulsion or 5% sodium lignin modified in situ to prepare calcite calcium carbonate.
  • modified calcium carbonate can significantly improve the processing performance of composite materials, among which styrene-acrylic emulsion modified calcium carbonate is more suitable for toughening, and lignin modified calcium carbonate is more suitable for reinforcement. Different requirements of materials, increase the amount and reduce costs, and flexibly choose different modified calcium carbonates for strengthening or toughening.
  • the present invention also provides a method for preparing nano-vaterite calcium carbonate by in-situ modification using a polymer modifier, the method comprising the following steps:
  • the polymer modifier dropwise to the calcium glycinate solution, and pass in the gas containing carbon dioxide or the glycinate carbon dioxide absorption solution under stirring until the pH value drops to 7.5 as the end of the reaction.
  • the resulting precipitate is filtered and washed to obtain a polymer surface modification.
  • Vaterite calcium carbonate paste product with a single crystal size of 10nm or less is dried to obtain a powder product.
  • the polymer modifier is sodium lignin or styrene-acrylic emulsion, and the styrene-acrylic emulsion is styrene-acrylate emulsion.
  • the addition amount of sodium lignin is theoretically generated carbonic acid 5-15% by weight of the calcium mass; or, when the polymer modifier is a styrene-acrylic emulsion, the addition amount of the styrene-acrylic emulsion is 1-5% by weight of the theoretically generated calcium carbonate mass.
  • the filtrate can be recycled. A part of the filtrate is used to neutralize and dissolve calcium carbide residue or calcium hydroxide to prepare calcium glycinate, and a part is used to absorb carbon dioxide in the flue gas to prepare a glycinate carbon dioxide absorption liquid.
  • the concentration of the calcium glycinate solution is 1 mol/L, and the molar ratio of glycine to calcium raw material is 2:1 ,
  • the calcium is calculated as calcium hydroxide; the concentration of sodium glycinate solution is about 1mol/L, and it is dissolved at room temperature.
  • the method includes the following steps:
  • Step (1) Stir the glycine solution with calcium carbide slag or slaked lime to neutralize and dissolve, and filter with suction to obtain a calcium glycinate solution;
  • Step (2) reacting glycine with alkali to obtain a glycine salt solution, and using the glycine salt solution to absorb carbon dioxide in the flue gas or directly absorb carbon dioxide until the pH is about 7.5 to obtain a glycinate carbon dioxide mixture;
  • Step (3) Add a polymer modifier to the calcium glycinate solution in step (1), and stir evenly;
  • Step (4) Add the mixed solution of step (2) to the solution of step (3) or directly pass in flue gas or carbon dioxide gas to synthesize modified nano-calcium carbonate in situ under mixing and stirring, and then filter to obtain nano-vaterite calcium carbonate Paste products, dry to obtain powder products;
  • the method further includes the following step (5):
  • Step (5) Recycle the filtrate filtered in step (4), a part of the filtrate is used to dissolve calcium carbide slag or slaked lime to obtain a purified calcium glycinate solution, and the other part of the filtrate is used to absorb and utilize CO 2 in the flue gas to obtain The carbon dioxide absorption solution of glycine recycles synthetic products.
  • the present invention also provides a method for preparing nano-calcite-type calcium carbonate by in-situ modification of polymer, and the method includes the following steps:
  • the method includes the following steps:
  • Step (1) Make a calcium hydroxide slurry with a certain quality of calcium oxide or calcium hydroxide, and stir and mix;
  • Step (2) Drop a polymer modifier into the calcium hydroxide slurry of step (1) to obtain a polymer-containing calcium hydroxide slurry; when the polymer modifier is a styrene-acrylic emulsion, When the solid content of the emulsion is 50%, the addition amount of the styrene-acrylic emulsion is 1% by weight of the theoretically generated calcium carbonate mass;
  • Step (3) Pour carbon dioxide gas into the calcium hydroxide slurry containing the polymer modifier in step (2), stir for carbonization reaction, stop the reaction until the pH of the solution drops to 7, and pump the resulting precipitate Filtering and washing to obtain modified nano-calcite calcium carbonate paste, and drying to obtain powdered calcium carbonate;
  • the calcium hydroxide slurry prepared in step (1) has a concentration of 7%-10%, and is mixed and stirred at room temperature.
  • the present invention also provides the application of the above-mentioned modified nano calcium carbonate as fillers, additives or modifiers for plastics, rubber, coatings, sealants, inks, adhesives, asphalt, paper or composite materials, so as to increase the dosage, reduce the cost and / Or improve performance.
  • the performance is one or more of strengthening, toughening, and increasing cohesive force; or the use of polymer modifiers to effectively control the growth of crystals in the process of preparing nanometer calcium carbonate, which can be directly sold as a series of commodities Calcium carbonate paste or a series of calcium carbonate powders mixed to prepare composite masterbatch.
  • the modified nano-calcium carbonate can be placed for a long time without being easily reunited, and can be sold as a commodity.
  • the research results are as follows:
  • Step (1) Accurately weigh 100 parts of plastic and add different parts of modified nano-vaterite-type calcium carbonate or modified nano-calcite-type calcium carbonate according to weight percentage, and mix them thoroughly;
  • Step (2) adding the mixture material obtained in step (1) into an internal mixer, pelletizing, cooling and drying after melt extrusion to obtain a finished composite material.
  • the temperature of the extruder barrel is 180-200°C
  • the screw speed is 30-40 rpm
  • the melt mixing and stirring time is 15 minutes.
  • the "left and right” refers to the value indicated by the pointer, and the variable range is within 10% up and down, that is, "1 ⁇ 0.1" times the original value is about.
  • the polymer modifier used in the present invention is a polymer substance that is a crystallization template control agent, as well as an in-situ modifier and a composite material component. Adding polymer modifiers to the two calcium carbonate production processes can effectively control the particle size and crystal size of calcium carbonate, and simply produce cost-effective nano-vaterite-type calcium carbonate and nano-calcite-type calcium carbonate. In the representative composite material, the dispersion can be significantly improved, and the strengthening and toughness effect is significant when the dosage is greatly increased.
  • the present invention uses a polymer material to control the growth of calcium carbonate crystals, uses calcium glycinate and sodium glycinate to absorb carbon dioxide, and quickly reacts to obtain high-quality ultrafine vaterite-type calcium carbonate with good dispersibility and good uniformity. It can use calcium carbide slag and Flue gas produces high-quality polymer-modified nano-calcium carbonate products.
  • the presence of the polymer components of the system can also control the growth of calcium carbonate crystals in the carbonization process, and produce a more cost-effective polymer modified nano-calcite calcium carbonate. The results are shown in Figure 1.
  • vaterite-type calcium carbonate and calcite-type calcium carbonate prepared by this method were characterized by X-ray diffractometer (XRD), field emission electron scanning electron microscope (SEM), and nitrogen adsorption and desorption curve (BET). The characterization results are shown in Figure 2 ⁇ 14.
  • nano-calcium carbonate prepared by in-situ modification of a polymer modifier is used as a filler for, for example, PP, and PP and calcium carbonate are mixed into a twin-screw extruder to melt, extrude, and granulate, with excellent performance.
  • This method makes full use of existing production lines and "three wastes" resources for low-cost production, and can produce a new generation of nanomaterials with a wide range of applications.
  • Figure 1 The influence of aging time on the grain size of calcium carbonate prepared by carbonization method under emulsion and sodium lignin modification
  • a is the grain size change curve of unmodified calcite calcium carbonate under different aging time
  • b is the grain size change curve of 7% E01 emulsion in-situ modified calcite-type calcium carbonate under different aging time
  • c is 1.4% E01 emulsion in-situ modified calcite-type calcium carbonate under different aging time
  • Grain size change curve d is the grain size change curve of 1.4% sodium lignin in-situ modified calcite-type calcium carbonate under different aging time
  • e is 7% sodium lignin in-situ modified calcite-type carbonate Calcium crystal grain size change curve under different aging time.
  • Figure 2 Scanning electron micrograph of vaterite-type calcium carbonate prepared in Example 1, with a scale of 1 ⁇ m.
  • Fig. 3 Scanning electron micrograph of vaterite calcium carbonate prepared in Example 2, and the scale is 2 ⁇ m.
  • Figure 4a line is the XRD pattern of vaterite-type calcium carbonate prepared in Example 1
  • line b is the XRD pattern of vaterite-type calcium carbonate prepared in Example 2
  • line c is the vaterite-type carbonate prepared in Comparative Example 1.
  • XRD pattern of calcium the ordinate is intensity (Intensity), the unit is relative intensity, and the abscissa is position (2 ⁇ /°).
  • the columnar straight line in the figure represents the standard peak position corresponding to vaterite-type calcium carbonate.
  • Fig. 5 The adsorption and desorption curve of vaterite-type calcium carbonate prepared in Example 2.
  • Fig. 6 is a particle size distribution diagram of agglomerates of vaterite-type calcium carbonate prepared in Example 1.
  • Fig. 7 is a particle size distribution diagram of agglomerates of vaterite-type calcium carbonate prepared in Example 2.
  • Figure 8 Scanning electron micrograph of vaterite-type calcium carbonate prepared in Comparative Example 1, with a scale of 20 ⁇ m.
  • Figure 9 is a particle size distribution diagram of agglomerates of vaterite-type calcium carbonate prepared in Comparative Example 1.
  • Fig. 10 is a scanning electron micrograph of the modified nano-calcite calcium carbonate product prepared in Example 3, and the scale is 200 nm.
  • FIG 11 TEM image of the modified nano-calcite calcium carbonate product prepared in Example 3, the scales are 200nm and 100nm.
  • Figure 12 Scanning electron micrograph of the modified calcite calcium carbonate product prepared in Example 4, with a scale of 1 ⁇ m.
  • Figure 13a line is the XRD pattern of the modified nano-calcite calcium carbonate product prepared in Example 3, the b line is the XRD pattern of the calcite calcium carbonate product prepared in Comparative Example 2, and the c line is the calcite calcium carbonate product prepared in Example 4.
  • XRD diagram the ordinate is intensity (Intensity), the unit is relative intensity, and the abscissa is position (2 ⁇ /°).
  • the columnar straight line in the figure represents the standard peak position corresponding to calcite calcium carbonate.
  • Figure 14 Scanning electron micrograph of calcium carbonate prepared in Comparative Example 2, and the scale is 1 ⁇ m.
  • the present invention provides a nano-calcium carbonate prepared by using a synthetic or natural polymer modifier as a crystallization control template and an in-situ modifier.
  • the nano-calcium carbonate is calcite-type nano-calcium carbonate or vaterite-type nano-calcium carbonate , Nano calcium carbonate is dried powder or filtered and washed paste;
  • the polymer modifier is a water-soluble polymer modifier or a polymer modifier that can form an emulsion;
  • the agent is a hydrophilic polymer or lipophilic polymer, including but not limited to styrene-acrylic emulsion, sodium lignin, pure acrylic emulsion, silicone pure acrylic emulsion, fluorine pure acrylic emulsion, polyvinyl alcohol, polyethylene glycol, urine One or more of aldehyde resin, phenol resin, lignosulfonate or cellulose sulfonate.
  • the aforementioned nano-calcium carbonate is prepared by a glycine method or a direct carbonization method, wherein the glycine method is modified in situ with 5% styrene-acrylic emulsion or 10% sodium lignin to prepare vaterite-type calcium carbonate, with an average crystal grain diameter d
  • the oil absorption value is about 80g/100g or about 105g/100g
  • the specific surface area S is above 20m 2 /g
  • the direct carbonization method uses 1% styrene-acrylic emulsion or 5% sodium lignin in situ Calcite-type calcium carbonate is prepared by modification, the average crystal grain diameter d of calcium carbonate is below 25nm, the specific surface area S is above 30m 2 /g, and the oil absorption value is about 190g/100g or 113g/100g respectively
  • modified carbonic acid Calcium can significantly improve the processing performance of composite materials.
  • styrene-acrylic emulsion modified calcium carbonate is more suitable for toughening
  • lignin modified calcium carbonate is more suitable for reinforcement. According to the different requirements of composite materials, increase the dosage and reduce the cost, and flexible selection Different modified calcium carbonates are used for strengthening or toughening.
  • the glycine method is a method of preparing calcium carbonate by reacting calcium glycinate with a sodium glycinate solution containing carbon dioxide or a solution containing carbonate radicals
  • the direct carbonization method is a method of preparing calcium carbonate by reacting a solution containing calcium (non-calcium glycinate) with carbon dioxide or a solution containing carbonate radicals. Calcium carbonate method.
  • the nano calcium carbonate is calcite type nano calcium carbonate or vaterite type nano calcium carbonate.
  • the nano calcium carbonate is calcite nano calcium carbonate or vaterite nano calcium carbonate, wherein the average crystal grain diameter d of the vaterite nano calcium carbonate is 5-10 nanometers, and the average aggregate diameter D is 500-750 nm, The average crystal grain diameter d of calcite-type nano calcium carbonate is 15-25 nm, and the average aggregate diameter D is 30-70 nm.
  • vaterite-type nano calcium carbonate 60 ⁇ D/d ⁇ 80nm, preferably 70 ⁇ D/d ⁇ 75nm, more preferably, 72.5 ⁇ D/d ⁇ 74.5nm.
  • the calcite-type nano calcium carbonate 1 ⁇ D/d ⁇ 20nm, preferably, 1 ⁇ D/d ⁇ 10nm, and more preferably, 1 ⁇ D/d ⁇ 5nm.
  • the polymer modifier dropwise to the calcium glycinate solution, and pass in the gas containing carbon dioxide or the carbon dioxide absorption solution of glycinate under stirring until the pH value drops to 7.5 as the end of the reaction.
  • the resulting precipitate is filtered, washed, and dried to obtain a high
  • the molecular surface modified vaterite calcium carbonate product whose crystal particle diameter d is less than 10nm, preferably, the polymer modifier is sodium lignin or styrene-acrylic emulsion, and the styrene-acrylic emulsion is styrene-acrylate emulsion.
  • the addition amount of sodium lignin is 5-15% by weight of the theoretically generated calcium carbonate mass, or, when the polymer modifier is styrene-acrylic emulsion, the addition amount of the styrene-acrylic emulsion is theoretical 1-5 wt% of calcium carbonate is produced.
  • the filtrate can be recycled. A part of the filtrate is used to neutralize and dissolve calcium carbide slag or calcium hydroxide to prepare calcium glycinate, and a part is used to absorb carbon dioxide in flue gas to prepare glycinate carbon dioxide. Absorbing liquid.
  • the aforementioned method is characterized in that the concentration of the calcium glycinate solution is 1 mol/L, the molar ratio of glycine to the calcium raw material is 2:1, wherein the calcium is calculated as calcium hydroxide; the glycinate is sodium glycinate, sodium glycinate The concentration of the solution is about 1mol/L, and it dissolves at room temperature.
  • the water-soluble polymer modifier or the polymer modifier that can form an emulsion is a hydrophilic polymer or a lipophilic polymer, selected from styrene-acrylic emulsion, sodium lignin, pure One or more of acrylic emulsion, silicone pure acrylic emulsion, fluorine pure acrylic emulsion, polyvinyl alcohol, polyethylene glycol, urea resin, phenol resin, lignosulfonate or cellulose sulfonate.
  • the aforementioned method is characterized in that the method includes the following steps:
  • Step (1) Stir the glycine solution with calcium carbide slag or slaked lime to neutralize and dissolve, and filter with suction to obtain a calcium glycinate solution;
  • Step (2) reacting glycine with alkali to obtain a glycinate salt solution, which is used to absorb carbon dioxide in the flue gas or directly absorb carbon dioxide to a pH of about 7.5 to obtain a sodium glycinate carbon dioxide mixture;
  • Step (3) Add a polymer modifier to the calcium glycinate solution in step (1), and stir evenly;
  • Step (4) Add the mixed solution of step (2) to the solution of step (3) or directly pass in flue gas or carbon dioxide gas to synthesize modified nano-calcium carbonate in situ under mixing and stirring, and then filter to obtain nano-vaterite calcium carbonate Paste products, dry to obtain powder products;
  • the method further includes the following step (5):
  • Step (5) Recycle the filtrate filtered in step (4), a part of the filtrate is used to dissolve calcium carbide slag or slaked lime to obtain a purified calcium glycinate solution, and the other part of the filtrate is used to absorb and utilize CO 2 in the flue gas to obtain The carbon dioxide absorption solution of glycine recycles synthetic products.
  • a method for preparing nano-calcite-type calcium carbonate by in-situ modification using a synthetic or natural polymer modifier comprising the following steps:
  • the calcite type calcium carbonate paste with the crystal grain diameter d of 20-25nm is dried to obtain powdered calcium carbonate.
  • the polymer modifier is a styrene-acrylic emulsion
  • the addition amount of the styrene-acrylic emulsion is the theoretical mass of calcium carbonate produced
  • the polymer modifier is sodium lignin
  • the addition amount of sodium lignin is 5%-10% (weight) of the theoretically produced calcium carbonate mass.
  • the aforementioned method is characterized in that the method includes the following steps:
  • Step (1) Make a calcium hydroxide slurry with a certain quality of calcium oxide or calcium hydroxide, and stir and mix;
  • Step (2) Drop a polymer modifier into the calcium hydroxide slurry of step (1) to obtain a polymer-containing calcium hydroxide slurry; when the polymer modifier is a styrene-acrylic emulsion, When the solid content of the emulsion is 50%, the addition amount of the styrene-acrylic emulsion is 1% (weight) of the theoretically generated calcium carbonate mass;
  • Step (3) Pour carbon dioxide gas into the calcium hydroxide slurry containing the polymer modifier in step (2), stir for carbonization reaction, stop the reaction until the pH of the solution drops to 7, and pump the resulting precipitate Filtering and washing to obtain modified nano-calcite calcium carbonate paste, and drying to obtain powdered calcium carbonate;
  • the concentration of the calcium hydroxide slurry prepared in step (1) is 7%-10%, and at room temperature Mix and stir.
  • the water-soluble polymer modifier or the polymer modifier that can form an emulsion is a hydrophilic polymer or a lipophilic polymer, selected from styrene-acrylic emulsion, sodium lignin, pure One or more of acrylic emulsion, silicone pure acrylic emulsion, fluorine pure acrylic emulsion, polyvinyl alcohol, polyethylene glycol, urea resin, phenol resin, lignosulfonate or cellulose sulfonate.
  • nano calcium carbonate as a filler, additive or modifier for plastics, rubber, coatings, sealants, inks, adhesives, asphalt, paper or composite materials is provided to increase the amount and reduce Cost and/or performance improvement.
  • the performance is one or more of strengthening, toughening, and increasing adhesion.
  • the invention also provides effective control of crystal growth in the process of preparing nanometer calcium carbonate by applying the polymer modifier; a series of calcium carbonate pastes or composite material masterbatches prepared by mixing series of calcium carbonate powders can be sold directly as commodities.
  • a nano calcium carbonate is provided, which is calcite type nano calcium carbonate or vaterite type nano calcium carbonate.
  • the nano calcium carbonate is calcite nano calcium carbonate or vaterite nano calcium carbonate, wherein the average crystal grain diameter d of the vaterite nano calcium carbonate is 5-10 nanometers, and the average aggregate diameter D is 500-750 nm.
  • the average crystal grain diameter d of nanometer calcium carbonate is 15-25 nm, and the average aggregate diameter D is 30-70 nm.
  • vaterite-type nano calcium carbonate 60 ⁇ D/d ⁇ 80, preferably 70 ⁇ D/d ⁇ 75, and more preferably, 72.5 ⁇ D/d ⁇ 74.5.
  • 1 ⁇ D/d ⁇ 20 preferably, 1 ⁇ D/d ⁇ 10, more preferably, 1 ⁇ D/d ⁇ 5.
  • Styrene-Acrylic Emulsion namely Styrene-Acrylic Emulsion: Beijing Ziguang Yingli Chemical Technology Co., Ltd., 50% solid content water emulsion;
  • Carbon dioxide gas Linde gas, purity ⁇ 99.9%;
  • Polypropylene resin Ningbo Fude Energy Co., Ltd.;
  • Circulating water vacuum pump Gongyi Yuhua Co., Ltd., SHZ-(III);
  • Vacuum drying oven Gongyi Yuhua Co., Ltd., DZF-6020;
  • Computer controlled electronic universal testing machine AGS-X, 10N-10kN+250mm;
  • MTS pendulum impact testing machine ZBC7251-B;
  • MTS melt flow rate testing machine ZRZ1452;
  • the method for measuring the average particle size (agglomerate size) of the electron microscope Measure according to 6.4 in the national standard "GB/T 19590-2011 Nano Calcium Carbonate", and the test and analysis software used is Nanomeasure1.2;
  • Oil absorption value Measured in accordance with 3.21 of the national standard "GB/T19281-2003 Calcium Carbonate Analysis Method";
  • the calcium carbonate prepared in Example 1 is vaterite calcium carbonate, with an average crystal grain diameter d of 6.0nm, all crystal forms are vaterite, average aggregate diameter D of 650nm, oil absorption value 105g/100g, specific surface area S is 15.72m 2 /g. .
  • the electron micrograph of the modified nano-vaterite-type calcium carbonate is shown in FIG. 2, the XRD pattern is shown in line a in FIG. 4, and the particle size distribution of agglomerates is shown in FIG. 6.
  • the calcium carbonate prepared in Example 2 is vaterite-type calcium carbonate
  • the average crystal grain diameter d is 8.8nm
  • all crystal forms are vaterite type
  • the average aggregate diameter D is 650nm
  • the oil absorption value is 80g/100g
  • the specific surface area S is 25.88m 2 /g.
  • the electron micrograph of the modified nano-vaterite-type calcium carbonate is shown in FIG. 3, the XRD pattern is shown in line b in FIG. 4, the adsorption and desorption curve is shown in FIG. 5, and the particle size distribution of agglomerates is shown in FIG.
  • the calcium carbonate prepared in Example 3 is nano-calcite calcium carbonate, with an average crystal grain diameter d of 21 nm, an average aggregate diameter D of 59 nm, a specific surface area S of 35 m 2 /g, a density of 2.4 g/cm 3 and oil absorption Value 190g/100g.
  • the scanning electron micrograph of the modified nano-calcite calcium carbonate is shown in FIG. 10, the transmission electron micrograph is shown in FIG. 11, and the XRD pattern is shown in line a of FIG.
  • the calcium carbonate prepared in Example 4 is calcite calcium carbonate, with an average crystal grain diameter d of 21.9 nm, an oil absorption value of 112.7 g/100 g, and a specific surface area S of 21.91 m 2 /g.
  • the scanning electron micrograph of the modified nano-calcite calcium carbonate is shown in FIG. 12, and the XRD pattern is shown in line c of FIG. 13.
  • the calcium carbonate prepared in Comparative Example 1 is unmodified vaterite calcium carbonate, with an average crystal grain diameter d of 15nm, an average aggregate diameter D of 5.28 ⁇ m, and the proportion of vaterite calcium carbonate is 96.72%.
  • the proportion of calcite type calcium carbonate is 3.28%.
  • the scanning electron micrograph of the unmodified vaterite calcium carbonate is shown in FIG. 8, the particle size distribution of the agglomerates is shown in FIG. 9, and the XRD pattern is shown in line c of FIG. 4.
  • the calcium carbonate prepared in Comparative Example 2 is calcite calcium carbonate, with an average crystal grain diameter d of 31nm, a specific surface area S of 7.19m 2 /g, an oil absorption value of 96.6g/100g, and the agglomerates are irregularly shaped blocks.
  • the scanning electron microscope image of the unmodified vaterite-type calcium carbonate is shown in FIG. 14, and the XRD image is shown in line b of FIG. 13.
  • the impact toughness and tensile strength of unmodified vaterite-type calcium carbonate in PP decreased significantly with the increase of the addition amount.
  • the melt index decreases significantly.
  • Vaterite-type calcium carbonate modified with 10% sodium lignin has a significant improvement in the melt index in PP, and the tensile strength can be better maintained. Even if the loading amount reaches 30%, the tensile strength is better than that of unmodified vaterite-type carbonate.
  • the calcium loading is high at 20%. Even if the filling amount reaches 20%, the impact toughness can be maintained without decreasing.
  • Vaterite-type calcium carbonate modified with 5% E01 styrene-acrylic emulsion also improves the melt index in PP significantly, and the tensile strength is slightly worse than that of lignin modified.
  • the retention of impact toughness at 30% loading is better than that of sodium lignin modified and unmodified vaterite calcium carbonate.
  • vaterite calcium carbonate modified by sodium lignin can be used, and for composite materials with high impact toughness requirements, emulsion modified vaterite calcium carbonate can be used.
  • Unmodified calcite calcium carbonate by carbonization method can maintain better mechanical properties and processing properties in PP than unmodified vaterite calcium carbonate in PP.
  • the filling amount is 20%, the impact toughness is still maintained, which indicates that the performance of calcite-type calcium carbonate in PP is generally better than that of vaterite-type calcium carbonate.
  • the mechanical properties are not greatly reduced, and the processing performance is significantly improved.
  • the addition amount is 20%, the impact toughness increases by 30.3%. It shows that the calcite-type calcium carbonate modified in-situ by the emulsion can be strengthened and toughened when the filling amount of the composite is 30%.
  • the calcite-type calcium carbonate modified by 5% sodium lignin has a significant improvement in the melt index in PP, and the tensile strength can be better maintained, even if the filling amount is 40%, the tensile strength is basically unchanged.
  • the addition amount is 10%, the impact toughness increases by 72.1%.
  • the application performance in PP after being modified by a polymer modifier is better than that of unmodified calcium carbonate.
  • the filling amount can make the performance of the composite material not decrease, and greatly reduce the cost.
  • Emulsion-modified calcium carbonate has a better effect on improving the impact toughness of composite materials
  • sodium lignin-modified calcium carbonate has a better effect on improving the tensile strength of composite materials.
  • the melt index of modified calcium carbonate has been significantly improved. This makes composite materials more conducive to processing.
  • the mechanical properties of calcite calcium carbonate as a filler powder are better than that of vaterite calcium carbonate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

一种高分子改性纳米碳酸钙,通过甘氨酸法或直接碳化法制备,在原料中添加水溶性高分子或高分子乳液作为模板剂与改性剂,获得高分子原位改性纳米碳酸钙,所制备原位改性纳米碳酸钙为单晶粒径小于10nm的球霰石型和单晶粒径小于25nm的方解石碳酸钙。

Description

一种高分子改性的纳米碳酸钙新产品系列 技术领域
本发明属于纳米材料生产领域,具体涉及高分子改性的纳米碳酸钙系列产品及生产方法。
背景技术
超细碳酸钙作为一种新型超细固体粉末材料,由于其纳米尺寸带来了普通碳酸钙所不具有的量子尺寸效应、小尺寸效应、表面效应和宏观量子效应。广泛应用于塑料、橡胶、涂料、密封剂、油墨、造纸等产品中作为填充剂、添加剂、补强剂及增白剂。具有节约母料、增容增量、降低成本、改善制品品质,提高制品附加值等效果。开发颗粒均匀、易分散、添加量大、使用性能好、生产成本低的纳米碳酸钙新产品及生产新工艺一直是碳酸钙行业及复合材料等应用领域的技术研发重点。
聚丙烯(PP)是合成材料的典型代表,在五大通用塑料中具有良好的化学稳定性和耐热性、易加工性、高频绝缘性等优点,用途非常广泛。为增加PP材料的耐磨性、硬度,降低成本通常会加入碳酸钙等廉价无机填料。研究表明,碳酸钙对PP的结晶有明显的异向成核作用,粒径小的纳米碳酸钙填充PP能明显改善复合材料的强度和韧性等力学性能,纳米碳酸钙生产成本高难分散和易团聚的特性导致材料强度和韧性迅速下降,使用性能很快接近普通轻钙,导致无法大量添加。因此,目前PP中纳米材料的添加量一般不超过10%。解决纳米碳酸钙均匀分散首要策略是合成的纳米碳酸钙越均匀、粒径越小越好,目前工艺生产的纳米碳酸钙粒径通常在50纳米左右,均匀性比较差,即使用甘氨酸法生产的纳米碳酸钙粒径也在15纳米以上。其次采取碳酸钙合成过程或合成后加入硬脂酸的湿法改性或碳酸钙干粉加入硬脂酸加热混合对碳酸钙颗粒进行包覆的干法工艺。通过减少颗粒尺寸和增加亲油性可以一定程度改善产品分散性,但效果有限,特别是强度下降大,很难达到低成本生产、大用量添加,同时增强和增韧的效果。
我们通过深入研究发现:只需在原的碳酸钙生产工艺中添加一定量的水溶性高分子或高分子乳液,体系中这些高分子的存在就可发挥控制碳酸钙结晶过程的模板剂及纳米产品改性剂的作用,对抑制晶体长大、控制颗粒均匀、改善产品分散性、增加用量,同时增强、增韧和增加粘结力都有很好效果,利用不同高分子改性剂在不同添加量的情况下进行原位碳酸钙合成及改性方法可以获得单晶小于25nm的方解石型纳米碳酸钙和单晶粒径小于10nm的球霰石型颗粒均匀的高分子改性碳酸钙,且团聚体尺寸更小。因此,本发明提供了转变思路创新研发的改性纳米碳酸钙产品及生产工艺。
发明内容
本发明提供了一种易生产、成本低、性能好的改性纳米碳酸钙新产品系列,初步应用结果表明,改性后的球霰石型和方解石型碳酸钙在聚丙烯为代表的复合材料中,在高添加量情况下可显著提高或保持材料韧性和强度,显示了巨大的应用开发潜力。
我们在专利200710098833.6的方法中曾经提出了利用甘氨酸与电石渣反应过滤提纯获得氨基酸钙资源化利用电石渣的新工艺。化学反应方程式如下:Ca(OH) 2+NH 2CH 2COOH→(NH 2CH 2COO) 2Ca+H 2O。溶解反应的甘氨酸钙溶液抽滤去除电石渣中碳渣、硅、铁、铝等不溶性杂质,然后通入二氧化碳可得到球霰石型碳酸钙,这个方法中甘氨酸既是助溶剂,又是缚酸剂,还是晶形调节剂和改性剂。但用该方法只能得到15nm以上的球霰石型碳酸钙,且团聚体粒径在2μm左右,增强和增韧效果不佳,比普通碳化法生产碳酸钙情况更差。
我们发现用甘氨酸钠吸收二氧化碳后得到的二氧化碳甘氨酸钠溶液与甘氨酸钙的溶液反应可以大幅缩短反应时间,减少晶粒尺寸,实现烟道气和电石渣的资源化利用,体系高分子的存在,可以从空间位阻、表面吸附及局部浓度不足等多个方面控制晶核的生成,抑制晶体长大,保持晶粒的均匀性,同时实现了原位改性和简单方便生产系列高分子-纳米碳酸钙复合物新产品的目的。
基于上述发现,我们经过反复摸索和工艺优化,发明了高分子改性剂原位改性生产不同晶型纳米碳酸钙新产品系列及其制备方法。
具体地,本发明提供了一种以合成或天然高分子改性剂作为结晶控制模板剂和原位改性剂制备的纳米碳酸钙,所述纳米碳酸钙为方解石型纳米碳酸钙或球霰石型纳米碳酸钙,纳米碳酸钙为经过过滤洗涤的膏体或干燥粉体;所述高分子改性剂为水溶性高分子改性剂或可形成乳液的高分子改性剂;所述高分子改性剂为亲水型高分子或亲油型高分子,包括但不限于苯丙乳液、木质素钠、纯丙乳液、硅纯丙乳液、氟纯丙乳液、聚乙烯醇、聚乙二醇、尿醛树脂、酚醛树脂、木质素磺酸盐或纤维素磺酸盐中的一种或多种。
优选的,上述纳米碳酸钙中,其特征在于所述纳米碳酸钙为甘氨酸法或直接碳化法制备,其中甘氨酸法用5%苯丙乳液或10%木质素钠原位改性制得球霰石型碳酸钙,该碳酸钙的平均晶粒直径d均可控制在10nm以下,吸油值分别在80g/100g左右或105g/100g左右,比表面积S在20m 2/g以上;所述直接碳化法为用1%苯丙乳液或5%木质素钠原位改性制得方解石型碳酸钙,碳酸钙的平均晶粒直径d在25nm以下,比表面积S在30m 2/g以上,吸油值分别为190g/100g左右或113g/100g左右;改性后的碳酸钙可以显著提高复合材料的加工性能,其中苯丙乳液改性的碳酸钙更适合增韧,木质素改性的碳酸钙更适合增强,根据复合材料的不同要求,增大用量降成本,灵活选择不同改性的碳酸钙用于增强或增韧。
本发明还提供了一种使用高分子改性剂原位改性制备纳米球霰石碳酸钙的方法,所述方法包括如下步骤:
向甘氨酸钙溶液中滴加高分子改性剂,搅拌下通入含有二氧化碳的气体或甘氨酸盐二氧化碳吸收液,至pH值降为7.5为反应终点,将所得沉淀进行过滤、洗涤得到高分子表面改性的单晶尺寸10nm以下的球霰石碳酸钙膏体产品,干燥得到粉体产品。优选的,高分子改性剂为木质素钠或苯丙乳液,苯丙乳液为苯乙烯-丙烯酸酯乳液,当高分子改性剂为木质素钠时,木质素钠的添加量为理论生成碳酸钙质量的5-15重量%;或者,当高分子改性剂为苯丙乳液时,苯丙乳液的添加量为理论生成碳酸钙质量的1-5重量%。滤液可循环利用,其中一部分滤液用于中和溶解电石渣或氢氧化钙制备甘氨酸钙,一部分用于吸收烟道气中的二氧化碳制备甘氨酸盐二氧化碳吸收液。
优选的,上述使用高分子改性剂原位改性制备纳米球霰石碳酸钙的方法中,其特征在于所述甘氨酸钙溶液的浓度为1mol/L,甘氨酸与钙原料的摩尔比为2:1,其中钙以氢氧化钙计;甘氨酸钠溶液的浓度为1mol/L左右,常温溶解。
优选的,上述使用高分子改性剂原位改性制备纳米球霰石碳酸钙的方法中,其特征在于所述方法包括如下步骤:
步骤(1):将甘氨酸溶液与电石渣或熟石灰搅拌中和溶解,抽滤得到甘氨酸钙溶液;
步骤(2):将甘氨酸与碱反应得到甘氨酸盐溶液,用甘氨酸盐溶液吸收烟道气中的二氧化碳或直接吸收二氧化碳,至pH7.5左右,得到甘氨酸盐二氧化碳混合液;
步骤(3):向步骤(1)中的甘氨酸钙溶液中加入高分子改性剂,搅拌均匀;
步骤(4):向步骤(3)溶液中加入步骤(2)的混合液或直接通入烟道气或二氧化碳气体混合搅拌下原位合成改性纳米碳酸钙,然后过滤得到纳米球霰石碳酸钙膏体产品,干燥得到粉体产品;
优选的,上述使用高分子改性剂原位改性制备纳米球霰石碳酸钙的方法中,所述方法还包括如下步骤(5):
步骤(5):将步骤(4)中过滤后的滤液循环使用,一部分滤液用于溶解电石渣或熟石灰得到提纯的甘氨酸钙溶液,另一部分滤液用来吸收利用烟道气中的CO 2,得到甘氨酸的二氧化碳吸收溶液,循环合成产品。
本发明还提供了一种使用高分子原位改性制备纳米方解石型碳酸钙的方法,所述方法包括如下步骤:
向氢氧化钙浆液滴加高分子改性剂,通入二氧化碳或含有二氧化碳的烟道气,反应碳化 直至溶液pH值降为7时停止反应,将所得沉淀进行抽滤、洗涤得到高分子改性的平均晶粒直径d为20-25nm的方解石型碳酸钙膏体,干燥后得到粉体碳酸钙,其中,高分子改性剂为苯丙乳液时,苯丙乳液的添加量为理论生成碳酸钙质量的1%~5重量%,高分子改性剂为木质素钠时,木质素钠的添加量为理论生成碳酸钙质量的5%~10重量%。
优选的,上述使用高分子原位改性制备纳米方解石型碳酸钙的方法中,其特征在于所述方法包括如下步骤:
步骤(1):将一定质量的氧化钙或氢氧化钙制成氢氧化钙浆液,搅拌混匀;
步骤(2):向步骤(1)的氢氧化钙浆液中滴加高分子改性剂,得到含高分子的氢氧化钙浆液;所述高分子改性剂为苯丙乳液时,当苯丙乳液的固含量为50%时,苯丙乳液的添加量为理论生成碳酸钙质量的1重量%;
步骤(3):向步骤(2)中的含高分子改性剂的氢氧化钙浆液中通入二氧化碳气体,搅拌进行碳化反应,直至溶液pH值降为7时停止反应,将所得沉淀进行抽滤、洗涤得到改性纳米方解石型碳酸钙膏体,干燥后得到粉体碳酸钙;
优选的,上述使用高分子原位改性制备纳米方解石型碳酸钙的方法中,步骤(1)中制成的氢氧化钙浆液浓度为7%~10%,在常温下混合搅拌。
本发明还提供上述改性纳米碳酸钙作为塑料、橡胶、涂料、密封剂、油墨、胶黏剂、沥青、纸张或复合材料的填料、添加剂或改性剂的应用,实现增加用量,降低成本和/或提高性能。优选地,所述性能为增强、增韧、增加粘结力中的一种或多种;或应用高分子改性剂制备纳米碳酸钙过程中有效控制晶体的长大,可作为商品直接售卖系列的碳酸钙膏体或系列碳酸钙粉体混合制备的复合材料母粒。
本发明经过进一步的研究发现,改性的纳米碳酸钙可以长时间放置不易团聚,可以作为商品销售,所述研究结果如下:
在碳化法直接生产方解石型碳酸钙工艺条件下,高分子改性剂的加入对晶粒尺寸的影响规律如附图1所示。按照碳化法改性工艺,反应结束后不进行过滤,直接在反应体系中放置,反应体系暴露在空气中,不同放置天数进行取样,最终放置47天。结果显示,高分子改性剂的加入确实能够有效控制碳酸钙晶体长大;其中1.4%乳液改性效果要优于7%乳液改性,7%木质素钠改性效果要优于1.4%木质素钠改性。高分子改性剂的加入能有效控制晶体长大,因此,洗涤过滤得到碳酸钙膏体可以长期放置,直接应用于水体系产品系列。
应用上述高分子改性剂原位改性制备的纳米球霰石型和/或方解石型碳酸钙填充塑料制备复合材料按如下步骤操作:
步骤(1):按重量百分比计,精确称取塑料100份和加入不同份数的改性纳米球霰石型碳酸钙或改性纳米方解石型碳酸钙进行充分混合;
步骤(2):将步骤(1)得到的混合物料加入密炼机中,经熔融挤出后切粒、冷却、干燥得到复合材料成品。
优选的,上述制备复合材料的方法中,所述挤出机料筒温度180~200℃,螺杆转速30~40转/分钟,熔融混合搅拌时间15min。
上述纳米碳酸钙及其制备方法中,所述的“左右”是指针对其所表述的数值,其可变动范围在上下10%以内,也就是原有数值的“1±0.1”倍为左右。
本发明有益效果为:
1、本发明采用的高分子改性剂是高分子物质即是结晶模板控制剂,又是原位改性剂和复合材料组份。在两种生产碳酸钙的工艺中加入高分子改性剂都能有效控制碳酸钙颗粒大小和晶粒尺寸,简单生产出性价比很高的纳米球霰石型碳酸钙和纳米方解石型碳酸钙,在PP为代表的复合材料中可以显著改善分散情况,大幅增加用量的情况下增强强韧效果显著。
2、当1%苯丙乳液原位改性制备的方解石型碳酸钙填充聚丙烯复合材料质量占20%时,聚丙烯复合材料的弯曲强度提高27.4%,冲击韧性提高30.3%,熔融指数提高24.9%。当5%木质素钠原位改性制备的方解石型碳酸钙填充聚丙烯复合材料质量占10%时,聚丙烯复合材料冲击韧性提高72%,拉伸强度基本保持不变。当5%的E01苯丙乳液改性制备的球霰石型碳酸钙填充聚丙烯复合材料质量占20%时,聚丙烯复合材料的弯曲强度提高13%,冲击韧性提高4.1%。当10%木质素钠原位改性制备的球霰石型碳酸钙填充聚丙烯复合材料质量占20%时,仍能保持复合材料的冲击韧性不下降,有效缓解复合材料拉伸强度的降低。
3、本发明采用高分子物质控制碳酸钙结晶生长,利用甘氨酸钙和甘氨酸钠吸收二氧化碳,快速反应得到了分散性好、均一性好的高品质超细微球霰石型碳酸钙,可利用电石渣和烟道气生产高品质高分子改性的纳米碳酸钙产品。体系高分子成分的存在同样可以控制碳化法工艺中碳酸钙结晶的生长,生产出性价比更高的高分子改性纳米方解石型碳酸钙,结果参见附图1。利用X射线衍射仪(XRD)、场发射电子扫描电镜(SEM)、氮气吸附脱附曲线(BET)对本方法所制备的球霰石型碳酸钙和方解石型碳酸钙进行表征,表征结果参见附图2~14。
4、本发明采用高分子改性剂原位改性制备的纳米碳酸钙作为例如PP的填充料,将PP和碳酸钙混合放入双螺杆挤出机中熔融挤出造粒,使用性能出色。该方法充分利用现有生产线和“三废”资源进行低成本生产,可生产出用途领域广泛的新一代纳米材料。
附图说明
图1乳液、木质素钠改性下陈化时间对碳化法制得的碳酸钙晶粒尺寸的影响规律图,a为未改性方解石型碳酸钙在不同陈化时间下的晶粒尺寸变化曲线,b为7%的E01乳液原位改性方解石型碳酸钙在不同陈化时间下的晶粒尺寸变化曲线,c为1.4%的E01乳液原位改性方解石型碳酸钙在不同陈化时间下的晶粒尺寸变化曲线,d为1.4%的木质素钠原位改性方解石型碳酸钙在不同陈化时间下的晶粒尺寸变化曲线,e为7%的木质素钠原位改性方解石型碳酸钙在不同陈化时间下的晶粒尺寸变化曲线。
图2实施例1制得的球霰石型碳酸钙扫描的电镜图,标尺为1μm。
图3实施例2制得的球霰石型碳酸钙扫描的电镜图,标尺为2μm。
图4a线为实施例1制得的球霰石型碳酸钙的XRD图,b线为实施例2制得的球霰石型碳酸钙的XRD图,c线为对比例1制得的球霰石型碳酸钙的XRD图,纵坐标为强度(Intensity),单位为相对强度,横坐标为位置(2θ/°)。图中柱状直线表示球霰石型碳酸钙对应的标准峰位置。
图5实施例2制得的球霰石型碳酸钙的吸附脱附曲线。
图6实施例1制得的球霰石型碳酸钙的团聚体粒径分布图。
图7实施例2制得的球霰石型碳酸钙的团聚体粒径分布图。
图8对比例1制得的球霰石型碳酸钙的扫描电镜图,标尺为20μm。
图9对比例1制得的球霰石型碳酸钙的团聚体粒径分布图。
图10实施例3制备的改性纳米方解石碳酸钙产品的扫描电镜图,标尺为200nm。
图11实施例3制备的改性纳米方解石碳酸钙产品的透射电镜图,标尺为200nm和100nm。
图12实施例4制备的改性方解石型碳酸钙产品的扫描电镜图,标尺为1μm。
图13a线为实施例3制备的改性纳米方解石碳酸钙产品的XRD图,b线为对比例2制备的方解石型碳酸钙产品的XRD图,c线为实施例4制备的方解石碳酸钙产品的XRD图,纵坐标为强度(Intensity),单位为相对强度,横坐标为位置(2θ/°)。图中柱状直线表示方解石碳酸钙对应的标准峰位置。
图14对比例2制备的碳酸钙的扫描电镜图,标尺为1μm。
具体实施方式
在本发明提供一种以合成或天然高分子改性剂作为结晶控制模板剂和原位改性剂制备的纳米碳酸钙,所述纳米碳酸钙为方解石型纳米碳酸钙或球霰石型纳米碳酸钙,纳米碳酸钙为经过干燥的粉体或经过过滤洗涤的膏体;所述高分子改性剂为水溶性高分子改性剂或可形成乳液的高分子改性剂;所述高分子改性剂为亲水型高分子或亲油型高分子,包括但不限于苯 丙乳液、木质素钠、纯丙乳液、硅纯丙乳液、氟纯丙乳液、聚乙烯醇、聚乙二醇、尿醛树脂、酚醛树脂、木质素磺酸盐或纤维素磺酸盐中的一种或多种。
优选地,前述的纳米碳酸钙为采用甘氨酸法或直接碳化法制备,其中甘氨酸法用5%苯丙乳液或10%木质素钠原位改性制得球霰石型碳酸钙,平均晶粒直径d均可控制在10nm以下,吸油值分别为80g/100g左右或105g/100g左右,比表面积S在20m 2/g以上;所述直接碳化法用1%苯丙乳液或5%木质素钠原位改性制得方解石型碳酸钙,碳酸钙的平均晶粒直径d在25nm以下,比表面积S在30m 2/g以上,吸油值分别为190g/100g左右或113g/100g左右;改性后的碳酸钙可以显著提高复合材料的加工性能,其中苯丙乳液改性的碳酸钙更适合增韧,木质素改性的碳酸钙更适合增强,根据复合材料的不同要求,增大用量降成本,灵活选择不同改性的碳酸钙用于增强或增韧。
其中甘氨酸法为应用甘氨酸钙和包含二氧化碳甘氨酸钠溶液或包含碳酸根的溶液反应制备碳酸钙的方法,直接碳化法是应用含钙(非甘氨酸钙)的溶液与二氧化碳或包含碳酸根的溶液反应制备碳酸钙的方法。
更优选地,所述纳米碳酸钙为方解石型纳米碳酸钙或球霰石型纳米碳酸钙。
进一步优选地,纳米碳酸钙为方解石型纳米碳酸钙或球霰石型纳米碳酸钙,其中球霰石型纳米碳酸钙的平均晶粒直径d为5-10纳米,平均团聚体直径D为500-750nm,方解石型纳米碳酸钙其平均晶粒直径d为15-25纳米,平均团聚体直径D为30-70nm。
再进一步优选地,其中对于球霰石型纳米碳酸钙,60≤D/d≤80nm,优选地,70≤D/d≤75nm,更优选地,72.5≤D/d≤74.5nm。
再进一步优选地,对于方解石型纳米碳酸钙,1≤D/d≤20nm,优选地,1≤D/d≤10nm,更优选地,1≤D/d≤5nm。
在本发明的另一方面,提供一种使用合成或天然高分子改性剂原位改性制备纳米球霰石碳酸钙的方法,所述方法包括如下步骤:
向甘氨酸钙溶液中滴加高分子改性剂,搅拌下通入含有二氧化碳的气体或甘氨酸盐的二氧化碳吸收液,至pH值降为7.5为反应终点,将所得沉淀进行过滤、洗涤、干燥得到高分子表面改性的晶粒直径d为10nm以下的球霰石碳酸钙产品,优选的,高分子改性剂为木质素钠或苯丙乳液,苯丙乳液为苯乙烯-丙烯酸酯乳液,当高分子改性剂为木质素钠时,木质素钠的添加量为理论生成碳酸钙质量的5-15重量%,或者,当高分子改性剂为苯丙乳液时,苯丙乳液的添加量为理论生成碳酸钙质量的1-5重量%,滤液可循环利用,其中一部分滤液用于中和溶解电石渣或氢氧化钙以制备甘氨酸钙,一部分用于吸收烟道气中的二氧化碳以制备甘 氨酸盐二氧化碳吸收液。
优选地,前述方法的特征在于所述甘氨酸钙溶液的浓度为1mol/L,甘氨酸与钙原料的摩尔比为2:1,其中钙以氢氧化钙计;所述甘氨酸盐为甘氨酸钠,甘氨酸钠溶液的浓度为1mol/L左右,常温溶解。
更优选地,在前述方法中,水溶性高分子改性剂或可形成乳液的高分子改性剂为亲水型高分子或亲油型高分子,选自苯丙乳液、木质素钠、纯丙乳液、硅纯丙乳液、氟纯丙乳液、聚乙烯醇、聚乙二醇、尿醛树脂、酚醛树脂、木质素磺酸盐或纤维素磺酸盐中的一种或多种。
更进一步优选地,前述方法的特征在于所述方法包括如下步骤:
步骤(1):将甘氨酸溶液与电石渣或熟石灰搅拌中和溶解,抽滤得到甘氨酸钙溶液;
步骤(2):将甘氨酸与碱反应得到甘氨酸盐溶液,用于吸收烟道气中的二氧化碳或直接吸收二氧化碳,至pH7.5左右,得到甘氨酸钠二氧化碳混合液;
步骤(3):向步骤(1)中的甘氨酸钙溶液中加入高分子改性剂,搅拌均匀;
步骤(4):向步骤(3)溶液中加入步骤(2)的混合液或直接通入烟道气或二氧化碳气体混合搅拌下原位合成改性纳米碳酸钙,然后过滤得到纳米球霰石碳酸钙膏体产品,干燥得到粉体产品;
优选的,上述使用高分子改性剂原位改性制备纳米球霰石碳酸钙的方法中,所述方法还包括如下步骤(5):
步骤(5):将步骤(4)中过滤后的滤液循环使用,一部分滤液用于溶解电石渣或熟石灰得到提纯的甘氨酸钙溶液,另一部分滤液用来吸收利用烟道气中的CO 2,得到甘氨酸的二氧化碳吸收溶液,循环合成产品。
在本发明的再一方面,提供一种使用合成或天然高分子改性剂原位改性制备纳米方解石型碳酸钙的方法,所述方法包括如下步骤:
向氢氧化钙浆液滴加高分子改性剂,通入二氧化碳或含有二氧化碳的烟道气,混合碳化直至溶液pH值降为7时停止反应,将所得沉淀进行抽滤、洗涤得到高分子改性的晶粒直径d为20-25nm的方解石型碳酸钙膏体,干燥后得到粉体碳酸钙,其中,高分子改性剂为苯丙乳液时,苯丙乳液的添加量为理论生成碳酸钙质量的1重量%~5重量%,高分子改性剂为木质素钠时,木质素钠的添加量为理论生成碳酸钙质量的5%~10%(重量)。
优选地,前述方法的特征在于所述方法包括如下步骤:
步骤(1):将一定质量的氧化钙或氢氧化钙制成氢氧化钙浆液,搅拌混匀;
步骤(2):向步骤(1)的氢氧化钙浆液中滴加高分子改性剂,得到含高分子的氢氧化钙 浆液;所述高分子改性剂为苯丙乳液时,当苯丙乳液的固含量为50%时,苯丙乳液的添加量为理论生成碳酸钙质量的1%(重量);
步骤(3):向步骤(2)中的含高分子改性剂的氢氧化钙浆液中通入二氧化碳气体,搅拌进行碳化反应,直至溶液pH值降为7时停止反应,将所得沉淀进行抽滤、洗涤得到改性纳米方解石型碳酸钙膏体,干燥后得到粉体碳酸钙;
优选的,上述使用合成或天然高分子改性剂原位改性制备纳米方解石型碳酸钙的方法中,步骤(1)中制成的氢氧化钙浆液浓度为7%~10%,在常温下混合搅拌。
更优选地,在前述方法中,水溶性高分子改性剂或可形成乳液的高分子改性剂为亲水型高分子或亲油型高分子,选自苯丙乳液、木质素钠、纯丙乳液、硅纯丙乳液、氟纯丙乳液、聚乙烯醇、聚乙二醇、尿醛树脂、酚醛树脂、木质素磺酸盐或纤维素磺酸盐中的一种或多种。
在本发明的另一方面,提供纳米碳酸钙作为塑料、橡胶、涂料、密封剂、油墨、胶黏剂、沥青、纸张或复合材料的填料、添加剂或改性剂的用途,实现增加用量,降低成本和/或提高性能,优选地,所述性能为增强、增韧、增加粘结力中的一种或多种。
本发明还提供了应用高分子改性剂制备纳米碳酸钙过程中有效控制晶体的长大;可作为商品直接售卖系列的碳酸钙膏体或系列碳酸钙粉体混合制备的复合材料母粒。
在本发明的再一方面,提供一种纳米碳酸钙,其为方解石型纳米碳酸钙或球霰石型纳米碳酸钙。
优选地,纳米碳酸钙为方解石型纳米碳酸钙或球霰石型纳米碳酸钙,其中球霰石型纳米碳酸钙的平均晶粒直径d为5-10纳米,平均团聚体直径D为500-750nm,方解石型纳米碳酸钙其平均晶粒直径d为15-25纳米,平均团聚体直径D为30-70nm。
更优选地,其中对于球霰石型纳米碳酸钙,60≤D/d≤80,优选地,70≤D/d≤75,更优选地,72.5≤D/d≤74.5。
更优选地,其中对于方解石型纳米碳酸钙,1≤D/d≤20,优选地,1≤D/d≤10,更优选地,1≤D/d≤5。
下面结合具体实施例对本发明进一步说明。实施例中所用到的原料、设备及测试分析方法为:
甘氨酸:国药集团化学试剂有限公司,纯度≥99.5%;
E01苯丙乳液,即为苯丙乳液:北京紫光英力化工技术有限公司,固含量50%水乳液;
木质素钠固体:北京紫光英力化工技术有限公司,制浆副产物;
氢氧化钙:国药集团化学试剂有限公司,纯度≥95%;
二氧化碳气体:林德气体,纯度≥99.9%;
聚丙烯树脂:宁波富德能源有限公司;
氢氧化钙:国药集团化学试剂有限公司,纯度≥95%;
循环水式真空泵:巩义市予华有限责任公司,SHZ-(III);
集热式恒温加热磁力搅拌器:巩义市予华有限责任公司,DF-101S;
电子天平:赛多利斯科学仪器有限公司,BS224S;
真空干燥箱:巩义市予华有限责任公司,DZF-6020;
上海科创密炼机:LH200;
宁波海天注塑成型机:SA600/150;
微机控制电子万能实验机:AGS-X,10N-10kN+250mm;
美特斯摆锤式冲击试验机:ZBC7251-B;
美特斯熔体流动速率试验机:ZRZ1452;
荷兰Philips公司透射电镜:TECNAI F30;
日本日立公司Rigaku Ultima IV型射线粉末衍射仪:测试碳酸钙的晶粒尺寸和晶型;
电镜平均粒径(团聚体尺寸)的测定方法:按照国标《GB/T 19590-2011纳米碳酸钙》中的6.4进行测定,所用的测试分析软件为Nano measure1.2;
吸油值:按照国标《GB/T19281-2003碳酸钙分析方法》的3.21进行测定;
美国麦克仪器公司TriStarⅡ3020型全自动比表面和孔隙分析仪:比表面分析。
制备实施例
实施例1
称取75g甘氨酸于水中溶解,再加入40g氢氧化钠搅拌反应,定容到1L的容量瓶中,配成1mol/L的甘氨酸钠溶液。把甘氨酸钠溶液倒入三口圆底烧瓶中,通入二氧化碳气体,搅拌吸收二氧化碳气体,溶液pH至7.5时停止通气,得到甘氨酸钠的二氧化碳吸收溶液。
称取150g甘氨酸于水中溶解,再加入74g氢氧化钙/106g电石渣(电石渣中氢氧化钙含量为70%),100rpm搅拌反应40min,过滤得甘氨酸钙溶液,再定容到1L的容量瓶中,配成1mol/L的甘氨酸钙溶液,把甘氨酸钙溶液倒入2000mL的烧杯中,加入9g木质素钠,然后搅拌混合5min,缓慢倒入甘氨酸钠的二氧化碳吸收溶液,搅拌5min反应结束,过滤干燥,干燥温度100℃左右,得到改性纳米球霰石型碳酸钙粉体产品。
经过分析,实施例1制备的碳酸钙为球霰石型碳酸钙,平均晶粒直径d为6.0nm、晶型全为球霰石型、平均团聚体直径D为650nm、吸油值105g/100g、比表面积S为15.72m 2/g。。 该改性纳米球霰石型碳酸钙的电镜图参见图2,XRD图参见图4中的a线,团聚体粒径分布图参见图6。
实施例2
称取75g甘氨酸于水中溶解,再加入40g氢氧化钠搅拌反应,定容到1L的容量瓶中,配成1mol/L的甘氨酸钠溶液。把甘氨酸钠溶液倒入三口圆底烧瓶中,通入二氧化碳气体,搅拌吸收二氧化碳气体,溶液pH至7.5时停止通气,得到甘氨酸钠的二氧化碳吸收溶液。
称取150g甘氨酸于水中溶解,再加入74g氢氧化钙/106g电石渣(电石渣中氢氧化钙含量70%),搅拌反应40min,过滤得甘氨酸钙溶液,再定容到1L的容量瓶中,配成1mol/L的甘氨酸钙溶液。把甘氨酸钙溶液倒入2000mL的烧杯中,加入4g E01苯丙乳液(固含量50%),搅拌混合2min,缓慢倒入甘氨酸钠的二氧化碳吸收溶液,搅拌5min反应结束,过滤干燥,干燥温度100℃左右,获得E01乳液改性球霰石型碳酸钙粉体产品。
经过分析,实施例2制备的碳酸钙为球霰石型碳酸钙,平均晶粒直径d为8.8nm、晶型全为球霰石型、平均团聚体直径D为650nm、吸油值80g/100g、比表面积S为25.88m 2/g。该改性纳米球霰石型碳酸钙的电镜图参见图3,XRD图参见图4中的b线,吸附脱附曲线参见图5,团聚体粒径分布图参见图7。
实施例3
称取氢氧化钙,加入水配成浓度7%~10%的浆液,搅拌混匀,温度控制在40℃以下。然后在搅拌下,向氢氧化钙浆液中滴加E01苯丙乳液(固含量50%),滴加的E01苯丙乳液质量占理论生成碳酸钙质量的1重量%,搅拌2min,温度控制在常温下。最后向滴加了乳液的氢氧化钙浆液中通入二氧化碳气体,搅拌进行碳化反应,反应温度30℃。直至溶液pH值降为7时停止反应。将所得沉淀进行抽滤、洗涤得到改性纳米方解石型碳酸钙膏体产品,干燥后得到粉体产品。
经过分析,实施例3制备的碳酸钙为纳米方解石型碳酸钙,平均晶粒直径d为21nm、平均团聚体直径D为59nm、比表面积S为35m 2/g、密度2.4g/cm 3、吸油值190g/100g。该改性纳米方解石型碳酸钙的扫描电镜图参见图10,透射电镜图参见图11,XRD图参见图13的a线。
实施例4
称取氢氧化钙,加入水配成浓度7%~10%的浆液,100~200rpm搅拌混匀,温度控制在40℃以下。然后再向氢氧化钙浆液中加入木质素钠,木质素钠质量占理论生成碳酸钙质量的5重量%,搅拌2min,温度控制在常温下。最后向滴加了木质素钠的氢氧化钙浆液中通入二氧化 碳气体,搅拌进行碳化反应,反应温度30℃。直至溶液pH值降为7左右时停止反应。将所得沉淀进行抽滤、洗涤得到改性纳米方解石型碳酸钙膏体产品,干燥后得到粉体产品。
经过分析,实施例4制备的碳酸钙为方解石型碳酸钙,平均晶粒直径d为21.9nm、吸油值为112.7g/100g、比表面积S为21.91m 2/g。该改性纳米方解石型碳酸钙的扫描电镜图参见图12,XRD图参见图13的c线。
对比例1
称取75g甘氨酸于水中溶解,再加入40g氢氧化钠搅拌反应,定容到1L的容量瓶中,配成1mol/L的甘氨酸钠溶液。把甘氨酸钠溶液倒入三口圆底烧瓶中,通入二氧化碳气体,搅拌吸收二氧化碳气体,溶液pH至7.5则停止通气。
称取150g甘氨酸于水中溶解,再加入74g氢氧化钙/106g电石渣(电石渣中的氢氧化钙含量70%)100rpm搅拌反应40min,过滤得甘氨酸钙溶液,再定容到1L的容量瓶中,配成1mol/L的甘氨酸钙溶液。把甘氨酸钙溶液倒入2000mL的烧杯中,在搅拌下,缓慢倒入甘氨酸钠的二氧化碳吸收溶液,搅拌20min反应结束,过滤干燥,干燥温度100℃,获得未改性球霰石型碳酸钙。
经过分析,对比例1制备的碳酸钙为未改性的球霰石型碳酸钙,平均晶粒直径d为15nm,平均团聚体直径D为5.28μm,球霰石型碳酸钙所占比例为96.72%,方解石型碳酸钙所占比例为3.28%。该未改性球霰石型碳酸钙的扫描电镜图参见图8,团聚体粒径分布图参见图9,XRD图参见图4的c线。
对比例2
称取氢氧化钙,加入水配成浓度7%~10%的浆液,100~200rpm搅拌混匀,温度控制在40℃以下。然后向浆液中通入二氧化碳气体,搅拌进行碳化反应,反应温度30℃。直至溶液pH值降为7时停止反应。将所得沉淀进行抽滤、洗涤、干燥,获得未改性方解石型碳酸钙。
经过分析,对比例2制备的碳酸钙为方解石型碳酸钙,平均晶粒直径d为31nm,比表面积S为7.19m 2/g,吸油值为96.6g/100g,团聚体为不规则形状块状。该未改性球霰石型碳酸钙的扫描电镜图参见图14,XRD图参见图13的b线。
应用实施例
按照表1配方,将不同碳酸钙产品与聚丙烯(PP)在密炼机上进行挤出造粒,然后通过注塑机进行注塑成五根标准样条进行一系列性能测试,测试结果取平均值。
表1 不同碳酸钙填充量制备的PP复合材料组成成分表
碳酸钙添加量/g PP质量/g 碳酸钙占总质量的百分比
0 280 0%
28 252 10%
56 224 20%
84 196 30%
112 168 40%
140 140 50%
按照表1配方,不同类型碳酸钙的应用数据结果如表2-表7所示(注:由于测试时使用的聚丙烯树脂出厂批次不同,所以使得纯PP的测试结果不同)。
表2 未改性球霰石型碳酸钙(对比例1制备)不同组分填充PP的性能测试结果
Figure PCTCN2019091134-appb-000001
未经过改性的球霰石型碳酸钙在PP中随着添加量的增加冲击韧性和拉伸强度下降幅度明显。当填充量增加,熔融指数下降明显。
表3 10%木质素钠原位改性制备的纳米球霰石型碳酸钙(实施例1制备)不同组分填充PP的性能测试结果
Figure PCTCN2019091134-appb-000002
经过10%木质素钠改性的球霰石型碳酸钙在PP中熔融指数改善明显,拉伸强度能得到较好保持,即使填充量达30%的拉伸强度也比未改性球霰石型碳酸钙填充量20%时高。即使填充量达20%,也能保持冲击韧性不降低。
表4 5%E01苯丙乳液原位改性制备的纳米球霰石型碳酸钙(实施例2制备)不同组分填充PP的性能测试结果
Figure PCTCN2019091134-appb-000003
经过5%的E01苯丙乳液改性的球霰石型碳酸钙在PP中对熔融指数改善同样明显,拉伸强度比木质素改性的略差。在30%填充量下冲击韧性的保持比木质素钠改性和未改性的球霰石型碳酸钙都要好。对强度要求高的复合材料可以使用木质素钠改性的球霰石型碳酸钙,对冲击韧性要求高的复合材料可以使用乳液改性的球霰石型碳酸钙。
表5 碳化法未改性方解石型碳酸钙(对比例2制备)不同组分填充PP的性能测试结果
Figure PCTCN2019091134-appb-000004
碳化法未改性的方解石型碳酸钙在PP中能保持比未改性球霰石型碳酸钙在PP中具有更好的力学性能和加工性能。填充量为20%时仍保持冲击韧性不下降,这说明在PP中方解石型碳酸钙使用性能总体优于球霰石型碳酸钙。
表6 1%E01苯丙乳液原位改性制备的纳米方解石型碳酸钙(实施例3制备)不同组分填充PP的性能测试结果
Figure PCTCN2019091134-appb-000005
Figure PCTCN2019091134-appb-000006
经过1%乳液改性的方解石型纳米碳酸钙在PP中在30%填充量时,力学性能下降幅度不大,加工性能显著提高。在添加量为20%时,冲击韧性提高30.3%。说明乳液原位改性后的方解石型碳酸钙在复合材料中填充量为30%的情况下可以增强增韧。
表7 5%木质素钠原位改性制备的纳米方解石型碳酸钙(实施例4制备)不同组分填充PP的性能测试结果
Figure PCTCN2019091134-appb-000007
经过5%木质素钠改性的方解石型碳酸钙在PP中熔融指数改善明显,拉伸强度能得到较好保持,即使40%的填充量时拉伸强度基本不变。添加量为10%时冲击韧性提高72.1%。
综上所述,无论是球霰石型碳酸钙还是方解石型碳酸钙,经过高分子改性剂改性后在PP中的应用性能都要优于未改性的碳酸钙,这样在增加碳酸钙的填充量时可以使得复合材料的性能不下降,大幅降低成本。这说明改性后碳酸钙的分散性能得到很大的改善。乳液改性的碳酸钙在复合材料冲击韧性上有较好改善作用,木质素钠改性的碳酸钙对复合材料拉伸强度改善作用较好,改性后的碳酸钙熔融指数都有明显提高,这使得复合材料更利于加工。在聚丙烯树脂材料中,方解石型碳酸钙作为填充粉体的力学性能要优于球霰石型碳酸钙。
在苯丙乳液中即使添加40%质量的1%乳液改性方解石碳酸钙,作为复合粘胶剂的拉伸强度下降不大,但复合胶黏剂成本可以显著降低。
本发明的上述实施例的描述时为了便于该技术领域的普通技术人员能够理解和应用本发明。熟悉本领域的人显然可以容易地对这些实施例作各种修改,并把在此说明的一般原理应 用到其它实施例中而不必经过创造性的劳动。因此,本发明不限于本次成果的实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做的改进和修改都应该在本发明的保护范围之内。

Claims (9)

  1. 一种以合成或天然高分子改性剂作为结晶控制模板剂和原位改性剂制备的纳米碳酸钙,所述纳米碳酸钙为方解石型纳米碳酸钙或球霰石型纳米碳酸钙,纳米碳酸钙为经过干燥的粉体或经过过滤洗涤的膏体;所述高分子改性剂为水溶性高分子改性剂或可形成乳液的高分子改性剂;所述高分子改性剂为亲水型高分子或亲油型高分子,包括但不限于苯丙乳液、木质素钠、纯丙乳液、硅纯丙乳液、氟纯丙乳液、聚乙烯醇、聚乙二醇、尿醛树脂、酚醛树脂、木质素磺酸盐或纤维素磺酸盐中的一种或多种。
  2. 根据权利要求1所述的纳米碳酸钙,其特征在于纳米碳酸钙为甘氨酸法或直接碳化法制备,其中甘氨酸法用5%苯丙乳液或10%木质素钠原位改性制得球霰石型碳酸钙,平均晶粒直径d均可控制在10nm以下,吸油值分别为80g/100g左右或105g/100g左右,比表面积S在20m 2/g以上;所述直接碳化法用1%苯丙乳液或5%木质素钠原位改性制得方解石型碳酸钙,碳酸钙的平均晶粒直径d在25nm以下,比表面积S在30m 2/g以上,吸油值分别为190g/100g左右或113g/100g左右;改性后的碳酸钙可以显著提高复合材料的加工性能,其中苯丙乳液改性的碳酸钙更适合增韧,木质素改性的碳酸钙更适合增强,根据复合材料的不同要求,增大用量降成本,灵活选择不同改性的碳酸钙用于增强或增韧。
  3. 根据权利要求1或2所述的纳米碳酸钙,其为方解石型纳米碳酸钙或球霰石型纳米碳酸钙,其中球霰石型纳米碳酸钙的平均晶粒直径d为5-10nm,平均团聚体直径D为500-750nm,方解石型纳米碳酸钙其平均晶粒直径d为15-25nm,平均团聚体直径D为30-70nm,优选的,对于球霰石型纳米碳酸钙,60≤D/d≤80,优选地,70≤D/d≤75,更优选地,72.5≤D/d≤74.5,对于方解石型纳米碳酸钙,1≤D/d≤20,优选地,1≤D/d≤10,更优选地,1≤D/d≤5。
  4. 一种使用合成或天然高分子改性剂原位改性制备纳米球霰石碳酸钙的方法,所述方法包括如下步骤:
    向甘氨酸钙溶液中滴加高分子改性剂,搅拌下通入含有二氧化碳的气体或甘氨酸盐的二氧化碳吸收液,至pH值降为7.5为反应终点,将所得沉淀进行过滤、洗涤、干燥得到高分子表面改性的单晶尺寸10nm以下的球霰石碳酸钙产品,优选的,高分子改性剂为木质素钠或苯丙乳液,苯丙乳液为苯乙烯-丙烯酸酯乳液,当高分子改性剂为木质素钠时,木质素钠的添加量为理论生成碳酸钙质量的5-15重量%,或者,当高分子改性剂为苯丙乳液时,苯丙乳液的添加量为理论生成碳酸钙质量的1-5重量%,滤液可循环利用,其中一部分滤液用于中和溶解电石渣或氢氧化钙以制备甘氨酸钙,一部分用于吸收烟道气中的二氧化碳以制备甘氨酸盐二氧化碳吸收液。
  5. 根据权利要求4所述的方法,其特征在于所述甘氨酸钙溶液的浓度为1mol/L,甘氨酸与钙原料的摩尔比为2:1,其中钙以氢氧化钙计;所述甘氨酸盐为甘氨酸钠,甘氨酸钠溶液的浓度为1mol/L左右,常温溶解。
  6. 根据权利要求4所述的方法,其特征在于所述方法包括如下步骤:
    步骤(1):将甘氨酸溶液与电石渣或熟石灰搅拌中和溶解,抽滤得到甘氨酸钙溶液;
    步骤(2):将甘氨酸与碱反应得到甘氨酸盐溶液,用于吸收烟道气中的二氧化碳或直接吸收二氧化碳,至pH7.5左右,得到甘氨酸盐二氧化碳混合液;
    步骤(3):向步骤(1)中的甘氨酸钙溶液中加入高分子改性剂,搅拌均匀;
    步骤(4):向步骤(3)溶液中加入步骤(2)的混合液或直接通入烟道气或二氧化碳气体混合搅拌下原位合成改性纳米碳酸钙,然后过滤得到纳米球霰石碳酸钙膏体产品,干燥得到粉体产品;
    优选的,上述使用高分子改性剂原位改性制备纳米球霰石碳酸钙的方法中,所述方法还包括如下步骤(5):
    步骤(5):将步骤(4)中过滤后的滤液循环使用,一部分滤液用于溶解电石渣或熟石灰得到提纯的甘氨酸钙溶液,另一部分滤液用来吸收利用烟道气中的CO 2,得到甘氨酸的二氧化碳吸收溶液,循环合成产品。
  7. 一种使用高分子原位改性制备纳米方解石型碳酸钙的方法,所述方法包括如下步骤:
    向氢氧化钙浆液滴加高分子改性剂,通入二氧化碳或含有二氧化碳的烟道气,混合碳化直至溶液pH值降为7时停止反应,将所得沉淀进行抽滤、洗涤得到高分子改性的平均晶粒尺寸为20-25nm的方解石型碳酸钙膏体,干燥后得到粉体碳酸钙,其中,高分子改性剂为苯丙乳液时,苯丙乳液的添加量为理论生成碳酸钙质量的1%~5%,高分子改性剂为木质素钠时,木质素钠的添加量为理论生成碳酸钙质量的5%~10%。
  8. 根据权利要求7所述的方法,其特征在于所述方法包括如下步骤:
    步骤(1):将一定质量的氧化钙或氢氧化钙制成氢氧化钙浆液,搅拌混匀;
    步骤(2):向步骤(1)的氢氧化钙浆液中滴加高分子改性剂,得到含高分子的氢氧化钙浆液;所述高分子改性剂为苯丙乳液时,当苯丙乳液的固含量为50%时,苯丙乳液的添加量为理论生成碳酸钙质量的1%;
    步骤(3):向步骤(2)中的含高分子改性剂的氢氧化钙浆液中通入二氧化碳气体,搅拌进行碳化反应,直至溶液pH值降为7时停止反应,将所得沉淀进行抽滤、洗涤得到改性纳米方解石型碳酸钙膏体,干燥后得到粉体碳酸钙;
    优选的,上述使用高分子原位改性制备纳米方解石型碳酸钙的方法中,步骤(1)中制成的氢氧化钙浆液浓度为7%~10%,在常温下混合搅拌。
  9. 权利要求1-8任一项所述的纳米碳酸钙作为塑料、橡胶、涂料、密封剂、油墨、胶黏剂、沥青、纸张或复合材料的填料、添加剂或改性剂的用途,实现增加用量,降低成本和/或提高性能,优选地,所述性能为增强、增韧、增加粘结力中的一种或多种;或应用高分子改性剂制备纳米碳酸钙过程中有效控制晶体的长大;可作为商品直接售卖系列的碳酸钙膏体或系列碳酸钙粉体混合制备的复合材料母粒。
PCT/CN2019/091134 2019-03-29 2019-06-13 一种高分子改性纳米碳酸钙及其制备方法和应用 WO2020199348A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910255996.3A CN109867986B (zh) 2019-03-29 2019-03-29 一种高分子改性的纳米碳酸钙产品系列
CN201910255996.3 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020199348A1 true WO2020199348A1 (zh) 2020-10-08

Family

ID=66921831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/091134 WO2020199348A1 (zh) 2019-03-29 2019-06-13 一种高分子改性纳米碳酸钙及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN109867986B (zh)
WO (1) WO2020199348A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109867986B (zh) * 2019-03-29 2020-10-27 厦门大学 一种高分子改性的纳米碳酸钙产品系列
CN113511665B (zh) * 2020-04-09 2023-05-23 厦门大学 以水泥和“三废”为原料的零维和一维碳酸钙微纳米复合物产品及复合材料与合成工艺
CN112375218B (zh) * 2020-09-16 2022-10-28 贺州学院 一种用于碳酸钙表面改性、含尼龙结构的水溶性高分子改性剂及其制备方法
CN114507426B (zh) * 2022-02-16 2022-09-16 湖南金箭新材料科技有限公司 一种改性纳米碳酸钙复合材料及其制备方法
CN115403999B (zh) * 2022-10-18 2023-04-18 中国海洋大学 一种水性涂料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101293663A (zh) * 2007-04-28 2008-10-29 北京清华紫光英力化工技术有限责任公司 微细碳酸钙制备新工艺
CN101993104A (zh) * 2009-08-21 2011-03-30 北京紫光英力化工技术有限公司 一种以电石渣为原料生产超微细碳酸钙的新方法
CN104520385A (zh) * 2012-07-13 2015-04-15 Omya国际股份公司 表面改性的含碳酸钙矿物及其用途
EP3192837A1 (en) * 2016-01-14 2017-07-19 Omya International AG Wet surface treatment of surface-modified calcium carbonate
CN108658114A (zh) * 2017-03-30 2018-10-16 北京紫光英力化工技术有限公司 一种改性钙盐的制备方法
CN109867986A (zh) * 2019-03-29 2019-06-11 厦门大学 一种高分子改性的纳米碳酸钙新产品系列
EP3505574A1 (en) * 2017-12-28 2019-07-03 Imerys USA, Inc. Amphiphilic copolymers as surface modifiers for production of improved calcium carbonate powders

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6474656B2 (ja) * 2015-03-19 2019-02-27 国立大学法人 東京大学 異方的炭酸カルシウムの結晶

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101293663A (zh) * 2007-04-28 2008-10-29 北京清华紫光英力化工技术有限责任公司 微细碳酸钙制备新工艺
CN101993104A (zh) * 2009-08-21 2011-03-30 北京紫光英力化工技术有限公司 一种以电石渣为原料生产超微细碳酸钙的新方法
CN104520385A (zh) * 2012-07-13 2015-04-15 Omya国际股份公司 表面改性的含碳酸钙矿物及其用途
EP3192837A1 (en) * 2016-01-14 2017-07-19 Omya International AG Wet surface treatment of surface-modified calcium carbonate
CN108658114A (zh) * 2017-03-30 2018-10-16 北京紫光英力化工技术有限公司 一种改性钙盐的制备方法
EP3505574A1 (en) * 2017-12-28 2019-07-03 Imerys USA, Inc. Amphiphilic copolymers as surface modifiers for production of improved calcium carbonate powders
CN109867986A (zh) * 2019-03-29 2019-06-11 厦门大学 一种高分子改性的纳米碳酸钙新产品系列

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DENG, HUI ET AL.: "Review on Research of amino acid salts in CO2 capture", CHEMICAL DEFENCE ON SHIPS, no. 4, 31 December 2014 (2014-12-31) *
WANG, YONGZHOU ET AL.: "Modification research development on nanometer calcium carbonate surface", GUANGDONG CHEMICAL INDUSTRY, vol. 35, no. 10, 31 December 2008 (2008-12-31), DOI: 20191205125702Y *

Also Published As

Publication number Publication date
CN109867986A (zh) 2019-06-11
CN109867986B (zh) 2020-10-27

Similar Documents

Publication Publication Date Title
WO2020199348A1 (zh) 一种高分子改性纳米碳酸钙及其制备方法和应用
WO2020199350A1 (zh) 一种高性能的硫酸钙晶须材料及制备工艺
CN103897434B (zh) 塑料母粒专用纳米碳酸钙的制备方法
WO2021204210A1 (zh) 以水泥和"三废"为原料的微纳米材料系列产品及合成工艺
KR0176250B1 (ko) 단분산된 바테라이트형 탄산칼슘 및 그 제조방법과 입자성장형태 제어방법
CN101774623B (zh) 一种米粒状超细活性碳酸钙的工业化制备方法
WO2014106369A1 (zh) 一种透明氢氧化镁液相分散体及制备方法与应用
JPH09503484A (ja) 板状合成ハイドロタルク石の偏球凝集体
US9102810B2 (en) Alkaline earth metal carbonate micropowder
CN1641077A (zh) 一种文石型碳酸钙晶须的制备方法
CN111333096A (zh) 一种超微细碳酸钙粉体的生产工艺
CN112408450A (zh) 一种类立方纳米碳酸钙的制备方法
JP3910503B2 (ja) 塩基性炭酸マグネシウムの製造方法
CN101704527B (zh) 形貌可控单分散介孔二氧化硅纳米颗粒及其合成方法
CN113666380B (zh) 一种球形二氧化硅的制备方法
WO2001030700A1 (fr) Carbonate de calcium et son procede de production
CN108395643B (zh) 用于pvc热稳定剂的改性水铝钙石及其清洁制备方法
CN110407212B (zh) 一种高分散性的纳米碳酸盐凝胶体及其制备方法和应用
JP2019043809A (ja) アラゴナイト型軽質炭酸カルシウム及びその製造方法
CN1264753C (zh) 一种造纸涂布用片状晶形轻质碳酸钙的制备方法
CN100337924C (zh) 一种轻质碳酸钙的生产方法
CN105271344A (zh) 一种松果形貌方解石型微米级碳酸钙颗粒的制备方法
JP2003063821A (ja) シリカ−炭酸カルシウム複合粒子及びその製造方法、並びに該複合粒子を含有する複合組成物及び複合体
JPH054929B2 (zh)
Tsai et al. Preparation and characterization of epoxy/layered double hydroxides nanocomposites

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19923395

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19923395

Country of ref document: EP

Kind code of ref document: A1