WO2020199350A1 - 一种高性能的硫酸钙晶须材料及制备工艺 - Google Patents

一种高性能的硫酸钙晶须材料及制备工艺 Download PDF

Info

Publication number
WO2020199350A1
WO2020199350A1 PCT/CN2019/091136 CN2019091136W WO2020199350A1 WO 2020199350 A1 WO2020199350 A1 WO 2020199350A1 CN 2019091136 W CN2019091136 W CN 2019091136W WO 2020199350 A1 WO2020199350 A1 WO 2020199350A1
Authority
WO
WIPO (PCT)
Prior art keywords
calcium sulfate
calcium
modified
whiskers
preparation
Prior art date
Application number
PCT/CN2019/091136
Other languages
English (en)
French (fr)
Inventor
尹应武
尹露
孙响响
刘泽涵
吐松
叶李艺
赵玉芬
Original Assignee
厦门大学
北京紫光英力化工技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门大学, 北京紫光英力化工技术有限公司 filed Critical 厦门大学
Publication of WO2020199350A1 publication Critical patent/WO2020199350A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/46Sulfates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/08Oxygen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/46Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/62Whiskers or needles
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/14Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions the crystallising materials being formed by chemical reactions in the solution
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Definitions

  • the invention relates to a high-performance calcium sulfate whisker material and a preparation method, belonging to the field of nano material production and application.
  • Calcium sulfate has a variety of morphologies such as flakes, whiskers, and spindles. Calcium sulfate whiskers have industrial application value. Calcium sulfate whisker is a fibrous single crystal with uniform cross-section, generally 30 ⁇ m ⁇ 140 ⁇ m in length and 10 ⁇ 300 in aspect ratio. It can be used as high modulus, high strength, low defect fibrous filler to modify and fill In synthetic polymer materials, it can achieve the purpose of reducing material cost, improving or maintaining performance and reducing composite material cost. Calcium sulfate whiskers are worth developing for applications in plastics, rubber, coatings, adhesives and other fields due to their low cost and wide raw material sources.
  • the preparation methods of calcium sulfate whiskers mainly include atmospheric acidification method and hydrostatic heating method.
  • Atmospheric acidification method is to dissolve gypsum raw materials at a certain concentration and add acid solvent to obtain calcium sulfate whiskers by adjusting the pH value, temperature, reaction time and other conditions of the reaction system;
  • hydroautoclave method refers to dispersing a certain concentration of gypsum The liquid is placed in a pressurized container, and the reaction pressure, temperature and time are controlled to prepare calcium sulfate whiskers.
  • these two preparation methods have problems such as poor product quality, large production fluctuations, and low efficiency.
  • there are not many industrial applications of calcium sulfate whiskers and the product prices are high, and they cannot compete with calcium carbonate, especially nano calcium carbonate products.
  • the methods of modifying calcium sulfate whiskers mainly include dry modification and wet modification. Dry modification refers to adding calcium sulfate and modifier to the existing modification. Most of the powder and surface modifier are heated and mixed in the mixer to make the modifier adsorb, react or coat on the surface of the powder. Dry modification, the use effect is not good.
  • This method has a low degree of adhesion between the modified calcium sulfate and the composite material, and the problem of powder agglomeration is not greatly improved; wet modification refers to the addition of a modifier to the solvent to generate liquid phase components to achieve the inclusion of the whisker surface Overlay modification. Commonly used modifiers are stearic acid, silane coupling agent, oleic acid and so on.
  • the modified calcium sulfate is used as a filler to improve the performance of the material to a certain extent, but there is also the problem that the modification is mainly on the surface of the agglomerate, and the performance is greatly reduced when the amount of addition increases.
  • Calcium chloride is the largest waste resource of the saline-alkali process. Since there is no large-scale high-value-added utilization method so far, a small amount of calcium chloride is currently processed into solid calcium chloride, most of which are directly discharged into the rivers and seas or infiltrated into the ground, polluting the environment and wasting resources. Calcium chemical waste liquid has become the biggest obstacle restricting the development of the chlor-alkali industry.
  • a large amount of sulfuric acid and sulfate are by-produced during the production of titanium dioxide. For every 1 ton of titanium dioxide produced, the by-product ferrous sulfate is 2.5-4.0 tons, and the waste sulfuric acid with a mass fraction of 20% is 8-10 tons.
  • sodium sulfate is a by-product of many industries. Glauber's salt resources are very abundant on the earth. In particular, sodium sulfate is the second largest salt in seawater, and a large amount of sodium sulfate is discharged into the sea during the salt production process. According to the Geological Journal, the distribution area of glauberite in China is 3280km 2 , with continuous and thick deposits. The total resource of glauberite in Lop Nur is conservatively estimated to be 320 billion tons.
  • the present invention has carried out in-situ modification of different modifiers such as stearic acid, styrene-acrylic emulsion, lignin and calcium cellulose sulfonate to synthesize high-performance nano-calcium sulfate whiskers in an alcohol-water system based on the previous research.
  • modifiers such as stearic acid, styrene-acrylic emulsion, lignin and calcium cellulose sulfonate
  • the invention provides a new product and a new method for synthesizing in-situ modified calcium sulfate whiskers at room temperature, which can make full use of soluble raw materials such as calcium chloride, Glauber's salt, sodium sulfate, aluminum sulfate, etc., in an alcohol-water mixed solution, according to It is necessary to select different modifiers such as stearic acid, styrene-acrylic emulsion, and calcium cellulose sulfonate, and synthesize at room temperature and in-situ can be modified to obtain modified nano-calcium sulfate whiskers with excellent performance.
  • the present invention provides a method for preparing in-situ modified calcium sulfate whiskers, the method comprising the following steps:
  • the modifier is a water-soluble polymer modifier or a polymer modifier that can form an emulsion.
  • the polymer modifier is a styrene-acrylic emulsion, lignin One or more of sodium, pure acrylic emulsion, silicon pure acrylic emulsion, fluorine pure acrylic emulsion, urea resin, phenolic resin, lignosulfonate or cellulose sulfonate, preferably, the modifier is hard Fatty acid, styrene-acrylic emulsion, sodium lignin, fiber sulfonate, the amount can be 1%-50%wt of the theoretical calcium sulfate production, and the preferred amount is 4%-10%wt of the theoretical calcium sulfate production.
  • the performance of nano calcium sulfate whiskers modified by 3%wt stearic acid and 4%wt styrene-acrylic emulsion is the best.
  • the soluble calcium salt may be one or more of calcium hydroxide, calcium amino acid, calcium chloride, calcium nitrate or straw or other biomass sulfonic acid calcium salt.
  • the soluble calcium salt Calcium salt is calcium chloride
  • sulfuric acid is industrial waste sulfuric acid
  • soluble sulfate is raw material of Glauber's salt.
  • alcohol and modifier are added to the aqueous solution of soluble calcium to form an alcohol-water mixture, and the molar concentration of calcium ions in the alcohol-water mixture is ⁇ 1 mol/liter; preferably, continue after adding the materials Incubate and stir for 2-3 hours to fully grow whiskers, filter and wash to obtain dihydrate calcium sulfate whiskers, and dry at a drying temperature of ⁇ 140°C to obtain semihydrate modified calcium sulfate whiskers or anhydrous modified calcium sulfate whiskers.
  • the molar concentration of calcium ions in the aqueous solution of soluble calcium is 0.1-2.0 mol/liter
  • the reaction temperature is -10°C to 35°C
  • the pH of the control end point is 10 ⁇ 0.5
  • the material is added.
  • the drying time is 0.1-6.0 hours, preferably the drying time is 0.1-2.0 hours
  • the drying temperature is 140-180°C
  • the reaction temperature is preferably 25-35°C.
  • the drying temperature is 140° C. and above, and the longer drying time, whether calcium sulfate whiskers, nano-calcium sulfate or ordinary calcium sulfate are obtained, has a smaller crystal grain size, and better Effect.
  • a soluble magnesium salt is added as a crystal form regulator to the alcohol-water mixture to form a magnesium adjustment mixture.
  • the reaction temperature is controlled below 35°C in a fully mixed system, and sulfuric acid or soluble sulfate is added.
  • the end-point pH is controlled to be 7 to 10.5.
  • the molar ratio of calcium ions to magnesium ions in the magnesium adjustment mixed solution is 10:1.
  • the filtrate obtained by separating the whiskers is distilled and recovered and recycled with alcohol water, and the remaining sodium chloride aqueous solution can be used as an industrial raw material.
  • the alcohol is a C1-C4 alcohol, wherein the volume ratio of the soluble calcium aqueous solution to the alcohol is 1: (0.5-4.0), preferably, the alcohol is ethanol, and the soluble calcium aqueous solution and ethanol The volume ratio is 1:1.
  • the water-soluble calcium is amino acid calcium
  • sulfuric acid or waste sulfuric acid can be used to directly synthesize amino acid-modified calcium sulfate; or when the water-soluble calcium is amino acid calcium, sulfuric acid or waste sulfuric acid can be used.
  • the sulfuric acid directly synthesizes amino acid-modified calcium sulfate, and then adds the above-mentioned modifier to produce modified calcium sulfate without by-product salt. After the reaction, the filtered amino acid solution is recycled to dissolve calcium carbide slag or lime.
  • the present invention also provides the use of the in-situ modified calcium sulfate whiskers prepared by the above preparation method, characterized in that the in-situ modified calcium sulfate whiskers are used as fillers or modifiers to improve the toughness and strength of composite materials , To improve the processing performance of composite materials and reduce costs.
  • the composite materials include but are not limited to one or more of plastics, rubber, coatings, sealants, inks, adhesives, asphalt, paper or composite materials.
  • the present invention also provides a calcium sulfate whisker, which is characterized in that the calcium sulfate is whisker-shaped, the average diameter of the whiskers is 0.5-3.0 ⁇ m, and the aspect ratio is 30-130.
  • the calcium sulfate whiskers are prepared by the aforementioned preparation method.
  • the product prepared by the invention When the product prepared by the invention is applied to industrial materials, it shows better performance than other existing nano materials, and has huge development potential: the 5% stearic acid in-situ modified nano calcium sulfate whiskers developed by the invention ,
  • the addition amount of PP is 20%
  • the impact toughness can be increased by 64.88%.
  • the addition amount reaches 60% the impact toughness still does not significantly decrease;
  • the addition amount of 3% stearic acid in-situ modified calcium sulfate is 20%, compared to The impact toughness of pure PP increased by 59.25%, and the tensile strength remained basically unchanged, and the processing performance was good.
  • the impact toughness of composite materials can be basically maintained when the addition amount is increased to 50% and 60%, and the performance of 3% stearic acid nano calcium sulfate whiskers is the best.
  • 4% styrene-acrylic emulsion modified calcium sulfate can increase the impact toughness by 49.33% when the addition amount of 20% in PP; when the addition amount of cellulose sulfonate modified calcium sulfate is 10%, the impact toughness increases by 74.97%.
  • the impact toughness is still slightly improved; when the styrene-acrylic emulsion modified calcium sulfate is used in the adhesive, when the addition amount is 50%, the bonding strength is increased by 28.46% and can pass the water resistance test; Calcium sulfate is used in adhesives. When the addition amount is 30%, the bonding strength increases by 86.50%. When the addition amount is 50%, the bonding strength can still increase by 54.00%, and both can pass the 8-hour water resistance test.
  • the series of modified nano calcium sulfate whiskers of the present invention have good development and application prospects, and can greatly improve or better maintain the performance of composite materials while greatly increasing the addition amount, and significantly reduce the cost.
  • the method of preparing sodium sulfate whiskers by applying modifiers by studying the effect of pH on the performance of calcium sulfate whiskers, found that excellent calcium sulfate whiskers can be obtained when the pH is about 10.
  • calcium sulfate whiskers dried at 140°C have better performance than calcium sulfate whiskers dried at 100°C.
  • the size of single crystal grains of calcium sulfate whiskers produced by drying at two temperatures changes. Drying at 140°C The single crystal grains of calcium sulfate whiskers below 40nm, and the single crystal grains of calcium sulfate whiskers dried at 100°C are above 40nm. Drying at 140°C can produce more excellent performance.
  • Drying the calcium sulfate whiskers at high temperature reduces the binding water of the calcium sulfate whiskers and at the same time reduces the particle size of the calcium sulfate whiskers. At the same time, the calcium sulfate whiskers greatly improve the performance of the polymer.
  • Figure 1 SEM images of calcium sulfate of Comparative Example 1 and modified calcium sulfate of Examples 1, 2, 3 and 4;
  • Figure a is the unmodified calcium sulfate of Comparative Example 1
  • Figure b is the modified product of Example 1.
  • Figure c is the modified product of Example 2
  • Figure d is the modified product of Example 3
  • Figure e is the product produced in the glycine water system of Example 4;
  • FIG. 1 Calcium sulfate XRD at different drying temperatures in Example 1.
  • Picture A is drying at 100°C
  • Picture B is drying at 140°C.
  • Line a is drying for 2 hours
  • line b is drying for 4 hours
  • line c is drying. Drying for 6h
  • d line is for 8h
  • e line is for 10h
  • f line is for 12h;
  • FIG. 5 SEM image of modified calcium sulfate and PP composite section, a picture is embodiment 1, b picture is embodiment 3;
  • Figure 6 XRD pattern of calcium sulfate
  • line a is the unmodified calcium sulfate of Comparative Example 1
  • line b is the stearic acid modified calcium sulfate of Example 1
  • line c is the styrene-acrylic emulsion modified calcium sulfate of Example 2
  • Line d is the calcium sulfate modified by calcium cellulose sulfonate in Example 3
  • line e is the calcium sulfate prepared from calcium carbide residue in Example 4;
  • Figure 7 SEM images of modified calcium sulfate in Examples 5, 6, 7, and 8;
  • Figure a is the stearic acid modified calcium sulfate in Example 5, a1 is an alcohol-water system, a2 is a water system;
  • b is Example 6 Styrene-acrylic emulsion modified calcium sulfate, b1 is the alcohol-water system, b2 is the water system;
  • c is the sunflower stalk calcium sulfonate modified calcium sulfate of Example 7, c1 is the addition of lime milk in sulfuric acid, and c2 is the addition of lime milk Sulfuric acid;
  • d is the styrene-acrylic emulsion modified calcium sulfate of Example 8, d1 is an alcohol-water system, and d2 is a water system;
  • Figure 9 The effect of different molar ratios of Mg 2+ /Ca 2+ ions on the diameter and aspect ratio of calcium sulfate whiskers, where diameter refers to the diameter of calcium sulfate whiskers, and aspect ratio is the aspect ratio.
  • stearic acid is used as the modifier to modify calcium sulfate whiskers in situ. Test the effect of the product as a filler on the mechanical properties of polypropylene resin.
  • Modified calcium sulfate is added in accordance with the total mass ratio of calcium sulfate and the mixture (a mixture of calcium sulfate and pp) of 10%, 20%, 30%, 40%, 50%, 60%, blending and mixing, after injection molding the sample Test on the universal tensile testing machine.
  • the impact toughness first increases and then decreases with the increase of calcium sulfate addition, and the tensile strength decreases slowly, but when the addition reaches 50%, it can still be maintained above 20 MPa, which can meet the requirements. Some material requirements.
  • the flexural strength gradually increases with the increase in the amount of addition, the melt index increases and the processing performance becomes better.
  • stearic acid is increased from 1% to 2%, the impact toughness is improved, and the tensile strength and bending strength are basically unchanged.
  • the addition amount is less than 20%, the impact toughness increases the most relative to pure PP, the tensile strength is improved or remains basically unchanged, and the processing performance is good.
  • the addition amount When the addition amount is more than 20%, the impact toughness begins to decrease. When the addition amount is 40%, the impact toughness remains unchanged. The tensile strength is above 20MPa, the bending strength almost doubles, and the processing performance is good. The substantial addition of the modified calcium sulfate product can maintain or improve the use effect of PP, and greatly reduce the cost.
  • the impact toughness, tensile strength, bending strength and melt index have the same aforementioned laws.
  • the addition amount of 3% stearic acid modified calcium sulfate is 20%
  • the impact toughness of pure PP increases by 59.25%
  • the tensile strength remains basically unchanged, and the processing performance is good.
  • the addition amount is above 20%
  • the impact toughness begins to decrease.
  • the addition amount is 40%
  • the impact toughness increases by 16.62%
  • the tensile strength is above 20MPa
  • the bending strength increases by 52.69%
  • the processing performance is good.
  • the impact toughness of composite materials can be basically maintained when the addition amount is increased to 50% and 60%.
  • the impact toughness, tensile strength, bending strength and melt index have the same aforementioned laws.
  • the addition amount of modified calcium sulfate is 20%
  • the impact toughness of pure PP increases by 64.88%
  • the tensile strength remains basically unchanged, and the processing performance is good.
  • the addition amount is more than 20%
  • the impact toughness begins to decrease.
  • the addition amount is 40%
  • the 5% stearic acid modified impact toughness increases by 38.63%
  • the tensile strength is above 20MPa
  • the bending strength increases by 52.69%
  • the processing performance is good.
  • Figure 3 shows the change trend of mechanical properties.
  • stearic acid Since the cost of stearic acid is about 10,000 yuan/ton, 3% stearic acid is the optimal amount of modifier used from the perspective of cost saving and enhanced composite material performance.
  • the PP modified with stearic acid obviously enhances the impact resistance of PP and can greatly save costs.
  • the activation degree of calcium sulfate after modification is 100%.
  • the single crystal grain size is about 47 nm, and the aspect ratio is about 35. It can be seen from Figure 5 that the modified calcium sulfate is evenly dispersed in PP.
  • the modified product can be dried at 140°C to obtain calcium sulfate hemihydrate with a single crystal grain of about 35nm.
  • the crystal form gradually changes from calcium sulfate dihydrate. Converted to calcium sulfate hemihydrate, the single crystal grain size gradually decreases but is still larger than the high temperature drying. Small single crystal grain size is beneficial to the improvement of the mechanical properties of PP resin.
  • a styrene-acrylic emulsion was used as a modifier to modify calcium sulfate whiskers in situ, and the effect of it as a filler on the mechanical properties of polypropylene resin was tested.
  • the modified calcium sulfate product was obtained in 4 hours.
  • the modified calcium sulfate is added according to the total mass ratio of calcium sulfate and the mixture (a mixture of calcium sulfate and pp) of 10%, 20%, 30%, and 40% respectively, blended and smelted, and the sample is injected on the universal tensile testing machine. test.
  • 4% emulsion modified calcium sulfate has the best toughening and strengthening effect and improving processing performance.
  • the addition amount of PP is 20%
  • the impact toughness can be increased by 49.33%
  • the tensile strength is basically unchanged
  • the bending strength is increased by 30.30%
  • the melt index is increased
  • the processing performance is greatly improved, as shown in Figure 4, the mechanical properties change trend.
  • the optimal use of emulsion modified calcium sulfate is 4%
  • the aspect ratio of the whiskers is about 35.
  • calcium cellulose sulfonate was used as the modifier, and the calcium sulfate whiskers were modified in situ by reacting with aluminum sulfate to test its effect as a filler on the mechanical properties of polypropylene resin.
  • the modified calcium sulfate whiskers prepared above were added to the polypropylene resin in the amount of 10%, 20%, 30%, 40%, 50%, and 60% respectively, after the same processing technology, and then the obtained The modified polypropylene resin was tested for mechanical properties.
  • glycine, sulfuric acid and calcium carbide slag were used as raw materials to prepare calcium sulfate and its influence on the mechanical properties of PP resin.
  • amino acid calcium solution (it can be obtained by mixing and filtering glycine or glycine circulating liquid with calcium carbide slag or lime slurry at room temperature) 1L in a 5L beaker, add 1L of 2mol/L sulfuric acid solution to the solution, and stir the resulting slurry for 2h Afterwards, suction filtration and washing are performed, and the obtained calcium sulfate is dried in an oven at 140° C. for 4 hours to obtain a modified calcium sulfate product.
  • the amino acid solution can be recycled to dissolve calcium carbide slag. This new process that does not produce salty wastewater is particularly suitable for the high value-added utilization of by-product waste sulfuric acid and calcium carbide slag such as titanium dioxide.
  • the modified calcium sulfate was added according to the total mass ratio of calcium sulfate and the mixture (a mixture of calcium sulfate and pp) at 30% and 50%, blended and mixed, and tested on a universal tensile testing machine after injection molding samples.
  • the use of glycine method in the water system can make waste sulfuric acid and calcium carbide waste slag produce nanometer calcium sulfate with excellent addition performance.
  • the addition amount of PP resin is 30%, the impact toughness is basically not reduced, the bending strength is increased by 57.31%, and the melt index is greatly increased.
  • the single crystal size of calcium sulfate obtained by this modification method is 52.5 nm, and the aspect ratio is about 40.
  • stearic acid is used as the modifier, and glycine, sulfuric acid and calcium carbide residue are used as raw materials to prepare calcium sulfate.
  • the crystal form of calcium sulfate modified by the alcohol-water system is CaSO 4 ⁇ 0.67H 2 O, and the crystal grain size is 43.0 nm; the crystal form of modified calcium sulfate prepared by the water system is CaSO 4 ⁇ 2H 2 O, and the crystal grain size is 70.4nm. It can be seen that the alcohol-water system is beneficial to obtain a more stable crystal form of calcium sulfate with less bound water, and at the same time the crystal grain size is smaller.
  • a styrene-acrylic emulsion was used as a modifier, and sulfuric acid and calcium glycinate were used as raw materials to prepare modified calcium sulfate.
  • the crystal form of calcium sulfate modified by the alcohol-water system is CaSO 4 ⁇ 0.67H 2 O, and the crystal grain size is 34.8 nm; the crystal form of modified calcium sulfate prepared by the water system is CaSO 4 ⁇ 2H 2 O, and the crystal grain size is 51.6nm.
  • the alcohol-water system is conducive to obtaining a more stable crystal form of calcium sulfate with less bound water, and at the same time the crystal grain size is smaller. It can be seen from Figure 7 that using calcium glycinate and sulfuric acid as raw materials, the morphology of the modified calcium sulfate is stacked flakes rather than whiskers.
  • the calcium sulfate obtained by the method of adding lime to sulfuric acid is CaSO 4 ⁇ 0.67H 2 O and CaSO 4 ⁇ 0.15H 2 O, and the single crystal grain size is 37.4 nm.
  • the product obtained after changing the feeding sequence is a mixture of CaSO 4 ⁇ 2H 2 O and Ca(OH) 2 , in which the content of CaSO 4 ⁇ 2H 2 O is 68.3%, the content of Ca(OH) 2 is 31.7%, and the grain size is 73.9 nm.
  • the water-soluble bio-based sulfonate is used to modify the alcohol-water system to obtain nanometer calcium sulfate with a smaller crystal grain size, so that the addition of lime milk to the acidic raw material has a smaller particle size and better product purity.
  • a styrene-acrylic emulsion is used as a modifier, and sulfuric acid and calcium carbide slag are used as raw materials to prepare modified calcium sulfate.
  • the crystal form of modified calcium sulfate obtained by adding sulfuric acid to the lime milk in the alcohol-water system is CaSO 4 ⁇ 0.67H 2 O, and the crystal grain size is 41.1 nm.
  • the crystal form of calcium sulfate modified by adding lime milk to sulfuric acid is CaSO 4 ⁇ 0.67H 2 O, and the crystal grain size is 52.8 nm.
  • the dropwise addition of sulfuric acid to the milk of lime can obtain modified calcium sulfate with smaller crystal grains.
  • the modified calcium sulfate was added according to the total mass ratio of calcium sulfate and the mixture (a mixture of calcium sulfate and pp) at 30%, blended and smelted, and tested on a universal tensile testing machine after injection molding samples.
  • Calcium sulfate modified by sodium lignin macromolecule has a single crystal particle size of about 100nm.
  • the addition amount of PP is 30%, it can basically maintain impact toughness and tensile strength, and increase bending strength.
  • calcium cellulose sulfonate was used as a modifier, and calcium sulfate whiskers were modified in situ by reacting with ammonium sulfate to test the effect of the filler on the mechanical properties of polypropylene resin.
  • the modified calcium sulfate was added according to the total mass ratio of calcium sulfate and the mixture (a mixture of calcium sulfate and pp) at 50%, blended and mixed, and tested on a universal tensile testing machine after injection molding samples.
  • Modified by cellulose sulfonate calcium the modified calcium sulfate single crystal grain size obtained by in-situ reaction with ammonium sulfate is about 140nm.
  • the tensile strength is 92.13% of that of pure PP, and the bending strength It is 201.47% of pure PP.
  • a styrene-acrylic emulsion was used as a modifier to modify calcium sulfate whiskers in situ, and the effect of it as a filler on the bonding strength and water resistance of the adhesive was tested.
  • the prepared modified calcium sulfate whiskers were added to the styrene-acrylic emulsion diluted to a solid content of 30% in accordance with the addition amount of 40% and 50% respectively.
  • the obtained modified calcium sulfate whiskers Adhesives are tested for bonding strength and water resistance (100°C boiling water for 8 hours). The data is shown in Table 17.
  • calcium sulfate increases the bonding strength of 30% styrene-acrylic emulsion by 28.46%, and at the same time improves its water resistance. Better than unmodified calcium sulfate and calcium carbonate.
  • calcium cellulose sulfonate was used as a modifier to modify calcium sulfate whiskers in situ, and the effect of the filler as a filler on the bonding strength and water resistance of the adhesive was tested.
  • Calcium sulphate modified by calcium cellulose sulfonate is used in adhesives.
  • the addition amount is 30%, the bonding strength increases by 86.50%.
  • the addition amount is 50%, the bonding strength can still increase by 54.00%, and it can pass 8 hours of water resistance. Performance test, improve the performance of adhesives while greatly reducing costs.
  • Example 13 The influence of different ions on calcium sulfate whiskers
  • the ratio of Mg 2+ /Ca 2+ was adjusted for multiple tests, and then the whisker diameter and aspect ratio of calcium sulfate powder were measured.
  • the results are shown in Figure 9. It can be seen from Figure 9 that when Mg 2+ / When the molar ratio of Ca 2+ ions is 0.1, the calcium sulfate whiskers have the smallest diameter and the largest aspect ratio. At this time, the length of calcium sulfate whiskers is about 1.16 ⁇ m, and the aspect ratio is about 94. It can be seen that the system is doped with a small amount of Mg. 2+ is conducive to the synthesis of calcium sulfate whiskers with high aspect ratio.
  • Example 14 The effect of system pH on the preparation of calcium sulfate whiskers
  • Calcium sulfate whiskers under different pH conditions are prepared by adjusting different pH values, and then the whisker diameter and aspect ratio of calcium sulfate whiskers under different conditions are measured respectively. The details are as follows:
  • pH value Topography Average diameter/width ( ⁇ m) Average length to diameter (width) ratio 7 Whiskers 0.95 70 9 Whiskers 1.96 20 10 Whiskers 0.50 120 11 Particles 0.56 no 12 Particles 0.48 no
  • the diameter of calcium sulfate crystals gradually decreases.
  • the maximum whisker aspect ratio is about 120, and the whisker diameter is about 500 nm.
  • the pH value continues to increase, the diameter does not change significantly, the length becomes smaller, and it becomes a short particle morphology.
  • Unmodified calcium sulfate is added according to the total mass ratio of calcium sulfate and the mixture (a mixture of calcium sulfate and pp) of 10%, 20%, 30%, 40%, blended and smelted, and the sample is injected on the universal tensile testing machine carry out testing.
  • the impact toughness of calcium sulfate prepared from water system is 4.55kJ/m 2 when the addition amount is 10%, which is 21.98% higher than that of pure PP.
  • the mechanical properties of the composite material are improved to a certain extent, and the effect is not as good as the performance of the alcohol-water system polymer modified. This has a great relationship with its morphology.
  • the calcium sulfate prepared by the water system has a flaky structure, and the calcium sulfate after the polymer modification of the alcohol-water system is in the shape of whiskers, and the aspect ratio is about 40.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

一种混合溶剂中原位改性硫酸钙晶须及其制备方法,改性剂包含氨基酸、硬脂酸、苯丙乳液和纤维素磺酸钙等高分子原料。开辟了废弃物资源化及副产品合成高附加值高性能纳米硫酸钙材料的新途径。特别适合"三废"资源化,具有生产工艺简单、条件温和,生产成本低、产品性能好等优点。改性产品可明显增强复合材料的力学性能及胶黏剂的胶合强度和耐水性,具有广泛用途。

Description

一种高性能的硫酸钙晶须材料及制备工艺 技术领域
本发明涉及一种高性能的硫酸钙晶须材料及制备方法,属于纳米材料生产及应用领域。
背景技术
硫酸钙有片状、晶须状、纺锤状等多种形貌,硫酸钙晶须具有工业应用价值。硫酸钙晶须是一种横截面均匀的纤维状单晶体,一般长度为30μm~140μm,长径比为10~300,可作为高模量、高强度、低缺陷纤维状的填充剂改性和填充到合成高分子材料中,可达到降低材料成本、提高或保持性能降低复合材料成本的目的。硫酸钙晶须由于成本低廉,原料来源广泛,在塑料、橡胶、涂料、粘合剂等领域的应用值得开发。
目前,硫酸钙晶须制备方法主要有常压酸化法和水压热法。常压酸化法是将石膏原料以一定浓度溶解后,加入酸溶剂,通过调控反应体系的pH值、温度、反应时间等条件得到硫酸钙晶须;水压热法是指将一定浓度的石膏分散液置于可加压容器中,控制反应压力、温度及时间来制备硫酸钙晶须。但此两种制备方法存在产品质量差,生产波动大,效率低等问题,目前硫酸钙晶须工业应用还不多,产品价格偏高,尚无法与碳酸钙特别是纳米碳酸钙产品竞争。
由于硫酸钙晶须容易形成,且表面结构完整,极性强和亲水疏油的特性使其与有机基体复合相容性差,因此合成更小尺寸的纳米硫酸钙晶须同时进行表面改性是增加其与有机基体的相容性,提升其在复合材料中的使用性能的有效途径。目前改性硫酸钙晶须的方法主要有干法改性和湿法改性两种工艺。干法改性是指将硫酸钙和改性剂加入现有的改性大多采用粉体加表面改性剂加热在混合机中混合,使改性剂在粉体表面吸附、反应或包膜的干法改性,使用效果不佳。此种方法改性硫酸钙与复合材料界面粘结度较低,粉体团聚问题改善不大;湿法改性是指将改性剂加入到溶剂中生成液相成分,实现晶须表面的包覆改性。常用改性剂为硬脂酸、硅烷偶联剂、油酸等等。改性后的硫酸钙作为填充剂,对材料性能有一定的提升,但是同样存在改性主要在团聚体表面,添加量增大性能大幅下降的问题。
我们在研究中发现,在合成过程中添加改性剂,特别是添加高分子改性剂进行原位改性,一定浓度的改性剂特别是高分子改性剂的存在不但可以有效控制纳米硫酸钙的结晶过程、减少单晶和团聚体尺寸,而且可以改善加工性能,显著增韧增强的效果。在较高温度下脱水干燥的产品具有更低的晶粒尺寸和更好的添加效果。
氯化钙是盐碱工艺最大废弃物资源,由于至今没有大规模高附加值利用途径,目前少量加工成固体氯化钙外,大多数采取直排江海或渗入地下,污染环境又浪费资源,氯化钙废液已经成为制约氯碱工业发展的最大障碍。另一方面,钛白粉生产过程中大量副产硫酸及硫酸 盐,每生产1吨的钛白粉副产硫酸亚铁2.5~4.0吨,质量分数20%的废硫酸8~10吨。除此之外,硫酸钠是许多工业的副产物,地球上芒硝资源非常丰富,特别是海水中硫酸钠是第二大含量的盐,制盐过程中大量的硫酸钠又排放到了海里。据地质学报报道我国钙芒硝岩分布面积为3280km 2,出现连续、厚层沉积,保守估算罗布泊钙芒硝总资源量3200亿吨。
因此,充分利用氯化钙废弃物、废硫酸及芒硝资源生产高附加值纳米硫酸钙,对于推行循环经济和促进氯碱及复合材料行业的发展意义重大。
我们曾在专利201710032872.X中发明了一种在醇-水体系中简单、经济生产高品质纳米硫酸钙以及硫酸钙晶须的方法。但并没有进行硬脂酸改性剂的用量优化及高分子原位改性、用量优化,没有进行添加高分子改性剂的原位合成及性能评价。
本发明在前期研究基础在醇水体系中进行了硬脂酸、苯丙乳液、木质素和纤维素磺酸钙等不同改性剂原位改性合成高性能纳米硫酸钙晶须深入研究,确定了性价比最高原位改性产品。
发明内容
本发明提供了一种常温反应合成原位改性硫酸钙晶须新产品及新方法,可充分利用氯化钙、芒硝、硫酸钠、硫酸铝等可溶性原料,在醇-水混合溶液中,根据需要选择硬脂酸、苯丙乳液、纤维素磺酸钙等不同改性剂,进行常温合成并原位可改性获得使用性能优异的改性纳米硫酸钙晶须。
我们通过反复摸索和工艺优化,发明了一种简单经济、快速方便、合成改性硫酸钙晶须的方法。
具体的,本发明提供了一种原位改性硫酸钙晶须的制备方法,所述方法包括如下步骤:
在可溶性钙的水溶液中加入一定量的醇和及改性剂形成醇水混合液,在充分混合的体系中控制反应温度35℃以下,加入硫酸或可溶性硫酸盐的水溶液,控制终点pH为7~10.5,加完物料后继续反应1~3小时后,过滤、洗涤、干燥温度140℃以上充分干燥脱水即得到改性硫酸钙晶须。
优选的,上述制备方法中,所述改性剂为水溶性高分子改性剂或可形成乳化液的高分子改性剂,优选的,所述高分子改性剂为苯丙乳液、木质素钠、纯丙乳液、硅纯丙乳液、氟纯丙乳液、尿醛树脂、酚醛树脂、木质素磺酸盐或纤维素磺酸盐中的一种或多种,优选的,改性剂为硬脂酸、苯丙乳液、木质酸钠、纤维磺酸盐,用量可为理论硫酸钙生成量的1%~50%wt,优选用量为理论硫酸钙生成量的4%~10%wt,其中3%wt硬脂酸、4%wt苯丙乳液改性的纳米硫酸钙晶须性能最好。
优选的,上述制备方法中,所述可溶性钙盐可为氢氧化钙、氨基酸钙、氯化钙、硝酸钙 或秸秆或其它生物质磺酸钙盐中的一种或多种,优选的,可溶性钙盐为氯化钙,硫酸为工业废硫酸,可溶性硫酸盐为芒硝原料。
优选的,上述制备方法中,在可溶性钙的水溶液中加入醇及改性剂形成醇水混合液,醇水混合液中钙离子的摩尔浓度≤1摩尔/升;优选的,加完物料后继续保温搅拌2-3小时充分生长晶须,过滤洗涤得到二水合硫酸钙晶须,干燥温度≥140℃干燥即得到半水合改性硫酸钙晶须或无水改性硫酸钙晶须。
优选的,上述制备方法中,所述可溶性钙的水溶液中钙离子的摩尔浓度为0.1-2.0摩尔/升,反应温度为-10℃至35℃,控制终点的pH为10±0.5,加完物料后继续在35℃以下搅拌3小时充分生长晶须,干燥时间为0.1-6.0小时,优选干燥时间为0.1-2.0小时,干燥温度为140-180℃,优选反应温度为25-35℃。
优选的,上述制备方法中,所述干燥温度为140℃及以上,较长的干燥时间,无论得到硫酸钙晶须、纳米硫酸钙或普通硫酸钙都具有较小的晶粒尺寸,更好的使用效果。
优选的,上述制备方法中,在醇水混合液中添加可溶性镁盐作为晶型调节剂,形成镁调节混合液,在充分混合的体系中控制反应温度35℃以下,加入硫酸或可溶性硫酸盐的水溶液,控制终点pH为7~10.5,优选的,镁调节混合液中钙离子和镁离子的摩尔比为10∶1。
优选的,上述制备方法中,分离晶须得到的滤液蒸馏回收并循环套用醇水,剩余的氯化钠水溶液可作工业原料。
优选的,上述制备方法中,所述醇是C1-C4的醇,其中可溶性钙的水溶液与醇的体积比为1∶(0.5-4.0),优选的,醇为乙醇,可溶性钙的水溶液与乙醇的体积比为1∶1。
优选的,上述制备方法中,所述水溶性钙为氨基酸钙的情况下,可用硫酸或废硫酸直接合成氨基酸改性的硫酸钙;或者,水溶性钙为氨基酸钙的情况下,用硫酸或废硫酸直接合成氨基酸改性的硫酸钙,再添加上述的改性剂生产改性硫酸钙,无副产盐,反应后抽滤的氨基酸溶液循环用于溶解电石渣或石灰。
优选的,上述制备方法中,在高分子改性剂存在下,用7%~10%石灰乳不加乙醇的条件下,合成使用性能良好的改性纳米硫酸钙。
本发明还提供了上述制备方法所制备的原位改性硫酸钙晶须的用途,其特征在于所述原位改性硫酸钙晶须作为填料或改性剂用于提高复合材料的韧性、强度,改善复合材料加工性能,降低成本,所述复合材料包括但不限于塑料、橡胶、涂料、密封剂、油墨、胶黏剂、沥青、纸张或复合材料中的一种或多种。
本发明还提供了一种硫酸钙晶须,其特征在于所述硫酸钙为晶须状,晶须的平均直径为0.5-3.0μm,长径比为30-130。优选的,所述硫酸钙晶须上述的制备方法制备得到。
本发明的有益效果
本发明制备的产品在工业材料上应用时,显示出了优于现有的其它纳米材料的性能,具有巨大的开发潜力:本发明开发的5%硬脂酸原位改性纳米硫酸钙晶须,在PP中添加量为20%时冲击韧性可提高64.88%,添加量达到60%时冲击韧性仍没有明显降低;3%硬脂酸原位改性硫酸钙添加量为20%时,相对于纯PP冲击韧性增加59.25%,且拉伸强度基本保持不变,加工性能良好。添加量增加至50%、60%复合材料的冲击韧性仍可基本得到保持,3%硬脂酸纳米硫酸钙晶须性能最好。4%苯丙乳液改性硫酸钙在PP中添加量为20%时冲击韧性可提高49.33%;纤维素磺酸钙改性硫酸钙添加量为10%的时候,冲击韧性增加74.97%,添加量为40%时冲击韧性仍略有提升;苯丙乳液改性硫酸钙应用于胶黏剂中,添加量为50%时,胶合强度提升28.46%且可通过耐水性测试;纤维素磺酸钙改性硫酸钙应用于胶黏剂中,添加量为30%时胶合强度增加86.50%,添加量为50%时,胶合强度仍可提升54.00%,且均可通过8小时耐水性测试。即使是在不加入醇的水溶液中,可以很好消纳废硫酸的甘氨酸法及石灰乳中加入高分子改性剂合成的原位的改性硫酸钙晶须产品,在PP中的添加效果仍然不错。因此,本发明的系列改性纳米硫酸钙晶须具有很好开发应用前景,可在大幅提升添加量的同时大幅提升或较好保持复合材料性能,显著降低成本。
在醇水溶液中,应用改性剂制备硫酸钠晶须的方法,通过研究pH值对硫酸钙晶须的性能影响研究,发现pH为10左右的情况下是能够获得优异的硫酸钙晶须。
通过调剂pH的提高,尤其是溶液体系达到碱性后,在硫酸钙晶须的品格面形成保护膜,阻碍晶体***,所以晶须直径减小,当pH值超过一定值后,晶须直径不会再继续减小。
本发明中,140℃干燥的硫酸钙晶须具有比100℃干燥的硫酸钙晶须更优异的性能,两个温度干燥产生的硫酸钙晶须的单晶晶粒的大小有变化,140℃干燥下的硫酸钙晶须单晶晶粒40nm以下,100℃干燥下的硫酸钙晶须单晶晶粒在40nm以上,140℃干燥能够产生更优异的性能。
高温干燥硫酸钙晶须使得硫酸钙晶须的结合水减少,同时使得硫酸钙晶须的颗粒粒径减小,同时也使得硫酸钙晶须对聚合物性能的提高比较大。
附图说明
图1对比例1的硫酸钙、实施例1、2、3、4改性硫酸钙的SEM图;a图为对比例1的未改性硫酸钙,b图为实施例1的改性产品,c图为实施例2的改性产品,d图为实施例3的改性产品,e图为实施例4甘氨酸法水体系中生产的产品;
图2实施例1的不同烘干温度时硫酸钙XRD,A图为100℃烘干,B图为140℃烘干,其中a线为烘干2h,b线为烘干4h,c线为烘干6h,d线为烘干8h,e线为烘干10h,f线为烘干 12h;
图3实施例1的改性产品在PP中应用效果评价;
图4实施例2的改性产品在PP中应用效果评价;
图5改性硫酸钙与PP复合切面SEM图,a图为实施例1,b图为实施例3;
图6硫酸钙的XRD图,a线为对比例1的未改性硫酸钙,b线为实施例1的硬脂酸改性硫酸钙,c线为实施例2的苯丙乳液改性硫酸钙,d线为实施例3的纤维素磺酸钙改性硫酸钙,e线为实施例4的电石渣制备硫酸钙;
图7实施例5、6、7、8改性硫酸钙的SEM图;a图为实施例5的硬脂酸改性硫酸钙,a1为醇水体系,a2为水体系;b为实施例6的苯丙乳液改性硫酸钙,b1为醇水体系,b2为水体系;c为实施例7的葵花杆磺酸钙改性硫酸钙,c1为硫酸中加石灰乳,c2为石灰乳中加硫酸;d为实施例8的苯丙乳液改性硫酸钙,d1为醇水体系,d2为水体系;
图8实施12改性产物不同添加量对胶黏剂胶合强度测定结果;
图9不同Mg 2+/Ca 2+离子摩尔比对硫酸钙晶须直径及长径比的影响结果,其中diameter是指硫酸钙晶须直径,aspect ratio为长径比。
具体实施方式
下面结合具体实施例,进一步阐述本发明的技术方案。这些实施例仅用于说明本发明而不用于限制本发明的范围。
在实施例和对比例中所使用的各种材料均是市售可得的,或可通过本领域技术人员已知的方法获得。
实施例1 以硬脂酸为改性剂
本实施例以硬脂酸为改性剂,原位改性硫酸钙晶须。测试产品作为填充剂对聚丙烯树脂力学性能的影响。
取2mol/L的CaCl 2溶液1L于5L烧杯中,加入2L工业乙醇,机械搅拌5min,分别取硬脂酸2.72g、5.44g、8.16g、10.88g、13.60g、16.32g(使其与产物硫酸钙理论质量比为1∶100、2∶100、3∶100、4∶100、5∶100、6∶100,所得产物分别定义为1%硬脂酸改性硫酸钙)。搅拌15min后,再向溶液中加入2mol/L的硫酸钠溶液1L,充分搅拌,控制反应终点的pH值为10,将所得浆液分别搅拌2h后,进行抽滤,得到的硫酸钙在140℃下烘箱中烘4h得到改性硫酸钙产品。
改性硫酸钙分别按照硫酸钙与混合物(硫酸钙与pp的混合物)总质量比10%、20%、30%、40%、50%、60%添加,共混密炼,注塑出样条后在万能拉力测试机上进行测试。
表1 1%硬脂酸改性硫酸钙在PP中的使用效果评价
Figure PCTCN2019091136-appb-000001
表2 2%硬脂酸改性硫酸钙在PP中的使用效果评价
Figure PCTCN2019091136-appb-000002
对比表1和表2,整体看来冲击韧性随硫酸钙添加量的增加先增大后减小,拉伸强度缓慢下降,但是添加量达到50%时仍可维持在20MPa以上,可满足绝大部分材料要求。弯曲强度随添加量增加逐渐增大,熔融指数增大,加工性能变好。硬脂酸从1%增加至2%,冲击韧性有所提升,拉伸强度及弯曲强度基本不变。添加量低于20%时,相对于纯PP冲击韧性增加幅度最大且拉伸强度有所提升或者基本保持不变,加工性能良好。添加量在20%以上时冲击韧性开始下降,40%添加量时,冲击韧性保持不变拉伸强度在20MPa以上,弯曲强度几乎增加两倍,加工性能良好。本改性硫酸钙产品大幅添加可保持或提升PP使用效果,大大降低成本。
表3 3%硬脂酸改性硫酸钙在PP中的使用效果评价
Figure PCTCN2019091136-appb-000003
Figure PCTCN2019091136-appb-000004
表4 4%硬脂酸改性硫酸钙在PP中的使用效果评价
Figure PCTCN2019091136-appb-000005
对比表3和表4,整体看来冲击韧性、拉伸强度、弯曲强度及熔融指数有着相同的前述规律。3%硬脂酸改性硫酸钙添加量为20%时,相对于纯PP冲击韧性增加59.25%,且拉伸强度基本保持不变,加工性能良好。添加量在20%以上时冲击韧性开始下降,40%添加量时,冲击韧性增加16.62%,拉伸强度在20MPa以上,弯曲强度增加52.69%,加工性能良好。添加量增加至50%、60%复合材料的冲击韧性仍可基本得到保持。
表5 5%硬脂酸改性硫酸钙在PP中的使用效果评价
Figure PCTCN2019091136-appb-000006
表6 6%硬脂酸改性硫酸钙在PP中的使用效果评价
Figure PCTCN2019091136-appb-000007
对比表5和表6,整体看来冲击韧性、拉伸强度、弯曲强度及熔融指数有着相同的前述规律。改性硫酸钙添加量为20%时,相对于纯PP冲击韧性增加64.88%,且拉伸强度基本保持不变,加工性能良好。添加量在20%以上时冲击韧性开始下降,40%添加量时,5%硬脂酸改性冲击韧性增加38.63%,拉伸强度在20MPa以上,弯曲强度增加52.69%,加工性能良好。如附图3所示力学性能变化趋势。
由于硬脂酸的成本在1万元/吨左右,从节约成本、增强复合材料性能的角度来看,3%硬脂酸为最优改性剂使用量。硬脂酸改性后的PP明显增强了PP的抗冲击能力,可以大大节约成本。改性后硫酸钙活化度为100%。单晶晶粒大小约为47nm,长径比约为35。由图5可看出,改性后的硫酸钙在PP中分散均匀。
对比之前专利201710201351.2中改性效果添加量为23.1%时,冲击韧性仅提升45.5%,本法改性硫酸钙效果明显提升。由表7及图2可看出,使用140℃可烘干改性产品,得到单晶晶粒约为35nm左右的半水硫酸钙,而低温长时间烘干,晶型逐渐由二水硫酸钙转为半水硫酸钙,单晶晶粒尺寸逐渐减小但仍大于高温烘干。单晶晶粒尺寸小有利于PP树脂力学性能的提升。
表7 不同烘干温度及时间对晶粒大小的影响
Figure PCTCN2019091136-appb-000008
可见,提高烘干温度,适当增加时间可以得到晶粒尺寸更小添加效果更好的半水合硫酸钙。
实施例2 以苯丙乳液为改性剂
本实施例以苯丙乳液为改性剂,原位改性硫酸钙晶须,测试其作为填充剂对聚丙烯树脂力学性能的影响。
取2mol/L的CaCl 2溶液1L于5L烧杯中,加入2L工业乙醇,机械搅拌5min,取苯丙乳液5.44g、10.88g、16.32g、21.76g(使其与产物硫酸钙理论质量比为2∶100、4∶100、6∶100、8∶100,获得的硫酸钙晶须分别定义为2%乳液改性硫酸钙,4%乳液改性硫酸钙,6%如何改性硫酸钙,8%乳液改性硫酸钙)。机械搅拌15min后,再向溶液中加入2mol/L的硫酸钠溶液1L,调节混合溶液的pH为9.5,将所得浆液分别搅拌2h后,进行抽滤,得到的硫酸钙在140℃下烘箱中烘4h得到改性硫酸钙产品。改性硫酸钙分别按照硫酸钙与混合物(硫酸钙与pp的混合物)总质量比10%、20%、30%、40%添加,共混密炼,注塑出样条后在万能拉力测试机上进行测试。
表8 2%乳液改性硫酸钙在PP中的使用效果评价
Figure PCTCN2019091136-appb-000009
表9 4%乳液改性硫酸钙在PP中的使用效果评价
Figure PCTCN2019091136-appb-000010
表10 6%乳液改性硫酸钙在PP中的使用效果评价
Figure PCTCN2019091136-appb-000011
Figure PCTCN2019091136-appb-000012
表11 8%乳液改性硫酸钙在PP中的使用效果评价
Figure PCTCN2019091136-appb-000013
可见,4%乳液改性硫酸钙具有最好的增韧增强效果和提升加工性能的作用。在PP中添加量为20%时冲击韧性可提高49.33%,拉伸强度基本不变,弯曲强度增加30.30%,熔融指数增加,加工性能大幅提升,如附图4力学性能变化趋势。综合来看,乳液改性硫酸钙最优使用量为4%,此时晶须的长径比约为35。
实施例3 以纤维素磺酸钙为改性剂
本实施例以纤维素磺酸钙为改性剂,与硫酸铝反应原位改性硫酸钙晶须,测试其作为填充剂对聚丙烯树脂力学性能的影响。
取1mol/L氯化钙溶液1L于5L烧瓶中,称取95g纤维素磺酸钙(用量与产物硫酸钙的比例为70∶100)倒入5L烧瓶中,以300r/min转速机械搅拌15min,使两溶液充分混合,取1mol/L硫酸铝溶液1L加入混合液,搅拌反应2h,抽虑,140℃烘干4h得改性硫酸钙产品。
将上述制备的改性硫酸钙晶须分别按照10%、20%、30%、40%、50%、60%加入量添加到聚丙烯树脂中经相同的加工工艺处理后,再分别对所得到的改性后的聚丙烯树脂进行力学性能测试。
表12 纤维素磺酸钙改性后硫酸钙表面元素对比
Figure PCTCN2019091136-appb-000014
由表12看出,以纤维素磺酸钙与硫酸铝制备得到的硫酸钙表面吸附一定量的C、Al元 素,其中表面C含量约为33.775%,Al含量约为1.850%。
表13 纤维素磺酸钙改性硫酸钙对PP冲击韧性的影响
Figure PCTCN2019091136-appb-000015
纤维素磺酸钙与硫酸铝反应后得到的改性硫酸钙与PP复合后,添加量为10%的时候,冲击韧性由5.853kJ/m 2提升至10.241kJ/m 2,增加74.97%,即使添加量达到40%,冲击韧性仍可略有提升为6.052kJ/m 2。改性后硫酸钙的单晶晶粒大约为36nm,长径比约为30。
实施例4 甘氨酸法生产硫酸钙
本实施例通过甘氨酸、硫酸与电石渣为原料制备硫酸钙及其对PP树脂力学性能影响。
取2mol/L的氨基酸钙溶液(可由甘氨酸或甘氨酸循环液有电石渣或石灰浆常温混合过滤得到)1L于5L烧杯中,向溶液中加入2mol/L的硫酸溶液1L,将所得浆液分别搅拌2h后,进行抽滤,洗涤,得到的硫酸钙在140℃的烘箱中烘4h得到改性硫酸钙产品。氨基酸溶液可以循环套用于溶解电石渣,这种不产生含盐废水的新工艺特别适合钛白粉等副产废硫酸及电石渣的高附加值利用。
改性硫酸钙分别按照硫酸钙与混合物(硫酸钙与pp的混合物)总质量比30%、50%添加,共混密炼,注塑出样条后在万能拉力测试机上进行测试。
表14 甘氨酸钙改性硫酸钙对PP树脂力学性能影响
Figure PCTCN2019091136-appb-000016
可见,利用甘氨酸法在水体系可使废硫酸及电石废渣生产出添加性能优异的纳米硫酸钙,在PP树脂中添加量为30%时冲击韧性基本不降低,弯曲强度提升57.31%,熔融指数大幅提 高,同时提升了PP复合材料的加工性能,在50%添加量的情况下仍然能够满足大部分PP产品的强度要求。此种改性方法得到的硫酸钙单晶尺寸为52.5nm,长径比约为40。
实施例5 以硬脂酸为改性剂
本实施例以硬脂酸为改性剂,甘氨酸、硫酸与电石渣为原料制备硫酸钙。
取150g甘氨酸于一定水中溶解,再加入电石渣185g(氢氧化钙含量40%),配制成20%甘氨酸钙溶液,机械搅拌30min,过滤得到甘氨酸钙溶液。把甘氨酸钙溶液倒入5L烧杯中,取硬脂酸4.08g(使其与产物硫酸钙理论质量比为3∶100)加入甘氨酸钙溶液中,机械搅拌15min后,加入470g乙醇(甘氨酸钙溶液与乙醇的质量比为1∶2),搅拌30min,再向溶液中滴加37%的硫酸265g,1h内滴加完毕。将所得浆液搅拌2h后,进行抽滤,得到的硫酸钙用烘箱在120℃下烘干6h,得到改性硫酸钙产品。
不加乙醇重复上述步骤,将所得浆液搅拌2h后,进行抽滤,得到的硫酸钙用烘箱在120℃下烘干6h,得到改性硫酸钙产品。
醇水体系改性得到的硫酸钙晶型为CaSO 4·0.67H 2O,晶粒大小为43.0nm;水体系制备得到的改性硫酸钙晶型为CaSO 4·2H 2O,晶粒大小为70.4nm。可见,醇水体系有利于得到晶型更为稳定的较少结合水硫酸钙,同时晶粒尺寸更小。
实施例6 以苯丙乳液为改性剂
本实施例以苯丙乳液为改性剂,以硫酸和甘氨酸钙为原料制备改性硫酸钙。
取150g甘氨酸于一定水中溶解,再加入电石渣185g(氢氧化钙含量40%),配制成20%甘氨酸钙溶液,机械搅拌30min,过滤得到甘氨酸钙溶液。把甘氨酸钙溶液倒入5L烧杯中,取苯丙乳液4.08g(使其与产物硫酸钙理论质量比为3∶100)加入甘氨酸钙溶液中,机械搅拌15min后,加入470g乙醇(甘氨酸钙溶液与乙醇的质量比为1∶2),搅拌30min,再向溶液中滴加37%的硫酸265g,1h内滴加完毕。将所得浆液搅拌2h后,进行抽滤,得到的硫酸钙用烘箱在140℃下烘干4h,得到改性硫酸钙产品。
不加乙醇重复上述步骤,将所得浆液搅拌2h后,进行抽滤,得到的硫酸钙用烘箱在140℃下烘干4h,得到改性硫酸钙产品。
醇水体系改性得到的硫酸钙晶型为CaSO 4·0.67H 2O,晶粒大小为34.8nm;水体系制备得到的改性硫酸钙晶型为CaSO 4·2H 2O,晶粒大小为51.6nm。醇水体系有利于得到晶型更为稳定的较少结合水硫酸钙,同时晶粒尺寸更小。由附图7可看出,以甘氨酸钙及硫酸为原料,制得的改性硫酸钙形貌为堆积的片状而非晶须状。
实施例7 以葵花杆磺酸钙为改性剂
取37%的硫酸265g,向硫酸中加入葵花杆磺酸钙溶液40.8g(使其与产物硫酸钙理论质 量比为30∶100),机械搅拌15min后,加入185g乙醇(石灰溶液与乙醇的质量比为1∶2),搅拌30min。取88g石灰(氢氧化钙含量84%)加入到一定量的水中,配制成20%氢氧化钙溶液,将氢氧化钙溶液滴加到硫酸-葵花杆磺酸钙-乙醇-水体系中,1h内滴加完毕。将所得浆液搅拌2h后,进行抽滤,得到的硫酸钙用烘箱在120℃下烘干6h,得到改性硫酸钙产品。
改变加料顺序为向石灰中加入硫酸重复上述操作。将所得浆液搅拌2h后,进行抽滤,得到的硫酸钙用烘箱在120℃下烘干6h,得到改性硫酸钙产品。
硫酸中加入石灰改性方法得到的硫酸钙为CaSO 4·0.67H 2O及CaSO 4·0.15H 2O,单晶晶粒大小为37.4nm。改变加料顺序后得到的产物为CaSO 4·2H 2O与Ca(OH) 2混合物,其中CaSO 4·2H 2O含量68.3%,Ca(OH) 2含量为31.7%,晶粒大小为73.9nm。醇水体系中采用水溶性生物基磺酸盐改性可获得晶粒尺寸更小的纳米硫酸钙,以向酸性原料中加石灰乳粒径更小,产品纯度更好。
实施例8 以苯丙乳液为改性剂
本实施例以苯丙乳液为改性剂,以硫酸和电石渣为原料制备改性硫酸钙。
取150g甘氨酸于一定水中溶解,再加入电石渣185g(氢氧化钙含量40%),配制成20%甘氨酸钙溶液,机械搅拌30min,过滤得到甘氨酸钙溶液。把甘氨酸钙溶液倒入5L烧杯中,取苯丙乳液4.08g(使其与产物硫酸钙理论质量比为3∶100)加入甘氨酸钙溶液中,机械搅拌15min后,加入470g乙醇(甘氨酸钙溶液与乙醇的质量比为1∶2),搅拌30min,再向溶液中滴加37%的硫酸265g,1h内滴加完毕。将所得浆液搅拌2h后,进行抽滤,得到的硫酸钙用烘箱在140℃下烘干4h,得到改性硫酸钙产品。
改变加料顺序为向石灰中加入硫酸重复上述操作重复上述步骤,将所得浆液搅拌2h后,进行抽滤,得到的硫酸钙用烘箱在140℃下烘干4h,得到改性硫酸钙产品。
醇水体系中石灰乳中加硫酸得到的改性硫酸钙晶型为CaSO 4·0.67H 2O,晶粒大小为41.1nm。硫酸中加石灰乳改性硫酸钙晶型为CaSO 4·0.67H 2O,晶粒大小为52.8nm。石灰乳中滴加硫酸可以得到晶粒更小的改性硫酸钙。
实施例9 以木质素钠为改性剂
取1mol/L氯化钙水溶液1L于3L烧杯中,称取68g木质素钠(使得木质素钠用量与产物硫酸钙的比例为50∶100)倒入3L烧杯中,以500r/min转速机械搅拌15min使两溶液充分混合,取1mol/L硫酸钠溶液1L加入混合液,搅拌反应2h,抽虑,140℃烘干4h得改性硫酸钙产品。
改性硫酸钙分别按照硫酸钙与混合物(硫酸钙与pp的混合物)总质量比30%添加,共混密炼,注塑出样条后在万能拉力测试机上进行测试。
表15 木质素钠改性硫酸钙对PP树脂力学性能影响
Figure PCTCN2019091136-appb-000017
木质素钠大分子改性后的硫酸钙其单晶粒径在100nm左右,在PP中添加量为30%时,能够基本保持冲击韧性及拉伸强度,增加弯曲强度。
实施例10 以纤维素磺酸钙为改性剂
本实施例以纤维素磺酸钙为改性剂,与硫酸铵反应原位改性硫酸钙晶须,测试其作为填充剂对聚丙烯树脂力学性能的影响。
取纤维钙500g,加水稀释至1L,取100g硫酸铵加水溶解,定容于1L容量瓶,加入纤维钙中搅拌反应2h,抽虑,140℃烘干4h得磺酸盐制备硫酸钙产品。
改性硫酸钙分别按照硫酸钙与混合物(硫酸钙与pp的混合物)总质量比50%添加,共混密炼,注塑出样条后在万能拉力测试机上进行测试。
表16 木质素钠改性硫酸钙对PP树脂力学性能影响
Figure PCTCN2019091136-appb-000018
纤维素磺酸钙改性,与硫酸铵原位反应所得改性硫酸钙单晶晶粒大小约为140nm左右,在PP中添加量至50%时拉伸强度为纯PP的92.13%,弯曲强度为纯PP的201.47%。
实施例11 以苯丙乳液为改性剂
本实施例以苯丙乳液为改性剂,原位改性硫酸钙晶须,测试其作为填充剂对胶黏剂胶合强度及耐水性的影响。
取2mol/L的CaCl 2溶液1L于5L烧杯中,加入2L工业乙醇,机械搅拌5min,取苯丙乳液21.76g(使其与产物硫酸钙理论质量比为8∶100)。机械搅拌15min后,再向溶液中加入2mol/L的硫酸钠溶液1L,调节pH为10,将所得浆液分别搅拌2h后,进行抽滤,得到的硫酸钙在140℃下烘箱中烘4h得到改性硫酸钙产品。制备的改性硫酸钙晶须分别按照40%、50%加入量添加到稀释至固含量为30%的苯丙乳液中,经相同的加工工艺处理后,再分别对所得到的改性后的胶黏剂进行胶合强度及耐水性测试(100℃沸水煮8小时)。数据如表17所示。
表17 乳液原位改性硫酸钙对胶黏剂胶合强度及耐水性影响
Figure PCTCN2019091136-appb-000019
乳液原位改性后硫酸钙对质量分数为30%的苯丙乳液胶合强度提升28.46%,同时提高其耐水性能。优于未改性硫酸钙和碳酸钙。
实施例12 以纤维素磺酸钙为改性剂
本实施例以纤维素磺酸钙为改性剂,原位改性硫酸钙晶须,测试其作为填充剂对胶黏剂胶合强度及耐水性的影响。
取6mol/L氯化钙溶液50mL于500mL烧瓶中,称取20.4g纤维素磺酸钙(质量与产物硫酸钙的比例为50∶100)倒入500mL烧瓶中,以300r/min转速机械搅拌15min使两溶液充分混合,取1mol/L硫酸铝溶液100mL加入混合液,搅拌反应2h,60℃真空干燥得改性硫酸钙产品。制备的改性硫酸钙晶须分别按照表中质量分数(质量分数=硫酸钙质量/(硫酸钙质量+纯乳液质量))加入量添加到稀释至固含量为30%的苯丙乳液中,搅拌混合1h后,然后按照国标GB7124-86分别测试其粘胶性,用木板作为测试材料,分别对所得到的改性后的胶黏剂进行胶合强度及耐水性测试(100℃沸水煮8小时)。结果如下表所示。
表18 不同用量纤维钙改性硫酸钙对苯丙乳液胶合强度的影响
添加量(%) 0 10 20 30 40 50
拉伸强度(MPa) 4.00 6.08 6.67 7.46 6.77 6.16
表19 纤维素磺酸钙改性硫酸钙对苯丙乳液胶黏剂耐水性能影响
Figure PCTCN2019091136-appb-000020
Figure PCTCN2019091136-appb-000021
纤维素磺酸钙改性硫酸钙应用于胶黏剂中,添加量为30%时胶合强度增加86.50%,添加量为50%时,胶合强度仍可提升54.00%,且均可通过8小时耐水性测试,提升胶黏剂性能的同时大大降低了成本。
实施例13 不同离子对硫酸钙晶须的影响
用100ml的量筒量取50ml的一定浓度的氯化钙溶液倒入500ml的三口烧瓶中,向其中加入一定体积无水乙醇,搅拌混合5min后,加入一定质量的氯化镁至混合液中溶解或调混合溶液的pH值,混合搅拌5min,再加入一定浓度的硫酸钠溶液50ml,600r/min搅拌反应一段时间,取硫酸钙浆液过滤,在烘箱中100℃下干燥6h,得到硫酸钙粉体。
调节Mg 2+/Ca 2+的比例进行多次试验,然后对硫酸钙粉体的晶须直径和长径比进行测量,结果参见图9,从图9中可以看出,当Mg 2+/Ca 2+离子摩尔比为0.1时可得到硫酸钙晶须直径最小、长径比最大,此时硫酸钙晶须的长度约为1.16μm,长径比约为94,可见体系中掺杂少量Mg 2+有利于合成高长径比的硫酸钙晶须。
实施例14 体系pH值对硫酸钙晶须制备的影响
用100ml的量筒量取50ml的一定浓度的氯化钙溶液倒入500ml的三口烧瓶中,向其中加入一定体积无水乙醇,搅拌混合5min后,用氢氧化钠和硫酸调节pH值,加入一定浓度的硫酸钠溶液50ml。在不同陈化时间下取硫酸钙浆液过滤,在烘箱中100℃下干燥6h,得到硫酸钙粉体。
通过调节不同的pH值后制备不同pH条件下的硫酸钙晶须,然后分别测量不同条件下的硫酸钙晶须的晶须直径和长径比,具体情况如下:
表20 不同pH条件下硫酸钙晶须的平均直径和长径比
pH值 形貌 平均直径/宽(μm) 平均长径(宽)比
7 晶须 0.95 70
9 晶须 1.96 20
10 晶须 0.50 120
11 颗粒 0.56
12 颗粒 0.48
随着pH值的增加硫酸钙晶体的直径逐渐减小,体系中pH值为10时晶须长径比最大约为120,此时晶须直径为500nm左右。pH值继续增加,直径不在发生明显变化,长度变小,变成短颗粒形貌。
对比例1 水体系制备硫酸钙
本实施例通过水体系制备硫酸钙及其对聚丙烯树脂的力学性能影响的过程如下:
取2mol/L的CaCl 2溶液1L于5L烧杯中,搅拌5min,搅拌15min后,再向溶液中加入2mol/L的硫酸钠溶液1L,将所得浆液分别搅拌2h后,进行抽滤,得到的硫酸钙在140℃下烘箱中烘4h得到未改性硫酸钙产品。
未改性硫酸钙分别按照硫酸钙与混合物(硫酸钙与pp的混合物)总质量比10%、20%、30%、40%添加,共混密炼,注塑出样条后在万能拉力测试机上进行测试。
表21 水体系制备硫酸钙对PP力学性能的影响
Figure PCTCN2019091136-appb-000022
水体系制备硫酸钙当添加量为10%时冲击韧性4.55kJ/m 2,相对于纯PP提高21.98%。对复合材料的力学性能有一定提升,效果不如醇水体系高分子改性后的性能好。这与其形貌有很大的关系,水体系制备得的硫酸钙为片状结构,醇水体系高分子改性后硫酸钙为晶须状,长径比约为40左右。

Claims (14)

  1. 一种原位改性硫酸钙晶须的制备方法,所述方法包括如下步骤:
    在可溶性钙的水溶液中加入一定量的醇和改性剂形成醇水混合液,在充分混合的体系中控制反应温度35℃以下,加入硫酸或可溶性硫酸盐的水溶液,控制终点pH为7~10.5,加完物料后继续反应1~3小时后,过滤、洗涤、在140℃以上的温度下充分干燥脱水即得到改性硫酸钙晶须。
  2. 权利要求1所述的制备方法,其特征在于所述改性剂为水溶性高分子改性剂或可形成乳化液的高分子改性剂,优选的,所述高分子改性剂为苯丙乳液、木质素钠、纯丙乳液、硅纯丙乳液、氟纯丙乳液、尿醛树脂、酚醛树脂、木质素磺酸盐或纤维素磺酸盐中的一种或多种,优选的,改性剂为硬脂酸、苯丙乳液、木质酸钠、纤维磺酸盐,用量可为理论硫酸钙生成量的1%~50%wt,优选用量为理论硫酸钙生成量的4%~10%wt,其中3%wt硬脂酸、4%wt苯丙乳液改性的纳米硫酸钙晶须性能最好。
  3. 根据权利要求1所述的制备方法,其特征在于可溶性钙盐可为氢氧化钙、氨基酸钙、氯化钙、硝酸钙或秸秆或其它生物质磺酸钙盐中的一种或多种,优选的,可溶性钙盐为氯化钙,硫酸为工业废硫酸,可溶性硫酸盐为芒硝原料。
  4. 根据权利要求1-3任一项所述的制备方法,其特征在于在可溶性钙的水溶液中加入醇及改性剂形成醇水混合液,醇水混合液中钙离子的摩尔浓度≤1摩尔/升;优选的,加完物料后继续保温搅拌2-3小时充分生长晶须,过滤洗涤得到二水合硫酸钙晶须,干燥温度≥140℃干燥即得到半水合改性硫酸钙晶须或无水改性硫酸钙晶须。
  5. 根据权利要求4所述的制备方法,其特征在于可溶性钙的水溶液中钙离子的摩尔浓度为0.1-2.0摩尔/升,反应温度为-10℃至35℃,控制终点的pH为10±0.5,加完物料后继续在35℃以下搅拌3小时充分生长晶须,干燥时间为0.1-6.0小时,优选为0.1-2.0小时,干燥温度为140-180℃,优选反应温度为25-35℃。
  6. 根据权利要求5所述的制备方法,其特征在于干燥温度为140℃及以上,较长的干燥时间,无论得到硫酸钙晶须、纳米硫酸钙或普通硫酸钙都具有较小的晶粒尺寸,更好的使用效果。
  7. 根据权利要求1-3任一项所述的制备方法,其特征在于,在醇水混合液中添加可溶性镁盐作为晶型调节剂,形成镁调节混合液,在充分混合的体系中控制反应温度35℃以下,加入硫酸或可溶性硫酸盐的水溶液,控制终点pH为7~10.5,优选的,镁调节混合液中钙离子和镁离子的摩尔比为10∶1。
  8. 根据权利要求1-3任一项所述的制备方法,其特征在于分离晶须得到的滤液蒸馏回收并循环套用醇水,剩余的氯化钠水溶液可作工业原料。
  9. 根据权利要求1-3任一项所述的制备方法,其特征在于所述醇是C1-C4的醇,其中可溶性钙的水溶液与醇的体积比为1∶(0.5-4.0),优选的,醇为乙醇,可溶性钙的水溶液与乙醇的体积比为1∶1。
  10. 根据权利要求1所述的制备方法,其特征在于水溶性钙为氨基酸钙的情况下,可用硫酸或废硫酸直接合成氨基酸改性的硫酸钙;或者,水溶性钙为氨基酸钙的情况下,用硫酸或废硫酸直接合成氨基酸改性的硫酸钙,再添加权利要求2所述的改性剂生产改性硫酸钙,无副产盐,反应后抽滤的氨基酸溶液循环用于溶解电石渣或石灰。
  11. 根据权利要求1-3任一项所述的制备方法,在高分子改性剂存在下,用7%~10%wt石灰乳不加乙醇的条件下,合成使用性能良好的改性纳米硫酸钙。
  12. 权力要求1-11任一项所述的制备方法所制备的原位改性硫酸钙晶须的用途,其特征在于所述原位改性硫酸钙晶须作为填料或改性剂用于提高复合材料的韧性、强度,改善复合材料加工性能,降低成本,所述复合材料包括但不限于塑料、橡胶、涂料、密封剂、油墨、胶黏剂、沥青、纸张或复合材料中的一种或多种。
  13. 一种硫酸钙晶须,其特征在于所述硫酸钙为晶须状,晶须的平均直径为0.5-3.0μm,长径比为30-130。
  14. 根据权利要求13所述的硫酸钙晶须,其特征在于所述硫酸钙晶须由权利要求1-11任一项所述的制备方法制备得到。
PCT/CN2019/091136 2019-03-30 2019-06-13 一种高性能的硫酸钙晶须材料及制备工艺 WO2020199350A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910256421.3A CN109912846B (zh) 2019-03-30 2019-03-30 一种高性能的硫酸钙晶须材料及制备工艺
CN201910256421.3 2019-03-30

Publications (1)

Publication Number Publication Date
WO2020199350A1 true WO2020199350A1 (zh) 2020-10-08

Family

ID=66967970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/091136 WO2020199350A1 (zh) 2019-03-30 2019-06-13 一种高性能的硫酸钙晶须材料及制备工艺

Country Status (2)

Country Link
CN (2) CN109912846B (zh)
WO (1) WO2020199350A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113830814A (zh) * 2021-09-16 2021-12-24 浙江钙宝新材料有限公司 一种工业固废石膏制备硫酸钙纳米棒方法
CN114808522A (zh) * 2022-03-28 2022-07-29 湖北恒大包装有限公司 一种高耐折高强度耐磨瓦楞纸板用增强母料及制备方法
CN115011036A (zh) * 2022-06-14 2022-09-06 宿迁联宏新材料有限公司 一种表面改性硫酸钙晶须增强增韧聚丙烯复合材料及其制备方法
CN116024848A (zh) * 2023-01-30 2023-04-28 大家智合(北京)网络科技股份有限公司 一种用于咖啡包装的咖啡渣纸浆包装材料及其制备方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110330617B (zh) * 2019-07-16 2021-11-09 广东南粤体育材料有限公司 一种无机纤维增强的耐久性聚氨酯塑胶跑道及制备方法
CN113511666B (zh) * 2020-04-09 2023-03-28 厦门大学 以水泥和“三废”为原料的零维和一维硫酸钙基微纳米复合物产品及复合材料与合成工艺
CN111908820B (zh) * 2020-08-14 2022-01-04 厦门大学 一种包含磺化纤维的微纳米材料提高混凝土强度和韧性的方法
CN113061297B (zh) * 2021-03-11 2022-10-14 四川省金路树脂有限公司 一种用于热水管道的聚乙烯树脂组合物及制备方法
CN113119561B (zh) * 2021-04-02 2023-04-11 厦门大学 一种高性能阻燃型复合型材及其加工工艺
CN113388891B (zh) * 2021-06-15 2023-12-05 黔南高新区绿色化工技术研究院有限公司 一种基于无机-有机杂化改性的高性能硫酸钙晶须的制备方法
CN114292476A (zh) * 2021-12-31 2022-04-08 山东日科化学股份有限公司 一种多官能化合物极性改性无机微纳米填料及其制备方法
CN114438597A (zh) * 2021-12-31 2022-05-06 佛山市中医院 一种硫酸钙增强原位固化成孔的组织工程聚酯复合支架材料及其制备方法、应用
CN115057670A (zh) * 2022-03-30 2022-09-16 上海二十冶建设有限公司 一种快硬高延性无机密封砂浆
CN117401704A (zh) * 2023-09-28 2024-01-16 重庆沁蓝环保科技有限责任公司 一种利用废硫酸制备纳米硫酸钙的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102534773A (zh) * 2012-02-02 2012-07-04 四川万润非金属矿物材料有限公司 高补强性改性无水硫酸钙晶须的生产方法
CN104846440A (zh) * 2015-05-29 2015-08-19 昆明冶金研究院 一种冶金烟气脱硫石膏重结晶法制备高纯二水硫酸钙晶须的方法
CN105088347A (zh) * 2015-08-04 2015-11-25 合肥学院 一种利用固体废弃物磷石膏制备石膏晶须的方法
CN106087064A (zh) * 2016-06-29 2016-11-09 青海大学 一种硫酸钙晶须的原位改性方法
CN106745161A (zh) * 2017-01-17 2017-05-31 厦门大学 一种醇‑水混合体系中制备纳米硫酸钙以及硫酸钙晶须的方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10265613A (ja) * 1997-01-23 1998-10-06 Ube Material Ind Ltd 樹脂添加用複合フィラー
KR100863933B1 (ko) * 2002-04-08 2008-10-16 주식회사 코오롱 황산칼슘염 이수화물 및 그의 제조방법
CN101343773B (zh) * 2008-08-26 2011-05-11 吉林大学 硫酸钠废水液相法原位制备疏水性硫酸钙晶须
CN101550585B (zh) * 2009-04-16 2011-10-05 北京矿冶研究总院 一种脱水硫酸钙晶须的制备方法
CN101717999B (zh) * 2009-11-26 2012-01-25 西南科技大学 一种晶种醇热法制备硫酸钙晶须的方法
CN102839425B (zh) * 2011-06-23 2014-12-31 中国石油化工股份有限公司 一种硫酸钙晶须的合成方法
CN103014869B (zh) * 2012-12-28 2015-07-22 清华大学 一种超细高长径比无水硫酸钙晶须的可控制备方法
CN104480523A (zh) * 2014-12-10 2015-04-01 清华大学 一种水热法制备超细高长径比无水硫酸钙晶须的改进方法
CN104947179A (zh) * 2015-06-18 2015-09-30 张灵芝 一种硫酸钙晶须的制备方法
CN106745154A (zh) * 2016-11-24 2017-05-31 上海大学 一种低温条件下制备高长径比硫酸钙纳米线的方法
CN108658114B (zh) * 2017-03-30 2020-07-24 北京紫光英力化工技术有限公司 一种改性钙盐的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102534773A (zh) * 2012-02-02 2012-07-04 四川万润非金属矿物材料有限公司 高补强性改性无水硫酸钙晶须的生产方法
CN104846440A (zh) * 2015-05-29 2015-08-19 昆明冶金研究院 一种冶金烟气脱硫石膏重结晶法制备高纯二水硫酸钙晶须的方法
CN105088347A (zh) * 2015-08-04 2015-11-25 合肥学院 一种利用固体废弃物磷石膏制备石膏晶须的方法
CN106087064A (zh) * 2016-06-29 2016-11-09 青海大学 一种硫酸钙晶须的原位改性方法
CN106745161A (zh) * 2017-01-17 2017-05-31 厦门大学 一种醇‑水混合体系中制备纳米硫酸钙以及硫酸钙晶须的方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113830814A (zh) * 2021-09-16 2021-12-24 浙江钙宝新材料有限公司 一种工业固废石膏制备硫酸钙纳米棒方法
CN114808522A (zh) * 2022-03-28 2022-07-29 湖北恒大包装有限公司 一种高耐折高强度耐磨瓦楞纸板用增强母料及制备方法
CN115011036A (zh) * 2022-06-14 2022-09-06 宿迁联宏新材料有限公司 一种表面改性硫酸钙晶须增强增韧聚丙烯复合材料及其制备方法
CN116024848A (zh) * 2023-01-30 2023-04-28 大家智合(北京)网络科技股份有限公司 一种用于咖啡包装的咖啡渣纸浆包装材料及其制备方法
CN116024848B (zh) * 2023-01-30 2024-03-26 大家智合(北京)网络科技股份有限公司 一种用于咖啡包装的咖啡渣纸浆包装材料及其制备方法

Also Published As

Publication number Publication date
CN109912846A (zh) 2019-06-21
CN112876738B (zh) 2022-09-02
CN109912846B (zh) 2021-02-12
CN112876738A (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
WO2020199350A1 (zh) 一种高性能的硫酸钙晶须材料及制备工艺
CN109867986B (zh) 一种高分子改性的纳米碳酸钙产品系列
WO2021204210A9 (zh) 以水泥和"三废"为原料的微纳米材料系列产品及合成工艺
CN101475200B (zh) 近球形硫酸法硫酸钡的制备方法及在铜箔基板中的应用
WO2015090138A1 (zh) 无机/木质素系聚合物复合纳米颗粒及其制备方法与应用
CN101914313B (zh) 阳离子水性纳米二氧化硅及其制备方法和用途
CN102516821B (zh) 室温硫化硅酮胶用纳米碳酸钙表面改性的方法
CN1641077A (zh) 一种文石型碳酸钙晶须的制备方法
CN105694104B (zh) 一种橡胶用纳米碳酸钙的制备方法
CN103468030A (zh) 一种高分散性二氧化硅的制备方法
CN103687913B (zh) 树脂组合物
CN110422869A (zh) 一种联产α-超高强石膏和氯化钠的方法及超高强石膏
CN110282901A (zh) 一种水泥助磨剂及其制备方法
CN102432054A (zh) 一种浆状和膏状轻质碳酸钙的生产方法
CN109574056B (zh) 一种原位模板诱导合成纳米碳酸钙的复合诱导剂及其应用
CN113088102A (zh) 一种高活化度硅酮胶用重质碳酸钙的制备方法
CN114988498B (zh) 一种羟基氯化镍微米花及其制备方法
CN107629487B (zh) 一种超细轻质碳酸钙的改性方法及其在塑料上的应用
JP4626911B2 (ja) ポリクロロプレンラテックス組成物及び水系接着剤
CN101514533B (zh) 片状碳酸钙及其制备方法和应用
CN104418330A (zh) 一种二氧化硅浆液及其制备方法
CN101381090B (zh) 片状轻钙的制备方法
CN113511665B (zh) 以水泥和“三废”为原料的零维和一维碳酸钙微纳米复合物产品及复合材料与合成工艺
CN110029396A (zh) 一种功能性碳酸钙晶须的制备方法
CN109251582A (zh) 一种高性能纳米复合重质碳酸钙及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922550

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19922550

Country of ref document: EP

Kind code of ref document: A1