WO2020195800A1 - 繊維状炭素ナノ構造体、繊維状炭素ナノ構造体の製造方法、および表面改質繊維状炭素ナノ構造体の製造方法 - Google Patents

繊維状炭素ナノ構造体、繊維状炭素ナノ構造体の製造方法、および表面改質繊維状炭素ナノ構造体の製造方法 Download PDF

Info

Publication number
WO2020195800A1
WO2020195800A1 PCT/JP2020/010365 JP2020010365W WO2020195800A1 WO 2020195800 A1 WO2020195800 A1 WO 2020195800A1 JP 2020010365 W JP2020010365 W JP 2020010365W WO 2020195800 A1 WO2020195800 A1 WO 2020195800A1
Authority
WO
WIPO (PCT)
Prior art keywords
fibrous carbon
carbon nanostructure
temperature
peak
height
Prior art date
Application number
PCT/JP2020/010365
Other languages
English (en)
French (fr)
Inventor
修 川上
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to US17/593,213 priority Critical patent/US11661345B2/en
Priority to JP2021508989A priority patent/JPWO2020195800A1/ja
Priority to KR1020217025667A priority patent/KR20210142601A/ko
Priority to CN202080007795.2A priority patent/CN113272249B/zh
Publication of WO2020195800A1 publication Critical patent/WO2020195800A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/88Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC

Definitions

  • the present invention relates to a method for producing a fibrous carbon nanostructure, a method for producing a fibrous carbon nanostructure, and a method for producing a surface-modified fibrous carbon nanostructure.
  • CNT carbon nanotubes
  • fibrous carbon nanostructures such as CNTs are easy to form bundle structures due to van der Waals force and the like, and are difficult to disperse in a solvent or resin, so that it is difficult to exhibit the desired high characteristics.
  • the fibrous carbon nanostructure as a raw material is satisfactorily surface-modified. Is required to do.
  • the conventional fibrous carbon nanostructures have room for improvement in that the ease of surface modification treatment is further improved.
  • the present inventor has made diligent studies to achieve the above object. Then, the present inventor has found that the fibrous carbon nanostructure having a predetermined property is easily surface-modified, and has completed the present invention.
  • the present invention aims to advantageously solve the above problems, and the fibrous carbon nanostructure of the present invention is a first-order differential curve of a thermogravimetric curve obtained by thermogravimetric analysis in a dry air atmosphere.
  • the half-value width of the peak of the temperature differential curve (hereinafter, the "temperature differential curve which is the first-order differential curve of the thermogravimetric curve” is simply referred to as the "temperature differential curve”) is 38 ° C. or higher and lower than 90 ° C.
  • the high temperature side temperature at a height of 1/10 of the peak top height is 658 ° C. or higher.
  • a fibrous carbon nanostructure in which the half width of the peak of the temperature differential curve is 38 ° C.
  • the "peak" is a convex curved portion including a point where the absolute value of the weight change rate per 1 ° C. is the maximum value in the diagram of the temperature differential curve (for example, FIG. 1).
  • the lower side temperature (e.g., T ini in FIG. 1) It means the curved part with the side temperature.
  • T ini in FIG. 1 the point where the absolute value of the weight change rate per 1 ° C is the minimum value (the minimum value when there is one peak (maximum value) and no minimum value as shown in Fig. 1) is the peak. It is less than 1/10 of the peak top height.
  • the "half width of the peak” and the "high temperature side temperature at a height of 1/10 of the peak top height of the peak” can be obtained by using the method described in the examples of the present specification.
  • the fibrous carbon nanostructure of the present invention preferably has a weight loss rate of 40% by weight or less at a low temperature side temperature at a height of 7.5 / 10 of the peak top height of the peak.
  • the fibrous carbon nanostructures having a weight loss rate of 40% by weight or less at a low temperature at a height of 7.5 / 10 of the peak top height of the peak were subjected to surface modification treatment such as oxidation treatment. In some cases, the surface is easily modified.
  • the "weight loss rate at the low temperature side temperature at a height of 7.5 / 10 of the peak top height of the peak" is determined by using the method described in the examples of the present specification. Can be done.
  • the fibrous carbon nanostructure of the present invention preferably has a peak top temperature of 530 ° C or higher and lower than 730 ° C. Fibrous carbon nanostructures having a peak peak top temperature of less than 530 ° C are easily burned out when surface-treated such as oxidation treatment, while the peak peak top temperature is 730 ° C or higher. The fibrous carbon nanostructure is less likely to be surface-modified when it is subjected to surface treatment modification such as oxidation treatment.
  • the "peak top temperature of the peak” can be determined by using the method described in the examples of the present specification.
  • the present invention also aims to advantageously solve the above problems, and the method for producing a fibrous carbon nanostructure of the present invention produces any of the above-mentioned fibrous carbon nanostructures. It is a method for producing a fibrous carbon nanostructure, which comprises a step of heating the fibrous carbon nanostructure to a temperature of 120 ° C. or higher in a vacuum atmosphere.
  • the present invention aims to advantageously solve the above problems, and the method for producing a fibrous carbon nanostructure of the present invention produces any of the above-mentioned fibrous carbon nanostructures.
  • a method for producing a fibrous carbon nanostructure which comprises a step of heating the fibrous carbon nanostructure to a temperature of 800 ° C. or higher in an inert gas atmosphere.
  • any of the above-mentioned fibrous carbon nanostructures is subjected to a surface modification treatment to obtain a surface-modified fibrous carbon nanostructure. It is characterized by including a step of obtaining.
  • the surface modification treatment may be a wet oxidation treatment.
  • the present invention it is possible to provide a fibrous carbon nanostructure that is easily surface-modified and a method for producing the same. Further, according to the present invention, it is possible to provide a method for producing a surface-modified fibrous carbon nanostructure that has been satisfactorily surface-modified.
  • the fibrous carbon nanostructure of the present invention is easily surface-modified when it is subjected to a surface modification treatment such as an oxidation treatment.
  • the surface-modified fibrous carbon nanostructure obtained by surface-modifying the fibrous carbon nanostructure of the present invention is not particularly limited, and for example, the surface-modified fibrous carbon nanostructure in a dispersion medium is used. It can be suitably used when preparing a dispersion liquid in which the structure is dispersed.
  • the half width of the peak of the temperature differential curve obtained by thermogravimetric analysis in a dry air atmosphere is 38 ° C. or more and less than 90 ° C., which is 1/10 of the peak top height of the peak. It is required that the temperature on the high temperature side at the height is 658 ° C. or higher.
  • the half width of the peak of the temperature differential curve is 38 ° C. or more and less than 90 ° C., and the high temperature side temperature at a height of 1/10 of the peak top height of the peak is Since the temperature is 658 ° C. or higher, the surface is satisfactorily modified when a surface modification treatment such as an oxidation treatment is performed.
  • the fibrous carbon nanostructure is not particularly limited, and for example, a cylindrical carbon nanostructure such as a carbon nanotube (CNT) or a six-membered ring network of carbon is formed in a flat tubular shape. Examples thereof include non-cylindrical carbon nanostructures such as carbon nanostructures.
  • the fibrous carbon nanostructure of the present invention may contain the above-mentioned carbon nanostructures alone or in combination of two or more.
  • the fibrous carbon nanostructure containing CNT is preferable as the fibrous carbon nanostructure. This is because the fibrous carbon nanostructures containing CNTs can exhibit particularly excellent properties (for example, conductivity, thermal conductivity, strength, etc.) when the dispersibility is enhanced by the surface modification treatment.
  • the fibrous carbon nanostructure containing CNT may be composed of only CNT, or may be a mixture of CNT and a fibrous carbon nanostructure other than CNT.
  • the CNTs in the fibrous carbon nanostructures are not particularly limited, and single-walled carbon nanotubes and / or multi-walled carbon nanotubes can be used, but the CNTs are carbon nanotubes from a single layer to five layers. Is preferable, and it is more preferable that it is a single-walled carbon nanotube. This is because the smaller the number of layers of carbon nanotubes, the more excellent the characteristics can be exhibited when the dispersibility is improved by the surface modification treatment.
  • the fibrous carbon nanostructure of the present invention needs to have a half-value width of the peak of the temperature differential curve obtained by thermogravimetric analysis in a dry air atmosphere of 38 ° C. or more and less than 90 ° C., and is fibrous.
  • the half-value width of the peak of the temperature differential curve of the carbon nanostructure is preferably 40 ° C. or higher, more preferably 49 ° C. or lower.
  • the half width of the peak of the temperature differential curve of the fibrous carbon nanostructure is preferably 85 ° C. or lower, and more preferably 80 ° C. or lower.
  • the half width of the peak of the temperature differential curve is equal to or greater than the above lower limit of the preferable range, impurities that promote air oxidation can be removed, and if the half width of the peak of the temperature differential curve is equal to or less than the upper limit of the preferable range. , It is possible to suppress burning during surface modification of the fibrous carbon nanostructure.
  • the fibrous carbon nanostructure of the present invention has a high temperature side temperature of 658 ° C. or higher at a height of 1/10 of the peak top height of the peak of the temperature differential curve obtained by thermogravimetric analysis in a dry air atmosphere. It is necessary that the temperature on the high temperature side at a height of 1/10 of the peak top height of the peak of the temperature differential curve of the fibrous carbon nanostructure is preferably 660 ° C. or higher, preferably 665 ° C. or higher. It is more preferably 673 ° C. or higher, further preferably 689 ° C. or higher, and usually 760 ° C. or lower.
  • the surface is improved better when surface modification treatment such as oxidation treatment is performed. Be quality.
  • the fibrous carbon nanostructure of the present invention has a weight at a low temperature side at a height of 7.5 / 10 of the peak top height of the peak of the temperature differential curve obtained by thermogravimetric analysis in a dry air atmosphere.
  • the reduction rate is preferably 40% by weight or less, more preferably 38% by weight or less, further preferably 35% by weight or less, further preferably 31% by weight or less, and 29% by weight or less. Is more preferable, and usually, it is 10% by weight or more.
  • the weight reduction rate at the low temperature side temperature at the height of 7.5 / 10 of the peak top height of the peak of the temperature differential curve is not more than the above upper limit, it is better when surface modification treatment such as oxidation treatment is performed. The surface is modified to.
  • the peak top temperature of the peak of the temperature differential curve obtained by thermogravimetric analysis in a dry air atmosphere is preferably 530 ° C. or higher, and preferably 550 ° C. or higher. It is more preferably 570 ° C. or higher, more preferably less than 730 ° C., further preferably 710 ° C. or lower, and even more preferably 690 ° C. or lower.
  • the peak top temperature of the peak of the temperature differential curve is 530 ° C. or higher and lower than 730 ° C., the surface is more satisfactorily modified when a surface modification treatment such as an oxidation treatment is performed.
  • the thermal weight curve has a vertical axis of mass and a horizontal axis of temperature
  • the linear differential curve of the thermal weight curve has a vertical axis of differential thermal weight (DTG) and a horizontal axis of temperature. It is a differential curve.
  • the pretreatment conditions of the fibrous carbon nanostructure for example, the atmosphere at the time of pretreatment (vacuum atmosphere or inert gas atmosphere) and the treatment temperature, etc.
  • the atmosphere at the time of pretreatment vacuum atmosphere or inert gas atmosphere
  • the treatment temperature, etc. can be adjusted.
  • the average diameter of the fibrous carbon nanostructures is preferably 1 nm or more, preferably 60 nm or less, more preferably 30 nm or less, and even more preferably 10 nm or less. Fibrous carbon nanostructures having an average diameter within the above range can exhibit particularly excellent properties when the dispersibility is enhanced by surface modification treatment.
  • the "average diameter of fibrous carbon nanostructures" is the diameter of, for example, 20 randomly selected fibrous carbon nanostructures on a transmission electron microscope (TEM) image. It can be obtained by measuring (outer diameter) and calculating the number average value.
  • the ratio (3 ⁇ / Av) of the value (3 ⁇ ) obtained by multiplying the standard deviation ( ⁇ : sample standard deviation) of the diameter by 3 with respect to the average diameter (Av) is more than 0.20. It is preferable to use a fibrous carbon nanostructure of less than 0.80, more preferably a fibrous carbon nanostructure having a 3 ⁇ / Av of more than 0.25, and a fibrous having a 3 ⁇ / Av of more than 0.50. It is more preferred to use carbon nanostructures. Fibrous carbon nanostructures having a 3 ⁇ / Av of more than 0.20 and less than 0.80 can exhibit particularly excellent properties when the dispersibility is enhanced by surface modification treatment.
  • the average diameter (Av) and standard deviation ( ⁇ ) of the fibrous carbon nanostructures may be adjusted by changing the manufacturing method and manufacturing conditions of the fibrous carbon nanostructures, or may be obtained by different manufacturing methods. It may be adjusted by combining a plurality of types of the obtained fibrous carbon nanostructures.
  • the fibrous carbon nanostructure preferably has an average length of 10 ⁇ m or more, more preferably 50 ⁇ m or more, further preferably 80 ⁇ m or more, preferably 600 ⁇ m or less, and preferably 550 ⁇ m. It is more preferably 5 ⁇ m or less, and further preferably 500 ⁇ m or less. Fibrous carbon nanostructures having an average length within the above range can exhibit particularly excellent properties when the dispersibility is enhanced by surface modification treatment.
  • the "average length of fibrous carbon nanostructures" is the number of fibrous carbon nanostructures measured by measuring the length of, for example, 20 fibrous carbon nanostructures on a scanning electron microscope (SEM) image. It can be obtained by calculating the average value.
  • the fibrous carbon nanostructure usually has an aspect ratio of more than 10.
  • the aspect ratio of the fibrous carbon nanostructures was determined by measuring the diameter and length of 20 randomly selected fibrous carbon nanostructures using a scanning electron microscope or a transmission electron microscope. It can be obtained by calculating the average value of the ratio (length / diameter) to the length.
  • the fibrous carbon nanostructure preferably has a BET specific surface area of 600 m 2 / g or more, more preferably 800 m 2 / g or more, preferably 2000 m 2 / g or less, and preferably 1800 m. more preferably 2 / g or less, and more preferably not more than 1600 m 2 / g.
  • the BET specific surface area of the fibrous carbon nanostructure is 600 m 2 / g or more, particularly excellent properties can be exhibited when the dispersibility is enhanced by the surface modification treatment.
  • the BET specific surface area of the fibrous carbon nanostructure is 2000 m 2 / g or less, the dispersibility can be sufficiently enhanced when the surface is modified.
  • the "BET specific surface area” refers to the nitrogen adsorption specific surface area measured by using the BET method.
  • the fibrous carbon nanostructures are not aperture-treated and the t-plot obtained from the adsorption isotherm shows an upwardly convex shape.
  • Fibrous carbon nanostructures in which the t-plot shows an upwardly convex shape can exhibit particularly excellent properties when the dispersibility is enhanced by surface modification treatment.
  • the "t-plot" is obtained by converting the relative pressure into the average thickness t (nm) of the nitrogen gas adsorption layer in the adsorption isotherm of the fibrous carbon nanostructure measured by the nitrogen gas adsorption method. Can be done.
  • the above conversion is performed by obtaining the average thickness t of the nitrogen gas adsorption layer corresponding to the relative pressure from a known standard isotherm obtained by plotting the average thickness t of the nitrogen gas adsorption layer with respect to the relative pressure P / P0.
  • t-plot method by de Boer et al.
  • t-plot can be obtained by using the method described in the Example of this specification.
  • the growth of the nitrogen gas adsorption layer is classified into the following processes (1) to (3). Then, the slope of the t-plot changes due to the following processes (1) to (3).
  • the plot In the t-plot showing an upwardly convex shape, the plot is located on a straight line passing through the origin in the region where the average thickness t of the nitrogen gas adsorption layer is small, whereas when t is large, the plot is the straight line. The position is shifted downward from.
  • the fibrous carbon nanostructures having such a t-plot shape have a large ratio of the internal specific surface area to the total specific surface area of the fibrous carbon nanostructures, and are abundant in the carbon nanostructures constituting the fibrous carbon nanostructures. It shows that the opening of is formed.
  • the inflection point of the t-plot of the fibrous carbon nanostructure is preferably in the range satisfying 0.2 ⁇ t (nm) ⁇ 1.5, and 0.45 ⁇ t (nm) ⁇ 1.5. It is more preferable that it is in the range of 0.55 ⁇ t (nm) ⁇ 1.0. If the inflection point of the t-plot of the fibrous carbon nanostructure is within such a range, particularly excellent properties can be exhibited when the dispersibility is enhanced by the surface modification treatment.
  • the "position of the bending point" is the intersection of the approximate straight line A in the process (1) described above and the approximate straight line B in the process (3) described above.
  • the ratio (S2 / S1) of the internal specific surface area S2 to the total specific surface area S1 obtained from the t-plot is preferably 0.05 or more and 0.30 or less.
  • the total specific surface area S1 and the internal specific surface area S2 of the fibrous carbon nanostructure can be obtained from the t-plot. Specifically, first, the total specific surface area S1 can be obtained from the slope of the approximate straight line in the process (1), and the external specific surface area S3 can be obtained from the slope of the approximate straight line in the process (3). Then, the internal specific surface area S2 can be calculated by subtracting the external specific surface area S3 from the total specific surface area S1.
  • the measurement of the adsorption isotherm of the fibrous carbon nanostructure, the creation of the t-plot, and the calculation of the total specific surface area S1 and the internal specific surface area S2 based on the analysis of the t-plot can be performed by, for example, a commercially available measuring device.
  • "BELSORP (registered trademark) -mini” manufactured by Nippon Bell Co., Ltd.
  • the fibrous carbon nanostructure containing CNT suitable as the fibrous carbon nanostructure has a peak of Radial Breathing Mode (RBM) when evaluated by Raman spectroscopy.
  • RBM Radial Breathing Mode
  • the ratio (G / D ratio) of the G band peak intensity to the D band peak intensity in the Raman spectrum is preferably 0.5 or more and 5.0 or less.
  • the G / D ratio is 0.5 or more and 5.0 or less, particularly excellent characteristics can be exhibited when the dispersibility is enhanced by the surface modification treatment.
  • the "G / D ratio" can be obtained by using the following method. ⁇ G / D ratio> Using a microlaser Raman system (Nicolette Almega XR, manufactured by Thermo Fisher Scientific Co., Ltd.), the fibrous carbon nanostructures near the center of the substrate are measured.
  • the carbon purity of the fibrous carbon nanostructure is preferably 98% by mass or more, more preferably 99% by mass or more, and further preferably 99.9% by mass or more.
  • TG thermogravimetric analyzer
  • the pretreatment may include (i) heating the fibrous carbon nanostructures to a temperature of 120 ° C. or higher, preferably 190 ° C. or higher (usually 300 ° C. or lower) in a vacuum atmosphere. ii) It may include a step of heating the fibrous carbon nanostructures to a temperature of 800 ° C. or higher, preferably 900 ° C. or higher (usually 1,100 ° C. or lower) in an inert gas atmosphere, but vacuum. It is preferable to include a step of heating underneath.
  • the fibrous carbon nanostructure Burnout can be suppressed.
  • the inert gas for example, nitrogen, argon, helium and the like are preferably mentioned.
  • the above-mentioned heating step may be performed, or after the above-mentioned (ii) fibrous carbon nanostructure is heated to 800 ° C. or higher in an inert gas atmosphere, the above-mentioned (i) fibrous A step of heating the carbon nanostructures to 120 ° C. or higher in a vacuum atmosphere may be performed.
  • the treatment time of the pretreatment is preferably 10 minutes or more, more preferably 1 hour or more, further preferably 3 hours or more, preferably 36 hours or less, and 30 hours or less. More preferably, it is more preferably 24 hours or less.
  • a surface-modified fibrous carbon nanostructure having a predetermined property as described above is subjected to a surface modification treatment to obtain a surface-modified fibrous carbon nanostructure. Get the body.
  • the surface reforming treatment is not particularly limited, and can be carried out using, for example, a surface reforming agent such as nitric acid, sulfuric acid, a mixed acid of nitric acid and sulfuric acid, ozone, fluorine gas, or hydrogen peroxide.
  • a surface reforming agent such as nitric acid, sulfuric acid, a mixed acid of nitric acid and sulfuric acid, ozone, fluorine gas, or hydrogen peroxide.
  • the surface modification treatment is preferably a wet oxidation treatment performed using nitric acid, sulfuric acid or a mixed acid of nitric acid and sulfuric acid. More preferably, it is a wet oxidation treatment performed by using a mixed acid of nitric acid and sulfuric acid.
  • the surface modification treatment conditions can be set according to the type of the surface modification treatment agent to be used and the properties of the desired surface modification fibrous carbon nanostructure.
  • the surface-modified fibrous carbon nanostructure obtained by surface-modifying the fibrous carbon nanostructure of the present invention is not particularly limited, and the dispersant can be used in a dispersion medium such as water. It can be well dispersed without being used. Then, the obtained fibrous carbon nanostructure dispersion liquid can be used for producing various molded products (for example, antistatic film, transparent conductive film, etc.).
  • thermogravimetric differential heat simultaneous measurement device manufactured by BrukerAXS, product name "TG-DTA2020SA"
  • 2.00 mg of the measurement sample was placed on a Pt pan (100 ⁇ L) of the thermogravimetric differential heat simultaneous measurement device, and the temperature rise rate was 5 ° C.
  • the thermogravimetric curve of the fibrous carbon nanostructure was measured under the conditions of / min and dry air flow rate of 200 mL / min (data acquisition frequency: 0.5 seconds / point), and the first derivative curve (first derivative curve creation condition: differential).
  • a thermogravimetric curve with a width of 10 points) was obtained.
  • the vertical axis is mass and the horizontal axis is temperature
  • the vertical axis is differential thermal weight (DTG) and the horizontal axis is temperature.
  • the peaks shown by solid lines are those before pretreatment (for example, Comparative Examples 1 to 4), and the peaks shown by broken lines are those after pretreatment (for example, Examples 1 to 4).
  • the peak of the temperature differential curve (i) half-value width (° C), (ii) high temperature side temperature (b value) (° C) at a height of 1/10 of the peak top height, (iii) peak top.
  • the weight loss rate (% by weight) at the low temperature side temperature at a height of 7.5 / 10 and the (iv) peak top temperature (° C.) were determined, respectively.
  • DTG max Differentiated thermogravimetric analysis at temperature T max (% / ° C) (peak top height h) T ini : Temperature at the start of the peak (° C) T a: the value of the differential thermogravimetric becomes 1/2 (
  • the obtained fibrous carbon nanostructures (Examples 1 to 4: after pretreatment, Comparative Examples 1 to 4: without pretreatment) were placed in a 300 mL flask equipped with a cooling tube and a stirring blade. 80 g, 54.8 g of ion-exchanged water, and 1: 3 (volume ratio) of sulfuric acid (manufactured by Wako Pure Chemical Industries, Ltd., concentration 96-98%) and nitric acid (manufactured by Wako Pure Chemical Industries, Ltd., concentration 69-70%).
  • the mixture After adding 83 mL of the mixed acid solution contained in the ratio, the mixture was heated at an internal temperature of 110 ° C. for 8 hours with stirring. Measure 3.0 g of the obtained fibrous carbon nanostructure / mixed acid solution after the mixed acid treatment (sometimes referred to as “main treatment” or “wet oxidation treatment”) in a 50 mL sample bottle, and add 27 ion-exchanged water. It was diluted by adding 0.0 g. After removing the supernatant, ion-exchanged water was added to adjust the liquid volume to 30 mL.
  • main treatment sometimes referred to as “main treatment” or “wet oxidation treatment”
  • the obtained film is observed with an optical microscope (magnification 100 times), and the presence or absence of agglomerates (diameter 30 ⁇ m or more) of the fibrous carbon nanostructures visually recognized in the field of view of the microscope is confirmed to be fibrous.
  • the dispersibility of the carbon nanostructures was evaluated. The smaller the number of agglomerates of the fibrous carbon nanostructures, the better the surface modification of the fibrous carbon nanostructures, indicating that the dispersibility of the fibrous carbon nanostructures is excellent.
  • Example 1 As the orientation aggregate of the fibrous carbon nanostructures (fibrous carbon nanostructures containing CNTs), "ZEONANO SG101" manufactured by Zeon Nanotechnology Co., Ltd., which is a single-walled carbon nanotube, was used.
  • the fibrous carbon nanostructures containing the CNTs were pretreated by heating them under vacuum at 190 ° C. for 15 hours using an oven equipped with an oil rotary vacuum pump. Then, with respect to the obtained fibrous carbon nanostructures, (I) the half-value width (° C) of the peak of the temperature differential curve, and (ii) the high temperature side temperature at a height of 1/10 of the peak top height.
  • Example 2 Fibrous in the same manner as in Example 1 except that the pretreatment of heating at 190 ° C. for 15 hours under vacuum was performed instead of the pretreatment of heating at 120 ° C. for 15 hours under vacuum.
  • An oriented aggregate of carbon nanostructures (fibrous carbon nanostructures containing CNTs) was obtained. Then, with respect to the obtained fibrous carbon nanostructures, (I) the half-value width (° C) of the peak of the temperature differential curve, and (ii) the high temperature side temperature at a height of 1/10 of the peak top height.
  • Example 3 Fibers in Example 1 in the same manner as in Example 1 except that the pretreatment of heating at 190 ° C. for 15 hours under vacuum was performed, but the pretreatment of heating at 900 ° C. for 6 hours under a nitrogen atmosphere was performed. Orientation aggregates of shaped carbon nanostructures (fibrous carbon nanostructures containing CNTs) were obtained. Then, with respect to the obtained fibrous carbon nanostructures, (I) the half-value width (° C) of the peak of the temperature differential curve, and (ii) the high temperature side temperature at a height of 1/10 of the peak top height.
  • Example 4 Fibers in Example 1 in the same manner as in Example 1 except that the pretreatment of heating at 190 ° C. for 15 hours under vacuum was performed instead of the pretreatment of heating at 800 ° C. for 6 hours under a nitrogen atmosphere. Orientation aggregates of shaped carbon nanostructures (fibrous carbon nanostructures containing CNTs) were obtained. Then, with respect to the obtained fibrous carbon nanostructures, (I) the half-value width (° C) of the peak of the temperature differential curve, and (ii) the high temperature side temperature at a height of 1/10 of the peak top height.
  • Comparative Example 2 In Comparative Example 1, the fibrous carbon nanostructures were similar to Comparative Example 1 except that "Tuball” manufactured by Occial, which is a single-walled carbon nanotube as an orientation aggregate of the fibrous carbon nanostructures, was used.
  • body orientation aggregate fibrous carbon nanostructure containing CNT
  • weight loss rate % by weight
  • % by weight % by weight
  • peak top temperature % by weight
  • Comparative Example 3 In Comparative Example 1, the fibrous carbon nanostructures of the fibrous carbon nanostructures were similar to Comparative Example 1 except that Signis SG-65i, which is a single-walled carbon nanotube as an orientation aggregate of the fibrous carbon nanostructures, was used.
  • Signis SG-65i which is a single-walled carbon nanotube as an orientation aggregate of the fibrous carbon nanostructures.
  • Comparative Example 4 In Comparative Example 1, the same as in Comparative Example 1 except that "MEIJO eDIPS EC1.5" manufactured by Meijo Nanocarbon Co., Ltd., which is a single-walled carbon nanotube as an orientation aggregate of fibrous carbon nanostructures, was used. , (I) Half-value width (° C) of the peak of the temperature differential curve, (ii) Peak top height for the orientation aggregate of the fibrous carbon nanostructures (fibrous carbon nanostructures containing CNTs).
  • the fibrous carbon nanostructures of Examples 1 to 4 are better surface-modified and excellent in dispersibility as compared with the fibrous carbon nanostructures of Comparative Examples 1 to 4.
  • the overall evaluation is "excellent").
  • the present invention it is possible to provide a fibrous carbon nanostructure that is easily surface-modified and a method for producing the same. Further, according to the present invention, it is possible to provide a method for producing a surface-modified fibrous carbon nanostructure that has been satisfactorily surface-modified.

Abstract

本発明は、表面改質処理し易い繊維状炭素ナノ構造体の提供することを目的とする。本発明の繊維状炭素ナノ構造体は、乾燥空気雰囲気における熱重量分析で得られる熱重量曲線の一次微分曲線である温度微分曲線のピークの半値幅が38℃以上90℃未満であり、前記ピークのピークトップ高さの1/10の高さでの高温側温度が658℃以上であることを特徴とする。

Description

繊維状炭素ナノ構造体、繊維状炭素ナノ構造体の製造方法、および表面改質繊維状炭素ナノ構造体の製造方法
 本発明は、繊維状炭素ナノ構造体、繊維状炭素ナノ構造体の製造方法、および表面改質繊維状炭素ナノ構造体の製造方法に関するものである。
 近年、導電性、熱伝導性および機械的特性に優れる材料として、カーボンナノチューブ(以下、「CNT」と称することがある。)などの繊維状の炭素ナノ構造体が注目されている。
 しかしながら、CNTなどの繊維状炭素ナノ構造体は、ファンデルワールス力等によりバンドル構造体を形成し易く、溶媒中や樹脂中で分散させ難いため、所期の高特性を発揮させ難かった。
 そこで、CNTなどの繊維状炭素ナノ構造体に対して例えば酸化処理などの表面改質処理を施すことにより、繊維状炭素ナノ構造体の分散性を高める技術が提案されている(例えば、特許文献1参照)。
国際公開第2015/045418号
 ここで、繊維状炭素ナノ構造体の表面改質処理により分散性に優れる表面改質繊維状炭素ナノ構造体を得る観点からは、原料となる繊維状炭素ナノ構造体を良好に表面改質処理することが求められている。
 しかし、従来の繊維状炭素ナノ構造体には、表面改質処理のし易さを更に向上させるという点において改善の余地があった。
 そこで、本発明は、表面改質処理し易い繊維状炭素ナノ構造体およびその製造方法を提供することを目的とする。
 また、本発明は、良好に表面改質処理された表面改質繊維状炭素ナノ構造体を提供することを目的とする。
 本発明者は、上記目的を達成するために鋭意検討を行った。そして、本発明者は、所定の性状を有する繊維状炭素ナノ構造体が表面改質され易いことを見出し、本発明を完成させた。
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の繊維状炭素ナノ構造体は、乾燥空気雰囲気における熱重量分析で得られる熱重量曲線の一次微分曲線である温度微分曲線(以下、「熱重量曲線の一次微分曲線である温度微分曲線」を単に「温度微分曲線」という。)のピークの半値幅が38℃以上90℃未満であり、前記ピークのピークトップ高さの1/10の高さでの高温側温度が658℃以上であることを特徴とする。温度微分曲線のピークの半値幅が38℃以上90℃未満であり、ピークのピークトップ高さの1/10の高さでの高温側温度が658℃以上である繊維状炭素ナノ構造体は、酸化処理などの表面改質処理を施した際に表面改質され易い。
 ここで、本発明において、「ピーク」とは、温度微分曲線の図(例えば、図1)において、1℃当たりの重量変化率の絶対値が極大値となる点を含んだ凸型の曲線部分のうち、1℃当たりの重量変化率の絶対値が最大値となる点(例えば、図1におけるDTGmax)を含んだ凸型の曲線部分であって、1℃当たりの重量変化率の絶対値が極小値(図1のように山(極大値)が1つであって極小値を有さない場合は最小値)となる点の、低温側温度(例えば、図1におけるTini)と高温側温度との間の曲線部分を意味する。ただし、1℃当たりの重量変化率の絶対値が極小値(図1のように山(極大値)が1つであって極小値を有さない場合は最小値)となる点は、ピークのピークトップ高さの1/10の高さ以下である。また、「ピークの半値幅」および「ピークのピークトップ高さの1/10の高さでの高温側温度」は、本明細書の実施例に記載の方法を用いて求めることができる。
 また、本発明の繊維状炭素ナノ構造体は、前記ピークのピークトップ高さの7.5/10の高さでの低温側温度における重量減少率が40重量%以下であることが好ましい。ピークのピークトップ高さの7.5/10の高さでの低温側温度における重量減少率が40重量%以下である繊維状炭素ナノ構造体は、酸化処理などの表面改質処理を施した際により表面改質され易い。
 ここで、本発明において、「ピークのピークトップ高さの7.5/10の高さでの低温側温度における重量減少率」は、本明細書の実施例に記載の方法を用いて求めることができる。
 そして、本発明の繊維状炭素ナノ構造体は、前記ピークのピークトップ温度が530℃以上730℃未満であることが好ましい。ピークのピークトップ温度が530℃未満である繊維状炭素ナノ構造体は、酸化処理などの表面処理改質を施した際に焼失し易く、一方で、ピークのピークトップ温度が730℃以上である繊維状炭素ナノ構造体は、酸化処理などの表面処理改質を施した際により表面改質され難い。
 ここで、本発明において、「ピークのピークトップ温度」は、本明細書の実施例に記載の方法を用いて求めることができる。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の繊維状炭素ナノ構造体の製造方法は、上述した繊維状炭素ナノ構造体の何れかを製造する繊維状炭素ナノ構造体の製造方法であって、繊維状炭素ナノ構造体を真空雰囲気下で120℃以上の温度に加熱する工程を含む、ことを特徴とする。
 そして、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の繊維状炭素ナノ構造体の製造方法は、上述した繊維状炭素ナノ構造体の何れかを製造する繊維状炭素ナノ構造体の製造方法であって、繊繊維状炭素ナノ構造体を不活性ガス雰囲気下800℃以上の温度に加熱する工程を含む、ことを特徴とする。
 また、本発明の表面改質繊維状炭素ナノ構造体の製造方法は、上述した繊維状炭素ナノ構造体の何れかに対して表面改質処理を施し、表面改質繊維状炭素ナノ構造体を得る工程とを含むことを特徴とする。ここで、前記表面改質処理が湿式酸化処理であってもよい。
 本発明によれば、表面改質処理し易い繊維状炭素ナノ構造体およびその製造方法を提供することができる。
 また、本発明によれば、良好に表面改質処理された表面改質繊維状炭素ナノ構造体の製造方法を提供することができる。
温度微分曲線のピークの形状を模式的に示すグラフである。
 以下、本発明の実施形態について詳細に説明する。
 ここで、本発明の繊維状炭素ナノ構造体は、例えば酸化処理などの表面改質処理を施した際に表面改質され易いものである。そして、本発明の繊維状炭素ナノ構造体を表面改質処理して得られる表面改質繊維状炭素ナノ構造体は、特に限定されることなく、例えば分散媒中に表面改質繊維状炭素ナノ構造体を分散させてなる分散液を調製する際に好適に用いることができる。
(繊維状炭素ナノ構造体)
 本発明の繊維状炭素ナノ構造体は、乾燥空気雰囲気における熱重量分析で得られる温度微分曲線のピークの半値幅が38℃以上90℃未満であり、ピークのピークトップ高さの1/10の高さでの高温側温度が658℃以上であることを必要とする。そして、本発明の繊維状炭素ナノ構造体は、温度微分曲線のピークの半値幅が38℃以上90℃未満であり、ピークのピークトップ高さの1/10の高さでの高温側温度が658℃以上であるので、酸化処理などの表面改質処理を施した際に良好に表面改質される。
 ここで、繊維状炭素ナノ構造体としては、特に限定されることなく、例えば、カーボンナノチューブ(CNT)等の円筒形状の炭素ナノ構造体や、炭素の六員環ネットワークが扁平筒状に形成されてなる炭素ナノ構造体等の非円筒形状の炭素ナノ構造体が挙げられる。
 なお、本発明の繊維状炭素ナノ構造体は、上述した炭素ナノ構造体を1種単独で含んでいてもよいし、2種以上含んでいてもよい。
 上述した中でも、繊維状炭素ナノ構造体としては、CNTを含む繊維状炭素ナノ構造体が好ましい。CNTを含む繊維状炭素ナノ構造体は、表面改質処理により分散性を高めた際に特に優れた特性(例えば、導電性、熱伝導性、強度など)を発揮し得るからである。
 なお、CNTを含む繊維状炭素ナノ構造体は、CNTのみからなるものであってもよいし、CNTと、CNT以外の繊維状炭素ナノ構造体との混合物であってもよい。
 そして、繊維状炭素ナノ構造体中のCNTとしては、特に限定されることなく、単層カーボンナノチューブおよび/または多層カーボンナノチューブを用いることができるが、CNTは、単層から5層までのカーボンナノチューブであることが好ましく、単層カーボンナノチューブであることがより好ましい。カーボンナノチューブの層数が少ないほど、表面改質処理により分散性を高めた際に特に優れた特性を発揮し得るからである。
 ここで、本発明の繊維状炭素ナノ構造体は、乾燥空気雰囲気下における熱重量分析で得られる温度微分曲線のピークの半値幅が38℃以上90℃未満であることが必要であり、繊維状炭素ナノ構造体の温度微分曲線のピークの半値幅は、40℃以上であることが好ましく、49℃以下であることがより好ましい。また、繊維状炭素ナノ構造体の温度微分曲線のピークの半値幅は、85℃以下であることが好ましく、80℃以下であることがより好ましい。温度微分曲線のピークの半値幅が好ましい範囲の上記下限以上であれば、空気酸化を促進する不純物を除去することができ、温度微分曲線のピークの半値幅が好ましい範囲の上記上限以下であれば、繊維状炭素ナノ構造体の表面改質の際の焼失を抑制することができる。
 また、本発明の繊維状炭素ナノ構造体は、乾燥空気雰囲気下における熱重量分析で得られる温度微分曲線のピークのピークトップ高さの1/10の高さでの高温側温度が658℃以上であることが必要であり、繊維状炭素ナノ構造体の温度微分曲線のピークのピークトップ高さの1/10の高さでの高温側温度が660℃以上であることが好ましく、665℃以上であることがより好ましく、673℃以上であることが更に好ましく、689℃以上であることが一層好ましく、また、通常、760℃以下である。温度微分曲線のピークのピークトップ高さの1/10の高さでの高温側温度が好ましい範囲の上記下限以上であれば、酸化処理などの表面改質処理を施した際により良好に表面改質される。
 また、本発明の繊維状炭素ナノ構造体は、乾燥空気雰囲気下における熱重量分析で得られる温度微分曲線のピークのピークトップ高さの7.5/10の高さでの低温側温度における重量減少率が40重量%以下であることが好ましく、38重量%以下であることがより好ましく、35重量%以下であることが更に好ましく、31重量%以下であることが一層好ましく、29重量%以下であることがより一層好ましく、また、通常、10重量%以上である。温度微分曲線のピークのピークトップ高さの7.5/10の高さでの低温側温度における重量減少率が上記上限以下であると、酸化処理などの表面改質処理を施した際により良好に表面改質される。
 さらに、本発明の繊維状炭素ナノ構造体は、乾燥空気雰囲気下における熱重量分析で得られる温度微分曲線のピークのピークトップ温度が530℃以上であることが好ましく、550℃以上であることがより好ましく、570℃以上であることが更に好ましく、また、730℃未満であることが好ましく、710℃以下であることがより好ましく、690℃以下であることが更に好ましい。温度微分曲線のピークのピークトップ温度が530℃以上730℃未満であると、酸化処理などの表面改質処理を施した際により良好に表面改質される。
 なお、熱重量曲線は、縦軸が質量で横軸が温度の熱重量曲線であり、また、熱重量曲線の一次微分曲線は、縦軸が微分熱重量(DTG)で横軸が温度の温度微分曲線である。
 そして、繊維状炭素ナノ構造体の温度微分曲線のピークの、(i)半値幅(℃)、(ii)ピークトップ高さの1/10の高さでの高温側温度(表1における「b値」)(℃)、(iii)ピークのピークトップ高さの7.5/10の高さでの低温側温度における重量減少率(重量%)、および(iv)ピークトップ温度(℃)は、繊維状炭素ナノ構造体の前処理条件(例えば、前処理時の雰囲気(真空雰囲気または不活性ガス雰囲気)および処理温度等)を変更することにより、調節することができる。
 また、繊維状炭素ナノ構造体の平均直径は、1nm以上であることが好ましく、60nm以下であることが好ましく、30nm以下であることがより好ましく、10nm以下であることが更に好ましい。平均直径が上記範囲内の繊維状炭素ナノ構造体は、表面改質処理により分散性を高めた際に特に優れた特性を発揮し得る。
 ここで、本発明において、「繊維状炭素ナノ構造体の平均直径」は、透過型電子顕微鏡(TEM)画像上で、例えば、無作為に選択された20本の繊維状炭素ナノ構造体について直径(外径)を測定し、個数平均値を算出することで求めることができる。
 また、繊維状炭素ナノ構造体としては、平均直径(Av)に対する、直径の標準偏差(σ:標本標準偏差)に3を乗じた値(3σ)の比(3σ/Av)が0.20超0.80未満の繊維状炭素ナノ構造体を用いることが好ましく、3σ/Avが0.25超の繊維状炭素ナノ構造体を用いることがより好ましく、3σ/Avが0.50超の繊維状炭素ナノ構造体を用いることが更に好ましい。3σ/Avが0.20超0.80未満の繊維状炭素ナノ構造体は、表面改質処理により分散性を高めた際に特に優れた特性を発揮し得る。
 なお、繊維状炭素ナノ構造体の平均直径(Av)および標準偏差(σ)は、繊維状炭素ナノ構造体の製造方法や製造条件を変更することにより調整してもよいし、異なる製法で得られた繊維状炭素ナノ構造体を複数種類組み合わせることにより調整してもよい。
 更に、繊維状炭素ナノ構造体は、平均長さが、10μm以上であることが好ましく、50μm以上であることがより好ましく、80μm以上であることが更に好ましく、600μm以下であることが好ましく、550μm以下であることがより好ましく、500μm以下であることが更に好ましい。平均長さが上記範囲内の繊維状炭素ナノ構造体は、表面改質処理により分散性を高めた際に特に優れた特性を発揮し得る。
 なお、本発明において、「繊維状炭素ナノ構造体の平均長さ」は、走査型電子顕微鏡(SEM)画像上で、例えば、20本の繊維状炭素ナノ構造体について長さを測定し、個数平均値を算出することで求めることができる。
 ここで、繊維状炭素ナノ構造体は、通常、アスペクト比が10超である。なお、繊維状炭素ナノ構造体のアスペクト比は、走査型電子顕微鏡または透過型電子顕微鏡を用いて、無作為に選択した繊維状炭素ナノ構造体20本の直径および長さを測定し、直径と長さとの比(長さ/直径)の平均値を算出することにより求めることができる。
 また、繊維状炭素ナノ構造体は、BET比表面積が、600m2/g以上であることが好ましく、800m2/g以上であることがより好ましく、2000m2/g以下であることが好ましく、1800m2/g以下であることがより好ましく、1600m2/g以下であることが更に好ましい。繊維状炭素ナノ構造体のBET比表面積が600m2/g以上であれば、表面改質処理により分散性を高めた際に特に優れた特性を発揮し得る。また、繊維状炭素ナノ構造体のBET比表面積が2000m2/g以下であれば、表面改質処理した際に分散性を十分に高めることができる。
 なお、本発明において、「BET比表面積」とは、BET法を用いて測定した窒素吸着比表面積を指す。
 また、繊維状炭素ナノ構造体は、開口処理されておらず、吸着等温線から得られるt-プロットが上に凸な形状を示すことが好ましい。t-プロットが上に凸な形状を示す繊維状炭素ナノ構造体は、表面改質処理により分散性を高めた際に特に優れた特性を発揮し得る。
 なお、「t-プロット」は、窒素ガス吸着法により測定された繊維状炭素ナノ構造体の吸着等温線において、相対圧を窒素ガス吸着層の平均厚みt(nm)に変換することにより得ることができる。即ち、窒素ガス吸着層の平均厚みtを相対圧P/P0に対してプロットした、既知の標準等温線から、相対圧に対応する窒素ガス吸着層の平均厚みtを求めて上記変換を行うことにより、繊維状炭素ナノ構造体のt-プロットが得られる(de Boerらによるt-プロット法)。
 なお、本明細書において、「t-プロット」は、本明細書の実施例に記載の方法を用いて求めることができる。
 ここで、表面に細孔を有する物質では、窒素ガス吸着層の成長は、次の(1)~(3)の過程に分類される。そして、下記の(1)~(3)の過程によって、t-プロットの傾きに変化が生じる。
(1)全表面への窒素分子の単分子吸着層形成過程
(2)多分子吸着層形成とそれに伴う細孔内での毛管凝縮充填過程
(3)細孔が窒素によって満たされた見かけ上の非多孔性表面への多分子吸着層形成過程
 そして、上に凸な形状を示すt-プロットは、窒素ガス吸着層の平均厚みtが小さい領域では、原点を通る直線上にプロットが位置するのに対し、tが大きくなると、プロットが当該直線から下にずれた位置となる。かかるt-プロットの形状を有する繊維状炭素ナノ構造体は、繊維状炭素ナノ構造体の全比表面積に対する内部比表面積の割合が大きく、繊維状炭素ナノ構造体を構成する炭素ナノ構造体に多数の開口が形成されていることを示している。
 なお、繊維状炭素ナノ構造体のt-プロットの屈曲点は、0.2≦t(nm)≦1.5を満たす範囲にあることが好ましく、0.45≦t(nm)≦1.5の範囲にあることがより好ましく、0.55≦t(nm)≦1.0の範囲にあることが更に好ましい。繊維状炭素ナノ構造体のt-プロットの屈曲点がかかる範囲内にあれば、表面改質処理により分散性を高めた際に特に優れた特性を発揮し得る。
 なお、「屈曲点の位置」は、前述した(1)の過程の近似直線Aと、前述した(3)の過程の近似直線Bとの交点である。
 更に、繊維状炭素ナノ構造体は、t-プロットから得られる全比表面積S1に対する内部比表面積S2の比(S2/S1)が0.05以上0.30以下であるのが好ましい。繊維状炭素ナノ構造体のS2/S1の値がかかる範囲内であれば、表面改質処理により分散性を高めた際に特に優れた特性を発揮し得る。
 ここで、繊維状炭素ナノ構造体の全比表面積S1および内部比表面積S2は、そのt-プロットから求めることができる。具体的には、まず、(1)の過程の近似直線の傾きから全比表面積S1を、(3)の過程の近似直線の傾きから外部比表面積S3を、それぞれ求めることができる。そして、全比表面積S1から外部比表面積S3を差し引くことにより、内部比表面積S2を算出することができる。
 因みに、繊維状炭素ナノ構造体の吸着等温線の測定、t-プロットの作成、および、t-プロットの解析に基づく全比表面積S1と内部比表面積S2との算出は、例えば、市販の測定装置である「BELSORP(登録商標)-mini」(日本ベル(株)製)を用いて行うことができる。
 更に、繊維状炭素ナノ構造体として好適なCNTを含む繊維状炭素ナノ構造体は、ラマン分光法を用いて評価した際に、Radial Breathing Mode(RBM)のピークを有することが好ましい。なお、三層以上の多層カーボンナノチューブのみからなる繊維状炭素ナノ構造体のラマンスペクトルには、RBMが存在しない。
 また、CNTを含む繊維状炭素ナノ構造体は、ラマンスペクトルにおけるDバンドピーク強度に対するGバンドピーク強度の比(G/D比)が0.5以上5.0以下であることが好ましい。G/D比が0.5以上5.0以下であれば、表面改質処理により分散性を高めた際に特に優れた特性を発揮し得る。
 なお、本明細書において、「G/D比」は、下記方法を用いて求めることができる。
<G/D比>
 顕微レーザラマンシステム(サーモフィッシャーサイエンティフィック(株)製、NicoletAlmega XR)を用い、基材中心部付近の繊維状炭素ナノ構造体について測定する。
 そして、繊維状炭素ナノ構造体の炭素純度は、好ましくは98質量%以上、より好ましくは99質量%以上、さらに好ましくは99.9質量%以上である。
 なお、本明細書において、「炭素純度」は、下記方法を用いて求めることができる。
<炭素純度>
 熱重量分析装置(TG)を使用し、繊維状炭素ナノ構造体を空気中で800℃まで昇温した際の減少重量から炭素純度(=(800℃に到達するまでに燃焼して減少した重量/初期重量)×100(%))を求める。
<前処理>
 前処理は、(i)繊維状炭素ナノ構造体を真空雰囲気下で120℃以上、好ましくは190℃以上の温度(通常、300℃以下)に加熱する工程を含むものであってもよく、(ii)繊維状炭素ナノ構造体を不活性ガス雰囲気下で800℃以上、好ましくは900℃以上の温度(通常、1,100℃以下)に加熱する工程を含むものであってもよいが、真空下で加熱する工程を含むことが好ましい。
 処理温度を下限以上の温度とすることにより、酸化処理などの表面改質処理を施した際により表面改質され易く、処理温度を上限以下の温度とすることにより、繊維状炭素ナノ構造体の焼失を抑制することができる。
 不活性ガスとしては、例えば、窒素、アルゴン、ヘリウムなどが好適に挙げられる。
 なお、上述した(i)繊維状炭素ナノ構造体を真空雰囲気下で120℃以上に加熱する工程を行った後に、上述した(ii)繊維状炭素ナノ構造体を不活性ガス雰囲気下で800℃以上に加熱する工程を行ってもよく、また、上述した(ii)繊維状炭素ナノ構造体を不活性ガス雰囲気下で800℃以上に加熱する工程を行った後に、上述した(i)繊維状炭素ナノ構造体を真空雰囲気下で120℃以上に加熱する工程を行ってもよい。
 前処理の処理時間としては、10分間以上であることが好ましく、1時間以上であることがより好ましく、3時間以上であることが更に好ましく、36時間以下であることが好ましく、30時間以下であることがより好ましく、24時間以下であることが更に好ましい。
 処理時間を下限以上とすることにより、空気酸化を促進させる不純物を除去することができ、処理時間を上限以下とすることにより、繊維状炭素ナノ構造体の焼失を抑制することができる。
(表面改質繊維状炭素ナノ構造体の製造方法)
 本発明の表面改質繊維状炭素ナノ構造体の製造方法では、上述したような所定の性状を有する繊維状炭素ナノ構造体に対して表面改質処理を施し、表面改質繊維状炭素ナノ構造体を得る。
<表面改質処理>
 表面改質処理は、特に限定されることなく、例えば、硝酸、硫酸、硝酸と硫酸との混酸、オゾン、フッ素ガスまたは過酸化水素などの表面改質処理剤を用いて行うことができる。中でも、分散性に優れる表面改質繊維状炭素ナノ構造体を得る観点からは、表面改質処理は、硝酸、硫酸または硝酸と硫酸との混酸を用いて行う湿式酸化処理であることが好ましく、硝酸と硫酸との混酸を用いて行う湿式酸化処理であることがより好ましい。また、表面改質処理条件は、使用する表面改質処理剤の種類および所望の表面改質繊維状炭素ナノ構造体の性状に応じて設定することができる。
<表面改質繊維状炭素ナノ構造体>
 そして、本発明の繊維状炭素ナノ構造体を表面改質処理して得られる表面改質繊維状炭素ナノ構造体は、特に限定されることなく、例えば水などの分散媒中で、分散剤を使用しなくても良好に分散させることができる。そして、得られた繊維状炭素ナノ構造体分散液は、各種成形品(例えば、帯電防止膜や透明導電膜など)の製造に用いることができる。
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下において、量を表す「%」は、特に断らない限り、質量基準である。
 実施例および比較例において、CNTを含む繊維状炭素ナノ構造体の、(I)温度微分曲線のピークの(i)半値幅(℃)、(ii)ピークトップ高さの1/10の高さでの高温側温度(b値)(℃)、(iii)ピークトップ高さの7.5/10の高さでの低温側温度における重量減少率(重量%)、および(iv)ピークトップ温度(℃)、並びに、(II)表面改質処理性は、それぞれ以下の方法を使用して測定または評価した。
<温度微分曲線>
 熱重量示差熱同時測定装置(BrukerAXS製、製品名「TG-DTA2020SA」)を使用し、測定試料2.00mgを熱重量示差熱同時測定装置のPtパン(100μL)に載せ、昇温速度5℃/分、乾燥空気流量200mL/分の条件下で繊維状炭素ナノ構造体の熱重量曲線を測定し(データ取得頻度:0.5秒/ポイント)、一次微分曲線(一次微分曲線作成条件:微分幅10ポイント)である温度微分曲線を得た。
 ここで、熱重量曲線は、縦軸が質量で横軸が温度であり、温度微分曲線は、例えば、図1に示すように、縦軸が微分熱重量(DTG)で横軸が温度である。
 図1において、実線で示されるピークが前処理前のもの(例えば、比較例1~4)であり、破線で示されるピークが前処理後のもの(例えば、実施例1~4)である。
 そして、温度微分曲線のピークから、(i)半値幅(℃)、(ii)ピークトップ高さの1/10の高さでの高温側温度(b値)(℃)、(iii)ピークトップ高さの7.5/10の高さでの低温側温度における重量減少率(重量%)、および(iv)ピークトップ温度(℃)を、それぞれ求めた。
(i)半値幅(℃):Tb-Ta
(ii)ピークトップ高さhの1/10の高さ(h/10)での高温側温度(℃)(表1における「b値」):Tc
(iii)ピークトップ高さhの7.5/10の高さ(7.5h/10)での低温側温度Tdにおける重量減少率(重量%)(表1における「重量減少率」):A
(iv)ピークトップ温度(℃):Tmax
max:ピークトップ温度(℃)
DTGmax:温度Tmaxにおける微分熱重量(%/℃)(ピークトップ高さh)
ini:ピークの始点の温度(℃)
a:微分熱重量の値がDTGmaxの1/2(h/2)になる温度(℃)(低温側)
b:微分熱重量の値がDTGmaxの1/2(h/2)になる温度(℃)(高温側、Tb>Ta
c:微分熱重量の値がDTGmaxの1/10(h/10)になる温度(℃)(高温側)
d:微分熱重量の値がDTGmaxの7.5/10(7.5h/10)になる温度(℃)(低温側)
A:TiniからTdまでの温度領域におけるピーク面積(ピーク積分値)
<表面改質処理性>
 冷却管と撹拌翼を備えた300mLフラスコに、得られた繊維状炭素ナノ構造体(実施例1~4:前処理後のもの、比較例1~4:前処理をしていないもの)0.80g、イオン交換水54.8g、および、硫酸(和光純薬社製、濃度96~98%)と硝酸(和光純薬社製、濃度69~70%)とを1:3(体積比)の割合で含有する混酸液83mLを加えたのち、撹拌しながら内温110℃で8時間加熱した。
 得られた混酸処理(「本処理」、「湿式酸化処理」ということもある)後の繊維状炭素ナノ構造体/混酸の液3.0gを、50mLサンプル瓶に測り取り、イオン交換水を27.0g添加して希釈した。上澄みを除去した後、イオン交換水を加えて液量を30mLとした。濃度0.1%のアンモニア水を加えて、pHを7.0に調整したのち、超音波照射装置(ブランソン製、製品名「BRANSON5510」)を用いて周波数42Hzで50分間、超音波照射して、繊維状炭素ナノ構造体の分散液を得た。
[分散液の評価]
 そして、得られた分散液に対し、遠心分離機(ベックマンコールター製、製品名「OPTIMA XL100K」)を使用し、20,000Gで40分間遠心分離して上澄み液を回収するサイクルを3回繰り返して、遠心分離処理後の繊維状炭素ナノ構造体の分散液20mLを得た。得られた分散液について、目視で凝集物の有無を確認した。
 また、分光光度計(日本分光製、商品名「V670」)を使用し、遠心分離機で処理する前の分散液の吸光度Ab1(光路長1cm、波長550nm)と、遠心分離機で処理した後の分散液の吸光度Ab2(光路長1cm、波長550nm)を測定した。下記式により、遠心分離処理による吸光度の低下率を求めることで、繊維状炭素ナノ構造体の分散性を評価した。吸光度低下率が小さい(50%以下である)ほど、繊維状炭素ナノ構造体が良好に表面改質されており、繊維状炭素ナノ構造体の分散性が優れていることを示す。
 吸光度低下率(%)={1-(Ab2/Ab1)}×100
[成形品(膜)の評価]
 また、得られた分散液を、ガラス基板にバーコーター♯2にて塗布した後、130℃で10分間乾燥し、繊維状炭素ナノ構造体からなる膜をガラス基板上に形成した。
 そして、得られた膜を光学顕微鏡(倍率100倍)で観察し、顕微鏡の視野中に視認される繊維状炭素ナノ構造体の凝集塊(直径30μm以上)の有無を確認することで、繊維状炭素ナノ構造体の分散性を評価した。繊維状炭素ナノ構造体の凝集塊の数が少ないほど、繊維状炭素ナノ構造体が良好に表面改質されており、繊維状炭素ナノ構造体の分散性が優れていることを示す。
〔総合評価〕
 吸光度低下率が50%以下であり、分散液中の凝集物がなく、且つ、膜中の凝集塊がない場合を「優」とし、「優」以外の場合を「不可」とした。
(実施例1)
 繊維状炭素ナノ構造体の配向集合体(CNTを含む繊維状炭素ナノ構造体)として、単層カーボンナノチューブである、ゼオンナノテクノロジー社製『ZEONANO SG101』を用いた。このCNTを含む繊維状炭素ナノ構造体に対して、油回転式真空ポンプを備えたオーブンを用いて真空下で190℃で15時間加熱する前処理を行った。
 そして、得られた繊維状炭素ナノ構造体について、(I)温度微分曲線のピークの(i)半値幅(℃)、(ii)ピークトップ高さの1/10の高さでの高温側温度(b値)(℃)、(iii)ピークトップ高さの7.5/10の高さでの低温側温度における重量減少率(重量%)、および(iv)ピークトップ温度(℃)、並びに、(II)表面改質処理性を評価した。結果を表1に示す。
(実施例2)
 実施例1において、真空下で190℃で15時間加熱する前処理を行う代わりに、真空下で120℃で15時間加熱する前処理を行ったこと以外は実施例1と同様にして、繊維状炭素ナノ構造体の配向集合体(CNTを含む繊維状炭素ナノ構造体)を得た。
 そして、得られた繊維状炭素ナノ構造体について、(I)温度微分曲線のピークの(i)半値幅(℃)、(ii)ピークトップ高さの1/10の高さでの高温側温度(b値)(℃)、(iii)ピークトップ高さの7.5/10の高さでの低温側温度における重量減少率(重量%)、および(iv)ピークトップ温度(℃)、並びに、(II)表面改質処理性を評価した。結果を表1に示す。
(実施例3)
 実施例1において、真空下で190℃で15時間加熱する前処理を行う代わりに、窒素雰囲気下で900℃で6時間加熱する前処理を行ったこと以外は実施例1と同様にして、繊維状炭素ナノ構造体の配向集合体(CNTを含む繊維状炭素ナノ構造体)を得た。
 そして、得られた繊維状炭素ナノ構造体について、(I)温度微分曲線のピークの(i)半値幅(℃)、(ii)ピークトップ高さの1/10の高さでの高温側温度(b値)(℃)、(iii)ピークトップ高さの7.5/10の高さでの低温側温度における重量減少率(重量%)、および(iv)ピークトップ温度(℃)、並びに、(II)表面改質処理性を評価した。結果を表1に示す。
(実施例4)
 実施例1において、真空下で190℃で15時間加熱する前処理を行う代わりに、窒素雰囲気下で800℃で6時間加熱する前処理を行ったこと以外は実施例1と同様にして、繊維状炭素ナノ構造体の配向集合体(CNTを含む繊維状炭素ナノ構造体)を得た。
 そして、得られた繊維状炭素ナノ構造体について、(I)温度微分曲線のピークの(i)半値幅(℃)、(ii)ピークトップ高さの1/10の高さでの高温側温度(b値)(℃)、(iii)ピークトップ高さの7.5/10の高さでの低温側温度における重量減少率(重量%)、および(iv)ピークトップ温度(℃)、並びに、(II)表面改質処理性を評価した。結果を表1に示す。
(比較例1)
 真空下で加熱する前処理を行なっていない繊維状炭素ナノ構造体の配向集合体(CNTを含む繊維状炭素ナノ構造体)としての単層カーボンナノチューブである、ゼオンナノテクノロジー社製『ZEONANO SG101』について、(I)温度微分曲線のピークの(i)半値幅(℃)、(ii)ピークトップ高さの1/10の高さでの高温側温度(b値)(℃)、(iii)ピークトップ高さの7.5/10の高さでの低温側温度における重量減少率(重量%)、および(iv)ピークトップ温度(℃)、並びに、(II)表面改質処理性を評価した。結果を表1に示す。
(比較例2)
 比較例1において、繊維状炭素ナノ構造体の配向集合体としての単層カーボンナノチューブである、Ocsial社製『Tuball』を用いたこと以外は、比較例1と同様にして、繊維状炭素ナノ構造体の配向集合体(CNTを含む繊維状炭素ナノ構造体)について、(I)温度微分曲線のピークの(i)半値幅(℃)、(ii)ピークトップ高さの1/10の高さでの高温側温度(b値)(℃)、(iii)ピークトップ高さの7.5/10の高さでの低温側温度における重量減少率(重量%)、および(iv)ピークトップ温度(℃)、並びに、(II)表面改質処理性を評価した。結果を表1に示す。
(比較例3)
 比較例1において、繊維状炭素ナノ構造体の配向集合体としての単層カーボンナノチューブである、Signis SG-65iを用いたこと以外は、比較例1と同様にして、繊維状炭素ナノ構造体の配向集合体(CNTを含む繊維状炭素ナノ構造体)について、(I)温度微分曲線のピークの(i)半値幅(℃)、(ii)ピークトップ高さの1/10の高さでの高温側温度(b値)(℃)、(iii)ピークトップ高さの7.5/10の高さでの低温側温度における重量減少率(重量%)、および(iv)ピークトップ温度(℃)、並びに、(II)表面改質処理性を評価した。結果を表1に示す。
(比較例4)
 比較例1において、繊維状炭素ナノ構造体の配向集合体としての単層カーボンナノチューブである、名城ナノカーボン社製『MEIJO eDIPS EC1.5』を用いたこと以外は、比較例1と同様にして、繊維状炭素ナノ構造体の配向集合体(CNTを含む繊維状炭素ナノ構造体)について、(I)温度微分曲線のピークの(i)半値幅(℃)、(ii)ピークトップ高さの1/10の高さでの高温側温度(b値)(℃)、(iii)ピークトップ高さの7.5/10の高さでの低温側温度における重量減少率(重量%)、および(iv)ピークトップ温度(℃)、並びに、(II)表面改質処理性を評価した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1より、実施例1~4の繊維状炭素ナノ構造体は、比較例1~4の繊維状炭素ナノ構造体と比較し、良好に表面改質されており、分散性に優れている(総合評価が「優」である)ことが分かる。
 本発明によれば、表面改質処理し易い繊維状炭素ナノ構造体およびその製造方法を提供することができる。
 また、本発明によれば、良好に表面改質処理された表面改質繊維状炭素ナノ構造体の製造方法を提供することができる。
max    ピークトップ温度(℃)
DTGmax  温度Tmaxにおける微分熱重量(%/℃)(ピークトップ高さh)
ini    ピークの始点の温度(℃)
a     微分熱重量の値がDTGmaxの1/2(h/2)になる温度(℃)(低温側)
b     微分熱重量の値がDTGmaxの1/2(h/2)になる温度(℃)(高温側、Tb>Ta
c     微分熱重量の値がDTGmaxの1/10(h/10)になる温度(℃)(高温側)
d     微分熱重量の値がDTGmaxの7.5/10(7.5h/10)になる温度(℃)(低温側)
A      TiniからTdまでの温度領域におけるピーク面積(ピーク積分値)

Claims (7)

  1.  乾燥空気雰囲気における熱重量分析で得られる熱重量曲線の一次微分曲線である温度微分曲線のピークの半値幅が38℃以上90℃未満であり、
     前記ピークのピークトップ高さの1/10の高さでの高温側温度が658℃以上である、繊維状炭素ナノ構造体。
  2.  前記ピークのピークトップ高さの7.5/10の高さでの低温側温度における重量減少率が40重量%以下である、請求項1に記載の繊維状炭素ナノ構造体。
  3.  前記ピークのピークトップ温度が530℃以上730℃未満である、請求項1または2に記載の繊維状炭素ナノ構造体。
  4.  請求項1から3の何れかに記載の繊維状炭素ナノ構造体を製造する繊維状炭素ナノ構造体の製造方法であって、
     繊維状炭素ナノ構造体を真空雰囲気下で120℃以上の温度に加熱する工程を含む、繊維状炭素ナノ構造体の製造方法。
  5.  請求項1から3の何れかに記載の繊維状炭素ナノ構造体を製造する繊維状炭素ナノ構造体の製造方法であって、
     繊維状炭素ナノ構造体を不活性ガス雰囲気下で800℃以上の温度に加熱する工程を含む、繊維状炭素ナノ構造体の製造方法。
  6.  請求項1から3の何れかに記載の繊維状炭素ナノ構造体に対して表面改質処理を施し、表面改質繊維状炭素ナノ構造体を得る工程を含む、表面改質繊維状炭素ナノ構造体の製造方法。
  7.  前記表面改質処理が湿式酸化処理である、請求項6に記載の表面改質繊維状炭素ナノ構造体の製造方法。
PCT/JP2020/010365 2019-03-27 2020-03-10 繊維状炭素ナノ構造体、繊維状炭素ナノ構造体の製造方法、および表面改質繊維状炭素ナノ構造体の製造方法 WO2020195800A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/593,213 US11661345B2 (en) 2019-03-27 2020-03-10 Fibrous carbon nanostructure, method of producing fibrous carbon nanostructure, and method of producing surface-modified fibrous carbon nanostructure
JP2021508989A JPWO2020195800A1 (ja) 2019-03-27 2020-03-10
KR1020217025667A KR20210142601A (ko) 2019-03-27 2020-03-10 섬유상 탄소 나노 구조체, 섬유상 탄소 나노 구조체의 제조 방법, 및 표면 개질 섬유상 탄소 나노 구조체의 제조 방법
CN202080007795.2A CN113272249B (zh) 2019-03-27 2020-03-10 纤维状碳纳米结构体及其制造方法、表面改性的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-061144 2019-03-27
JP2019061144 2019-03-27

Publications (1)

Publication Number Publication Date
WO2020195800A1 true WO2020195800A1 (ja) 2020-10-01

Family

ID=72610480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/010365 WO2020195800A1 (ja) 2019-03-27 2020-03-10 繊維状炭素ナノ構造体、繊維状炭素ナノ構造体の製造方法、および表面改質繊維状炭素ナノ構造体の製造方法

Country Status (5)

Country Link
US (1) US11661345B2 (ja)
JP (1) JPWO2020195800A1 (ja)
KR (1) KR20210142601A (ja)
CN (1) CN113272249B (ja)
WO (1) WO2020195800A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022209831A1 (ja) * 2021-03-31 2022-10-06 日本ゼオン株式会社 炭素膜

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230058870A (ko) 2021-10-25 2023-05-03 주식회사 엘지에너지솔루션 발화억제 구조의 리튬이차전지

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009029695A (ja) * 2007-06-29 2009-02-12 Toray Ind Inc カーボンナノチューブ集合体、分散体および導電性フィルム
JP2012101140A (ja) * 2010-11-05 2012-05-31 Kurita Seisakusho:Kk 粉体可溶化方法及び粉体可溶化装置
JP2015510685A (ja) * 2012-01-12 2015-04-09 ハンワ ケミカル コーポレイション 複合炭素素材を含む電磁シールド用樹脂組成物
JP2015105213A (ja) * 2013-11-29 2015-06-08 日本ゼオン株式会社 カーボンナノチューブ及びその分散液、並びに自立膜及び複合材料
JP2015105212A (ja) * 2013-11-29 2015-06-08 日本ゼオン株式会社 カーボンナノチューブ及びその分散液、並びに自立膜及び複合材料
WO2017104769A1 (ja) * 2015-12-17 2017-06-22 日本ゼオン株式会社 繊維状炭素ナノ構造体分散液
JP2018039721A (ja) * 2016-09-06 2018-03-15 エスケー イノベーション カンパニー リミテッドSk Innovation Co., Ltd. カーボンナノチューブの精製方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3963893B2 (ja) * 2002-02-13 2007-08-22 株式会社東京大学Tlo 単層カーボンナノチューブの製造方法
JP4459212B2 (ja) * 2002-02-13 2010-04-28 株式会社東京大学Tlo 単層カーボンナノチューブ含有組成物
JP2006225246A (ja) * 2005-02-21 2006-08-31 Mitsubishi Heavy Ind Ltd ナノカーボン材料
CN101250059B (zh) 2008-01-25 2011-05-04 上海纳晶科技有限公司 轻质高导热碳纳米复合材料的制备方法
CN101327927A (zh) * 2008-07-11 2008-12-24 武汉大学 用碳纳米纤维合成金刚石的方法
CN101941692B (zh) * 2010-09-21 2012-05-23 上海大学 高结晶性双壁碳纳米管的制备方法
KR101242529B1 (ko) * 2011-02-22 2013-03-12 주식회사 대유신소재 나노 실리콘카바이드 코팅을 이용한 탄소재료 계면강화 방법
CN102584308B (zh) * 2012-02-03 2013-04-24 西北工业大学 碳纤维/氧化锆纳米线混杂增强材料的制备方法
US20160229695A1 (en) 2013-09-30 2016-08-11 Zeon Corporation Carbon nanotubes, dispersion liquid thereof, carbon nanotube-containing film, and composite material
CN104192826B (zh) * 2014-08-19 2016-05-11 清华大学 一种提高纳米碳材料导电性的方法
WO2017115708A1 (ja) * 2015-12-28 2017-07-06 日本ゼオン株式会社 繊維状炭素ナノ構造体分散液
CN106450351B (zh) * 2016-11-11 2019-07-26 攀钢集团攀枝花钢铁研究院有限公司 全钒液流电池复合电极及其制备方法
WO2018180901A1 (ja) * 2017-03-30 2018-10-04 日本ゼオン株式会社 繊維状炭素ナノ構造体分散液及びその製造方法、並びに繊維状炭素ナノ構造体
KR20190132635A (ko) * 2017-03-31 2019-11-28 니폰 제온 가부시키가이샤 섬유상 탄소 나노 구조체 분산액의 제조 방법 및 섬유상 탄소 나노 구조체 분산액

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009029695A (ja) * 2007-06-29 2009-02-12 Toray Ind Inc カーボンナノチューブ集合体、分散体および導電性フィルム
JP2012101140A (ja) * 2010-11-05 2012-05-31 Kurita Seisakusho:Kk 粉体可溶化方法及び粉体可溶化装置
JP2015510685A (ja) * 2012-01-12 2015-04-09 ハンワ ケミカル コーポレイション 複合炭素素材を含む電磁シールド用樹脂組成物
JP2015105213A (ja) * 2013-11-29 2015-06-08 日本ゼオン株式会社 カーボンナノチューブ及びその分散液、並びに自立膜及び複合材料
JP2015105212A (ja) * 2013-11-29 2015-06-08 日本ゼオン株式会社 カーボンナノチューブ及びその分散液、並びに自立膜及び複合材料
WO2017104769A1 (ja) * 2015-12-17 2017-06-22 日本ゼオン株式会社 繊維状炭素ナノ構造体分散液
JP2018039721A (ja) * 2016-09-06 2018-03-15 エスケー イノベーション カンパニー リミテッドSk Innovation Co., Ltd. カーボンナノチューブの精製方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022209831A1 (ja) * 2021-03-31 2022-10-06 日本ゼオン株式会社 炭素膜

Also Published As

Publication number Publication date
US11661345B2 (en) 2023-05-30
KR20210142601A (ko) 2021-11-25
CN113272249B (zh) 2023-08-01
JPWO2020195800A1 (ja) 2020-10-01
CN113272249A (zh) 2021-08-17
US20220169513A1 (en) 2022-06-02

Similar Documents

Publication Publication Date Title
Behler et al. Effect of thermal treatment on the structure of multi-walled carbon nanotubes
Najafi et al. UV-ozone treatment of multi-walled carbon nanotubes for enhanced organic solvent dispersion
Choucair et al. The gram-scale synthesis of carbon onions
Hemraj-Benny et al. Effect of ozonolysis on the pore structure, surface chemistry, and bundling of single-walled carbon nanotubes
JP7131543B2 (ja) 表面処理された炭素ナノ構造体の製造方法
Kukovecz et al. Multi-walled carbon nanotubes
Kim et al. Aspect ratio control of acid modified multiwalled carbon nanotubes
WO2020195800A1 (ja) 繊維状炭素ナノ構造体、繊維状炭素ナノ構造体の製造方法、および表面改質繊維状炭素ナノ構造体の製造方法
Ansón-Casaos et al. Optical absorption response of chemically modified single-walled carbon nanotubes upon ultracentrifugation in various dispersants
Manafi et al. Low temperature synthesis of multi-walled carbon nanotubes via a sonochemical/hydrothermal method
JP2023078128A (ja) 繊維状炭素ナノ構造体、繊維状炭素ナノ構造体の評価方法および表面改質繊維状炭素ナノ構造体の製造方法
Rahman et al. Synthesis and optical characterization of carbon nanotube arrays
JP4182214B2 (ja) カーボンナノチューブ分散極性有機溶媒
Kumar et al. Is precarbonization necessary for effective laser graphitization?
Zhao et al. Synthesis of multi-wall carbon nanotubes by the pyrolysis of ethanol on Fe/MCM-41 mesoporous molecular sieves
Ndungu et al. Synthesis of carbon nanostructured materials using LPG
Kumar et al. Investigation of optical properties of pristine and functionalized single-walled carbon nanotubes
Singh et al. Optical signature of structural defects in single walled and multiwalled carbon nanotubes
JP4761183B2 (ja) カーボンナノチューブ分散ポリイミドおよびその製造方法
Wang et al. Selective synthesis of large diameter single-walled carbon nanotubes on rice husk-derived catalysts
JP2006219358A (ja) ナノカーボン及び当該ナノカーボンの製造方法
Kim et al. Production of Carbonaceous Materials with Various Lengths in Small Spheroidal Fullerenes and Long CNTs by Tunable Multi‐walled Carbon Nanotube Cutting
Jagtoyen et al. Porosity of carbon nanotubes
WO2023153201A1 (ja) 酸化カーボンナノチューブ集合体及びこれを用いた分散液、並びに酸化カーボンナノチューブ集合体の製造方法
WO2021131920A1 (ja) 繊維状炭素ナノ構造体、および表面改質繊維状炭素ナノ構造体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20778660

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021508989

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20778660

Country of ref document: EP

Kind code of ref document: A1