WO2020192402A1 - 一种烯烃聚合方法及*** - Google Patents

一种烯烃聚合方法及*** Download PDF

Info

Publication number
WO2020192402A1
WO2020192402A1 PCT/CN2020/078435 CN2020078435W WO2020192402A1 WO 2020192402 A1 WO2020192402 A1 WO 2020192402A1 CN 2020078435 W CN2020078435 W CN 2020078435W WO 2020192402 A1 WO2020192402 A1 WO 2020192402A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
gas
mixture
catalyst
olefin
Prior art date
Application number
PCT/CN2020/078435
Other languages
English (en)
French (fr)
Inventor
阳永荣
吴文清
王靖岱
孙婧元
黄正梁
韩国栋
蒋斌波
王晓飞
杨遥
叶晓峰
廖祖维
Original Assignee
中国石油化工股份有限公司
浙江大学
上海化工研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 浙江大学, 上海化工研究院有限公司 filed Critical 中国石油化工股份有限公司
Priority to EP20778888.6A priority Critical patent/EP3950733A4/en
Priority to KR1020217034656A priority patent/KR20220035323A/ko
Priority to US17/598,410 priority patent/US20220177609A1/en
Publication of WO2020192402A1 publication Critical patent/WO2020192402A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/34Polymerisation in gaseous state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/005Separating solid material from the gas/liquid stream
    • B01J8/0055Separating solid material from the gas/liquid stream using cyclones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/08Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles
    • B01J8/10Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles moved by stirrers or by rotary drums or rotary receptacles or endless belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/26Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with two or more fluidised beds, e.g. reactor and regeneration installations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/32Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with introduction into the fluidised bed of more than one kind of moving particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/001Multistage polymerisation processes characterised by a change in reactor conditions without deactivating the intermediate polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/01Processes of polymerisation characterised by special features of the polymerisation apparatus used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00212Plates; Jackets; Cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00539Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00027Process aspects
    • B01J2219/0004Processes in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00096Plates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2314/00Polymer mixtures characterised by way of preparation
    • C08L2314/02Ziegler natta catalyst
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2314/00Polymer mixtures characterised by way of preparation
    • C08L2314/06Metallocene or single site catalysts

Definitions

  • the invention belongs to the field of olefin polymerization, and specifically relates to an olefin polymerization method and system.
  • the catalyst or polymer with active center is placed in two or more different reaction conditions or gas compositions to make continuous reaction to produce a polymer with broad/bimodal distribution.
  • Vinyl Using dual-series or multiple-series reactors, under different reaction temperatures or gas compositions, olefin polymerization can form polymers with different molecular weights, and olefins can be polymerized to form polymers with bimodal or broad molecular weight distributions.
  • European patent EP-A-691353 describes the method of two traditional gas-phase reactors in series to produce wide/bimodal polyethylene; this method has the existence of reactants flowing in series between the two gas-phase reactors, and polymer and reaction materials are transported. The pipeline continues to react causing problems such as pipeline blockage.
  • Patent US 7115687B discloses a process in which a first loop reactor and a second gas-phase fluidized bed reactor are connected in series; this process has uneven residence time distribution of polymer particles in the two gas-phase reactors and the first reaction The problem of more fine resin powder produced by the device.
  • Chinese patent CN 102060943A discloses a method for preparing bimodal polyethylene and a gas phase reactor containing at least four fluidized beds. This method has problems such as complicated operation method and high equipment investment.
  • the present invention provides an olefin polymerization method, which is suitable for multi-element copolymerization systems such as homopolymerization, binary copolymerization and ternary copolymerization. It combines the supported dual catalysts in two polymerization reactors. Medium-catalyzed olefin homopolymerization and/or copolymerization reactions are used to obtain polyolefin products with wide molecular weight distribution, wide branching distribution, good compatibility and excellent performance. At the same time, the present invention also provides a system for implementing the method.
  • the first aspect of the present invention provides an olefin polymerization method, which includes the following steps:
  • S1 Compress and condense the circulating gas stream containing olefin and condensing agent from the outlet of the second reactor to obtain a gas-liquid mixture; then perform gas-liquid separation on the gas-liquid mixture to obtain gas and liquid materials;
  • the material includes a first liquid material and a second liquid material, wherein the composition of the first liquid material and the second liquid material are the same or different;
  • the gas material and the first liquid material are transported back to the second reactor for circulation, and the second liquid material is introduced into the first reactor and simultaneously transported to the first reactor Ethylene and a catalyst, and the olefin in the first reactor undergoes a polymerization reaction under the contact of the catalyst to form a mixture containing the first polyolefin;
  • the mixture containing the first polyolefin is drawn from the first reactor and separated into at least a first mixture and a second mixture, the first mixture and the second mixture have the same or different compositions; Sending the first mixture back into the first reactor after heat exchange, and pumping the second mixture into the second reactor;
  • the second mixture in the second reactor, the gaseous material and the olefin in the first liquid material are contacted with a catalyst to perform a polymerization reaction to generate a second polyolefin, and then form a first polyolefin Polymerization product of olefin and second polyolefin.
  • the circulating gas stream further includes at least one of a co-catalyst, a molecular weight regulator, an antistatic agent and an inert gas.
  • the feeding position of the polymerization raw materials including olefin, condensing agent, co-catalyst, molecular weight regulator, antistatic agent and inert gas is selected from the first reactor and the second reactor. At least one of the reactor and the gas circulation loop; the gas circulation loop is located between the second reactor and the compressor, and the compressor is used to compress the circulating gas stream.
  • the catalyst is a supported dual catalyst; preferably, the supported dual catalyst is a mixture of a metallocene or late transition metal catalyst and a Zieg-Natta catalyst; further preferably, the catalyst The mass ratio of the metal or late transition metal catalyst to the Zieg-Natta catalyst is 0.1-10.
  • the liquid phase content in the gas-liquid mixture is 5-50 wt%, preferably 10-25 wt%.
  • step S1 the second liquid material accounts for 30-100 wt% of the liquid material.
  • step S2 the ratio of the mass of ethylene delivered into the first reactor to the total mass of polyolefin produced in the first reactor and the second reactor is 0.0001 1.
  • the mass ratio of the first polyolefin and the second polyolefin is (0-3):7 or (1-7):3.
  • the reaction pressure of the first reactor is 1.0-10 MPa, and the reaction temperature is 40-100° C.; and/or, the reaction pressure of the second reactor is 0.5-9.5 MPa ; The reaction temperature is 60-120°C.
  • the olefin is selected from at least one of ethylene and ⁇ -olefin; preferably, the ⁇ -olefin is selected from at least one of ⁇ -olefins of 4-18 carbon atoms ; Further preferably, the ⁇ -olefin is selected from at least one of butene, hexene and octene.
  • the condensing agent is selected from at least one of C 4 -C 8 linear or branched alkanes and C 4 -C 8 cycloalkanes, preferably selected from n-pentane At least one of alkane, isopentane, n-hexane, cyclohexane, and n-heptane.
  • the co-catalyst is selected from the group consisting of modified aluminoxane, diethyl aluminum chloride, diisobutyl aluminum chloride, aluminum sesquiethyl chloride, diisobutyl aluminum, At least one of monoethyl aluminum dichloride, trimethyl aluminum, triethyl aluminum, triisobutyl aluminum, trioctyl aluminum, diethyl aluminum monohydrogen, and diisobutyl aluminum monohydrogen; preferably Triethyl aluminum and/or triisobutyl aluminum.
  • the antistatic agent is selected from at least one of aluminum distearate, ethoxylated amine, polysulfone copolymer, polymeric polyamine and oil-soluble sulfonic acid.
  • the gas at the top of the first reactor is discharged and returned to the pressure between the second reactor and the compressor.
  • the gas circulation loop is located between the second reactor and the compressor, and the compressor is used to compress the circulating gas stream.
  • the polymerization product containing the first polyolefin and the second polyolefin is continuously or intermittently discharged from the second reactor.
  • the second aspect of the present invention provides a system for implementing the method according to the first aspect of the present invention, which includes:
  • a first reactor and a second reactor used for olefin polymerization A compressor, a first heat exchanger and a gas-liquid separation are arranged between the outlet at the top of the second reactor and the inlet at the first top of the first reactor in sequence Device
  • the liquid outlet of the gas-liquid separator is connected to the first top inlet of the first reactor through a fluid pipeline; the gas outlet of the gas-liquid separator is connected to the bottom inlet of the second reactor through a fluid pipeline;
  • the first top outlet of the first reactor is respectively connected to the middle inlet of the second reactor and the second top inlet of the first reactor.
  • a feed pump is provided between the first top outlet of the first reactor and the middle inlet of the second reactor to discharge the second reactor from the first reactor.
  • the mixture is pumped into the second reactor.
  • a second heat exchanger is provided between the first top outlet of the first reactor and the second top inlet of the first reactor.
  • the outlet at the top of the second reactor is connected to the compressor through a gas circulation loop.
  • an inlet is provided in the middle of the first reactor for conveying ethylene and catalyst.
  • an outlet is provided at the bottom of the second reactor for discharging polymerized products.
  • the second top outlet of the first reactor is connected to a gas circulation loop, and is used to discharge the gas at the top of the first reactor when the pressure in the first reactor is too high And return to the gas circulation loop.
  • the first reactor is a stirred tank reactor.
  • the second reactor is a fluidized bed reactor, and preferably, a gas distribution plate is provided at the bottom of the second reactor.
  • the first heat exchanger and the second heat exchanger are independently selected from a jacket heat exchanger, a shell-and-tube heat exchanger or a plate heat exchanger.
  • the gas-liquid separator is selected from a buffer tank separator, a cyclone separator, or a cyclone separator.
  • the method of the present invention combines a supported dual catalyst with a series process, and separates the liquid material obtained by condensing the circulating gas stream and introduces it into a separate first reactor to contact with the supported dual catalyst for polymerization reaction , And then introduce the material containing the first polyolefin produced by the reaction into the second reactor, and continue the polymerization reaction with other materials in the second reactor, so that the polyolefin particles are in the first reactor and the second reactor.
  • Circulation between the two polyolefins with obvious differences in properties improves the mixing effect, avoids the appearance of phase separation, and is conducive to the production of olefin polymers with wide molecular weight distribution, good compatibility and excellent performance.
  • ethylene gas is introduced into the first reactor to further reduce the hydrogen/ethylene ratio, increase the molecular weight of polyethylene, and improve product performance.
  • Fig. 1 is a simplified flowchart of a system for olefin polymerization according to an embodiment of the present invention.
  • Figure 2 is a simplified flowchart of a system for olefin polymerization according to another embodiment of the present invention.
  • Fig. 3 is a diagram showing the relationship between the composition of gas/liquid material and the content of the condensing agent after condensation and gas-liquid separation of the circulating gas stream according to an embodiment of the present invention, wherein the condensing agent is hexane.
  • Fig. 4 is a diagram showing the relationship between the composition of gas/liquid material and the content of the condensing agent after condensation and gas-liquid separation of the circulating gas stream according to an embodiment of the present invention, wherein the condensing agent is isopentane.
  • Figure 5 is a diagram showing the relationship between the composition of gas/liquid materials and the temperature of the first reactor after condensing and gas-liquid separation of the circulating gas stream according to one embodiment of the present invention.
  • the first aspect of the present invention relates to an olefin polymerization method, which includes the following steps:
  • S1 Compress and condense the circulating gas stream containing olefin and condensing agent from the outlet of the second reactor to obtain a gas-liquid mixture; then perform gas-liquid separation on the gas-liquid mixture to obtain gas and liquid materials;
  • the material includes a first liquid material and a second liquid material, wherein the composition of the first liquid material and the second liquid material are the same or different;
  • the gas material and the first liquid material are transported back to the second reactor for circulation, and the second liquid material is introduced into the first reactor and simultaneously transported to the first reactor Ethylene and a catalyst, and the olefin in the first reactor undergoes a polymerization reaction under the contact of the catalyst to form a mixture containing the first polyolefin;
  • the mixture containing the first polyolefin is drawn from the first reactor and separated into at least a first mixture and a second mixture, the first mixture and the second mixture have the same or different compositions; Sending the first mixture back into the first reactor after heat exchange, and pumping the second mixture into the second reactor;
  • the second mixture in the second reactor, the gaseous material and the olefin in the first liquid material are contacted with a catalyst to perform a polymerization reaction to generate a second polyolefin, and then form a first polyolefin Polymerization product of olefin and second polyolefin.
  • the circulating gas stream further includes at least one of a co-catalyst, a molecular weight regulator, an antistatic agent and an inert gas.
  • the feeding position of the polymerization raw materials including olefin, condensing agent, co-catalyst, molecular weight regulator, antistatic agent and inert gas is selected from the first reactor and the second reactor.
  • the molecular weight regulator is selected from at least one of ethane, propane, butane, hexane, and cyclohexane in alkanes, propylene, isobutylene, hydrogen or acetone in alkenes, Preferred is hydrogen.
  • the catalyst is a supported dual catalyst; preferably, the supported dual catalyst is a mixture of a metallocene or late transition metal catalyst and a Ziegler-Natta catalyst; Further preferably, the mass ratio of the metallocene or late transition metal catalyst to the Zieg-Natta catalyst is 0.1-10.
  • the metallocene or late transition metal catalyst plays a role to catalyze the polymerization of olefins to produce the first polyolefin with high molecular weight and high degree of branching.
  • reaction raw material refers to the mixture of the second mixture, the gas material and the first liquid material entering the second reactor.
  • the liquid phase content in the gas-liquid mixture is 5-50 wt%, preferably 10-25 wt%.
  • step S1 the second liquid material accounts for 30-100 wt% of the liquid material.
  • step S2 the ratio of the mass of ethylene delivered into the first reactor to the total mass of polyolefin produced in the first reactor and the second reactor is 0.0001 1.
  • the mass ratio of the first polyolefin and the second polyolefin is (0-3):7 or (1-7):3.
  • the reaction pressure of the first reactor is 1.0-10 MPa, and the reaction temperature is 40-100° C.; and/or, the reaction pressure of the second reactor is 0.5-9.5 MPa ; The reaction temperature is 60-120°C.
  • the olefin is selected from at least one of ethylene and ⁇ -olefin; preferably, the ⁇ -olefin is selected from at least one of ⁇ -olefins of 4-18 carbon atoms ; Further preferably, the ⁇ -olefin is selected from at least one of butene, hexene and octene.
  • the condensing agent is selected from at least one of C 4 -C 8 linear or branched alkanes and C 4 -C 8 cycloalkanes, preferably selected from n-pentane At least one of alkane, isopentane, n-hexane, cyclohexane, and n-heptane.
  • the co-catalyst is selected from the group consisting of modified aluminoxane, diethyl aluminum chloride, diisobutyl aluminum chloride, aluminum sesquiethyl chloride, diisobutyl aluminum, At least one of monoethyl aluminum dichloride, trimethyl aluminum, triethyl aluminum, triisobutyl aluminum, trioctyl aluminum, diethyl aluminum monohydrogen, and diisobutyl aluminum monohydrogen; preferably Triethyl aluminum and/or triisobutyl aluminum.
  • the antistatic agent is selected from at least one of aluminum distearate, ethoxylated amine, polysulfone copolymer, polymeric polyamine and oil-soluble sulfonic acid.
  • the inert gas is a conventional inert gas, such as nitrogen.
  • the gas at the top of the first reactor is discharged and returned to the gas circulation loop; the gas circulation The loop is located between the second reactor and the compressor, which is used to compress the circulating gas stream.
  • the polymerization product comprising the first polyolefin and the second polyolefin is continuously or intermittently discharged from the second reactor.
  • the second aspect of the present invention relates to a system for implementing the method according to the first aspect of the present invention, which includes:
  • a first reactor and a second reactor used for olefin polymerization A compressor, a first heat exchanger and a gas-liquid separation are arranged between the outlet at the top of the second reactor and the inlet at the first top of the first reactor in sequence Device
  • the liquid outlet of the gas-liquid separator is connected to the first top inlet of the first reactor through a fluid pipeline; the gas outlet of the gas-liquid separator is connected to the bottom inlet of the second reactor through a fluid pipeline;
  • the first top outlet of the first reactor is respectively connected to the middle inlet of the second reactor and the second top inlet of the first reactor.
  • a feed pump is provided between the first top outlet of the first reactor and the middle inlet of the second reactor to discharge the second reactor from the first reactor.
  • the mixture is pumped into the second reactor.
  • a second heat exchanger is provided between the first top outlet of the first reactor and the second top inlet of the first reactor.
  • the outlet at the top of the second reactor is connected to the compressor through a gas circulation loop.
  • an inlet is provided in the middle of the first reactor for transporting ethylene and catalysis.
  • an outlet is provided at the bottom of the second reactor for discharging polymerized products.
  • the second top outlet of the first reactor is connected to a gas circulation loop, and is used to discharge the gas at the top of the first reactor when the pressure in the first reactor is too high And return to the gas circulation loop.
  • the first reactor is a stirred tank reactor.
  • the second reactor is a fluidized bed reactor, and preferably, a gas distribution plate is provided at the bottom of the second reactor.
  • the first heat exchanger and the second heat exchanger are independently selected from a jacket heat exchanger, a shell-and-tube heat exchanger or a plate heat exchanger.
  • the gas-liquid separator is selected from a buffer tank separator, a cyclone separator, or a cyclone separator.
  • the system includes:
  • Compressor 2 used to maintain circulating air flow in the pipeline
  • the conveying pipeline 9 used to convey the material compressed by the compressor 2 to the first heat exchanger 3;
  • the fourth fluid pipe 13 for introducing the second mixture pumped by the feed pump into the second reactor 1;
  • the process of olefin polymerization using the above system is as follows: the material discharged from the gas outlet of the gas-liquid separator (the mixture of the gas material and the first liquid material) from the gas distribution zone at the bottom of the second reactor 1 enters the second reactor through the gas distribution plate 17 The reaction zone of the second reactor 1; the olefin in the reaction material in the second reactor 1 contacts the introduced catalyst and reacts to form a solid-phase polyolefin product, and the solid-phase polyolefin product is intermittently or continuously taken out from the sixth fluid pipeline 15; The reaction circulating gas flow is drawn from the top of the second reactor 1, enters the gas circulation loop 8, and flows through the compressor 2 and the first heat exchanger 3.
  • the partially condensed gas-liquid mixture flowing out of the first heat exchanger 3 enters the gas-liquid Separator 4; 30% to 100% of the liquid material (the second liquid material) enters the first reactor 5, and the unseparated liquid material (the first liquid material) enters the gas phase distribution zone of the second reactor 1 along with the gas material to complete One cycle.
  • a part of the mixture at the outlet of the first reactor 5 (the first mixture) is transferred back to the first reactor 5 through the second heat exchanger 6 and the other part of the mixture (the second mixture) is transferred to the first reactor 5 through the feed pump 7
  • the reaction is carried out in the second reactor 1. Replenishing fresh polymerization reaction raw materials containing comonomers, molecular weight regulators, etc., while introducing the catalyst into the polymerization system.
  • the polymerized monomers and comonomers in the reaction raw materials are contacted with the catalyst to generate polyolefins.
  • the pressure in the first reactor 5 is higher than the set pressure, the gas at the top of the first reactor 5 is returned to the gas circulation loop 8 through the increased eighth fluid pipe 18.
  • melt index The melt flow rate is measured according to the conditions of GB/T-3682-2000 (190°C, 2.16kg load), and it is usually recorded as MI2.16.
  • Olefin polymerization is carried out in the system shown in Figure 1. Under the action of the ZN catalyst system, the polymerization reaction temperature is 88°C, the pressure is 2.3MPa, ethylene and hexene undergo a binary copolymerization reaction in the second reactor (fluidized bed reactor), and the apparent velocity of the reaction material is 0.67m/ s.
  • the circulating gas stream in the gas circulation loop 8 includes hydrogen, nitrogen, ethylene, isopentane and hexene, the temperature is 88° C., and the pressure is 2.3 MPa.
  • the circulating gas flow takes out the unreacted circulating gas flow from the top outlet of the second reactor 1, enter the inlet of the compressor 2, and then pass through the first heat exchanger 3 (for example, a fixed tube plate heat exchanger) after heat exchange, the circulating gas flow is partially condensed and the gas
  • the liquid phase in the liquid mixture accounts for 80.0% by weight of the circulating gas flow.
  • the gas-liquid mixture undergoes gas-liquid separation in the gas-liquid separator 4. About 21% by weight of the liquid material (the second liquid material) enters the first reactor 5, and the remaining liquid material (The first liquid material) is returned to the second reactor 1 along with the gas material.
  • the reaction is carried out under the catalysis of the late transition metal catalyst to produce the first polyethylene with high molecular weight and high degree of branching.
  • the second mixture discharged from the first reactor 5 is led back to the second reaction through the feed pump 7
  • the polymerization reaction is further carried out to generate the second polyolefin of low molecular weight and low branching degree polyethylene.
  • the catalyst is introduced into the second reactor 1 through the fluid pipe 14 to form a circulation loop.
  • the temperature of the first reactor 5 is 60°C and the pressure is 4 MPa.
  • the production mass ratio of the first reactor to the second reactor is 1:4.
  • Example 1 The polymerization process conditions of Example 1 and the performance characterization results of the prepared olefin polymerization product A are shown in Table 1.
  • Olefin polymerization is carried out in the system shown in Figure 1. Under the action of the ZN catalyst system, the polymerization reaction temperature is 88°C, the pressure is 2.3MPa, ethylene and hexene undergo a binary copolymerization reaction in the second reactor (fluidized bed reactor), and the apparent velocity of the reaction material is 0.67m/ s.
  • the circulating gas stream in the gas circulation loop 8 includes hydrogen, nitrogen, ethylene, isopentane and hexene, the temperature is 88° C., and the pressure is 2.3 MPa.
  • Olefin polymerization is carried out in the system shown in Figure 1. Under the action of the Z-N catalyst system, the polymerization temperature was 88°C and the pressure was 2.3MPa. The binary copolymerization of ethylene and hexene occurred in the fluidized bed reactor, and the apparent velocity of the reaction material was 0.63m/s.
  • the circulating gas flow in the gas circulation loop 8 includes hydrogen, nitrogen, ethylene, isobutane and hexene, the temperature is 88° C., and the pressure is 2.3 MPa.
  • the circulating gas flow takes out the unreacted circulating gas flow from the top outlet of the second reactor 1, enter the inlet of the compressor 2, and then pass through the first heat exchanger 3 (for example, a fixed tube plate heat exchanger) after heat exchange, the circulating gas flow is partially condensed and the gas
  • the liquid phase in the liquid mixture accounts for 82.0% by weight of the circulating gas flow.
  • the gas-liquid mixture undergoes gas-liquid separation in the gas-liquid separator 4, and about 24% by weight of the liquid material (the second liquid material) enters the second reactor 5, and the remaining liquid material (The first liquid material) is returned to the second reactor 1 along with the gas material.
  • the reaction in the first reactor 5 is carried out under the catalysis of the late transition metal catalyst to produce the first polyethylene with high molecular weight and high degree of branching.
  • the second mixture in the first reactor 5 is led back to the second reaction through the feed pump 7 In the second reactor 1, a polymerization reaction is further carried out to generate a second polyethylene with a low molecular weight and a low degree of branching.
  • the catalyst is introduced into the second reactor 1 through the fluid pipe 14 to form a circulation loop.
  • the temperature of the first reactor 2 is 60°C and the pressure is 4 MPa.
  • the production mass ratio of the first reactor to the second reactor is 1:4.
  • Example 2 The polymerization process conditions of Example 2 and the performance characterization results of the prepared olefin polymerization product C are shown in Table 2.
  • Olefin polymerization is carried out in the system shown in Figure 1. Under the action of the Z-N catalyst system, the polymerization temperature was 88°C and the pressure was 2.3MPa. The binary copolymerization of ethylene and hexene occurred in the fluidized bed reactor, and the apparent velocity of the reaction material was 0.63m/s.
  • the circulating gas flow in the gas circulation loop 8 includes hydrogen, nitrogen, ethylene, isobutane and hexene, the temperature is 88° C., and the pressure is 2.3 MPa.
  • Olefin polymerization is carried out in the system shown in Figure 1.
  • the content of the condensing agent (hexane, isopentane) and the temperature of the first heat exchanger in the circulating gas stream were changed to obtain the composition of the gas material and the second liquid material obtained under different conditions, as shown in Figures 3-5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本发明涉及烯烃聚合领域的一种烯烃聚合方法及***。该所述方法将负载型双催化剂与串联工艺结合,将循环气流经换热、气液分离后所得的液体物料引入单独的第一反应器中与负载型双催化剂接触进行聚合反应,然后将反应物料、反应生成的第一聚烯烃引入第二反应器中继续进行聚合反应,进而使得颗粒在第一反应器与第二反应器之间循环,使两种性质差异明显的聚烯烃混合效果变好,避免相分离现象的出现,有利于生产出分子量分布宽、相容性好、性能优异的烯烃聚合物。同时在第一反应器内通入乙烯气体,进一步降低氢气/乙烯比,提高聚乙烯的分子量,改善产品性能。

Description

一种烯烃聚合方法及***
相关申请的交叉引用
本申请要求享有于2019年3月27日提交的名称为“一种烯烃聚合方法及***”的中国专利申请CN 201910235378.2的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本发明属于烯烃聚合领域,具体涉及一种烯烃聚合方法及***。
背景技术
本领域已知,扩大聚乙烯的分子量分布可以实现改善流变性能同时维持最终产品的机械性能的目的;其中高分子量部分保证产品的机械性能,低分子量部分有助于改善产品的加工性能。对于聚烯烃,尤其是聚乙烯,分子量和分子量分布极大地影响聚合物的机械性能及加工性能。在本领域研究中,已经公认的是,聚烯烃分子量越高,机械性能越高。然而具有高分子量的聚烯烃的流动性不佳,难以加工,在高切变速率下难以吹制和挤压。
本领域已公认的是,将催化剂或带有活性中心的聚合物置于两种或两种以上不同的反应条件或气体组成内,使其连续反应,便能生产出具有宽/双峰分布的聚乙烯。采用双串联或多串联反应器,在不同的反应温度或气体组成下,烯烃聚合能形成分子量大小不同的聚合物,可以使烯烃聚合形成具有分子量分布显双峰或宽峰的聚合物。
欧洲专利EP-A-691353描述了两个传统的气相反应器串联生产宽/双峰聚乙烯的方法;该方法存在两个气相反应器之间反应物互相串流、聚合物和反应物料在输送管道继续反应造成管道堵塞等问题。专利US 7115687B中公布了一种第一环管反应器和第二气相流化床反应器串联的工艺;该工艺存在聚合物颗粒在两个气相反应器中的停留时间分布不均一以及第一反应器生产的树脂细粉较多的问题。中国专利CN 102060943A公开了一种用于制备双峰聚乙烯的方法及包含至少四个流化床的气相反应器。该方法存在操作方法复杂、设备投资高昂等问题。
因此,亟需提供一种新的烯烃聚合方法,以获得分子量分布宽、相容性好、性能优异的烯烃聚合物。
发明内容
本发明针对现有技术的不足,提供了一种烯烃聚合方法,所述方法适用于均聚、二元共聚和三元共聚等多元共聚体系,其将负载型双催化剂分别在两个聚合反应器中催化烯烃均聚和/或共聚反应,用于获得具有分子量分布宽、支化度分布宽、相容性好、性能优异的聚烯烃产品。同时本发明还提供了一种用于实施所述方法的***。
为此,本发明第一方面提供了一种烯烃聚合方法,其包括以下步骤:
S1,将第二反应器出口导出的包含烯烃和冷凝剂的循环气流经压缩、冷凝后获得气液混合物;然后对所述气液混合物进行气液分离,获得气体物料和液体物料;所述液体物料包括第一液体物料和第二液体物料,其中所述第一液体物料和所述第二液体物料的组成相同或不同;
S2,将所述气体物料和所述第一液体物料输送回所述第二反应器内进行循环,并将所述第二液体物料引入第一反应器,同时向所述第一反应器内输送乙烯和催化剂,所述第一反应器内的烯烃在催化剂的接触下发生聚合反应,形成包含第一聚烯烃的混合物;
S3,将所述包含第一聚烯烃的混合物从所述第一反应器内引出并至少分离为第一混合物和第二混合物,所述第一混合物和所述第二混合物的组成相同或不同;将所述第一混合物经换热后输送回所述第一反应器内,并将所述第二混合物泵送至所述第二反应器内;
S4,所述第二反应器内的所述第二混合物、所述气体物料和所述第一液体物料中的烯烃与催化剂接触,进行聚合反应,生成第二聚烯烃,进而形成包含第一聚烯烃和第二聚烯烃的聚合产品。
在本发明的一些实施方式中,所述循环气流还包含助催化剂、分子量调节剂、抗静电剂和惰性气体中的至少一种。
在本发明的另一些实施方式中,聚合过程中,包括烯烃、冷凝剂、助催化剂、分子量调节剂、抗静电剂和惰性气体的聚合反应原料的加料位置选自第一反应 器、第二反应器和气体循环回路中的至少一个;所述气体循环回路位于第二反应器与压缩机之间,所述压缩机用于压缩循环气流。
在本发明的一些实施方式中,所述催化剂为负载型双催化剂;优选地,所述负载型双催化剂为茂金属或后过渡金属催化剂与齐格-纳塔催化剂的混合物;进一步优选地,茂金属或后过渡金属催化剂与齐格-纳塔催化剂的质量比为0.1-10。
在本发明的另一些实施方式中,步骤S1中,所述气液混合物中,液相含量为5-50wt%,优选为10-25wt%。
在本发明的一些实施方式中,步骤S1中,所述第二液体物料占所述液体物料的30-100wt%。
在本发明的另一些实施方式中,步骤S2中,向所述第一反应器内输送的乙烯的质量与第一反应器和第二反应器内生产的聚烯烃的总质量之比为0.0001-1。
在本发明的一些实施方式中,所述第一聚烯烃和第二聚烯烃的质量之比为(0-3):7或(1-7):3。
在本发明的另一些实施方式中,所述第一反应器的反应压力为1.0-10MPa,反应温度为40-100℃;和/或,所述第二反应器的反应压力为0.5-9.5MPa;反应温度为60-120℃。
在本发明的一些实施方式中,所述烯烃选自乙烯和α-烯烃中的至少一种;优选地,所述α-烯烃选自4-18个碳原子的α-烯烃中的至少一种;进一步优选地,所述α-烯烃选自丁烯、己烯和辛烯中的至少一种。
在本发明的另一些实施方式中,所述冷凝剂选自C 4-C 8的直链或支链的烷烃,以及C 4-C 8的环烷烃中的至少一种,优选选自正戊烷、异戊烷、正己烷、环己烷和正庚烷中的至少一种。
在本发明的一些实施方式中,所述助催化剂选自改性铝氧烷、一氯二乙基铝、一氯二异丁基铝、一氯倍半乙基铝、二异丁基铝、二氯一乙基铝、三甲基铝、三乙基铝、三异丁基铝、三辛基铝、一氢二乙基铝和一氢二异丁基铝中的至少一种;优选为三乙基铝和/或三异丁基铝。
在本发明的另一些实施方式中,所述抗静电剂选自双硬脂酸铝、乙氧基化的胺、聚砜共聚物、聚合多胺和油溶性磺酸中的至少一种。
在本发明的一些实施方式中,当所述第一反应器内的压力高于设定压力时,将所述第一反应器顶部的气体排出并返回至第二反应器与压缩机之间的气体循 环回路中;所述气体循环回路位于第二反应器与压缩机之间,所述压缩机用于压缩循环气流。
在本发明的另一些实施方式中,所述包含第一聚烯烃和第二聚烯烃的聚合产品连续或间歇地从第二反应器排出。
本发明第二方面提供了一种实施如本发明第一方面所述方法的***,其包括:
用于烯烃聚合的第一反应器和第二反应器,所述第二反应器顶部的出口与第一反应器的第一顶部入口之间依次设置有压缩机、第一换热器和气液分离器;
所述气液分离器的液体出口通过流体管道与第一反应器的第一顶部入口相连;所述气液分离器的气体出口通过流体管道与第二反应器的底部入口相连;
所述第一反应器的第一顶部出口分别与所述第二反应器的中部入口及所述第一反应器的第二顶部入口相连。
在本发明的一些实施方式中,所述第一反应器的第一顶部出口与所述第二反应器的中部入口之间设置有进料泵,用于将从第一反应器排出的第二混合物泵送至第二反应器内。
在本发明的另一些实施方式中,所述第一反应器的第一顶部出口与所述第一反应器的第二顶部入口之间设置有第二换热器。
在本发明的一些实施方式中,所述第二反应器顶部的出口与压缩机通过气体循环回路相连。
在本发明的另一些实施方式中,所述第一反应器的中部设置有入口,用于输送乙烯和催化剂。
在本发明的一些实施方式中,所述第二反应器底部设置出口,用于排出聚合产品。
在本发明的另一些实施方式中,所述第一反应器的第二顶部出口与气体循环回路相连,用于在第一反应器内压力过高时将所述第一反应器顶部的气体排出并返回至气体循环回路中。
在本发明的一些实施方式中,所述第一反应器为搅拌釜式反应器。
在本发明的另一些实施方式中,第二反应器为流化床反应器,优选地,所述第二反应器底部设置有气体分布板。
在本发明的一些实施方式中,所述第一换热器和第二换热器分别独立地选自夹套换热器、管壳式换热器或板式换热器。
在本发明的另一些实施方式中,所述气液分离器选自缓冲罐式分离器、旋流式分离器或旋风分离器式分离器。
本发明的有益效果为:本发明所述方法将负载型双催化剂与串联工艺结合,将循环气流经冷凝获得的液体物料分离后引入单独的第一反应器中与负载型双催化剂接触进行聚合反应,然后将反应生成的包含第一聚烯烃的物料引入第二反应器中,与第二反应器内的其他物料一起继续进行聚合反应,进而使得聚烯烃颗粒在第一反应器与第二反应器之间循环,使两种性质差异明显的聚烯烃混合效果变好,避免相分离现象的出现,有利于生产出分子量分布宽、相容性好、性能优异的烯烃聚合物。同时在第一反应器内通入乙烯气体,进一步降低氢气/乙烯比,提高聚乙烯的分子量,改善产品性能。
附图说明
下面将结合附图对本发明进行详细的描述。应该理解,附图的提供仅用于更好的理解本发明,它们不应该被理解成对本发明的限制。
图1为根据本发明一个实施方式的用于烯烃聚合的***的简化流程图。
图2为根据本发明另一个实施方式的用于烯烃聚合的***的简化流程图。
图3为根据本发明一个实施方式的循环气流经冷凝、气液分离后气体物料/液体物料组成与冷凝剂含量的关系图,其中冷凝剂为己烷。
图4为根据本发明一个实施方式的循环气流经冷凝、气液分离后气体物料/液体物料组成与冷凝剂含量的关系图,其中冷凝剂为异戊烷。
图5为根据本发明一个实施方式的循环气流经冷凝、气液分离后气体物料/液体物料组成与第一反应器温度的关系图。
其中,附图标记的含义如下:1第二反应器;2压缩机;3第一换热器;4气液分离器;5第一反应器;6第二换热器;7进料泵;8气体循环回路;9输送管路;10第一流体管道;11第二流体管道;12第三流体管道13第四流体管道;14第五流体管道;15第六流体管道;16第七流体管道;17气体分布板;18第八流体管道。
具体实施方式
为使本发明容易理解,下面将结合实施例和附图来详细说明本发明,这些实施例仅起说明性作用,并不局限于本发明的应用范围。本发明中所使用的原料或组分若无特殊说明均可以通过商业途径或常规方法制得。
本发明第一方面涉及一种烯烃聚合方法,其包括以下步骤:
S1,将第二反应器出口导出的包含烯烃和冷凝剂的循环气流经压缩、冷凝后获得气液混合物;然后对所述气液混合物进行气液分离,获得气体物料和液体物料;所述液体物料包括第一液体物料和第二液体物料,其中所述第一液体物料和所述第二液体物料的组成相同或不同;
S2,将所述气体物料和所述第一液体物料输送回所述第二反应器内进行循环,并将所述第二液体物料引入第一反应器,同时向所述第一反应器内输送乙烯和催化剂,所述第一反应器内的烯烃在催化剂的接触下发生聚合反应,形成包含第一聚烯烃的混合物;
S3,将所述包含第一聚烯烃的混合物从所述第一反应器内引出并至少分离为第一混合物和第二混合物,所述第一混合物和所述第二混合物的组成相同或不同;将所述第一混合物经换热后输送回所述第一反应器内,并将所述第二混合物泵送至所述第二反应器内;
S4,所述第二反应器内的所述第二混合物、所述气体物料和所述第一液体物料中的烯烃与催化剂接触,进行聚合反应,生成第二聚烯烃,进而形成包含第一聚烯烃和第二聚烯烃的聚合产品。
在本发明的一些实施方式中,所述循环气流还包含助催化剂、分子量调节剂、抗静电剂和惰性气体中的至少一种。
在本发明的另一些实施方式中,聚合过程中,包括烯烃、冷凝剂、助催化剂、分子量调节剂、抗静电剂和惰性气体的聚合反应原料的加料位置选自第一反应器、第二反应器和气体循环回路中的至少一个,所述气体循环回路位于第二反应器和压缩机之间,所述压缩机用于压缩循环气流。即,聚合反应原料可以直接通入到第一反应器和/或第二反应器中,也可以通入到气体循环回路中;也可以将其中一部分通入到第一反应器和/或第二反应器中,其他通入到气体循环回路中。
在本发明的一些实施方式中,所述分子量调节剂选自烷烃中的乙烷、丙烷、丁烷、己烷、环己烷,烯烃中的丙烯、异丁烯,氢气或丙酮中的至少一种,优选氢气。
在本发明的一些实施方式中,所述催化剂为负载型双催化剂;优选地,所述负载型双催化剂为茂金属或后过渡金属催化剂与齐格-纳塔(Ziegler-Natta)催化剂的混合物;进一步优选地,茂金属或后过渡金属催化剂与齐格-纳塔催化剂的质量比为0.1-10。在第一反应器中,茂金属或后过渡金属催化剂发挥作用,催化烯烃聚合,生成高分子量、高支化度的第一聚烯烃,第一反应器内催化剂活性马上释放,反应快速,停留时间短;第二反应器内齐格-纳塔催化剂发挥作用,进一步催化反应原料中的烯烃聚合,生成低分子量、低支化度的第二聚烯烃,进而获得同时包含第一聚烯烃和第二聚烯烃的分子量分布宽、相容性好、性能优异的烯烃聚合物。本发明中,所述“反应原料”指的是进入第二反应器内的第二混合物、气体物料和第一液体物料的混合物。
在本发明的另一些实施方式中,步骤S1中,所述气液混合物中,液相含量为5-50wt%,优选为10-25wt%。
在本发明的一些实施方式中,步骤S1中,所述第二液体物料占所述液体物料的30-100wt%。
在本发明的另一些实施方式中,步骤S2中,所述向第一反应器内输送的乙烯的质量与第一反应器和第二反应器内生产的聚烯烃的总质量之比为0.0001-1。
在本发明的一些实施方式中,所述第一聚烯烃和第二聚烯烃的质量之比为(0-3):7或(1-7):3。
在本发明的另一些实施方式中,所述第一反应器的反应压力为1.0-10MPa,反应温度为40-100℃;和/或,所述第二反应器的反应压力为0.5-9.5MPa;反应温度为60-120℃。
在本发明的一些实施方式中,所述烯烃选自乙烯和α-烯烃中的至少一种;优选地,所述α-烯烃选自4-18个碳原子的α-烯烃中的至少一种;进一步优选地,所述α-烯烃选自丁烯、己烯和辛烯中的至少一种。
在本发明的另一些实施方式中,所述冷凝剂选自C 4-C 8的直链或支链的烷烃,以及C 4-C 8的环烷烃中的至少一种,优选选自正戊烷、异戊烷、正己烷、环己烷和正庚烷中的至少一种。
在本发明的一些实施方式中,所述助催化剂选自改性铝氧烷、一氯二乙基铝、一氯二异丁基铝、一氯倍半乙基铝、二异丁基铝、二氯一乙基铝、三甲基铝、三乙基铝、三异丁基铝、三辛基铝、一氢二乙基铝和一氢二异丁基铝中的至少一种;优选为三乙基铝和/或三异丁基铝。
在本发明的另一些实施方式中,所述抗静电剂选自双硬脂酸铝、乙氧基化的胺、聚砜共聚物、聚合多胺和油溶性磺酸中的至少一种。在本发明公开的实施方式中,抗静电剂使用时,必须小心选择合适的抗静电剂,以避免将毒物引入反应器,同时使用最少量的抗静电剂使反应器中静电荷落在期望的范围内。
本发明的一些实施方式中,所述惰性气体为常规的惰性气体,例如氮气。
在本发明的另一些实施方式中,当所述第一反应器内的压力高于设定压力时,将所述第一反应器顶部的气体排出并返回至气体循环回路中;所述气体循环回路位于第二反应器与压缩机之间,所述压缩机用于压缩循环气流。
在本发明的一些实施方式中,所述包含第一聚烯烃和第二聚烯烃的聚合产品连续或间歇地从第二反应器排出。
本发明第二方面涉及一种实施如本发明第一方面所述方法的***,其包括:
用于烯烃聚合的第一反应器和第二反应器,所述第二反应器顶部的出口与第一反应器的第一顶部入口之间依次设置有压缩机、第一换热器和气液分离器;
所述气液分离器的液体出口通过流体管道与第一反应器的第一顶部入口相连;所述气液分离器的气体出口通过流体管道与第二反应器的底部入口相连;
所述第一反应器的第一顶部出口分别与所述第二反应器的中部入口及所述第一反应器的第二顶部入口相连。
在本发明的一些实施方式中,所述第一反应器的第一顶部出口与所述第二反应器的中部入口之间设置有进料泵,用于将从第一反应器排出的第二混合物泵送至第二反应器内。
在本发明的另一些实施方式中,所述第一反应器的第一顶部出口与所述第一反应器的第二顶部入口之间设置有第二换热器。
在本发明的一些实施方式中,所述第二反应器顶部的出口与压缩机通过气体循环回路相连。
在本发明的另一些实施方式中,所述第一反应器的中部设置有入口,用于输 送乙烯和催化。
在本发明的一些实施方式中,所述第二反应器底部设置有出口,用于排出聚合产品。
在本发明的另一些实施方式中,所述第一反应器的第二顶部出口与气体循环回路相连,用于在第一反应器内压力过高时将所述第一反应器顶部的气体排出并返回至气体循环回路中。
在本发明的一些实施方式中,所述第一反应器为搅拌釜式反应器。
在本发明的另一些实施方式中,第二反应器为流化床反应器,优选地,所述第二反应器底部设置有气体分布板。
在本发明的一些实施方式中,所述第一换热器和第二换热器分别独立地选自夹套换热器、管壳式换热器或板式换热器。
在本发明的另一些实施方式中,所述气液分离器选自缓冲罐式分离器、旋流式分离器或旋风分离器式分离器。
具体地,所述***包括:
用于烯烃聚合反应的第二反应器1;
用于维持循环气流在管路中流动的压缩机2;
用于冷却第二反应器出口循环气流的第一换热器3;
用于分离第一换热器3出口的气液混合物中冷凝液的气液分离器4;
用于烯烃聚合反应的搅拌釜式反应器的第一反应器5;
用于将第一反应器5中产生热量移出的第二换热器6;
用于将第一反应器5中的包含反应物料、反应生成的第一聚烯烃的第二混合物引入第二反应器1的进料泵7;
用于使循环气流从第二反应器1出口输送到压缩机2的气体循环回路8;
用于将压缩机2压缩过的物料输送到第一换热器3内的输送管路9;
用于将气液分离器4中分离得到的气体物料与第一液体物料引入第二反应器1的第一流体管道10;
用于将气液分离器4分离得到的第二液体物料引入第一反应器5的第二流体管道11;
用于将第二混合物引入进料泵7的第三流体管道12;
用于将进料泵泵出的第二混合物引入第二反应器1的第四流体管道13;
用于将催化剂引入第二反应器1的分布板17上方的第五流体管道14;
用于从第二反应器1中取出烯烃聚合产品的第六流体管道15;
用于向反应***不断补充聚合反应原料的第七流体管道16;
用于第二反应器1内气体均匀分布的气体分布板17;
任选地包括,用于将第一反应器5另一顶部出口排出的气体部分返回气体循环回路8的第八流体管道18。
利用上述***进行烯烃聚合的流程为:从气液分离器气体出口排出的物料(气体物料和第一液体物料的混合物)从第二反应器1底部的气相分布区,经过气体分布板17进入第二反应器1的反应区;第二反应器1内反应物料中的烯烃与引入的催化剂接触并发生反应生成固相聚烯烃产品,固相聚烯烃产品从第六流体管道15间歇或连续地取出;未反应的循环气流从第二反应器1顶部引出,进入气体循环回路8,流经压缩机2和第一换热器3,从第一换热器3流出的部分冷凝的气液混合物进入气液分离器4;30%~100%液体物料(第二液体物料)进入第一反应器5,未分离的液体物料(第一液体物料)随气体物料进入第二反应器1的气相分布区,完成一个循环。第一反应器5出口的混合物的一部分(第一混合物)经第二换热器6换热后输送回第一反应器5中,混合物的另一部分(第二混合物)经进料泵7输送到第二反应器1中进行反应。补充新鲜的包含共聚单体、分子量调节剂等的聚合反应原料,同时将催化剂引入聚合***。反应原料中的聚合单体、共聚单体与催化剂接触生成聚烯烃。另外,当所述第一反应器5内的压力高于设定压力时,通过增加的第八流体管道18将第一反应器5顶部的气体部分返回气体循环回路8中。
实施例
下述实施例中,烯烃聚合物结构及性能的表征方法:
(1)熔融指数:根据GB/T-3682-2000条件(190℃、2.16kg的负荷)测定熔体流动速率,通常记为MI2.16。
(2)密度:根据GB/1033-1986方法测定。
实施例1:
在图1所示的***中进行烯烃聚合。在Z-N催化剂体系的作用下,聚合反应温度88℃,压力2.3MPa,乙烯、己烯在第二反应器(流化床反应器)内发生二元共聚反应,反应物料表观速度为0.67m/s。气体循环回路8中的循环气流包括氢气、氮气、乙烯、异戊烷和己烯,温度为88℃,压力为2.3MPa。从第二反应器1顶部出口处取出未反应的循环气流,进入压缩机2入口,然后经过第一换热器3(例如固定管板式换热器)换热后,循环气流发生部分冷凝,气液混合物中液相占循环气流的80.0wt%,气液混合物在气液分离器4中发生气液分离,约21wt%的液体物料(第二液体物料)进入第一反应器5,其余液体物料(第一液体物料)随气体物料返回第二反应器1。第一反应器内在后过渡金属催化剂的催化下进行反应,生成高分子量、高支化度的第一聚乙烯,第一反应器5中排出的第二混合物通过进料泵7引回第二反应器1,第二反应器1内进一步进行聚合反应生成生成低分子量、低支化度聚乙烯第二聚烯烃。催化剂经流体管道14引入第二反应器1形成循环回路。第一反应器5温度为60℃,压力为4MPa。第一反应器与第二反应器的产能质量比为1:4。
实施例1的聚合工艺条件和制备得到的烯烃聚合产品A的性能表征结果请见表1。
对比例1
在图1所示的***中进行烯烃聚合。在Z-N催化剂体系的作用下,聚合反应温度88℃,压力2.3MPa,乙烯、己烯在第二反应器(流化床反应器)内发生二元共聚反应,反应物料表观速度为0.67m/s。气体循环回路8中的循环气流包括氢气、氮气、乙烯、异戊烷和己烯,温度为88℃,压力为2.3MPa。从第二反应器1顶部出口处取出未反应的循环气流,进入压缩机2入口,然后经过第一换热器3(例如固定管板式换热器)换热后,循环气流冷却并且无冷凝液出现,关闭第二流体管道11和第四流体管道13的阀门,则循环气流经过第一流体管道10直接进入第二反应器1的底部。循环气流在第二反应器1中与催化剂接触生成烯烃聚合物。
对比例1的聚合工艺条件和制备得到的烯烃聚合产品B的性能表征结果请见表1。
表1
Figure PCTCN2020078435-appb-000001
由表1可以看出,两种聚烯烃生产方法所获得的产品在熔融指数和密度方面均很接近,但显然本申请提出的聚合方法的获得的产品由两种密度和熔融指数差异显著的聚烯烃组合得到,产品性能得到提高。
实施例2
在图1所示的***中进行烯烃聚合。在Z-N催化剂体系的作用下,聚合反应温度88℃,压力2.3MPa,乙烯、己烯在流化床反应器内发生二元共聚反应,反应物料表观速度为0.63m/s。气体循环回路8中的循环气流包括氢气、氮气、乙烯、异丁烷和己烯,温度为88℃,压力为2.3MPa。从第二反应器1顶部出口处取出未反应的循环气流,进入压缩机2入口,然后经过第一换热器3(例如固定管板式换热器)换热后,循环气流发生部分冷凝,气液混合物中液相占循环气流的82.0wt%,气液混合物在气液分离器4中发生气液分离,约24wt%的液体物料(第二液体物料)进入第二反应器5,其余液体物料(第一液体物料)随气体物料返回第二反应器1。第一反应器5内在后过渡金属催化剂的催化下进行反应,生成高分子量、高支化度的第一聚乙烯,第一反应器5中的第二混合物通过进料 泵7引回第二反应器1,第二反应器1内进一步进行聚合反应生成低分子量、低支化度第二聚乙烯。催化剂经流体管道14引入第二反应器1形成循环回路。第一反应器2温度为60℃,压力为4MPa。第一反应器与第二反应器的产能质量比为1:4。
实施例2的聚合工艺条件和制备得到的烯烃聚合产品C的性能表征结果请见表2。
对比例2
在图1所示的***中进行烯烃聚合。在Z-N催化剂体系的作用下,聚合反应温度88℃,压力2.3MPa,乙烯、己烯在流化床反应器内发生二元共聚反应,反应物料表观速度为0.63m/s。气体循环回路8中的循环气流包括氢气、氮气、乙烯、异丁烷和己烯,温度为88℃,压力为2.3MPa。从第二反应器1顶部出口处取出未反应的循环气流,进入压缩机2入口,然后经过第一换热器3(例如固定管板式换热器)换热后,循环气流冷却并且无冷凝液出现,关闭第二流体管道11和第四流体管道13的阀门,则循环气流经过第一流体管道10直接进入第二反应器1的底部。循环气流在第二反应器1中与催化剂接触生成烯烃聚合物。
对比例2的聚合工艺条件和制备得到的烯烃聚合产品D的性能表征结果请见表2。
表2
Figure PCTCN2020078435-appb-000002
Figure PCTCN2020078435-appb-000003
由表2可以看出,两种聚烯烃生产方法所获得的产品在熔融指数和密度方面均很接近,但显然本申请提出的聚合方法的产品由两种密度和熔融指数差异显著的产品组合得到,产品性能得到提高。
实施例3
在图1所示的***中进行烯烃聚合。分别改变循环气流中冷凝剂(己烷、异戊烷)含量和第一换热器温度,获得不同情况下所得气体物料与第二液体物料的组成,如图3-5所示。
由图3可以看出,随着己烷含量的改变,气体物料和第二液体物料中氢气乙烯比与C 6/C 2比相差很大,说明冷凝剂含量的改变对聚合反应环境影响很大,改变冷凝剂含量可以获得不同分子量分布的聚烯烃。
由图4可以看出,随着异戊烷含量的改变,气体物料和第二液体物料中氢气乙烯比与C 6/C 2比相差很大,说明冷凝剂含量的改变对聚合反应环境影响很大,改变冷凝剂含量可以获得不同分子量分布的聚乙烯。
由图5可以看出,随着换热器温度的改变,气体物料和第二液体物料中组分变化较大,说明温度的改变对聚合反应环境影响很大,改变温度可以获得不同分子量分布的聚乙烯。
应当注意的是,以上所述的实施例仅用于解释本发明,并不构成对本发明的任何限制。通过参照典型实施例对本发明进行了描述,但应当理解为其中所用的词语为描述性和解释性词汇,而不是限定性词汇。可以按规定在本发明权利要求的范围内对本发明作出修改,以及在不背离本发明的范围和精神内对本发明进行修订。尽管其中描述的本发明涉及特定的方法、材料和实施例,但是并不意味着本发明限于其中公开的特定例,相反,本发明可扩展至其他所有具有相同功能的方法和应用。

Claims (20)

  1. 一种烯烃聚合方法,其包括以下步骤:
    S1,将第二反应器出口导出的包含烯烃和冷凝剂的循环气流经压缩、冷凝后获得气液混合物;然后对所述气液混合物进行气液分离,获得气体物料和液体物料;所述液体物料包括第一液体物料和第二液体物料,其中所述第一液体物料和所述第二液体物料的组成相同或不同;
    S2,将所述气体物料和所述第一液体物料输送回所述第二反应器内进行循环,并将所述第二液体物料引入第一反应器,同时向所述第一反应器内输送乙烯和催化剂,所述第一反应器内的烯烃在催化剂的接触下发生聚合反应,形成包含第一聚烯烃的混合物;
    S3,将所述包含第一聚烯烃的混合物从所述第一反应器内引出并至少分离为第一混合物和第二混合物,所述第一混合物和所述第二混合物的组成相同或不同;将所述第一混合物经换热后输送回所述第一反应器内,并将所述第二混合物泵送至所述第二反应器内;
    S4,所述第二反应器内的所述第二混合物、所述气体物料和所述第一液体物料中的烯烃与催化剂接触,进行聚合反应,生成第二聚烯烃,进而形成包含第一聚烯烃和第二聚烯烃的聚合产品。
  2. 根据权利要求1所述的方法,其特征在于,所述循环气流中还包含助催化剂、分子量调节剂、抗静电剂和惰性气体中的至少一种。
  3. 根据权利要求1或2所述的方法,其特征在于,聚合过程中,包括烯烃、冷凝剂、助催化剂、分子量调节剂、抗静电剂和惰性气体的聚合反应原料的加料位置选自第一反应器、第二反应器和气体循环回路中的至少一个;所述气体循环回路位于第二反应器与压缩机之间,所述压缩机用于压缩循环气流。
  4. 根据权利要求1-3中任意一项所述方法,其特征在于,所述催化剂为负载型双催化剂;优选地,所述负载型双催化剂为茂金属或后过渡金属催化剂与齐格-纳塔催化剂的混合物;进一步优选地,茂金属或后过渡金属催化剂与齐格-纳塔催化剂的质量比为0.1-10。
  5. 根据权利要求1-4中任意一项所述的方法,其特征在于,步骤S1中,所述气液混合物中,液相含量为5-50wt%,优选为10-25wt%。
  6. 根据权利要求1-5中任意一项所述的方法,其特征在于,步骤S1中,所述第二液体物料占所述液体物料的30-100wt%。
  7. 根据权利要求1-6中任意一项所述的方法,其特征在于,步骤S2中,向所述第一反应器内输送的乙烯的质量与第一反应器和第二反应器内生产的聚烯烃的总质量之比为0.0001-1。
  8. 根据权利要求1-7中任意一项所述的方法,其特征在于,所述第一聚烯烃和第二聚烯烃的质量之比为(0-3):7或(1-7):3。
  9. 根据权利要求1-8中任意一项所述的方法,其特征在于,所述第一反应器的反应压力为1.0-10MPa,反应温度为40-100℃;和/或,所述第二反应器的反应压力为0.5-9.5MPa;反应温度为60-120℃。
  10. 根据权利要求1-9中任意一项所述的方法,其特征在于,所述烯烃选自乙烯和α-烯烃中的至少一种;优选地,所述α-烯烃选自4-18个碳原子的α-烯烃中的至少一种;进一步优选地,所述α-烯烃选自丁烯、己烯和辛烯中的至少一种。
  11. 根据权利要求2-10中任意一项所述的方法,其特征在于,所述冷凝剂选自C 4-C 8的直链或支链的烷烃,以及C 4-C 8的环烷烃中的至少一种;优选选自正戊烷、异戊烷、正己烷、环己烷和正庚烷中的至少一种;和/或,
    所述助催化剂选自改性铝氧烷、一氯二乙基铝、一氯二异丁基铝、一氯倍半乙基铝、二异丁基铝、二氯一乙基铝、三甲基铝、三乙基铝、三异丁基铝、三辛基铝、一氢二乙基铝和一氢二异丁基铝中的至少一种;优选为三乙基铝和/或三异丁基铝;和/或,
    所述抗静电剂选自双硬脂酸铝、乙氧基化的胺、聚砜共聚物、聚合多胺和油溶性磺酸中的至少一种。
  12. 根据权利要求1-11中任意一项所述的方法,其特征在于,当所述第一反应器内的压力高于设定压力时,将所述第一反应器顶部的气体排出并返回至气体循环回路中;所述气体循环回路位于第二反应器与压缩机之间,所述压缩机用于压缩循环气流。
  13. 根据权利要求1-12中任意一项所述的方法,其特征在于,所述包含第一聚烯烃和第二聚烯烃的聚合产品连续或间歇地从第二反应器排出。
  14. 一种实施如权利要求1-13中任意一项所述方法的***,其包括:
    用于烯烃聚合的第一反应器和第二反应器,所述第二反应器顶部的出口与第 一反应器的第一顶部入口之间依次设置有压缩机、第一换热器和气液分离器;
    所述气液分离器的液体出口通过流体管道与第一反应器的第一顶部入口相连;所述气液分离器的气体出口通过流体管道与第二反应器的底部入口相连;
    所述第一反应器的第一顶部出口分别与所述第二反应器的中部入口及所述第一反应器的第二顶部入口相连。
  15. 根据权利要求14所述的***,其特征在于,所述第一反应器的第一顶部出口与所述第二反应器的中部入口之间设置有进料泵,用于将从第一反应器排出的第二混合物泵送至第二反应器内;和/或,
    所述第一反应器的第一顶部出口与所述第一反应器的第二顶部入口之间设置有第二换热器。
  16. 根据权利要求14或15所述的***,其特征在于,所述第二反应器顶部的出口与压缩机通过气体循环回路相连。
  17. 根据权利要求14-16中任意一项所述的***,其特征在于,所述第一反应器的中部设置有入口,用于输送乙烯和催化剂;和/或,
    所述第二反应器底部设置有出口,用于排出聚合产品。
  18. 根据权利要求14-17中任意一项所述的***,其特征在于,所述第一反应器的第二顶部出口与气体循环回路相连,用于在第一反应器内压力过高时将所述第一反应器顶部的气体排出并返回至气体循环回路中。
  19. 根据权利要求14-18中任意一项所述的***,其特征在于,所述第一反应器为搅拌釜式反应器;和/或,所述第二反应器为流化床反应器,优选地,所述第二反应器底部设置有气体分布板。
  20. 根据权利要求14-19中任意一项所述的***,其特征在于,所述第一换热器和第二换热器分别独立地选自夹套换热器、管壳式换热器或板式换热器;和/或,所述气液分离器选自缓冲罐式分离器、旋流式分离器或旋风分离器式分离器。
PCT/CN2020/078435 2019-03-27 2020-03-09 一种烯烃聚合方法及*** WO2020192402A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20778888.6A EP3950733A4 (en) 2019-03-27 2020-03-09 OLEFIN POLYMERIZATION METHOD AND SYSTEM
KR1020217034656A KR20220035323A (ko) 2019-03-27 2020-03-09 올레핀 중합 방법 및 시스템
US17/598,410 US20220177609A1 (en) 2019-03-27 2020-03-09 Olefin polymerization method and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910235378.2 2019-03-27
CN201910235378.2A CN111748049B (zh) 2019-03-27 2019-03-27 一种烯烃聚合方法及***

Publications (1)

Publication Number Publication Date
WO2020192402A1 true WO2020192402A1 (zh) 2020-10-01

Family

ID=72609130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/078435 WO2020192402A1 (zh) 2019-03-27 2020-03-09 一种烯烃聚合方法及***

Country Status (5)

Country Link
US (1) US20220177609A1 (zh)
EP (1) EP3950733A4 (zh)
KR (1) KR20220035323A (zh)
CN (1) CN111748049B (zh)
WO (1) WO2020192402A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112300312B (zh) * 2020-11-05 2023-03-14 杭州双安科技有限公司 一种聚乙烯的合成方法
CN115197348B (zh) * 2021-04-14 2024-06-14 浙江大学 乙烯聚合物以及用于制备乙烯聚合物的高压自由基聚合方法与装置
CN114210287A (zh) * 2021-12-23 2022-03-22 浙江智英石化技术有限公司 一种乙烯选择性齐聚生产1-辛烯的装置及工艺

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0691353A1 (en) 1994-07-06 1996-01-10 Union Carbide Chemicals & Plastics Technology Corporation Process for preparing an in situ polyethylene blend giving low gel film
CN1270178A (zh) * 1999-03-31 2000-10-18 三井化学株式会社 多段气相聚合方法、设备及其中减少聚合物粉末夹带副组分的装置
US6472482B1 (en) * 2000-04-04 2002-10-29 Basell Polyolefine Gmbh Gas-phase polymerization with direct cooling
US7115687B2 (en) 2002-10-30 2006-10-03 Borealis Technology Oy Process and apparatus for producing olefin polymers
CN101539758A (zh) * 2003-10-17 2009-09-23 尤尼威蒂恩技术有限责任公司 聚合监视和选择先行指标的方法
CN101671405A (zh) * 2008-09-08 2010-03-17 住友化学株式会社 聚烯烃的制备装置和制备方法
CN102060943A (zh) 2009-11-13 2011-05-18 中国石油化工股份有限公司 一种烯烃聚合的多区循环反应装置和反应方法
CN102675495A (zh) * 2012-05-29 2012-09-19 浙江大学 烯烃聚合反应器和聚合方法
CN103387628A (zh) * 2012-05-07 2013-11-13 中国石油化工股份有限公司 一种烯烃聚合的***及方法
EP2745926A1 (en) * 2012-12-21 2014-06-25 Borealis AG Gas phase polymerization and reactor assembly comprising a fluidized bed reactor and an external moving bed reactor
CN105199031A (zh) * 2015-10-16 2015-12-30 浙江大学 一种烯烃聚合方法及装置
CN106957382A (zh) * 2017-04-11 2017-07-18 浙江大学 一种动态操作生产聚烯烃的方法和装置
CN107226876A (zh) * 2016-03-23 2017-10-03 中国石油化工股份有限公司 一种乙烯聚合物的制备方法
CN108350101A (zh) * 2015-08-27 2018-07-31 Sabic环球技术有限责任公司 用于在反应器中连续聚合烯烃单体的方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3894998A (en) * 1973-01-11 1975-07-15 Du Pont Multiple stage reactor system
EP0574821B1 (en) * 1992-06-18 1998-03-11 Montell Technology Company bv Process and apparatus for the gas-phase polymerization of olefins
US6458900B1 (en) * 1998-03-04 2002-10-01 Borealis Technology Oy Process for preparing polyolefins
BE1013235A4 (fr) * 2000-01-18 2001-11-06 Solvay Procede de fabrication d'une composition de polymeres d'olefines.
DE10351262A1 (de) * 2003-10-31 2005-06-02 Basell Polyolefine Gmbh Verfahren zur kontinuierlichen Herstellung von Ethylenhomo- oder Copolymeren
CN101080270B (zh) * 2004-08-23 2013-09-18 埃克森美孚化学专利公司 用于聚合方法的装置
US7858833B2 (en) * 2006-02-03 2010-12-28 Exxonmobil Chemical Patents Inc. Process for generating linear alpha olefin comonomers
US7687672B2 (en) * 2006-02-03 2010-03-30 Exxonmobil Chemical Patents Inc. In-line process for generating comonomer
US8080610B2 (en) * 2007-03-06 2011-12-20 Exxonmobil Research And Engineering Company Monomer recycle process for fluid phase in-line blending of polymers
US8138269B2 (en) * 2007-12-20 2012-03-20 Exxonmobil Research And Engineering Company Polypropylene ethylene-propylene copolymer blends and in-line process to produce them
EP2330135B1 (en) * 2009-12-02 2012-11-07 Borealis AG Process for producing polyolefins
EP3789409B1 (en) * 2012-03-16 2024-06-05 Ineos Europe AG Process
CN105732849B (zh) * 2014-12-09 2018-08-21 中国石油化工股份有限公司 一种烯烃聚合装置和方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0691353A1 (en) 1994-07-06 1996-01-10 Union Carbide Chemicals & Plastics Technology Corporation Process for preparing an in situ polyethylene blend giving low gel film
CN1270178A (zh) * 1999-03-31 2000-10-18 三井化学株式会社 多段气相聚合方法、设备及其中减少聚合物粉末夹带副组分的装置
US6472482B1 (en) * 2000-04-04 2002-10-29 Basell Polyolefine Gmbh Gas-phase polymerization with direct cooling
US7115687B2 (en) 2002-10-30 2006-10-03 Borealis Technology Oy Process and apparatus for producing olefin polymers
CN101539758A (zh) * 2003-10-17 2009-09-23 尤尼威蒂恩技术有限责任公司 聚合监视和选择先行指标的方法
CN101671405A (zh) * 2008-09-08 2010-03-17 住友化学株式会社 聚烯烃的制备装置和制备方法
CN102060943A (zh) 2009-11-13 2011-05-18 中国石油化工股份有限公司 一种烯烃聚合的多区循环反应装置和反应方法
CN103387628A (zh) * 2012-05-07 2013-11-13 中国石油化工股份有限公司 一种烯烃聚合的***及方法
CN102675495A (zh) * 2012-05-29 2012-09-19 浙江大学 烯烃聚合反应器和聚合方法
EP2745926A1 (en) * 2012-12-21 2014-06-25 Borealis AG Gas phase polymerization and reactor assembly comprising a fluidized bed reactor and an external moving bed reactor
CN108350101A (zh) * 2015-08-27 2018-07-31 Sabic环球技术有限责任公司 用于在反应器中连续聚合烯烃单体的方法
CN105199031A (zh) * 2015-10-16 2015-12-30 浙江大学 一种烯烃聚合方法及装置
CN107226876A (zh) * 2016-03-23 2017-10-03 中国石油化工股份有限公司 一种乙烯聚合物的制备方法
CN106957382A (zh) * 2017-04-11 2017-07-18 浙江大学 一种动态操作生产聚烯烃的方法和装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HONG, DINGYI: "Slurry Stirring Polymerization Reactor", POLYPROPYLENE-PRINCIPLE, PROCESS AND TECHNOLOGY, 30 September 2002 (2002-09-30), pages 311 - 312, XP009523408, ISBN: 7-80164-258-9 *
SHIHUA JISHU , YU YINGYONG: "Comparison and Selection of Polyethylene Production Technology", PETROCHEMICAL TECHNOLOGY & APPLICATION, vol. 21, no. 3, 30 May 2003 (2003-05-30), pages 1 - 10, XP009523388, ISSN: 1009-0045 *

Also Published As

Publication number Publication date
US20220177609A1 (en) 2022-06-09
EP3950733A1 (en) 2022-02-09
CN111748049A (zh) 2020-10-09
KR20220035323A (ko) 2022-03-22
CN111748049B (zh) 2021-07-16
EP3950733A4 (en) 2022-12-28

Similar Documents

Publication Publication Date Title
WO2020192402A1 (zh) 一种烯烃聚合方法及***
CN105199031B (zh) 一种烯烃聚合方法及装置
JP4700610B2 (ja) エチレンの重合用の方法と装置
JP5611361B2 (ja) ポリオレフィンの製造方法
US10266625B2 (en) Olefin polymerization apparatus and olefin polymerization process
US9708479B2 (en) Multistage process for producing polyethylene compositions
CN107303478B (zh) 流化床反应器、烯烃聚合装置以及烯烃聚合方法
JP2001019707A (ja) 段階反応器による方法
EA022659B1 (ru) Способ газофазной полимеризации олефинов
CN104592426A (zh) 一种烯烃聚合方法及装置
CN105164164A (zh) 用于生产聚丙烯组合物的两阶段法
WO2003042253A1 (en) Continuous gas-phase polymerization process
JP2009509017A (ja) オレフィン類の気相重合方法
CN107098991B (zh) 一种烯烃聚合方法及装置
JP5378349B2 (ja) ポリオレフィンを製造するためのシステム及び方法
CN105143275A (zh) 用于生产耐低温聚丙烯组合物的多阶段法
JPH078890B2 (ja) オレフインの連続重合法
CN115057953B (zh) 一种烯烃聚合方法及装置
CN115073634B (zh) 聚1-丁烯的制备方法以及聚1-丁烯
RU2809919C2 (ru) Способ и система, предназначенные для полимеризации олефина
CN112300312A (zh) 一种聚乙烯的合成方法
CN112745412B (zh) 脱除聚合物粉料中的夹带轻组分的方法及该方法的应用
CN112717562A (zh) 降低聚合物粉料中的夹带轻组分含量的方法及该方法的应用
RU2021130507A (ru) Способ и система, предназначенные для полимеризации олефина
JP2023514429A (ja) 多段階重合プロセスにおいてアルファ-オレフィンポリマーを製造するための方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20778888

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020778888

Country of ref document: EP

Effective date: 20211027