WO2020189901A1 - 도전성 분말 및 이를 포함하는 검사용 커넥터 - Google Patents

도전성 분말 및 이를 포함하는 검사용 커넥터 Download PDF

Info

Publication number
WO2020189901A1
WO2020189901A1 PCT/KR2020/002447 KR2020002447W WO2020189901A1 WO 2020189901 A1 WO2020189901 A1 WO 2020189901A1 KR 2020002447 W KR2020002447 W KR 2020002447W WO 2020189901 A1 WO2020189901 A1 WO 2020189901A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
polymer
particles
conductive powder
present disclosure
Prior art date
Application number
PCT/KR2020/002447
Other languages
English (en)
French (fr)
Inventor
정영배
Original Assignee
주식회사 아이에스시
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아이에스시 filed Critical 주식회사 아이에스시
Publication of WO2020189901A1 publication Critical patent/WO2020189901A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/442Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from aromatic vinyl compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/01Magnetic additives

Definitions

  • the present disclosure relates to a novel conductive powder and a connector for inspection including the same.
  • a connector for inspection is disposed between the device to be inspected and test equipment.
  • An inspection method is known in which an inspection connector electrically connects a device to be inspected and a test equipment to determine whether a device to be inspected is defective based on whether the device to be inspected and the test equipment are energized.
  • the terminal of the device under test directly contacts the terminal of the test equipment without a connector for inspection, the terminal of the test equipment may be worn or damaged during the repetitive inspection process, resulting in the need to replace the entire test equipment.
  • the need to replace the entire test equipment is prevented by using a connector for inspection. Specifically, when the inspection connector is worn or damaged due to repeated contact with the terminal of the device under test, only the corresponding inspection connector can be replaced.
  • the conductive powder used for the conductive part of the inspection connector is used by plating gold (Au) on the magnetic core.
  • Au gold
  • the conductive powder present in the connector is subjected to force due to compression, and contact between the conductive powders occurs, causing deformation and abrasion of particles.
  • the gold plating layer on the surface is peeled off due to wear of the particles, iron (Fe), nickel (Ni), or cobalt (Co), which are components of the magnetic core with low conductivity, are exposed to the outside, reducing conductivity and increasing contact resistance, thereby generating electrical signals. You will not be able to deliver it properly.
  • the conventional conductive powder has irregular particle formation, the contact between the particles is made in the form of a contact point.
  • the contact point between the particles is distorted, resulting in unstable resistance and electrical signal transmission may not be performed smoothly.
  • Patent Document 1 Republic of Korea Patent Publication No. 10-2018-0132031 (2018. 12. 11.)
  • one aspect of the present disclosure is a core particle; And a polymer layer surrounding the surface of the core particles, wherein a plurality of conductive particles are bonded to the polymer layer, and the polymer includes one or more unsaturated hydrocarbons, aromatic hydrocarbons, or both. to provide.
  • the conductive powder according to an aspect of the present disclosure may exhibit excellent deformation resistance, abrasion resistance, and resistance stability. Even when the inspection connector is compressed, the polymer layer is flexibly deformed, and the contact between the particles is not shifted and the contact is maintained in the form of surface contact, and a plurality of conductive particles are bonded to the polymer layer, showing excellent resistance stability. , It can exhibit the effect of stably transmitting electrical signals even in repeated use.
  • FIG. 1 is a partial cross-sectional view of an inspection connector 100 according to an exemplary embodiment, and shows a state in which the inspection connector 100 is disposed between a device under test 10 and a test equipment 20.
  • FIG. 2 is a schematic diagram of a conductive powder 30 according to an aspect of the present disclosure. These particles are in the form of a polymer layer 40 coated on the core particle 60, and a plurality of conductive particles 50 are attached or bonded to the outer surface of the polymer layer, and injected or penetrated into the polymer layer. Can exist.
  • FIG. 3 is a schematic diagram showing a state in which the conductive powder according to an aspect of the present disclosure maintains a surface contact shape when pressure is applied before and after use.
  • the drawing shows the arrangement of the conductive powder 30 present in the conductive part before use
  • the drawing shows the form in which the conductive powders contact each other when pressure is applied up and down.
  • the conductive powder subjected to pressure increases the contact area as the polymer layer is elastically deformed. That is, the conductive powders are in surface contact with each other.
  • the conductive powder returns to its original position when the pressure is removed.
  • FIG. 4 is a schematic diagram showing a conductive powder obtained according to a manufacturing step of a conductive powder according to an aspect of the present disclosure in chronological order.
  • A shows a conductive powder obtained by coating a polymer layer on the surface of a core particle.
  • B shows the conductive powder in a state in which the conductive particles are absorbed by the polymer layer.
  • C denotes a conductive powder present by reducing the absorbed conductive particles so that a plurality of conductive particles are attached or bonded to the outer surface of the polymer layer and injected or penetrated into the interior of the polymer layer.
  • D shows the electroconductive powder before and after penetration of electroconductive particle.
  • FIG. 5 shows a scanning micrograph of a conductive powder coated with a polymer layer prepared according to an aspect of the present disclosure. According to the present disclosure, after coating, the conductive powder is well coated with a polymer layer without clumping together.
  • FIGS. 6 and 7 show cross-sectional photographs of the conductive powder coated with the polymer layer using a focused ion beam.
  • Embodiments or aspects of the present disclosure are exemplified for the purpose of describing the technical idea of the present disclosure.
  • the scope of the rights according to the present disclosure is not limited to the embodiments or aspects or specific descriptions thereof presented below.
  • the term “about” is used with the intention of including an error in a manufacturing process included in a specific numerical value or a slight numerical adjustment that falls within the scope of the technical idea of the present disclosure.
  • the term “about” means a range of ⁇ 10% of the value it refers to, ⁇ 5% on one side, and ⁇ 2% on the other. In the field of this disclosure, an approximation of this level is appropriate unless the values are specifically stated to require a narrower range.
  • the direction indicators such as “upper” and “upper” used in the present disclosure mean the direction in which the terminal 11 of the device under test 10 is arranged based on the test connector 100, and “downward", " A direction indicator such as “lower” refers to a direction in which the terminal 21 of the test equipment 20 is arranged based on the test connector 100.
  • the "thickness direction” of the inspection connector 100 referred to in the present disclosure means an up-down direction. This is a criterion for describing so that the present disclosure can be clearly understood to the end, and it goes without saying that the upper and lower sides may be differently defined depending on where the standard is placed.
  • core particles In one aspect of the present disclosure, core particles; And a polymer layer surrounding the surface of the core particle, wherein the polymer layer includes conductive particles bonded to a polymer, wherein the polymer includes one or more unsaturated hydrocarbons, aromatic hydrocarbons, or both.
  • the polymer layer includes conductive particles bonded to a polymer, wherein the polymer includes one or more unsaturated hydrocarbons, aromatic hydrocarbons, or both.
  • the bonding between the polymer layer and the plurality of conductive particles absorbs a solution containing the precursor of the conductive particles in the polymer layer while the polymer layer surrounds the core particles, and the It can be done by reducing the precursor.
  • some of the plurality of conductive particles may be attached or bonded to the outer surface of the polymer layer, and some of the remaining conductive particles may be injected or penetrated into the interior of the polymer layer.
  • some of the plurality of conductive particles are bonded to the polymer layer in a state exposed to the outer surface of the polymer layer, and the remaining part of the plurality of conductive particles is impregnated into the polymer layer. It may be bonded to the polymer layer in a state.
  • the present disclosure is made of a polymer, a plurality of conductive particles are bonded to the surface of the polymer, and the polymer may relate to a conductive powder containing one or more unsaturated hydrocarbons, aromatic hydrocarbons, or both. have.
  • the bonding between the polymer and the plurality of conductive particles may be achieved by absorbing a solution containing the precursor of the conductive particles in the polymer and reducing the precursor. Due to such bonding, some of the conductive particles may be attached or bonded to the surface of the polymer, and some of the remaining conductive particles may be injected or penetrated into the outside of the polymer.
  • some of the plurality of conductive particles may be bonded to the polymer in a state exposed to the outer surface, and some of the remaining conductive particles may be bonded to the polymer while being impregnated. I can.
  • the polymer is polyethylene, polypropylene, polytetrafluoroethylene, poly(vinyl chloride), polystyrene, polyacrylonitrile, poly(vinyl acetate), poly(methyl methacrylate), It may be one or more selected from the group consisting of a combination thereof and a block copolymer thereof. In one aspect of the present disclosure, the polymer may be a styrene block copolymer.
  • the polymer may be a styrene block copolymer.
  • the styrene block copolymer is a styrene-butadiene-styrene (SBS) copolymer, a SIS (styrene-isoprene-styrene) copolymer, a styrene-(ethylene-butadiene)-styrene (SEBS) copolymer. And it may be one or more selected from the group consisting of a combination thereof, but is not limited thereto. When such a polymer is used as a component of the polymer layer of the conductive powder, it has good adsorption to the core particles, and the effect to be achieved in the present disclosure can be excellently achieved.
  • SBS styrene-butadiene-styrene
  • SEBS SIS copoprene-styrene copolymer
  • SEBS styrene-(ethylene-butadiene)-styrene
  • the styrene block copolymer may have a structure as shown in Formula 1 below, and may be a styrene block copolymer, but may have two styrene polymer blocks.
  • x, y, z may be integers of 1 or more, x and z may be the same, and A may be any repeating unit usable by a person skilled in the art
  • the core particles may be magnetic particles, polymer particles, inorganic particles excluding metals, or organic-inorganic hybrid particles, but are not limited thereto.
  • the magnetic particles may include at least one selected from the group consisting of cobalt, nickel, iron, and an alloy including at least one of them, but is not limited thereto.
  • the conductivity of the conductive part 130 may be improved, and manufacturability may be improved in a manufacturing method described later by using the property of magnetizing magnetic particles in a magnetic field.
  • the alloy may be an alloy obtained by adding another material (eg, copper) to any one of magnetic materials (cobalt, nickel, and iron), or at least two of them. It may be an alloy formed in more than one.
  • the polymer of the polymer particles is polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyisobutylene, polybutadiene, polymethyl methacrylate, polymethyl acrylate, poly Carbonate, polyamide, phenol formaldehyde resin, melamine formaldehyde resin, benzoguanamine formaldehyde resin, urea formaldehyde resin, phenol resin, melamine resin, benzoguanamine resin, urea resin, epoxy resin, unsaturated polyester resin , Saturated polyester resin, polyethylene terephthalate, polysulfone, polyphenylene oxide, polyacetal, polyimide, polyamideimide, polyetheretherketone, polyethersulfone, divinylbenzene polymer, divinylbenzene-based copolymer, and It may be one or more selected from the group consisting of a combination thereof, but is not limited thereto.
  • the polymer of the polymer particles may be a polymer obtained by polymerizing one or two or more polymerizable monomers having an ethylenically unsaturated group.
  • the polymerizable monomer having an ethylenically unsaturated group may be a non-crosslinkable monomer or a crosslinkable monomer.
  • examples of the non-crosslinkable monomer include styrene-based monomers such as styrene and ⁇ -methylstyrene; Carboxyl group-containing monomers such as (meth)acrylic acid, maleic acid, and maleic anhydride; Methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, lauryl (meth)acrylate, cetyl (meth) Alkyl (meth)acrylate compounds such as acrylate, stearyl (meth)acrylate, cyclohexyl (meth)acrylate, and isobornyl (meth)acrylate; Oxygen atom-containing (meth)acrylate compounds such as 2-hydroxyethyl (meth)acrylate, glycerol (meth)acrylate, polyoxyethylene (meth)
  • crosslinkable monomer for example, tetramethylolmethane tetra (meth) acrylate, tetramethylol methane tri (meth) acrylate, tetramethylol methane di (meth) acrylate, Trimethylolpropane tri(meth)acrylate, dipentaerythritol hexa(meth)acrylate, dipentaerythritol penta(meth)acrylate, glycerol tri(meth)acrylate, glycerol di(meth)acrylate, (poly ) Multifunctional such as ethylene glycol di(meth)acrylate, (poly)propylene glycol di(meth)acrylate, (poly)tetramethylene glycol di(meth)acrylate, and 1,4-butanediol di(meth)acrylate (Meth)acrylate compounds; Triallyl (iso) cyanurate, trial
  • the polymerizable monomer having an ethylenically unsaturated group can be polymerized by a known method to obtain the polymer particles.
  • known methods include, for example, a method of suspension polymerization in the presence of a radical polymerization initiator, and a method of swelling a monomer together with a radical polymerization initiator using non-crosslinked seed particles to polymerize, but are limited thereto. no.
  • the polymer of the polymer particles is polyfluorene, polyphenylene, polypyrene, polyazulene, polynaphthalene, polypyrrole, polycarbazole, polyindole, polyazepine, polyaniline, polythiophene, poly (3,4-ethylenedioxythiophene), polyphenylene sulfide, polyacetylene, polystyrenesulfonate and polyphenylenevinylidene, poly(3,4-ethylenedioxythiophene), polystyrenesulfonate, and combinations thereof It may be one or more selected from the group consisting of, but is not limited thereto.
  • the inorganic particles may include one or more selected from the group consisting of silica, alumina, barium titanate, zirconia, carbon black, and combinations thereof, but is not limited thereto.
  • the particles formed of the silica are not particularly limited, but examples include particles obtained by hydrolyzing a silicon compound having two or more hydrolyzable alkoxysilyl groups to form crosslinked polymer particles, followed by firing as necessary. I can.
  • Examples of the organic-inorganic hybrid particles include organic-inorganic hybrid particles formed of a crosslinked alkoxysilyl polymer and an acrylic resin.
  • the organic-inorganic hybrid particle may be a core-shell type organic-inorganic hybrid particle having a core and a shell disposed on the surface of the core.
  • the core may be an organic core and the shell may be an inorganic shell.
  • the organic core may be a core made of the above-described polymer.
  • the conductive particles may be at least one selected from the group consisting of gold, silver, platinum, palladium, rhodium, and an alloy containing at least one of them, but is not limited thereto.
  • the alloy may be an alloy in which other materials (eg, phosphorus) are added to any one of conductive particles (gold, silver, platinum, palladium, and rhodium), or It may be an alloy formed on at least two or more of these.
  • the shape of the core particle is qualitatively spherical (spherical), angular (angular), tear drop shape (tear drop), cubic shape (cubic), sponge shape (sponge), needle Ancicular, cylindrical, irregular, ligamental, flake, fibrous, polygonal, dendritic, or aggregate It can be aggregate.
  • it is difficult to uniformly specify the size of the core particle because the size of the core particle is small and the size of each individual particle is different, but it can be represented by the diameter of a circle that encloses all the particles inside (Randall M. German, Powder metallurgy science, Metal Powder Industry, 2nd edition, page 64 (March 1, 1994)).
  • the size of the core particles may be in the range of about 20 ⁇ m to about 60 ⁇ m in diameter.
  • the polymer layer may surround or coat the surface of the core particles. In this case, although it is difficult to uniformly specify the thickness of the polymer layer, the thickness may be distributed within a range of about 0.1 ⁇ m to about 5 ⁇ m.
  • the conductive powder may further include a second coating layer.
  • the second coating layer may be present between the core particles and the polymer layer or on the polymer layer.
  • the second coating layer may include at least one selected from the group consisting of gold, silver, platinum, palladium, rhodium, and an alloy including any one or more of them, but is not limited thereto.
  • the size of the conductive powder may be in the range of about 20 ⁇ m to about 65 ⁇ m.
  • the present disclosure provides an inspection connector disposed between a device under test and a test equipment to electrically connect the device under test and the test equipment to each other, comprising: a sheet of an insulating material; And it may relate to a connector for inspection including a conductive portion extending in the vertical direction in the sheet to enable current in the vertical direction.
  • the conductive part may include a conductive powder according to one aspect of the present disclosure.
  • the device under test 10 may be a semiconductor device or the like.
  • the device under test 10 includes a plurality of terminals 11.
  • the plurality of terminals 11 are disposed on the lower side of the device under test 10.
  • the plurality of terminals 11 can contact the upper surface of the inspection connector 100.
  • the test equipment 20 includes a plurality of terminals 21.
  • the plurality of terminals 21 correspond to the plurality of terminals 11.
  • the plurality of terminals 21 can contact the lower side of the connector 100 for inspection.
  • each of the plurality of terminals 21 is disposed at a position facing each of the plurality of terminals 11 in the vertical direction.
  • each of the plurality of terminals 21 connects each of the plurality of terminals 11 to the plurality of conductive parts 130. It may be disposed at a position facing in an inclined direction.
  • the connector for inspection 100 is disposed between the device under test 10 and the test equipment 20 to electrically connect the device under test 10 and the test equipment 20 to each other. Is composed.
  • the test connector 100 is a conductive part 130 configured to electrically connect the sheet 110 of an insulating material, the terminal 11 of the device under test 10 and the terminal 21 of the test equipment 20. ).
  • the sheet 110 has a thickness in the vertical direction.
  • the thickness (length in the thickness direction) of the sheet 110 is smaller than the length in a direction perpendicular to the thickness direction of the sheet 110.
  • the sheet 110 is formed of an electrically insulating material.
  • the sheet 110 may be formed of an elastically deformable material.
  • the sheet 110 may be made of an elastic polymer material having insulating properties.
  • the elastic polymer material may be a polymer material having a crosslinked structure.
  • the curable polymer material forming material that can be used to obtain the crosslinked polymer material include conjugated diene-based materials such as polybutadiene rubber, natural rubber, polyisoprene rubber, styrene-butadiene copolymer rubber, and acrylonitrile-butadiene copolymer rubber.
  • Block copolymer rubbers such as styrene-butadiene-diene block copolymer rubber, styrene-isoprene block copolymer, and hydrogenated products thereof, chloroprene, urethane rubber, polyester rubber, epichlorohydrin rubber , Silicone rubber, ethylene-propylene copolymer rubber, ethylene-propylene-diene copolymer rubber, and the like, but are not limited thereto.
  • the sheet 110 may include silicone rubber.
  • the silicone rubber may be a liquid silicone rubber (LSR).
  • the silicone rubber may be a polysiloxane, and may be a condensed type, an addition type, a polysiloxane containing a vinyl group or a hydroxyl group, and may be, for example, polydimethylsiloxane, polymethylphenylsiloxane, or polydiphenylsiloxane, but is limited thereto. It doesn't work.
  • the liquid silicone rubber usable in the present disclosure may include a liquid silicone rubber that can be used as an insulating material by a person skilled in the art within a range that does not deteriorate the performance of the inspection connector according to an aspect of the present disclosure.
  • the conductive part 130 may extend in the vertical direction.
  • the conductive part 130 extends in the vertical direction within the sheet 110 to enable electric current in the vertical direction.
  • the conductive part 130 is disposed on the sheet 110.
  • the conductive part 130 may be supported by the sheet 110.
  • the plurality of conductive parts 130 are spaced apart from each other in a direction perpendicular to the vertical direction.
  • the plurality of conductive parts 130 may be arranged substantially spaced apart from each other.
  • both ends of the conductive portion 130 in the vertical direction are exposed on the vertical surface of the sheet 110.
  • the upper end of the conductive part 130 is exposed on the upper surface of the sheet 110, and the lower end of the conductive part 130 is exposed on the lower surface of the sheet 110.
  • the upper end of the conductive part 130 is configured to be in contact with the terminal 11 of the device under test 10
  • the lower end of the conductive part 130 is configured to be in contact with the terminal 21 of the test equipment 20 .
  • the conductive part 130 includes an exposed part (not shown) exposed on the surface of the sheet 110, which means the surface of the conductive part 130.
  • the exposed portions are located at both ends of the conductive portion 130.
  • the sheet 110 may be configured to surround the conductive portion 130 except for the exposed portion.
  • the present disclosure provides a method for producing a conductive powder, comprising the steps of: (1) coating a polymer layer on the surface of the core particles (FIG. 4A); (2) absorbing a solution containing a precursor of conductive particles into the polymer layer (FIG. 4B); (3) It may relate to a manufacturing method including the step of reducing the precursor of the conductive particles absorbed in the polymer layer and bonding to the polymer layer (FIG. 4C).
  • the manufacturing method may further include a step of sufficiently bonding the conductive particles to the polymer layer by repeating (4) steps (2) and (3) after step (3). .
  • the conductive powder according to an aspect of the present disclosure may be prepared by a method comprising the following steps:
  • Step (1) The core particles and the polymer solution dissolved in an organic solvent are placed in a beaker and mixed. The polymer solution is separated by adding water and then removed.
  • Step (2) After that, ultrasonic treatment is performed to precipitate a polymer. The ultrasonic treatment and precipitation process are repeated until the water in the beaker becomes clear. Then, the water is removed and the polymer-coated core particles are washed with alcohol.
  • Step (3) Put the polymer-coated powder and the precursor solution of the conductive particles obtained in the above step into a separate conical tube and stir.
  • the precursor solution of the conductive particles may be obtained by dissolving a precursor containing conductive particles (eg, a compound such as silver trifluoroacetate (CF 3 COOAg)) in alcohol. After stirring, the precursor solution is removed.
  • a precursor containing conductive particles eg, a compound such as silver trifluoroacetate (CF 3 COOAg)
  • Step (4) Then, the reducing agent solution is added to the tube and stirred.
  • the reducing agent solution may be obtained by dissolving a reducing agent (eg, a reducing agent such as hydrazine hydrate (NH 2 NH 2 ⁇ xH 2 O)) in alcohol. After stirring, the reducing agent is removed, and the powder is washed with water or alcohol.
  • a reducing agent eg, a reducing agent such as hydrazine hydrate (NH 2 NH 2 ⁇ xH 2 O)
  • Step (5) Steps (3) and (4) are repeated until the conductive particles are sufficiently bonded to the polymer layer coated on the surface of the core particles. Finally, the powder is washed with alcohol and then dried to obtain a conductive powder of the present disclosure.
  • the weight ratio of the polymer and the solvent in the polymer solution may be 1:3 to 1:50.
  • the solvent of the polymer solution is n -pentane ( n- Pentane), n -hexane ( n- Hexane), n -heptane ( n- Heptane), n -octane ( n- Octane), 2 -Methylpentane, Cyclopentane, Cyclohexane, Methylcyclohexane, benzene, ethylbenzene, 1-Hexene, Tetrahydrofuran and Toluene It may be one or more selected from the group of.
  • the weight ratio of the compound containing the conductive particles and the solvent in the conductive particle solution may be 1:2 to 1:10.
  • the solvent of the conductive particle solution may be water or alcohol, and specifically, may be at least one selected from the group consisting of water, methanol, ethanol, 2-propanol, 1-butanol, and combinations thereof. .
  • the weight ratio of the reducing agent and the solvent in the reducing agent solution may be 1:5 to 1:40.
  • the solvent of the conductive particle solution may be water or alcohol, and specifically, may be at least one selected from the group consisting of water, methanol, ethanol, 2-propanol, 1-butanol, and combinations thereof. .
  • the manufacturing method according to Example A includes the step of disposing the solidified conductive portion 130 extending in the vertical direction in a mold.
  • the manufacturing method according to the embodiment A includes the step of forming the sheet 110 by injecting and curing a liquid insulating material such as silicon into the mold.
  • the inspection connector 100 may be manufactured using a 3D printing method.
  • the sheet 110 may be formed by 3D printing, the conductive portion 130 may be formed, or the entire inspection connector may be formed.
  • the manufacturing method according to Example C includes forming a hole in the cured sheet 110 in which the conductive portion 130 is disposed.
  • the hole may be formed to penetrate the sheet 110 vertically.
  • the hole may be formed using a laser.
  • the manufacturing method according to the embodiment C includes forming the conductive portion 130 by injecting and curing a solution containing the conductive powder according to an aspect of the present disclosure into the hole of the sheet 110.
  • the manufacturing method according to Example D includes the step (a) of injecting a mixture of a conductive powder and a liquid insulating material according to an aspect of the present disclosure into a specific location.
  • the liquid insulating material may be a liquid silicone material.
  • the manufacturing method according to the embodiment D includes, after step (a), generating a magnetic field so that the coated conductive powder is aligned at predetermined positions (b).
  • the conductive powder forms the conductive part 130 by generating the magnetic field.
  • the conductive part 130 extends in the vertical direction and enables electricity to be energized in the vertical direction.
  • the liquid insulating material injected into the specific position together with the conductive powder is cured after passing through the step (b).
  • the insulating material cured after step (b) may constitute at least a part of the sheet 110.
  • the insulating material cured after passing through the step (b) may perform a function of supporting the conductive part 130.
  • the specific location may be inside the mold.
  • a mixture of the conductive powder and the liquid insulating material may be injected into the mold.
  • the liquid insulating material injected in step (a) is cured after passing through step (b) to form the sheet 110.
  • the conductive powder may flow in the liquid insulating material to be aligned at predetermined positions.
  • the specific location may be inside a hole formed in a cured sheet.
  • a hole forming step of forming a hole penetrating the cured sheet in the vertical direction may be performed prior to the step (a).
  • the hole may be formed to penetrate the sheet vertically.
  • the hole may be formed using a laser.
  • a mixture of a conductive powder and a liquid insulating material according to an aspect of the present disclosure may be injected into the hole.
  • the conductive powder may flow inside the hole and may be aligned at preset positions.
  • the liquid insulating material is cured to form a part of the sheet.
  • a nickel core particle powder having an average particle diameter of 30 ⁇ m and a styrene-butadiene-styrene (SBS) solution dissolved in toluene are placed in a beaker and mixed. At this time, the weight ratio of the SBS polymer and toluene may be 1: 25 to 1: 40. After separating the SBS solution by adding water, it is removed.
  • SBS styrene-butadiene-styrene
  • the SBS-coated powder and conductive particle solution obtained in the above step are put into separate conical tubes and stirred.
  • the conductive particle solution may be obtained by dissolving a compound containing conductive particles (eg, a compound such as silver trifluoroacetate (CF 3 COOAg)) in ethanol.
  • a compound containing conductive particles eg, a compound such as silver trifluoroacetate (CF 3 COOAg)
  • the weight ratio of silver trifluoroacetate and ethanol may be 1:5.
  • the conductive particle solution is removed.
  • the reducing agent solution is added to the tube and stirred.
  • the reducing agent solution may be obtained by dissolving a reducing agent (eg, a reducing agent such as hydrazine hydrate (NH 2 NH 2 ⁇ xH 2 O)) in ethanol.
  • a reducing agent eg, a reducing agent such as hydrazine hydrate (NH 2 NH 2 ⁇ xH 2 O)
  • the weight ratio of the reducing agent and ethanol may be 1: 15.
  • the reducing agent is removed, and the powder is washed with water or alcohol.
  • Steps (3) and (4) are repeated until the conductive particles are sufficiently coated and impregnated in the polymer layer coated on the surface of the core particles. Finally, the powder was washed with alcohol and then dried to obtain a conductive powder of the present disclosure.
  • the surface and cross-section of the conductive powder of the present disclosure finally obtained from the above examples were observed using a Scanning Electron Microscope (SEM) and a focused ion beam (FIB).
  • SEM Scanning Electron Microscope
  • FIB focused ion beam
  • the SEM results are shown in Fig. 5, and the FIB results are shown in Figs. 6 and 7. According to this drawing, it can be seen that the conductive powder according to the present disclosure does not clump together and the polymer layer to which the conductive particles are bonded is well coated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Non-Insulated Conductors (AREA)
  • Conductive Materials (AREA)

Abstract

본 개시는 일 측면에 있어서 코어 입자; 및 상기 코어 입자의 표면을 둘러싸는 중합체층을 포함하고, 상기 중합체층에는 복수의 도전성 입자가 결합되어 있고, 상기 중합체는 하나 이상의 불포화 탄화수소, 방향족 탄화수소, 또는 둘 다를 포함하는 것인, 도전성 분말에 관한 것이다. 본 개시는 일 측면에 있어서, 상기 도전성 분말을 포함하는 도전부, 및 절연성 재질의 시트를 포함하는 검사용 커넥터에 관한 것이다. 본 개시의 일 측면에 따른 도전성 분말은 우수한 내변형성, 내마모성 및 저항 안정성을 나타낼 수 있다.

Description

도전성 분말 및 이를 포함하는 검사용 커넥터
본 개시는 신규한 도전성(導電性) 분말 및 이를 포함하는 검사용 커넥터에 관한 것이다.
반도체 디바이스와 같은 피검사 디바이스의 불량여부를 판단하기 위한 검사 공정에서, 피검사 디바이스와 테스트(test) 장비의 사이에 검사용 커넥터가 배치된다. 검사용 커넥터는 피검사 디바이스와 테스트 장비를 전기적으로 연결시켜, 피검사 디바이스와 테스트 장비의 통전 여부를 기초로 피검사 디바이스의 불량 여부를 판단하는 검사방법이 알려져 있다.
만약 검사용 커넥터가 없이 피검사 디바이스의 단자가 테스트 장비의 단자에 직접 촉접하게 되면, 반복적인 검사 과정에서 테스트 장비의 단자가 마모 또는 파손되어 테스트 장비 전체를 교체해야하는 소요가 발생할 수 있다. 종래에는, 검사용 커넥터를 이용하여 테스트 장비 전체를 교체하는 소요의 발생을 막는다. 구체적으로, 피검사 디바이스의 단자와의 반복적인 접촉으로 검사용 커넥터가 마모 또는 파손될 때, 해당하는 검사용 커넥터만 교체할 수 있다.
검사용 커넥터의 도전부에 사용되는 도전성 분말은 자성을 가진 코어에 금(Au)을 도금하여 사용한다. 이때 검사용 커넥터가 그 사용 과정에서 반복 압축되면 여러가지 문제점이 야기된다. 예를 들어, 커넥터에 존재하는 도전성 분말이 압축으로 인해 힘을 받게 되고, 도전성 분말 간의 접촉이 일어나 입자의 변형 및 마모가 발생한다. 입자의 마모로 표면의 금 도금층이 벗겨지게 되면 도전성이 낮은 자성 코어의 성분인 철(Fe), 니켈(Ni) 또는 코발트(Co)가 외부로 드러나 도전성이 감소하고 접촉 저항이 증가하여 전기적 신호를 제대로 전달 할 수 없게 된다.
또한 기존 도전성 분말은 입자 형성이 불규칙하여 입자 간의 접촉이 접점촉의 형태로 이루어져있어, 커넥터가 압축될 경우 입자 간의 접점이 틀어져 저항이 불안해지고 전기적 신호전달이 원활히 이루어지지 않을 수 있다.
[선행기술문헌]
(특허문헌 1) 대한민국 공개특허공보 제10-2018-0132031호(2018. 12. 11.)
본 개시의 목적은 검사용 커넥터가 반복 압축되더라도 도전성 분말의 변형 및 마모가 적게 일어나고 안정한 저항을 유지하여 전기 신호 전달이 원활한, 신규 도전성 분말을 제공하는 것이다.
상기 과제를 해결하기 위해, 본 개시의 일 측면은 코어 입자; 및 상기 코어 입자의 표면을 둘러싸는 중합체층을 포함하고, 상기 중합체층에는 복수의 도전성 입자가 결합되어 있고, 상기 중합체는 하나 이상의 불포화 탄화수소, 방향족 탄화수소, 또는 둘 다를 포함하는 것인, 도전성 분말을 제공한다.
본 개시의 일 측면에 따른 도전성 분말은 우수한 내변형성, 내마모성 및 저항 안정성을 나타낼 수 있다. 이러한 도전성 분말은 검사용 커넥터가 압축 되었을 때에도 중합체층이 유연하게 변형되면서 입자간의 접점이 어긋나지 않고 서로 면접촉 형태로 접촉이 유지되고, 중합체층에는 복수의 도전성 입자가 결합되어 있어 우수한 저항 안정성을 나타내고, 반복적인 사용에도 안정적으로 전기적 신호를 전달하는 효과를 나타낼 수 있다.
도 1은 일 실시예에 따른 검사용 커넥터(100)의 부분 단면도로서, 검사용 커넥터(100)가 피검사 디바이스(10)와 테스트 장비(20) 사이에 배치된 모습을 보여준다.
도 2는 본 개시의 일 측면에 따른 도전성 분말(30)의 모식도이다. 이러한 입자는 코어 입자(60)에 중합체층(40)이 코팅되어있는 형태이며 중합체층에는 복수의 도전성 입자(50)가 중합체층의 외부 표면에 부착 또는 결합되어 있고 중합체층의 내부에 주입 내지는 침투되어 존재할 수 있다.
도 3은 본 개시의 일 측면에 따른 도전성 분말이, 사용 전 후로 압력을 받았을 때 면접촉 형태를 유지하는 모습을 나타낸 모식도이다. 여기서 (a) 도면은 사용 전 도전부에 존재하는 도전성 분말(30)의 배열을 나타낸 것이고, (b) 도면은 상하로 압력을 받았을 때 도전성 분말이 서로 접촉하는 형태를 나타낸 것이다. 도면으로부터 파악할 수 있듯이, 압력을 받은 도전성 분말은 중합체층이 탄성 변형되면서 접촉 면적이 넓어진다. 즉, 도전성 분말이 서로 면접촉 형태를 하게 된다. 또한, 접촉 면적이 넓어져 면접촉이 됨에 따라 도전성 분말이 서로 밀쳐져 이탈되는 정도도 감소하게 되어도, 압력이 제거되는 경우 도전성 분말은 원래의 위치로 복귀한다.
도 4는 본 개시의 일 측면에 따른 도전성 분말의 제조 단계에 따라 수득되는 도전성 분말을 시계열순으로 나타낸 모식도이다. (A)는 중합체층을 코어 입자 표면에 코팅하여 수득된 도전성 분말을 나타낸다. (B)는 도전성 입자가 중합체층에 흡수된 상태의 도전성 분말을 나타낸다. (C)는 흡수된 도전성 입자가 환원되어, 복수의 도전성 입자가 중합체층의 외부 표면에 부착 또는 결합되어 있고 중합체층의 내부에 주입 내지는 침투되어 존재하는 도전성 분말을 나타낸다. (D)는 도전성 입자가 침투하기 전 후의 도전성 분말을 나타낸다.
도 5는 본 개시의 일 측면에 따라 제조된, 중합체층으로 코팅된 도전성 분말의 주사현미경사진을 나타낸다. 본 개시에 따르면 코팅 후 도전성 분말은 서로 뭉치지 않으면서 중합체층이 양호하게 코팅되어 있다.
도 6 및 도 7은 상기 중합체층으로 코팅된 도전성 분말의 집속이온빔을 이용한 단면사진을 나타낸다.
본 개시의 실시예 또는 일 측면들은 본 개시의 기술적 사상을 설명하기 위한 목적으로 예시된 것이다. 본 개시에 따른 권리범위가 이하에 제시되는 실시예 또는 일 측면들이나 이들에 대한 구체적 설명으로 한정되는 것은 아니다.
본 개시에 사용되는 모든 기술적 용어들 및 과학적 용어들은, 달리 정의되지 않는 한, 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자에게 일반적으로 이해되는 의미를 갖는다. 본 개시에 사용되는 모든 용어들은 본 개시를 더욱 명확히 설명하기 위한 목적으로 선택된 것이며 본 개시에 따른 권리범위를 제한하기 위해 선택된 것이 아니다.
본 개시에서 사용되는 "포함하는", "구비하는", "갖는" 등과 같은 표현은, 해당 표현이 포함되는 어구 또는 문장에서 달리 언급되지 않는 한, 다른 실시예를 포함할 가능성을 내포하는 개방형 용어(open-ended terms)로 이해되어야 한다.
본 개시에서 사용되는 해당 구성 "만으로 구성되는" 등과 같은 표현은, 해당 구성 외에 다른 구성을 포함할 가능성을 배제하는 폐쇄형 용어(closed-ended terms)로 이해되어야 한다.
본 개시에서 기술된 단수형의 표현은 달리 언급하지 않는 한 복수형의 의미를 포함할 수 있으며, 이는 청구범위에 기재된 단수형의 표현에도 마찬가지로 적용된다.
본 개시에서 사용되는 "제1", "제2" 등의 표현들은 복수의 구성요소들을 상호 구분하기 위해 사용되며, 해당 구성요소들의 순서 또는 중요도를 한정하는 것은 아니다.
본 개시의 일 측면에 있어서, 용어 "약"은 구체적 수치에 포함되는 제조 공정상의 오차나 본 개사의 기술적 사상의 범주에 들어가는 약간의 수치 조정을 포함하는 의도로 사용되었다. 예를 들어, 용어 “약”은 그것이 지칭하는 값의 ±10%, 일 측면에서 ±5%, 또 다른 측면에서 ±2%의 범위를 의미한다. 이 개시내용의 분야에 있어서, 값이 구체적으로 보다 좁은 범위를 요구하는 것으로 언급되지 않는다면 이 수준의 근사치가 적절하다.
본 개시에서 사용되는 "상방", "상" 등의 방향지시어는 검사용 커넥터(100)를 기준으로 피검사 디바이스(10)의 단자(11)가 배치되는 방향을 의미하고, "하방", "하" 등의 방향지시어는 검사용 커넥터(100)를 기준으로 테스트 장비(20)의 단자(21)가 배치되는 방향을 의미한다. 본 개시에서 언급하는 검사용 커넥터(100)의 "두께 방향"은 상하 방향을 의미한다. 이는 어디까지나 본 개시가 명확하게 이해될 수 있도록 설명하기 위한 기준이며, 기준을 어디에 두느냐에 따라 상방 및 하방을 다르게 정의할 수도 있음은 물론이다.
본 개시는 일 측면에 있어서, 코어 입자; 및 상기 코어 입자의 표면을 둘러싸는 중합체층을 포함하고, 상기 중합체층은 중합체와 결합된 도전성 입자를 포함하며, 상기 중합체는 하나 이상의 불포화 탄화수소, 방향족 탄화수소, 또는 둘 다를 포함하는, 도전성 분말에 관한 것일 수 있다.
본 개시의 일 측면에 있어서, 상기 중합체층과 복수의 도전성 입자 사이의 결합은 상기 중합체층이 코어 입자를 둘러싸고 있는 상태에서, 상기 중합체층에 상기 도전성 입자의 전구체를 포함하는 용액을 흡수시키고, 상기 전구체를 환원시킴으로써 이루어질 수 있다. 이러한 결합에 의해 상기 복수의 도전성 입자 중 일부는 중합체층의 외부 표면에 부착 또는 결합되어 있고, 상기 복수의 도전성 입자의 나머지 중 일부는 중합체층의 내부에 주입 내지는 침투되어 존재할 수 있다.
본 개시의 일 측면에 있어서, 상기 복수의 도전성 입자 중 일부는 상기 중합체층의 외부 표면으로 노출된 상태에서 상기 중합체층에 결합되어 있고, 상기 복수의 도전성 입자 중 나머지 일부는 상기 중합체층에 함침된 상태로 상기 중합체층에 결합되어 있을 수 있다.
본 개시는 일 측면에 있어서, 중합체로 이루어지고, 상기 중합체의 표면에는 복수의 도전성 입자가 결합되어 있고, 상기 중합체는 하나 이상의 불포화 탄화수소, 방향족 탄화수소, 또는 둘 다를 포함하는, 도전성 분말에 관한 것일 수 있다.
본 개시의 일 측면에 있어서, 상기 중합체와 복수의 도전성 입자 사이의 결합은, 상기 중합체에 상기 도전성 입자의 전구체를 포함하는 용액을 흡수시키고, 상기 전구체를 환원시킴으로써 이루어질 수 있다. 이러한 결합에 의해 상기 도전성 입자 중 일부는 상기 중합체의 표면에 부착 또는 결합되어 있고, 상기 복수의 도전성 입자의 나머지 중 일부는 상기 중합체의 외곽의 내부에 주입 내지는 침투되어 존재할 수 있다.
본 개시의 일 측면에 있어서, 상기 복수의 도전성 입자 중 일부는 외부 표면으로 노출된 상태에서 상기 중합체에 결합되어 있고, 상기 복수의 도전성 입자의 나머지 중 일부는 상기 중합체에 함침된 상태로 결합되어 있을 수 있다.
본 개시의 일 측면에 있어서, 상기 중합체는 폴리에틸렌, 폴리프로필렌, 폴리테트라플루오로에틸렌, 폴리(비닐 클로라이드), 폴리스티렌, 폴리아크릴로나이트릴, 폴리(비닐 아세테이트), 폴리(메틸 메타크릴레이트), 이들의 조합 및 이들의 블록 공중합체로 구성된 군으로부터 선택된 하나 이상일 수 있다. 본 개시의 일 측면에 있어서, 상기 중합체는 스티렌 블록 공중합체일 수 있다.
본 개시는 일 측면에 있어서, 상기 중합체는 스티렌 블록 공중합체일 수 있다.
본 개시의 일 측면에 있어서, 상기 스티렌 블록 공중합체는 스티렌-부타디엔-스티렌(SBS) 공중합체, SIS(스티렌-이소프렌-스티렌) 공중합체, 스티렌-(에틸렌-부타디엔)-스티렌(SEBS) 공중합체 및 이의 조합으로 구성된 군으로부터 선택되는 하나 이상일 수 있으나 이에 제한되지는 않는다. 이러한 중합체는 도전성 분말의 중합체층 성분으로 사용할 경우, 코어 입자와 흡착이 양호하고 본 개시에서 달성하고자하는 효과를 우수하게 달성할 수 있다.
본 개시의 일 측면에 있어서, 스티렌 블록 공중합체는 아래 화학식 1과 같은 구조를 가지는 것일 수 있으며, 스티렌 블록 공중합체이되 두 개의 스티렌 중합체 블록을 가지는 것일 수 있다.
Figure PCTKR2020002447-appb-C000001
(상기 화학식 1에서 x, y, z는 1 이상의 정수일 수 있고, x와 z는 동일할 수 있으며, A는 통상의 기술자가 사용가능한 임의의 반복단위일 수 있음)
본 개시의 일 측면에 있어서, 상기 코어 입자는 자성 입자, 중합체 입자, 금속을 제외한 무기 입자, 또는 유기-무기 하이브리드 입자 일 수 있으나 이에 제한되는 것은 아니다.
본 개시의 일 측면에 있어서, 상기 자성 입자는 코발트, 니켈, 철 및 이들 중 어느 하나 이상을 포함하는 합금으로 이루어진 군으로부터 선택된 하나 이상을 포함할 수 있으나 이에 제한되는 것은 아니다. 이를 통해, 도전부(130)의 도전성을 향상시키고, 자성체 입자가 자기장 안에서 자화되는 성질을 이용하여 후술하는 제조방법에서 제조성을 향상시킬 수 있다. 본 개시의 일 측면에 있어서, 상기 합금은 자성 물질(코발트, 니켈, 및 철) 중 어느 하나에, 이들 외에 다른 물질(예를 들어, 구리)을 첨가한 합금일 수 있고, 또는 이들 중 적어도 2개 이상에 형성된 합금일 수도 있다.
본 개시의 일 측면에 있어서, 상기 중합체 입자의 중합체는 폴리에틸렌, 폴리프로필렌, 폴리스티렌, 폴리염화비닐, 폴리염화비닐리덴, 폴리이소부틸렌, 폴리부타디엔, 폴리메틸메타크릴레이트, 폴리메틸아크릴레이트, 폴리카르보네이트, 폴리아미드, 페놀포름알데히드 수지, 멜라민포름알데히드 수지, 벤조구아나민포름알데히드 수지, 요소포름알데히드 수지, 페놀 수지, 멜라민 수지, 벤조구아나민 수지, 요소 수지, 에폭시 수지, 불포화 폴리에스테르 수지, 포화 폴리에스테르 수지, 폴리에틸렌테레프탈레이트, 폴리술폰, 폴리페닐렌옥시드, 폴리아세탈, 폴리이미드, 폴리아미드이미드, 폴리에테르에테르케톤, 폴리에테르술폰, 디비닐벤젠 중합체, 디비닐벤젠계 공중합체, 및 이들의 조합으로 이루어진 군으로부터 선택된 하나 이상일 수 있으나 이에 제한되는 것은 아니다.
본 개시의 일 측면에 있어서, 중합체 입자의 중합체는 에틸렌성 불포화기를 갖는 중합성 단량체를 1종 또는 2종 이상 중합시킨 중합체일 수 있다. 여기서 에틸렌성 불포화기를 갖는 중합성 단량체는 비가교성의 단량체 또는 가교성의 단량체일 수 있다.
본 개시의 일 측면에 있어서, 상기 비가교성의 단량체로서는, 예를 들어 스티렌, α-메틸스티렌 등의 스티렌계 단량체; (메트)아크릴산, 말레산, 무수 말레산 등의 카르복실기 함유 단량체; 메틸(메트)아크릴레이트, 에틸(메트)아크릴레이트, 프로필(메트)아크릴레이트, 부틸(메트)아크릴레이트, 2-에틸헥실(메트)아크릴레이트, 라우릴(메트)아크릴레이트, 세틸(메트)아크릴레이트, 스테아릴(메트)아크릴레이트, 시클로헥실(메트)아크릴레이트, 이소보르닐(메트)아크릴레이트 등의 알킬(메트)아크릴레이트 화합물; 2-히드록시에틸(메트)아크릴레이트, 글리세롤(메트)아크릴레이트, 폴리옥시에틸렌(메트)아크릴레이트, 글리시딜(메트)아크릴레이트 등의 산소 원자 함유 (메트)아크릴레이트 화합물; (메트)아크릴로니트릴 등의 니트릴 함유 단량체; 메틸비닐에테르, 에틸비닐에테르, 프로필비닐에테르 등의 비닐에테르 화합물; 아세트산비닐, 부티르산비닐, 라우르산비닐, 스테아르산비닐 등의 산비닐에스테르 화합물; 에틸렌, 프로필렌, 이소프렌, 부타디엔 등의 불포화 탄화수소; 트리플루오로메틸(메트)아크릴레이트, 펜타플루오로에틸(메트)아크릴레이트, 염화비닐, 불화비닐, 클로로스티렌 등의 할로겐 함유 단량체 등을 들 수 있으나 이에 제한되는 것은 아니다.
본 개시의 일 측면에 있어서, 상기 가교성의 단량체로서는, 예를 들어 테트라메틸올메탄테트라(메트)아크릴레이트, 테트라메틸올메탄트리(메트)아크릴레이트, 테트라메틸올메탄디(메트)아크릴레이트, 트리메틸올프로판트리(메트)아크릴레이트, 디펜타에리트리톨헥사(메트)아크릴레이트, 디펜타에리트리톨펜타(메트)아크릴레이트, 글리세롤트리(메트)아크릴레이트, 글리세롤디(메트)아크릴레이트, (폴리)에틸렌글리콜디(메트)아크릴레이트, (폴리)프로필렌글리콜디(메트)아크릴레이트, (폴리)테트라메틸렌글리콜디(메트)아크릴레이트, 1,4-부탄디올디(메트)아크릴레이트 등의 다관능 (메트)아크릴레이트 화합물; 트리알릴(이소)시아누레이트, 트리알릴트리멜리테이트, 디비닐벤젠, 디알릴프탈레이트, 디알릴아크릴아미드, 디알릴에테르, γ-(메트)아크릴옥시프로필트리메톡시실란, 트리메톡시실릴스티렌, 비닐트리메톡시실란 등의 실란 함유 단량체 등을 들 수 있다.
본 개시의 일 측면에 있어서, 상기 에틸렌성 불포화기를 갖는 중합성 단량체는, 공지의 방법에 의해 중합하여 상기 중합체 입자를 수득할 수 있다. 이러한 공지의 방법에는, 예를 들어, 라디칼 중합 개시제의 존재 하에서 현탁 중합하는 방법, 그리고 비가교의 종 입자를 사용하여 라디칼 중합 개시제와 함께 단량체를 팽윤시켜 중합하는 방법 등을 들 수 있으나 이에 제한되는 것은 아니다.
본 개시의 일 측면에 있어서, 상기 중합체 입자의 중합체는 폴리플루오렌, 폴리페닐렌, 폴리피렌, 폴리아줄렌, 폴리나프탈렌, 폴리피롤, 폴리카바졸, 폴리인돌, 폴리아제핀, 폴리아닐린, 폴리티오펜, 폴리(3,4-에틸렌디옥시티오펜), 폴리페닐렌설피드, 폴리아세틸렌, 폴리스티렌술포네이트 및 폴리페닐렌비닐리덴, 폴리(3,4-에틸렌디옥시티오펜), 폴리스티렌술포네이트, 및 이들의 조합으로 이루어진 군으로부터 선택된 하나 이상일 수 있으나 이에 제한되는 것은 아니다.
본 개시의 일 측면에 있어서, 상기 무기 입자는 실리카, 알루미나, 티타늄산바륨, 지르코니아, 카본 블랙 및 이들의 조합으로 이루어진 군으로부터 선택된 하나 이상을 포함할 수 있으나 이에 제한되는 것은 아니다. 상기 실리카에 의해 형성된 입자로서는 특별히 한정되지 않지만, 예를 들어 가수분해성의 알콕시실릴기를 2개 이상 갖는 규소 화합물을 가수분해하여 가교 중합체 입자를 형성한 후에, 필요에 따라 소성을 행함으로써 얻어지는 입자를 들 수 있다. 상기 유기-무기 하이브리드 입자로서는, 예를 들어 가교한 알콕시실릴 중합체와 아크릴 수지에 의해 형성된 유기 무기 하이브리드 입자 등을 들 수 있다. 상기 유기-무기 하이브리드 입자는 코어와, 해당 코어의 표면 위에 배치된 쉘을 갖는 코어 쉘형의 유기-무기 하이브리드 입자일 수 있다. 이때 코어는 유기 코어이고 쉘은 무기 쉘일 수 있다. 여기서 유기 코어는 상술한 중합체를 재료로 한 코어일 수 있다.
본 개시의 일 측면에 있어서, 상기 도전성 입자는 금, 은, 백금, 팔라듐, 로듐, 및 이들 중 어느 하나 이상을 포함하는 합금으로 이루어진 군으로부터 선택된 하나 이상일 수 있으나 이에 제한되는 것은 아니다. 본 개시의 일 측면에 있어서, 상기 합금은 도전성 입자(금, 은, 백금, 팔라듐, 및 로듐) 중 어느 하나에, 이들 외에 다른 물질(예를 들어, 인)을 첨가한 합금일 수 있고, 또는 이들 중 적어도 2개 이상에 형성된 합금일 수도 있다.
본 개시의 일 측면에 있어서, 상기 코어 입자의 형상은 정성적으로 구 형상(spherical), 각진 형상(angular), 눈물 방울 형상(tear drop), 입방체 형상(cubic), 스폰지 형상(sponge), 바늘 형상(ancicular), 원통 형상(cylindrical), 불규칙 형상(irregular), 리가멘탈 형상(ligamental), 플레이크 형상(flake), 섬유 형상(fibrous), 다각형 형상(polygonal), 수지상 형상(dendritic), 또는 집합체 형상(aggregate) 일 수 있다. 본 개시의 일 측면에 있어서, 상기 코어 입자의 크기는 크기가 작고 개별 입자마다 그 크기가 다르기 때문에 일률적으로 특정하기는 어려우나, 입자를 내부에 모두 포섭하는 원의 직경으로 나타낼 수 있다(문헌 [Randall M. German, Powder metallurgy science, Metal Powder Industry, 2nd edition, page 64 (March 1, 1994)] 참조). 예를 들어, 본 개시의 일 측면에서 코어 입자의 크기는 이러한 직경이 약 20 ㎛ 내지 약 60 ㎛ 범위에 있을 수 있다.
본 개시의 일 측면에 있어서, 상기 중합체층은 코어 입자의 표면을 둘러싸거나 코팅할 수 있다. 이 때 상기 중합체층의 두께는 일률적으로 특정하기는 어려우나, 그 두께는 약 0.1 ㎛ 이상 약 5 ㎛ 이하의 범위 내에서 분포할 수 있다. 본 개시의 일 측면에 있어서, 상기 도전성 분말은 제2코팅층을 더 포함할 수 있다. 본 개시의 일 측면에 있어서, 상기 제2코팅층은 코어입자와 중합체층 사이 또는 중합체층 상에 존재할 수 있다. 본 개시의 일 측면에 있어서, 제2코팅층은 금, 은, 백금, 팔라듐, 로듐, 및 이들 중 어느 하나 이상을 포함하는 합금으로 이루어진 군으로부터 선택된 하나 이상을 포함할 수 있으나 이에 제한되는 것은 아니다.
본 개시의 일 측면에 있어서, 도전성 분말의 크기는 약 20 ㎛ 내지 약 65 ㎛ 범위에 있을 수 있다.
본 개시는 일 측면에 있어서, 피검사 디바이스와 테스트 장비 사이에 배치되어 피검사 디바이스와 테스트 장비를 서로 전기적으로 연결시키기 위한 검사용 커넥터에 있어서, 절연성 재질의 시트; 및 상기 시트 내에서 상하 방향으로 연장되어 상하 방향으로 통전을 가능하게 하는 도전부를 포함하는 검사용 커넥터에 관한 것일 수 있다.
본 개시의 일 측면에 있어서, 상기 도전부는 본 개시의 일 측면에 따른 도전성 분말을 포함할 수 있다.
본 개시의 일 측면에 있어서, 도 1을 참고하여, 피검사 디바이스(10)는 반도체 디바이스 등이 될 수 있다. 피검사 디바이스(10)는 복수의 단자(11)를 포함한다. 복수의 단자(11)는 피검사 디바이스(10)의 하측면에 배치된다. 피검사 디바이스(10)를 검사할 때, 복수의 단자(11)는 검사용 커넥터(100)의 상측 면에 접촉할 수 있다.
테스트 장비(20)는 복수의 단자(21)를 포함한다. 복수의 단자(21)는 복수의 단자(11)와 대응된다. 피검사 디바이스(10)를 검사할 때, 복수의 단자(21)는 검사용 커넥터(100)의 하측 면에 접촉할 수 있다.
본 개시의 일 측면에 있어서, 각각의 복수의 단자(21)는 각각의 복수의 단자(11)를 상하 방향으로 마주보는 위치에 배치된다. 도시되지는 않았으나, 복수의 도전부(130)가 상하 방향에 대해 기울어진 다른 실시예에서, 각각의 복수의 단자(21)는 각각의 복수의 단자(11)를 복수의 도전부(130)의 기울어진 방향으로 마주보는 위치에 배치될 수 있다.
본 개시의 일 측면에 있어서, 검사용 커넥터(100)는 피검사 디바이스(10)와 테스트 장비(20) 사이에 배치되어 피검사 디바이스(10)와 테스트 장비(20)를 서로 전기적으로 연결시키기 위해 구성된다. 검사용 커넥터(100)는 절연성 재질의 시트(110)와, 피검사 디바이스(10)의 단자(11) 및 테스트 장비(20)의 단자(21)를 전기적으로 연결시키기 위해 구성되는 도전부(130)를 포함한다.
본 개시의 일 측면에 있어서, 시트(110)는 상하 방향으로 두께를 가진다. 시트(110)의 두께(두께 방향의 길이)는 시트(110)의 두께 방향에 수직한 방향으로의 길이보다 작다.
본 개시의 일 측면에 있어서, 시트(110)는 전기적 절연성의 재질로 형성된다. 시트(110)는 탄성 변형 가능한 재질로 형성될 수 있다.
본 개시의 일 측면에 있어서, 시트(110)는 절연성을 가진 탄성 고분자 물질로 이루어질 수 있다. 상기 탄성 고분자 물질은 가교 구조를 갖는 고분자 물질일 수 있다. 상기 가교 고분자 물질을 얻기 위해서 사용할 수 있는 경화성의 고분자 물질 형성 재료의 예로서는, 폴리부타디엔 고무, 천연 고무, 폴리이소프렌 고무, 스티렌-부타디엔 공중 합체 고무, 아크릴로니트릴-부타디엔 공중합체 고무 등의 공액 디엔계 고무 및 이들의 수소 첨가물, 스티렌-부타디엔-디엔 블록 공중합체 고무, 스티렌-이소프렌 블록 공중합체 등의 블록 공중합체 고무 및 이들의 수소 첨가물, 클로로프렌, 우레탄 고무, 폴리에스테르계 고무, 에피크롤히드린 고무, 실리콘 고무, 에틸렌-프로필렌 공중합체 고무, 에틸렌-프로필렌-디엔 공중합체 고무 등을 들 수 있으나 이에 제한되지는 않는다.
본 개시의 일 측면에 있어서, 상기 시트(110)는 실리콘 고무를 포함할 수 있다. 여기서 실리콘 고무는 액상 실리콘 고무(LSR; Liquid Silicone Rubber)일 수 있다. 또한 실리콘 고무는 폴리실록산일 수 있으며, 축합형, 부가형, 비닐기 또는 히드록실기를 함유하는 폴리실록산일 수 있고, 예를 들어, 폴리디메틸실록산, 폴리메틸페닐실록산, 또는 폴리디페닐실록산일 수 있으나 이에 제한되지는 않는다. 본 개시에서 사용 가능한 액상 실리콘 고무는 본 개시의 일 측면에 따른 검사용 커넥터의 성능을 열악하지 않게 하는 범위 내에서 통상의 기술자가 절연성 물질로서 사용할 수 있는 액상 실리콘 고무를 포함할 수 있다.
본 개시의 일 측면에 있어서, 도전부(130)는 상하 방향으로 연장될 수 있다. 도전부(130)는 시트(110) 내에서 상하 방향으로 연장되어 상하 방향으로 통전을 가능하게 한다.
본 개시의 일 측면에 있어서, 도전부(130)는 시트(110)에 배치된다. 도전부(130)는 시트(110)에 의해 지지될 수 있다.
본 개시의 일 측면에 있어서, 복수의 도전부(130)는 상하 방향에 수직한 방향으로 서로 이격된다. 복수의 도전부(130)는 서로 실질적으로 일정 간격 이격되어 배열될 수 있다.
본 개시의 일 측면에 있어서, 도전부(130)의 상하 방향 양단은 시트(110)의 상하 방향 표면에 노출된다. 도전부(130)의 상단은 시트(110)의 상측 표면에 노출되고, 도전부(130)의 하단은 시트(110)의 하측 표면에 노출된다. 도전부(130)의 상단은 피검사 디바이스(10)의 단자(11)에 접촉 가능하도록 구성되고, 도전부(130)의 하단은 테스트 장비(20)의 단자(21)에 접촉 가능하도록 구성된다.
본 개시의 일 측면에 있어서, 도전부(130)는 시트(110)의 표면에 노출된 노출부(미도시)를 포함하며, 이는 도전부(130)의 표면을 의미한다. 상기 노출부는 도전부(130)의 양단에 위치한다. 시트(110)는 상기 노출부를 제외한 도전부(130)를 둘러싸도록 구성될 수 있다.
이하, 도전성 분말의 제조방법을 설명한다.
본 개시는 일 측면에 있어서, 도전성 분말의 제조방법으로서 (1) 코어 입자 표면에 중합체층을 코팅하는 단계(도 4의 (A)); (2) 도전성 입자의 전구체를 포함하는 용액을 중합체층에 흡수시키는 단계(도 4의 (B)); (3) 중합체층에 흡수된 도전성 입자의 전구체를 환원시켜, 중합체층에 결합시키는 단계(도 4의 (C))를 포함하는 제조방법에 관한 것일 수 있다.
본 개시의 일 측면에 있어서, 상기 제조 방법은 단계 (3) 이후에, (4) 단계 (2)와 단계 (3)을 반복하여 도전성 입자를 충분히 중합체층에 결합시키는 단계를 더 포함할 수 있다.
본 개시의 일 측면에 따른 도전성 분말은 하기 단계를 포함하는 방법에 의해 제조될 수 있다:
단계 (1): 코어 입자와, 유기용매에 녹인 중합체 용액을 비커에 넣고 혼합한다. 물을 첨가하여 중합체 용액을 분리시킨 뒤 이를 제거한다.
단계 (2): 그 후 초음파 처리하여 중합체를 석출한다. 초음파 처리와 석출 과정은 비커의 물이 맑아질 때까지 반복한다. 그런 뒤 물을 제거하고 중합체가 코팅된 코어 입자를 알코올로 세척한다.
단계 (3): 상기 단계에서 수득된 중합체가 코팅된 파우더와 도전성 입자의 전구체 용액을 별도의 원뿔형 튜브에 넣고 교반한다. 이때 도전성 입자의 전구체 용액은 도전성 입자를 포함하는 전구체(예를 들어, 은 트리플루오로아세테이트(CF3COOAg)와 같은 화합물)를 알코올에 용해시킨 것일 수 있다. 교반 후 전구체 용액을 제거한다.
단계 (4): 그런 뒤 튜브에 환원제 용액을 첨가하고 교반한다. 이때 환원제 용액은 환원제(예를 들어, 히드라진 하이드레이트(NH2NH2 · xH2O)와 같은 환원제)를 알코올에 용해시킨 것일 수 있다. 교반 후 환원제를 제거한 뒤 상기 파우더를 물 또는 알코올로 세척한다.
단계 (5): 도전성 입자가, 코어 입자 표면에 코팅된 중합체층에 충분히 결합할 때까지 단계 (3)과 단계 (4)를 반복한다. 최종적으로 파우더를 알코올로 세척한 뒤 건조시켜 본 개시의 도전성 분말을 수득한다.
본 개시의 일 측면에 있어서, 중합체 용액에서 중합체와 용매의 중량비는 1:3 내지 1:50 일 수 있다. 본 개시의 일 측면에 있어서, 중합체 용액의 용매는 n-펜탄(n-Pentane), n-헥산(n-Hexane), n-헵탄(n-Heptane), n-옥탄(n-Octane), 2-메틸펜탄(2-Methylpentane), 시클로펜탄(Cyclopentane), 시클로헥산(Cyclohexane), 메틸시클로헥산(Methylcyclohexane), 벤젠, 에틸벤젠, 1-헥센(1-Hexene), 테트라하이드로퓨란(Tetrahydrofuran) 및 톨루엔의 군으로부터 선택된 하나 이상일 수 있다.
본 개시의 일 측면에 있어서, 도전성 입자 용액에서 도전성 입자를 포함하는 화합물과 용매의 중량비는 1:2 내지 1:10 일 수 있다. 본 개시의 일 측면에 있어서, 도전성 입자 용액의 용매는 물 또는 알코올일 수 있으며, 구체적으로 물, 메탄올, 에탄올, 2-프로판올, 1-부탄올, 및 이들의 조합으로 이루어진 군으로부터 선택된 하나 이상일 수 있다.
본 개시의 일 측면에 있어서, 환원제 용액에서 환원제와 용매의 중량비는 1:5 내지 1:40일 수 있다. 본 개시의 일 측면에 있어서, 도전성 입자 용액의 용매는 물 또는 알코올일 수 있으며, 구체적으로 물, 메탄올, 에탄올, 2-프로판올, 1-부탄올, 및 이들의 조합으로 이루어진 군으로부터 선택된 하나 이상일 수 있다.
이하, 검사용 커넥터(100)의 제조방법을 설명한다. 실시예A에 따른 상기 제조방법은 상하 방향으로 연장된 고체화된 도전부(130)를 금형 내에 배치시키는 단계를 포함한다. 상기 실시예A에 따른 상기 제조방법은, 그 후, 상기 금형 내에 실리콘 등의 액상의 절연 재료를 주입하여 경화시킴으로써, 시트(110)를 형성시키는 단계를 포함한다.
실시예B에서, 3D 프린팅 방식을 이용하여 검사용 커넥터(100)를 제조할 수도 있다. 여기서, 3D 프린팅에 의해 시트(110)를 형성시키거나 도전부(130)를 형성시킬 수도 있고, 전체적인 검사용 커넥터를 형성시킬 수도 있다.
실시예C에 따른 제조방법은, 경화된 시트(110)에 도전부(130)가 배치되는 홀을 형성시키는 단계를 포함한다. 상기 홀은 시트(110)를 상하로 관통하게 형성될 수 있다. 상기 홀은 레이저를 이용하여 형성시킬 수 있다. 상기 실시예C에 따른 제조방법은, 시트(110)의 상기 홀에 본 개시의 일 측면에 따른 도전성 분말을 포함하는 용액을 주입하여 경화시킴으로써 도전부(130)를 형성시키는 단계를 포함한다.
실시예D에 따른 제조방법은, 본 개시의 일 측면에 따른 도전성 분말 및 액상의 절연성 재료의 혼합물을 특정 위치에 주입시키는 (a)단계를 포함한다. 예를 들어, 상기 액상의 절연성 재료는 액상의 실리콘 재질일 수 있다. 상기 실시예D에 따른 제조방법은, (a)단계 후, 상기 코팅 도전성 분말이 기설정된 위치들에 정렬되도록 자기장을 발생시키는 (b)단계를 포함한다. 상기 (b)단계에서, 상기 자기장을 발생시킴으로써 상기 도전성 분말이 도전부(130)를 형성한다. 여기서, 도전부(130)는 상하 방향으로 연장되고 상하 방향으로 통전을 가능하게 한다. 상기 도전성 분말과 함께 상기 특정 위치에 주입된 상기 액상의 절연성 재료는 상기 (b)단계를 거친 후 경화된다. 상기 (b)단계를 거친 후 경화된 상기 절연성 재료는 시트(110)의 적어도 일부를 구성할 수 있다. 상기 (b)단계를 거친 후 경화된 상기 절연성 재료는 도전부(130)를 지지하는 기능을 수행할 수 있다.
상기 실시예D의 일 예로, 상기 특정 위치는 금형 내부일 수 있다. 상기 (a)단계에서, 상기 도전성 분말 및 액상의 절연성 재료의 혼합물을 상기 금형 내부에 주입시킬 수 있다. (a)단계에서 주입된 상기 액상의 절연성 재료는 (b)단계를 거친 후 경화됨으로써 시트(110)를 형성한다. 상기 (b)단계에서 발생시킨 자기장에 의해, 상기 도전성 분말은 액상의 절연성 재료 내에서 유동하여 기설정된 위치들에 정렬될 수 있다.
상기 실시예D의 다른 예로, 상기 특정 위치는 경화된 시트에 형성된 홀 내부일 수 있다. 상기 (a)단계 이전에, 경화된 시트를 상하 방향으로 관통하는 홀을 형성시키는 홀 형성 단계가 진행될 수 있다. 상기 홀은 상기 시트를 상하로 관통하게 형성될 수 있다. 상기 홀은 레이저를 이용하여 형성시킬 수 있다. 상기 (a)단계에서, 본 개시의 일 측면에 따른 도전성 분말 및 액상의 절연성 재료의 혼합물을 상기 홀에 주입시킬 수 있다. 상기 (b)단계에서 발생시킨 자기장에 의해, 상기 도전성 분말은 상기 홀 내부에서 유동하여 기설정된 위치들에 정렬될 수 있다. 상기 (b)단계를 거친 후 상기 액상의 절연성 재료가 경화됨으로써 상기 시트의 일부를 구성할 수 있다.
이하, 실시예 및 시험예를 들어 본 개시의 구성 및 효과를 보다 구체적으로 설명한다. 그러나 이들 실시예 및 시험예는 본 개시에 대한 이해를 돕기 위해 예시의 목적으로만 제공된 것일 뿐 본 개시의 범주 및 범위가 하기 예에 의해 제한되는 것은 아니다.
또한, 첨부한 도면들을 참조하여, 본 개시의 실시예들을 설명한다. 첨부된 도면에서, 동일하거나 대응하는 구성요소에는 동일한 참조부호가 부여되어 있을 수 있다. 또한, 이하의 실시예들의 설명에 있어서, 동일하거나 대응하는 구성요소를 중복하여 기술하는 것이 생략될 수 있다. 그러나, 구성요소에 관한 기술이 생략되어도, 그러한 구성요소가 어떤 실시예에 포함되지 않는 것으로 의도되지는 않는다.
[실시예] 중합체층의 외부 표면에 부착 또는 결합되어 있고, 중합체층 내부에 주입 또는 침투되어 있는 도전성 입자를 가지는 도전성 분말의 제조
(1) 평균 입경이 30 ㎛인 니켈 코어 입자 파우더와, 톨루엔에 녹인 스티렌-부타디엔-스티렌(SBS) 용액을 비커에 넣고 혼합한다. 이 때 SBS 중합체와 톨루엔의 중량비는 1: 25 내지 1: 40일 수 있다. 물을 첨가하여 SBS 용액을 분리시킨 뒤 이를 제거한다.
(2) 그 후 초음파 처리하여 SBS를 석출한다. 초음파 처리와 석출 과정은 비커의 물이 맑아질때까지 반복한다. 그런 뒤 물을 제거하고 SBS가 코팅된 니켈 코어 입자 파우더를 알코올로 세척한다.
(3) 상기 단계에서 수득된 SBS가 코팅된 파우더와 도전성 입자 용액을 별도의 원뿔형 튜브에 넣고 교반한다. 이때 도전성 입자 용액은 도전성 입자를 포함하는 화합물(예를 들어, 은 트리플루오로아세테이트(CF3COOAg)와 같은 화합물)을 에탄올에 용해시킨 것일 수 있다. 이 때 은 트리플루오로아세테이트와 에탄올의 중량비는 1: 5일 수 있다. 교반 후 도전성 입자 용액을 제거한다.
(4) 그런 뒤 튜브에 환원제 용액을 첨가하고 교반한다. 이때 환원제 용액은 환원제(예를 들어, 히드라진 하이드레이트(NH2NH2·xH2O)와 같은 환원제)를 에탄올에 용해시킨 것일 수 있다. 이때 환원제와 에탄올의 중량비는 1: 15일 수 있다. 교반 후 환원제를 제거한 뒤 상기 파우더를 물 또는 알코올로 세척한다.
(5) 도전성 입자가 코어 입자 표면에 코팅된 중합체층에 충분히 코팅되고 함침될 때까지 단계 (3)과 단계 (4)를 반복한다. 최종적으로 파우더를 알코올로 세척한 뒤 건조시켜 본 개시의 도전성 분말을 수득하였다.
[시험예]
상기 실시예로부터 최종적으로 수득된 본 개시의 도전성 분말의 표면과 단면을 주사전자현미경(Scanning Electron Microscope; SEM) 및 집속이온빔(Focused Ion Beam; FIB)를 이용하여 관찰하였다. SEM 결과를 도 5에 도시하고, FIB 결과를 도 6과 도 7에 도시하였다. 이러한 도면에 따르면 본 개시에 따른 도전성 분말은 서로 뭉치지 않으면서 도전성 입자가 결합된 중합체층의 코팅이 잘 이루어진 것을 확인할 수 있다.
이상 일부 실시예들과 첨부된 도면에 도시된 예에 의해 본 개시의 기술적 사상이 설명되었지만, 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자가 이해할 수 있는 본 개시의 기술적 사상 및 범위를 벗어나지 않는 범위에서 다양한 치환, 변형 및 변경이 이루어질 수 있다는 점을 알아야 할 것이다. 또한, 그러한 치환, 변형 및 변경은 첨부된 청구범위 내에 속하는 것으로 생각되어야 한다.

Claims (15)

  1. 코어 입자; 및
    상기 코어 입자의 표면을 둘러싸는 중합체층을 포함하고,
    상기 중합체층에는 복수의 도전성 입자가 결합되어 있고,
    상기 중합체는 하나 이상의 불포화 탄화수소, 방향족 탄화수소, 또는 둘 다를 포함하는 것인,
    도전성 분말.
  2. 제1항에 있어서,
    상기 중합체층과 복수의 도전성 입자 사이의 결합은 상기 중합체층이 코어 입자를 둘러싸고 있는 상태에서, 상기 중합체층에 상기 도전성 입자의 전구체를 포함하는 용액을 흡수시키고, 상기 전구체를 환원시킴으로써 이루어지는,
    도전성 분말.
  3. 제2항에 있어서,
    상기 복수의 도전성 입자 중 일부는 상기 중합체층의 외부 표면에 부착 또는 결합되어 있고, 상기 복수의 도전성 입자의 나머지 중 일부는 상기 중합체층의 내부에 주입 또는 침투되어 있는,
    도전성 분말.
  4. 제1항에 있어서,
    상기 복수의 도전성 입자 중 일부는 상기 중합체층의 외부 표면으로 노출된 상태에서 상기 중합체층에 결합되어 있고,
    상기 복수의 도전성 입자 중 나머지 일부는 상기 중합체층에 함침된 상태로 상기 중합체층에 결합되어 있는,
    도전성 분말.
  5. 중합체로 이루어지고,
    상기 중합체의 표면에는 복수의 도전성 입자가 결합되어 있고,
    상기 중합체는 하나 이상의 불포화 탄화수소, 방향족 탄화수소, 또는 둘 다를 포함하는,
    도전성 분말.
  6. 제5항에 있어서,
    상기 중합체와 복수의 도전성 입자 사이의 결합은, 상기 중합체에 상기 도전성 입자의 전구체를 포함하는 용액을 흡수시키고, 상기 전구체를 환원시킴으로써 이루어지는,
    도전성 분말.
  7. 제6항에 있어서,
    상기 복수의 도전성 입자 중 일부는 상기 중합체의 표면에 부착 또는 결합되어 있고, 상기 복수의 도전성 입자의 나머지 중 일부는 상기 중합체의 외곽의 내부에 주입 또는 침투되어 있는,
    도전성 분말.
  8. 제5항에 있어서,
    상기 복수의 도전성 입자 중 일부는 외부 표면으로 노출된 상태에서 상기 중합체에 결합되어 있고,
    상기 복수의 도전성 입자의 나머지 중 일부는 상기 중합체에 함침된 상태로 결합되어 있는,
    도전성 분말.
  9. 제1항 내지 제8항 중 어느 한 항에 있어서,
    상기 중합체는 폴리에틸렌, 폴리프로필렌, 폴리테트라플루오로에틸렌, 폴리(비닐 클로라이드), 폴리스티렌, 폴리아크릴로나이트릴, 폴리(비닐 아세테이트), 폴리(메틸 메타크릴레이트), 이들의 조합 및 이들의 블록 공중합체로 구성된 군으로부터 선택된 하나 이상인,
    도전성 분말.
  10. 제1항 내지 제8항 중 어느 한 항에 있어서,
    상기 중합체는 스티렌 블록 공중합체인,
    도전성 분말.
  11. 제10항에 있어서,
    상기 스티렌 블록 공중합체는 스티렌-부타디엔-스티렌(SBS) 공중합체, SIS(스티렌-이소프렌-스티렌) 공중합체, 스티렌-(에틸렌-부타디엔)-스티렌(SEBS) 공중합체 및 이들의 조합으로 구성된 군으로부터 선택되는 하나 이상인,
    도전성 분말.
  12. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 코어 입자는 자성 입자인,
    도전성 분말.
  13. 제12항에 있어서,
    상기 자성 입자는 니켈, 코발트, 철, 및 이들 중 어느 하나 이상을 포함하는 합금으로 이루어진 군으로부터 선택된 하나 이상을 포함하는,
    도전성 분말.
  14. 제1항 내지 제8항 중 어느 한 항에 있어서,
    상기 도전성 입자는 금, 은, 백금, 구리, 팔라듐, 로듐 및 이들 중 어느 하나 이상을 포함하는 합금으로 이루어진 군으로부터 선택된 하나 이상인,
    도전성 분말.
  15. 검사용 커넥터에 있어서,
    절연성 재질의 시트; 및
    상기 시트 내에서 상하 방향으로 연장되어 상하 방향으로 통전을 가능하게 하는 도전부를 포함하고,
    상기 도전부는 제1항 내지 제8항 중 어느 한 항에 따른 도전성 분말을 포함하는,
    검사용 커넥터.
PCT/KR2020/002447 2019-03-21 2020-02-20 도전성 분말 및 이를 포함하는 검사용 커넥터 WO2020189901A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190032568A KR102113732B1 (ko) 2019-03-21 2019-03-21 도전성 분말 및 이를 포함하는 검사용 커넥터
KR10-2019-0032568 2019-03-21

Publications (1)

Publication Number Publication Date
WO2020189901A1 true WO2020189901A1 (ko) 2020-09-24

Family

ID=70910254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/002447 WO2020189901A1 (ko) 2019-03-21 2020-02-20 도전성 분말 및 이를 포함하는 검사용 커넥터

Country Status (3)

Country Link
KR (1) KR102113732B1 (ko)
TW (1) TWI744817B (ko)
WO (1) WO2020189901A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11509080B2 (en) 2020-07-22 2022-11-22 Te Connectivity Solutions Gmbh Electrical connector assembly having hybrid conductive polymer contacts
US11128072B1 (en) 2020-07-22 2021-09-21 TE Connectivity Services Gmbh Electrical connector assembly having variable height contacts
US11509084B2 (en) 2020-07-24 2022-11-22 Te Connectivity Solutions Gmbh Electrical connector assembly having hybrid conductive polymer contacts
US11894629B2 (en) 2021-03-09 2024-02-06 Tyco Electronics Japan G.K. Electrical interconnect with conductive polymer contacts having tips with different shapes and sizes
KR102635465B1 (ko) * 2021-12-31 2024-02-13 주식회사 아이에스시 도전성 입자 및 이를 포함하는 검사용 커넥터

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100889256B1 (ko) * 2007-11-07 2009-03-19 주식회사 라이온켐텍 코어 쉘 구조로 이루어진 레이저 소결용 메탈 고분자복합분말 및 이의 제조방법
KR20100069989A (ko) * 2008-12-17 2010-06-25 제일모직주식회사 절연 전도성 입자 및 이를 포함하는 이방 전도성 필름용 조성물
KR20110060884A (ko) * 2008-09-25 2011-06-08 우베-니토 카세이 가부시키가이샤 금속 피막 형성 방법 및 도전성 입자
KR20160134311A (ko) * 2015-05-15 2016-11-23 주식회사 아이에스시 이방 도전성 시트
KR20170025996A (ko) * 2015-08-31 2017-03-08 삼성전자주식회사 이방성 도전 재료와 이방성 도전 재료를 포함하는 전자소자 및 그 제조방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6264731B2 (ja) * 2012-03-06 2018-01-24 東洋インキScホールディングス株式会社 導電性樹脂組成物、導電性シート、電磁波シールドシートおよびこれらの製造方法、並びに導電性微粒子の製造方法
JP6523794B2 (ja) * 2014-06-06 2019-06-05 積水化学工業株式会社 導電材料及び接続構造体
JPWO2017179532A1 (ja) 2016-04-12 2019-02-14 積水化学工業株式会社 導電材料及び接続構造体
KR101739537B1 (ko) * 2016-05-11 2017-05-25 주식회사 아이에스시 검사용 소켓 및 도전성 입자
KR101739536B1 (ko) * 2016-05-11 2017-05-24 주식회사 아이에스시 검사용 소켓 및 도전성 입자

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100889256B1 (ko) * 2007-11-07 2009-03-19 주식회사 라이온켐텍 코어 쉘 구조로 이루어진 레이저 소결용 메탈 고분자복합분말 및 이의 제조방법
KR20110060884A (ko) * 2008-09-25 2011-06-08 우베-니토 카세이 가부시키가이샤 금속 피막 형성 방법 및 도전성 입자
KR20100069989A (ko) * 2008-12-17 2010-06-25 제일모직주식회사 절연 전도성 입자 및 이를 포함하는 이방 전도성 필름용 조성물
KR20160134311A (ko) * 2015-05-15 2016-11-23 주식회사 아이에스시 이방 도전성 시트
KR20170025996A (ko) * 2015-08-31 2017-03-08 삼성전자주식회사 이방성 도전 재료와 이방성 도전 재료를 포함하는 전자소자 및 그 제조방법

Also Published As

Publication number Publication date
KR102113732B1 (ko) 2020-05-21
TW202040593A (zh) 2020-11-01
TWI744817B (zh) 2021-11-01

Similar Documents

Publication Publication Date Title
WO2020189901A1 (ko) 도전성 분말 및 이를 포함하는 검사용 커넥터
KR100597391B1 (ko) 절연 전도성 미립자 및 이를 함유하는 이방 전도성 접착필름
TWI326086B (ko)
TWI615858B (zh) 導電性粒子、導電材料及連接構造體
KR102076066B1 (ko) 절연성 입자 부착 도전성 입자, 도전 재료 및 접속 구조체
TW201405582A (zh) 導電性粒子、樹脂粒子、導電材料及連接構造體
CN103765527B (zh) 导电性粒子、导电材料及连接结构体
TWI601158B (zh) Conductive particles, a conductive material, and a connecting structure
CN112313758B (zh) 导电性粒子、导电材料以及连接结构体
JP2001210402A (ja) 異方導電性シートおよびコネクター
JP6734159B2 (ja) 導電性粒子、導電材料及び接続構造体
US7138203B2 (en) Apparatus and method of manufacture of electrochemical cell components
KR20100109258A (ko) 그라펜이 코팅된 전기 전도성 미립자 및 그 제조 방법
CN103782351B (zh) 导电性粒子、导电材料及连接结构体
KR20080058610A (ko) 절연성 도전 입자 및 이를 이용한 이방 도전성 필름
EP1686655A1 (en) Anisotropic conductive sheet, manufacturing method thereof, and product using the same
KR20180059392A (ko) 도전성 입자, 도전 재료, 및 접속 구조체
WO2018030438A1 (ja) 導通検査装置用部材及び導通検査装置
WO2019045426A1 (ko) 검사용 소켓 및 도전성 입자
KR100651177B1 (ko) 돌기형 도전성 미립자 및 이를 포함하는 이방 도전성 필름
JPH07118617A (ja) ファインピッチ用異方導電性接着剤
KR100595979B1 (ko) 절연 도전성 미립자 조성물 및 이를 이용한 이방성 도전성필름
JP4050086B2 (ja) 導電性粒子、導電性材料および異方性導電膜
JP5996806B2 (ja) 導電性粒子、導電材料及び接続構造体
TW202234765A (zh) 電連接用連接器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20773946

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20773946

Country of ref document: EP

Kind code of ref document: A1