WO2020183638A1 - 液体クロマトグラフ分析システム - Google Patents

液体クロマトグラフ分析システム Download PDF

Info

Publication number
WO2020183638A1
WO2020183638A1 PCT/JP2019/010217 JP2019010217W WO2020183638A1 WO 2020183638 A1 WO2020183638 A1 WO 2020183638A1 JP 2019010217 W JP2019010217 W JP 2019010217W WO 2020183638 A1 WO2020183638 A1 WO 2020183638A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid feeding
liquid
pump
condition
pressure
Prior art date
Application number
PCT/JP2019/010217
Other languages
English (en)
French (fr)
Inventor
朋寛 五味
大介 北林
信也 今村
佳祐 小川
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP2021504700A priority Critical patent/JP7226523B2/ja
Priority to PCT/JP2019/010217 priority patent/WO2020183638A1/ja
Priority to US17/438,418 priority patent/US11921094B2/en
Priority to CN201980093792.2A priority patent/CN113544504B/zh
Publication of WO2020183638A1 publication Critical patent/WO2020183638A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • G01N30/8675Evaluation, i.e. decoding of the signal into analytical information
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/32Control of physical parameters of the fluid carrier of pressure or speed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/027Liquid chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/32Control of physical parameters of the fluid carrier of pressure or speed
    • G01N2030/326Control of physical parameters of the fluid carrier of pressure or speed pumps

Definitions

  • the present invention relates to a liquid chromatograph analysis system.
  • the liquid chromatograph is required to have the ability to stably feed the mobile phase at a set flow rate in the analysis flow path by at least one liquid feeding pump.
  • the liquid feed pump a single plunger system equipped with a single plunger pump and a double plunger system equipped with two plunger pumps are adopted.
  • the gas component remaining in the solvent may become bubbles in the plunger pump, or the dissolved oxygen in the solvent may be saturated due to temperature changes to generate bubbles. For this reason, air bubbles may be mixed in the plunger pump during liquid transfer, and the analysis may be continued as it is. In such a case, the user will continue to collect useless analytical data.
  • the analysis system itself is equipped with a function that automatically detects a liquid feeding failure of the liquid feeding pump using some conditions.
  • the number of liquid feed pumps can be expanded to two, three, or four.
  • the connection structure of the liquid feed pumps when expanding the number of liquid feed pumps is also various, and the magnitude of the influence on the analysis system due to the poor liquid feed of each liquid feed pump differs depending on the number of liquid feed pumps and the connection method. .. Therefore, if an attempt is made to detect a liquid feeding defect between analysis systems having different system configurations using the same conditions, the accuracy of detecting the liquid feeding defect deteriorates.
  • the present invention has been made in view of the above problems, and an object of the present invention is to enable accurate detection of a liquid feeding defect of a liquid feeding pump under conditions according to a system configuration.
  • At least one liquid feeding pump is connected to the analysis flow path through which the liquid sent by the liquid feeding pump flows, and a sample injecting a sample into the analysis flow path.
  • An injection unit a separation column provided on the analysis flow path for separating the sample injected into the analysis flow path for each component, and a sample provided on the analysis flow path and separated by the separation column.
  • a detector for detecting components a system configuration specifying unit that specifies the number of liquid feeding pumps connected to the analysis flow path and the connection structure thereof as a system configuration, and a liquid feeding failure of the liquid feeding pump.
  • condition holding unit that holds the condition set in advance for each type of the system configuration, which is a condition for detection, and the condition held in the condition holding unit are specified by the system configuration specifying unit.
  • a condition determination unit configured to determine the conditions corresponding to the system configuration and the conditions determined by the condition determination unit are used to detect a liquid feed defect of the liquid feed pump. It is equipped with a liquid supply failure detection unit.
  • the liquid chromatograph analysis system holds the conditions for detecting the liquid feeding failure of the liquid feeding pump for each type of system configuration, and corresponds to the system configuration from among these conditions. Since it is configured to determine the specified conditions and detect the liquid feed failure of the liquid feed pump using the determined conditions, it is necessary to accurately detect the liquid feed failure of the liquid feed pump under the conditions suitable for the system configuration. Can be done.
  • the liquid chromatograph analysis system 1 (hereinafter referred to as analysis system 1) includes a liquid delivery system 2, a sample injection unit 4, a separation column 6, a detector 8, and a control device 10. ing.
  • the liquid feed system 2 includes a liquid feed pump 14 that feeds the mobile phase in the analysis flow path 12 and a pressure sensor 16 for detecting the liquid feed pressure by the liquid feed pump 14.
  • FIG. 1 shows an example in which only one liquid feeding pump 14 is provided, there are cases where two or more liquid feeding pumps are provided.
  • the liquid feed pump 14 has, for example, two plunger pumps that are driven complementarily to each other and continuously feeds liquid.
  • a liquid feeding defect that causes instability of the liquid feeding flow rate occurs due to air bubbles entering the pump chamber of the plunger pump.
  • the liquid feeding system 2 is provided with a condition holding unit 18, a condition determining unit 20, and a liquid feeding defect detecting unit 22 as functions for detecting the occurrence of a liquid feeding defect by the liquid feeding pump 14.
  • the condition determination unit 20 and the liquid supply failure detection unit 22 are functions obtained by executing a predetermined program in the computer circuit forming a part of the liquid supply system 2, and the condition holding unit 18 is the liquid supply. This is a function realized by a part of the storage area of the storage device provided in the system 2. Details of the condition holding unit 18, the condition determining unit 20, and the liquid feeding defect detecting unit 22 will be described later.
  • the sample injection unit 4 is connected to the downstream of the liquid feed pump 14.
  • the sample injection unit 4 is for injecting a sample into the analysis flow path 12.
  • the sample injection unit 4 is provided with a switching valve 24 for switching the connection state of the flow path, and the switching valve 24 causes the mobile phase from the liquid feeding system 2 to flow to the separation column 6 side and to the drain. It can be switched to the discharge state.
  • the switching valve 24 of the sample injection unit 4 does not necessarily have to have a function of switching the mobile phase from the liquid feeding system 2 between the state of flowing to the separation column 6 side and the state of discharging to the drain.
  • a switching valve for switching between a state in which the mobile phase from the liquid feeding system 2 flows to the separation column 6 side and a state in which the mobile phase is discharged to the drain may be provided separately from the sample injection unit 4. It is not necessary to provide a switching valve.
  • the separation column 6 is connected downstream of the sample injection section 4 on the analysis flow path 12, and the detector 8 is connected further downstream of the separation column 6.
  • the separation column 6 is for separating the sample injected into the analysis flow path 12 by the sample injection unit 4 for each component, and the sample component separated by the separation column 6 is detected by the detector 8.
  • the control device 10 is for at least managing the operation of the liquid feeding system 2 and the sample injection unit 4, and is realized by, for example, a system controller dedicated to the analysis system 1 and / or a general-purpose personal computer.
  • a signal indicating that the liquid feeding defect is detected is transmitted to the control device 10.
  • the control device 10 sends a command to the sample injection unit 4 to switch the switching valve 24 to the drain side when the purge operation for eliminating the liquid feeding defect is set in advance.
  • a command is sent to the liquid feeding system 2 to increase the liquid feeding flow rate to a predetermined high flow rate. As a result, the air bubbles mixed in the liquid feed pump 14 are discharged to the drain.
  • control device 10 includes a system configuration specifying unit 26.
  • the system configuration specifying unit 26 is a function obtained by executing a predetermined program in the control device 10.
  • the system configuration specifying unit 26 is configured to specify the number of liquid feed pumps connected to the analysis flow path 12 and the connection structure thereof as a system configuration. Information such as how and how many liquid feeding pumps are connected to what position in the analysis flow path 12 is input to the control device 10 by an operator when the analysis system 1 is constructed.
  • the system configuration specifying unit 26 specifies the system configuration of the analysis system 1 based on the input information.
  • the condition holding unit 18 of the liquid feeding system 2 is a plurality of conditions for detecting a liquid feeding defect of the liquid feeding pump 14, and is in advance according to the system configuration of the analysis system 1 and the liquid feeding mode of the liquid feeding pump 14. Holds the set conditions.
  • the plurality of conditions held in the condition holding unit 18 may be a condition table as shown in Table 1 below.
  • conditions for detecting a liquid feeding defect are set for the number of liquid feeding pumps and the liquid feeding mode that can be set for each number of pumps.
  • the number of liquid feed pumps is one, either ISO mode or LPGE mode (low voltage gradient mode) can be set as the liquid feed mode.
  • the ISO mode is a mode in which a mobile phase having a single composition is fed.
  • the solvent sent by the liquid feeding pump is switched by the switching valve, and the liquid is sent while changing the mixing ratio of the solvent.
  • the composition of the mobile phase flowing in the analysis flow path does not change, so the liquid feed pressure is also substantially constant.
  • condition A and condition B are set for each of the ISO mode and the LPGE mode.
  • the liquid feeding mode of the liquid feeding pump 14 is set by the user for the control device 10 before starting the analysis, for example.
  • the control device 10 transmits information for operating in the liquid feeding mode to the liquid feeding system 2.
  • condition determining unit 20 When the condition determining unit 20 receives the information regarding the system configuration and the liquid feeding mode from the control device 10, the condition determining unit 20 selects the conditions corresponding to the actual system configuration and the liquid feeding mode from the conditions held in the condition holding unit 18. It is configured to determine.
  • the liquid feed defect detection unit 22 is configured to detect a liquid feed defect of the liquid feed pump 14 by using the conditions determined by the condition determination unit 20.
  • the system configuration and liquid delivery mode are set by the user before the analysis is started (step 101).
  • the condition determination unit 20 acquires information on the system configuration and the liquid feed mode from the control device 10 (step 102).
  • the control device 10 may notify the condition determination unit 20 of information regarding the system configuration and the liquid feeding mode.
  • the condition determining unit 20 determines whether or not the conditions corresponding to the system configuration and the liquid feeding mode acquired from the control device 10 exist among the conditions held in the condition holding unit 18 (the liquid feeding defect detecting function is provided).
  • Step 103 the liquid feeding defect detection function is enabled and the condition for detecting the liquid feeding defect is determined (steps 104 and 105).
  • the liquid feeding defect detecting unit 22 detects the liquid feeding defect of the liquid feeding pump 14 using the conditions determined by the condition determining unit 20.
  • the liquid feeding defect detection function is invalidated (step 107). In that case, even if the liquid feeding is started, the liquid feeding defect detecting unit 22 does not detect the liquid feeding defect.
  • the "condition" for detecting a liquid feeding defect of the liquid feeding pump 14 is to compare the fluctuation range of the liquid feeding pressure within a constant drive cycle of the liquid feeding pump 14 with a predetermined reference value to feed the liquid.
  • An algorithm for detecting the pulsation generated when air bubbles are mixed in the pump 14 may be included.
  • the "fluctuation range of the liquid feed pressure within a constant drive cycle of the liquid feed pump 14" may be the fluctuation range of the liquid feed pressure within one drive cycle of the liquid feed pump 14, but there are a plurality of liquid feed pumps 14. It may be the fluctuation range of the liquid feeding pressure within the drive cycle or the average value thereof. The fluctuation of the liquid feeding pressure when air bubbles are mixed in the liquid feeding pump 14 will be described with reference to the pressure waveform of FIG.
  • the liquid feed pressure has slight pressure fluctuations due to the operation of the liquid feed pump, as shown on the left side of the pressure waveform in FIG. Things are stable.
  • the liquid feed pressure drops sharply, and the other plunger pumps.
  • the liquid is discharged normally and the liquid feeding pressure rises.
  • the condition for detecting the liquid feeding failure of the liquid feeding pump 14 due to the mixing of air bubbles can include an algorithm for detecting the pulsation synchronized with the drive cycle of the liquid feeding pump 14.
  • An example of an algorithm for detecting pulsation will be described using the flowchart of FIG.
  • the algorithm described below is an algorithm applied to one liquid feeding pump, and when a plurality of liquid feeding pumps are connected to the analysis flow path 12, for each liquid feeding pump. A similar algorithm applies.
  • the algorithm described here is an algorithm included in the conditions set for the liquid feeding mode in which the driving speed of the liquid feeding pump changes with time and the liquid feeding mode in which the composition of the mobile phase changes with time. It always includes a step (step 201) of determining a reference value.
  • the algorithm of FIG. 3 is advantageous when the fluctuation of the liquid feed pressure within one drive cycle of the liquid feed pump 14 can be read in several tens of divisions.
  • the liquid feed pressure at the start point and the end point of the discharge operation of each plunger pump of the liquid feed pump 14 can be accurately read.
  • the one drive cycle of the liquid feed pump 14 means that the discharge operation of the other plunger pump ends from the time when the discharge operation of one of the plunger pumps constituting the liquid feed pump 14 starts. Up to the point in time.
  • the computer circuit constituting the liquid feed defect detection unit 22 takes in the signal of the pressure sensor 16 at a predetermined frequency and reads the liquid feed pressure (moving average value).
  • the liquid feeding defect detection unit 22 executes the following steps 201 to 208.
  • the liquid feed defect detection unit 22 contributes the liquid feed pump 14 to the liquid feed flow rate in the analysis flow path 12 (the flow rate ratio of each liquid feed pump to the total flow rate when simultaneous liquid feed is performed by a plurality of liquid feed pumps). ),
  • the reference value is determined in consideration of the liquid feeding pressure and the like (step 201). After that, when the liquid feed defect detection unit 22 reads the liquid feed pressure at the start point and the end point of the discharge operation of one of the plunger pumps constituting the liquid feed pump 14, the difference between them (start). When the liquid feed pressure at the point-the liquid feed pressure at the end point) is obtained as the first fluctuation value (step 202) and the liquid feed pressures at the start and end points of the discharge operation of the other plunger pump are read, they are found.
  • the difference (liquid feeding pressure at the start point-liquid feeding pressure at the ending point) is obtained as the second fluctuation value (step 203).
  • the liquid feed pressure drops during the discharge operation of one of the plunger pumps in which the air bubbles are mixed, and the air bubbles are mixed. Since the liquid feed pressure rises during the discharge operation of the other plunger pump, if the liquid feed pump 14 has a liquid feed defect due to the mixing of air bubbles, the first fluctuation value and the second fluctuation value Only one of them has a positive value (the other has a negative value). Therefore, when the signs of the first fluctuation value and the second fluctuation value are the same, the liquid feeding defect detection unit 22 determines that the pulsation is not caused by the mixing of air bubbles (step 204).
  • the liquid feed defect detection unit 22 uses the first fluctuation value and the second fluctuation value to perform one drive cycle of the liquid feed pump 14.
  • the fluctuation range of the liquid feeding pressure in the inside is obtained (step 205).
  • Or fluctuation range (first fluctuation value-second fluctuation value) 2
  • the fluctuation range may be obtained by using an equation such as.
  • the liquid feed defect detection unit 22 compares the above fluctuation value with a predetermined reference value (step 206), and if the fluctuation value exceeds the reference value, the drive cycle in which the fluctuation value exceeds the reference value. The number of consecutive (fluctuation cycles) is counted (step 207). Then, when the number of continuous fluctuation cycles reaches a predetermined reference number, the pulsation is detected (step 208).
  • the fluctuation width ⁇ P of the liquid feeding pressure caused by the bubbles mixed in the liquid feeding pump 14 is determined by the time constant ⁇ of the liquid chromatograph, and the time constant ⁇ is the total liquid feeding pressure P [MPa] and the damper C [ It is a value that depends on [uL / MPa] and the liquid feed flow rate Q [mL / min].
  • the fluctuation range ⁇ P of the liquid feed pressure is Is considered to be determined by. Therefore, the reference value for determining whether or not the pulsation is caused by the mixing of air bubbles in the liquid feed pump 14 can be determined in consideration of ⁇ P obtained by the above equation.
  • the reference value may be determined more simply by omitting some of the arguments P, C, Q, t (or P, V, ⁇ , Q, t) in the above equation.
  • ⁇ P obtained with only P and C as arguments and other elements as fixed values may be used as a reference.
  • the reference value is determined by each liquid feeding pump with respect to the liquid feeding flow rate (liquid feeding pressure). It is preferable to consider the contribution rate. Therefore, there is a difference in the algorithm depending on whether or not the reference value is determined in consideration of at least the contribution ratio between the case where the number of liquid feed pumps connected to the analysis flow path 12 is one and the case where there are a plurality of liquid feed pumps. ..
  • the reference number of times which is the reference for the number of continuous pressure fluctuations for determining pulsation, may be configured to be variably adjustable. Then, the reference number of times can be adjusted depending on how sensitive the pulsation detection is.
  • the algorithm for detecting pulsation is not limited to the above.
  • the fluctuation range of the liquid feed pressure within one drive cycle is monitored by monitoring the liquid feed pressure of the liquid feed pump 14 for each drive cycle, and the fluctuation range is compared with a predetermined reference value. Detection can be performed.
  • the above algorithm for monitoring the liquid feed pressure for each drive cycle of the liquid feed pump 14 cannot accurately read the liquid feed pressure at the start point and the end point of the discharge operation of each plunger pump constituting the liquid feed pump 14. It is effective in such cases.
  • the trigger detection algorithm as shown in the flowchart of FIG. 4 may be introduced before executing the pulsation detection algorithm.
  • the computer circuit constituting the liquid feed defect detection unit 22 reads the signal of the pressure sensor 16 at a predetermined cycle (step 301) and calculates the liquid feed pressure (moving average value) (step 302).
  • the liquid feed defect detection unit 22 determines the reference value for trigger detection in consideration of the contribution ratio of the liquid feed pump 14 (when a plurality of liquid feed pumps are provided), the liquid feed pressure, and the like (step). 303).
  • the reference value for trigger detection may be the same as or different from the reference value for pulsation detection.
  • the liquid feed defect detection unit 22 calculates the drop width of the liquid feed pressure per time (for example, for 10 signal readings) set based on the drive cycle of the liquid feed pump 14 (step 304). Then, the calculated descent width is compared with the reference value (step 305), and when the descent width exceeds the reference value, it is detected as a trigger for pulsation generation (step 306).
  • the liquid feeding failure detection unit 22 After detecting the trigger, the liquid feeding failure detection unit 22 detects the pulsation by using the algorithm for pulsation detection (step 307). When pulsation is detected, poor liquid feeding is detected (steps 308 and 309), and a warning signal is transmitted to the control device 10 (step 310). If no pulsation is detected, the process returns to step 301 (step 308).
  • the coefficient for determining the signal reading cycle from the pressure sensor 16, the reference value for trigger detection, and the reference value for pulsation detection by calculation can be obtained by inputting a change instruction by the user or by actually sending the coefficient. It may be configured to be variably adjusted based on the user's evaluation of the result of detecting the liquid defect.
  • the liquid chromatograph analysis system is connected to a database common to other liquid chromatograph analysis systems via a network line such as an internet line, the user's evaluation of the detection result of liquid transfer failure accumulated in the database.
  • Each of the above coefficients may be automatically adjusted based on the above.
  • the liquid feeding system 2 is provided with the functions of the condition holding unit 18, the condition determining unit 20, and the liquid feeding defect detecting unit 22, but the present invention is not limited thereto. , A part or all of these functions may be provided in the control device 10.
  • Embodiments of the liquid chromatograph according to the present invention are as follows.
  • At least one liquid feeding pump is connected to the analysis flow path through which the liquid sent by the liquid feeding pump flows, and a sample is placed in the analysis flow path.
  • a sample injection unit to be injected a separation column provided on the analysis flow path for separating the sample injected into the analysis flow path for each component, and a separation column provided on the analysis flow path and separated by the separation column.
  • a detector for detecting the sample components a system configuration specifying unit that specifies the number of the liquid feed pumps connected to the analysis flow path and the connection structure thereof as a system configuration, and a feed of the liquid feed pump.
  • the condition holding unit which is a condition for detecting a liquid defect and holds the condition preset for each type of the system configuration, and the condition corresponding to the system configuration specified by the system configuration specifying unit are described.
  • a condition determining unit configured to determine from the conditions held in the condition holding unit and the condition determined by the condition determining unit are used to detect a liquid feeding defect of the liquid feeding pump. It is equipped with a configured liquid transfer defect detection unit.
  • the condition holding unit holds the conditions for each liquid feeding mode of the liquid feeding pump of each type of the system configuration.
  • the condition determining unit is configured to determine the conditions corresponding to the system configuration specified by the system configuration specifying unit and the liquid feeding mode of the liquid feeding pump. As a result, the optimum conditions are used for detecting the liquid feeding defect according to the system configuration and the liquid feeding mode, so that the liquid feeding defect can be detected accurately.
  • the second aspect of the embodiment of the liquid chromatograph analysis system includes a pressure sensor for detecting the liquid feeding pressure in the analysis flow path, and the above conditions are the liquid feeding detected by the pressure sensor.
  • the liquid feeding defect detection unit includes an algorithm for detecting a liquid feeding defect of the liquid feeding pump using pressure, and the liquid feeding defect detecting unit periodically takes in the liquid feeding pressure detected by the pressure sensor, and the taken-in liquid feeding pressure and the said liquid feeding pressure. It is configured to detect a liquid feeding defect of the liquid feeding pump by using the algorithm of the condition determined by the condition determining unit.
  • the algorithm obtains the fluctuation range of the liquid feed pressure within a constant drive cycle of the liquid feed pump, and detects the pulsation on condition that the obtained fluctuation range exceeds a predetermined reference value.
  • the pulsation detection step and the liquid feed defect detection step of detecting the liquid feed defect of the liquid feed pump when the pulsation is detected may be executed in this order. Thereby, the pulsation caused by the mixing of air bubbles in the liquid feed pump can be detected.
  • the algorithm may be further configured to perform a reference value determination step that determines the reference value to be compared with the fluctuation range prior to the pulsation detection step.
  • the algorithm of the above conditions corresponding to the system configuration in which a plurality of liquid feed pumps are connected to the analysis flow path is obtained from each of the plurality of liquid feed pumps in the reference value determination step.
  • the reference value may be determined in consideration of the contribution rate to the liquid feed flow rate in the analysis flow path. By doing so, even when a plurality of liquid feed pumps are connected to the analysis flow path, the reference value is determined in consideration of the system configuration, so that the pulsation can be detected accurately.
  • the liquid feed pump may be a double plunger pump including two plunger pumps that are driven complementarily to each other.
  • the algorithm obtains the difference in the liquid feeding pressure between the start point and the end point of the discharge operation of one of the two plunger pumps as the first fluctuation value, and the two pumps.
  • the difference between the liquid feed pressure at the start point and the end point of the discharge operation of the other of the plunger pumps of No. 1 is obtained as the second fluctuation value
  • the fluctuation width is obtained using the first fluctuation value and the second fluctuation value. It may be configured as follows.
  • the pulsation can be detected in consideration of the fluctuation of the liquid feeding pressure during the discharging operation of one of the plunger pumps and the fluctuation of the liquid feeding pressure during the discharging operation of the other plunger pump. Therefore, it is possible to more accurately detect the pulsation caused by the mixing of air bubbles.
  • the fluctuation range exceeds the reference value only in the period in which only one of the first fluctuation value and the second fluctuation value is a positive value. It may be configured to count as a cycle.
  • the liquid feed pressure drops during the discharge operation of one plunger pump and rises during the discharge operation of the other plunger pump.
  • the first fluctuation value and the second fluctuation value have different reference numerals. Therefore, the pulsation can be detected more accurately by counting only the cycle in which only one of the first fluctuation value and the second fluctuation value is a positive value as one cycle of the pulsation.
  • the algorithm calculates a pressure drop calculation step for calculating the drop width of the liquid feed pressure per time set based on the drive cycle of the liquid feed pump before the pulsation detection step.
  • Liquid chromatograph 2 Liquid feeding system 4 Sample injection part 6 Separation column 8 Detector 10 Control device 12 Analysis flow path 14 Liquid feeding pump 16 Pressure sensor 18 Condition holding unit 20 Condition determination unit 22 Liquid feeding failure detection unit 24 Switching valve 26 System configuration specific part

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Library & Information Science (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

液体クロマトグラフ分析システム(1)は、少なくとも1台の送液ポンプ(14)が接続され、前記送液ポンプ(14)により送液される液が流れる分析流路(12)と、前記分析流路(12)中に試料を注入する試料注入部(4)と、前記分析流路(12)上に設けられ、前記分析流路(12)中に注入された試料を成分ごとに分離するための分離カラム(6)と、前記分析流路(12)上に設けられ、前記分離カラム(6)で分離された試料成分を検出するための検出器(8)と、前記分析流路(12)に接続されている前記送液ポンプ(14)の台数及びその接続構造をシステム構成として特定するシステム構成特定部(26)と、前記送液ポンプ(14)の送液不良を検知するための条件であって前記システム構成の種類ごとに予め設定された前記条件を保持する条件保持部(18)と、前記システム構成特定部(26)により特定されたシステム構成に対応した前記条件を前記条件保持部(18)に保持されている条件の中から決定するように構成された条件決定部(20)と、前記条件決定部(20)により決定された前記条件を用いて前記送液ポンプ(14)の送液不良を検知するように構成された送液不良検知部(22)と、を備えている。

Description

液体クロマトグラフ分析システム
 本発明は、液体クロマトグラフ分析システムに関するものである。
 液体クロマトグラフでは、少なくとも1台の送液ポンプによって分析流路中で移動相を設定された流量で安定して送液する性能が求められている。送液ポンプとして、単一のプランジャポンプを備えたシングルプランジャ方式、2つのプランジャポンプを備えたダブルプランジャ方式のものが採用されている。
 プランジャポンプが溶媒を吐出する際、溶媒の圧縮、逆止弁からの液漏れ、流路への微細な気泡の混入、溶媒の枯渇などによって送液圧力が低下することで、所謂、脈動と呼ばれる送液圧力の周期的な大きな変動が発生することがある。脈動が発生すると、移動相の流量が乱れて分析結果に悪影響を与え、ユーザの損失となる。そのため、プランジャポンプの動作を制御することによって脈動を抑制したり(特許文献1参照)、脱気ユニットを使用することによって気泡を除去したり、分析を開始する前に溶媒を高流量で送液することによって流路内の気泡を外部へ排出したりするなどの対策が採られている。
特開2001-147222号公報
 上記のような対策を施したとしても、例えば、溶媒の中に残存した気体成分がプランジャポンプ内で気泡となったり、溶媒中の溶存酸素が温度変化によって飽和して気泡が発生したりするなどの理由により、送液中のプランジャポンプ内に気泡が混入し、そのまま分析が継続されてしまう場合があった。そのような場合、ユーザは無駄な分析データを取り続けることになる。
 そこで、何らかの条件を用いて送液ポンプの送液不良を自動的に検知する機能が分析システム自体に搭載されていることが好ましい。しかし、液体クロマトグラフの分析システムは多種多様であり、送液ポンプを2台、3台、4台と拡張することができる。送液ポンプの台数を拡張する際の送液ポンプの接続構造も様々であり、送液ポンプの台数や接続の仕方によって各送液ポンプの送液不良による分析システムへの影響の大きさは異なる。そのため、システム構成の異なる分析システム間で同じ条件を用いて送液不良を検知しようとすると、送液不良の検知の精度が悪くなる。
 本発明は上記問題に鑑みてなされたものであり、システム構成に応じた条件で送液ポンプの送液不良を正確に検知できるようにすることを目的とするものである。
 本発明に係る液体クロマトグラフ分析システムは、少なくとも1台の送液ポンプが接続され、前記送液ポンプにより送液される液が流れる分析流路と、前記分析流路中に試料を注入する試料注入部と、前記分析流路上に設けられ、前記分析流路中に注入された試料を成分ごとに分離するための分離カラムと、前記分析流路上に設けられ、前記分離カラムで分離された試料成分を検出するための検出器と、前記分析流路に接続されている前記送液ポンプの台数及びその接続構造をシステム構成として特定するシステム構成特定部と、前記送液ポンプの送液不良を検知するための条件であって前記システム構成の種類ごとに予め設定された前記条件を保持する条件保持部と、前記条件保持部に保持されている条件の中から前記システム構成特定部により特定されたシステム構成に対応した前記条件を決定するように構成された条件決定部と、前記条件決定部により決定された前記条件を用いて前記送液ポンプの送液不良を検知するように構成された送液不良検知部と、を備えている。
 本発明に係る液体クロマトグラフ分析システムでは、送液ポンプの送液不良を検知するための条件であってシステム構成の種類ごとの条件を保持しており、それらの条件の中からシステム構成に対応した条件を決定し、決定した条件を用いて送液ポンプの送液不良を検知するように構成されているので、システム構成に適した条件で送液ポンプの送液不良を精度よく検知することができる。
液体クロマトグラフ分析システムの一実施例を示す概略構成図である。 同実施例における条件の決定までの動作の一例を示すフローチャートである。 同実施例における脈動検出のアルゴリズムを説明するためのフローチャートである。 同実施例におけるトリガー検出のアルゴリズムを説明するためのフローチャートである。 送液ポンプで気泡の混入が発生したときの送液圧力の波形の一例である。
 以下、本発明に係る液体クロマトグラフ分析システムの一実施例について、図面を参照しながら説明する。
 図1に示されているように、液体クロマトグラフ分析システム1(以下、分析システム1と称する)は、送液システム2、試料注入部4、分離カラム6、検出器8及び制御装置10を備えている。
 送液システム2は、分析流路12中で移動相を送液する送液ポンプ14と送液ポンプ14による送液圧力を検出するための圧力センサ16を備えている。なお、図1では1台の送液ポンプ14のみが設けられている例を示しているが、2台以上の送液ポンプが設けられる場合もある。
 図示は省略されているが、送液ポンプ14は、例えば、互いに相補的に駆動される2台のプランジャポンプを有して連続的な送液を行なうものである。このような送液ポンプ14は、プランジャポンプのポンプ室内に気泡が混入することによって送液流量の不安定化を招く送液不良が発生する。
 送液システム2には、送液ポンプ14による送液不良の発生を検知するための機能として、条件保持部18、条件決定部20及び送液不良検知部22が設けられている。条件決定部20及び送液不良検知部22は、送液システム2の一部を構成しているコンピュータ回路において所定のプログラムが実行されることによって得られる機能であり、条件保持部18は送液システム2に設けられた記憶装置の一部の記憶領域によって実現される機能である。条件保持部18、条件決定部20及び送液不良検知部22の詳細については後述する。
 試料注入部4は送液ポンプ14の下流に接続されている。試料注入部4は分析流路12中に試料を注入するためのものである。この実施例では、試料注入部4は流路の接続状態を切り替えるための切替バルブ24を備えており、切替バルブ24によって送液システム2からの移動相を分離カラム6側へ流す状態とドレインへ排出する状態に切り替えられる。なお、試料注入部4の切替バルブ24は、必ずしも送液システム2からの移動相を分離カラム6側へ流す状態とドレインへ排出する状態に切り替える機能を備えていなくてもよい。その場合、試料注入部4とは別に、送液システム2からの移動相を分離カラム6側へ流す状態とドレインへ排出する状態に切り替えるための切替バルブが設けられていてもよいし、そのような切替バルブが設けられていなくてもよい。
 分離カラム6は分析流路12上における試料注入部4の下流に接続され、検出器8は分離カラム6のさらに下流に接続されている。分離カラム6は、試料注入部4によって分析流路12中に注入された試料を成分ごとに分離するためのものであり、分離カラム6で分離された試料成分が検出器8により検出される。
 制御装置10は、少なくとも送液システム2及び試料注入部4の動作管理を行なうためのものであり、例えばこの分析システム1専用のシステムコントローラ及び/又は汎用のパーソナルコンピュータによって実現されるものである。送液システム2の送液不良検知部22が送液ポンプ14の送液不良を検知したときは、送液不良を検知したことを示す信号が制御装置10へ送信される。その場合、制御装置10は、送液不良を解消するためのパージ動作を実行するように予め設定されているときには、試料注入部4に対して切替バルブ24をドレイン側へ切り替えるように指令を送信し、送液システム2に対して送液流量を所定の高流量まで上昇させるように指令を送信する。これにより、送液ポンプ14に混入した気泡がドレインへ排出される。
 また、制御装置10はシステム構成特定部26を備えている。システム構成特定部26は、制御装置10において所定のプログラムが実行されることによって得られる機能である。システム構成特定部26は、分析流路12に接続されている送液ポンプの台数及びその接続構造をシステム構成として特定するように構成されている。分析流路12のどのような位置にどのようにして何台の送液ポンプが接続されているかといった情報は、分析システム1が構築される際に作業者によって制御装置10に入力される。システム構成特定部26は、入力された情報に基づき分析システム1のシステム構成を特定する。
 送液システム2の条件保持部18は、送液ポンプ14の送液不良を検知するための複数の条件であって、分析システム1のシステム構成及び送液ポンプ14の送液モードに応じて予め設定された条件を保持している。
 条件保持部18に保持される複数の条件とは、以下の表1に示されるような条件テーブルであってよい。
Figure JPOXMLDOC01-appb-T000001
 上記条件テーブルでは、送液ポンプの台数と各台数のときに設定され得る送液モードに対してそれぞれ送液不良を検知するための条件が設定されている。例えば、送液ポンプの台数が1台であれば、送液モードとしてISOモードとLPGEモード(低圧グラジエントモード)のいずれかが設定され得る。ISOモードは、単一組成の移動相を送液するモードである。LPGEモードでは、送液ポンプによって送液される溶媒を切替バルブによって切り替え、溶媒の混合比率を変化させながら送液するモードである。ISOモードでは、分析流路中を流れる移動相の組成が変化しないので送液圧力もほぼ一定である。そのため、送液圧力に基づいて送液不良を検知する場合には、送液圧力を評価するための基準値を常時計算によって求める必要がない。一方で、LPGEモードでは、分析流路中を流れる移動相の組成が時間とともに変化するので、送液圧力も時間とともに変化する。そのため、送液圧力に基づいて送液不良を検知する場合には、送液圧力を評価するための基準値を常時計算によって求めるほうがよい。したがって、ISOモードとLPGEモードのそれぞれに対して互いに異なる条件(条件Aと条件B)が設定されている。送液ポンプの台数が2台以上の場合は、さらに多様な送液モードが存在し、それらの送液モードに対してそれぞれ条件が設定されている。
 なお、送液ポンプ14の送液モードは、例えば、分析を開始する前にユーザが制御装置10に対して設定する。送液モードが設定されると、制御装置10は送液システム2に対してその送液モードで動作するための情報を送信する。
 条件決定部20は、制御装置10からシステム構成及び送液モードに関する情報を受け取ったときに、条件保持部18に保持されている条件の中から実際のシステム構成及び送液モードに対応した条件を決定するように構成されている。
 送液不良検知部22は、条件決定部20により決定された条件を用いて、送液ポンプ14の送液不良を検知するように構成されている。
 送液不良を検知するための条件が決定されるまでの動作の一例を図2のフローチャートに示す。
 システム構成及び送液モードは、分析が開始される前にユーザによって設定される(ステップ101)。送液モードが設定されると、条件決定部20は制御装置10からシステム構成及び送液モードに関する情報を取得する(ステップ102)。なお、システム構成及び送液モードに関する情報を制御装置10が条件決定部20に対して通知してもよい。システム構成及び送液モードによっては、送液システム2の送液不良検知機能が対応していない場合も考えられる。そこで、条件決定部20は、条件保持部18に保持されている条件の中に制御装置10から取得したシステム構成及び送液モードに対応する条件が存在するか否か(送液不良検知機能が対応しているか)を確認し(ステップ103)、対応する条件が存在すれば、送液不良検知機能を有効化して送液不良検知のための条件を決定する(ステップ104、105)。その後、送液が開始されると(ステップ106)、送液不良検知部22は、条件決定部20により決定された条件を用いて送液ポンプ14の送液不良の検知を実行する。他方、制御装置10から取得したシステム構成及び送液モードに対応する条件が存在しなければ、送液不良検知機能を無効化する(ステップ107)。その場合、送液が開始されても送液不良検知部22による送液不良の検知は行なわれない。
 ここで、送液ポンプ14の送液不良を検知するための「条件」は、送液ポンプ14の一定駆動周期内における送液圧力の変動幅を所定の基準値と比較することによって、送液ポンプ14に気泡が混入したときに発生する脈動を検出するアルゴリズムを含んでいてよい。「送液ポンプ14の一定駆動周期内における送液圧力の変動幅」とは、送液ポンプ14の1駆動周期内における送液圧力の変動幅であってもよいが、送液ポンプ14の複数駆動周期内における送液圧力変動幅又はその平均値であってもよい。送液ポンプ14において気泡の混入が発生したときの送液圧力の変動について、図5の圧力波形を用いて説明する。
 送液ポンプ14が移動相を安定的に送液できている状態では、図5の圧力波形の左側のように、送液圧力は送液ポンプの動作等に起因した僅かな圧力変動はみられるものの安定している。送液ポンプ14の一方のプランジャポンプ内に気泡が混入すると、そのプランジャポンプの吐出動作中は発生した気泡の圧縮により液が正常に吐出されず、送液圧力が急激に降下し、他方のプランジャポンプの吐出動作中は液が正常に吐出されるために送液圧力が上昇する。その結果、送液ポンプ14において気泡の混入が発生したときには、図5の圧力波形の右側のように、送液圧力の周期的な変動(脈動)が発生する。したがって、気泡の混入に起因した送液ポンプ14の送液不良を検知するための条件には、送液ポンプ14の駆動周期と同期する脈動を検出するためのアルゴリズムを含むことができる。
 脈動を検出するためのアルゴリズムの一例について、図3のフローチャートを用いて説明する。以下に説明するアルゴリズムは、1台の送液ポンプに対して適用されるアルゴリズムであり、複数台の送液ポンプが分析流路12に接続されている場合には、各送液ポンプに対して同様のアルゴリズムが適用される。また、ここで説明するアルゴリズムは、送液ポンプの駆動速度が時間とともに変化する送液モード、移動相の組成が時間とともに変化する送液モードに対して設定された条件に含まれるアルゴリズムであり、常時、基準値を決定するステップ(ステップ201)を含んでいる。
 図3のアルゴリズムは、送液ポンプ14の1駆動周期内の送液圧力の変動を数十分割で読み取ることができる場合に有利である。この場合、送液ポンプ14の各プランジャポンプの吐出動作の開始点と終了点における送液圧力を正確に読み取ることができる。ここで、送液ポンプ14の1駆動周期とは、送液ポンプ14を構成しているプランジャポンプのうち一方のプランジャポンプの吐出動作が開始する時点から、他方のプランジャポンプの吐出動作が終了する時点までをいう。
 送液不良検知部22を構成するコンピュータ回路は、圧力センサ16の信号を所定の頻度で取り込んで送液圧力(移動平均値)を読み取る。送液不良検知部22は、以下のステップ201~208を実行する。
 送液不良検知部22は、分析流路12中の送液流量に対する送液ポンプ14の寄与率(複数台の送液ポンプによって同時送液を行なう場合の全体流量に対する各送液ポンプの流量比率)、送液圧力などを考慮して基準値を決定する(ステップ201)。その後、送液不良検知部22は、送液ポンプ14を構成するプランジャポンプのうちの一方のプランジャポンプの吐出動作の開始点と終了点における送液圧力を読み取ったときに、それらの差分(開始点の送液圧力-終了点の送液圧力)を第1変動値として求め(ステップ202)、他方のプランジャポンプの吐出動作の開始点と終了点における送液圧力を読み取ったときに、それらの差分(開始点の送液圧力-終了点の送液圧力)を第2変動値として求める(ステップ203)。送液ポンプ14を構成するプランジャポンプのうちのいずれかに気泡が混入している場合、気泡が混入している一方のプランジャポンプの吐出動作中に送液圧力が降下し、気泡が混入していない他方のプランジャポンプの吐出動作中に送液圧力が上昇するため、送液ポンプ14において気泡の混入に起因した送液不良が発生しているのであれば、第1変動値と第2変動値のいずれか一方のみが正の値(他方は負の値)となる。したがって、送液不良検知部22は、第1変動値と第2変動値の符号が同じである場合には、気泡の混入に起因した脈動ではないと判定する(ステップ204)。
 第1変動値と第2変動値のいずれか一方のみが正の値である場合、送液不良検知部22は、第1変動値と第2変動値を用いて送液ポンプ14の1駆動周期内における送液圧力の変動幅を求める(ステップ205)。送液圧力の変動幅は、例えば次式により求めることができる。
変動幅=|第1変動値-第2変動値|/2
 なお、上記式は一例であり、
変動幅=|第1変動値-第2変動値|
又は
変動幅=(第1変動値-第2変動値)
などの式を用いて変動幅を求めてもよい。
 送液不良検知部22は、上記の変動値を予め決定した基準値と比較し(ステップ206)、変動値が基準値を超えている場合には、変動値が基準値を超えている駆動周期(変動周期)の連続数をカウントする(ステップ207)。そして、変動周期の連続数が所定の基準回数に達したときに、脈動を検出する(ステップ208)。
 ここで、送液ポンプ14に混入した気泡に起因する送液圧力の変動幅ΔPは、液体クロマトグラフの時定数τによって決まり、時定数τは全体の送液圧力P[MPa]、ダンパC[uL/MPa]、送液流量Q[mL/min]に依存する値である。例えば、送液ポンプ14において気泡の混入が発生した後の経過時間をt秒とすると、送液圧力の変動幅ΔPは、
Figure JPOXMLDOC01-appb-I000002
によって決定されると考えられる。したがって、送液ポンプ14における気泡の混入に起因した脈動か否かを判定するための基準値は、上記式によって求められるΔPを考慮して決定することができる。ただし、上記式の引数P、C、Q、t(又は、P、V、β、Q、t)のうちのいくつかを省略してより簡略的に基準値を決定してもよい。例えば、P、Cのみを引数として他の要素を固定値として求められるΔPを基準としてもよい。
 なお、複数台の送液ポンプによって共通の分析流路12中で移動相を送液している場合には、基準値の決定には、送液流量(送液圧力)に対する各送液ポンプの寄与率を考慮することが好ましい。したがって、分析流路12に接続されている送液ポンプの台数が1台の場合と複数台の場合とでは、少なくとも寄与率を考慮して基準値を決定するか否かにおいてアルゴリズムに違いがある。
 ここで、脈動と判定するための圧力変動の連続数の基準となる基準回数は、可変に調整できるように構成されていてもよい。そうすれば、脈動検知の感度をどの程度にするかによって基準回数を調整することができる。
 なお、脈動を検出するためのアルゴリズムは上記のものに限定されない。例えば、送液ポンプ14の1駆動周期ごとの送液圧力を監視し、1駆動周期内における送液圧力の変動幅を求め、その変動幅を所定の基準値と比較するアルゴリズムを用いて脈動の検出を行なうことができる。
 送液ポンプ14の1駆動周期ごとの送液圧力を監視する上記アルゴリズムは、送液ポンプ14を構成する各プランジャポンプの吐出動作の開始点及び終点における送液圧力を正確に読み取ることができないような場合に有効である。ただし、このアルゴリズムでは、送液ポンプ14の1駆動周期内に送液圧力の降下と上昇があったか否かを判別できないため、気泡の混入による圧力変動であるか否かを断定できない。そこで、脈動の検出のアルゴリズムを実行する前に、図4のフローチャートに示すようなトリガーの検出のアルゴリズムを導入してもよい。
 以下に、トリガーを検出するためのアルゴリズムについて、図4を用いて説明する。
 送液不良検知部22を構成するコンピュータ回路は、圧力センサ16の信号を所定の周期で読み込み(ステップ301)、送液圧力(移動平均値)を算出する(ステップ302)。送液不良検知部22は、送液ポンプ14の寄与率(複数台の送液ポンプが設けられている場合)、送液圧力などを考慮してトリガー検出のための基準値を決定する(ステップ303)。トリガー検出のための基準値は、脈動検出のための基準値と同じであってもよいし、異なっていてもよい。送液不良検知部22は、送液ポンプ14の駆動周期に基づいて設定された時間当たり(例えば信号読込み10回分)の送液圧力の降下幅を算出する(ステップ304)。そして、算出した降下幅を基準値と比較し(ステップ305)、降下幅が基準値を超えたときに脈動発生のトリガーとして検出する(ステップ306)。
 送液不良検知部22は、トリガーを検知した後、脈動検出のためのアルゴリズムを用いて脈動の検出を行なう(ステップ307)。脈動が検出された場合は、送液不良を検知し(ステップ308、309)、警告信号を制御装置10へ送信する(ステップ310)。脈動が検出されなかった場合は、上記ステップ301へ戻る(ステップ308)。
 なお、圧力センサ16からの信号の読込み周期、トリガー検出のための基準値、脈動検出のための基準値を計算により決定するための係数は、ユーザによる変更指示の入力によって、又は、実際の送液不良の検知の結果に対するユーザの評価に基づいて、可変に調整されるように構成されていてもよい。また、液体クロマトグラフの分析システムがインターネット回線などのネットワーク回線を通じて他の液体クロマトグラフの分析システムと共通のデータベースに接続されている場合、データベースに蓄積されたユーザによる送液不良の検知結果に対する評価に基づいて上記各係数が自動的に調整されるように構成されていてもよい。
 以上において説明した実施例では、送液システム2に条件保持部18、条件決定部20及び送液不良検知部22の各機能が設けられているが、本発明はこれに限定されるものではなく、これらの機能の一部又は全部が制御装置10に設けられていてもよい。
 上記実施例は本発明に係る液体クロマトグラフ分析システムの実施形態の一例を示したに過ぎない。本発明に係る液体クロマトグラフの実施形態は以下のとおりである。
 本発明に係る液体クロマトグラフ分析システムの実施形態は、少なくとも1台の送液ポンプが接続され、前記送液ポンプにより送液される液が流れる分析流路と、前記分析流路中に試料を注入する試料注入部と、前記分析流路上に設けられ、前記分析流路中に注入された試料を成分ごとに分離するための分離カラムと、前記分析流路上に設けられ、前記分離カラムで分離された試料成分を検出するための検出器と、前記分析流路に接続されている前記送液ポンプの台数及びその接続構造をシステム構成として特定するシステム構成特定部と、前記送液ポンプの送液不良を検知するための条件であって前記システム構成の種類ごとに予め設定された前記条件を保持する条件保持部と、前記システム構成特定部により特定されたシステム構成に対応した前記条件を前記条件保持部に保持されている条件の中から決定するように構成された条件決定部と、前記条件決定部により決定された前記条件を用いて前記送液ポンプの送液不良を検知するように構成された送液不良検知部と、を備えている。
 本発明に係る液体クロマトグラフ分析システムの上記実施形態の第1態様では、前記条件保持部は、前記システム構成の各種類の前記送液ポンプの送液モードごとの前記条件を保持しており、前記条件決定部は、前記システム構成特定部により特定されたシステム構成及び前記送液ポンプの送液モードに対応した前記条件を決定するように構成されている。これにより、システム構成及び送液モードに応じて最適な条件が送液不良の検知に用いられるので、送液不良の検知を精度よく行なうことができる。
 本発明に係る液体クロマトグラフ分析システムの実施形態の第2態様では、前記分析流路中の送液圧力を検出するための圧力センサを備え、前記条件は、前記圧力センサにより検出される送液圧力を用いて前記送液ポンプの送液不良を検知するアルゴリズムを含み、前記送液不良検知部は、前記圧力センサにより検出される送液圧力を周期的に取り込み、取り込んだ送液圧力と前記条件決定部により決定された条件の前記アルゴリズムを用いて、前記送液ポンプの送液不良を検知するように構成されている。送液ポンプで送液不良が発生した場合には、送液圧力が周期的に変動する脈動が発生することが多いので、送液圧力に基づいて送液不良の検知を行なうことにより、送液不良の検知を精度よく行なうことができる。
 上記第2態様において、前記アルゴリズムは、前記送液ポンプの一定駆動周期内の送液圧力の変動幅を求め、求めた変動幅が所定の基準値を超えていることを条件として脈動を検出する脈動検出ステップと、前記脈動を検出したときに前記送液ポンプの送液不良を検知する送液不良検知ステップと、をその順に実行するように構成されていてもよい。これにより、前記送液ポンプへの気泡の混入に起因した脈動を検出することができる。
 上記の場合、さらに前記アルゴリズムは、前記脈動検出ステップの前に、前記変動幅と比較すべき前記基準値を決定する基準値決定ステップを実行するように構成されていてもよい。そうすれば、送液圧力が時間とともに変化する場合にも、適当な基準値が自動的に決定されるので、脈動の検出を精度よく行なうことができる。
 上記の場合、さらに、前記分析流路に複数台の送液ポンプが接続されているシステム構成に対応する前記条件の前記アルゴリズムは、前記基準値決定ステップにおいて、前記複数台の送液ポンプのそれぞれについて、前記分析流路中における送液流量に対する寄与率を考慮して前記基準値を決定するように構成されていてもよい。そうすれば、複数台の送液ポンプが分析流路に接続されている場合でも、そのシステム構成を考慮した基準値の決定がなされるので、脈動の検出を精度よく行なうことができる。
 上記第2態様において、前記送液ポンプは、互いに相補的に駆動される2台のプランジャポンプを備えたダブルプランジャポンプであってよい。その場合、前記アルゴリズムは、前記脈動検出ステップにおいて、前記2台のプランジャポンプのうちの一方の吐出動作の開始点と終了点の前記送液圧力の差分を第1変動値として求め、前記2台のプランジャポンプのうちの他方の吐出動作の開始点と終了点の前記送液圧力の差分を第2変動値として求め、前記第1変動値と前記第2変動値を用いて前記変動幅を求めるように構成されていてもよい。そうすれば、前記送液ポンプの一方のプランジャポンプの吐出動作中の送液圧力の変動と、他方のプランジャポンプの吐出動作中の送液圧力の変動を考慮して脈動の検出を行なうことができるので、より正確に気泡の混入に起因した脈動の検出を行なうことができる。
 上記の場合、前記アルゴリズムは、前記脈動検出ステップにおいて、前記第1変動値と前記第2変動値のどちらか一方のみが正の値である周期のみを前記変動幅が前記基準値を超えている周期としてカウントするように構成されていてもよい。ダブルプランジャポンプのうち一方のプランジャポンプに気泡が混入した場合、一方のプランジャポンプの吐出動作中は送液圧力が降下し、他方のプランジャポンプの吐出動作中は送液圧力が上昇するため、前記第1変動値と前記第2変動値は互いに異なる符号の値となる。したがって、前記第1変動値と前記第2変動値のどちらか一方のみが正の値である周期のみを脈動の1周期としてカウントすることで、より正確に脈動の検出を行なうことができる。
 また、上記第2態様において、前記アルゴリズムは、前記脈動検出ステップの前に、前記送液ポンプの前記駆動周期に基づいて設定された時間当たりの送液圧力の降下幅を算出する圧力降下算出ステップと、前記圧力降下算出ステップで算出した降下幅が前記基準値を超えたときに脈動発生のトリガーとして検出するトリガー検出ステップと、を実行し、前記トリガー検出ステップで前記トリガーを検出した後で、前記脈動判定ステップを実行するように構成されていてもよい。これにより、前記送液ポンプの1駆動周期内における送液圧力の詳細な変動を読み取ることができないような場合でも、送液ポンプへの気泡の混入に起因した脈動を正確に検出することができる。
   1   液体クロマトグラフ
   2   送液システム
   4   試料注入部
   6   分離カラム
   8   検出器
   10   制御装置
   12   分析流路
   14   送液ポンプ
   16   圧力センサ
   18   条件保持部
   20   条件決定部
   22   送液不良検知部
   24   切替バルブ
   26   システム構成特定部

Claims (9)

  1.  少なくとも1台の送液ポンプが接続され、前記送液ポンプにより送液される液が流れる分析流路と、
     前記分析流路中に試料を注入する試料注入部と、
     前記分析流路上に設けられ、前記分析流路中に注入された試料を成分ごとに分離するための分離カラムと、
     前記分析流路上に設けられ、前記分離カラムで分離された試料成分を検出するための検出器と、
     前記分析流路に接続されている前記送液ポンプの台数及びその接続構造をシステム構成として特定するシステム構成特定部と、
     前記送液ポンプの送液不良を検知するための条件であって前記システム構成の種類ごとに予め設定された前記条件を保持する条件保持部と、
     前記システム構成特定部により特定されたシステム構成に対応した前記条件を前記条件保持部に保持されている条件の中から決定するように構成された条件決定部と、
     前記条件決定部により決定された前記条件を用いて前記送液ポンプの送液不良を検知するように構成された送液不良検知部と、を備えた液体クロマトグラフ分析システム。
  2.  前記条件保持部は、前記システム構成の各種類の前記送液ポンプの送液モードごとの前記条件を保持しており、
     前記条件決定部は、前記システム構成特定部により特定されたシステム構成及び前記送液ポンプの送液モードに対応した前記条件を決定するように構成されている、請求項1に記載の液体クロマトグラフ分析システム。
  3.  前記分析流路中の送液圧力を検出するための圧力センサを備え、
     前記条件は、前記圧力センサにより検出される送液圧力を用いて前記送液ポンプの送液不良を検知するアルゴリズムを含み、
     前記送液不良検知部は、前記圧力センサにより検出される送液圧力を周期的に取り込み、取り込んだ送液圧力と前記条件決定部により決定された条件の前記アルゴリズムを用いて、前記送液ポンプの送液不良を検知するように構成されている、請求項1に記載の液体クロマトグラフ分析システム。
  4.  前記アルゴリズムは、
     前記送液ポンプの一定駆動周期内の送液圧力の変動幅を求め、求めた変動幅が所定の基準値を超えていることを条件として脈動を検出する脈動検出ステップと、
     前記脈動を検出したときに前記送液ポンプの送液不良を検知する送液不良検知ステップと、をその順に実行するように構成されている、請求項3に記載の液体クロマトグラフ分析システム。
  5.  前記アルゴリズムは、前記脈動検出ステップの前に、
     前記変動幅と比較すべき前記基準値を決定する基準値決定ステップを実行するように構成されている、請求項4に記載の液体クロマトグラフ分析システム。
  6.  前記分析流路に複数台の送液ポンプが接続されているシステム構成に対応する前記条件の前記アルゴリズムは、前記基準値決定ステップにおいて、前記複数台の送液ポンプのそれぞれについて、前記分析流路中における送液流量に対する寄与率を考慮して前記基準値を決定するように構成されている、請求項5に記載の液体クロマトグラフ分析システム。
  7.  前記送液ポンプは、互いに相補的に駆動される2台のプランジャポンプを備えたダブルプランジャポンプであり、
     前記アルゴリズムは、前記脈動検出ステップにおいて、前記2台のプランジャポンプのうちの一方の吐出動作の開始点と終了点の前記送液圧力の差分を第1変動値として求め、前記2台のプランジャポンプのうちの他方の吐出動作の開始点と終了点の前記送液圧力の差分を第2変動値として求め、前記第1変動値と前記第2変動値を用いて前記変動幅を求めるように構成されている、請求項3に記載の液体クロマトグラフ分析システム。
  8.  前記アルゴリズムは、前記脈動検出ステップにおいて、前記第1変動値と前記第2変動値のどちらか一方のみが正の値である周期のみを前記変動幅が前記基準値を超えている周期としてカウントするように構成されている、請求項7に記載の液体クロマトグラフ分析システム。
  9.  前記アルゴリズムは、前記脈動検出ステップの前に、
     前記送液ポンプの前記駆動周期に基づいて設定された時間当たりの送液圧力の降下幅を算出する圧力降下算出ステップと、
     前記圧力降下算出ステップで算出した降下幅が前記基準値を超えたときに脈動発生のトリガーとして検出するトリガー検出ステップと、を実行し、
     前記トリガー検出ステップで前記トリガーを検出した後で、前記脈動判定ステップを実行するように構成されている、請求項3に記載の液体クロマトグラフ分析システム。
PCT/JP2019/010217 2019-03-13 2019-03-13 液体クロマトグラフ分析システム WO2020183638A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021504700A JP7226523B2 (ja) 2019-03-13 2019-03-13 液体クロマトグラフ分析システム
PCT/JP2019/010217 WO2020183638A1 (ja) 2019-03-13 2019-03-13 液体クロマトグラフ分析システム
US17/438,418 US11921094B2 (en) 2019-03-13 2019-03-13 Liquid chromatographic system
CN201980093792.2A CN113544504B (zh) 2019-03-13 液相色谱仪分析***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/010217 WO2020183638A1 (ja) 2019-03-13 2019-03-13 液体クロマトグラフ分析システム

Publications (1)

Publication Number Publication Date
WO2020183638A1 true WO2020183638A1 (ja) 2020-09-17

Family

ID=72426215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010217 WO2020183638A1 (ja) 2019-03-13 2019-03-13 液体クロマトグラフ分析システム

Country Status (3)

Country Link
US (1) US11921094B2 (ja)
JP (1) JP7226523B2 (ja)
WO (1) WO2020183638A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63106382A (ja) * 1986-06-19 1988-05-11 Shimadzu Corp 送液ポンプ
JPH01182579A (ja) * 1988-01-14 1989-07-20 Hitachi Ltd 低脈流ポンプ装置
JP2000130353A (ja) * 1998-10-30 2000-05-12 Shimadzu Corp 送液ポンプ
JP2004507639A (ja) * 2000-08-21 2004-03-11 ウォーターズ・インヴェストメンツ・リミテッド 液体ポンプシステムにおける気泡検出および回復
JP2004524518A (ja) * 2000-12-28 2004-08-12 コヒーシブ・テクノロジーズ・インコーポレイテッド マルチカラム・クロマトグラフ装置
JP2015194434A (ja) * 2014-03-31 2015-11-05 株式会社島津製作所 液体クロマトグラフ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910064U (ja) 1982-06-29 1984-01-21 株式会社島津製作所 液体クロマトグラフの送液装置
CA1186166A (en) 1982-02-27 1985-04-30 Katsuhiko Saito Liquid chromatograph
JPS6011690A (ja) 1983-06-30 1985-01-21 Shimadzu Corp 液体クロマトグラフ
JPH11326300A (ja) 1998-05-20 1999-11-26 Shimadzu Corp 液体クロマトグラフ
JP4092831B2 (ja) 1999-11-24 2008-05-28 株式会社島津製作所 送液装置
US7241115B2 (en) 2002-03-01 2007-07-10 Waters Investments Limited Methods and apparatus for determining the presence or absence of a fluid leak
US7674375B2 (en) 2004-05-21 2010-03-09 Waters Technologies Corporation Closed loop flow control of a HPLC constant flow pump to enable low-flow operation
US9243619B2 (en) 2011-09-13 2016-01-26 Seiko Epson Corporation Liquid feed pump and circulation pump with detection units to detect operating states of the pumps
JP6367195B2 (ja) 2013-07-17 2018-08-01 積水メディカル株式会社 試料分析装置におけるグラジエント送液装置
WO2018055866A1 (ja) 2016-09-26 2018-03-29 株式会社島津製作所 切替バルブ、バイナリポンプ及びそのバイナリポンプを備えた液体クロマトグラフ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63106382A (ja) * 1986-06-19 1988-05-11 Shimadzu Corp 送液ポンプ
JPH01182579A (ja) * 1988-01-14 1989-07-20 Hitachi Ltd 低脈流ポンプ装置
JP2000130353A (ja) * 1998-10-30 2000-05-12 Shimadzu Corp 送液ポンプ
JP2004507639A (ja) * 2000-08-21 2004-03-11 ウォーターズ・インヴェストメンツ・リミテッド 液体ポンプシステムにおける気泡検出および回復
JP2004524518A (ja) * 2000-12-28 2004-08-12 コヒーシブ・テクノロジーズ・インコーポレイテッド マルチカラム・クロマトグラフ装置
JP2015194434A (ja) * 2014-03-31 2015-11-05 株式会社島津製作所 液体クロマトグラフ

Also Published As

Publication number Publication date
CN113544504A (zh) 2021-10-22
JPWO2020183638A1 (ja) 2020-09-17
US20220146473A1 (en) 2022-05-12
US11921094B2 (en) 2024-03-05
JP7226523B2 (ja) 2023-02-21

Similar Documents

Publication Publication Date Title
US20070177986A1 (en) Method and apparatus for evaluating a dosing operation
US10364808B2 (en) Pumping system for chromatography applications
JP2009053098A (ja) 送液装置、液体クロマトグラフ、および送液装置の運転方法
JP6992882B2 (ja) オートサンプラ及び液体クロマトグラフ
WO2020183684A1 (ja) 液体クロマトグラフ
US20180306682A1 (en) Smart pump for a portable gas detection instrument
US20070240499A1 (en) Filtration Tester
JP5155937B2 (ja) 送液装置および液体クロマトグラフ装置
WO2020183638A1 (ja) 液体クロマトグラフ分析システム
JPWO2019008617A1 (ja) 送液装置
WO2020183774A1 (ja) 液体クロマトグラフ用送液システム
JP7226524B2 (ja) 液体クロマトグラフ用送液システム
CN113544504B (zh) 液相色谱仪分析***
US10900937B2 (en) Continuous and separating gas analysis
JPH11326300A (ja) 液体クロマトグラフ
JP7260063B2 (ja) 液体クロマトグラフィ分析システム
JP2006126089A (ja) 送液ポンプ装置
JP4363964B2 (ja) 分注装置
JP4983302B2 (ja) 圧力補正値を更新しない制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19918858

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021504700

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19918858

Country of ref document: EP

Kind code of ref document: A1