JP7226524B2 - 液体クロマトグラフ用送液システム - Google Patents

液体クロマトグラフ用送液システム Download PDF

Info

Publication number
JP7226524B2
JP7226524B2 JP2021504712A JP2021504712A JP7226524B2 JP 7226524 B2 JP7226524 B2 JP 7226524B2 JP 2021504712 A JP2021504712 A JP 2021504712A JP 2021504712 A JP2021504712 A JP 2021504712A JP 7226524 B2 JP7226524 B2 JP 7226524B2
Authority
JP
Japan
Prior art keywords
liquid
feeding
pressure
sending
pumps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021504712A
Other languages
English (en)
Other versions
JPWO2020183654A1 (ja
Inventor
朋寛 五味
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Publication of JPWO2020183654A1 publication Critical patent/JPWO2020183654A1/ja
Application granted granted Critical
Publication of JP7226524B2 publication Critical patent/JP7226524B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/32Control of physical parameters of the fluid carrier of pressure or speed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/027Liquid chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/32Control of physical parameters of the fluid carrier of pressure or speed
    • G01N2030/326Control of physical parameters of the fluid carrier of pressure or speed pumps

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Description

本発明は、液体クロマトグラフ分析システムにおいて移動相を連続的に送液するための送液システムに関するものである。
液体クロマトグラフ用の送液システムには、設定された流量で移動相となる溶媒を安定して送液する性能が求められている。送液システムに用いられる送液ポンプとして、単一のプランジャポンプを備えたシングルプランジャ方式、2つのプランジャポンプを備えたダブルプランジャ方式のものが採用されている。
プランジャポンプが溶媒を吐出する際、溶媒の圧縮、逆止弁からの液漏れ、流路への微細な気泡の混入、溶媒の枯渇などによって送液圧力が低下することで、所謂、脈動と呼ばれる送液圧力の周期的な大きな変動が発生することがある。脈動が発生すると、移動相の流量が乱れて分析結果に悪影響を与え、ユーザの損失となる。そのため、プランジャポンプの動作を制御することによって脈動を抑制したり(特許文献1参照)、脱気ユニットを使用することによって気泡を除去したり、分析を開始する前に溶媒を高流量で送液することによって流路内の気泡を外部へ排出したりするなどの対策が採られている。
特開2001-147222号公報
上記のような対策を施したとしても、例えば、溶媒の中に残存した気体成分がプランジャポンプ内で気泡となったり、溶媒中の溶存酸素が温度変化によって飽和して気泡が発生したりするなどの理由により、送液中のプランジャポンプ内に気泡が混入し、そのまま分析が継続されてしまう場合があった。そのような場合、ユーザは無駄な分析データを取り続けることになる。
ここで、送液ポンプによる送液不良が発生すると送液圧力が不安定になるため、送液圧力の変動を読み取ることによって送液不良が発生しているか否かを検知することができる。しかしながら、例えば高圧グラジエント送液など複数台の送液ポンプを用いて移動相の送液を行なう場合、各送液ポンプの動作速度によって送液圧力に与える影響の大きさが異なるため、どの送液ポンプで送液不良が発生したのかによって送液圧力がどのように変動するのかが異なる。そのため、複数の送液ポンプを用いて移動相を送液している場合に、単一の基準を用いて送液圧力を監視しても、送液不良を正確に検知することができないことが考えられる。
本発明は上記問題に鑑みてなされたものであり、複数の送液ポンプを動作させている場合にも送液不良を高精度に検知することができる機能を備えた送液システムを提供することを目的とするものである。
本発明に係る液体クロマトグラフ用送液システムは、互いに独立して動作して共通の流路中で移動相を送液する複数の送液ポンプと、前記流路中の送液圧力を検出するための圧力センサと、前記圧力センサにより検出される送液圧力を周期的に取り込み、前記複数の送液ポンプのいずれかの動作速度に起因する大きさ又は周波数の前記送液圧力の変動を検出することにより前記複数の送液ポンプによる送液不良を検知するように構成された送液不良検知部と、を備えている。
本発明に係る送液システムでは、複数の送液ポンプのいずれかの動作速度に起因する大きさ又は周波数の送液圧力の変動を検出することによって送液不良を検知するように構成されているので、複数の送液ポンプを動作させている場合にも送液不良を高精度に検知することができる機能を備えた送液システムが提供される。
液体クロマトグラフ用送液システムの一実施例を示す液体クロマトグラフの概略構成図である。 同実施例における脈動検出のアルゴリズムを説明するためのフローチャートである。 同実施例におけるトリガー検出のアルゴリズムを説明するためのフローチャートである。 液体クロマトグラフ用送液システムの他の実施例を示す液体クロマトグラフの概略構成図である。 一方の送液ポンプに気泡を混入させたときの圧力波形の一例である。 図4の解析点1での周波数解析結果を示すデータである。 図4の解析点2での周波数解析結果を示すデータである。 送液ポンプで気泡の混入が発生したときの送液圧力の波形の一例である。
以下、本発明に係る液体クロマトグラフ用送液システムの一実施例について、図面を参照しながら説明する。
図1に示されているように、液体クロマトグラフは、送液システム2、試料注入部4、分離カラム6、検出器8及び制御装置10を備えている。
この実施例の送液システム2は、互いに独立して動作して共通の流路12中で移動相の送液を行なう2台の送液ポンプ14A及び14Bを備えている。各送液ポンプ14A及び14Bの後段に圧力センサ16A及び16Bが設けられており、圧力センサ16A及び16Bによって流路12を流れる移動相の送液圧力が検出される。なお、ここでは、2つの圧力センサ16A及び16Bが設けられているが、いずれか一方のみが設けられていてもよい。送液ポンプ14A及び14Bによって送液される溶媒はミキサ22において混合され、移動相として流路12中で送液される。
図示は省略されているが、送液ポンプ14A及び14Bのそれぞれは、例えば、互いに相補的に駆動される2台のプランジャポンプを有して連続的な送液を行なうものである。このような送液ポンプ14A及び14Bは、プランジャポンプのポンプ室内に気泡が混入することによって送液流量の不安定化を招く送液不良が発生する。
送液システム2には、送液ポンプ14A及び/又は14Bにおける送液不良の発生を検知するための機能として、基準値決定部18及び送液不良検知部20が設けられている。基準値決定部18及び送液不良検知部20は、送液システム2の一部を構成している電子回路基板又はコンピュータにおいて所定のプログラムが実行されることによって得られる機能である。なお、基準値決定部18及び送液不良検知部20のうちの少なくとも一方は、制御装置10に設けられていてもよい。その場合、送液システム2は制御装置10を含んだ概念となる。基準値決定部18及び送液不良検知部20の詳細については後述する。
試料注入部4は送液システム2の送液ポンプ14A及び14Bの下流に接続されている。試料注入部4は送液システム2の送液ポンプ14A及び14Bによって送液される移動相中に試料を注入するためのものである。この実施例では、試料注入部4は切替バルブ24を備えており、切替バルブ24の切替えによって送液システム2からの移動相を分離カラム6へ導くか、又は、ドレインへ排出するかを切り替えることができるように構成されている。なお、試料注入部4の切替バルブ24は、必ずしも送液システム2からの移動相を分離カラム6へ導くか、又は、ドレインへ排出するかを切り替える機能を備えていなくてもよい。試料注入部4とは別に、送液システム2からの移動相を分離カラム6へ導くか、又は、ドレインへ排出するかを切り替える機能を備えた切替バルブが設けられていてもよいし、そのような切替バルブが設けられていなくてもよい。
分離カラム6は試料注入部4の下流に接続され、検出器8は分離カラム6の下流に接続されている。分離カラム6は、試料注入部4によって移動相中に注入された試料を成分ごとに分離するためのものであり、分離カラム6で分離された試料成分が検出器8により検出される。
制御装置10は、少なくとも送液システム2及び試料注入部4の動作管理を行なうためのものであり、例えばこの液体クロマトグラフ専用のシステムコントローラ及び/又は汎用のパーソナルコンピュータによって実現されるものである。送液システム2の送液不良検知部20が送液ポンプ14A及び/又は14Bの送液不良を検知した場合、送液不良を検知したことを示す信号が制御装置10へ送信される。その場合、制御装置10は、送液不良を解消するためのパージ動作を実行するように予め設定されているときには、試料注入部4に対して切替バルブ24をドレイン側へ切り替えるように指令を送信し、送液システム2に対して送液流量を所定の高流量まで上昇させるように指令を送信する。これにより、送液ポンプ14A及び/又は14Bに混入した気泡がドレインへ排出される。
ここで、送液ポンプにおいて気泡の混入が発生したときの送液圧力の変動について、図7の圧力波形を用いて説明する。
送液ポンプが移動相を安定的に送液できている状態では、図7の圧力波形の左側のように、送液圧力は送液ポンプの動作等に起因した僅かな圧力変動はみられるものの安定している。送液ポンプの一方のプランジャポンプ内に気泡が混入すると、そのプランジャポンプの吐出動作中は発生した気泡の圧縮により液が正常に吐出されず、送液圧力が急激に降下し、他方のプランジャポンプの吐出動作中は液が正常に吐出されるために送液圧力が上昇する。したがって、図7の圧力波形の右側のように、送液圧力の周期的な変動(脈動)が発生する。したがって、送液不良検知部20は、送液ポンプ14A及び/又は14Bの駆動周期と同期する脈動を検出することによって送液不良を検知するように構成されている。
上記のように、送液ポンプ14A及び/又は14Bへの気泡の混入に起因する送液圧力の脈動の周期は、気泡の混入した送液ポンプ14A及び/又は14Bの駆動周期と同期する。そのため、脈動を検出するためには、送液ポンプ14A及び14Bの1駆動周期内における送液圧力の変動を読み取ることができるような頻度で圧力センサ16A及び/又は16Bの信号を取り込む必要がある。そのため、送液不良検知部20を構成するコンピュータ回路が圧力センサ16A及び/又は16Bから信号を取り込む頻度は、送液ポンプ14A及び/又は14Bの駆動速度に応じて調整されるようになっていてもよい。その場合、圧力センサ16A及び/又は16Bから信号を読み込む周期は、送液流量が決定されたときに計算によって決定することができる。
この実施例において、送液不良検知部20は、送液ポンプ14A及び14Bの一定駆動周期内の送液圧力の変動幅を求め、その変動幅を基準値決定部18により決定された基準値と比較することにより、脈動を検出するように構成されている。「送液ポンプ14A及び14Bの一定駆動周期内における送液圧力の変動幅」とは、送液ポンプ14A及び14Bの1駆動周期内における送液圧力の変動幅であってもよいが、送液ポンプ14A及び14Bの複数駆動周期内における送液圧力変動幅又はその平均値であってもよい。
基準値決定部18は、流路12を流れる移動相の送液流量に対する送液ポンプ14A及び14Bのそれぞれの寄与率を考慮して脈動の検出のための変動幅の基準値を送液ポンプ14A及び14Bのそれぞれについて決定するように構成されている。送液ポンプ14A、14Bのうち送液流量の大きい方の送液ポンプで気泡の混入が発生した場合には、その送液ポンプによる送液不安定性が送液圧力に与える影響(寄与率)は大きいため、その送液ポンプの1駆動周期内における送液圧力の変動幅が大きくなる。一方で、送液ポンプ14A、14Bのうち送液流量の小さい方の送液ポンプで気泡の混入が発生した場合には、その送液ポンプによる送液不安定性が送液圧力に与える影響(寄与率)は小さいため、その送液ポンプの1駆動周期内における送液圧力の変動幅も小さくなる。したがって、脈動検出のための基準値は、送液ポンプ14A及び14Bのそれぞれについて必要となる。
ここで、送液ポンプ14A又は14Bに混入した気泡に起因する送液圧力の降下幅ΔPは、液体クロマトグラフの時定数τによって決まり、時定数τは全体の送液圧力P[MPa]、ダンパC[uL/MPa]、送液流量Q[mL/min]に依存する値である。ダンパ C[uL/MPa]は、液体クロマトグラフを構成する各モジュールや配管の内部容量V[uL]と移動相の圧縮率β[GPa-1]に依存する値である。例えば、送液ポンプ14A又は14Bにおいて気泡の混入が発生した後の経過時間をt秒とすると、送液圧力の降下幅ΔPは、
Figure 0007226524000001
によって決定されると考えられる。したがって、送液ポンプ14A又は14Bにおける気泡の混入に起因した脈動か否かを判定するための基準値は、上記式によって求められるΔPを考慮して決定することができる。ただし、上記式の引数P、C、Q、t(又は、P、V、β、Q、t)のうちのいくつかを省略してより簡略的に基準値を決定してもよい。例えば、P、Cのみを引数として他の要素を固定値として求められるΔPを基準としてもよい。
例えば、送液ポンプ14Aの送液流量と送液ポンプ14Bの送液流量との比率が9:1である場合、送液ポンプ14A、14Bのそれぞれ寄与率を0.9、0.1とすることができ、上記式を用いて算出されたΔPから求められる値にそれぞれ寄与率0.9、0.1を乗じることによって、送液ポンプ14A、14Bそれぞれについての基準値を決定することができる。
脈動検出のアルゴリズムの一例について、図2のフローチャートを用いて説明する。
図2の例は、送液ポンプ14A及び14Bの1駆動周期内の送液圧力の変動を数十分割で読み取ることができる場合に有利である。この場合、送液ポンプ14A及び14の各プランジャポンプの吐出動作の開始点と終了点における送液圧力を正確に読み取ることができる。ここで、送液ポンプ14A及び14Bの1駆動周期とは、各送液ポンプ14A及び14Bを構成しているプランジャポンプのうち一方のプランジャポンプの吐出動作が開始する時点から、他方のプランジャポンプの吐出動作が終了する時点までをいう。
基準値決定部18及び送液不良検知部20を構成するコンピュータ回路は、圧力センサ16A及び/又は16Bの信号を所定の頻度で取り込んで送液圧力(移動平均値)を読み取る。基準値決定部18及び送液不良検知部20は、送液ポンプ14A及び14のそれぞれについて、以下のステップ101~108を実行する。ここでは、送液ポンプ14Aのみを例に挙げて説明する。
基準値決定部18は、読み取った送液圧力と送液ポンプ14Aの送液流量に対する寄与率を用いて、送液ポンプ14Aについての基準値を決定する(ステップ101)。その後、送液不良検知部20は、送液ポンプ14Aを構成するプランジャポンプのうちの一方のプランジャポンプの吐出動作の開始点と終了点における送液圧力を読み取ったときに、それらの差分(開始点の送液圧力-終了点の送液圧力)を第1変動値として求め(ステップ102)、他方のプランジャポンプの吐出動作の開始点と終了点における送液圧力を読み取ったときに、それらの差分(開始点の送液圧力-終了点の送液圧力)を第2変動値として求める(ステップ103)。送液ポンプ14Aを構成するプランジャポンプのうちのいずれかに気泡が混入している場合、気泡が混入している一方のプランジャポンプの吐出動作中に送液圧力が降下し、気泡が混入していない他方のプランジャポンプの吐出動作中に送液圧力が上昇するため、送液ポンプ14Aにおいて気泡の混入に起因した送液不良が発生しているのであれば、第1変動値と第2変動値のいずれか一方のみが正の値(他方は負の値)となる。したがって、送液不良検知部20は、第1変動値と第2変動値の値の符号が同じである場合には、気泡の混入に起因した脈動ではないと判定する(ステップ104)。
第1変動値と第2変動値のいずれか一方のみが正の値である場合、送液不良検知部20は、第1変動値と第2変動値を用いて送液ポンプ14Aの1駆動周期内における送液圧力の変動幅を求める(ステップ105)。送液圧力の変動幅は、例えば次式により求めることができる。
変動幅=|第1変動値-第2変動値|/2
なお、上記式は一例であり、
変動幅=|第1変動値-第2変動値|
又は
変動幅=(第1変動値-第2変動値)
などの式を用いて変動幅を求めてもよい。
送液不良検知部20は、上記の変動幅を基準値決定部18により決定された基準値と比較し(ステップ106)、変動幅が基準値を超えている場合には、変動幅が基準値を超えている駆動周期(変動周期)の連続数をカウントする(ステップ107)。そして、変動周期の連続数が所定の基準回数に達したときに、脈動を検出する(ステップ108)。
ここで、脈動と判定するための圧力変動の連続数の基準となる基準回数は、可変に調整できるように構成されていてもよい。そうすれば、脈動検知の感度をどの程度にするかによって基準回数を調整することができる。
なお、脈動を検出するためのアルゴリズムは上記のものに限定されない。例えば、送液ポンプ14A及び14Bの1駆動周期ごとの送液圧力を監視し、1駆動周期内における送液圧力の変動幅を求め、その変動幅を上記のように決定された基準値と比較することによって、脈動の検出を行なうアルゴリズムを用いることもできる。
1駆動周期内における送液圧力の変動幅を求め、その変動幅を基準値と比較する上記のアルゴリズムは、送液ポンプ14A及び14Bを構成する各プランジャポンプの吐出動作の開始点及び終点における送液圧力を正確に読み取ることができないような場合に有効である。ただし、このアルゴリズムでは、送液ポンプ14A及び14Bの1駆動周期内に送液圧力の降下と上昇があったか否かを判別できないため、気泡の混入による圧力変動であるか否かを断定できない。そこで、脈動検出のアルゴリズムを実行する前に、図3のフローチャートに示すようなトリガー検出のアルゴリズムを導入してもよい。
以下に、トリガー検出のアルゴリズムの一例について図3を用いて説明する。ここでも、送液ポンプ14Aのみを例に説明する。
基準値決定部18及び送液不良検知部20を構成するコンピュータ回路は、圧力センサ16A及び/又は16Bの信号を所定の周期で読み込み(ステップ201)、送液圧力(移動平均値)を算出する(ステップ202)。基準値決定部18は、読み取った送液圧力と送液ポンプ14Aの寄与率を用いてトリガー検出のための基準値を決定する(ステップ203)。トリガー検出のための基準値は、脈動検出のための基準値と同じであってもよいし、異なっていてもよい。送液不良検知部20は、送液ポンプ14Aの駆動周期に基づいて設定された時間当たり(例えば信号読込み10回分)の送液圧力の降下幅を算出する(ステップ204)。そして、算出した降下幅を基準値決定部18により決定された基準値と比較し(ステップ205)、降下幅が基準値を超えたときに脈動発生のトリガーとして検出する(ステップ206)。
送液不良検知部20は、トリガーを検知した後、上述の脈動検出のアルゴリズムを用いて脈動の検出を行なう(ステップ207)。脈動が検出された場合は、送液不良を検知し(ステップ208、209)、警告信号を制御装置10へ送信する(ステップ210)。脈動が検出されなかった場合は、上記ステップ201へ戻る(ステップ208)。
なお、圧力センサ16A及び16Bからの信号の読込み周期、トリガー検出のための基準値、脈動検出のための基準値を計算により決定するための係数は、ユーザによる変更指示の入力によって、又は、実際の送液不良の検知の結果に対するユーザの評価に基づいて、可変に調整されるように構成されていてもよい。また、液体クロマトグラフの分析システムがインターネット回線などのネットワーク回線を通じて他の液体クロマトグラフの分析システムと共通のデータベースに接続されている場合、データベースに蓄積されたユーザによる送液不良の検知結果に対する評価に基づいて上記各係数が自動的に調整されるように構成されていてもよい。
図4は、液体クロマトグラフ用送液システムの他の実施例を示す概略構成図である。
この実施例の送液システム2’は、送液圧力の変動の周波数解析を行なうことによって送液ポンプ14A及び/又は14Bにおける気泡の混入に起因する送液不良の有無を検知する機能を有する。既述のように、送液ポンプ14A又は14Bにおける気泡の混入に起因して発生する脈動は、気泡の混入が発生した送液ポンプ14A及び/又は14Bの駆動周期と同期したものとなる。したがって、送液ポンプ14A及び/又は14Bで気泡の混入が発生した場合、送液圧力の変動周波数は気泡の混入が発生した送液ポンプ14A及び/又は14Bの駆動周波数と一致する。そこで、この実施例の送液システム2’は、周波数解析部26及び送液不良検知部28を備えている。周波数解析部26及び送液不良検知部28は、送液システム2’の一部を構成する電子回路基板又はコンピュータにおいて所定のプログラムが実行されることによって得られる機能である。
周波数解析部26は、圧力センサ16A及び/又は16Bによって検出される送液圧力の周波数解析を実行するように構成されている。
送液不良検知部28は、周波数解析部26によって実行された周波数解析の結果、送液圧力が特定の周波数で変動している場合に、送液ポンプ14A及び/又は14Bにおける気泡の混入に起因した送液不良を検知するように構成されている。さらに好ましい実施形態では、送液不良を検知した場合に、送液不良検知部28は、送液圧力の変動周波数を特定するとともに送液ポンプ14A及び14Bの駆動周波数を求め、変動周波数と一致する周波数で動作している送液ポンプを特定するように構成されている。気泡の混入が発生している送液ポンプ14A及び/又は14Bの駆動周波数が変動周波数と一致する。
図5は、送液ポンプ14A及び14Bを流量比9:1(寄与率=9:1)の割合で動作させ、途中で送液ポンプ14Bに気泡を混入させたときの送液圧力の波形である。また、図6Aは、図5の圧力波形の解析点1での周波数解析の結果データであり、図6Bは、図5の圧力波形の解析点2での周波数解析の結果データである。
図6Aに示されているように、送液ポンプ14A及び14Bのいずれにおいても気泡の混入が発生していない時点では、送液ポンプ14A及び14Bの動作等に由来するノイズが多く、特定の周波数に大きなピークは見られない。一方、図6Bに示されているように、送液ポンプ14Bで気泡の混入が発生した後は、送液ポンプ14Bの駆動周波数に由来するピークのみが大きく立っていることがわかる。
上記検証より、送液圧力の周波数解析により、特定の送液ポンプにおける気泡の混入に起因した送液不良の有無を検知できることがわかる。
以上において説明した実施例では、2つの送液ポンプ14A及び14Bを備えた送液システム2、2’を例に挙げて説明したが、本発明はこれに限定されるものではなく、3以上の送液ポンプを備えた送液システムに対しても同様に適用することができる。すなわち、上記実施例は本発明に係る送液システムの実施形態の一例を示したに過ぎない。本発明に係る送液システムの実施形態は以下のとおりである。
本発明に係る送液システムの実施形態は、互いに独立して動作して共通の流路中で移動相を送液する複数の送液ポンプと、前記流路中の送液圧力を検出するための圧力センサと、前記圧力センサにより検出される送液圧力を周期的に取り込み、前記複数の送液ポンプのそれぞれの駆動周期と関連する前記送液圧力の変動を検出することにより前記複数の送液ポンプのいずれかによる送液不良を検知するように構成された送液不良検知部と、を備えている。
本発明に係る送液システムの実施形態の第1態様では、前記流路中での移動相の送液流量に対する前記複数の送液ポンプのそれぞれの寄与率を求め、前記複数の送液ポンプのそれぞれについて、送液不良が発生したときの前記流路中の送液圧力の変動幅の基準値を、前記寄与率を用いて決定するように構成された基準値決定部を備え、前記送液不良検知部は、前記複数の送液ポンプのそれぞれについて、前記送液ポンプの1駆動周期内の前記送液圧力の変動幅を求め、求めた前記変動幅と前記基準値決定部により決定された各基準値とを用いて送液不良を検知するように構成されている。このような態様により、それぞれの前記送液ポンプの寄与率を考慮した基準値を用いた高精度な脈動の検出を行なうことができる。
上記第1態様の具体例として、前記送液不良検知部は、前記変動幅が前記基準値決定部により決定された基準値を超えている周期の連続数が所定の基準回数を超えたことを条件として脈動を検出する脈動検出ステップと、前記脈動検出ステップで前記脈動を検出したときに、前記送液ポンプの送液不良を検知する送液不良検知ステップと、をその順に実行するように構成されていてもよい。
上記具体例のさらなる具体的態様例として、前記送液ポンプは、相補的に駆動される2台のプランジャポンプを備えたダブルプランジャポンプであり、前記送液不良検知部は、前記脈動検出ステップにおいて、前記2台のプランジャポンプのうちの一方の吐出動作の開始点と終了点の前記送液圧力の差分を第1変動値として求め、前記2台のプランジャポンプのうちの他方の吐出動作の開始点と終了点の前記送液圧力の差分を第2変動値として求め、前記第1変動値と前記第2変動値を用いて前記変動幅を求めるように構成されている例が挙げられる。このような具体的態様例によれば、前記送液ポンプの一方のプランジャポンプの吐出動作中の送液圧力の変動と、他方のプランジャポンプの吐出動作中の送液圧力の変動を考慮して脈動の検出を行なうことができるので、より正確に気泡の混入に起因した脈動の検出を行なうことができる。
上記具体的態様例において、前記送液不良検知部は、前記脈動検出ステップにおいて、前記第1変動値と前記第2変動値のどちらか一方のみが正の値である周期のみを前記変動幅が前記基準値決定部により決定された基準値を超えている周期としてカウントするように構成することができる。ダブルプランジャポンプのうち一方のプランジャポンプに気泡が混入した場合、一方のプランジャポンプの吐出動作中は送液圧力が降下し、他方のプランジャポンプの吐出動作中は送液圧力が上昇するため、前記第1変動値と前記第2変動値は互いに異なる符号の値となる。したがって、前記第1変動値と前記第2変動値のどちらか一方のみが正の値である周期のみを脈動の1周期としてカウントすることで、より正確に脈動の検出を行なうことができる。
本発明に係る送液システムの実施形態の第2態様では、前記送液不良検知部は、前記脈動検出ステップの前に、前記複数の送液ポンプのそれぞれについて、前記送液ポンプの前記駆動周期に基づいて設定された時間当たりの送液圧力の降下幅を算出する圧力降下算出ステップと、前記圧力降下算出ステップで算出した降下幅が前記基準値決定部により決定された基準値を超えたときに脈動発生のトリガーとして検出するトリガー検出ステップと、を実行し、前記トリガー検出ステップで前記トリガーを検出した後で、脈動判定ステップを実行するように構成されている。このような態様により、前記送液ポンプの1駆動周期内における送液圧力の詳細な変動を読み取ることができないような場合でも、送液圧力の急激な降下を検出することができる。移動相の組成の変化により前記送液ポンプの1駆動周期内での送液圧力の変化は起こり得るが、そのような場合でも前記送液ポンプにおける気泡の混入に起因した送液圧力の急激な低下は起こらないので、上記のトリガー検出ステップを導入することによって、移動相の組成変化等に起因する送液圧力の変化を気泡の混入に起因した脈動と誤検知することを防止することができる。
本発明に係る送液システムの実施形態の第3態様では、前記圧力センサにより検出される送液圧力の変動の周波数解析を実行するように構成された周波数解析部を備え、前記送液不良検知部は、前記周波数解析で得られた解析結果において送液圧力の変動が特定の周波数をもって発生しているときに前記送液ポンプのいずれかにおける送液不良を検知するように構成されている。
上記第3態様において、前記送液不良検知部は、前記周波数解析で得られた解析結果において前記送液圧力の変動周波数を特定するとともに前記複数の送液ポンプのそれぞれの駆動周波数を求め、特定した前記変動周波数と前記複数の送液ポンプのそれぞれの前記駆動周波数とを比較することにより、送液不良の発生している前記送液ポンプを特定するように構成されていてもよい。これにより、気泡の混入が発生した送液ポンプを容易に特定することができ、その後の対処も容易になる。
2、2’ 送液システム
4 試料注入部
6 分離カラム
8 検出器
10 制御装置
12 流路
14A,14B 送液ポンプ
16A,16B 圧力センサ
18 基準値決定部
20,28 送液不良検知部
22 ミキサ
24 切替バルブ
26 周波数解析部

Claims (7)

  1. 互いに独立して動作して共通の流路に向けて移動相を送液する複数の送液ポンプと、
    前記各送液ポンプの送液圧力を検出するために前記各送液ポンプと前記共通の流路との間にそれぞれ配置された複数の圧力センサと、
    前記各圧力センサにより検出される送液圧力を周期的に取り込み、前記複数の送液ポンプのいずれかの動作速度に起因する大きさ又は周波数の前記送液圧力の変動を検出することにより前記複数の送液ポンプによる送液不良を検知するように構成された送液不良検知部と
    前記共通の流路中での移動相の送液流量に対する前記複数の送液ポンプのそれぞれの寄与率を求め、前記複数の送液ポンプのそれぞれについて、送液不良が発生したときの前記送液圧力の変動幅の基準値を、前記寄与率を用いて決定するように構成された基準値決定部と、を備え、
    前記送液不良検知部は、前記複数の送液ポンプのそれぞれについて、前記送液ポンプの一定駆動周期内の前記送液圧力の変動幅を求め、求めた前記変動幅と前記基準値決定部により決定された各基準値とを用いて送液不良を検知するように構成されている、液体クロマトグラフ用送液システム。
  2. 前記送液不良検知部は、前記変動幅が前記基準値決定部により決定された基準値を超えている周期の連続数が所定の基準回数を超えたことを条件として脈動を検出する脈動検出ステップと、
    前記脈動検出ステップで前記脈動を検出したときに、前記送液ポンプの送液不良を検知する送液不良検知ステップと、をその順に実行するように構成されている、請求項に記載の液体クロマトグラフ用送液システム。
  3. 前記送液ポンプは、相補的に駆動される2台のプランジャポンプを備えたダブルプランジャポンプであり、
    前記送液不良検知部は、前記脈動検出ステップにおいて、前記2台のプランジャポンプのうちの一方の吐出動作の開始点と終了点の前記送液圧力の差分を第1変動値として求め、前記2台のプランジャポンプのうちの他方の吐出動作の開始点と終了点の前記送液圧力の差分を第2変動値として求め、前記第1変動値と前記第2変動値を用いて前記変動幅を求めるように構成されている、請求項に記載の液体クロマトグラフ用送液システム。
  4. 前記送液不良検知部は、前記脈動検出ステップにおいて、前記第1変動値と前記第2変動値のどちらか一方のみが正の値である周期のみを前記変動幅が前記基準値決定部により決定された基準値を超えている周期としてカウントするように構成されている、請求項に記載の液体クロマトグラフ用送液システム。
  5. 前記送液不良検知部は、前記脈動検出ステップの前に、前記複数の送液ポンプのそれぞれについて、
    前記送液ポンプの前記駆動周期に基づいて設定された時間当たりの送液圧力の降下幅を算出する圧力降下算出ステップと、
    前記圧力降下算出ステップで算出した降下幅が前記基準値決定部により決定された基準値を超えたときに脈動発生のトリガーとして検出するトリガー検出ステップと、を実行し、
    前記トリガー検出ステップで前記トリガーを検出した後で、脈動判定ステップを実行するように構成されている、請求項2から4のいずれか一項に記載の液体クロマトグラフ用送液システム。
  6. 互いに独立して動作して共通の流路に向けて移動相を送液する複数の送液ポンプと、
    前記各送液ポンプの送液圧力を検出するために前記各送液ポンプと前記共通の流路との間にそれぞれ配置された複数の圧力センサと、
    前記各圧力センサにより検出される送液圧力を周期的に取り込み、前記複数の送液ポンプのいずれかの動作速度に起因する大きさ又は周波数の前記送液圧力の変動を検出することにより前記複数の送液ポンプによる送液不良を検知するように構成された送液不良検知部と、
    前記複数の圧力センサそれぞれにより検出される送液圧力の変動の周波数解析を実行するように構成された周波数解析部と、を備え、
    前記送液不良検知部は、前記周波数解析で得られた解析結果において送液圧力の変動が特定の周波数をもって発生しているときに前記送液ポンプにおける送液不良を検知するように構成されている、液体クロマトグラフ用送液システム。
  7. 前記送液不良検知部は、前記周波数解析で得られた解析結果において前記送液圧力の変動周波数を特定するとともに前記複数の送液ポンプのそれぞれの駆動周波数を求め、特定した前記変動周波数と前記複数の送液ポンプのそれぞれの前記駆動周波数とを比較することにより、送液不良の発生している前記送液ポンプを特定するように構成されている、請求項に記載の液体クロマトグラフ用送液システム。
JP2021504712A 2019-03-13 2019-03-13 液体クロマトグラフ用送液システム Active JP7226524B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/010318 WO2020183654A1 (ja) 2019-03-13 2019-03-13 液体クロマトグラフ用送液システム

Publications (2)

Publication Number Publication Date
JPWO2020183654A1 JPWO2020183654A1 (ja) 2021-12-23
JP7226524B2 true JP7226524B2 (ja) 2023-02-21

Family

ID=72426955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021504712A Active JP7226524B2 (ja) 2019-03-13 2019-03-13 液体クロマトグラフ用送液システム

Country Status (3)

Country Link
JP (1) JP7226524B2 (ja)
CN (1) CN113544506B (ja)
WO (1) WO2020183654A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024106238A1 (ja) * 2022-11-16 2024-05-23 株式会社日立ハイテク 液体クロマトグラフ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000130353A (ja) 1998-10-30 2000-05-12 Shimadzu Corp 送液ポンプ
WO2003079000A1 (fr) 2002-03-18 2003-09-25 Hitachi High-Technologies Corporation Systeme de pompe de dosage de liquide a gradient, et chromatographe en phase liquide
WO2015008845A1 (ja) 2013-07-17 2015-01-22 積水メディカル株式会社 試料分析装置におけるグラジエント送液装置
WO2018055866A1 (ja) 2016-09-26 2018-03-29 株式会社島津製作所 切替バルブ、バイナリポンプ及びそのバイナリポンプを備えた液体クロマトグラフ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6011690A (ja) * 1983-06-30 1985-01-21 Shimadzu Corp 液体クロマトグラフ
JP2556039B2 (ja) * 1986-06-19 1996-11-20 株式会社島津製作所 送液ポンプ
JPH07280787A (ja) * 1994-04-15 1995-10-27 Hitachi Ltd 液体クロマトグラフ
JP5861569B2 (ja) * 2012-06-21 2016-02-16 株式会社島津製作所 移動相送液装置及び液体クロマトグラフ
US10564136B2 (en) * 2015-12-04 2020-02-18 Shimadzu Corporation Liquid sample analysis system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000130353A (ja) 1998-10-30 2000-05-12 Shimadzu Corp 送液ポンプ
WO2003079000A1 (fr) 2002-03-18 2003-09-25 Hitachi High-Technologies Corporation Systeme de pompe de dosage de liquide a gradient, et chromatographe en phase liquide
WO2015008845A1 (ja) 2013-07-17 2015-01-22 積水メディカル株式会社 試料分析装置におけるグラジエント送液装置
WO2018055866A1 (ja) 2016-09-26 2018-03-29 株式会社島津製作所 切替バルブ、バイナリポンプ及びそのバイナリポンプを備えた液体クロマトグラフ

Also Published As

Publication number Publication date
WO2020183654A1 (ja) 2020-09-17
CN113544506B (zh) 2023-09-01
JPWO2020183654A1 (ja) 2021-12-23
CN113544506A (zh) 2021-10-22
US20220252555A1 (en) 2022-08-11

Similar Documents

Publication Publication Date Title
US5823747A (en) Bubble detection and recovery in a liquid pumping system
CN110494747B (zh) 送液装置以及流体色谱仪
JP7120438B2 (ja) 液体クロマトグラフ
US20090193879A1 (en) Solvent delivery device and analytical system
JP7226524B2 (ja) 液体クロマトグラフ用送液システム
JP5155937B2 (ja) 送液装置および液体クロマトグラフ装置
JP6992882B2 (ja) オートサンプラ及び液体クロマトグラフ
JPWO2019008617A1 (ja) 送液装置
JP7226525B2 (ja) 液体クロマトグラフ用送液システム
JP6439881B2 (ja) 送液装置
JP5373241B2 (ja) 液体ポンプシステムにおける気泡検出および回復
JP7226523B2 (ja) 液体クロマトグラフ分析システム
US12038417B2 (en) Liquid sending system for liquid chromatograph
WO2021005728A1 (ja) 送液ポンプ及び液体クロマトグラフ
JP2006126089A (ja) 送液ポンプ装置
JP7260063B2 (ja) 液体クロマトグラフィ分析システム
JPH04276190A (ja) 分析装置の送液装置
JP2024035932A (ja) イオンクロマトグラフィ分析システム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210820

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220726

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220922

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230123

R151 Written notification of patent or utility model registration

Ref document number: 7226524

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151