WO2020166283A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2020166283A1
WO2020166283A1 PCT/JP2020/001952 JP2020001952W WO2020166283A1 WO 2020166283 A1 WO2020166283 A1 WO 2020166283A1 JP 2020001952 W JP2020001952 W JP 2020001952W WO 2020166283 A1 WO2020166283 A1 WO 2020166283A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
chip
region
center
joint
Prior art date
Application number
PCT/JP2020/001952
Other languages
English (en)
French (fr)
Inventor
達志 金田
弘貴 大森
錬 木村
透 日吉
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to US17/427,950 priority Critical patent/US11804465B2/en
Priority to JP2020572138A priority patent/JP7342889B2/ja
Publication of WO2020166283A1 publication Critical patent/WO2020166283A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48095Kinked
    • H01L2224/48096Kinked the kinked part being in proximity to the bonding area on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48111Disposition the wire connector extending above another semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • H01L2224/48139Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate with an intermediate bond, e.g. continuous wire daisy chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1027IV
    • H01L2924/10272Silicon Carbide [SiC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • H01L2924/12032Schottky diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Definitions

  • the present disclosure relates to semiconductor devices.
  • a semiconductor device in which a semiconductor chip is arranged on a circuit board is known (for example, see Patent Document 1 and Patent Document 2).
  • the circuit pattern, the semiconductor chip, and the semiconductor chips are connected by wires.
  • a semiconductor device includes a substrate, a first region, a second region located apart from the first region, and a third region located between the first region and the second region.
  • a circuit pattern including the circuit pattern, a first chip including a diode and disposed in the second region, and a circuit pattern disposed on a surface opposite to a surface facing the third region in the plate thickness direction of the substrate.
  • a second chip including a vertical transistor having a source pad and a gate pad arranged at a position different from that of the source pad, arranged in the third region, a first junction portion joined to the first region, and a second chip.
  • a straight line is parallel.
  • the distance between the second virtual straight line and the center of gravity of the third joint is larger than the distance between the second virtual straight line and the center of gravity of the second joint.
  • the distance between the first virtual line and the second virtual line is d
  • the acute angle formed by the first virtual line and the third virtual line passing through the center of gravity of the second joint and the center of gravity of the third joint is ⁇ .
  • the width of the second bonding portion in the extending direction of the first wire is w, the relationship of 0 ⁇ sin ⁇ 1 d/w is established.
  • a semiconductor device includes a substrate, a first region, a second region located apart from the first region, and a third region located between the first region and the second region.
  • a circuit pattern including a first diode and a third chip disposed in the second region, and a circuit pattern disposed on the substrate, and a second diode, and disposed in a position different from the third chip in the second region
  • a vertical transistor having a source pad arranged on a surface opposite to the surface facing the third region in the plate thickness direction of the substrate and a gate pad arranged at a position different from the source pad.
  • a second joint arranged in the third region, a first joint portion joined to the first region, a second joint portion joined to the second chip, and a third joint portion joined to the first chip.
  • a second wire arranged adjacent to the wire.
  • a straight line is parallel.
  • the distance between the second virtual straight line and the center of gravity of the third joint is larger than the distance between the second virtual straight line and the center of gravity of the second joint.
  • the distance between the first virtual line and the second virtual line is d
  • the acute angle formed by the first virtual line and the third virtual line passing through the center of gravity of the second joint and the center of gravity of the third joint is ⁇ .
  • the width of the second bonding portion in the extending direction of the first wire is w, the relationship of 0 ⁇ sin ⁇ 1 d/w is established.
  • FIG. 1 is a schematic cross-sectional view of the semiconductor device according to the first embodiment.
  • FIG. 2 is a schematic plan view of the semiconductor device shown in FIG. 1 when viewed in the plate thickness direction of the substrate.
  • FIG. 3 is a schematic cross-sectional view of joining a wire to the second chip.
  • FIG. 4 is a schematic cross-sectional view showing a state in which the wire is joined to the second chip.
  • FIG. 5 is a schematic plan view which shows the state which bends a 1st wire in a 2nd joining part, and joins a 1st wire and a 2nd chip.
  • FIG. 6 is a schematic plan view of the semiconductor device according to the second embodiment as viewed in the plate thickness direction of the substrate.
  • FIG. 7 is a schematic plan view of the semiconductor device according to the third embodiment as viewed in the plate thickness direction of the substrate.
  • FIG. 8 is a schematic side view showing the first wire, the third wire, and the fifth wire in the third embodiment.
  • FIG. 9 is a schematic side view of the semiconductor device when defining the height of the loop of the wire.
  • FIG. 10 is a schematic plan view of the semiconductor device according to the fourth embodiment as viewed in the plate thickness direction of the substrate.
  • FIG. 11 is a schematic side view showing the first wire, the third wire, and the fifth wire in the fourth embodiment.
  • FIG. 12 is a schematic side view of the semiconductor device when defining the rising angle of the wire loop.
  • a semiconductor chip is arranged on a substrate on which a circuit pattern is formed, and then a part of the circuit pattern is connected to the semiconductor chip and the semiconductor chips by a wire.
  • the tool (bond tool) for joining the wire to the circuit pattern or the semiconductor chip comes into contact with the already installed wire, the wire is bent. As a result, malfunction of the semiconductor device may occur. It is required to suppress bending of the wire during manufacturing.
  • one of the aims is to provide a semiconductor device capable of suppressing the bending of the wire.
  • a semiconductor device includes a substrate, a first region, a second region located apart from the first region, and a third region located between the first region and the second region.
  • a circuit pattern arranged on the substrate, a first chip including a diode arranged in the second region, and a source arranged on a surface opposite to the surface facing the third area in the plate thickness direction of the substrate.
  • a second chip including a vertical transistor having a gate pad arranged at a position different from a pad and a source pad, arranged in a third region, a first junction joined to the first region, and joined to a second chip
  • a first wire including a second bonding portion and a third bonding portion bonded to the first chip, a fourth bonding portion bonded to the first region, a fifth bonding portion bonded to the second chip, and a fourth bonding portion
  • a second wire that includes a sixth bonding portion that is bonded to one chip, and is disposed so as to be adjacent to the first wire with the gate pad interposed therebetween.
  • a straight line is parallel.
  • the distance between the second virtual straight line and the center of gravity of the third joint is larger than the distance between the second virtual straight line and the center of gravity of the second joint.
  • the distance between the first virtual line and the second virtual line is d
  • the acute angle formed by the first virtual line and the third virtual line passing through the center of gravity of the second joint and the center of gravity of the third joint is ⁇ .
  • the width of the second bonding portion in the extending direction of the first wire is w, the relationship of 0 ⁇ sin ⁇ 1 d/w is established.
  • a first chip including a diode is arranged in parallel with the second chip in order to reduce a possibility that a parasitic diode is turned on and a basal plane dislocation increases.
  • stitch bonding is performed in order of the first chip, the second chip, and the circuit pattern, it is possible to reduce the occurrence of ringing due to a surge voltage generated between the drain and the source of the second chip at the time of turn-off, for example.
  • the area of the first chip may be made larger than the area of the second chip when viewed in the plate thickness direction of the substrate.
  • Stitch bonding can be performed using a wire bonder equipped with a bond tool, for example.
  • the relationship of 0 ⁇ sin ⁇ 1 d/w is established. That is, ⁇ is set so that the relationship of 0 ⁇ sin ⁇ 1 d/w is established. This can reduce the risk of the bond tool coming into contact with the already-installed second wire when the first wire and the second chip are bent by bending at the second bonding portion. Therefore, according to such a semiconductor device, bending of the wire can be suppressed.
  • parallel means that two straight lines extend in parallel, and does not mean parallel in a geometrically strict sense.
  • the semiconductor device may further include a third wire including a seventh bonding part bonded to the first region, an eighth bonding part bonded to the second chip, and a ninth bonding part bonded to the first chip.
  • a third wire including a seventh bonding part bonded to the first region, an eighth bonding part bonded to the second chip, and a ninth bonding part bonded to the first chip.
  • the distance between the second joint portion and the third joint portion is D 1
  • the distance between the eighth joint portion and the ninth joint portion is D 2
  • relationship is established Good.
  • the circuit pattern may further include a fourth region located on the opposite side of the first region as viewed from the first chip when viewed in the plate thickness direction of the substrate.
  • the semiconductor device may further include a gate wire connecting the gate pad and the fourth region. By doing so, the gate wire can be easily arranged.
  • the area of the first chip may be larger than the area of the second chip when viewed in the thickness direction of the substrate. By doing so, the resistance of the first chip can be reduced.
  • the second chip may include a SiC semiconductor.
  • a high-performance semiconductor device can be obtained by adopting the second chip capable of achieving such high breakdown voltage and low on-resistance.
  • the first chip may include a SiC semiconductor.
  • a semiconductor device includes a substrate, a first region, a second region located apart from the first region, and a third region located between the first region and the second region. , A circuit pattern arranged on the substrate, a third chip including the first diode and arranged in the second region, and a second diode, and arranged in a position different from the third chip in the second region.
  • a fourth chip, and a vertical transistor having a source pad arranged on a surface opposite to a surface facing the third region in the plate thickness direction of the substrate and a gate pad arranged at a position different from the source pad, A second joint arranged in the third region, a first joint portion joined to the first region, a second joint portion joined to the second chip, and a third joint portion joined to the first chip.
  • a first wire including a first wire, a fourth bonding part bonded to the first region, a fifth bonding part bonded to the second chip, and a sixth bonding part bonded to the first chip; And a second wire arranged so as to be adjacent to.
  • a straight line is parallel.
  • the distance between the second virtual straight line and the center of gravity of the third joint is larger than the distance between the second virtual straight line and the center of gravity of the second joint.
  • the distance between the first virtual line and the second virtual line is d
  • the acute angle formed by the first virtual line and the third virtual line passing through the center of gravity of the second joint and the center of gravity of the third joint is ⁇ .
  • the width of the second bonding portion in the extending direction of the first wire is w, the relationship of 0 ⁇ sin ⁇ 1 d/w is established.
  • bending of the wire can be suppressed as in the semiconductor device according to the first aspect.
  • the total area of the first chip and the third chip may be larger than the area of the second chip when viewed in the plate thickness direction of the substrate. By doing so, the current flowing to the second chip side can be reduced.
  • FIG. 1 is a schematic cross-sectional view of the semiconductor device according to the first embodiment.
  • FIG. 2 is a schematic plan view of the semiconductor device shown in FIG. 1 when viewed in the plate thickness direction of the substrate.
  • a semiconductor device 11a includes a heat dissipation plate 12, a substrate 13, a circuit pattern 14, a first chip 15 including a diode, which is arranged on the heat dissipation plate 12. , A second chip 16 including a vertical transistor.
  • the heat sink 12 is made of metal.
  • the heat sink 12 is made of copper, for example.
  • the surface of the heat sink 12 is subjected to, for example, nickel plating treatment.
  • the heat dissipation plate 12 has, for example, a rectangular planar shape.
  • the substrate 13 is arranged on the one main surface 12 a of the heat dissipation plate 12.
  • the substrate 13 has an insulating property.
  • the substrate 13 is made of ceramic, for example.
  • the substrate 13 is made of, for example, at least one of AlN, SiN, and Al 2 O 3 .
  • the substrate 13 may be made of glass.
  • the planar shape of the substrate 13 is, for example, a rectangle.
  • Substrate 13 is arranged such that one main surface 12a of heat dissipation plate 12 and the other main surface 13b of substrate 13 are in contact with each other.
  • the circuit pattern 14 is arranged on the substrate 13. Specifically, the circuit pattern 14 is arranged on the one main surface 13 a of the substrate 13.
  • the circuit pattern 14 is made of copper, for example.
  • the circuit pattern 14 is specifically a copper wiring.
  • the circuit pattern 14 includes a first region 14a, a second region 14b, a third region 14c and a fourth region 14d.
  • the second area 14b is located apart from the first area 14a.
  • the third region 14c is located between the first region 14a and the second region 14b.
  • the first chip 15 is arranged in the second region 14b.
  • the second chip 16 is arranged in the third region 14c.
  • the fourth region 14d is located on the side opposite to the first region 14a when viewed from the first chip 15.
  • the first chip 15 is a chip including a Schottky barrier diode, for example.
  • the planar shape of the first chip 15 is, for example, a rectangle. That is, when viewed in the plate thickness direction of the substrate 13, the first chip 15 has a rectangular shape.
  • the cathode electrode is arranged on the surface 15b side in contact with the second region 14b, and the anode electrode is arranged on the surface 15b side opposite to the surface 15b of the substrate 13 in the plate thickness direction.
  • the first chip 15 includes a SiC semiconductor layer. The SiC semiconductor layer is arranged between the anode electrode and the cathode electrode.
  • the second chip 16 is, for example, a vertical MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor).
  • the planar shape of the second chip 16 is, for example, a rectangle. That is, when viewed in the plate thickness direction of the substrate 13, the second chip 16 has a rectangular shape.
  • the second chip 16 includes the source pad 18 arranged on the surface 16a opposite to the surface 16b facing the third region 14c in the plate thickness direction of the substrate 13 and the gate pad 17 arranged at a position different from the source pad 18.
  • the drain electrode is arranged on the surface 16b side that contacts the third region 14c, and is electrically connected to the source pad 18 on the surface 16a side opposite to the surface 16b in the plate thickness direction of the substrate 13.
  • the source electrode and gate pad 17 are arranged.
  • the gate pad 17 is electrically connected to the gate electrode of the second chip 16.
  • the second chip 16 includes a SiC semiconductor layer. The SiC semiconductor layer is arranged between the drain electrode and the source electrode.
  • the area of the first chip 15 is larger than the area of the second chip 16 when viewed in the thickness direction of the substrate 13.
  • the length of the first chip 15 in the X direction is longer than the length of the second chip 16 in the X direction.
  • the length of the first chip 15 in the Y direction is longer than the length of the second chip 16 in the Y direction.
  • the second chip 16 is arranged between the first region 14 a and the first chip 15 when viewed in the plate thickness direction of the substrate 13.
  • the first region 14a of the circuit pattern 14, the second chip 16, the first chip 15, and the fourth region 14d of the circuit pattern 14 are arranged along the X direction. They are arranged side by side.
  • the semiconductor device 11a includes a first wire 21a, a second wire 21b, a third wire 21c, and a fourth wire 21d.
  • the first wire 21a to the fourth wire 21d are arranged side by side in the order of the fourth wire 21d, the second wire 21b, the first wire 21a, and the third wire 21c in the Y direction.
  • the third wire 21c and the fourth wire 21d are located at both ends in the Y direction.
  • the gate pad 17 is arranged between the first wire 21a and the second wire 21b in the Y direction.
  • the first wire 21a, the second wire 21b, the third wire 21c, and the fourth wire 21d electrically connect the first region 14a of the circuit pattern 14, the second chip 16, and the first chip 15, respectively.
  • the first wire 21a, the second wire 21b, the third wire 21c, and the fourth wire 21d are arranged in parallel in the X direction in the region where the first region 14a and the second chip 16 are connected.
  • a material forming the first wire 21a for example, aluminum can be adopted. The same applies to the materials forming the second wire 21b, the third wire 21c, and the fourth wire 21d.
  • the first wire 21a includes a first joining portion 22a joined to the first region 14a, a second joining portion 23a joined to the second chip 16, and a third joining portion 24a joined to the first chip 15.
  • the first region 14a of the circuit pattern 14, the second chip 16 and the first chip 15 are continuously connected by the first wire 21a.
  • the first wire 21a is joined to the first region 14a of the circuit pattern 14, the second chip 16 and the first chip 15 by stitch bonding.
  • the first wire 21a is bent and joined at the second joining portion 23a.
  • the first wire 21a is bent and joined so that the third joining portion 24a approaches the third wire 21c.
  • the second wire 21b is arranged so as to be adjacent to the first wire 21a with the gate pad 17 interposed therebetween.
  • the second wire 21b includes a fourth joint portion 22b joined to the first region 14a, a fifth joint portion 23b joined to the second chip 16, and a sixth joint portion 24b joined to the first chip 15.
  • the first region 14a of the circuit pattern 14, the second chip 16 and the first chip 15 are continuously connected by the second wire 21b.
  • the second wire 21b is joined to the first region 14a of the circuit pattern 14, the second chip 16 and the first chip 15 by stitch bonding.
  • the second wire 21b is bent and joined at the fifth joining portion 23b.
  • the second wire 21b is bent and joined so that the sixth joining portion 24b approaches the fourth wire 21d.
  • the third wire 21c is arranged in the Y direction at a distance from the first wire 21a.
  • the third wire 21c includes a seventh joining portion 22c joined to the first region 14a, an eighth joining portion 23c joined to the second chip 16, and a ninth joining portion 24c joined to the first chip 15. Similar to the first wire 21a, the third wire 21c is joined to the first region 14a of the circuit pattern 14, the second chip 16 and the first chip 15 by stitch bonding.
  • the third wire 21c is bent and joined at the eighth joining portion 23c.
  • the third wire 21c is bent and joined so that the ninth joining portion 24c moves away from the first wire 21a.
  • the fourth wire 21d is joined to the first region 14a of the circuit pattern 14, the second chip 16 and the first chip 15 by stitch bonding.
  • the first region 14a of the circuit pattern 14, the second chip 16 and the first chip 15 are continuously connected by a total of four wires.
  • the distance between the second joint portion 23a and the third joint portion 24a is D 1
  • the distance between the eighth joint portion 23c and the ninth joint portion 24c is D 2
  • the semiconductor device 11a includes a gate wire 25.
  • the gate wire 17 connects the gate pad 17 and the fourth region 14d.
  • the gate wire 25 is arranged so as to extend along the X direction.
  • the junction between the gate wire 25 and the gate pad 17 is located between the first wire 21a and the second wire 21b in the Y direction.
  • the center of gravity of the first joint portion 22a means, for example, when the first joint portion 22a has widths in the X direction and the Y direction, intermediate portions of the width in the X direction and the Y direction, respectively. The same applies to the other joints.
  • the distance between the second virtual straight line 26b and the third joint portion 24a is larger than the distance between the second virtual straight line 26b and the second joint portion 23a.
  • the third virtual straight line 26c passing through the center of gravity of the second joint portion 23a and the center of gravity of the third joint portion 24a intersects the first virtual straight line 26a.
  • the first virtual straight line 26a, the second virtual straight line 26b, and the third virtual straight line 26c are indicated by broken lines.
  • the distance between the first virtual straight line 26a and the second virtual straight line 26b is d, and the third virtual straight line 26c and the first virtual straight line 26a passing through the center of gravity of the second joint portion 23a and the center of gravity of the third joint portion 24a are formed.
  • the acute angle is ⁇
  • the width of the second bonding portion 23a in the extending direction of the first wire 21a is w
  • the relationship of 0 ⁇ sin ⁇ 1 d/w is established. This will be described later.
  • the first chip 15 is arranged in parallel with the second chip 16. Stitch bonding is performed in the order of the first chip 15, the second chip 16, and the circuit pattern 14. Therefore, in the semiconductor device 11a, for example, ringing caused by a surge voltage generated between the drain and the source of the second chip 16 at the time of turn-off can be reduced.
  • the area of the first chip 15 is larger than the area of the second chip 16 when viewed in the plate thickness direction of the substrate 13 in order to reduce the resistance of the first chip 15 during forward bias.
  • the wire is continuously bonded from the first chip 15 having a large area to the second chip 16 having a small area, the wire is bent at the bonding portion with the second chip 16.
  • the area of the first chip 15 is larger than the area of the second chip 16 when viewed in the plate thickness direction of the substrate 13. Therefore, the resistance of the first chip 15 can be reduced.
  • the circuit pattern 14 includes the fourth region 14d located on the opposite side of the first region 14a when viewed from the first chip 15 when viewed in the plate thickness direction of the substrate 13.
  • the semiconductor device 11a includes a gate wire 25 that connects the gate pad 17 and the fourth region 14d. Therefore, the gate wire 25 can be easily arranged.
  • the second chip 16 includes a SiC semiconductor. By adopting such a second chip 16 that can achieve high breakdown voltage and low on-resistance, a high-performance semiconductor device 11a can be obtained.
  • the first chip 15 includes a SiC semiconductor. By adopting such a first chip 15 that can achieve high breakdown voltage and low resistance, a high-performance semiconductor device 11a can be obtained.
  • the substrate 13 having the circuit pattern 14 and the heat sink 12 are prepared. Then, the substrate 13 is arranged on the heat sink 12, the second chip 16 is arranged on the third region 14c of the circuit pattern 14, and the first chip 15 is arranged on the second region 14b. After that, the heat dissipation plate 12 and the substrate 13 are joined by reflow soldering, and the second chip 16 and the first chip 15 are joined to the circuit pattern 14. After that, the circuit pattern 14, the second chip 16, and the first chip 15 are joined by wires by stitch bonding.
  • the stitch bonding of the first wire 21a, the second wire 21b, the third wire 21c, and the fourth wire 21d the stitch bonding of the first wire 21a is finally performed.
  • stitch bonding is performed in the order of the fourth wire 21d, the second wire 21b, the third wire 21c, and the first wire 21a.
  • the terminals (not shown) and the circuit pattern 14 and the like are joined by wires. Then, it is sealed with resin. In this way, the semiconductor device 11a is manufactured.
  • FIG. 3 is a schematic cross-sectional view when the wire is bonded to the second chip 16.
  • FIG. 4 is a schematic cross-sectional view showing a state in which the wire is bonded to the second chip 16.
  • the stitch bonding of the wire 31 can be performed using the wire bonder 33 including the wire bonder tip portion 36, for example.
  • the outline of the outer shape of the wire bonder tip portion 36 is indicated by a broken line.
  • the wire bonder tip portion 36 includes a bond tool 32 having a contact portion 34 that contacts the wire 31, and a wire supply portion 35 that supplies the wire 31.
  • the tip part 36 of the wire bonder moves in the direction shown by the arrow B while supplying the wire 31 from the wire supply part 35 at any time.
  • the wire 31 is bonded to the surface 16 a of the second chip 16 by supplying the wire 31 from the wire supply part 35 and bringing the contact part 34 of the bond tool 32 into contact with the wire 31 to vibrate ultrasonically.
  • the wire bonder 33 in addition to the joining width w joined by the contact portion 34 of the bond tool 32, it is necessary to secure a space for the wire supply portion 35 in the traveling direction in the movement, and therefore it is equal to the joining width w.
  • the width C is required.
  • the bonding width w is shown in FIG. 4 as the distance between the both ends 37a and 37b of the second bonding portion 23a in the direction in which the wire 31 extends.
  • FIG. 5 is a schematic plan view showing a state in which the first wire 21a is bent at the second bonding portion 23a to bond the first wire 21a and the second chip 16 together.
  • the thicknesses of the first wire 21a and the second wire 21b are exaggeratedly and thickly illustrated for easy understanding.
  • the relationship of 0 ⁇ sin ⁇ 1 d/w is established. Therefore, when the first wire 21a and the second chip 16 are bent by being bent at the second bonding portion 23a, it is possible to reduce the risk that the wire bonder tip portion 36 and the already installed second wire 21b contact each other. it can. That is, in the semiconductor device 11a, the acute angle .theta. formed by the first virtual line 26a and the third virtual line 26c is made as small as possible to suppress the contact between the wire bonder 33 and the second wire 21b during stitch bonding. It is what Therefore, according to the semiconductor device 11a described above, the bending of the second wire 21b can be suppressed.
  • FIG. 6 is a schematic plan view of the semiconductor device according to the second embodiment as viewed in the plate thickness direction of the substrate.
  • the second embodiment is different from the first embodiment in that a plurality of chips including diodes are arranged.
  • the semiconductor device 11b according to the second embodiment has two third chips 15c arranged in the Y direction instead of the first chip 15 of the semiconductor device 11a according to the first embodiment. It differs from the first embodiment in that the fourth chip 15d is arranged.
  • the semiconductor device 11b includes a substrate 13, a circuit pattern 14, a second chip 16, a third chip 15c, and a fourth chip 15d.
  • the circuit pattern 14 includes a first region 14a, a second region 14b, a third region 14c and a fourth region 14d.
  • the second area 14b is located apart from the first area 14a.
  • the third region 14c is located between the first region 14a and the second region 14b.
  • the third chip 15c includes a first diode.
  • the third chip 15c is arranged in the second region 14b.
  • the fourth chip 15d includes a second diode.
  • the fourth chip 15d is arranged in the second region 14b at a position different from that of the third chip 15c.
  • the third chip 15c and the fourth chip 15d are arranged at intervals in the Y direction.
  • the fourth region 14d is located on the side opposite to the first region 14a when viewed from the third chip 15c and the fourth chip 15d.
  • the distance in the X direction between the third chip 15c and the fourth region 14d is the same as the distance in the X direction between the fourth chip 15d and the fourth region 14d.
  • the semiconductor device 11b includes a first wire 21a and a second wire 21b.
  • the first wire 21a includes a first bonding portion 22a bonded to the first region 14a, a second bonding portion 23a bonded to the second chip 16 and a third bonding portion 24a bonded to the third chip 15c.
  • the second wire 21b is arranged so as to be adjacent to the first wire 21a with the gate pad 17 interposed therebetween.
  • the second wire 21b includes a fourth joining portion 22b joined to the first region 14a, a fifth joining portion 23b joined to the second chip 16 and a sixth joining portion 24b joined to the fourth chip 15d.
  • the first virtual straight line 26a passing through the center of gravity of the first joint portion 22a and the center of gravity of the second joint portion 23a as viewed in the thickness direction of the substrate 13, the center of gravity of the fourth joint portion 22b, and the center of gravity of the fifth joint portion 23b.
  • the second virtual straight line 26b passing through and is parallel.
  • the distance between the second virtual straight line 26b and the center of gravity of the third joint portion 24a is larger than the distance between the second virtual straight line 26b and the center of gravity of the second joint portion 23a.
  • the distance between the first virtual straight line 26a and the second virtual straight line 26b is defined as d, and the third virtual straight line 26c and the first virtual straight line 26a passing through the center of gravity of the second joint portion 23a and the center of gravity of the third joint portion 24a are formed.
  • the acute angle is ⁇
  • the width of the second bonding portion 23a in the extending direction of the first wire 21a is w
  • the relationship of 0 ⁇ sin ⁇ 1 d/w is established.
  • bending of the second wire 21b can be suppressed as in the semiconductor device 11a according to the first embodiment.
  • the total area of the third chip 15c and the fourth chip 15d is larger than the area of the second chip 16 when viewed in the plate thickness direction of the substrate 13. Therefore, the current flowing to the second chip 16 side can be reduced.
  • the chip including two diodes is provided, but the present invention is not limited to this, and the semiconductor device 11b may include a chip including three or more diodes.
  • FIG. 7 is a schematic plan view of the semiconductor device according to the third embodiment as viewed in the plate thickness direction of the substrate.
  • the third embodiment is different from the first embodiment in that the shape and the number of wires are different.
  • the semiconductor device 11c includes a first wire 41a, a second wire 41b, a third wire 41c, a fourth wire 41d, a fifth wire 41e, and a sixth wire. 41f.
  • the first wire 41a to the sixth wire 41f are arranged in the Y direction in the order of the sixth wire 41f, the fourth wire 41d, the second wire 41b, the first wire 41a, the third wire 41c, and the fifth wire 41e. ..
  • the first wire 41a to the sixth wire 41f electrically connect the first region 14a, the second chip 16, and the first chip 15, respectively.
  • the configurations of the first wire 41a, the third wire 41c, and the fifth wire 41e will be described below.
  • the second wire 41b, the fourth wire 41d, and the sixth wire 41f have the same structure except that the bending directions thereof are different from those of the first wire 41a, the third wire 41c, and the fifth wire 41e. Therefore, these explanations are omitted.
  • the first wire 41a includes a first joining portion 42a joined to the first region 14a, a second joining portion 43a joined to the second chip 16, and a third joining portion 44a joined to the first chip 15.
  • the first wire 41a is bent at the second joint portion 43a.
  • the third wire 41c includes a seventh joint portion 42c joined to the first region 14a, an eighth joint portion 43c joined to the second chip 16, and a ninth joint portion 44c joined to the first chip 15.
  • the third wire 41c is bent at the eighth joint portion 43c.
  • the fifth wire 41e includes a tenth joining portion 42e joined to the first region 14a, an eleventh joining portion 43e joined to the second chip 16, and a twelfth joining portion 44e joined to the first chip 15.
  • the fifth wire 41e is bent at the eleventh joint portion 43e.
  • FIG. 8 is a schematic side view showing the first wire 41a, the third wire 41c, and the fifth wire 41e in the third embodiment.
  • the first wire 41a, the third wire 41c, and the fifth wire 41e are shown side by side.
  • FIG. 8 and FIG. 9, FIG. 11, and FIG. 12 described below the part of the wire that connects the second chip 16 and the first region 14 a of the circuit pattern 14 is omitted.
  • the distance between the second joint portion 43a and the third joint portion 44a is D 1
  • the eighth joint portion 43c and the ninth joint portion 44c is D 2
  • the distance between the D 2 the length of the first wire 41a from the second joint portion 43a to the third joint portion 44a and L 1
  • the difference in length between the first wire 41a and the third wire 41c in the portion connecting the second chip 16 and the first chip 15 can be reduced, and the difference in resistance between the wires can be reduced. You can Therefore, current concentration in the first chip 15 can be avoided, and the resistance of the first chip 15 can be substantially prevented from increasing. Further, it is possible to prevent the electric current from concentrating on a specific wire, and suppress the reduction in the life of the wire due to the heat generation of the wire.
  • the distance between the second joint portion 23a and the third joint portion 24a is D 1
  • the distance between the eighth joint portion 23c and the ninth joint portion 24c is and D 2
  • the length of the third wire 21c from the eighth joint 23c to the ninth joint 24c If L 2 , the relationship of
  • the relationship between the first wire 21a and the third wire 21c is defined, but the relationship between other wires, for example, the first wire 21a and the second wire 21b, is
  • may be established.
  • the distance between the eleventh joint portion 43e and the twelfth joint portion 44e is D 3
  • the fifth wire 41e from the eleventh joint portion 43e to the twelfth joint portion 44e is formed.
  • the length is L 3
  • FIG. 9 is a schematic side view of the semiconductor device when defining the height of the loop of the wire.
  • the wire 41g is joined to the second tip 16 at the second joining portion 43g, and is joined to the first tip 15 at the third joining portion 44g.
  • the maximum value of the length of a line segment perpendicular to the straight line connecting the wire 41g and the straight line passing through the second bonding portion 43g and the third bonding portion 44g is defined as the loop height h of the wire 41g.
  • the maximum length of the line segment perpendicular to this straight line connecting the first wire 41a and the straight line passing through the second bonding portion 43a and the third bonding portion 44a The value is the height h 1 of the first wire 41a.
  • the maximum value of the length of the line segment perpendicular to this straight line connecting the third wire 41c and the straight line that passes through the eighth bonding portion 43c and the ninth bonding portion 44c Let the height be h 2 . Then, when D 1 ⁇ D 2 , by setting h 1 ⁇ h 2 , it becomes easy to establish the relationship of
  • the maximum value of the length of the line segment perpendicular to this straight line connecting the fifth wire 41e with the straight line passing through the eleventh bonding portion 43e and the twelfth bonding portion 44e is defined as the fifth wire.
  • each height h 1 , h 2 , h 3 is preferably longer than 10 ⁇ m in order to avoid exposing the wire. Further, it is preferable that the length is shorter than 3 cm. More preferably, the heights h 1 , h 2 , and h 3 are preferably larger than 100 ⁇ m so that the filler does not become clogged when the filler is contained in the sealing material. Also, it is better to make it smaller than 2 cm in view of practical conditions such as inductance.
  • the difference between the heights h 1 , h 2 , and h 3 is preferably larger than the minimum diameter of the wire, which is 10 ⁇ m. More preferably, the difference between the heights h 1 , h 2 and h 3 should be larger than 100 ⁇ m so that the filler is not clogged for the same reason as above.
  • FIG. 10 is a schematic plan view of the semiconductor device of the fourth embodiment viewed in the plate thickness direction of the substrate.
  • the fourth embodiment is different from the third embodiment in the shape of the wire.
  • the semiconductor device 11d includes a first wire 46a, a second wire 46b, a third wire 46c, a fourth wire 46d, a fifth wire 46e, and a sixth wire. 46f.
  • the first wire 46a to the sixth wire 46f are arranged in the Y direction in the order of the sixth wire 46f, the fourth wire 46d, the second wire 46b, the first wire 46a, the third wire 46c, and the fifth wire 46e. It
  • the first wire 46a to the sixth wire 46f electrically connect the first region 14a, the second chip 16, and the first chip 15, respectively.
  • the configurations of the first wire 46a, the third wire 46c, and the fifth wire 46e will be described below.
  • the second wire 46b, the fourth wire 46d, and the sixth wire 46f have the same structure except that the bending directions thereof are different from those of the first wire 46a, the third wire 46c, and the fifth wire 46e. Therefore, these explanations are omitted.
  • the first wire 46a includes a first joining portion 47a joined to the first region 14a, a second joining portion 48a joined to the second chip 16, and a third joining portion 49a joined to the first chip 15.
  • the first wire 46a is bent at the second joint portion 48a.
  • the third wire 46c includes a seventh joint portion 47c joined to the first region 14a, an eighth joint portion 48c joined to the second chip 16, and a ninth joint portion 49c joined to the first chip 15.
  • the third wire 46c is bent at the eighth joint portion 48c.
  • the fifth wire 46e includes a tenth joint portion 47e joined to the first region 14a, an eleventh joint portion 48e joined to the second chip 16 and a twelfth joint portion 49e joined to the first chip 15.
  • the fifth wire 46e is bent at the eleventh joint portion 48e.
  • FIG. 11 is a schematic side view showing the first wire 46a, the third wire 46c, and the fifth wire 46e in the fourth embodiment. From the viewpoint of easy understanding, in FIG. 11, the first wire 46a, the third wire 46c, and the fifth wire 46e are shown side by side.
  • the distance between the second joint portion 48a and the third joint portion 49a is D 1
  • the eighth joint portion 48c and the ninth joint portion 49c is D 2
  • the distance between the D 2 the length of the first wire 46a from the second junction 48a to the third joint portion 49a and L 1
  • the difference in length between the first wire 46a and the third wire 46c in the portion connecting the second chip 16 and the first chip 15 can be reduced, and the difference in resistance between the wires can be reduced.
  • FIG. 12 is a schematic side view of the semiconductor device when defining the rising angle of the loop at the wire joining portion.
  • the wire 46g is joined to the second tip 16 at the second joining portion 43g and is joined to the first tip 15 at the third joining portion 44g.
  • the length h at which the wire 41g intersects a line perpendicular to a straight line passing through the second joint portion 43g and the third joint portion 44g is taken as the height of the loop of the wire 41g.
  • the derivation of the loop height h is the same as in the case of the third embodiment described above.
  • the tip end portion of the wire bonder at the time of performing stitch bonding can be adjusted by the moving speed of the wire, the wire supply speed in the wire supply unit, and the like.
  • the circuit pattern includes the fourth region located on the opposite side to the first region when viewed in the plate thickness direction of the substrate, and the semiconductor device has the gate pad.
  • the gate wire is provided to connect the second region and the fourth region, the present invention is not limited to this, and the circuit pattern may not have the fourth region.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Wire Bonding (AREA)

Abstract

基板と、第1領域、第1領域と離れて位置する第2領域、第1領域と2領域との間に位置する第3領域と、第1領域と接合される第1接合部、第4接合部と、第2チップと接合される第2接合部、第5接合部と、第1チップと接合される第3接合部、第6接合部と、第1~3接合部を含む第1ワイヤと、第4~6接合部を含み、第1ワイヤと隣り合うよう配置される第2ワイヤとを備え、第1接合部の重心と第2接合部の重心とを通る第1仮想直線と第4接合部の重心と第5接合部の重心とを通る第2仮想直線は平行であり、第2仮想直線と第3接合部の重心との距離は、第2仮想直線と第2接合部の重心との距離よりも大きく、第1仮想直線と第2仮想直線との距離をd、第2接合部及び第3接合部の重心を通る第3仮想直線と第1仮想直線とのなす鋭角の角度をθ、第1ワイヤが延びる方向における第2接合部の幅をwとしたとき、0<θ<sin-1d/wの関係にある半導体装置。

Description

半導体装置
 本開示は、半導体装置に関するものである。
 本出願は、2019年2月13日出願の日本出願第2019-023136号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
 半導体チップを回路基板上に配置した半導体装置が知られている(例えば、特許文献1および特許文献2参照)。回路パターンと半導体チップおよび半導体チップ同士は、ワイヤによって接続される。
特開2014-195082号公報 特開2015-18946号公報
 本開示の第一の局面に従った半導体装置は、基板と、第1領域、第1領域と離れて位置する第2領域および第1領域と第2領域との間に位置する第3領域を含み、基板上に配置される回路パターンと、ダイオードを含み、第2領域に配置される第1チップと、基板の板厚方向において第3領域と対向する面の反対側の面に配置されるソースパッドおよびソースパッドと異なる位置に配置されるゲートパッドを有する縦型トランジスタを含み、第3領域に配置される第2チップと、第1領域と接合される第1接合部、第2チップと接合される第2接合部および第1チップと接合される第3接合部を含む第1ワイヤと、第1領域と接合される第4接合部、第2チップと接合される第5接合部および第1チップと接合される第6接合部を含み、ゲートパッドを挟んで第1ワイヤと隣り合うよう配置される第2ワイヤと、を備える。基板の板厚方向に見て、第1接合部の重心と第2接合部の重心とを通る第1仮想直線と、第4接合部の重心と第5接合部の重心とを通る第2仮想直線とは、平行である。第2仮想直線と第3接合部の重心との距離は、第2仮想直線と第2接合部の重心との距離よりも大きい。第1仮想直線と第2仮想直線との距離をdとし、第2接合部の重心と第3接合部の重心とを通る第3仮想直線と第1仮想直線とのなす鋭角の角度をθとし、第1ワイヤが延びる方向における第2接合部の幅をwとすると、0<θ<sin-1d/wの関係が成立する。
 本開示の第二の局面に従った半導体装置は、基板と、第1領域、第1領域と離れて位置する第2領域および第1領域と第2領域との間に位置する第3領域を含み、基板上に配置される回路パターンと、第1ダイオードを含み、第2領域に配置される第3チップと、第2ダイオードを含み、第2領域の、第3チップとは異なる位置に配置される第4チップと、基板の板厚方向において第3領域と対向する面の反対側の面に配置されるソースパッドおよびソースパッドと異なる位置に配置されるゲートパッドを有する縦型トランジスタを含み、第3領域に配置される第2チップと、第1領域と接合される第1接合部、第2チップと接合される第2接合部および第1チップと接合される第3接合部を含む第1ワイヤと、第1領域と接合される第4接合部、第2チップと接合される第5接合部および第1チップと接合される第6接合部を含み、ゲートパッドを挟んで第1ワイヤと隣り合うよう配置される第2ワイヤと、を備える。基板の板厚方向に見て、第1接合部の重心と第2接合部の重心とを通る第1仮想直線と、第4接合部の重心と第5接合部の重心とを通る第2仮想直線とは、平行である。第2仮想直線と第3接合部の重心との距離は、第2仮想直線と第2接合部の重心との距離よりも大きい。第1仮想直線と第2仮想直線との距離をdとし、第2接合部の重心と第3接合部の重心とを通る第3仮想直線と第1仮想直線とのなす鋭角の角度をθとし、第1ワイヤが延びる方向における第2接合部の幅をwとすると、0<θ<sin-1d/wの関係が成立する。
図1は、実施の形態1における半導体装置の概略断面図である。 図2は、図1に示す半導体装置を基板の板厚方向に見た場合の概略平面図である。 図3は、ワイヤを第2チップに接合する場合の概略断面図である。 図4は、ワイヤを第2チップに接合した状態を示す概略断面図である。 図5は、第2接合部において第1ワイヤを屈曲させて第1ワイヤと第2チップとを接合する状態を示す概略平面図である。 図6は、実施の形態2の半導体装置を基板の板厚方向に見た概略平面図である。 図7は、実施の形態3の半導体装置を基板の板厚方向に見た概略平面図である。 図8は、実施の形態3における第1ワイヤと第3ワイヤと第5ワイヤとを示す概略側面図である。 図9は、ワイヤのループの高さを規定する際の半導体装置の概略側面図である。 図10は、実施の形態4の半導体装置を基板の板厚方向に見た概略平面図である。 図11は、実施の形態4における第1ワイヤと第3ワイヤと第5ワイヤとを示す概略側面図である。 図12は、ワイヤのループの立ち上がり角度を規定する際の半導体装置の概略側面図である。
 [本開示が解決しようとする課題]
 半導体装置の製造工程においては、回路パターンが形成された基板上に半導体チップを配置した後、ワイヤによって回路パターンの一部の領域と半導体チップおよび半導体チップ同士が接続される。ワイヤを回路パターンや半導体チップに接合するためのツール(ボンドツール)と既に設置されたワイヤとが接触すると、ワイヤの折れ曲がりが生じる。その結果、半導体装置の動作不良が生じるおそれがある。製造時におけるワイヤの折れ曲がりを抑制することが求められる。
 そこで、ワイヤの折れ曲がりの抑制を図ることができる半導体装置を提供することを目的の1つとする。
 [本開示の効果]
 上記半導体装置によれば、ワイヤの折れ曲がりの抑制を図ることができる。
 [本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。本開示の第一の局面に係る半導体装置は、基板と、第1領域、第1領域と離れて位置する第2領域および第1領域と第2領域との間に位置する第3領域を含み、基板上に配置される回路パターンと、ダイオードを含み、第2領域に配置される第1チップと、基板の板厚方向において第3領域と対向する面の反対側の面に配置されるソースパッドおよびソースパッドと異なる位置に配置されるゲートパッドを有する縦型トランジスタを含み、第3領域に配置される第2チップと、第1領域と接合される第1接合部、第2チップと接合される第2接合部および第1チップと接合される第3接合部を含む第1ワイヤと、第1領域と接合される第4接合部、第2チップと接合される第5接合部および第1チップと接合される第6接合部を含み、ゲートパッドを挟んで第1ワイヤと隣り合うよう配置される第2ワイヤと、を備える。基板の板厚方向に見て、第1接合部の重心と第2接合部の重心とを通る第1仮想直線と、第4接合部の重心と第5接合部の重心とを通る第2仮想直線とは、平行である。第2仮想直線と第3接合部の重心との距離は、第2仮想直線と第2接合部の重心との距離よりも大きい。第1仮想直線と第2仮想直線との距離をdとし、第2接合部の重心と第3接合部の重心とを通る第3仮想直線と第1仮想直線とのなす鋭角の角度をθとし、第1ワイヤが延びる方向における第2接合部の幅をwとすると、0<θ<sin-1d/wの関係が成立する。
 半導体装置に備えられる縦型トランジスタを含む第2チップにおいて、寄生ダイオードがオン状態となって基底面転位が増大するおそれを低減するために、第2チップと並列にダイオードを含む第1チップを配置することが好ましい。この時、第1チップ、第2チップ、回路パターンの順にステッチボンディングを実施すると、例えばターンオフ時に第2チップにおけるドレイン-ソース間に生ずるサージ電圧に起因するリンギングの発生を低減することができる。
 寄生ダイオードがオン状態になることをより確実に抑制するためには、第1チップの順バイアス時の抵抗を小さくすることが望ましい。第1チップの順バイアス時の抵抗を小さくするべく、基板の板厚方向に見て、第2チップの面積よりも第1チップの面積を大きくする場合がある。面積の大きい第1チップから面積の小さい第2チップに対してワイヤを連続的に接合する際、第2チップとの接合部においてワイヤが屈曲する場合がある。
 ステッチボンディングは、例えばボンドツールを備えるワイヤボンダを用いて実施することができる。上記半導体装置においては、0<θ<sin-1d/wの関係が成立する。すなわち、0<θ<sin-1d/wの関係が成立するように、θを設定する。これにより、第2接合部において屈曲させて第1ワイヤと第2チップとを接合する際に、ボンドツールと既に設置された第2ワイヤとが接触するおそれを低減することができる。したがって、このような半導体装置によれば、ワイヤの折れ曲がりを抑制することができる。なお、平行とは二本の直線が並列に延在することを意味するのであって、幾何学的に厳密な意味での平行をいうものではない。
 上記半導体装置は、第1領域と接合される第7接合部、第2チップと接合される第8接合部および第1チップと接合される第9接合部を含む第3ワイヤをさらに備えてもよい。第2接合部と第3接合部との距離をDとし、第8接合部と第9接合部との距離をDとし、第2接合部から第3接合部までの第1ワイヤの長さをLとし、第8接合部から第9接合部までの第3ワイヤの長さをLとすると、|D-D|>|L-L|の関係が成立してもよい。
 このようにすることにより、第2チップと第1チップとを繋ぐ部分における第1ワイヤと第3ワイヤとの長さの差を小さくして、ワイヤの抵抗の差を小さくすることができる。よって、第1チップ内での電流の集中を回避し、実質的に第1チップの抵抗が上がることを抑制することができる。また、特定のワイヤに電流が集中するのを回避し、ワイヤの発熱に伴うワイヤの寿命の低下を抑制することができる。
 上記半導体装置において、基板の板厚方向に見て、回路パターンは、第1チップから見て第1領域と反対側に位置する第4領域をさらに含んでもよい。半導体装置は、ゲートパッドと第4領域とを接続するゲートワイヤをさらに備えてもよい。このようにすることにより、ゲートワイヤを容易に配置することができる。
 上記半導体装置において、基板の板厚方向に見て、第1チップの面積は、第2チップの面積よりも大きくてもよい。このようにすることにより、第1チップにおける抵抗の低減を図ることができる。
 上記半導体装置において、第2チップは、SiC半導体を含んでもよい。このような高耐圧および低オン抵抗を達成可能な第2チップを採用することにより、高性能な半導体装置を得ることができる。
 上記半導体装置において、第1チップは、SiC半導体を含んでもよい。このような高耐圧および低抵抗を達成可能な第1チップを採用することにより、高性能な半導体装置を得ることができる。
 本開示の第二の局面に係る半導体装置は、基板と、第1領域、第1領域と離れて位置する第2領域および第1領域と第2領域との間に位置する第3領域を含み、基板上に配置される回路パターンと、第1ダイオードを含み、第2領域に配置される第3チップと、第2ダイオードを含み、第2領域の、第3チップとは異なる位置に配置される第4チップと、基板の板厚方向において第3領域と対向する面の反対側の面に配置されるソースパッドおよびソースパッドと異なる位置に配置されるゲートパッドを有する縦型トランジスタを含み、第3領域に配置される第2チップと、第1領域と接合される第1接合部、第2チップと接合される第2接合部および第1チップと接合される第3接合部を含む第1ワイヤと、第1領域と接合される第4接合部、第2チップと接合される第5接合部および第1チップと接合される第6接合部を含み、ゲートパッドを挟んで第1ワイヤと隣り合うよう配置される第2ワイヤと、を備える。基板の板厚方向に見て、第1接合部の重心と第2接合部の重心とを通る第1仮想直線と、第4接合部の重心と第5接合部の重心とを通る第2仮想直線とは、平行である。第2仮想直線と第3接合部の重心との距離は、第2仮想直線と第2接合部の重心との距離よりも大きい。第1仮想直線と第2仮想直線との距離をdとし、第2接合部の重心と第3接合部の重心とを通る第3仮想直線と第1仮想直線とのなす鋭角の角度をθとし、第1ワイヤが延びる方向における第2接合部の幅をwとすると、0<θ<sin-1d/wの関係が成立する。
 このような半導体装置によれば、上記第一の局面に係る半導体装置と同様に、ワイヤの折れ曲がりを抑制することができる。
 上記半導体装置において、基板の板厚方向に見て、第1チップおよび第3チップの総面積は、第2チップの面積よりも大きくてもよい。このようにすることにより、第2チップ側へ流れる電流を少なくすることができる。
 [本開示の実施形態の詳細]
 次に、本開示の半導体装置の一実施形態を、図面を参照しつつ説明する。以下の図面において同一または相当する部分には同一の参照符号を付しその説明は繰り返さない。
 (実施の形態1)
 本開示の実施の形態1における半導体装置の構成について説明する。図1は、実施の形態1における半導体装置の概略断面図である。図2は、図1に示す半導体装置を基板の板厚方向に見た場合の概略平面図である。
 図1および図2を参照して、実施の形態1における半導体装置11aは、放熱板12と、放熱板12上に配置され、基板13と、回路パターン14と、ダイオードを含む第1チップ15と、縦型トランジスタを含む第2チップ16とを備える。
 放熱板12は、金属製である。放熱板12は、例えば銅製である。放熱板12の表面には、例えばニッケルめっき処理が施される。放熱板12の平面形状は、例えば長方形である。放熱板12の一方の主面12a上に基板13が配置される。放熱板12の他方の主面12bには、例えば放熱を効率的に行うための放熱フィン(図示しない)等が取り付けられる場合がある。
 基板13は、絶縁性を有する。基板13は、例えばセラミック製である。基板13は、例えばAlN、SiNおよびAlのうちの少なくともいずれか一つから構成される。基板13は、ガラス製であってもよい。基板13の平面形状は、例えば長方形である。基板13は、放熱板12の一方の主面12aと基板13の他方の主面13bとが接触するよう配置される。
 回路パターン14は、基板13上に配置される。具体的には、回路パターン14は、基板13の一方の主面13a上に配置される。回路パターン14は、例えば銅製である。回路パターン14は、具体的には銅配線である。回路パターン14は、第1領域14a、第2領域14b、第3領域14cおよび第4領域14d、を含む。第2領域14bは、第1領域14aと離れて位置する。第3領域14cは、第1領域14aと第2領域14bとの間に位置する。第2領域14bには、第1チップ15が配置される。第3領域14cには、第2チップ16が配置される。第4領域14dは、第1チップ15から見て第1領域14aと反対側に位置する。
 第1チップ15は、例えばショットキーバリアダイオードを含むチップである。第1チップ15の平面形状は、例えば長方形である。すなわち、基板13の板厚方向に見て、第1チップ15は、長方形状を有する。第1チップ15において、第2領域14bに接触する面15b側にカソード電極が配置され、面15bと基板13の板厚方向の反対側の面15a側にアノード電極が配置される。第1チップ15は、SiC半導体層を含む。SiC半導体層は、アノード電極とカソード電極との間に配置される。
 第2チップ16は、例えば縦型のMOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)である。第2チップ16の平面形状は、例えば長方形である。すなわち、基板13の板厚方向に見て、第2チップ16は、長方形状を有する。第2チップ16は、基板13の板厚方向において第3領域14cと対向する面16bの反対側の面16aに配置されるソースパッド18およびソースパッド18と異なる位置に配置されるゲートパッド17を有する。第2チップ16において、第3領域14cに接触する面16b側にドレイン電極が配置され、面16bと基板13の板厚方向の反対側の面16a側にソースパッド18と電気的に接続されるソース電極およびゲートパッド17が配置される。ゲートパッド17は、第2チップ16のゲート電極と電気的に接続される。第2チップ16は、SiC半導体層を含む。SiC半導体層は、ドレイン電極とソース電極との間に配置される。
 基板13の板厚方向に見て、第1チップ15の面積は、第2チップ16の面積よりも大きい。本実施形態においては、第1チップ15のX方向の長さは、第2チップ16のX方向の長さよりも長い。第1チップ15のY方向の長さは、第2チップ16のY方向の長さよりも長い。第1チップ15の面積を広く確保することにより、後述するワイヤを多く接続することが容易となるので、第1チップ15の抵抗を下げることが容易となる。
 第2チップ16は、基板13の板厚方向に見て、第1領域14aと第1チップ15との間に配置される。半導体装置11aにおいては、基板13の板厚方向に見て、X方向に沿って、回路パターン14の第1領域14a、第2チップ16、第1チップ15、回路パターン14の第4領域14dの順に並んで配置される。
 半導体装置11aは、第1ワイヤ21aと、第2ワイヤ21bと、第3ワイヤ21cと、第4ワイヤ21dとを備える。第1ワイヤ21a~第4ワイヤ21dは、Y方向において、第4ワイヤ21d、第2ワイヤ21b、第1ワイヤ21a、第3ワイヤ21cの順に並んで配置される。第3ワイヤ21cと第4ワイヤ21dとがY方向において両端に位置する。Y方向において、第1ワイヤ21aと第2ワイヤ21bとの間に、ゲートパッド17が配置される。
 第1ワイヤ21a、第2ワイヤ21b、第3ワイヤ21cおよび第4ワイヤ21dはそれぞれ、回路パターン14の第1領域14a、第2チップ16および第1チップ15を電気的に接続する。第1ワイヤ21a、第2ワイヤ21b、第3ワイヤ21c、第4ワイヤ21dは、第1領域14aと第2チップ16とが接続される領域において、それぞれX方向に沿って平行に配置される。第1ワイヤ21aを構成する材料としては、例えばアルミニウムを採用することができる。第2ワイヤ21b、第3ワイヤ21c、第4ワイヤ21dを構成する材料についても同様である。
 第1ワイヤ21aは、第1領域14aと接合される第1接合部22a、第2チップ16と接合される第2接合部23aおよび第1チップ15と接合される第3接合部24aを含む。回路パターン14の第1領域14a、第2チップ16および第1チップ15は、第1ワイヤ21aにより連続的に接続される。第1ワイヤ21aは、ステッチボンディングにより、回路パターン14の第1領域14a、第2チップ16および第1チップ15に接合される。第1ワイヤ21aは、第2接合部23aにおいて屈曲して接合される。第1ワイヤ21aは、第3接合部24aが第3ワイヤ21cに近づくように屈曲して接合される。
 第2ワイヤ21bは、ゲートパッド17を挟んで第1ワイヤ21aと隣り合うように配置される。第2ワイヤ21bは、第1領域14aと接合される第4接合部22b、第2チップ16と接合される第5接合部23bおよび第1チップ15と接合される第6接合部24bを含む。回路パターン14の第1領域14a、第2チップ16および第1チップ15は、第2ワイヤ21bにより連続的に接続される。第2ワイヤ21bは、ステッチボンディングにより、回路パターン14の第1領域14a、第2チップ16および第1チップ15に接合される。第2ワイヤ21bは、第5接合部23bにおいて屈曲して接合される。第2ワイヤ21bは、第6接合部24bが第4ワイヤ21dに近づくように屈曲して接合される。
 第3ワイヤ21cは、Y方向において第1ワイヤ21aと間隔をあけて配置される。第3ワイヤ21cは、第1領域14aと接合される第7接合部22c、第2チップ16と接合される第8接合部23cおよび第1チップ15と接合される第9接合部24cを含む。第3ワイヤ21cは、第1ワイヤ21aと同様に、ステッチボンディングにより、回路パターン14の第1領域14a、第2チップ16および第1チップ15に接合される。第3ワイヤ21cは、第8接合部23cにおいて屈曲して接合される。第3ワイヤ21cは、第9接合部24cが第1ワイヤ21aから遠ざかるよう屈曲して接合される。
 第4ワイヤ21dは、第2ワイヤ21bと同様に、ステッチボンディングにより、回路パターン14の第1領域14a、第2チップ16および第1チップ15に接合される。回路パターン14の第1領域14a、第2チップ16および第1チップ15は、合計4本のワイヤによって連続的に接続されている。
 半導体装置11aにおいて、第2接合部23aと第3接合部24aとの距離をDとし、第8接合部23cと第9接合部24cとの距離をDとし、第2接合部23aから第3接合部24aまでの第1ワイヤ21aの長さをLとし、第8接合部23cから第9接合部24cまでの第3ワイヤ21cの長さをLとすると、|D-D|>|L-L|の関係が成立する。これについては、実施の形態3において詳細に述べる。
 半導体装置11aは、ゲートワイヤ25を備える。ゲートワイヤ25によりゲートパッド17と第4領域14dとが接続される。ゲートワイヤ25は、X方向に沿って延びるように配置される。ゲートワイヤ25とゲートパッド17との接合部は、Y方向において、第1ワイヤ21aと第2ワイヤ21bとの間に位置する。
 基板13の板厚方向に見て、第1接合部22aの重心と第2接合部23aの重心とを通る第1仮想直線26aと、第4接合部22bの重心と第5接合部23bの重心とを通る第2仮想直線26bとは、平行である。ここで、第1接合部22aの重心とは、例えば第1接合部22aがX方向およびY方向にそれぞれ幅を有する場合には、その幅のX方向およびY方向のそれぞれの中間部分をいう。他の接合部についても同様である。第2仮想直線26bと第3接合部24aとの距離は、第2仮想直線26bと第2接合部23aとの距離よりも大きい。すなわち、第2接合部23aの重心と第3接合部24aの重心とを通る第3仮想直線26cと、第1仮想直線26aとは、交差している。第1仮想直線26a、第2仮想直線26bおよび第3仮想直線26cはそれぞれ破線で図示している。
 第1仮想直線26aと第2仮想直線26bとの距離をdとし、第2接合部23aの重心と第3接合部24aの重心とを通る第3仮想直線26cと第1仮想直線26aとのなす鋭角の角度をθとし、第1ワイヤ21aが延びる方向における第2接合部23aの幅をwとすると、0<θ<sin-1d/wの関係が成立する。これについては、後述する。
 半導体装置11aによると、第2チップ16と並列に第1チップ15を配置している。第1チップ15、第2チップ16、回路パターン14の順にステッチボンディングが実施されている。したがって、半導体装置11aにおいて、例えばターンオフ時に第2チップ16におけるドレイン-ソース間に生ずるサージ電圧に起因するリンギングの発生を低減することができる。
 半導体装置11aでは、第1チップ15の順バイアス時の抵抗を小さくするべく、基板13の板厚方向に見て、第2チップ16の面積よりも第1チップ15の面積を大きい。面積の大きい第1チップ15から面積の小さい第2チップ16に対してワイヤを連続的に接合する際、第2チップ16との接合部においてワイヤを屈曲している。
 本実施形態においては、基板13の板厚方向に見て、第1チップ15の面積は、第2チップ16の面積よりも大きい。したがって、第1チップ15における抵抗の低減を図ることができる。
 本実施形態においては、基板13の板厚方向に見て、回路パターン14は、第1チップ15から見て第1領域14aと反対側に位置する第4領域14dを含む。半導体装置11aは、ゲートパッド17と第4領域14dとを接続するゲートワイヤ25を備えている。したがって、ゲートワイヤ25を容易に配置することができる。
 本実施形態においては、第2チップ16は、SiC半導体を含む。高耐圧および低オン抵抗を達成可能なこのような第2チップ16を採用することにより、高性能な半導体装置11aを得ることができる。
 本実施形態において、第1チップ15は、SiC半導体を含む。高耐圧および低抵抗を達成可能なこのような第1チップ15を採用することにより、高性能な半導体装置11aを得ることができる。
 次に、上記半導体装置11aの製造方法の一例について簡単に説明する。まず回路パターン14を有する基板13および放熱板12を準備する。そして、放熱板12上に基板13を配置し、回路パターン14の第3領域14cの上に第2チップ16を配置し、第2領域14bの上に第1チップ15を配置する。その後、リフローはんだ付けにより放熱板12と基板13とを接合すると共に、第2チップ16および第1チップ15を回路パターン14に接合する。その後、ステッチボンディングによって、回路パターン14と第2チップ16と第1チップ15とをワイヤにより接合する。ここで、第1ワイヤ21a、第2ワイヤ21b、第3ワイヤ21cおよび第4ワイヤ21dのステッチボンディングについては、最後に第1ワイヤ21aのステッチボンディングを行うようにする。例えば、第4ワイヤ21d、第2ワイヤ21b、第3ワイヤ21c、第1ワイヤ21aの順にステッチボンディングを行う。また、図示しない端子と回路パターン14等とのワイヤによる接合を行う。その後、樹脂により封止する。このようにして半導体装置11aを製造する。
 次に、半導体装置11aの製造方法において、ワイヤをステッチボンディングにより接合する工程について説明する。図3は、ワイヤを第2チップ16に接合する場合の概略断面図である。図4は、ワイヤを第2チップ16に接合した状態を示す概略断面図である。
 図3および図4を参照して、ワイヤ31のステッチボンディングについては、例えばワイヤボンダ先端部36を備えるワイヤボンダ33を用いて実施することができる。図3において、ワイヤボンダ先端部36の外形形状の概略を破線で示している。ワイヤボンダ先端部36は、ワイヤ31と接触する接触部34を有するボンドツール32と、ワイヤ31を供給するワイヤ供給部35とを含む。
 ワイヤボンダ先端部36は、ワイヤ供給部35から随時ワイヤ31を供給しながら矢印Bで示す方向に移動する。移動時において、ワイヤ供給部35からワイヤ31を供給しながらボンドツール32の接触部34をワイヤ31に接触させて超音波振動させることにより、ワイヤ31を第2チップ16の面16aに接合する。ここで、ワイヤボンダ33においては、ボンドツール32の接触部34によって接合される接合幅wに加えて移動における進行方向において、ワイヤ供給部35のスペースを確保する必要があるため、接合幅wと同等の幅Cが必要となる。接合幅wは、図4において、ワイヤ31が延びる方向における第2接合部23aの両端部37a,37bの間隔で示される。
 図5は、第2接合部23aにおいて第1ワイヤ21aを屈曲させて第1ワイヤ21aと第2チップ16とを接合する状態を示す概略平面図である。なお、図5においては、理解の容易の観点から、第1ワイヤ21aおよび第2ワイヤ21bの太さを誇張して太く図示している。
 図5を参照して、上記したように半導体装置11aにおいては、0<θ<sin-1d/wの関係が成立する。よって、第2接合部23aにおいて屈曲させて第1ワイヤ21aと第2チップ16とを接合する際に、ワイヤボンダ先端部36と既に設置された第2ワイヤ21bとが接触するおそれを低減することができる。すなわち、上記半導体装置11aにおいては、第1仮想直線26aと第3仮想直線26cとのなす鋭角の角度θをできるだけ小さくして、ステッチボンディング時におけるワイヤボンダ33と第2ワイヤ21bとの接触を抑制しようとするものである。したがって、上記した半導体装置11aによれば、第2ワイヤ21bの折れ曲がりを抑制することができる。
 (実施の形態2)
 次に、他の実施の形態である実施の形態2について説明する。図6は、実施の形態2の半導体装置を基板の板厚方向に見た概略平面図である。実施の形態2は、ダイオードを含むチップが複数個配置される点において実施の形態1の場合とは異なっている。
 図1、図2および図6を参照して、実施の形成2の半導体装置11bは、実施の形態1の半導体装置11aの第1チップ15に代えてY方向に並ぶ2つの第3チップ15c、第4チップ15dが配置されている点において実施の形態1と異なる。
 実施の形態2における半導体装置11bは、基板13と、回路パターン14と、第2チップ16と、第3チップ15cと、第4チップ15dとを備える。回路パターン14は、第1領域14a、第2領域14b、第3領域14cおよび第4領域14d、を含む。第2領域14bは、第1領域14aと離れて位置する。第3領域14cは、第1領域14aと第2領域14bとの間に位置する。第3チップ15cは、第1ダイオードを含む。第3チップ15cは、第2領域14bに配置される。第4チップ15dは、第2ダイオードを含む。第4チップ15dは、第2領域14bの、第3チップ15cとは異なる位置に配置される。具体的には、第3チップ15cと第4チップ15dとは、Y方向に間隔をあけて配置される。第4領域14dは、第3チップ15cおよび第4チップ15dから見て第1領域14aと反対側に位置する。本実施形態においては、第3チップ15cと第4領域14dとのX方向の距離は、第4チップ15dと第4領域14dとのX方向の距離と同じである。
 半導体装置11bは、第1ワイヤ21aと、第2ワイヤ21bと、を備える。第1ワイヤ21aは、第1領域14aと接合される第1接合部22a、第2チップ16と接合される第2接合部23aおよび第3チップ15cと接合される第3接合部24aを含む。第2ワイヤ21bは、ゲートパッド17を挟んで第1ワイヤ21aと隣り合うよう配置される。第2ワイヤ21bは、第1領域14aと接合される第4接合部22b、第2チップ16と接合される第5接合部23bおよび第4チップ15dと接合される第6接合部24bを含む。
 基板13の板厚方向に見て、第1接合部22aの重心と第2接合部23aの重心とを通る第1仮想直線26aと、第4接合部22bの重心と第5接合部23bの重心とを通る第2仮想直線26bとは、平行である。第2仮想直線26bと第3接合部24aの重心との距離は、第2仮想直線26bと第2接合部23aの重心との距離よりも大きい。第1仮想直線26aと第2仮想直線26bとの距離をdとし、第2接合部23aの重心と第3接合部24aの重心とを通る第3仮想直線26cと第1仮想直線26aとのなす鋭角の角度をθとし、第1ワイヤ21aが延びる方向における第2接合部23aの幅をwとすると、0<θ<sin-1d/wの関係が成立する。
 このような半導体装置11bによれば、実施の形態1における半導体装置11aと同様に、第2ワイヤ21bの折れ曲がりを抑制することができる。
 本実施形態において、基板13の板厚方向に見て、第3チップ15cおよび第4チップ15dの総面積は、第2チップ16の面積よりも大きい。したがって、第2チップ16側へ流れる電流を少なくすることができる。
 なお、本実施形態においては、2つのダイオードを含むチップを備えることとしたが、これに限らず、半導体装置11bは、3つ以上のダイオードを含むチップを備えてもよい。
 (実施の形態3)
 次に、さらに他の実施の形態である実施の形態3について説明する。図7は、実施の形態3の半導体装置を基板の板厚方向に見た概略平面図である。実施の形態3は、ワイヤの形状および数量が異なる点において実施の形態1の場合とは異なっている。
 図7を参照して、実施の形態3における半導体装置11cは、第1ワイヤ41aと、第2ワイヤ41bと、第3ワイヤ41cと、第4ワイヤ41dと、第5ワイヤ41eと、第6ワイヤ41fとを備える。第1ワイヤ41a~第6ワイヤ41fは、Y方向において第6ワイヤ41f、第4ワイヤ41d、第2ワイヤ41b、第1ワイヤ41a、第3ワイヤ41c、第5ワイヤ41eの順に並んで配置される。第1ワイヤ41a~第6ワイヤ41fはそれぞれ、第1領域14aと第2チップ16と第1チップ15とを電気的に接続する。以下、第1ワイヤ41a、第3ワイヤ41cおよび第5ワイヤ41eの構成について説明する。なお、第2ワイヤ41b、第4ワイヤ41dおよび第6ワイヤ41fの構成は、屈曲する向きが第1ワイヤ41a、第3ワイヤ41cおよび第5ワイヤ41eとそれぞれ異なるだけで、同様の構成である。よって、これらの説明を省略する。
 第1ワイヤ41aは、第1領域14aと接合される第1接合部42a、第2チップ16と接合される第2接合部43aおよび第1チップ15と接合される第3接合部44aを含む。第1ワイヤ41aは、第2接合部43aにおいて、屈曲している。第3ワイヤ41cは、第1領域14aと接合される第7接合部42c、第2チップ16と接合される第8接合部43cおよび第1チップ15と接合される第9接合部44cを含む。第3ワイヤ41cは、第8接合部43cにおいて、屈曲している。第5ワイヤ41eは、第1領域14aと接合される第10接合部42e、第2チップ16と接合される第11接合部43eおよび第1チップ15と接合される第12接合部44eを含む。第5ワイヤ41eは、第11接合部43eにおいて、屈曲している。
 図8は、実施の形態3における第1ワイヤ41aと第3ワイヤ41cと第5ワイヤ41eとを示す概略側面図である。理解の容易の観点から、図8において、第1ワイヤ41aと第3ワイヤ41cと第5ワイヤ41eとを並べて図示している。図8および以下に示す図9、図11、図12において、ワイヤのうち、第2チップ16と回路パターン14の第1領域14aとを繋ぐ部分の図示を省略している。
 図7および図8を参照して、実施の形態3における半導体装置11cにおいて、第2接合部43aと第3接合部44aとの距離をDとし、第8接合部43cと第9接合部44cとの距離をDとし、第2接合部43aから第3接合部44aまでの第1ワイヤ41aの長さをLとし、第8接合部43cから第9接合部44cまでの第3ワイヤ41cの長さをLとすると、|D-D|>|L-L|の関係が成立する。
 このようにすることにより、第2チップ16と第1チップ15とを繋ぐ部分における第1ワイヤ41aと第3ワイヤ41cとの長さの差を小さくして、ワイヤの抵抗の差を小さくすることができる。よって、第1チップ15内での電流の集中を回避し、実質的に第1チップ15の抵抗が上がることを抑制することができる。また、特定のワイヤに電流が集中するのを回避し、ワイヤの発熱に伴うワイヤの寿命の低下を抑制することができる。
 なお、上記した実施の形態1については、半導体装置11aにおいて、第2接合部23aと第3接合部24aとの距離をDとし、第8接合部23cと第9接合部24cとの距離をDとし、第2接合部23aから第3接合部24aまでの第1ワイヤ21aの長さをLとし、第8接合部23cから第9接合部24cまでの第3ワイヤ21cの長さをLとすると、|D-D|>|L-L|の関係が成立する。このようにすることにより、実施の形態3と同様に、第2チップ16と第1チップ15とを繋ぐ部分における第1ワイヤ21aと第3ワイヤ21cとの長さの差を小さくして、ワイヤの抵抗の差を小さくすることができる。よって、第1チップ15内での電流の集中を回避し、実質的に第1チップ15の抵抗が上がることを抑制することができる。また、特定のワイヤに電流が集中するのを回避し、ワイヤの発熱に伴うワイヤの寿命の低下を抑制することができる。なお、実施の形態1において、第1ワイヤ21aと第3ワイヤ21cとの関係について規定したが、他のワイヤ、例えば第1ワイヤ21aと第2ワイヤ21bとの関係について、上記した|D-D|>|L-L|の関係が成立するようにしてもよい。
 また、実施の形態3における半導体装置11cにおいては、第11接合部43eと第12接合部44eとの距離をDとし、第11接合部43eから第12接合部44eまでの第5ワイヤ41eの長さをLとすると、|D-D|>|L-L|の関係が成立する。また、|D-D|>|L-L|の関係が成立する。このようにすることにより、第1チップ15の抵抗が上がることを抑制することができ、ワイヤの発熱に伴うワイヤの寿命の低下を抑制することができる。
 具体的には、例えば第1ワイヤ41aと第3ワイヤ41cと第5ワイヤ41eのそれぞれのワイヤのループの高さが異なる構造を採用することができる。ここで、ワイヤのループの高さの定義について説明する。図9は、ワイヤのループの高さを規定する際の半導体装置の概略側面図である。
 図9を参照して、ワイヤ41gは、第2チップ16と第2接合部43gにおいて接合され、第1チップ15と第3接合部44gにおいて接合される。第2接合部43gと第3接合部44gとを通る直線と、ワイヤ41gとを結ぶこの直線に垂直な線分の長さの最大値を、ワイヤ41gのループの高さhとする。
 図8を再び参照して、第1ワイヤ41aにおいて、第2接合部43aと第3接合部44aとを通る直線と、第1ワイヤ41aとを結ぶこの直線に垂直な線分の長さの最大値を、第1ワイヤ41aの高さhとする。第3ワイヤ41cにおいて、第8接合部43cと第9接合部44cとを通る直線と、第3ワイヤ41cとを結ぶこの直線に垂直な線分の長さの最大値を、第3ワイヤ41cの高さhとする。そして、D≦Dの場合、h≧hとすることにより、|D-D|>|L-L|の関係を成立させることが容易となる。
 また、第5ワイヤ41eにおいて、第11接合部43eと第12接合部44eとを通る直線と、第5ワイヤ41eとを結ぶこの直線に垂直な線分の長さの最大値を、第5ワイヤ41eの高さhとする。そして、D≦Dの場合、h≧hとすることにより、|D-D|>|L-L|の関係を成立させることが容易となる。また、D≦Dの場合、h≧hとすることにより、|D-D|>|L-L|の関係を成立させることが容易となる。
 なお、第1ワイヤ41aおよび第3ワイヤ41cと第5ワイヤ41eとの関係においては、D≦D≦Dの場合、h≧h≧hとする。このようにすることにより、それぞれのワイヤについて、|D-D|>|L-L|の関係、|D-D|>|L-L|の関係および|D-D|>|L-L|の関係を成立させることが容易となる。
 なお、用いられる一般的なワイヤの最小径は10μmである。また、半導体装置11cにおいて樹脂により封止する際の封止材の高さとしては、一般的には3cmである。したがって、各高さh,h、hについては、ワイヤの露出を避けるためにも、10μmより長くすることが好ましい。また、3cmよりも短くすることが好ましい。より好ましくは、各高さh,h、hについては、封止材にフィラーが含有される場合にフィラーが詰まらないよう100μmよりも大きくするのが良い。またインダクタンス等の実用上の条件より2cmよりも小さくするのが良い。
 また、高さh,h、h同士の差については、ワイヤの最小径である10μmよりも大きくすることが好ましい。より好ましくは、高さh,h、h同士の差については、上記と同様の理由でフィラーが詰まらないように100μmよりも大きくするのが良い。
 (実施の形態4)
 次に、さらに他の実施の形態である実施の形態4について説明する。図10は、実施の形態4の半導体装置を基板の板厚方向に見た概略平面図である。実施の形態4は、ワイヤの形状において実施の形態3の場合とは異なっている。
 図10を参照して、実施の形態4における半導体装置11dは、第1ワイヤ46aと、第2ワイヤ46bと、第3ワイヤ46cと、第4ワイヤ46dと、第5ワイヤ46eと、第6ワイヤ46fとを備える。第1ワイヤ46a~第6ワイヤ46fは、Y方向において、第6ワイヤ46f、第4ワイヤ46d、第2ワイヤ46b、第1ワイヤ46a、第3ワイヤ46c、第5ワイヤ46eの順に並んで配置される。第1ワイヤ46a~第6ワイヤ46fはそれぞれ、第1領域14aと第2チップ16と第1チップ15とを電気的に接続する。以下、第1ワイヤ46aと第3ワイヤ46cと第5ワイヤ46eの構成について説明する。なお、第2ワイヤ46b、第4ワイヤ46dおよび第6ワイヤ46fの構成は、屈曲する向きが第1ワイヤ46a、第3ワイヤ46cおよび第5ワイヤ46eとそれぞれ異なるだけで、同様の構成である。よって、これらの説明を省略する。
 第1ワイヤ46aは、第1領域14aと接合される第1接合部47a、第2チップ16と接合される第2接合部48aおよび第1チップ15と接合される第3接合部49aを含む。第1ワイヤ46aは、第2接合部48aにおいて屈曲している。第3ワイヤ46cは、第1領域14aと接合される第7接合部47c、第2チップ16と接合される第8接合部48cおよび第1チップ15と接合される第9接合部49cを含む。第3ワイヤ46cは、第8接合部48cにおいて屈曲している。第5ワイヤ46eは、第1領域14aと接合される第10接合部47e、第2チップ16と接合される第11接合部48eおよび第1チップ15と接合される第12接合部49eを含む。第5ワイヤ46eは、第11接合部48eにおいて屈曲している。
 図11は、実施の形態4における第1ワイヤ46aと第3ワイヤ46cと第5ワイヤ46eとを示す概略側面図である。理解の容易の観点から、図11において、第1ワイヤ46aと第3ワイヤ46cと第5ワイヤ46eとを並べて図示している。
 図10および図11を参照して、実施の形態4における半導体装置11dにおいて、第2接合部48aと第3接合部49aとの距離をDとし、第8接合部48cと第9接合部49cとの距離をDとし、第2接合部48aから第3接合部49aまでの第1ワイヤ46aの長さをLとし、第8接合部48cから第9接合部49cまでの第3ワイヤ46cの長さをLとすると、|D-D|>|L-L|の関係が成立する。
 このようにすることにより、第2チップ16と第1チップ15とを繋ぐ部分における第1ワイヤ46aと第3ワイヤ46cとの長さの差を小さくして、ワイヤの抵抗の差を小さくすることができる。よって、第1チップ15内での電流の集中を回避し、実質的に第1チップ15の抵抗が上がることを抑制することができる。また、特定のワイヤに電流が集中するのを回避し、ワイヤの発熱に伴うワイヤの寿命の低下を抑制することができる。
 具体的には、例えば第1ワイヤ41aと第3ワイヤ41cと第5ワイヤ41eのそれぞれのワイヤの接合部におけるループの立ち上がりの角度が異なる構造を採用することができる。ここで、ワイヤの接合部におけるループの立ち上がりの角度の定義について説明する。図12は、ワイヤの接合部におけるループの立ち上がり角度を規定する際の半導体装置の概略側面図である。
 図12を参照して、ワイヤ46gは、第2チップ16と第2接合部43gにおいて接合され、第1チップ15と第3接合部44gにおいて接合される。第2接合部43gと第3接合部44gとを通る直線と垂直な線とワイヤ41gとの交わる長さhを、ワイヤ41gのループの高さとする。ループの高さhの導出については、上記した実施の形態3の場合と同様である。そして、ワイヤのループの高さの半分の高さである1/2hの位置において、第2接合部48gに近いワイヤ46gとの交点50aと第2接合部48gとを通る直線と、第2接合部48gと第3接合部49gとを通る直線とのなす鋭角の角度をθとする。また、1/2hの位置において、第3接合部49gに近いワイヤ46gとの交点50bと第3接合部49gとを通る直線と第2接合部48gと第3接合部49gとを通る直線とのなす鋭角の角度をθとする。θ+θ=θとする。θF1+θS1=θとする。θF2+θS2=θとする。そして、D≦Dの場合、θ≧θとする。このようにすることにより、|D-D|>|L-L|の関係を成立させることが容易となる。
 また、第5ワイヤ46eにおいて、θF3+θS3=θとして、同様に角度θを導出する。そして、D≦Dの場合、θ≧θとすることにより、|D-D|>|L-L|の関係を成立させることが容易となる。また、D≦Dの場合、θ≧θとすることにより、|D-D|>|L-L|の関係を成立させることが容易となる。
 なお、第1ワイヤ46aおよび第3ワイヤ46cと第5ワイヤ46eとの関係においては、D≦D≦Dの場合、θ≧θ≧θとする。このようにすることにより、それぞれのワイヤについて、|D-D|>|L-L|の関係、|D-D|>|L-L|の関係および|D-D|>|L-L|の関係を成立させることが容易となる。
 なお、上記した実施の形態4におけるワイヤの接合部におけるループの立ち上がりの角度の調整や、実施の形態3におけるワイヤのループの高さの調整については、例えば、ステッチボンディングを行う際のワイヤボンダ先端部の移動速度やワイヤ供給部におけるワイヤの供給速度等によって調整することができる。
 (他の実施の形態)
 なお、上記の実施の形態においては、基板の板厚方向に見て、回路パターンは、第1チップから見て第1領域と反対側に位置する第4領域を含み、半導体装置は、ゲートパッドと第4領域とを接続するゲートワイヤを備えることとしたが、これに限らず、回路パターンは、第4領域を有しない構成としてもよい。
 今回開示された実施の形態はすべての点で例示であって、どのような面からも制限的なものではないと理解されるべきである。本発明の範囲は上記した説明ではなく、請求の範囲によって規定され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
11a,11b,11c,11d 半導体装置
12 放熱板
12a,12b,13a,13b 主面
13 基板
14 回路パターン
14a 第1領域
14b 第2領域
14c 第3領域
14d 第4領域
15 第1チップ
15a,15b,16a,16b 面
15c 第3チップ
15d 第4チップ
16 第2チップ
17 ゲートパッド
18 ソースパッド
21a,41a,46a 第1ワイヤ
21b,41b,46b 第2ワイヤ
21c,41c,46c 第3ワイヤ
21d,41d,46d 第4ワイヤ
22a,42a,47a 第1接合部
22b 第4接合部
23a,43a,43g,48a 第2接合部
23b 第5接合部
24a,44a,44g,49a 第3接合部
24b 第6接合部
25 ゲートワイヤ
26a 第1仮想直線
26b 第2仮想直線
26c 第3仮想直線
31 ワイヤ
32 ワイヤツール
33 ワイヤボンダ
34 接触部
35 ワイヤ供給部
36 ワイヤボンダ先端部
37a,37b 端部
41e,46e 第5ワイヤ
41f,46f 第6ワイヤ
42c,47c 第7接合部
42e,47e 第10接合部
43c,48c 第8接合部
43e,48e 第11接合部
44c,49c 第9接合部
44e,49e 第12接合部
50a,50b 交点
 

Claims (8)

  1.  基板と、
     第1領域、前記第1領域と離れて位置する第2領域および前記第1領域と前記第2領域との間に位置する第3領域を含み、前記基板上に配置される回路パターンと、
     ダイオードを含み、前記第2領域に配置される第1チップと、
     前記基板の板厚方向において前記第3領域と対向する面の反対側の面に配置されるソースパッドおよび前記ソースパッドと異なる位置に配置されるゲートパッドを有する縦型トランジスタを含み、前記第3領域に配置される第2チップと、
     前記第1領域と接合される第1接合部、前記第2チップと接合される第2接合部および前記第1チップと接合される第3接合部を含む第1ワイヤと、
     前記第1領域と接合される第4接合部、前記第2チップと接合される第5接合部および前記第1チップと接合される第6接合部を含み、前記ゲートパッドを挟んで前記第1ワイヤと隣り合うよう配置される第2ワイヤと、を備え、
     前記基板の板厚方向に見て、
     前記第1接合部の重心と前記第2接合部の重心とを通る第1仮想直線と、前記第4接合部の重心と前記第5接合部の重心とを通る第2仮想直線とは、平行であり、
     前記第2仮想直線と前記第3接合部の重心との距離は、前記第2仮想直線と前記第2接合部の重心との距離よりも大きく、
     前記第1仮想直線と前記第2仮想直線との距離をdとし、前記第2接合部の重心と前記第3接合部の重心とを通る第3仮想直線と前記第1仮想直線とのなす鋭角の角度をθとし、前記第1ワイヤが延びる方向における前記第2接合部の幅をwとすると、0<θ<sin-1d/wの関係が成立する、半導体装置。
  2.  前記第1領域と接合される第7接合部、前記第2チップと接合される第8接合部および前記第1チップと接合される第9接合部を含む第3ワイヤをさらに備え、
     前記第2接合部と前記第3接合部との距離をDとし、前記第8接合部と前記第9接合部との距離をDとし、前記第2接合部から前記第3接合部までの前記第1ワイヤの長さをLとし、前記第8接合部から前記第9接合部までの前記第3ワイヤの長さをLとすると、
     |D-D|>|L-L|の関係が成立する、請求項1に記載の半導体装置。
  3.  前記基板の板厚方向に見て、前記回路パターンは、前記第1チップから見て前記第1領域と反対側に位置する第4領域をさらに含み、
     前記半導体装置は、前記ゲートパッドと前記第4領域とを接続するゲートワイヤをさらに備える、請求項1または請求項2に記載の半導体装置。
  4.  前記基板の板厚方向に見て、前記第1チップの面積は、前記第2チップの面積よりも大きい、請求項1から請求項3のいずれか1項に記載の半導体装置。
  5.  前記第2チップは、SiC半導体層を含む、請求項1から請求項4のいずれか1項に記載の半導体装置。
  6.  前記第1チップは、SiC半導体層を含む、請求項1から請求項5のいずれか1項に記載の半導体装置。
  7.  基板と、
     第1領域、前記第1領域と離れて位置する第2領域および前記第1領域と前記第2領域との間に位置する第3領域を含み、前記基板上に配置される回路パターンと、
     第1ダイオードを含み、前記第2領域に配置される第3チップと、
     第2ダイオードを含み、前記第2領域の、前記第3チップとは異なる位置に配置される第4チップと、
     前記基板の板厚方向において前記第3領域と対向する面の反対側の面に配置されるソースパッドおよび前記ソースパッドと異なる位置に配置されるゲートパッドを有する縦型トランジスタを含み、前記第3領域に配置される第2チップと、
     前記第1領域と接合される第1接合部、前記第2チップと接合される第2接合部および前記第1チップと接合される第3接合部を含む第1ワイヤと、
     前記第1領域と接合される第4接合部、前記第2チップと接合される第5接合部および前記第1チップと接合される第6接合部を含み、前記ゲートパッドを挟んで前記第1ワイヤと隣り合うよう配置される第2ワイヤと、を備え、
     前記基板の板厚方向に見て、
     前記第1接合部の重心と前記第2接合部の重心とを通る第1仮想直線と、前記第4接合部の重心と前記第5接合部の重心とを通る第2仮想直線とは、平行であり、
     前記第2仮想直線と前記第3接合部の重心との距離は、前記第2仮想直線と前記第2接合部の重心との距離よりも大きく、
     前記第1仮想直線と前記第2仮想直線との距離をdとし、前記第2接合部の重心と前記第3接合部の重心とを通る第3仮想直線と前記第1仮想直線とのなす鋭角の角度をθとし、前記第1ワイヤが延びる方向における前記第2接合部の幅をwとすると、0<θ<sin-1d/wの関係が成立する、半導体装置。
  8.  前記基板の板厚方向に見て、前記第3チップおよび前記第4チップの総面積は、前記第2チップの面積よりも大きい、請求項7に記載の半導体装置。
PCT/JP2020/001952 2019-02-13 2020-01-21 半導体装置 WO2020166283A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/427,950 US11804465B2 (en) 2019-02-13 2020-01-21 Semiconductor device
JP2020572138A JP7342889B2 (ja) 2019-02-13 2020-01-21 半導体装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-023136 2019-02-13
JP2019023136 2019-02-13

Publications (1)

Publication Number Publication Date
WO2020166283A1 true WO2020166283A1 (ja) 2020-08-20

Family

ID=72044433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001952 WO2020166283A1 (ja) 2019-02-13 2020-01-21 半導体装置

Country Status (3)

Country Link
US (1) US11804465B2 (ja)
JP (1) JP7342889B2 (ja)
WO (1) WO2020166283A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003218318A (ja) * 2002-01-21 2003-07-31 Mitsubishi Electric Corp 半導体パワーモジュール、半導体パワーモジュールに用いる絶縁基板及び該絶縁基板の製造方法
JP2010027814A (ja) * 2008-07-18 2010-02-04 Mitsubishi Electric Corp 電力用半導体装置
WO2013046824A1 (ja) * 2011-09-30 2013-04-04 ローム株式会社 半導体装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015018946A (ja) 2013-07-11 2015-01-29 カルソニックカンセイ株式会社 基板回路の構造および製造方法
JP6193665B2 (ja) * 2013-07-26 2017-09-06 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
JP6076865B2 (ja) * 2013-09-02 2017-02-08 ルネサスエレクトロニクス株式会社 電子装置
JP5865422B2 (ja) 2014-04-14 2016-02-17 ローム株式会社 電子回路

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003218318A (ja) * 2002-01-21 2003-07-31 Mitsubishi Electric Corp 半導体パワーモジュール、半導体パワーモジュールに用いる絶縁基板及び該絶縁基板の製造方法
JP2010027814A (ja) * 2008-07-18 2010-02-04 Mitsubishi Electric Corp 電力用半導体装置
WO2013046824A1 (ja) * 2011-09-30 2013-04-04 ローム株式会社 半導体装置

Also Published As

Publication number Publication date
JP7342889B2 (ja) 2023-09-12
US20220130792A1 (en) 2022-04-28
US11804465B2 (en) 2023-10-31
JPWO2020166283A1 (ja) 2020-08-20

Similar Documents

Publication Publication Date Title
JP4924411B2 (ja) 電力半導体装置
US10763240B2 (en) Semiconductor device comprising signal terminals extending from encapsulant
JP7137558B2 (ja) 半導体装置
US8466549B2 (en) Semiconductor device for power conversion
JP5916651B2 (ja) 電力用半導体装置の製造方法
JP7136355B2 (ja) 半導体モジュールの回路構造
JP2020009834A (ja) 半導体装置
JP7201106B2 (ja) 半導体装置
JP5098630B2 (ja) 半導体装置及びその製造方法
WO2020166283A1 (ja) 半導体装置
US11302612B2 (en) Lead frame wiring structure and semiconductor module
WO2022070741A1 (ja) 半導体装置
WO2021241304A1 (ja) 半導体モジュールの実装構造
JP7473376B2 (ja) 半導体装置
WO2022049999A1 (ja) 半導体装置
JP7192886B2 (ja) 半導体装置
KR102434465B1 (ko) 플립-스택형 반도체 패키지 및 제조방법
CN217282763U (zh) 功率模块和电机控制器
WO2022009556A1 (ja) 半導体装置及び半導体装置の製造方法
US12021323B2 (en) Semiconductor module
WO2021200138A1 (ja) 半導体装置
WO2024018790A1 (ja) 半導体装置
JP7299751B2 (ja) 半導体装置
WO2021251128A1 (ja) 半導体素子、および、半導体装置
JP2024102810A (ja) 半導体パッケージ及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20755027

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020572138

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20755027

Country of ref document: EP

Kind code of ref document: A1