WO2020150957A1 - 用于非授权频谱的无线通信方法和设备 - Google Patents

用于非授权频谱的无线通信方法和设备 Download PDF

Info

Publication number
WO2020150957A1
WO2020150957A1 PCT/CN2019/072951 CN2019072951W WO2020150957A1 WO 2020150957 A1 WO2020150957 A1 WO 2020150957A1 CN 2019072951 W CN2019072951 W CN 2019072951W WO 2020150957 A1 WO2020150957 A1 WO 2020150957A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource set
symbol
time domain
pdcch
start position
Prior art date
Application number
PCT/CN2019/072951
Other languages
English (en)
French (fr)
Inventor
贺传峰
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2019/072951 priority Critical patent/WO2020150957A1/zh
Priority to CN201980018535.2A priority patent/CN111869292B/zh
Publication of WO2020150957A1 publication Critical patent/WO2020150957A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular to a wireless communication method and device for unlicensed spectrum.
  • Unlicensed spectrum is a spectrum that can be used for radio equipment communications divided by countries and regions. This spectrum is usually considered to be a shared spectrum, that is, communication equipment in different communication systems meets the regulatory requirements set by the country or region on the spectrum, and can use the spectrum. For spectrum, there is no need to apply for a proprietary spectrum authorization from the government.
  • the embodiments of the present application provide a wireless communication method and device for unlicensed spectrum, which can implement PDCCH transmission on unlicensed spectrum.
  • a wireless communication method for unlicensed spectrum including: a network device performs channel detection based on a first resource set that is candidate for sending a physical downlink control channel PDCCH; When idle, the first PDCCH is sent on the second resource set; wherein the time domain start position of the second resource set is determined based on the start time of successful channel detection, or the time of the second resource set The domain start position is the time domain start position of the first resource set.
  • a wireless communication method for unlicensed spectrum including: a terminal device detects a first physical downlink control channel PDCCH on a second resource set; wherein the time domain of the second resource set starts The position is later than the time domain start position of the first resource set candidate for sending the PDCCH, or the time domain start position of the second resource set is the time domain start position of the first resource set.
  • a network device for executing the method in the above-mentioned first aspect.
  • the network device includes a functional module for executing the method in the above first aspect.
  • a terminal device for executing the method in the second aspect.
  • the terminal device includes a functional module for executing the method in the above second aspect.
  • a network device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the above first aspect.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the above second aspect.
  • a chip is provided for implementing the method in the first aspect.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes the method in the above-mentioned first aspect.
  • a chip is provided for implementing the method in the second aspect.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes the method in the above second aspect.
  • a computer-readable storage medium for storing a computer program that enables a computer to execute the method in the first aspect.
  • a computer-readable storage medium for storing a computer program that enables a computer to execute the method in the second aspect.
  • a computer program product including computer program instructions that cause a computer to execute the method in the first aspect.
  • a computer program product including computer program instructions, which cause a computer to execute the method in the second aspect.
  • a computer program which, when run on a computer, causes the computer to execute the method in the first aspect.
  • a computer program which, when run on a computer, causes the computer to execute the method in the first aspect.
  • the network device performs channel detection based on the first resource set candidate for sending the physical downlink control channel PDCCH; when the network device detects that the channel is idle, the network device performs channel detection on the second resource set Send the first PDCCH; wherein the time domain start position of the second resource set is determined based on the start time of successful channel detection, or the time domain start position of the second resource set is the first resource set Or, the second resource set is the first resource set indicated by the network device. Therefore, the embodiment of the present application can implement the transmission of the PDCCH on the unlicensed spectrum.
  • Fig. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • Fig. 2 is a schematic diagram of an SSB provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a distribution pattern of SSB provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of an SSB candidate sending position provided by an embodiment of the present application.
  • Fig. 5 is a schematic diagram of a DRS pattern provided by an embodiment of the present application.
  • Fig. 6 is a schematic diagram of another DRS pattern provided by an embodiment of the present application.
  • Fig. 7 is a schematic diagram of another DRS pattern provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a wireless communication method for unlicensed spectrum according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a time domain position for sending a PDCCH according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of another time domain position for sending a PDCCH according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of another time domain position for sending a PDCCH according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a network device according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of a terminal device according to an embodiment of the present application.
  • FIG. 14 is a schematic diagram of a communication device according to an embodiment of the present application.
  • FIG. 15 is a schematic diagram of a chip according to an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GSM Global System of Mobile Communication
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • LTE-A Advanced long term evolution
  • NR New Radio
  • NR NR system evolution system
  • LTE on unlicensed frequency bands LTE-based access to unlicensed spectrum, LTE-U
  • NR NR-based access to unlicensed spectrum, NR-U
  • UMTS Universal Mobile Telecommunication System
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • WiMAX Wireless Local Area Networks
  • WLAN Wireless Fidelity
  • WiFi next-generation communication systems or other communication systems, etc.
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC machine type communication
  • V2V vehicle to vehicle
  • the communication system 100 applied in the embodiment of the present application is shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or called a communication terminal or a terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminal devices located in the coverage area.
  • the network device 110 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system (Evolutional Node B, eNB or eNodeB), or the wireless controller in the Cloud Radio Access Network (CRAN), or the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches, bridges, routers, network side devices in 5G networks, or network devices in the future evolution of Public Land Mobile Network (PLMN), etc.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • LTE Long Term Evolutional Node B
  • eNB evolved base station
  • CRAN Cloud Radio Access Network
  • the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches, bridge
  • the communication system 100 further includes at least one terminal device 120 located within the coverage area of the network device 110.
  • the "terminal equipment” used here includes but is not limited to connection via wired lines, such as via Public Switched Telephone Networks (PSTN), Digital Subscriber Line (DSL), digital cable, and direct cable connection ; And/or another data connection/network; and/or via a wireless interface, such as for cellular networks, wireless local area networks (WLAN), digital TV networks such as DVB-H networks, satellite networks, AM- FM broadcast transmitter; and/or another terminal device set to receive/send communication signals; and/or Internet of Things (IoT) equipment.
  • PSTN Public Switched Telephone Networks
  • DSL Digital Subscriber Line
  • WLAN wireless local area networks
  • IoT Internet of Things
  • a terminal device set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal” or a “mobile terminal”.
  • mobile terminals include, but are not limited to, satellites or cellular phones; Personal Communications System (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, Internet/intranet PDA with internet access, web browser, memo pad, calendar, and/or Global Positioning System (GPS) receiver; and conventional laptop and/or palmtop receivers or others including radio phone transceivers Electronic device.
  • PCS Personal Communications System
  • GPS Global Positioning System
  • Terminal equipment can refer to access terminals, user equipment (UE), user units, user stations, mobile stations, mobile stations, remote stations, remote terminals, mobile equipment, user terminals, terminals, wireless communication equipment, user agents, or User device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in 5G networks, or terminal devices in the future evolution of PLMN, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • direct terminal connection (Device to Device, D2D) communication may be performed between the terminal devices 120.
  • the 5G system or 5G network may also be referred to as a New Radio (NR) system or NR network.
  • NR New Radio
  • Figure 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. The embodiment does not limit this.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • the devices with communication functions in the network/system in the embodiments of the present application may be referred to as communication devices.
  • the communication device may include a network device 110 having a communication function and a terminal device 120.
  • the network device 110 and the terminal device 120 may be the specific devices described above, which will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as network controllers, mobility management entities, and other network entities, which are not limited in the embodiment of the present application.
  • the method of the embodiment of the present application can be applied to communication of unlicensed spectrum.
  • Unlicensed spectrum is the spectrum that can be used for radio equipment communication divided by the country and region. This spectrum can be considered as a shared spectrum, that is, communication devices in different communication systems can meet the regulatory requirements set by the country or region on the spectrum. To use this spectrum, it is not necessary to apply for a proprietary spectrum authorization from the government.
  • LBT Listen Before Talk
  • communication devices can follow the principle of Listen Before Talk (LBT) when communicating on unlicensed spectrum, that is, Before the communication device transmits signals on the channels of the unlicensed spectrum, it needs to perform channel listening (or called channel detection) first.
  • LBT Listen Before Talk
  • the communication device can transmit signals; if the communication device is in The result of channel sensing on the unlicensed spectrum is that the channel is busy, and signal transmission cannot be performed.
  • the bandwidth of the LBT is 20 MHz, or an integer multiple of 20 MHz.
  • the maximum channel occupation time can refer to the maximum length of time allowed to use unlicensed spectrum channels for signal transmission after successful LBT. There are different MCOTs under different channel access schemes. The maximum value of MCOT may be 10 ms, for example. It should be understood that the MCOT is the time occupied by signal transmission.
  • Channel Occupancy Time may refer to the length of time for signal transmission using a channel of an unlicensed spectrum after the LBT is successful, and the signal occupation of the channel may be discontinuous within this time length.
  • one COT may optionally not exceed, for example, 20 ms at the longest, and the length of time occupied by signal transmission in the COT does not exceed MCOT.
  • Common channels and signals (such as synchronization signals and broadcast channels) in the NR system can cover the entire cell by means of multi-beam scanning, which is convenient for UEs in the cell to receive.
  • the multi-beam transmission of synchronization signal (SS, synchronization signal) and physical broadcast channel (Physical Broadcasting Channel, PBCH) can be realized by defining SS/PBCH burst sets.
  • an SS/PBCH burst set may include one or more synchronization signal blocks (SS/PBCH block, SSB).
  • SS/PBCH block SSB
  • One SSB is used to carry the synchronization signal and broadcast channel of one beam. Therefore, the number of SSBs that can be included in an SS burst set can be equal to the SSB beams sent by the cell.
  • the maximum number L of SSBs included in an SS burst set may be related to the frequency band of the system.
  • L is equal to 4; for a frequency band between 3 GHz and 6 GHz, L is equal to 8; for a frequency band between 6 GHz and 52.6, L is equal to 64.
  • one SSB can contain one symbol of primary synchronization signal (Primary synchronization signal, PSS), one symbol (Secondary synchronization signal, SSS), and two symbol NR-PBCH (New Radio Access Technology-Physical broadcast channel) , Physical broadcast channel), for example, as shown in Figure 2.
  • PSS Primary synchronization signal
  • SSS Secondary synchronization signal
  • NR-PBCH New Radio Access Technology-Physical broadcast channel
  • the time-frequency resources occupied by the PBCH may optionally include a demodulation reference signal (Demodulation Reference Signal, DMRS), which is used for demodulation of the PBCH.
  • DMRS Demodulation Reference Signal
  • all SSBs in the SS/PBCH burst set can be sent within a certain time window (for example, 5ms), and sent repeatedly in a certain cycle, which can be performed by the high-level parameter SSB-timing (SSB-timing) Configuration, for example, the period may include 5ms, 10ms, 20ms, 40ms, 80ms, 160ms, etc.
  • a certain time window for example, 5ms
  • SSB-timing SSB-timing
  • SCS subcarrier space
  • L is the largest number of SSBs, and the actual number of SSBs sent can be less than L.
  • the position of the actually sent SSB is notified to the terminal device through system information in the form of bit mapping.
  • a network device can send a Discovery Reference Signal (DRS) signal for access, measurement, etc., and the DRS can include at least SSB. Since the signal sent on the unlicensed spectrum may fail to send successfully due to LBT failure, for the DRS transmission, it is hoped that after the network device obtains the channel, it is possible to send system information such as SIB1 at the same time as possible.
  • DRS Discovery Reference Signal
  • DRS may include SSB, PDCCH corresponding to SIB1, a physical downlink shared channel (Physical Downlink Shared Channel, PDSCH) carrying SIB1, and may also include a paging cell. Similar to SSB, DRS signals can also be sent according to a block, and the signals in the block have a (Quasi Co-Loacted, QCL) relationship. It should be understood that in the embodiments of the present application, the DRS may also include other types of information, which is not specifically limited in the embodiments of the present application.
  • the DRS may not be successfully transmitted at a predetermined time.
  • the chance of sending the DRS can be increased.
  • the number Y of candidate locations of the DRS configured by the network device is greater than the number X of the DRS actually sent by the network device. That is, for each DRS transmission window, the network device may determine to use X available candidate positions among the Y candidate positions to transmit the DRS according to the detection result of the LBT in the DRS transmission window.
  • the LBT performed before the transmission time of SSB index 0 fails, channel listening continues, and the LBT performed before SSB index 4 succeeds, the remaining SSB is sent from SSB index 4, and After the SSB index 7 is sent, the SSB index 0-3 that was not sent successfully before is sent.
  • the actual transmission time of the SSB may be at the initial or alternative transmission time. As shown in Figure 4, it is just a method to increase the sending opportunity, and there are other methods, which will not be repeated here.
  • the DRS may include a PDCCH for SIB1 (or PDCCH for other purposes), and the symbol occupied by the PDCCH for SIB1 may be before the symbol occupied by the SSB, for example, it may occupy 2 symbols , And the two symbols are continuous with the symbols occupied by the SSB; the DRS may further include a PDSCH for SIB1, the symbols occupied by the PDSCH may be the same as the symbols occupied by the SSB, and the SSB and the PDSCH may be frequency division multiplexed .
  • the structure of each DRS in one transmission window may be the same, or the structure of the DRS in the same time slot may be the same.
  • the symbols occupied by the DRS in the same time slot can be continuous or discontinuous.
  • the DRS pattern can be as shown in Figure 5.
  • the DRS may include the PDCCH for SIB1 (or PDCCH for other purposes), and the symbols occupied by the PDCCH for SIB1 may be located after the symbols occupied by the SSB, for example, two Symbols, and the 2 symbols are continuous with the symbols occupied by the SSB; the DRS may further include a PDSCH for SIB1, the symbols occupied by the PDSCH may be the same as the symbols occupied by the SSB, and the SSB and the PDSCH may be frequency division multiplexed of.
  • the structure of each DRS in one transmission window may be the same, or the structure of the DRS in the same time slot may be the same.
  • the symbols occupied by the DRS in the same time slot may be continuous or discontinuous.
  • the DRS pattern can be as shown in Figure 6.
  • the DRS may include a PDCCH for SIB1 (or PDCCH for other purposes), and the symbol occupied by the PDCCH for SIB1 may be located after or before the symbol occupied by the SSB.
  • symbols occupied by PDCCHs included in some DRSs may be located before symbols occupied by SSBs, and symbols occupied by PDCCHs included in other DRSs may be located behind symbols occupied by SSBs.
  • the symbol occupied by the PDCCH included in one DRS is located before the symbol occupied by the SSB, and the other DRS (for example, the second DRS)
  • the symbols occupied by the included PDCCH are located after the symbols occupied by the SSB.
  • the DRS may further include a PDSCH for SIB1, the symbols occupied by the PDSCH may be the same as those occupied by the SSB, and the SSB and the PDSCH may be frequency division multiplexed.
  • the structure of each DRS in one transmission window may be the same, or the structure of the DRS in the same time slot may be the same.
  • the symbols occupied by different DRSs in the same time slot may be continuous or discontinuous, for example, two symbols may be separated.
  • the pattern of the DRS can be as shown in Figure 7.
  • the wireless communication method 200 for unlicensed spectrum will be described below in conjunction with FIG. 8.
  • the method 200 includes at least part of the following content.
  • the network device performs channel detection based on the first set of resources that are candidates for sending the PDCCH.
  • the time window can appear periodically.
  • the candidate resource set for sending the PDCCH may be configured on the network side, or preset on the terminal device based on the protocol.
  • the resource set in the embodiment of the present application may include time domain resources, and may further include frequency domain resources and/or code domain resources.
  • the resource set mentioned in the embodiment of the present application may be a control resource set (Control Resource Set, CORESET), and specifically may be a CORESET with a fixed time domain location.
  • CORESET Control Resource Set
  • the PDCCH mentioned in the embodiment of this application may belong to the DRS, such as the PDCCH used for System Information Block (SIB) 1.
  • SIB System Information Block
  • the candidate resource set for the PDCCH in the embodiment of this application may be based on The time domain position of SSB is fixed and the time domain position is CORESET.
  • the PDCCH mentioned in the embodiment of the present application may also exist independently of the DRS.
  • the resource set in the embodiment of the present application may be a search space.
  • the first resource set is composed of at least one third symbol, and the at least one third symbol is the first at least one symbol among the symbols that are candidate for sending the DRS.
  • the channel detection mentioned in the embodiment of the present application may be to perform an LBT operation, which may be specifically used to detect whether the current channel is idle.
  • the network device sends the first PDCCH on the second resource set when the channel is detected to be idle; wherein, the time domain start position of the second resource set is based on the start time of successful channel detection Determine, or, the time domain start position of the second resource set is the time domain start position of the first resource set, or the second resource set is the first resource indicated by the network device set.
  • the network device before the network device uses the first resource set to send the PDCCH, if the network device does not obtain the channel occupation, it needs to detect the channel to determine whether the channel is idle. If it is idle, it can be based on channel detection. As a result, and/or the first resource set transmits the PDCCH.
  • the terminal device detects the first PDCCH on the second resource set; wherein, the time domain start position of the second resource set is later than the time domain start position of the first resource set, or the The time domain start position of the second resource set is the time domain start position of the first resource set, or the second resource set is the first resource set indicated by the network device.
  • the time domain start position of the second resource set is later than the time domain start position of the first resource set
  • the terminal device also detects the first resource set on the first resource set. PDCCH.
  • the terminal device if the terminal device is not sure whether the resource set where the first PDCCH is located is the first resource set or the second resource set different from the first resource set, it may be in the first resource set and the second resource set.
  • the first PDCCH is blindly detected on the resource set. If the second resource set has multiple possible situations, blind detection is performed on the second resource set under the multiple possible situations.
  • the terminal device can determine that the resource set where the first PDCCH is located is one of the first resource set and the second resource set different from the first resource set, the first PDCCH can be blindly detected on one of the resource sets.
  • the terminal device may perform blind detection only on the first resource set.
  • channel detection may be performed based on each resource set in turn, and channel detection based on the current resource set is not detected When the channel is idle, the channel detection can be performed based on the next resource set.
  • the purpose of channel detection based on the candidate resource set used for transmitting the PDCCH is to use the resources included in the resource set to transmit the PDCCH.
  • the network device may start channel detection a period of time before the resource collection.
  • the first resource set and the second resource set at least partially overlap in the time domain.
  • the second resource set is a subset of the second resource set in the time domain, or the second resource set has an intersection with the second resource set in the time domain.
  • the second resource set is the first resource set indicated by the network device.
  • the network device may send first indication information to the terminal device, where the first indication information indicates a first resource set, and the second resource set may be the first resource set indicated by the network device.
  • the first indication information may belong to or not belong to DRS.
  • the first indication information may be PDCCH-SIB1 configuration (pdcch-ConfigSIB1) information, and the first indication information may be carried in the PBCH.
  • the network device indicates the first resource set, it needs to use the first resource set to send the PDCCH. If channel detection is performed for the first resource set, no channel idle is detected (not all symbols in the first resource set are available). ), the channel detection can be performed based on the next candidate resource set for sending the PDCCH.
  • the first resource set may be determined as the second resource set based on the first indication information sent by the network device, which is used to obtain the PDCCH.
  • the time domain start position of the first resource set may be the time domain start position of the DRS.
  • the first indication information can also be understood as indicating the time domain start position of the DRS.
  • CORESET can be obtained through the pdcch-ConfigSIB1 carried in the PBCH. From the perspective of the base station, it can be specified that the allowed starting position of the DRS sent by the base station is consistent with that indicated by pdcch-ConfigSIB1.
  • This method implicitly indicates the behavior of the base station through the pdcch-ConfigSIB1 information, for example, indicates whether the starting position of sending the DRS is the first symbol or the second symbol of the SRS shown in FIG. 9.
  • the CORESET indicated by the pdcch-ConfigSIB1 carried in the PBCH starts from the second symbol in the DRS.
  • the first resource set can be understood as a resource set including one symbol.
  • the base station can implicitly indicate the start symbol allowed by the DRS to be sent through pdcch-ConfigSIB1, so that the base station and the UE have the same understanding of the actual CORESET, ensuring that the UE receives the PDCCH correctly, and is compatible with multiple terminals.
  • the first indication information mentioned in the embodiment of the present application may indicate the first resource set by indicating the time domain start position, the time domain end position and/or the length of the first resource set.
  • the time domain start position of the second resource set is the time domain start position of the first resource set.
  • a candidate resource set for sending the PDCCH may be preset on the terminal device, and the time domain start position of the second resource set for sending the PDCCH may be the time domain start position of the candidate resource set.
  • the base station only allows the first symbol of the two symbols included in CORESET to start transmitting DRS, then there is no problem of inconsistent understanding of CORESET between the base station and UE. That is, the CORESET sent and received by the PDCCH are inconsistent.
  • the start symbol of the DRS is predefined and only allowed to start from the first symbol.
  • the CORESET sent and received by the PDCCH for SIB1 can always be kept consistent through predefined rules. This method is simple and effective, and has little impact on the standard.
  • the network device may also send the first indication information to the terminal device, and the first indication information may indicate the first resource set.
  • the time domain start position of the second resource set is determined based on the start time of successful channel detection.
  • the second resource set may be determined according to the starting time when the channel detection is successful (or the starting time when the channel is idle).
  • the time domain start position of the second resource set may be equal to the time domain start position of the first resource set.
  • the first resource set can be equal to the second resource set
  • the time domain start position of the second resource set may be the symbol after the first symbol.
  • the second resource set may be a subset of the first resource set in the time domain, or the first resource set and the second resource set may partially overlap in the time domain.
  • the base station instructs the UE according to the CORESET of two symbols, and the start symbol of the DRS sent by the base station may be different depending on the result of the LBT, that is, the DRS can be sent at the first or second symbol.
  • the UE can detect the PDCCH according to these two possibilities and according to two possible CORESETs, that is, the CORESET containing one symbol or two symbols to detect the PDCCH.
  • the actual DRS starting position is at the beginning of the second symbol.
  • the UE can perform blind detection according to two kinds of CORESET, that is, CORESET includes the first and second symbols, and CORESET includes the second symbol.
  • the base station since the base station is allowed to temporarily change the number of symbols contained in CORESET according to the result of LBT, that is, the base station is allowed to start DRS transmission from the first or second symbol, the probability of successful DRS transmission can be increased. Conversely, if the base station is only allowed to start DRS transmission at the first symbol, if the channel detection fails at that time, the channel is free at the beginning of the second symbol in time, and DRS is not allowed to be sent, which reduces the probability of successful DRS transmission.
  • the second resource set may not have any overlap with the first resource set.
  • the network device may send the first indication information to the terminal device, and the first indication information may indicate the first resource set, or the first resource set may be preset on the terminal device.
  • the start position in the time domain of the second resource set may be different from the time domain of the first resource set
  • the start position of the second resource set in the time domain may be later than the start position of the first resource set in the time domain.
  • the terminal device may obtain the PDCCH according to the blind detection result instead of obtaining the PDCCH according to the first indication information.
  • the first PDCCH may be a part of the DRS.
  • the second resource set includes at least one first symbol, and the at least one first symbol is the first at least one symbol among the symbols occupied by the DRS.
  • the second resource set includes at least one second symbol, and the at least one second symbol is the last at least one symbol among the symbols occupied by the DRS.
  • the second resource set may include at least one first symbol and at least one second symbol at the same time.
  • the network device performs channel detection based on the first resource set before the SSB, if only part of the symbols in the first resource set can be used to transmit the first PDCCH, it can be After the partial symbols in the first resource set are used as the symbols of the second resource set, at least one symbol after the SSB may also be used as the symbols of the second resource set.
  • the base station may instruct to start DRS transmission from the first symbol of CORESET, but actually allows the base station to start DRS from the second symbol according to the result of LBT.
  • the DRS transmission starts from the second symbol, at least one of the two symbols after the SSB is allowed to be used as CORESET for PDCCH detection.
  • the UE needs to blindly detect the PDCCH according to the multiple possibilities of the CORESET of the PDCCH sent by these base stations.
  • the base station instructs the UE according to the CORESET of two symbols, and the start symbol of the DRS sent by the base station may be different depending on the result of LBT, that is, the DRS can be sent at the first or second symbol of the CORESET.
  • the UE can detect the PDCCH according to a variety of possible CORESETs, which can specifically include: two symbols before SSB, or, the first symbol before SSB, or, the first symbol before SSB and any one after SSB Symbol, or, the first symbol before SSB and the two symbols after SSB.
  • the base station flexibly adjusts the symbol where the CORESET is located according to the result of the LBT, which not only improves the probability of successful DRS transmission, but also ensures that the PDCCH for SIB1 has sufficient resources for transmission.
  • the network device sends instruction information that indicates which symbol in the first resource set is used as the starting symbol position of the second resource set. For example, if the first resource set includes 2 symbols, it may indicate that the second symbol is The starting symbol position of the second resource set.
  • the terminal device can obtain the PDCCH from the indicated symbol position according to the indication information.
  • the symbol indicated by the indication information may be determined by the network device based on the channel detection result, or determined by the network device based on the amount of information included in the PDCCH to be sent.
  • the network device may also send the second PDCCH on the third resource set candidate for sending the PDCCH; where The third resource set is located after the first resource set in the time domain, and the time domain start position for sending the second PDCCH on the third resource set is the time domain start position of the third resource set ,
  • the first resource set and the third resource set belong to the same COT.
  • the second PDCCH can be acquired from the third resource set that is candidate for sending the PDCCH.
  • the PDCCH can be sent multiple times within the same COT.
  • the channel detection needs to be performed when the PDCCH is sent for the first time, and it is not necessary to perform channel detection when the PDCCH is sent subsequently.
  • the PDCCH can be sent by using the candidate resource set for sending the PDCCH, and the time domain starting position of the PDCCH sending is the time domain starting position of the candidate resource set for sending the PDCCH.
  • the start position of the time domain for sending the PDCCH for the first time may be different from the start position of the corresponding candidate resource set for sending the PDCCH, which may be determined according to the start time when the channel is idle.
  • the terminal device may determine whether each candidate resource set is the candidate resource set corresponding to the first PDCCH resource set in the current COT. If it is, the PDCCH resource set for blind detection may be different For the candidate resource set, if it is not, the resource set for blind detection of the PDCCH may be the candidate resource set, that is, the PDCCH is acquired on the candidate resource set.
  • the network device may send second indication information, where the second indication information is used to indicate the information of the COT to which the first PDCCH belongs.
  • the terminal device may determine whether the resource set occupied by the PDCCH corresponding to each candidate resource set must be the same as the candidate resource set based on the COT information.
  • the COT information mentioned in the embodiments of the present application may include the length of the COT, and/or the starting point and/or ending point of the COT, and so on.
  • the terminal device can compare the time domain start position and end position of the first resource set with the time domain start position and end position of COT, and the time domain start position of the first resource set is later than or equal to the time domain of COT
  • blind detection may be performed on the first resource set, that is, the first resource set is determined as the second resource set.
  • the base station may acquire the channel occupation at the second symbol, once the channel is occupied, it can continue to occupy the channel for a period of time.
  • the transmission of this DRS only affects the transmission of the first DRS, and the subsequent DRS transmission can still use two-symbol CORESET.
  • the UE can always detect blindly according to the two kinds of CORESET, and can also know whether the DRS to be received is the first DRS sent after the base station obtains the channel occupation according to some indication information.
  • COT indication information or COT starting point and/or ending point, COT duration and other information, determine the DRS transmission situation in COT, determine CORESET, and determine whether it is necessary to perform blind detection of PDCCH according to more than one CORESET.
  • the UE can determine whether it is necessary to perform blind detection of the PDCCH according to more than one CORESET through the indication information, so as to prevent the UE from always performing blind detection according to more than one CORESET and reduce power consumption.
  • the embodiment of the present application takes the transmission and detection of the PDCCH as an example for description, and the method of the embodiment of the present application may also be used for the transmission and detection of the PDSCH.
  • the network device performs channel detection based on the first resource set candidate for sending the physical downlink control channel PDCCH; when the network device detects that the channel is idle, the network device performs channel detection on the second resource set Send the first PDCCH; wherein the time domain start position of the second resource set is determined based on the start time of successful channel detection, or the time domain start position of the second resource set is the first resource set Or, the second resource set is the first resource set indicated by the network device. Therefore, the embodiment of the present application can implement the transmission of the PDCCH on the unlicensed spectrum.
  • FIG. 12 is a schematic block diagram of a network device 300 according to an embodiment of the present application.
  • the network device 300 includes a communication unit 310.
  • the communication unit 310 is configured to: perform channel detection based on the first resource set candidate for sending the physical downlink control channel PDCCH; in the case of detecting that the channel is idle, send the first PDCCH on the second resource set;
  • the time domain start position of the second resource set is determined based on the start time of successful channel detection, or the time domain start position of the second resource set is the time domain start position of the first resource set.
  • the first resource set and the second resource set at least partially overlap in the time domain.
  • the communication unit 310 is further configured to:
  • the first PDCCH is a part of the discovery reference signal DRS.
  • the second resource set includes at least one first symbol, and the at least one first symbol is the first at least one symbol among the symbols occupied by the DRS.
  • the second resource set includes at least one second symbol, and the at least one second symbol is the last at least one symbol among the symbols occupied by the DRS.
  • the symbols occupied by the DRS are continuous.
  • the first resource set is composed of at least one third symbol, and the at least one third symbol is the first at least one symbol among the symbols that are candidate for sending the DRS.
  • the communication unit 310 is further configured to:
  • Sending second indication information where the second indication information is used to indicate the information of the channel occupation time COT to which the first PDCCH belongs.
  • network device 300 may be used to implement the corresponding operations implemented by the network device in the method embodiments of the present application. For the sake of brevity, details are not described herein again.
  • FIG. 13 is a schematic block diagram of a terminal device 400 according to an embodiment of the present application.
  • the terminal device 400 includes a communication unit 410.
  • the communication unit 410 is configured to: detect the first physical downlink control channel PDCCH on the second resource set; wherein the time domain start position of the second resource set is later than the time of the first resource set candidate for transmitting the PDCCH
  • the domain start position, or the time domain start position of the second resource set is the time domain start position of the first resource set.
  • the first resource set and the second resource set at least partially overlap in the time domain.
  • the time domain start position of the second resource set is later than the time domain start position of the first resource set
  • the communication unit 410 is further configured to:
  • the communication unit 410 is further configured to: receive first indication information
  • the terminal device 400 further includes a processing unit 420, configured to determine, based on the first indication information, that the time domain start position of the second resource set is the time domain start position of the first resource set.
  • the first PDCCH is a part of the discovery reference signal DRS.
  • the second resource set includes at least one first symbol, and the at least one first symbol is the first at least one symbol among the symbols occupied by the DRS.
  • the second resource set includes at least one second symbol, and the at least one second symbol is the last at least one symbol among the symbols occupied by the DRS.
  • the symbols occupied by the DRS are continuous.
  • the first resource set is composed of at least one third symbol, and the at least one third symbol is the first at least one symbol among the symbols that are candidate for sending the DRS.
  • the communication unit 410 is further configured to: receive second indication information, where the second indication information is used to indicate the information of the channel occupation time COT to which the first PDCCH belongs.
  • the terminal device 400 further includes a processing unit 420, configured to determine the time domain start position of the second resource set based on the second indication information.
  • terminal device 400 may be used to implement corresponding operations implemented by the terminal device in the method embodiments of the present application, and for the sake of brevity, details are not described herein again.
  • FIG. 14 is a schematic structural diagram of a communication device 500 provided by an embodiment of the present application.
  • the communication device 500 shown in FIG. 14 includes a processor 510, and the processor 510 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the communication device 500 may further include a memory 520.
  • the processor 510 may call and run a computer program from the memory 520 to implement the method in the embodiment of the present application.
  • the memory 520 may be a separate device independent of the processor 510, or may be integrated in the processor 510.
  • the communication device 500 may further include a transceiver 530, and the processor 510 may control the transceiver 530 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 530 may include a transmitter and a receiver.
  • the transceiver 530 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 500 may specifically be a network device in an embodiment of the application, and the communication device 500 may implement the corresponding process implemented by the network device in each method of the embodiment of the application. For brevity, details are not repeated here .
  • the communication device 500 may specifically be a mobile terminal/terminal device of an embodiment of the present application, and the communication device 500 may implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application. For simplicity , I won’t repeat it here.
  • FIG. 15 is a schematic structural diagram of a chip of an embodiment of the present application.
  • the chip 600 shown in FIG. 15 includes a processor 610, and the processor 610 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 600 may further include a memory 620.
  • the processor 610 can call and run a computer program from the memory 620 to implement the method in the embodiment of the present application.
  • the memory 620 may be a separate device independent of the processor 610, or may be integrated in the processor 610.
  • the chip 600 may further include an input interface 630.
  • the processor 610 can control the input interface 630 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the chip 600 may further include an output interface 640.
  • the processor 610 can control the output interface 640 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • chips mentioned in the embodiments of the present application may also be referred to as system-level chips, system-on-chips, system-on-chips, or system-on-chips.
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the aforementioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA ready-made programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be Read-Only Memory (ROM), Programmable Read-Only Memory (Programmable ROM, PROM), Erasable Programmable Read-Only Memory (Erasable PROM, EPROM), and Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is to say, the memory in the embodiments of the present application is intended to include but not limited to these and any other suitable types of memory.
  • the embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium may be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application For the sake of brevity, I won’t repeat it here.
  • the embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • it is not here. Repeat it again.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, For the sake of brevity, I will not repeat them here.
  • the embodiment of the application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program is run on the computer, the computer is caused to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiments of the present application.
  • the computer program runs on the computer, the computer can execute each method in the embodiments of the present application. For the sake of brevity, the corresponding process will not be repeated here.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种用于非授权频谱的无线通信方法和设备,可以实现在非授权频谱上进行PDCCH的传输。该方法包括:网络设备基于候选用于发送物理下行控制信道PDCCH的第一资源集合,进行信道检测;所述网络设备在检测到信道空闲的情况下,在第二资源集合上发送第一PDCCH;其中,所述第二资源集合的时域起始位置基于信道检测成功的起始时刻确定,或者,所述第二资源集合的时域起始位置是所述第一资源集合的时域起始位置。

Description

用于非授权频谱的无线通信方法和设备 技术领域
本申请实施例涉及通信技术领域,具体涉及一种用于非授权频谱的无线通信方法和设备。
背景技术
非授权频谱是国家和地区划分的可用于无线电设备通信的频谱,该频谱通常被认为是共享频谱,即不同通信***中的通信设备满足国家或地区在该频谱上设置的法规要求,可以使用该频谱,可以不需要向政府申请专有的频谱授权。
如何在非授权频谱通信方面,实现物理下行控制信道(Physical Downlink Control Channel,PDCCH)的传输是一项亟待解决的问题。
发明内容
本申请实施例提供一种用于非授权频谱的无线通信方法和设备,可以实现在非授权频谱上进行PDCCH的传输。
第一方面,提供了一种用于非授权频谱的无线通信方法,包括:网络设备基于候选用于发送物理下行控制信道PDCCH的第一资源集合,进行信道检测;所述网络设备在检测到信道空闲的情况下,在第二资源集合上发送第一PDCCH;其中,所述第二资源集合的时域起始位置基于信道检测成功的起始时刻确定,或者,所述第二资源集合的时域起始位置是所述第一资源集合的时域起始位置。
第二方面,提供了一种用于非授权频谱的无线通信方法,包括:终端设备在第二资源集合上检测第一物理下行控制信道PDCCH;其中,所述第二资源集合的时域起始位置晚于候选用于发送PDCCH的第一资源集合的时域起始位置,或者,所述第二资源集合的时域起始位置是所述第一资源集合的时域起始位置。
第三方面,提供了一种网络设备,用于执行上述第一方面中的方法。
具体地,该网络设备包括用于执行上述第一方面中的方法的功能模块。
第四方面,提供了一种终端设备,用于执行上述第二方面中的方法。
具体地,该终端设备包括用于执行上述第二方面中的方法的功能模块。
第五方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面中的方法。
第六方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面中的方法。
第七方面,提供了一种芯片,用于实现上述第一方面中的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行如上述第一方面中的方法。
第八方面,提供了一种芯片,用于实现上述第二方面中的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行如上述第二方面中的方法。
第九方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面中的方法。
第十方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第二方面中的方法。
第十一方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面中的方法。
第十二方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令 使得计算机执行上述第二方面中的方法。
第十三方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面中的方法。
第十四方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面中的方法。
因此,在本申请实施例中,网络设备基于候选用于发送物理下行控制信道PDCCH的第一资源集合,进行信道检测;所述网络设备在检测到信道空闲的情况下,在第二资源集合上发送第一PDCCH;其中,所述第二资源集合的时域起始位置基于信道检测成功的起始时刻确定,或者,所述第二资源集合的时域起始位置是所述第一资源集合的时域起始位置,或者,所述第二资源集合是所述网络设备指示的所述第一资源集合,因此,本申请实施例可以实现非授权频谱上的PDCCH的发送。
附图说明
图1是本申请实施例提供的一种通信***架构的示意性图。
图2是本申请实施例提供的一种SSB的示意性图。
图3是本申请实施例提供的一种SSB的分布图样的示意性图。
图4是本申请实施例提供的一种SSB候选发送位置的示意性图。
图5是本申请实施例提供的一种DRS的图样的示意图。
图6是本申请实施例提供的另一种DRS的图样的示意图。
图7是本申请实施例提供的另一种DRS的图样的示意图。
图8是本申请实施例的用于非授权频谱的无线通信方法的示意性图。
图9是本申请实施例的一种发送PDCCH的时域位置的示意性图。
图10是本申请实施例的另一种发送PDCCH的时域位置的示意性图。
图11是本申请实施例的另一种发送PDCCH的时域位置的示意性图。
图12是本申请实施例的一种网络设备的示意性图。
图13是本申请实施例的一种终端设备的示意性图。
图14是本申请实施例的一种通信设备的示意性图。
图15是本申请实施例的一种芯片的示意性图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信***,例如:全球移动通讯(Global System of Mobile communication,GSM)***、码分多址(Code Division Multiple Access,CDMA)***、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)***、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)***、LTE频分双工(Frequency Division Duplex,FDD)***、LTE时分双工(Time Division Duplex,TDD)***、先进的长期演进(Advanced long term evolution,LTE-A)***、新无线(New Radio,NR)***、NR***的演进***、非授权频段上的LTE(LTE-based access to unlicensed spectrum,LTE-U)***、非授权频段上的NR(NR-based access to unlicensed spectrum,NR-U)***、通用移动通信***(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信***、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、下一代通信***或其他通信***等。
通常来说,传统的通信***支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信***将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),以及车辆间(Vehicle to Vehicle,V2V)通信等,本申请实施例也可以应用于这些通信***。
示例性的,本申请实施例应用的通信***100如图1所示。该通信***100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。可选地,该网络设备110可以是GSM***或CDMA***中的基站(Base Transceiver Station,BTS),也可以是WCDMA***中的基站(NodeB,NB),还可以是LTE***中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信***100还包括位于网络设备110覆盖范围内的至少一个终端设备120。作为在此使用的“终端设备”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端设备的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端设备可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信***(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位***(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端设备可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
可选地,终端设备120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G***或5G网络还可以称为新无线(New Radio,NR)***或NR网络。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信***100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信***100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/***中具有通信功能的设备可称为通信设备。以图1示出的通信***100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信***100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申 请实施例中对此不做限定。
应理解,本文中术语“***”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请实施例的方法可以应用于非授权频谱的通信中。
非授权频谱是国家和地区划分的可用于无线电设备通信的频谱,该频谱可以被认为是共享频谱,即不同通信***中的通信设备只要满足国家或地区在该频谱上设置的法规要求,就可以使用该频谱,可以不向政府申请专有的频谱授权。为了让使用非授权频谱进行无线通信的各个通信***在该频谱上能够友好共存,通信设备在非授权频谱上进行通信时,可以遵循先听后说(Listen Before Talk,LBT)的原则,即,通信设备在非授权频谱的信道上进行信号发送前,需要先进行信道侦听(或称为信道检测),只有当信道侦听结果为信道空闲时,通信设备才能进行信号发送;如果通信设备在非授权频谱的上进行信道侦听的结果为信道忙,则不能进行信号发送。可选地,LBT的带宽是20MHz,或为20MHz的整数倍。最大信道占用时间(Maximum Channel Occupancy Time,MCOT),可以是指LBT成功后允许使用非授权频谱的信道进行信号传输的最大时间长度,不同信道接入方案下有不同的MCOT。MCOT的最大取值例如可以为10ms。应理解,该MCOT为信号传输占用的时间。信道占用时间(Channel Occupancy Time,COT),可以是指LBT成功后使用非授权频谱的信道进行信号传输的时间长度,该时间长度内信号占用信道可以是不连续的。其中,一次COT最长可选地不可以超过例如20ms,该COT内的信号传输占用的时间长度不超过MCOT。
NR***中的公共信道和信号(如同步信号和广播信道),可以通过多波束扫描的方式覆盖整个小区,便于小区内的UE接收。同步信号(SS,synchronization signal)和物理广播信道(Physical Broadcasting Channel,PBCH)的多波束发送可以是通过定义SS/PBCH簇集(burst set)实现的。
其中,一个SS/PBCH burst set可以包含一个或多个同步信号块(SS/PBCH block,SSB)。一个SSB用于承载一个波束的同步信号和广播信道。因此,一个SS burst set可以包含的SSB的数量可以等于小区发送SSB的波束。一个SS burst set包括的SSB的最大数目L可以与***的频段有关。
例如,对于3GHz以内的频带,L等于4;对于3GHz到6GHz之间的频带,L等于为8;对于6GHz到52.6之间的频带,L等于64。
可选地,一个SSB中可以包含一个符号的主同步信号(Primary synchronization signal,PSS),一个符号的(Secondary synchronization signal,SSS)和两个符号的NR-PBCH(New Radio Access Technology-Physical broadcast channel,物理广播信道),例如,如图2所示。其中,PBCH所占的时频资源中,可选地可以包含解调参考信号(Demodulation Reference Signal,DMRS),用于PBCH的解调。
可选地,SS/PBCH burst set内所有的SSB可以在一定的时间窗(例如,5ms)内发送,并以一定的周期重复发送,该周期可以通过高层的参数SSB定时(SSB-timing)进行配置,例如,周期可以包括5ms,10ms,20ms,40ms,80ms,160ms等。
图3所示为不同的子载波(Subcarrier space,SCS)间隔下SSB的分布图样。以15kHz子载波间隔,L=4为例,一个时隙(slot)包含14个符号(symbol),可以承载两个SSB。在5ms时间窗内的前两个时隙内分布4个SSB。
其中,L为最大的SSB的个数,实际发送的SSB的个数可以小于L。实际发送的SSB的位置通过比特映射的形式,通过***信息通知给终端设备。
在NR-U***中,例如对于一个主小区(Pcell),网络设备可以发送发现参考信号 (Discovery Reference Signal,DRS)信号用于接入、测量等,DRS可以至少包括SSB。由于在非授权频谱上发送信号可能存在因LBT失败而无法发送成功,因此对于DRS的发送,希望在网络设备获得信道后,尽可能同时将SIB1等***信息一起发送。
因此,DRS可以包括SSB、SIB1对应的PDCCH、承载SIB1的物理下行共享信道(Physical Downlink Shared Channel,PDSCH),还可以包括寻呼小区等。与SSB类似,DRS信号也可以按照一个块(block)发送,该块内的信号是具有(Quasi Co-Loacted,QCL)关系的。应理解,在本申请实施例中,DRS也可以包括其他类型的信息,本申请实施例对此不做具体限定。
考虑到非授权频谱上信道使用权获得的不确定性,在DRS的发送过程中,由于存在LBT失败的可能,在预定的时刻可能无法成功发送DRS。可以增加DRS的发送机会,在一个DRS传输窗内,网络设备配置的DRS的候选位置个数Y大于网络设备实际发送的DRS的个数X。也就是说,对于每个DRS传输窗,网络设备可以根据该DRS传输窗内的LBT的检测结果来确定使用该Y个候选位置中可用的X个候选位置来传输DRS。
以DRS中的SSB的发送为例,SSB发送的最大数目是8,在一个时间窗内有Y=64个候选发送位置。如图4所示,所示,当SSB索引0的发送时间之前进行的LBT失败,继续进行信道侦听,在SSB索引4之前进行的LBT成功,则从SSB索引4开始发送剩余的SSB,并在发送完SSB索引7之后,再接着发送之前没有发送成功的SSB索引0-3。根据LBT成功的时刻,SSB的实际发送时间可能位于在初始或备选发送时间。如图4所示只是一种增加发送机会的方法,还有其他的方法,在此不再赘述。
为了便于理解,以上将以图5-图7为例,描述DRS的图样(pattern)。
在一种实现方式中,DRS可以包括用于SIB1的PDCCH(也可以是其他用途的PDCCH),用于SIB1的PDCCH所占用的符号可以位于SSB所占用的符号之前,例如,可以占用2个符号,且该2个符号与SSB占用的符号是连续的;DRS还可以进一步包括用于SIB1的PDSCH,该PDSCH占用的符号可以与SSB占用的符号相同,SSB与该PDSCH可以是频分复用的。以及可选地,一个传输窗内各个DRS的结构可以是一样的,或者同一时隙的DRS的结构可以是一样的。同一时隙中的DRS所占用的符号可以是连续的,也可以是不连续的。在该种实现方式中,DRS的图样可以如图5所示。
在另一种实现方式中,DRS可以包括用于SIB1的PDCCH(也可以是其他用途的PDCCH),用于SIB1的PDCCH所占用的符号可以位于SSB所占用的符号之后,例如,可以占用2个符号,且该2个符号与SSB占用的符号是连续的;DRS还可以进一步包括用于SIB1的PDSCH,该PDSCH占用的符号可以与SSB占用的符号相同,SSB与该PDSCH可以是频分复用的。以及可选地,一个传输窗内各个DRS的结构可以是一样的,或者同一时隙的DRS的结构可以是一样的。同一时隙中的DRS所占用的符号可以是连续的,或者也可以是不连续的。在该种实现方式中,DRS的图样可以如图6所示。
在另一种实现方式中,DRS可以包括用于SIB1的PDCCH(也可以是其他用途的PDCCH),用于SIB1的PDCCH所占用的符号可以位于SSB所占用的符号之后或之前。具体地,一些DRS包括的PDCCH所占用的符号可以位于SSB所占用的符号之前,另一些DRS包括的PDCCH所占用的符号可以位于SSB所占用的符号之后。例如,对于同一时隙内的两个DRS,可以是一个DRS(例如,第一个DRS)包括的PDCCH所占用的符号位于SSB所占用的符号之前,另一个DRS(例如,第二个DRS)包括的PDCCH所占用的符号位于SSB所占用的符号之后。DRS还可以进一步包括用于SIB1的PDSCH,该PDSCH占用的符号可以与SSB占用的符号相同,SSB与该PDSCH可以是频分复用的。以及可选地,一个传输窗内各个DRS的结构可以是一样的,或者同一时隙的DRS的结构可以是一样的。同一时隙中的不同DRS所占用的符号可以是连续的,也可以是不连续的,例如,可以间隔两个符号。在该种实现方式中,DRS的图样可以如图7所示。
以下结合图8将对本申请实施例的用于非授权频谱的无线通信方法200进行描述。该方法200包括以下内容中的至少部分内容。
在210中,网络设备基于候选用于发送PDCCH的第一资源集合,进行信道检测。
可选地,在本申请实施例中,在一个时间窗内可以存在至少一个候选用于发送PDCCH的资源集合。其中,该时间窗可以周期性的出现。
可选地,在本申请实施例中,候选用于发送PDCCH的资源集合可以是网络侧配置的,也可以是基于协议预设在终端设备上的。
本申请实施例中的资源集合可以包括时域资源,进一步地可以包括频域资源和/或码域资源。
本申请实施例中提到的资源集合可以是控制资源集(Control Resource Set,CORESET),具体可以是具有固定的时域位置的CORESET。
例如,本申请实施例提到的PDCCH可以属于DRS,例如为用于***信息块(System Information Block,SIB)1的PDCCH,此时,本申请实施例的候选用于PDCCH的资源集合可以是基于SSB的时域位置而固定时域位置的CORESET。
应理解,本申请实施例提到的PDCCH也可以独立于DRS而存在,此时,本申请实施例的资源集合可以是搜索空间。
可选地,在本申请实施例中,所述第一资源集合由至少一个第三符号组成,所述至少一个第三符号为候选用于发送所述DRS的符号中最前的至少一个符号。
可选地,本申请实施例提到的信道检测可以是执行LBT操作,具体可以用于检测当前信道是否空闲。
在220中,所述网络设备在检测到信道空闲的情况下,在第二资源集合上发送第一PDCCH;其中,所述第二资源集合的时域起始位置基于信道检测成功的起始时刻确定,或者,所述第二资源集合的时域起始位置是所述第一资源集合的时域起始位置,或者,所述第二资源集合是所述网络设备指示的所述第一资源集合。
可选地,在本申请实施例中,当网络设备利用第一资源集合发送PDCCH之前,如果网络设备没有获得信道的占用,需要对信道进行检测,确定信道是否空闲,如果空闲,可以基于信道检测结果和/或第一资源集合进行PDCCH的发送。
在230中,终端设备在第二资源集合上检测第一PDCCH;其中,所述第二资源集合的时域起始位置晚于所述第一资源集合的时域起始位置,或者,所述第二资源集合的时域起始位置是所述第一资源集合的时域起始位置,或者,所述第二资源集合是所述网络设备指示的所述第一资源集合。
可选地,在本申请实施例中,所述第二资源集合的时域起始位置晚于所述第一资源集合的时域起始位置,终端设备还在第一资源集合上检测第一PDCCH。
可选地,在本申请实施例中,如果终端设备不确定第一PDCCH所在资源集合是第一资源集合还是不同于第一资源集合的第二资源集合,则可以在第一资源集合和第二资源集合上均盲检测第一PDCCH。如果第二资源集合有多种可能的情况,在针对该多种可能的情况下的第二资源集合,均进行盲检测。
如果终端设备可以确定第一PDCCH所在的资源集合是第一资源集合和不同于第一资源集合的第二资源集合的其中一个资源集合,则可以在其中一个资源集合上盲检测第一PDCCH。
如果第一资源集合即为第二资源集合,则终端设备可以仅在第一资源集合上进行盲检测。
可选地,在本申请实施例中,在存在多个候选用于发送PDCCH的资源集合的情况下,可以依次基于各个资源集合进行信道检测,在基于当前一个资源集合进行信道检测,未检测到信道空闲的情况下,可以基于下一个资源集合,进行信道检测。
其中,基于候选用于发送PDCCH的资源集合进行信道检测的目的是利用该资源集合包括的资源发送PDCCH。具体地,网络设备可以在资源集合之前的一段时间开始进行信道检测。
可选地,在本申请实施例中,所述第一资源集合与所述第二资源集合在时域上至少部分重叠。例如,第二资源集合在时域上是第二资源集合的子集,或者,第二资源集合在时域上与第二资源集合存在交集。
或者,所述第一资源集合与所述第二资源集合在时域上不存在任何重叠。
为了更加清楚地理解本申请,以下将对第一资源集合与第二资源集合的关系进行说明。
在一种实现方式A中,所述第二资源集合是所述网络设备指示的所述第一资源集合。
具体而言,网络设备可以向终端设备发送第一指示信息,该第一指示信息指示第一资源集合,而该第二资源集合可以是网络设备指示的第一资源集合。其中,该第一指示信息可以属于DRS,也可以不属于DRS。其中,该第一指示信息可以为PDCCH-SIB1配置(pdcch-ConfigSIB1)信息,该第一指示信息可以承载于PBCH中。
也就是说,如果网络设备指示了第一资源集合,则需要利用第一资源集合发送PDCCH,如果针对第一资源集合进行信道检测,没有检测到信道空闲(不是第一资源集合中所有的符号可用),则可以基于下一个候选用于发送PDCCH的资源集合进行信道检测。而对于终端设备而言,可以基于网络设备发送的第一指示信息,将第一资源集合确定为第二资源集合,用于PDCCH的获取。
其中,在PDCCH是DRS的一部分时,该第一资源集合的时域起始位置可以是DRS的时域起始位置。第一指示信息也可以理解为指示了DRS的时域起始位置。
此时,从UE的角度来说,可以通过PBCH中承载的pdcch-ConfigSIB1获取CORESET,从基站角度来说,可以规定基站发送的DRS的允许的起始位置与pdcch-ConfigSIB1所指示的一致。该方法隐含通过pdcch-ConfigSIB1信息,指示基站的行为,例如,指示发送DRS的起始位置是图9所示的SRS的第一个符号还是第二个符号。如图9所示,PBCH中承载的pdcch-ConfigSIB1指示的CORESET是从DRS中的第二个符号开始的。
在如图9所示的情况下,第一资源集合可以理解为包括一个符号的资源集合。
在该种实现方式中,基站可以通过pdcch-ConfigSIB1隐含指示发送DRS允许的起始符号,使得基站和UE对于实际的CORESET的理解一致,保证UE正确接收PDCCH,并且可以兼容多种终端。
本申请实施例提到的第一指示信息可以通过指示第一资源集合的时域起始位置,时域结束位置和/或长度等来指示第一资源集合。
在另一种实现方式B中,所述第二资源集合的时域起始位置是所述第一资源集合的时域起始位置。
具体而言,可以在终端设备上预设候选用于发送PDCCH的资源集合,并且发送PDCCH的第二资源集合的时域起始位置可以是该候选的资源集合的时域起始位置。
例如,以DRS为例,可以通过预定的规则,基站只允许在CORESET包括的两个符号中的第一个符号开始发送DRS,则基站和UE之间就不存在关于CORESET的理解不一致的问题,即PDCCH发送和接收的CORESET不一致。例如,如图10所示,DRS的起始符号按照预定义,只允许从第一个符号开始。
在该种实现方式中,可以通过预定义的规则,PDCCH for SIB1的发送和接收的CORESET始终保持一致,该方法简单有效,对标准影响小。
在该种实现方式中,网络设备也可以向终端设备发送第一指示信息,该第一指示信息可以指示第一资源集合。
在另一种实现方式C中,所述第二资源集合的时域起始位置基于信道检测成功的起始 时刻确定。
也就是说,在网络设备基于第一资源集合进行信道检测的情况下,可以根据信道检测成功的起始时刻(或者是信道空闲的起始时刻),确定第二资源集合。
作为一种示例,在第一资源集合的第一个符号之前即确定信道空闲,则第二资源集合的时域起始位置可以等于第一资源集合的时域起始位置。此时,第一资源集合可以等于第二资源集合
作为一种示例,在第一资源集合的第一个符号之后的符号之前才确定信道空闲,则第二资源集合的时域起始位置可以是该第一个符号之后的符号。此时,第二资源集合在时域上可以是第一资源集合的子集,或者第一资源集合与第二资源集合在时域上部分重叠。
例如,基站按照两个符号的CORESET指示给UE,而基站发送DRS的起始符号根据LBT的结果的不同可能不同,即可以在第一个或者第二个符号开始发送DRS。此时,UE可以按照这两种可能性,按照两种可能的CORESET检测PDCCH,即包含一个符号的或者两个符号的CORESET检测PDCCH。例如,如图11所示,实际的DRS起始位置在第二个符号开始的位置。此时,UE可以按照两种CORESET进行盲检测,即CORESET包含第一个和第二个符号,和CORESET包含第二个符号。
因此,由于允许基站根据LBT的结果临时改变CORESET包含的符号数,即允许基站从第一个或者第二个符号开始DRS传输,可以增加DRS成功发送的概率。相反的,如果只允许基站在第一个符号开始DRS传输,如果当时信道侦听失败,及时在第二个符号开始时信道空闲,也不允许发送DRS,造成DRS传输成功的概率下降。
作为一种示例,在第一资源集合最后一个符号之前还未确定信道空闲,则第二资源集合可以与第一资源集合不存在任何的重叠。
在该种实现方式C中,网络设备可以向终端设备发送第一指示信息,第一指示信息可以指示该第一资源集合,或者,终端设备上可以预设有第一资源集合。但是由于所述第二资源集合的时域起始位置是网络设备基于信道检测成功的起始时刻确定的,则第二资源集合时域上的起始位置可以不同于第一资源集合时域上的起始位置,例如,第二资源集合时域上的起始位置可以晚于第一资源集合时域上的起始位置。则终端设备可以根据盲检测结果获取PDCCH,而非根据第一指示信息获取PDCCH。
可选地,在本申请实施例中,该第一PDCCH可以是DRS的一部分。
可选地,在本申请实施例中,所述第二资源集合包括至少一个第一符号,所述至少一个第一符号为所述DRS所占用的符号中最前的至少一个符号。
可选地,在本申请实施例中,所述第二资源集合包括至少一个第二符号,所述至少一个第二符号为所述DRS所占用的符号中最后的至少一个符号。
其中,第二资源集合可以同时包括至少一个第一符号和至少一个第二符号。
例如,以实现方式C为例,如果网络设备在基于SSB之前的第一资源集合进行信道检测的情况下,如果第一资源集合仅存在部分符号可以用于发送第一PDCCH,则除了可以将该第一资源集合中的该部分符号作为第二资源集合的符号之后,还可以将SSB之后的至少一个符号作为第二资源集合的符号。
例如,如图11所示,在基于一个时隙的第二个DRS进行信道检测的情况下,如果两个候选用于发送PDCCH的符号仅只有一个符号可以用于发送PDCCH,也即DRS的时域起始位置为第二个符号,则可以在该DRS包括的SSB占用的符号之后的一个符号发送PDCCH。
可选地,在本申请实施例中,基站可以指示从CORESET的第一个符号开始DRS传输,但实际允许基站根据LBT的结果,从第二个符号开始DRS。当从第二个符号开始DRS传输时,允许在SSB之后的两个符号中的至少一个符号,作为CORESET进行PDCCH的检测。此时,UE需要根据这些基站发送PDCCH的CORESET的多种可能,盲检测PDCCH。
此实施例中,基站按照两个符号的CORESET指示给UE,而基站发送DRS的起始符号根据LBT的结果的不同可能不同,即可以在该CORESET的第一个或者第二个符号开始发送DRS。此时,UE可以按照多种可能的CORESET检测PDCCH,具体可以包含:SSB之前的两个符号,或,SSB之前的第一个符号,或,SSB之前的第一个符号和SSB之后的任意一个符号,或,SSB之前的第一个符号和SSB之后的两个符号。
因此,在该种实现方式C中,基站根据LBT的结果,灵活的调整CORESET所在的符号,不仅提高了DRS发送的成功概率,还保证了PDCCH for SIB1有足够的资源进行发送。
可选地,在本申请实施例中,除了以上的实现方式A,B和C之外,还可以具有其他的实现方式。
例如,网络设备发送指示信息,该指示信息指示第一资源集合中的哪个符号作为第二资源集合的起始符号位置,例如,第一资源集合包括2个符号,则可以指示第2个符号作为第二资源集合的起始符号位置。终端设备可以根据该指示信息,从指示的符号位置处获取PDCCH。其中,该指示信息指示的符号可以是网络设备根据信道检测结果确定的,也可以是网络设备基于待发送的PDCCH包括的信息量等确定的。
可选地,在本申请实施例中,除了利用第二资源集合,发送第一PDCCH之外,网络设备还可以在候选用于发送PDCCH的第三资源集合上,发送第二PDCCH;其中,所述第三资源集合在时域上位于所述第一资源集合之后,所述第三资源集合上发送所述第二PDCCH的时域起始位置为所述第三资源集合的时域起始位置,所述第一资源集合和所述第三资源集合属于同一个COT。而对于终端设备而言,可以在候选用于发送PDCCH的第三资源集合上,获取第二PDCCH。
具体而言,在检测到信道空闲的情况下,可以在同一个COT内,多次发送PDCCH,第一次发送PDCCH时需要执行信道检测,而在后续发送PDCCH时可以不用再执行信道检测,则可以利用候选用于发送PDCCH的资源集合发送PDCCH,且发送PDCCH的时域起始位置即为该候选用于发送PDCCH的资源集合的时域起始位置。而第一次发送PDCCH的时域起始位置可以不同于对应的候选用于发送PDCCH的资源集合的起始位置,具体可以根据信道空闲时的起始时刻而定。
可选地,在本申请实施例中,终端设备可以确定各个候选资源集合是否是当前COT内第一个发送PDCCH的资源集合对应的候选资源集合,如果是,则盲检测PDCCH的资源集合可以不同于该候选资源集合,如果不是,则盲检测PDCCH的资源集合可以是该候选资源集合,也即在候选资源集合上获取PDCCH。
可选地,在本申请实施例中,网络设备可以发送第二指示信息,所述第二指示信息用于指示所述第一PDCCH所属的COT的信息。
可选地,终端设备可以基于COT的信息,确定各个候选资源集合对应的PDCCH所占用的资源集合是否与该候选资源集合一定相同。
本申请实施例提到的COT的信息可以包括COT的长度,和/或COT的起始点和/或终止点等。
例如,终端设备可以比较第一资源集合的时域起始位置和结束位置与COT的时域起始位置和结束位置,在第一资源集合的时域起始位置晚于或等于COT的时域起始位置且第一资源集合的时域结束位置早于COT的时域结束位置时,则可以对第一资源集合进行盲检测,也即将第一资源集合确定为第二资源集合。
例如,如果基站在PBCH中指示的CORESET包含了两个符号,虽然基站可能在第二个符号才获得了信道占用,但是一旦占用了信道,就可以连续占用信道一段时间。实质上,此次DRS的发送只影响了第一个DRS的发送,后面的DRS发送仍然可以采用两个符号的CORESET。UE一直可以按照两种CORESET盲检测,也可以根据某些指示信息获知将要 接收的DRS是不是基站获得信道占用后发送的第一个DRS。例如,根据COT指示信息,或者COT的起始点和/或终止点,COT时长等信息,判断COT内的DRS发送情况,确定CORESET,从而确定是否需要按照大于一种CORESET进行PDCCH的盲检测。
UE可以通过指示信息确定是否需要按照大于一种CORESET进行PDCCH的盲检测,避免UE一直按照大于一种CORESET进行盲检测,减少耗电。
应理解,本申请实施例以是PDCCH的发送和检测为例进行说明,本申请实施例的方法也可以用于PDSCH的发送和检测。
因此,在本申请实施例中,网络设备基于候选用于发送物理下行控制信道PDCCH的第一资源集合,进行信道检测;所述网络设备在检测到信道空闲的情况下,在第二资源集合上发送第一PDCCH;其中,所述第二资源集合的时域起始位置基于信道检测成功的起始时刻确定,或者,所述第二资源集合的时域起始位置是所述第一资源集合的时域起始位置,或者,所述第二资源集合是所述网络设备指示的所述第一资源集合,因此,本申请实施例可以实现非授权频谱上的PDCCH的发送。
图12是根据本申请实施例的网络设备300的示意性框图。该网络设备300包括通信单元310。
该通信单元310用于:基于候选用于发送物理下行控制信道PDCCH的第一资源集合,进行信道检测;在检测到信道空闲的情况下,在第二资源集合上发送第一PDCCH;其中,所述第二资源集合的时域起始位置基于信道检测成功的起始时刻确定,或者,所述第二资源集合的时域起始位置是所述第一资源集合的时域起始位置。
可选地,在本申请实施例中,所述第一资源集合与所述第二资源集合在时域上至少部分重叠。
可选地,在本申请实施例中,所述通信单元310进一步用于:
发送第一指示信息,所述第一指示信息用于确定所述第二资源集合的时域起始位置是所述第一资源集合的时域起始位置。
可选地,在本申请实施例中,所述第一PDCCH是发现参考信号DRS的一部分。
可选地,在本申请实施例中,所述第二资源集合包括至少一个第一符号,所述至少一个第一符号为所述DRS所占用的符号中最前的至少一个符号。
可选地,在本申请实施例中,所述第二资源集合包括至少一个第二符号,所述至少一个第二符号为所述DRS所占用的符号中最后的至少一个符号。
可选地,在本申请实施例中,所述DRS占用的符号是连续的。
可选地,在本申请实施例中,所述第一资源集合由至少一个第三符号组成,所述至少一个第三符号为候选用于发送所述DRS的符号中最前的至少一个符号。
可选地,在本申请实施例中,所述通信单元310进一步用于:
发送第二指示信息,所述第二指示信息用于指示所述第一PDCCH所属的信道占用时间COT的信息。
应理解,该网络设备300可以用于实现本申请方法实施例中由网络设备实现的相应操作,为了简洁,在此不再赘述。
图13是根据本申请实施例的终端设备400的示意性框图。该终端设备400包括通信单元410。
该通信单元410用于:在第二资源集合上检测第一物理下行控制信道PDCCH;其中,所述第二资源集合的时域起始位置晚于候选用于发送PDCCH的第一资源集合的时域起始位置,或者,所述第二资源集合的时域起始位置是所述第一资源集合的时域起始位置。
可选地,在本申请实施例中,所述第一资源集合与所述第二资源集合在时域上至少部分重叠。
可选地,在本申请实施例中,所述第二资源集合的时域起始位置晚于所述第一资源集 合的时域起始位置,所述通信单元410进一步用于:
在所述第一资源集合上检测所述第一PDCCH。
可选地,在本申请实施例中,所述通信单元410进一步用于:接收第一指示信息;
所述终端设备400还包括处理单元420,用于:基于所述第一指示信息,确定所述第二资源集合的时域起始位置是所述第一资源集合的时域起始位置。
可选地,在本申请实施例中,所述第一PDCCH是发现参考信号DRS的一部分。
可选地,在本申请实施例中,所述第二资源集合包括至少一个第一符号,所述至少一个第一符号为所述DRS所占用的符号中最前的至少一个符号。
可选地,在本申请实施例中,所述第二资源集合包括至少一个第二符号,所述至少一个第二符号为所述DRS所占用的符号中最后的至少一个符号。
可选地,在本申请实施例中,所述DRS占用的符号是连续的。
可选地,在本申请实施例中,所述第一资源集合由至少一个第三符号组成,所述至少一个第三符号为候选用于发送所述DRS的符号中最前的至少一个符号。
可选地,在本申请实施例中,所述通信单元410进一步用于:接收第二指示信息,所述第二指示信息用于指示所述第一PDCCH所属的信道占用时间COT的信息。
可选地,在本申请实施例中,所述终端设备400还包括处理单元420,用于:基于所述第二指示信息,确定所述第二资源集合的时域起始位置。
应理解,该终端设备400可以用于实现本申请方法实施例中由终端设备实现的相应操作,为了简洁,在此不再赘述。
图14是本申请实施例提供的一种通信设备500示意性结构图。图14所示的通信设备500包括处理器510,处理器510可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图14所示,通信设备500还可以包括存储器520。其中,处理器510可以从存储器520中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器520可以是独立于处理器510的一个单独的器件,也可以集成在处理器510中。
可选地,如图14所示,通信设备500还可以包括收发器530,处理器510可以控制该收发器530与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器530可以包括发射机和接收机。收发器530还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备500具体可为本申请实施例的网络设备,并且该通信设备500可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备500具体可为本申请实施例的移动终端/终端设备,并且该通信设备500可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图15是本申请实施例的芯片的示意性结构图。图15所示的芯片600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图15所示,芯片600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,该芯片600还可以包括输入接口630。其中,处理器610可以控制该输入接口630与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片600还可以包括输出接口640。其中,处理器610可以控制该输出接 口640与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为***级芯片,***芯片,芯片***或片上***芯片等。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的***和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且 该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (50)

  1. 一种用于非授权频谱的无线通信方法,其特征在于,包括:
    网络设备基于候选用于发送物理下行控制信道PDCCH的第一资源集合,进行信道检测;
    所述网络设备在检测到信道空闲的情况下,在第二资源集合上发送第一PDCCH;
    其中,所述第二资源集合的时域起始位置基于信道检测成功的起始时刻确定,或者,所述第二资源集合的时域起始位置是所述第一资源集合的时域起始位置。
  2. 根据权利要求1所述的方法,其特征在于,所述第一资源集合与所述第二资源集合在时域上至少部分重叠。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述网络设备发送第一指示信息,所述第一指示信息用于确定所述第二资源集合的时域起始位置是所述第一资源集合的时域起始位置。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一PDCCH是发现参考信号DRS的一部分。
  5. 根据权利要求4所述的方法,其特征在于,所述第二资源集合包括至少一个第一符号,所述至少一个第一符号为所述DRS所占用的符号中最前的至少一个符号。
  6. 根据权利要求4或5所述的方法,其特征在于,所述第二资源集合包括至少一个第二符号,所述至少一个第二符号为所述DRS所占用的符号中最后的至少一个符号。
  7. 根据权利要求4至6中任一项所述的方法,其特征在于,所述DRS占用的符号是连续的。
  8. 根据权利要求4至7中任一项所述的方法,其特征在于,所述第一资源集合由至少一个第三符号组成,所述至少一个第三符号为候选用于发送所述DRS的符号中最前的至少一个符号。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备发送第二指示信息,所述第二指示信息用于指示所述第一PDCCH所属的信道占用时间COT的信息。
  10. 一种用于非授权频谱的无线通信方法,其特征在于,包括:
    终端设备在第二资源集合上检测第一物理下行控制信道PDCCH;
    其中,所述第二资源集合的时域起始位置晚于候选用于发送PDCCH的第一资源集合的时域起始位置,或者,所述第二资源集合的时域起始位置是所述第一资源集合的时域起始位置。
  11. 根据权利要求10所述的方法,其特征在于,所述第一资源集合与所述第二资源集合在时域上至少部分重叠。
  12. 根据权利要求10或11所述的方法,其特征在于,所述第二资源集合的时域起始位置晚于所述第一资源集合的时域起始位置,所述方法还包括:
    所述终端设备在所述第一资源集合上检测所述第一PDCCH。
  13. 根据权利要求10至12中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收第一指示信息;
    基于所述第一指示信息,确定所述第二资源集合的时域起始位置是所述第一资源集合的时域起始位置。
  14. 根据权利要求10至13中任一项所述的方法,其特征在于,所述第一PDCCH是发现参考信号DRS的一部分。
  15. 根据权利要求14所述的方法,其特征在于,所述第二资源集合包括至少一个第一符号,所述至少一个第一符号为所述DRS所占用的符号中最前的至少一个符号。
  16. 根据权利要求14或15所述的方法,其特征在于,所述第二资源集合包括至少一个第二符号,所述至少一个第二符号为所述DRS所占用的符号中最后的至少一个符号。
  17. 根据权利要求14至16中任一项所述的方法,其特征在于,所述DRS占用的符号是连续的。
  18. 根据权利要求14至17中任一项所述的方法,其特征在于,所述第一资源集合由至少一个第三符号组成,所述至少一个第三符号为候选用于发送所述DRS的符号中最前的至少一个符号。
  19. 根据权利要求10至18中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收第二指示信息,所述第二指示信息用于指示所述第一PDCCH所属的信道占用时间COT的信息。
  20. 根据权利要求19所述的方法,其特征在于,所述方法还包括:
    基于所述第二指示信息,所述终端设备确定所述第二资源集合的时域起始位置。
  21. 一种网络设备,所述网络设备用于非授权频谱上的通信,其特征在于,包括通信单元,用于:
    基于候选用于发送物理下行控制信道PDCCH的第一资源集合,进行信道检测;
    在检测到信道空闲的情况下,在第二资源集合上发送第一PDCCH;
    其中,所述第二资源集合的时域起始位置基于信道检测成功的起始时刻确定,或者,所述第二资源集合的时域起始位置是所述第一资源集合的时域起始位置。
  22. 根据权利要求21所述的网络设备,其特征在于,所述第一资源集合与所述第二资源集合在时域上至少部分重叠。
  23. 根据权利要求21或22所述的网络设备,其特征在于,所述通信单元进一步用于:
    发送第一指示信息,所述第一指示信息用于确定所述第二资源集合的时域起始位置是所述第一资源集合的时域起始位置。
  24. 根据权利要求21至23中任一项所述的网络设备,其特征在于,所述第一PDCCH是发现参考信号DRS的一部分。
  25. 根据权利要求24所述的网络设备,其特征在于,所述第二资源集合包括至少一个第一符号,所述至少一个第一符号为所述DRS所占用的符号中最前的至少一个符号。
  26. 根据权利要求24或25所述的网络设备,其特征在于,所述第二资源集合包括至少一个第二符号,所述至少一个第二符号为所述DRS所占用的符号中最后的至少一个符号。
  27. 根据权利要求24至26中任一项所述的网络设备,其特征在于,所述DRS占用的符号是连续的。
  28. 根据权利要求24至27中任一项所述的网络设备,其特征在于,所述第一资源集合由至少一个第三符号组成,所述至少一个第三符号为候选用于发送所述DRS的符号中最前的至少一个符号。
  29. 根据权利要求21至28中任一项所述的网络设备,其特征在于,所述通信单元进一步用于:
    发送第二指示信息,所述第二指示信息用于指示所述第一PDCCH所属的信道占用时间COT的信息。
  30. 一种终端设备,所述终端设备用于非授权频谱上的通信,其特征在于,包括通信单元,用于:
    在第二资源集合上检测第一物理下行控制信道PDCCH;
    其中,所述第二资源集合的时域起始位置晚于候选用于发送PDCCH的第一资源集合的时域起始位置,或者,所述第二资源集合的时域起始位置是所述第一资源集合的时域起始位置。
  31. 根据权利要求30所述的终端设备,其特征在于,所述第一资源集合与所述第二资源集合在时域上至少部分重叠。
  32. 根据权利要求30或31所述的终端设备,其特征在于,所述第二资源集合的时域起始位置晚于所述第一资源集合的时域起始位置,所述通信单元进一步用于:
    在所述第一资源集合上检测所述第一PDCCH。
  33. 根据权利要求30至32中任一项所述的终端设备,其特征在于,所述通信单元进一步用于:接收第一指示信息;
    所述终端设备还包括处理单元,用于:基于所述第一指示信息,确定所述第二资源集合的时域起始位置是所述第一资源集合的时域起始位置。
  34. 根据权利要求30至33中任一项所述的终端设备,其特征在于,所述第一PDCCH是发现参考信号DRS的一部分。
  35. 根据权利要求34所述的终端设备,其特征在于,所述第二资源集合包括至少一个第一符号,所述至少一个第一符号为所述DRS所占用的符号中最前的至少一个符号。
  36. 根据权利要求34或35所述的终端设备,其特征在于,所述第二资源集合包括至少一个第二符号,所述至少一个第二符号为所述DRS所占用的符号中最后的至少一个符号。
  37. 根据权利要求34至36中任一项所述的终端设备,其特征在于,所述DRS占用的符号是连续的。
  38. 根据权利要求34至37中任一项所述的终端设备,其特征在于,所述第一资源集合由至少一个第三符号组成,所述至少一个第三符号为候选用于发送所述DRS的符号中最前的至少一个符号。
  39. 根据权利要求30至38中任一项所述的终端设备,其特征在于,所述通信单元进一步用于:
    接收第二指示信息,所述第二指示信息用于指示所述第一PDCCH所属的信道占用时间COT的信息。
  40. 根据权利要求39所述的终端设备,其特征在于,所述终端设备还包括处理单元,用于:
    基于所述第二指示信息,确定所述第二资源集合的时域起始位置。
  41. 一种网络设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至9中任一项所述的方法。
  42. 一种终端设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求10至20中任一项所述的方法。
  43. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至9中任一项所述的方法。
  44. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求10至20中任一项所述的方法。
  45. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至9中任一项所述的方法。
  46. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求10至20中任一项所述的方法。
  47. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至9中任一项所述的方法。
  48. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使 得计算机执行如权利要求10至20中任一项所述的方法。
  49. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至9中任一项所述的方法。
  50. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求10至20中任一项所述的方法。
PCT/CN2019/072951 2019-01-24 2019-01-24 用于非授权频谱的无线通信方法和设备 WO2020150957A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/072951 WO2020150957A1 (zh) 2019-01-24 2019-01-24 用于非授权频谱的无线通信方法和设备
CN201980018535.2A CN111869292B (zh) 2019-01-24 2019-01-24 用于非授权频谱的无线通信方法和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/072951 WO2020150957A1 (zh) 2019-01-24 2019-01-24 用于非授权频谱的无线通信方法和设备

Publications (1)

Publication Number Publication Date
WO2020150957A1 true WO2020150957A1 (zh) 2020-07-30

Family

ID=71736533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/072951 WO2020150957A1 (zh) 2019-01-24 2019-01-24 用于非授权频谱的无线通信方法和设备

Country Status (2)

Country Link
CN (1) CN111869292B (zh)
WO (1) WO2020150957A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113590280A (zh) * 2021-07-08 2021-11-02 Oppo广东移动通信有限公司 一种信道任务管理方法、终端及存储介质
CN115664591A (zh) * 2022-09-30 2023-01-31 清华大学 基于能量聚集的广域物联网数据包冲突解码方法及装置
CN115699849A (zh) * 2020-08-07 2023-02-03 Oppo广东移动通信有限公司 无线通信方法和设备
WO2024114350A1 (zh) * 2022-12-02 2024-06-06 华为技术有限公司 通信方法、装置及***

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023206322A1 (zh) * 2022-04-29 2023-11-02 Oppo广东移动通信有限公司 传输资源的选择方法、装置、设备和存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160095114A1 (en) * 2014-09-26 2016-03-31 Electronics And Telecommunications Research Institute Method and apparatus for managing allocation and usage of radio resource, method and apparatus for transmitting data through unlicensed band channel, and method and apparatus for managing access of radio resource
WO2017020239A1 (en) * 2015-08-04 2017-02-09 Nec Corporation Methods and apparatuses for transmitting and receiving a discovery reference signal
CN107040938A (zh) * 2015-07-16 2017-08-11 北京三星通信技术研究有限公司 一种信号发送与接收的方法和用户设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106452704B (zh) * 2015-08-13 2020-10-16 ***通信集团公司 一种发现参考信号的发送方法、基站及终端
WO2018015796A1 (en) * 2016-07-22 2018-01-25 Telefonaktiebolaget Lm Ericsson (Publ) Multi-ofdm-protocol beacon operation
EP3616450B1 (en) * 2017-04-28 2022-01-26 Telefonaktiebolaget LM Ericsson (publ) Multiple starting positions for uplink transmission on unlicensed spectrum

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160095114A1 (en) * 2014-09-26 2016-03-31 Electronics And Telecommunications Research Institute Method and apparatus for managing allocation and usage of radio resource, method and apparatus for transmitting data through unlicensed band channel, and method and apparatus for managing access of radio resource
CN107040938A (zh) * 2015-07-16 2017-08-11 北京三星通信技术研究有限公司 一种信号发送与接收的方法和用户设备
WO2017020239A1 (en) * 2015-08-04 2017-02-09 Nec Corporation Methods and apparatuses for transmitting and receiving a discovery reference signal

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHARTER COMMUNICATIONS: "Feature Lead Summary #1 of Initial Access and Mobility", 3GPP TSG RAN WG1 MEETING RAN1#94BIS R1-1811885, 12 October 2018 (2018-10-12), XP051519208, DOI: 20190925173315X *
INTEL CORPORATION: "Enhancements to NR DL Signals and Channels for Unlicensed Operation", 3GPP TSG RAN WG1 MEETING #95 R1-1812480, 16 November 2018 (2018-11-16), XP051554424, DOI: 20190925173510X *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115699849A (zh) * 2020-08-07 2023-02-03 Oppo广东移动通信有限公司 无线通信方法和设备
CN113590280A (zh) * 2021-07-08 2021-11-02 Oppo广东移动通信有限公司 一种信道任务管理方法、终端及存储介质
CN113590280B (zh) * 2021-07-08 2024-03-26 Oppo广东移动通信有限公司 一种信道任务管理方法、终端及存储介质
CN115664591A (zh) * 2022-09-30 2023-01-31 清华大学 基于能量聚集的广域物联网数据包冲突解码方法及装置
WO2024114350A1 (zh) * 2022-12-02 2024-06-06 华为技术有限公司 通信方法、装置及***

Also Published As

Publication number Publication date
CN111869292A (zh) 2020-10-30
CN111869292B (zh) 2021-10-29

Similar Documents

Publication Publication Date Title
EP3771272B1 (en) Method for transmitting downlink signal and terminal device
WO2020150957A1 (zh) 用于非授权频谱的无线通信方法和设备
US12003450B2 (en) Signal transmission method and device and terminal
US11470644B2 (en) Control information transmission method, terminal device and network device
EP3820100A1 (en) Data transmission method, terminal device, and network device
US20220046632A1 (en) Communication method in d2d system, terminal device, and network device
WO2020103160A1 (zh) 无线通信方法、网络设备和终端设备
WO2020248288A1 (zh) 无线通信的方法、终端设备和网络设备
US20220330342A1 (en) Wireless communication method, terminal device, and network device
WO2020168575A1 (zh) 无线通信方法、终端设备和网络设备
CN111935846B (zh) 传输信号的方法、终端设备和网络设备
WO2020177040A1 (zh) 无线通信的方法、终端设备和网络设备
WO2021088262A1 (zh) 确定时隙格式的方法及装置
EP3820064B1 (en) Information transmission method, terminal device and network device
WO2020087540A1 (zh) 一种控制信息的传输方法、设备及存储介质
EP3869850A1 (en) Method and device for determining number of times of blind detection, and terminal
US11856539B2 (en) Method and device for transmitting downlink control information
US20210211328A1 (en) Wireless communication method, transmitting node and receiving node
WO2021092774A1 (zh) 无线通信的方法、网络设备和终端设备
WO2020150877A1 (zh) 用于非授权频谱的通信方法和设备
EP3873156A1 (en) Data transmission method and apparatus, and network device and terminal
CN113273274A (zh) 无线通信的方法和设备
US20220061034A1 (en) Method for information feedback, terminal device and network device
WO2020248272A1 (zh) 用于发送上行信道/信号的方法、终端设备和网络设备
EP3621366A1 (en) Wireless communication method, terminal device, and network device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19912001

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19912001

Country of ref document: EP

Kind code of ref document: A1