WO2020248272A1 - 用于发送上行信道/信号的方法、终端设备和网络设备 - Google Patents

用于发送上行信道/信号的方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2020248272A1
WO2020248272A1 PCT/CN2019/091392 CN2019091392W WO2020248272A1 WO 2020248272 A1 WO2020248272 A1 WO 2020248272A1 CN 2019091392 W CN2019091392 W CN 2019091392W WO 2020248272 A1 WO2020248272 A1 WO 2020248272A1
Authority
WO
WIPO (PCT)
Prior art keywords
ssb
target
spatial relationship
quasi
location
Prior art date
Application number
PCT/CN2019/091392
Other languages
English (en)
French (fr)
Inventor
贺传峰
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN201980095721.6A priority Critical patent/CN113728701A/zh
Priority to CN202210061959.0A priority patent/CN114364038B/zh
Priority to EP19933132.3A priority patent/EP3965494A4/en
Priority to PCT/CN2019/091392 priority patent/WO2020248272A1/zh
Publication of WO2020248272A1 publication Critical patent/WO2020248272A1/zh
Priority to US17/539,091 priority patent/US20220085953A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/086Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/10Access restriction or access information delivery, e.g. discovery data delivery using broadcasted information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0075Allocation using proportional fairness
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others

Definitions

  • This application relates to the field of communications, and in particular to methods, terminal equipment and network equipment for sending uplink channels/signals.
  • the channel/signal transmission and reception of terminal equipment have spatial characteristics.
  • the network side configures the channel/signal spatial relationship information for the terminal equipment to indicate the spatial relationship between the uplink physical uplink control channel (PUCCH) or sounding reference signal (SRS) and the reference signal Information, where the reference signal may be a synchronization signal (Synchronization Signal, SSB)/physical broadcast channel (Physical Broadcast Channel, PBCH) block, a channel state information reference signal (Channel-State Information Reference Signal, CSI-RS) Or Sounding Reference Signal (SRS).
  • SSB Synchrom Signal
  • PBCH Physical Broadcast Channel
  • CSI-RS Channel State Information Reference Signal
  • SRS Sounding Reference Signal
  • the SSB in the spatial relationship information between the uplink channel/signal and the reference signal configured on the network side, the SSB is identified by the SSB index (Index).
  • the SSB-Index can identify the location of the SSB, or it can indicate the SSB The Quasi Co-Loacted (QCL) relationship.
  • the embodiments of the present application provide a method, terminal equipment and network equipment for transmitting an uplink channel/signal, which can improve the transmission performance of the uplink channel/signal reception.
  • a method for transmitting uplink channels/signals including: a terminal device receives spatial relationship indication information sent by a network device, the spatial relationship indication information is used to indicate a target synchronization signal block SSB, and the spatial relationship indication The information includes the location index of the target SSB or the quasi co-location information of the target SSB; the terminal device determines the uplink channel/signal spatial relationship information according to the target spatial relationship information corresponding to the target SSB.
  • a method for sending uplink channels/signals including: a network device sends spatial relationship indication information to a terminal device, the spatial relationship indication information is used to indicate a target synchronization signal block SSB, and the spatial relationship indication information It includes the location index of the target SSB or the quasi co-location information of the target SSB, and the spatial relationship indication information is used to indicate that the target spatial relationship information corresponding to the target SSB is used to determine the spatial relationship information of the uplink channel/signal.
  • a terminal device which is used to execute the method in the foregoing first aspect or each of its implementation manners.
  • the terminal device includes a functional module for executing the method in the foregoing first aspect or each implementation manner thereof.
  • a network device configured to execute the method in the second aspect or its implementation manners.
  • the network device includes a functional module for executing the method in the foregoing second aspect or each implementation manner thereof.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the above-mentioned first aspect or each of its implementation modes.
  • a network device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the above-mentioned second aspect or each of its implementation modes.
  • a chip for implementing any one of the above-mentioned first aspect to the second aspect or the method in each implementation manner thereof.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes any one of the above-mentioned first aspect to the second aspect or any of the implementations thereof method.
  • a computer-readable storage medium for storing a computer program that enables a computer to execute any one of the first aspect to the second aspect or the method in each implementation manner thereof.
  • a computer program product including computer program instructions, which cause a computer to execute any one of the above-mentioned first aspect to the second aspect or the method in each implementation manner thereof.
  • a computer program which when running on a computer, causes the computer to execute any one of the above-mentioned first aspect to the second aspect or the method in each implementation manner thereof.
  • the terminal device receives the spatial relationship indication information sent by the network device.
  • the spatial relationship indication information may include the location information of the SSB or the QCL information of the SSB, so that the terminal device can correctly determine the SSB and determine the spatial characteristics of the SSB Therefore, the uplink channel/signal is sent according to the spatial characteristics, for example, PUCCH or SRS is sent, and the reception performance of PUCCH or SRS is improved.
  • Fig. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of time-frequency resources occupied by an SSB according to an embodiment of the present application.
  • Fig. 3 is a time slot distribution pattern of the SSB under different subcarrier intervals provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of listening-before-speaking LBT at multiple candidate positions provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of the quasi co-location relationship of SSBs with different location indexes provided by an embodiment of the present application.
  • Fig. 6 is a schematic diagram of a method for transmitting uplink channels/signals provided by an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a terminal device provided by an embodiment of the present application.
  • Fig. 8 is a schematic block diagram of a network device provided by an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 10 is a schematic block diagram of a chip provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GSM Global System of Mobile Communication
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the communication system 100 applied in the embodiment of the present application is shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or called a communication terminal or terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminal devices located in the coverage area.
  • the network device 110 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system (Evolutional Node B, eNB or eNodeB), or the wireless controller in the Cloud Radio Access Network (CRAN), or the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches, bridges, routers, network side devices in 5G networks, or network devices in the future evolution of the Public Land Mobile Network (PLMN), etc.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • LTE Long Term Evolutional Node B
  • eNB evolved base station
  • CRAN Cloud Radio Access Network
  • the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches,
  • the communication system 100 also includes at least one terminal device 120 located within the coverage area of the network device 110.
  • the "terminal equipment” used here includes but is not limited to connection via wired lines, such as via public switched telephone networks (PSTN), digital subscriber lines (Digital Subscriber Line, DSL), digital cables, and direct cable connections ; And/or another data connection/network; and/or via a wireless interface, such as for cellular networks, wireless local area networks (WLAN), digital TV networks such as DVB-H networks, satellite networks, AM- FM broadcast transmitter; and/or another terminal device that is set to receive/send communication signals; and/or Internet of Things (IoT) equipment.
  • PSTN public switched telephone networks
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL
  • a terminal device set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal” or a “mobile terminal”.
  • mobile terminals include, but are not limited to, satellites or cellular phones; Personal Communications System (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, Internet/intranet PDA with internet access, web browser, memo pad, calendar, and/or Global Positioning System (GPS) receiver; and conventional laptop and/or palmtop receivers or others including radio phone transceivers Electronic device.
  • PCS Personal Communications System
  • GPS Global Positioning System
  • Terminal equipment can refer to access terminals, user equipment (UE), user units, user stations, mobile stations, mobile stations, remote stations, remote terminals, mobile equipment, user terminals, terminals, wireless communication equipment, user agents, or User device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in 5G networks, or terminal devices in the future evolution of PLMN, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • direct terminal connection (Device to Device, D2D) communication may be performed between the terminal devices 120.
  • the 5G system or 5G network may also be referred to as a New Radio (NR) system or NR network.
  • NR New Radio
  • Figure 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. The embodiment does not limit this.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • the devices with communication functions in the network/system in the embodiments of the present application may be referred to as communication devices.
  • the communication device may include a network device 110 and a terminal device 120 with communication functions, and the network device 110 and the terminal device 120 may be the specific devices described above, which will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the application.
  • Unlicensed spectrum is a spectrum that can be used for radio equipment communications divided by countries and regions.
  • This spectrum is usually considered to be a shared spectrum, that is, communication equipment in different communication systems as long as they meet the regulatory requirements set by the country or region on the spectrum. To use this spectrum, there is no need to apply for a proprietary spectrum authorization from the government.
  • some countries or regions have stipulated the legal requirements that must be met when using unlicensed spectrum. For example, in Europe, communication equipment follows the principle of "listen-before-talk (LBT)", that is, communication equipment needs to perform channel listening before sending signals on unlicensed spectrum channels.
  • LBT listen-before-talk
  • the communication device can only send signals when the channel detection result is that the channel is idle; if the channel detection result of the communication device on the unlicensed spectrum channel is that the channel is busy, the communication device cannot perform signal transmission.
  • the duration of signal transmission by a communication device using an unlicensed spectrum channel cannot exceed the maximum channel occupation time (Maximum Channel Occupation Time, MCOT).
  • synchronization signal Synchronization Signal
  • PBCH Physical Broadcast Channel
  • Common channels and signals in the NR system need to cover the entire cell by means of multi-beam scanning to facilitate reception by UEs in the cell.
  • the multi-beam transmission of the synchronization signal is realized by defining the SS/PBCH burst set.
  • An SS burst set contains one or more SS/PBCH blocks.
  • An SS/PBCH block is used to carry the synchronization signal and broadcast channel of a beam. Therefore, an SS/PBCH burst set can include the number of beam synchronization signals of the SS/PBCH block in the cell.
  • the maximum number of SS/PBCH block numbers can be expressed as L.
  • L is related to the frequency band of the system. For example, if the frequency range is less than or equal to 3GHz, L is 4; the frequency range is 3GHz to 6GHz, and L is 8; the frequency range is 6GHz to 52.6GHz, L is 64.
  • FIG. 2 shows a schematic diagram of time-frequency resources occupied by an SS/PBCH block (hereinafter referred to as "SSB").
  • an SSB may include a primary synchronization signal (Primary Synchronization Signal, PSS) of an Orthogonal Frequency Division Multiplexing (OFDM) symbol, and may also include a secondary synchronization signal of an OFDM symbol ( Secondary Synchronization Signal (SSS) and NR-PBCH of two OFDM symbols, where the time-frequency resources occupied by the PBCH may include a demodulation reference signal (Demodulation Reference Signal, DMRS), and the DMRS is used for demodulation of the PBCH.
  • PSS Primary Synchronization Signal
  • OFDM Orthogonal Frequency Division Multiplexing
  • All SS/PBCH blocks in the SS/PBCH burst set are sent within a time window of 5ms, and sent repeatedly at a certain cycle.
  • This cycle can be configured through the high-level parameter SSB-timing information, for example, the cycle It can include 5ms, 10ms, 20ms, 40ms, 80ms and 160ms.
  • the index of the SSB is obtained from the received SS/PBCH block.
  • the SSB index corresponds to the relative position of the SSB within the 5ms time window.
  • the UE uses this information and the half-frame indication information carried in the PBCH, Obtain frame synchronization.
  • the index of the SS/PBCH block can be indicated by the DMRS of the PBCH or the information carried by the PBCH.
  • FIG. 3 shows the time slot distribution pattern of the SSB under different subcarrier spacing (SCS) according to the embodiment of the present application.
  • SCS subcarrier spacing
  • the number L of SSBs in the embodiment of the present application is the number of the largest SSBs, that is, the number of SSBs actually sent may be less than or equal to L.
  • L is the maximum number of SSBs sent in a certain frequency band
  • the value range of SSB index is [0, L-1].
  • the SSB index can be used for frame synchronization.
  • it can also be used for the UE to obtain the QCL relationship of the SSB. If the indexes of the SS/PBCH blocks received at different times are the same, it is considered that they have a QCL relationship.
  • the large-scale parameters of the two reference signals can be inferred from each other, or can be considered similar, where the large-scale parameters can include, for example, Doppler Delay, average delay, and spatial reception parameters, etc.
  • the UE can filter the SSB with the QCL relationship as the measurement result of the beam level.
  • DRS Discovery reference signal
  • the DRS signal sent by the network device can be used for access and measurement, where the DRS may at least include the SSB.
  • the network device may not be able to successfully transmit the SSB at a predetermined time due to the possibility of LBT failure during the transmission of the SSB. Therefore, NR-U defines the candidate position of SSB. For example, in a time window of the longest 5ms, the subcarrier interval for SSB is 30kHz, and 20 candidate positions are defined, and the subcarrier interval for SSB is 15kHz, and 10 candidate positions are defined.
  • the maximum number of SSBs sent is Q, and the base station determines to use Q candidate positions among multiple candidate positions to transmit the DRS according to the detection result of the LBT in the DRS transmission window.
  • the parameter Q may be configured by the network device for the terminal device, or may also be specified by the protocol, and the embodiment of the present application is not limited thereto.
  • Fig. 4 shows a schematic diagram of performing LBT at candidate positions.
  • the subcarrier spacing is 30kHz, and 20 candidate positions are defined as an example.
  • the maximum number of SSBs sent Q is 8.
  • the possible starting positions of the 8 SSBs can be shown in the figure. Any one of the 20 candidate positions in 4. It is assumed here that the base station only performs LBT at the candidate position indexes 1, 4, 8, and 16, as shown in FIG. 4, that is, uses these four positions as possible starting positions of 8 SSBs. As shown in Figure 4, assuming that the base station successfully performs LBT before candidate position 12, it starts to send SSB QCL index 0-7 accordingly.
  • the SSB QCL index in NR-U has a different meaning from the SSB index in NR.
  • SSB index can be used to obtain synchronization and QCL relationship
  • synchronization is obtained through SSB position index
  • QCL relationship is obtained through SSB QCL index.
  • the actual sending position of the SSB may be any one or more of the 20 candidate positions.
  • the value range of SSB QCL index used to obtain the QCL relationship between SSBs is 0 to 7, that is, the value range of SSB position index and SSB QCL index are different.
  • SSBs sent at different times if their SSB QCL index is the same, it is considered that there is a QCL relationship between them. In other words, there is no QCL relationship between SSBs with different SSB QCL indexes.
  • SSB QCL index Mod(SSB position index, Q)
  • the value range of SSB QCL index is 0 to Q-1.
  • Figure 5 shows the quasi co-location relationship of SSBs with different location indexes.
  • the value range of the position index is 0-19, and the maximum number of SSBs sent is 8, which is the SSB used to obtain the QCL relationship between SSBs
  • the value range of QCL index is 0 to 7, so there may be multiple SSBs with different position indexes, but they have a QCL relationship.
  • the three SSBs with SSB position index 0, 8, and 16 all have a QCL relationship.
  • the channel/signal transmission and reception of the UE have spatial characteristics.
  • the network side configures the spatial relationship information between channels/signals for the UE to indicate the spatial relationship information between the physical uplink control channel (PUCCH) or sounding reference signal (SRS) and the reference signal ,
  • the reference signal may be an SSB, a channel state information reference signal (Channel-State Information Reference Signal, CSI-RS), or an SRS.
  • the network side indicates that there is a spatial relationship between the PUCCH and the SSB
  • the UE may use the same spatial domain filter as that used to receive the SSB to send the PUCCH.
  • the network side indicates that there is a spatial relationship between the target SRS and the SSB
  • the UE will use the same spatial domain filter as receiving the SSB to transmit the target SRS.
  • SSB in the spatial relationship information between uplink channel/signal and reference signal configured on the network side, SSB is identified by SSB-Index; the value range of SSB-Index is 0 to L-1, which is carried in SSB, And SSBs with different SSB-Index do not have a QCL relationship, and the QCL relationship of the SSB can be directly obtained through the SSB-Index.
  • SSB position index is carried in SSB, and QCL relationship is obtained through SSB QCL index, and SSB QCL index is not directly carried in SSB, but calculated by SSB position index and parameter Q of. Therefore, in NR-U, if the SSB has a spatial relationship with the uplink channel/signal, how to identify the SSB is a problem that needs to be solved at present.
  • the embodiment of the present application proposes a method for transmitting uplink channels/signals, which can solve this problem.
  • FIG. 6 is a schematic flowchart of a method 200 for sending an uplink channel/signal according to an embodiment of the application.
  • the method 200 includes: S210, sending spatial relationship indication information.
  • the network device sends spatial relationship indication information to the terminal device, where the spatial relationship indication information indicates a reference signal that has a spatial relationship with an uplink channel/signal.
  • the method 200 in the embodiment of the present application may be used for unlicensed spectrum.
  • the method may be applied to the NR-U system, but the embodiment of the present application is not limited thereto.
  • the method 200 may be executed by a terminal device and a network device.
  • the terminal device may be the terminal device shown in FIG. 1; the network device may be the network device shown in FIG. 1.
  • the uplink channel/signal in the embodiment of the present application may include PUCCH and/or SRS.
  • the reference signal indicated by the spatial relationship indication information in the embodiment of the present application may include at least one of the following: SSB, CSI-RS, and SRS.
  • the SSB in the embodiment of this application is SS/PBCH block.
  • the reference signal is an SSB as an example for description. That is, the spatial relationship indication information sent by the network device indicates the SSB that has a spatial relationship with the uplink channel/signal.
  • the SSB is the target SSB, and the target SSB can refer to any SSB.
  • the spatial relationship indication information is used to indicate the target SSB, so that the terminal device can determine the target SSB according to the spatial relationship indication information.
  • the spatial relationship indication information may include the location information of the target SSB.
  • the location information of the target SSB may include the location index of the target SSB; or, the spatial relationship indication information may include the quasi co-location of the target SSB ( QCL) information.
  • the QCL information of the target SSB may include the QCL index of the target SSB.
  • the position information of the target SSB may include the position index of the target SSB, and the position index of the target SSB The position index is used to indicate the index of the sending position of the target SSB, and the terminal device determines the corresponding target SSB according to the position index of the target SSB in the spatial relationship indication information.
  • the value range of the position index of the target SSB indicates the possible sending position of the target SSB.
  • the value range of the position index of the target SSB may be related to the transmission window size of the DRS, and the DRS includes the target SSB; and/or, the value range of the position index of the target SSB may also be related to the subcarrier spacing.
  • the DRS window size is 5ms
  • the subcarrier spacing of the SSB is 30kHz
  • the number of possible sending positions of the SSB is 20, that is, the value range of the position index of the target SSB is 0-19.
  • 10 candidate positions are defined, that is, the number of possible sending positions of the SSB is 10, that is to say, the value range of the position index of the target SSB is 0- 9.
  • the network device can use the LBT method to select one or more of the 20 or 10 possible sending positions mentioned above to send one or more target SSBs, and the position index of the target SSB included in the spatial relationship indication information It can indicate the index of the location where the target SSB is actually sent, so that the terminal device can determine the location index of the target SSB, and can also receive the target SSB.
  • the QCL information of the target SSB may include the QCL index (QCL index) of the target SSB, and the target SSB
  • QCL index QCL index
  • the QCL information of the target SSB or the QCL index of the target SSB can be used to indicate the QCL relationship between the target SSB and other SSBs.
  • multiple SSBs with a QCL relationship have the same QCL index.
  • one of the SSBs with different QCL indexes There is no QCL relationship between.
  • the value range of the QCL index of the target SSB is related to the maximum number Q of SSBs that do not have a QCL relationship sent within a DRS transmission window.
  • the value range of the QCL index of the target SSB is 0 to Q- 1.
  • the method 200 may further include: S220, determining an SSB having a spatial relationship with an uplink channel/signal. Specifically, the terminal device determines the target SSB that has a spatial relationship with the uplink channel/signal according to the spatial relationship indication information, and determines the target spatial relationship information corresponding to the target SSB.
  • the terminal device may use the location index of the target SSB , To determine the corresponding target spatial relationship information.
  • the target SSB there is a location index of at least one SSB that is different from the location index of the target SSB, but the target SSB and the at least one SSB correspond to the same spatial relationship information, and the target SSB and the at least one SSB correspond to the same spatial relationship information.
  • One SSB has a QCL relationship, that is, at least one SSB that has a QCL relationship with the target SSB also corresponds to the target spatial relationship information.
  • the terminal device may determine the spatial relationship information corresponding to the location index of the target SSB as the target spatial relationship information according to the corresponding relationship between the location index of the SSB and the spatial relationship information.
  • the location indexes of multiple SSBs having a QCL relationship correspond to the same spatial relationship information, that is, the locations of multiple SSBs having a QCL relationship
  • the indexes may be different, but the multiple SSBs correspond to the same spatial relationship information.
  • the terminal device may also determine the QCL information of the target SSB according to the location index of the target SSB, and then determine the spatial relationship information corresponding to the QCL information of the target SSB as the target spatial relationship information. For example, the terminal device may The corresponding relationship between the QCL information of the SSB and the spatial relationship information, and the spatial relationship information corresponding to the QCL information of the target SSB is determined as the target spatial relationship information.
  • the location index of the SSB may be used to determine the quasi co-location index of the SSB.
  • the relationship between the position index of the target SSB and the QCL index of the target SSB is related to the parameter Q, that is, the SSB QCL index is calculated according to the SSB position index.
  • the terminal device can determine the quasi co-location index of the target SSB according to the following formula (1):
  • QCL is the quasi co-location index of the target SSB
  • P is the location index of the target SSB
  • Q is a parameter used to determine the quasi co-location index of the target SSB.
  • the Q may represent the transmission window of a DRS The maximum number of SSBs that do not have a quasi co-location relationship to be sent.
  • the parameter Q may be configured by the network device for the terminal device, or may also be specified by the protocol, and the embodiment of the present application is not limited thereto.
  • the multiple SSBs corresponding to different SSB position indexes there may be multiple SSBs corresponding to different SSB position indexes that have the same QCL quasi co-location index, that is to say, the multiple SSBs corresponding to different SSB position indexes are different from each other.
  • the entire value range of the SSB position index can be regarded as a set.
  • the set can be divided into multiple subsets.
  • the SSBs contained in the same subset have different position indexes but have a QCL relationship, that is, the SSBs in the same subset. They have the same QCL information; but the SSBs belonging to different subsets have different position indexes and do not have a QCL relationship with each other, that is, the QCL information of the SSBs of different subsets are different.
  • the terminal device may QCL index to determine the corresponding target spatial relationship information.
  • the QCL information of the target SSB for example, taking the QCL index as an example, multiple SSBs with the same QCL index have a QCL relationship, while multiple SSBs with different QCL indexes do not have a QCL relationship.
  • the position indexes of multiple SSBs with the same QCL index may be the same or different, that is, there may be at least one SSB whose position index is different from the position index of the target SSB, but the target SSB and the at least one SSB have a QCL Relationship, with the same QCL information.
  • SSBs with the same QCL index correspond to the same spatial relationship information, that is, at least one SSB that has a QCL relationship with the target SSB also corresponds to the target spatial relationship information.
  • the terminal device may determine the spatial relationship information corresponding to the QCL information of the target SSB as the target spatial relationship information according to the corresponding relationship between the QCL information of the SSB and the spatial relationship information.
  • the SSBs with the same QCL information have a QCL relationship
  • the SSBs with the QCL relationship correspond to the same spatial relationship information.
  • the terminal device can also determine the corresponding relationship between the QCL information of the SSB and the spatial relationship information according to the corresponding relationship between the location index of the SSB and the spatial relationship information; the terminal device can then determine the corresponding relationship between the QCL information of the SSB and the spatial relationship information; Correspondence between the relationship information, the spatial relationship information corresponding to the QCL information of the target SSB is determined as the target spatial relationship information.
  • the location indexes of multiple SSBs with a QCL relationship correspond to the same spatial relationship information, that is, the location indexes of multiple SSBs with a QCL relationship may be Different, but the position indexes of the multiple SSBs correspond to the same QCL information and also correspond to the same spatial relationship information.
  • the location index of the SSB may be used to determine the QCL index of the SSB.
  • the QCL index corresponding to the position index of any SSB can be determined. For the sake of brevity, it will not be repeated here.
  • the method 200 may further include: S230, sending an uplink channel/signal.
  • the terminal device receives the spatial relationship indication information, determines the target SSB according to the spatial relationship indication information, and determines the target spatial relationship information of the target SSB, so that the terminal device determines the target spatial relationship information as the sending uplink channel/signal
  • the spatial relationship information is used to determine the spatial characteristics of the uplink channel/signal transmission, so that the terminal device can transmit the uplink channel/signal according to the spatial characteristics determined by the spatial relationship information.
  • the terminal device can use the same spatial domain filtering as that of receiving the target SSB To send the PUCCH.
  • the terminal device can use the same spatial domain as that of receiving the target SSB Filter to send the SRS.
  • the terminal device receives the spatial relationship indication information sent by the network device.
  • the spatial relationship indication information may include the location information of the SSB or the QCL information of the SSB, so as to facilitate the terminal device Correctly determine the SSB and determine the spatial characteristics of the SSB, so as to send uplink channels/signals according to the spatial characteristics, such as sending PUCCH or SRS, to improve the reception performance of PUCCH or SRS.
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, rather than corresponding to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the terminal device 300 includes: a processing unit 310 and a transceiver unit 320.
  • the transceiving unit 320 is configured to: receive the spatial relationship indication information sent by the network device, the spatial relationship indication information is used to indicate the target SSB, and the spatial relationship indication information includes the position index of the target SSB or the quasi-share of the target SSB.
  • Address information; the processing unit 310 is configured to: determine the uplink channel/signal spatial relationship information according to the target spatial relationship information corresponding to the target SSB.
  • the processing unit 310 is configured to: determine a spatial domain filter for transmitting the uplink channel/signal according to the spatial domain filter that receives the target SSB, and the target spatial relationship information includes receiving the The spatial domain filter of the target SSB.
  • the target SSB and the at least one SSB correspond to the same spatial relationship information
  • the target SSB and the at least one SSB have different location indexes
  • the target SSB and the at least one SSB have a quasi co-location relationship .
  • the target SSB and the at least one SSB have the same quasi co-location information.
  • the processing unit 310 is further configured to determine the target spatial relationship information corresponding to the target SSB.
  • the spatial relationship indication information includes the location index of the target SSB
  • the processing unit 310 is configured to: according to the corresponding relationship between the location index of the SSB and the spatial relationship information, compare the information with the target SSB The spatial relationship information corresponding to the position index is determined as the target spatial relationship information.
  • the spatial relationship indication information includes the location index of the target SSB
  • the processing unit 310 is configured to: determine the quasi co-location information of the target SSB according to the location index of the target SSB; The correspondence between the quasi co-location information and the spatial relationship information, and the spatial relationship information corresponding to the quasi co-location information of the target SSB is determined as the target spatial relationship information.
  • the processing unit 310 is configured to determine the quasi-co-location index of the target SSB according to the above formula (1), and the quasi-co-location information of the target SSB includes the quasi-co-location index of the target SSB ;
  • QCL is the quasi co-location index of the target SSB
  • P is the position index of the target SSB
  • Q is the maximum number of SSBs that do not have a quasi co-location relationship sent within the transmission window of a DRS.
  • the value range of the location index of the target SSB is related to the size of the transmission window of the DRS, and the DRS includes the target SSB; and/or, the value range of the location index of the target SSB and The subcarrier spacing of the synchronization signal is related.
  • the spatial relationship indication information includes the quasi co-location information of the target SSB
  • the processing unit 310 is configured to: according to the corresponding relationship between the quasi co-location information of the SSB and the spatial relationship information, The spatial relationship information corresponding to the quasi co-location information of the target SSB is determined as the target spatial relationship information.
  • the value range of the target SSB quasi co-location index is related to the maximum number of SSBs that do not have a quasi co-location relationship sent within a transmission window of a DRS.
  • each unit in the terminal device 300 is used to implement the corresponding procedures of the terminal device in the respective methods in FIGS. 1 to 6, and are not repeated here for brevity.
  • the terminal device in the embodiment of the present application receives the spatial relationship indication information sent by the network device.
  • the spatial relationship indication information may include the location information of the SSB or the QCL information of the SSB, so that the terminal device can correctly determine the SSB and determine the SSB Therefore, the uplink channel/signal is sent according to the spatial characteristic, for example, PUCCH or SRS is sent to improve the receiving performance of PUCCH or SRS.
  • the network device 400 includes: a processing unit 410 and a transceiver unit 420.
  • the transceiving unit 420 is configured to send spatial relationship indication information to the terminal device, the spatial relationship indication information is used to indicate a target SSB, and the spatial relationship indication information includes the location index of the target SSB or the quasi co-location of the target SSB
  • the spatial relationship indication information is used to indicate that the target spatial relationship information corresponding to the target SSB is used to determine the spatial relationship information of the uplink channel/signal.
  • the processing unit 410 is configured to determine the spatial relationship information of the uplink channel/signal according to the target spatial relationship information corresponding to the target SSB.
  • the processing unit 410 is configured to: determine a spatial domain filter for receiving the uplink channel/signal according to the spatial domain filter that sends the target SSB, and the target spatial relationship information includes the network The device sends the spatial domain filter of the target SSB.
  • the target SSB and the at least one SSB correspond to the same spatial relationship information
  • the target SSB and the at least one SSB have different location indexes
  • the target SSB and the at least one SSB have a quasi co-location relationship .
  • the target SSB and the at least one SSB have the same quasi co-location information.
  • the processing unit 410 is configured to determine the target spatial relationship information corresponding to the target SSB.
  • the spatial relationship indication information includes the location index of the target SSB
  • the processing unit 410 is configured to: according to the correspondence between the location index of the SSB and the spatial relationship information, compare the location index of the target SSB with the The spatial relationship information corresponding to the position index is determined as the target spatial relationship information.
  • the spatial relationship indication information includes the location index of the target SSB
  • the processing unit 410 is configured to: determine the quasi co-location information of the target SSB according to the location index of the target SSB; The correspondence between the quasi co-location information and the spatial relationship information, and the spatial relationship information corresponding to the quasi co-location information of the target SSB is determined as the target spatial relationship information.
  • the processing unit 410 is configured to determine the quasi-co-location index of the target SSB according to the above formula (1), and the quasi-co-location information of the target SSB includes the quasi-co-location index of the target SSB ;
  • QCL is the quasi co-location index of the target SSB
  • P is the position index of the target SSB
  • Q is the maximum number of SSBs that do not have a quasi co-location relationship sent within the transmission window of a DRS.
  • the value range of the location index of the target SSB is related to the size of the transmission window of the DRS, and the DRS includes the target SSB; and/or, the value range of the location index of the target SSB and The subcarrier spacing of the synchronization signal is related.
  • the spatial relationship indication information includes the quasi co-location information of the target SSB
  • the processing unit 410 is configured to: according to the corresponding relationship between the quasi co-location information of the SSB and the spatial relationship information, The spatial relationship information corresponding to the quasi co-location information of the target SSB is determined as the target spatial relationship information.
  • the value range of the target SSB quasi co-location index is related to the maximum number of SSBs that do not have a quasi co-location relationship sent within a transmission window of a DRS.
  • each unit in the network device 400 is used to implement the corresponding processes of the network device in the respective methods in FIGS. 1 to 6, and are not repeated here for brevity.
  • the network device of the embodiment of the present application sends spatial relationship indication information to the terminal device.
  • the spatial relationship indication information may include the location information of the SSB or the QCL information of the SSB, so that the terminal device can correctly determine the SSB and determine the SSB Spatial characteristics, so as to transmit uplink channels/signals according to the spatial characteristics, such as transmitting PUCCH or SRS, to improve the reception performance of PUCCH or SRS.
  • FIG. 9 is a schematic structural diagram of a communication device 500 provided by an embodiment of the present application.
  • the communication device 500 shown in FIG. 9 includes a processor 510, and the processor 510 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the communication device 500 may further include a memory 520.
  • the processor 510 may call and run a computer program from the memory 520 to implement the method in the embodiment of the present application.
  • the memory 520 may be a separate device independent of the processor 510, or may be integrated in the processor 510.
  • the communication device 500 may further include a transceiver 530, and the processor 510 may control the transceiver 530 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 530 may include a transmitter and a receiver.
  • the transceiver 530 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 500 may specifically be a network device in an embodiment of the present application, and the communication device 500 may implement the corresponding process implemented by the network device in each method of the embodiment of the present application. For brevity, details are not repeated here. .
  • the communication device 500 may specifically be a mobile terminal/terminal device of an embodiment of the present application, and the communication device 500 may implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application. For simplicity , I won’t repeat it here.
  • FIG. 10 is a schematic structural diagram of a chip of an embodiment of the present application.
  • the chip 600 shown in FIG. 10 includes a processor 610, and the processor 610 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 600 may further include a memory 620.
  • the processor 610 may call and run a computer program from the memory 620 to implement the method in the embodiment of the present application.
  • the memory 620 may be a separate device independent of the processor 610, or may be integrated in the processor 610.
  • the chip 600 may further include an input interface 630.
  • the processor 610 can control the input interface 630 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the chip 600 may further include an output interface 640.
  • the processor 610 can control the output interface 640 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the network device in the various methods of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the network device in the various methods of the embodiment of the present application.
  • the chip can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the chip can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the chip can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the chip mentioned in the embodiment of the present application may also be referred to as a system-level chip, a system-on-chip, a system-on-chip, or a system-on-chip, etc.
  • FIG. 11 is a schematic block diagram of a communication system 700 according to an embodiment of the present application. As shown in FIG. 11, the communication system 700 includes a terminal device 710 and a network device 720.
  • the terminal device 710 can be used to implement the corresponding function implemented by the terminal device in the above method
  • the network device 720 can be used to implement the corresponding function implemented by the network device in the above method. For the sake of brevity, it will not be omitted here. Repeat.
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the aforementioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA ready-made programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • Synchlink DRAM SLDRAM
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is to say, the memory in the embodiment of the present application is intended to include but not limited to these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium may be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program enables the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application ,
  • the computer program enables the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application ,
  • I will not repeat it here.
  • the embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product may be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, For brevity, I won't repeat them here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program runs on the computer, the computer is caused to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiment of the present application.
  • the computer program runs on the computer, the computer executes each method in the embodiment of the present application. For the sake of brevity, the corresponding process will not be repeated here.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例涉及用于发送上行信道/信号的方法、终端设备和网络设备。该方法包括:终端设备接收网络设备发送的空间关系指示信息,该空间关系指示信息用于指示目标同步信号块SSB,该空间关系指示信息包括该目标SSB的位置索引或者该目标SSB的准共址信息;该终端设备根据该目标SSB对应的目标空间关系信息,确定上行信道/信号的空间关系信。本申请实施例的用于发送上行信道/信号的方法、终端设备和网络设备,能够提高上行信道/信号的接收的传输性能。

Description

用于发送上行信道/信号的方法、终端设备和网络设备 技术领域
本申请涉及通信领域,尤其涉及用于发送上行信道/信号的方法、终端设备和网络设备。
背景技术
在新无线(New Radio,NR)***中,终端设备的信道/信号的发送和接收具有空间特性。网络侧为终端设备配置了信道/信号之间的空间关系信息,以指示上行物理上行控制信道(Physical Uplink Control Channel,PUCCH)或探测信号(Sounding Reference Signal,SRS)与参考信号之间的空间关系信息,其中,该参考信号可以是同步信号(Synchronization Signal,SSB)/物理广播信道(Physical Broadcast Channel,PBCH)块(block)、信道状态信息参考信号(Channel-State Information Reference Signal,CSI-RS)或者探测信号(Sounding Reference Signal,SRS)。
并且,在NR中,网络侧配置的上行信道/信号与参考信号的空间关系信息中,SSB是通过SSB索引(Index)进行标识的,该SSB-Index既可以标识SSB的位置,也可以表示SSB的准共址(Quasi Co-Loacted,QCL)关系。
但是在NR免授权(NR-Unlicensed,NR-U)***中,SSB-Index的含义发生改变,此时如何指示与上行信道/信号具有空间关系的SSB是目前亟待解决的问题。
发明内容
本申请实施例提供一种用于发送上行信道/信号的方法、终端设备和网络设备,能够提高上行信道/信号的接收的传输性能。
第一方面,提供了一种用于发送上行信道/信号的方法,包括:终端设备接收网络设备发送的空间关系指示信息,该空间关系指示信息用于指示目标同步信号块SSB,该空间关系指示信息包括该目标SSB的位置索引或者该目标SSB的准共址信息;该终端设备根据该目标SSB对应的目标空间关系信息,确定上行信道/信号的空间关系信息。
第二方面,提供了一种用于发送上行信道/信号的方法,包括:网络设备向终端设备发送空间关系指示信息,该空间关系指示信息用于指示目标同步信号块SSB,该空间关系指示信息包括该目标SSB的位置索引或者该目标SSB的准共址信息,该空间关系指示信息用于指示该目标SSB对应的目标空间关系信息用于确定上行信道/信号的空间关系信息。
第三方面,提供了一种终端设备,用于执行上述第一方面或其各实现方式中的方法。具体地,该终端设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第四方面,提供了一种网络设备,用于执行上述第二方面或其各实现方式中的方法。具体地,该网络设备包括用于执行上述第二方面或其各实现方式中的方法的功能模块。
第五方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面或其各实现方式中的方法。
第七方面,提供了一种芯片,用于实现上述第一方面至第二方面中的任一方面或其各实现方式中的方法。具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行如上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
通过上述技术方案,终端设备接收网络设备发送的空间关系指示信息,该空间关系指示信息可以包括SSB的位置信息或者SSB的QCL信息,以便于终端设备正确的确定该SSB并确定该SSB的空间特性,从而根据该空间特性发送上行信道/信号,例如发送PUCCH或SRS,提高PUCCH或SRS的接收性能。
附图说明
图1是本申请实施例提供的一种通信***架构的示意性图。
图2是本申请实施例提供的一个SSB占用的时频资源的示意图。
图3是本申请实施例提供的在不同的子载波间隔下SSB的时隙分布图样。
图4是本申请实施例提供的在多个候选位置进行先听后说LBT的示意图。
图5是本申请实施例提供的具有不同位置索引的SSB的准共址关系的示意图。
图6是本申请实施例提供的一种用于发送上行信道/信号的方法的示意图。
图7是本申请实施例提供的一种终端设备的示意性框图。
图8是本申请实施例提供的一种网络设备的示意性框图。
图9是本申请实施例提供的一种通信设备的示意性框图。
图10是本申请实施例提供的一种芯片的示意性框图。
图11是本申请实施例提供的一种通信***的示意性图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信***,例如:全球移动通讯(Global System of Mobile communication,GSM)***、码分多址(Code Division Multiple Access,CDMA)***、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)***、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)***、LTE频分双工(Frequency Division Duplex,FDD)***、LTE时分双工(Time Division Duplex,TDD)、通用移动通信***(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信***或5G***等。
示例性的,本申请实施例应用的通信***100如图1所示。该通信***100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。可选地,该网络设备110可以是GSM***或CDMA***中的基站(Base Transceiver Station,BTS),也可以是WCDMA***中的基站(NodeB,NB),还可以是LTE***中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land  Mobile Network,PLMN)中的网络设备等。
该通信***100还包括位于网络设备110覆盖范围内的至少一个终端设备120。作为在此使用的“终端设备”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端设备的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端设备可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信***(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位***(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端设备可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
可选地,终端设备120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G***或5G网络还可以称为新无线(New Radio,NR)***或NR网络。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信***100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信***100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/***中具有通信功能的设备可称为通信设备。以图1示出的通信***100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信***100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“***”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
下面对几个概念进行详细介绍。
一、NR-U***
免授权频谱是国家和地区划分的可用于无线电设备通信的频谱,该频谱通常被认为是共享频谱,即不同通信***中的通信设备只要满足国家或地区在该频谱上设置的法规要求,就可以使用该频谱,不需要向政府申请专有的频谱授权。为了让使用免授权频谱进行无线通信的各个通信***在该频谱上能够友好共存,一些国家或地区规定了使用免授权频谱必须满足的法规要求。例如,在欧洲地区,通信设备遵循“先听后说(listen-before-talk,LBT)”原则,即通信设备在免授权频谱的信道上进行信号发送前,需要先进行信道侦听,只有当信道侦听结果为信道空闲时,该通信设备才能进行信号发送;如果通信设备在免授权频谱的信道上的信道侦听结果为信道忙,该通信设备不能进行信 号发送。且为了保证公平性,在一次传输中,通信设备使用免授权频谱的信道进行信号传输的时长不能超过最大信道占用时间(Maximum Channel Occupation Time,MCOT)。
二、NR***中的同步信号(Synchronization Signal,SS)/物理广播信道(Physical Broadcast Channel,PBCH)块(block)
在NR***中的公共信道和信号,如同步信号和广播信道,需要通过多波束扫描的方式覆盖整个小区,便于小区内的UE接收。同步信号的多波束发送是通过定义SS/PBCH脉冲集合(burst set)实现的。一个SS burst set包含一个或多个SS/PBCH block。一个SS/PBCH block用于承载一个波束的同步信号和广播信道。因此,一个SS/PBCH burst set可以包含小区内SS/PBCH block个数(number)个波束的同步信号。SS/PBCH block number的最大数目可以表示为L,L与***的频段有关,例如,频率范围为小于或者等于3GHz,L取4;频率范围为3GHz到6GHz,L取8;频率范围为6GHz到52.6GHz,L取64。
图2示出了一个SS/PBCH block(下述简称为“SSB”)占用的时频资源的示意图。如图2所示,一个SSB中可以包括一个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号的主同步信号(Primary Synchronization Signal,PSS),还可以包括一个OFDM符号的辅同步信号(Secondary Synchronization Signal,SSS)以及两个OFDM符号的NR-PBCH,其中,PBCH所占的时频资源中,可以包括解调参考信号(Demodulation Reference Signal,DMRS),该DMRS用于PBCH的解调。
SS/PBCH burst set内所有的SS/PBCH block在5ms的时间窗内发送,并以一定的周期重复发送,该周期可以通过高层的参数SSB时间(SSB-timing)信息进行配置,例如,该周期可以包括5ms、10ms、20ms、40ms、80ms和160ms等。对于UE来说,通过接收到的SS/PBCH block得到该SSB的索引(index),SSB index对应该SSB在5ms时间窗内的相对位置,UE根据该信息和PBCH中承载的半帧指示信息,获得帧同步。其中,SS/PBCH block的index可以通过PBCH的DMRS或者PBCH承载的信息来指示。
图3示出了本申请实施例的在不同的子载波间隔(subcarrier spacing,SCS)下SSB的时隙分布图样。以15kHz子载波间隔,L=4为例,一个时隙(slot)包含14个符号(symbol),可以承载两个SS/PBCH block,在5ms时间窗内的前两个slot内共分布4个SS/PBCH block。
应理解,本申请实施例中的SSB的个数L为最大的SSB的个数,也就是说实际发送的SSB的个数可以小于或者等于L。在NR***中,由于在一定的频段上,L为发送的SSB的最大个数,则SSB index的取值范围为[0,L-1]。SSB index可以用于帧同步,另一方面,也可以用于UE获得SSB的QCL关系。在不同的时间接收到的SS/PBCH block的index相同,则认为它们之间具有QCL关系。
当两个参考信号(比如SSB)具有QCL关系的时候,可以认为这两个参考信号的大尺度参数是可以相互推断的,或者可以认为是类似的,其中,大尺度参数可以包括如多普勒时延、平均时延和空间接收参数等。在测量时UE可以将具有QCL关系的SSB做滤波处理,作为波束级别的测量结果。
三、NR-U***中的发现参考信号(Discovery reference signal,DRS)
在NR-U***中,对于一个主小区(Primary Cell,Pcell),网络设备发送DRS信号可以用于接入和测量等,其中,DRS至少可以包括SSB。考虑到非授权频谱上信道使用权获得的不确定性,网络设备在SSB的发送过程中,由于存在LBT失败的可能,在预定的时刻可能无法成功发送SSB。因此,NR-U定义了SSB的候选位置。例如,在一个最长5ms的时间窗里,针对SSB的子载波间隔为30kHz,定义20个候选位置,针对SSB的子载波间隔为15kHz,定义10个候选位置。发送的SSB的最大个数为Q,基站根据该DRS传输窗内的LBT的检测结果来确定使用多个候选位置中的Q个候选位置来传输DRS。其中,该参数Q可以由网络设备为终端设备配置,或者也可以为协议规定的,本申请实施例并不限于此。
图4示出了在候选位置处进行LBT的示意图。如图4所示,这里以子载波间隔为30kHz,定义20个候选位置为例进行说明,发送的SSB的最大个数Q取8,对应的,该8个SSB的可能起始位置可以为图4中20个候选位置中的任意一个。这里假设基站仅在如图4所示的候选位置索引为1、4、8和16进行LBT,也就是将这四个位置作为8个SSB的可能起始位置。如图4所示,假设基站在候选位置12之前进行的LBT成功,则对应开始发送SSB QCL index 0-7。
其中,NR-U中的SSB QCL index与NR中的SSB index含义是不同。在NR中,SSB index可以用于获得同步和QCL关系,而NR-U中,通过SSB position index获得同步,通过SSB QCL index获得QCL关系。
如图4所示,根据LBT成功的时刻,SSB的实际发送位置可能在20个候选位置中任何一个或多个。对于NR-U中定义的SSB的发送方式,由于UE需要通过在候选发送位置上接收到的SSB获得帧同步,需要针对候选发送位置定义SSB position index。例如,以最大SSB的发送个数Q=8,候选位置个数Y=20为例,由于最大8个SSB可能在20个候选位置上发送,SSB携带的SSB position index需要扩展到0到19,以便UE获得接收到的SSB的位置,进一步获得帧同步。而由于最大的SSB发送个数为8,用于获得SSB之间的QCL关系的SSB QCL index的取值范围为0到7,也就是SSB position index与SSB QCL index的取值范围不相同。对于不同时刻发送的SSB,如果它们的SSB QCL index相同,则认为它们之间是有QCL关系的。换句话说,SSB QCL index不相同的SSB之间不存在QCL关系。其中,SSB QCL index=Mod(SSB position index,Q),SSB QCL index的取值范围为0到Q-1。
图5示出了具有不同位置索引的SSB的准共址关系。如图5所示,假设发送SSB的候选位置有20个,位置索引的取值范围为0-19,而最大的SSB发送个数为8,也就是用于获得SSB之间的QCL关系的SSB QCL index的取值范围为0到7,那么可能存在多个SSB的位置索引不同,但具有QCL关系。例如,如图5所示,SSB position index为0,8,16的三个SSB均具有QCL关系。
四、信道/信号之间的空间关系信息
在NR***中,UE的信道/信号的发送和接收具有空间特性。网络侧为UE配置了信道/信号之间的空间关系信息,以指示上行物理上行控制信道(Physical Uplink Control Channel,PUCCH)或探测信号(Sounding Reference Signal,SRS)与参考信号之间的空间关系信息,其中,该参考信号可以是SSB、信道状态信息参考信号(Channel-State Information Reference Signal,CSI-RS)或者SRS。例如,当网络侧指示PUCCH与SSB之间具有空间关系时,UE则可以使用与接收该SSB相同的空间域滤波器,来发送PUCCH。再例如,当网络侧指示目标SRS与SSB之间具有空间关系时,UE将使用与接收该SSB相同的空间域滤波器,来发送目标SRS。
在NR中,网络侧配置的上行信道/信号与参考信号的空间关系信息中,SSB是通过SSB-Index进行标识的;SSB-Index的取值范围是0到L-1,在SSB中携带,且具有不同的SSB-Index的SSB不具有QCL关系,通过SSB-Index可以直接获得该SSB的QCL关系。
而在NR-U中,SSB中携带的是SSB position index,而QCL关系的获得是通过SSB QCL index,而SSB QCL index并不是SSB中直接携带的,而是通过SSB position index和参数Q计算得到的。因此,在NR-U中,若SSB与上行信道/信号具有空间关系时,如何标识该SSB是目前需要解决的问题。本申请实施例提出了一种用于发送上行信道/信号的方法,能够解决该问题。
图6为本申请实施例提供的一种用于发送上行信道/信号的方法200的示意性流程图。如图6所示,该方法200包括:S210,发送空间关系指示信息。具体地,网络设备向终端设备发送空间关系指示信息,该空间关系指示信息指示了与上行信道/信号存在空 间关系的参考信号。
应理解,本申请实施例的方法200可以用于免授权频谱,例如,该方法可以应用于NR-U***中,但本申请实施例并不限于此。另外,该方法200可以由终端设备和网络设备执行,例如,该终端设备可以为如图1所示的终端设备;该网络设备可以为如图1所示的网络设备。
可选地,本申请实施例中的上行信道/信号可以包括PUCCH和/或SRS。
可选地,本申请实施例中的该空间关系指示信息指示的参考信号可以包括以下至少一个:SSB、CSI-RS和SRS。其中,本申请实施例中的SSB为SS/PBCH block。
应理解,本申请实施例中以该参考信号为SSB为例进行说明,也就是说,网络设备发送的空间关系指示信息指示了与上行信道/信号存在空间关系的SSB,为了区别,这里称该SSB为目标SSB,该目标SSB可以指任意一个SSB。
具体地,该空间关系指示信息用于指示目标SSB,以便于终端设备根据该空间关系指示信息确定目标SSB。其中,该空间关系指示信息可以包括该目标SSB的位置信息,例如,该目标SSB的位置信息可以包括该目标SSB的位置索引;或者,该空间关系指示信息可以包括该目标SSB的准共址(QCL)信息,例如,该目标SSB的QCL信息可以包括该目标SSB的QCL索引。
可选地,作为一个实施例,对于该空间关系指示信息包括该目标SSB的位置信息的情况,例如,该目标SSB的位置信息可以包括该目标SSB的位置索引(position index),该目标SSB的position index用于表示该目标SSB的发送位置的索引,则终端设备根据空间关系指示信息中的目标SSB的位置索引,确定对应的目标SSB。
其中,目标SSB的位置索引的取值范围表示该目标SSB的可能的发送位置。例如,该目标SSB的position index的取值范围可以与DRS的传输窗口大小有关,该DRS包括该目标SSB;和/或,该目标SSB的position index的取值范围还可以与子载波间隔有关。
例如,以图4为例,DRS窗口大小为5ms,SSB的子载波间隔为30kHz,则SSB可能的发送位置的数量为20,也就是说目标SSB的position index的取值范围为0-19。再例如,DRS窗口大小为5ms,SSB的子载波间隔为15kHz,则定义10个候选位置,即SSB可能的发送位置的数量为10,也就是说目标SSB的position index的取值范围为0-9。网络设备可以采用LBT的方式,在例如上述的20或者10个可能的发送位置中选择一个或者多个,以发送一个或者多个目标SSB,而该空间关系指示信息中包括的目标SSB的position index可以表示该目标SSB实际发送所在位置的索引,以便于终端设备可以确定该目标SSB的位置索引,还可以接收该目标SSB。
可选地,作为另一实施例,对于该空间关系指示信息为该目标SSB的QCL信息的情况,例如,该目标SSB的QCL信息可以包括该目标SSB的QCL索引(QCL index),该目标SSB的QCL信息或者目标SSB的QCL index可以用于表示该目标SSB与其他SSB之间的QCL关系,例如,具有QCL关系的多个SSB具有相同的QCL索引,相反的,具有不同QCL索引的SSB之间不具有QCL关系。
其中,目标SSB的QCL index的取值范围与一个DRS传输窗口内发送的,不具有QCL关系的SSB的最大个数Q有关,例如,该目标SSB的QCL index的取值范围为0至Q-1。
如图6所示,该方法200还可以包括:S220,确定与上行信道/信号具有空间关系的SSB。具体地,终端设备根据空间关系指示信息,确定与上行信道/信号具有空间关系的目标SSB,并确定该目标SSB对应的目标空间关系信息。
可选地,作为一个实施例,若空间关系指示信息包括该目标SSB的位置信息,例如,该目标SSB的位置信息可以包括该目标SSB的位置索引,则终端设备可以根据该目标SSB的位置索引,确定与之对应的目标空间关系信息。
应理解,对于该目标SSB的位置索引,存在至少一个SSB的位置索引与该目标SSB 的位置索引不同,但是该目标SSB与该至少一个SSB对应于相同的空间关系信息,该目标SSB与该至少一个SSB具有QCL关系,也就是说与目标SSB具有QCL关系的至少一个SSB也对应于目标空间关系信息。
例如,该终端设备可以根据SSB的位置索引与空间关系信息之间的对应关系,确定该目标SSB的位置索引对应的空间关系信息为目标空间关系信息。其中,在该SSB的位置索引与空间关系信息之间的对应关系中,存在具有QCL关系的多个SSB的位置索引对应相同的空间关系信息,也就是说,具有QCL关系的多个SSB的位置索引可能不同,但是该多个SSB对应了相同的空间关系信息。
再例如,该终端设备还可以根据该目标SSB的位置索引,确定该目标SSB的QCL信息,再确定与该目标SSB的QCL信息对应的空间关系信息为目标空间关系信息,例如,终端设备可以根据SSB的QCL信息与空间关系信息之间的对应关系,确定该目标SSB的QCL信息对应的空间关系信息为目标空间关系信息。
应理解,SSB的位置索引可以用于确定SSB的准共址索引。以目标SSB为例,目标SSB的position index与目标SSB的QCL index之间的关系与参数Q有关,也就是说SSB QCL index是根据SSB position index计算得到的。具体地,终端设备可以根据下面的公式(1),确定该目标SSB的准共址索引:
QCL=mod(P,Q)        (1)
其中,QCL为该目标SSB的准共址索引,P为该目标SSB的位置索引,Q为用于确定该目标SSB的准共址索引的参数,例如,该Q可以表示一个DRS的传输窗口内发送的不具有准共址关系的SSB的最大个数。可选地,该参数Q可以是由网络设备为终端设备配置的,或者也可以是协议规定的,本申请实施例并不限于此。
根据公式(1)可知,对于不同的SSB position index,可能存在不同的SSB position index对应的多个SSB具有相同的QCL准共址索引,也就是说不同的SSB position index对应的多个SSB彼此之间具有QCL关系的。例如,可以将SSB position index的全部取值范围看作一个集合,该集合可以分为多个子集,同一个子集中包含的SSB的position index不同但具有QCL关系,也就是同一个子集内的SSB具有相同的QCL信息;而属于不同子集的SSB的position index不同并且彼此之间不具有QCL关系,也就是不同子集的SSB的QCL信息不同。
可选地,所为另一个实施例,若空间关系指示信息包括该目标SSB的QCL信息,例如,该目标SSB的QCL信息可以包括该目标SSB的QCL索引,则终端设备可以根据该目标SSB的QCL索引,确定与之对应的目标空间关系信息。
应理解,对于该目标SSB的QCL信息,例如,以QCL索引为例,相同QCL索引的多个SSB具有QCL关系,而不同QCL索引的多个SSB不具有QCL关系。另外,具有相同QCL索引的多个SSB的位置索引可能相同,也可能不同,也就是可能存在至少一个SSB的位置索引与该目标SSB的位置索引不同,但是该目标SSB与该至少一个SSB具有QCL关系,具有相同的QCL信息。并且,具有相同QCL索引的SSB对应于相同的空间关系信息,也就是说与目标SSB具有QCL关系的至少一个SSB也对应于目标空间关系信息。
例如,该终端设备可以根据SSB的QCL信息与空间关系信息之间的对应关系,确定该目标SSB的QCL信息对应的空间关系信息为目标空间关系信息。其中,在该SSB的QCL信息与空间关系信息之间的对应关系中,具有相同QCL信息的SSB具有QCL关系,而具有QCL关系的SSB对应相同的空间关系信息。
再例如,该终端设备还可以根据SSB的位置索引与空间关系信息之间的对应关系,确定出SSB的QCL信息与空间关系信息之间的对应关系;终端设备可以再根据SSB的QCL信息与空间关系信息之间的对应关系,确定该目标SSB的QCL信息对应的空间关系信息为目标空间关系信息。在该SSB的位置索引与空间关系信息之间的对应关系中, 存在具有QCL关系的多个SSB的位置索引对应相同的空间关系信息,也就是说,具有QCL关系的多个SSB的位置索引可能不同,但是该多个SSB的位置索引对应相同的QCL信息,也对应了相同的空间关系信息。
应理解,SSB的位置索引可以用于确定SSB的QCL索引。例如,根据上一个实施例可知,根据上述公式(1),可以确定任意一个SSB的位置索引对应的QCL索引,为了简洁,在此不再赘述。
可选地,如图6所示,该方法200还可以包括:S230,发送上行信道/信号。具体地,终端设备接收空间关系指示信息,根据该空间关系指示信息确定目标SSB,并确定该目标SSB的目标空间关系信息,以便于该终端设备将该目标空间关系信息确定为发送上行信道/信号的空间关系信息。也就是说,该目标空间关系信息用于确定上行信道/信号的发射的空间特性,以便于终端设备根据空间关系信息确定的空间特性,发送上行信道/信号。
例如,当网络设备通过空间关系指示PUCCH与目标SSB之间具有空间关系时,终端设备确定该目标SSB对应的空间关系信息与PUCCH相同,则终端设备可以使用与接收该目标SSB相同的空间域滤波器,来发送该PUCCH。
再例如,当网络设备通过空间关系指示SRS与目标SSB之间具有空间关系时,终端设备确定该目标SSB对应的空间关系信息与SRS相同,则终端设备可以使用与接收该目标SSB相同的空间域滤波器,来发送该SRS。
因此,本申请实施例的用于发送上行信道/信号的方法,终端设备接收网络设备发送的空间关系指示信息,该空间关系指示信息可以包括SSB的位置信息或者SSB的QCL信息,以便于终端设备正确的确定该SSB并确定该SSB的空间特性,从而根据该空间特性发送上行信道/信号,例如发送PUCCH或SRS,提高PUCCH或SRS的接收性能。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上文中结合图1至图6,详细描述了根据本申请实施例的用于发送上行信道/信号的方法,下面将结合图7至图11,描述根据本申请实施例的终端设备和网络设备。
如图7所示,根据本申请实施例的终端设备300包括:处理单元310和收发单元320。具体地,该收发单元320用于:接收网络设备发送的空间关系指示信息,该空间关系指示信息用于指示目标SSB,该空间关系指示信息包括该目标SSB的位置索引或者该目标SSB的准共址信息;该处理单元310用于:根据该目标SSB对应的目标空间关系信息,确定上行信道/信号的空间关系信息。
可选地,作为一个实施例,该处理单元310用于:根据接收该目标SSB的空间域滤波器,确定用于发送该上行信道/信号的空间域滤波器,该目标空间关系信息包括接收该目标SSB的空间域滤波器。
可选地,作为一个实施例,该目标SSB与至少一个SSB对应相同的空间关系信息,该目标SSB与该至少一个SSB具有不同的位置索引,该目标SSB与该至少一个SSB具有准共址关系。
可选地,作为一个实施例,该目标SSB与该至少一个SSB具有相同的准共址信息。
可选地,作为一个实施例,该处理单元310还用于:确定与该目标SSB对应的该目标空间关系信息。
可选地,作为一个实施例,该空间关系指示信息包括该目标SSB的位置索引,该处理单元310用于:根据SSB的位置索引与空间关系信息之间的对应关系,将与该目标SSB的位置索引对应的空间关系信息确定为该目标空间关系信息。
可选地,作为一个实施例,该空间关系指示信息包括该目标SSB的位置索引,该处理单元310用于:根据该目标SSB的位置索引,确定该目标SSB的准共址信息;根据SSB的准共址信息与空间关系信息之间的对应关系,将与该目标SSB的准共址信息对应 的空间关系信息确定为该目标空间关系信息。
可选地,作为一个实施例,该处理单元310用于:根据上述公式(1),确定该目标SSB的准共址索引,该目标SSB的准共址信息包括该目标SSB的准共址索引;其中,QCL为该目标SSB的准共址索引,P为该目标SSB的位置索引,Q为一个DRS的传输窗口内发送的不具有准共址关系的SSB的最大个数。
可选地,作为一个实施例,该目标SSB的位置索引的取值范围与DRS的传输窗口的大小有关,该DRS包括该目标SSB;和/或,该目标SSB的位置索引的取值范围与同步信号的子载波间隔有关。
可选地,作为一个实施例,该空间关系指示信息包括该目标SSB的准共址信息,该处理单元310用于:根据SSB的准共址信息与空间关系信息之间的对应关系,将与该目标SSB的准共址信息对应的空间关系信息确定为该目标空间关系信息。
可选地,作为一个实施例,该目标SSB准共址索引的取值范围与一个DRS的传输窗口内发送的不具有准共址关系的SSB的最大个数有关。
应理解,终端设备300中的各个单元的上述和其它操作和/或功能分别为了实现图1至图6中的各个方法中终端设备的相应流程,为了简洁,在此不再赘述。
因此,本申请实施例的终端设备,接收网络设备发送的空间关系指示信息,该空间关系指示信息可以包括SSB的位置信息或者SSB的QCL信息,以便于终端设备正确的确定该SSB并确定该SSB的空间特性,从而根据该空间特性发送上行信道/信号,例如发送PUCCH或SRS,提高PUCCH或SRS的接收性能。
如图8所示,根据本申请实施例的网络设备400包括:处理单元410和收发单元420。具体地,该收发单元420用于:向终端设备发送空间关系指示信息,该空间关系指示信息用于指示目标SSB,该空间关系指示信息包括该目标SSB的位置索引或者该目标SSB的准共址信息,该空间关系指示信息用于指示该目标SSB对应的目标空间关系信息用于确定上行信道/信号的空间关系信息。
可选地,作为一个实施例,该处理单元410用于:根据该目标SSB对应的该目标空间关系信息,确定该上行信道/信号的空间关系信息。
可选地,作为一个实施例,该处理单元410用于:根据发送该目标SSB的空间域滤波器,确定用于接收该上行信道/信号的空间域滤波器,该目标空间关系信息包括该网络设备发送该目标SSB的空间域滤波器。
可选地,作为一个实施例,该目标SSB与至少一个SSB对应相同的空间关系信息,该目标SSB与该至少一个SSB具有不同的位置索引,该目标SSB与该至少一个SSB具有准共址关系。
可选地,作为一个实施例,该目标SSB与该至少一个SSB具有相同的准共址信息。
可选地,作为一个实施例,该处理单元410用于:确定与该目标SSB对应的该目标空间关系信息。
可选地,作为一个实施例,该空间关系指示信息包括该目标SSB的位置索引,该处理单元410用于:根据SSB的位置索引与空间关系信息之间的对应关系,将与该目标SSB的位置索引对应的空间关系信息确定为该目标空间关系信息。
可选地,作为一个实施例,该空间关系指示信息包括该目标SSB的位置索引,该处理单元410用于:根据该目标SSB的位置索引,确定该目标SSB的准共址信息;根据SSB的准共址信息与空间关系信息之间的对应关系,将与该目标SSB的准共址信息对应的空间关系信息确定为该目标空间关系信息。
可选地,作为一个实施例,该处理单元410用于:根据上述公式(1),确定该目标SSB的准共址索引,该目标SSB的准共址信息包括该目标SSB的准共址索引;其中,QCL为该目标SSB的准共址索引,P为该目标SSB的位置索引,Q为一个DRS的传输窗口内发送的不具有准共址关系的SSB的最大个数。
可选地,作为一个实施例,该目标SSB的位置索引的取值范围与DRS的传输窗口的大小有关,该DRS包括该目标SSB;和/或,该目标SSB的位置索引的取值范围与同步信号的子载波间隔有关。
可选地,作为一个实施例,该空间关系指示信息包括该目标SSB的准共址信息,该处理单元410用于:根据SSB的准共址信息与空间关系信息之间的对应关系,将与该目标SSB的准共址信息对应的空间关系信息确定为该目标空间关系信息。
可选地,作为一个实施例,该目标SSB准共址索引的取值范围与一个DRS的传输窗口内发送的不具有准共址关系的SSB的最大个数有关。
应理解,网络设备400中的各个单元的上述和其它操作和/或功能分别为了实现图1至图6中的各个方法中网络设备的相应流程,为了简洁,在此不再赘述。
因此,本申请实施例的网络设备,向终端设备发送空间关系指示信息,该空间关系指示信息可以包括SSB的位置信息或者SSB的QCL信息,以便于终端设备正确的确定该SSB并确定该SSB的空间特性,从而根据该空间特性发送上行信道/信号,例如发送PUCCH或SRS,提高PUCCH或SRS的接收性能。
图9是本申请实施例提供的一种通信设备500示意性结构图。图9所示的通信设备500包括处理器510,处理器510可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图9所示,通信设备500还可以包括存储器520。其中,处理器510可以从存储器520中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器520可以是独立于处理器510的一个单独的器件,也可以集成在处理器510中。
可选地,如图9所示,通信设备500还可以包括收发器530,处理器510可以控制该收发器530与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器530可以包括发射机和接收机。收发器530还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备500具体可为本申请实施例的网络设备,并且该通信设备500可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备500具体可为本申请实施例的移动终端/终端设备,并且该通信设备500可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图10是本申请实施例的芯片的示意性结构图。图10所示的芯片600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图10所示,芯片600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,该芯片600还可以包括输入接口630。其中,处理器610可以控制该输入接口630与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片600还可以包括输出接口640。其中,处理器610可以控制该输出接口640与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实 现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为***级芯片,***芯片,芯片***或片上***芯片等。
图11是本申请实施例提供的一种通信***700的示意性框图。如图11所示,该通信***700包括终端设备710和网络设备720。
其中,该终端设备710可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备720可以用于实现上述方法中由网络设备实现的相应的功能,为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的***和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应 涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (56)

  1. 一种用于发送上行信道/信号的方法,其特征在于,包括:
    终端设备接收网络设备发送的空间关系指示信息,所述空间关系指示信息用于指示目标同步信号块SSB,所述空间关系指示信息包括所述目标SSB的位置索引或者所述目标SSB的准共址信息;
    所述终端设备根据所述目标SSB对应的目标空间关系信息,确定上行信道/信号的空间关系信息。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备根据所述目标SSB对应的目标空间关系信息,确定上行信道/信号的空间关系信息,包括:
    所述终端设备根据接收所述目标SSB的空间域滤波器,确定用于发送所述上行信道/信号的空间域滤波器,所述目标空间关系信息包括接收所述目标SSB的空间域滤波器。
  3. 根据权利要求1或2所述的方法,其特征在于,所述目标SSB与至少一个SSB对应相同的空间关系信息,所述目标SSB与所述至少一个SSB具有不同的位置索引,所述目标SSB与所述至少一个SSB具有准共址关系。
  4. 根据权利要求3所述的方法,其特征在于,所述目标SSB与所述至少一个SSB具有相同的准共址信息。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备确定与所述目标SSB对应的所述目标空间关系信息。
  6. 根据权利要求5所述的方法,其特征在于,所述空间关系指示信息包括所述目标SSB的位置索引,
    所述终端设备确定与所述目标SSB对应的所述目标空间关系信息,包括:
    所述终端设备根据SSB的位置索引与空间关系信息之间的对应关系,将与所述目标SSB的位置索引对应的空间关系信息确定为所述目标空间关系信息。
  7. 根据权利要求5所述的方法,其特征在于,所述空间关系指示信息包括所述目标SSB的位置索引,
    所述终端设备确定与所述目标SSB对应的所述目标空间关系信息,包括:
    所述终端设备根据所述目标SSB的位置索引,确定所述目标SSB的准共址信息;
    所述终端设备根据SSB的准共址信息与空间关系信息之间的对应关系,将与所述目标SSB的准共址信息对应的空间关系信息确定为所述目标空间关系信息。
  8. 根据权利要求7所述的方法,其特征在于,所述终端设备根据所述目标SSB的位置索引,确定所述目标SSB的准共址信息,包括:
    所述终端设备根据公式(1),确定所述目标SSB的准共址索引,所述目标SSB的准共址信息包括所述目标SSB的准共址索引:
    QCL=mod(P,Q)  (1)
    其中,QCL为所述目标SSB的准共址索引,P为所述目标SSB的位置索引,Q为一个发现参考信号的传输窗口内发送的不具有准共址关系的SSB的最大个数。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述目标SSB的位置索引的取值范围与发现参考信号的传输窗口的大小有关,所述发现参考信号包括所述目标SSB;和/或,
    所述目标SSB的位置索引的取值范围与同步信号的子载波间隔有关。
  10. 根据权利要求5所述的方法,其特征在于,所述空间关系指示信息包括所述目标SSB的准共址信息,
    所述终端设备确定与所述目标SSB对应的所述目标空间关系信息,包括:
    所述终端设备根据SSB的准共址信息与空间关系信息之间的对应关系,将与所述目标SSB的准共址信息对应的空间关系信息确定为所述目标空间关系信息。
  11. 根据权利要求10所述的方法,其特征在于,所述目标SSB准共址索引的取值 范围与一个发现参考信号的传输窗口内发送的不具有准共址关系的SSB的最大个数有关。
  12. 一种用于发送上行信道/信号的方法,其特征在于,包括:
    网络设备向终端设备发送空间关系指示信息,所述空间关系指示信息用于指示目标同步信号块SSB,所述空间关系指示信息包括所述目标SSB的位置索引或者所述目标SSB的准共址信息,所述空间关系指示信息用于指示所述目标SSB对应的目标空间关系信息用于确定上行信道/信号的空间关系信息。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    所述网络设备根据所述目标SSB对应的所述目标空间关系信息,确定所述上行信道/信号的空间关系信息。
  14. 根据权利要求13所述的方法,其特征在于,所述网络设备根据所述目标SSB对应的所述目标空间关系信息,确定所述上行信道/信号的空间关系信息,包括:
    所述网络设备根据发送所述目标SSB的空间域滤波器,确定用于接收所述上行信道/信号的空间域滤波器,所述目标空间关系信息包括所述网络设备发送所述目标SSB的空间域滤波器。
  15. 根据权利要求12至14中任一项所述的方法,其特征在于,所述目标SSB与至少一个SSB对应相同的空间关系信息,所述目标SSB与所述至少一个SSB具有不同的位置索引,所述目标SSB与所述至少一个SSB具有准共址关系。
  16. 根据权利要求14所述的方法,其特征在于,所述目标SSB与所述至少一个SSB具有相同的准共址信息。
  17. 根据权利要求13至16中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备确定与所述目标SSB对应的所述目标空间关系信息。
  18. 根据权利要求17所述的方法,其特征在于,所述空间关系指示信息包括所述目标SSB的位置索引,
    所述网络设备确定与所述目标SSB对应的所述目标空间关系信息,包括:
    所述网络设备根据SSB的位置索引与空间关系信息之间的对应关系,将与所述目标SSB的位置索引对应的空间关系信息确定为所述目标空间关系信息。
  19. 根据权利要求17所述的方法,其特征在于,所述空间关系指示信息包括所述目标SSB的位置索引,
    所述网络设备确定与所述目标SSB对应的所述目标空间关系信息,包括:
    所述网络设备根据所述目标SSB的位置索引,确定所述目标SSB的准共址信息;
    所述网络设备根据SSB的准共址信息与空间关系信息之间的对应关系,将与所述目标SSB的准共址信息对应的空间关系信息确定为所述目标空间关系信息。
  20. 根据权利要求19所述的方法,其特征在于,所述网络设备根据所述目标SSB的位置索引,确定所述目标SSB的准共址信息,包括:
    所述网络设备根据公式(1),确定所述目标SSB的准共址索引,所述目标SSB的准共址信息包括所述目标SSB的准共址索引:
    QCL=mod(P,Q)   (1)
    其中,QCL为所述目标SSB的准共址索引,P为所述目标SSB的位置索引,Q为一个发现参考信号的传输窗口内发送的不具有准共址关系的SSB的最大个数。
  21. 根据权利要求13至20中任一项所述的方法,其特征在于,所述目标SSB的位置索引的取值范围与发现参考信号的传输窗口的大小有关,所述发现参考信号包括所述目标SSB;和/或,
    所述目标SSB的位置索引的取值范围与同步信号的子载波间隔有关。
  22. 根据权利要求17所述的方法,其特征在于,所述空间关系指示信息包括所述目标SSB的准共址信息,
    所述网络设备确定与所述目标SSB对应的所述目标空间关系信息,包括:
    所述网络设备根据SSB的准共址信息与空间关系信息之间的对应关系,将与所述目标SSB的准共址信息对应的空间关系信息确定为所述目标空间关系信息。
  23. 根据权利要求22所述的方法,其特征在于,所述目标SSB准共址索引的取值范围与一个发现参考信号的传输窗口内发送的不具有准共址关系的SSB的最大个数有关。
  24. 一种终端设备,其特征在于,包括:
    收发单元,用于接收网络设备发送的空间关系指示信息,所述空间关系指示信息用于指示目标同步信号块SSB,所述空间关系指示信息包括所述目标SSB的位置索引或者所述目标SSB的准共址信息;
    处理单元,用于根据所述目标SSB对应的目标空间关系信息,确定上行信道/信号的空间关系信息。
  25. 根据权利要求24所述的终端设备,其特征在于,所述处理单元用于:
    根据接收所述目标SSB的空间域滤波器,确定用于发送所述上行信道/信号的空间域滤波器,所述目标空间关系信息包括接收所述目标SSB的空间域滤波器。
  26. 根据权利要求24或25所述的终端设备,其特征在于,所述目标SSB与至少一个SSB对应相同的空间关系信息,所述目标SSB与所述至少一个SSB具有不同的位置索引,所述目标SSB与所述至少一个SSB具有准共址关系。
  27. 根据权利要求26所述的终端设备,其特征在于,所述目标SSB与所述至少一个SSB具有相同的准共址信息。
  28. 根据权利要求24至27中任一项所述的终端设备,其特征在于,所述处理单元还用于:
    确定与所述目标SSB对应的所述目标空间关系信息。
  29. 根据权利要求28所述的终端设备,其特征在于,所述空间关系指示信息包括所述目标SSB的位置索引,
    所述处理单元用于:
    根据SSB的位置索引与空间关系信息之间的对应关系,将与所述目标SSB的位置索引对应的空间关系信息确定为所述目标空间关系信息。
  30. 根据权利要求28所述的终端设备,其特征在于,所述空间关系指示信息包括所述目标SSB的位置索引,
    所述处理单元用于:
    根据所述目标SSB的位置索引,确定所述目标SSB的准共址信息;
    根据SSB的准共址信息与空间关系信息之间的对应关系,将与所述目标SSB的准共址信息对应的空间关系信息确定为所述目标空间关系信息。
  31. 根据权利要求30所述的终端设备,其特征在于,所述处理单元用于:
    根据公式(1),确定所述目标SSB的准共址索引,所述目标SSB的准共址信息包括所述目标SSB的准共址索引:
    QCL=mod(P,Q)  (1)
    其中,QCL为所述目标SSB的准共址索引,P为所述目标SSB的位置索引,Q为一个发现参考信号的传输窗口内发送的不具有准共址关系的SSB的最大个数。
  32. 根据权利要求24至31中任一项所述的终端设备,其特征在于,所述目标SSB的位置索引的取值范围与发现参考信号的传输窗口的大小有关,所述发现参考信号包括所述目标SSB;和/或,
    所述目标SSB的位置索引的取值范围与同步信号的子载波间隔有关。
  33. 根据权利要求28所述的终端设备,其特征在于,所述空间关系指示信息包括所述目标SSB的准共址信息,
    所述处理单元用于:
    根据SSB的准共址信息与空间关系信息之间的对应关系,将与所述目标SSB的准共址信息对应的空间关系信息确定为所述目标空间关系信息。
  34. 根据权利要求33所述的终端设备,其特征在于,所述目标SSB准共址索引的取值范围与一个发现参考信号的传输窗口内发送的不具有准共址关系的SSB的最大个数有关。
  35. 一种网络设备,其特征在于,包括:
    收发单元,用于向终端设备发送空间关系指示信息,所述空间关系指示信息用于指示目标同步信号块SSB,所述空间关系指示信息包括所述目标SSB的位置索引或者所述目标SSB的准共址信息,所述空间关系指示信息用于指示所述目标SSB对应的目标空间关系信息用于确定上行信道/信号的空间关系信息。
  36. 根据权利要求35所述的网络设备,其特征在于,所述网络设备还包括:
    处理单元,用于根据所述目标SSB对应的所述目标空间关系信息,确定所述上行信道/信号的空间关系信息。
  37. 根据权利要求36所述的网络设备,其特征在于,所述处理单元用于:
    根据发送所述目标SSB的空间域滤波器,确定用于接收所述上行信道/信号的空间域滤波器,所述目标空间关系信息包括所述网络设备发送所述目标SSB的空间域滤波器。
  38. 根据权利要求35至37中任一项所述的网络设备,其特征在于,所述目标SSB与至少一个SSB对应相同的空间关系信息,所述目标SSB与所述至少一个SSB具有不同的位置索引,所述目标SSB与所述至少一个SSB具有准共址关系。
  39. 根据权利要求37所述的网络设备,其特征在于,所述目标SSB与所述至少一个SSB具有相同的准共址信息。
  40. 根据权利要求36至39中任一项所述的网络设备,其特征在于,所述处理单元用于:
    确定与所述目标SSB对应的所述目标空间关系信息。
  41. 根据权利要求40所述的网络设备,其特征在于,所述空间关系指示信息包括所述目标SSB的位置索引,
    所述处理单元用于:
    根据SSB的位置索引与空间关系信息之间的对应关系,将与所述目标SSB的位置索引对应的空间关系信息确定为所述目标空间关系信息。
  42. 根据权利要求40所述的网络设备,其特征在于,所述空间关系指示信息包括所述目标SSB的位置索引,
    所述处理单元用于:
    根据所述目标SSB的位置索引,确定所述目标SSB的准共址信息;
    根据SSB的准共址信息与空间关系信息之间的对应关系,将与所述目标SSB的准共址信息对应的空间关系信息确定为所述目标空间关系信息。
  43. 根据权利要求42所述的网络设备,其特征在于,所述处理单元用于:
    根据公式(1),确定所述目标SSB的准共址索引,所述目标SSB的准共址信息包括所述目标SSB的准共址索引:
    QCL=mod(P,Q)  (1)
    其中,QCL为所述目标SSB的准共址索引,P为所述目标SSB的位置索引,Q为一个发现参考信号的传输窗口内发送的不具有准共址关系的SSB的最大个数。
  44. 根据权利要求36至43中任一项所述的网络设备,其特征在于,所述目标SSB的位置索引的取值范围与发现参考信号的传输窗口的大小有关,所述发现参考信号包括所述目标SSB;和/或,
    所述目标SSB的位置索引的取值范围与同步信号的子载波间隔有关。
  45. 根据权利要求40所述的网络设备,其特征在于,所述空间关系指示信息包括所述目标SSB的准共址信息,
    所述处理单元用于:
    根据SSB的准共址信息与空间关系信息之间的对应关系,将与所述目标SSB的准共址信息对应的空间关系信息确定为所述目标空间关系信息。
  46. 根据权利要求45所述的网络设备,其特征在于,所述目标SSB准共址索引的取值范围与一个发现参考信号的传输窗口内发送的不具有准共址关系的SSB的最大个数有关。
  47. 一种终端设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至11中任一项所述的方法。
  48. 一种网络设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求12至23中任一项所述的方法。
  49. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至11中任一项所述的方法。
  50. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求12至23中任一项所述的方法。
  51. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至11中任一项所述的方法。
  52. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求12至23中任一项所述的方法。
  53. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至11中任一项所述的方法。
  54. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求12至23中任一项所述的方法。
  55. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至11中任一项所述的方法。
  56. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求12至23中任一项所述的方法。
PCT/CN2019/091392 2019-06-14 2019-06-14 用于发送上行信道/信号的方法、终端设备和网络设备 WO2020248272A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980095721.6A CN113728701A (zh) 2019-06-14 2019-06-14 用于发送上行信道/信号的方法、终端设备和网络设备
CN202210061959.0A CN114364038B (zh) 2019-06-14 2019-06-14 用于发送上行信道/信号的方法、终端设备和网络设备
EP19933132.3A EP3965494A4 (en) 2019-06-14 2019-06-14 METHOD OF TRANSMISSION OF AN UPLINK CHANNEL/SIGNAL, TERMINAL AND NETWORK DEVICE
PCT/CN2019/091392 WO2020248272A1 (zh) 2019-06-14 2019-06-14 用于发送上行信道/信号的方法、终端设备和网络设备
US17/539,091 US20220085953A1 (en) 2019-06-14 2021-11-30 Methods for Uplink Channel/Signal Transmission, Terminal Device, and Network Device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/091392 WO2020248272A1 (zh) 2019-06-14 2019-06-14 用于发送上行信道/信号的方法、终端设备和网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/539,091 Continuation US20220085953A1 (en) 2019-06-14 2021-11-30 Methods for Uplink Channel/Signal Transmission, Terminal Device, and Network Device

Publications (1)

Publication Number Publication Date
WO2020248272A1 true WO2020248272A1 (zh) 2020-12-17

Family

ID=73780953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/091392 WO2020248272A1 (zh) 2019-06-14 2019-06-14 用于发送上行信道/信号的方法、终端设备和网络设备

Country Status (4)

Country Link
US (1) US20220085953A1 (zh)
EP (1) EP3965494A4 (zh)
CN (2) CN114364038B (zh)
WO (1) WO2020248272A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190058538A1 (en) * 2017-08-18 2019-02-21 Qualcomm Incorporated Frequency division multiplexing synchronization signals (ss) for wideband operation
CN109412769A (zh) * 2017-08-17 2019-03-01 财团法人工业技术研究院 指示无线电资源到无线通信***中的接收器的方法和设备
EP3471327A1 (en) * 2017-05-01 2019-04-17 LG Electronics Inc. -1- Sounding method for terminal in wireless communication system and apparatus for said sounding method
US20190166513A1 (en) * 2017-11-28 2019-05-30 Mediatek Inc. CSI-RS Radio Resource Management (RRM) Measurement

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019062504A (ja) * 2017-09-28 2019-04-18 シャープ株式会社 基地局装置、端末装置および通信方法
US10764896B2 (en) * 2017-11-08 2020-09-01 Samsung Electronics Co., Ltd. Method and apparatus for beam management in the unlicensed spectrum
CN111147201A (zh) * 2018-11-02 2020-05-12 索尼公司 电子装置、无线通信方法和计算机可读介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3471327A1 (en) * 2017-05-01 2019-04-17 LG Electronics Inc. -1- Sounding method for terminal in wireless communication system and apparatus for said sounding method
CN109412769A (zh) * 2017-08-17 2019-03-01 财团法人工业技术研究院 指示无线电资源到无线通信***中的接收器的方法和设备
US20190058538A1 (en) * 2017-08-18 2019-02-21 Qualcomm Incorporated Frequency division multiplexing synchronization signals (ss) for wideband operation
US20190166513A1 (en) * 2017-11-28 2019-05-30 Mediatek Inc. CSI-RS Radio Resource Management (RRM) Measurement

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3965494A4 *

Also Published As

Publication number Publication date
EP3965494A4 (en) 2022-06-01
CN113728701A (zh) 2021-11-30
EP3965494A1 (en) 2022-03-09
CN114364038B (zh) 2023-06-09
CN114364038A (zh) 2022-04-15
US20220085953A1 (en) 2022-03-17

Similar Documents

Publication Publication Date Title
WO2020150957A1 (zh) 用于非授权频谱的无线通信方法和设备
WO2020248270A1 (zh) 确定随机接入资源的方法、终端设备和网络设备
CN111787636A (zh) 随机接入方法、装置和程序
WO2021003682A1 (zh) 传输控制信息的方法、终端设备和网络设备
WO2020248288A1 (zh) 无线通信的方法、终端设备和网络设备
US11483116B2 (en) Signal transmission method and device and terminal
WO2020103160A1 (zh) 无线通信方法、网络设备和终端设备
US11943172B2 (en) Signal transmission method and apparatus, terminal and network device
WO2020168575A1 (zh) 无线通信方法、终端设备和网络设备
US11758541B2 (en) Information transmission method, terminal device and network device
WO2021114996A1 (zh) 用于确定随机接入资源的方法和终端设备
WO2020186534A1 (zh) 无线通信的方法、终端设备和网络设备
WO2020061850A1 (zh) 通信方法、终端设备和网络设备
WO2021051306A1 (zh) 传输同步信号块的方法、终端设备和网络设备
US20210367825A1 (en) Wireless communication method, terminal device and network device
WO2020220358A1 (zh) 一种用于非授权频谱的功率调整方法及装置
WO2020177040A1 (zh) 无线通信的方法、终端设备和网络设备
AU2019296665A1 (en) Uplink signal transmission method, terminal device, and network device
WO2021098570A1 (en) Method for determining prach occasion and terminal device, network device
WO2021088262A1 (zh) 确定时隙格式的方法及装置
WO2020087540A1 (zh) 一种控制信息的传输方法、设备及存储介质
WO2020034161A1 (zh) 一种下行信号传输方法、终端和计算机可读存储介质
US20220086777A1 (en) Wireless communication method, terminal device and network device
WO2021092774A1 (zh) 无线通信的方法、网络设备和终端设备
WO2020248272A1 (zh) 用于发送上行信道/信号的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19933132

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019933132

Country of ref document: EP

Effective date: 20211130

NENP Non-entry into the national phase

Ref country code: DE