WO2024114350A1 - 通信方法、装置及*** - Google Patents

通信方法、装置及*** Download PDF

Info

Publication number
WO2024114350A1
WO2024114350A1 PCT/CN2023/131255 CN2023131255W WO2024114350A1 WO 2024114350 A1 WO2024114350 A1 WO 2024114350A1 CN 2023131255 W CN2023131255 W CN 2023131255W WO 2024114350 A1 WO2024114350 A1 WO 2024114350A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
mhz
bandwidth
information element
frequency band
Prior art date
Application number
PCT/CN2023/131255
Other languages
English (en)
French (fr)
Inventor
阮卫
闫永立
何世健
章翔
韩云锋
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024114350A1 publication Critical patent/WO2024114350A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application relates to the field of communications, and in particular to a communication method, device and system.
  • WiFi wireless fidelity
  • ISM Institute of Electrical and Electronics Engineers
  • SC subcarriers
  • the minimum bandwidth of the ISM 5G frequency band channel is 20MHz.
  • the bandwidth of the channel will also increase proportionally. For example, the bandwidth of the channel will increase by a power of 2, that is, the bandwidth of the channel can be 20MHz, 40MHz, 80MHz, 160MHz, and 320MHz.
  • the bandwidth of the WiFi channel increases by a power of 2, which will result in the spectrum resources of the unlicensed frequency band cannot be fully utilized, resulting in a waste of spectrum resources.
  • the embodiments of the present application provide a communication method, device and system for improving spectrum resource utilization in unlicensed frequency bands.
  • a communication method comprising: a first device obtains first data, and sends the first data to a second device through a first channel in an unlicensed frequency band; wherein the frequency band where the first channel is located is a frequency band in the unlicensed frequency band except for a frequency band used by Wireless Fidelity WiFi.
  • the first device can use part of the frequency domain resources to send the first data to the second device to improve the spectrum resource utilization rate of the unlicensed frequency band.
  • the first data may be WiFi-related data.
  • the first data may be data in a WiFi format or a WiFi frame structure.
  • the first data may be WiFi data or non-WiFi data, without limitation.
  • the first data may be WiFi data.
  • the bandwidth of the first channel is less than 20 MHz, so as to make full use of spectrum resources that cannot be used by WiFi and further improve the utilization rate of spectrum resources.
  • the bandwidth of the first channel is less than 20 MHz, it can also be called narrowband, or any other possible name without limitation.
  • the bandwidth of the first channel is any one of the following: 1 MHz, 5 MHz, 10 MHz, or 15 MHz, so as to flexibly adapt to various transmission requirements. For example, when the transmission rate requirement is relatively low, 1 MHz or 5 MHz can be selected. For another example, when the transmission rate needs to be guaranteed, 10 MHz or 15 MHz can be selected.
  • the bandwidth of the first channel is 1 MHz or 5 MHz
  • the frequency band of the first channel is any of the following: 5150 MHz to 5155 MHz, 5155 MHz to 5160 MHz, 5160 MHz to 5165 MHz, 5165 MHz to 5170 MHz, 5330 MHz to 5335 MHz, 5335 MHz to 5340 MHz, 5340 MHz to 5345 MHz, 5345 MHz to 5350 MHz, 5470 MHz to 5475 MHz Hz, 5475MHz to 5480MHz, 5480MHz to 5485MHz, 5485MHz to 5490MHz, 5710MHz to 5715MHz, 5715MHz to 5720MHz, 5720MHz to 5725MHz, 5725MHz to 5730MHz, 5730MHz to 5735MHz, 5835MHz to 5840MHz, 5840MHz to 5845MHz, 5845MHz to 5850MHz. That is, the remaining spectrum resources in the unlicensed band can be divided into more bandwidths with a granularity of 5MHz to provide
  • the bandwidth of the first channel is 10 MHz
  • the frequency band of the first channel is any one of the following: 5150 MHz to 5160 MHz, 5155 MHz to 5165 MHz, 5160 MHz to 5170 MHz, 5330 MHz to 5340 MHz, 5335 MHz to 5345MHz, 5340MHz to 5350MHz, 5470MHz to 5480MHz, 5480MHz to 5490MHz, 5710MHz to 5720MHz, 5715MHz to 5725MHz, 5720MHz to 5730MHz, 5725MHz to 5735MHz, 5835MHz to 5845MHz, 5840MHz to 5850MHz.
  • the remaining spectrum resources in the unlicensed band can be divided into multiple bandwidths with a granularity of 10MHz to balance the transmission rate and the number of service users.
  • the bandwidth of the first channel is 15MHz
  • the frequency band where the first channel is located is any of the following: 5150MHz to 5165MHz, 5155MHz to 5170MHz, 5330MHz to 5345MHz, 5335MHz to 5350MHz, 5470MHz to 5485MHz, 5475MHz to 5490MHz, 5710MHz to 5725MHz, 5715MHz to 5730MHz, 5720MHz to 5735MHz, 5835MHz to 5850MHz. That is, the remaining spectrum resources in the unlicensed frequency band can be divided into multiple bandwidths with a granularity of 15MHz to ensure the transmission rate.
  • the method described in the first aspect may further include: the first device broadcasts a first information element to receive a second information element returned by the second device in response to the first information element.
  • the first information element is used to indicate the channels supported by the first device, including the first channel supported by the first device; the second information element is used to indicate that the second device requests access to the first channel. That is, the second device can directly access the first channel to quickly establish interaction with the first device and reduce communication latency.
  • the method described in the first aspect may further include: the first device broadcasts a third information element.
  • the third information element is used to indicate that the device needs to switch to a second channel in the unlicensed frequency band, the bandwidth of the second channel is different from the bandwidth of the first channel, and the frequency band where the second channel is located is the frequency band used by WiFi in the unlicensed frequency band.
  • the first device can instruct the corresponding device to switch from the frequency band not used by WiFi to the frequency band used by WiFi by broadcasting, that is, switch from the first channel to the second channel to meet the actual transmission needs.
  • the third information element may include at least one of the following: channel identification information, bandwidth information, or a switching counter.
  • the channel identification information is used to identify the second channel
  • the bandwidth information is used to indicate the bandwidth of the second channel
  • the switching counter is used to indicate the time of switching to the second channel to ensure that the second device can switch to the designated channel, i.e., the second channel, on time.
  • the method described in the first aspect may further include: the first device sends a fourth information element to the second device.
  • the fourth information element is used to indicate that the second device needs to switch to a second channel in the unlicensed frequency band, the bandwidth of the second channel is different from the bandwidth of the first channel, and the frequency band where the second channel is located is a frequency band used by WiFi in the unlicensed frequency band.
  • the method described in the first aspect may also include: the first device receives a fourth information element from the second device, the fourth information element being used to indicate that the second device needs to switch to a second channel in an unlicensed frequency band, the bandwidth of the second channel is different from the bandwidth of the first channel, and the frequency band in which the second channel is located is a frequency band used by WiFi in the unlicensed frequency band.
  • the fourth information element may include at least one of the following: channel identification information, bandwidth information, or a switching counter, wherein the channel identification information is used to identify the second channel, the bandwidth information is used to indicate the bandwidth of the second channel, and the switching counter is used to indicate the time of switching to the second channel.
  • the above information can be carried together in a fourth information element to improve the transmission and channel switching efficiency, or can also be carried separately in respective corresponding fourth information elements to improve the flexibility of transmission and channel switching.
  • the bandwidth of the second channel is larger than that of the first channel, if the interference of the second channel is less than or equal to the interference of the first channel, and/or the distance for transmission using the second channel is less than or equal to the distance for transmission using the first channel, or in other words, the delay for transmission using the second channel is less than or equal to the delay for transmission using the first channel, then it is possible to preferentially switch to the second channel to increase the transmission rate.
  • the method described in the first aspect may also include: the first device broadcasts a first information element to receive a second information element returned by the second device in response to the first information element, wherein the first information element is used to indicate a channel supported by the first device, the first device supports a second channel in an unlicensed frequency band, the bandwidth of the second channel is different from the bandwidth of the first channel, and the frequency band in which the second channel is located is a frequency band used by WiFi in the unlicensed frequency band; the second information element is used to indicate that the second device requests access to the second channel.
  • the method described in the first aspect may further include: the first device broadcasts a third information element, wherein the third information element is used to indicate that the device needs to switch to the first channel. That is, even if the second device first accesses the second channel, it can switch to the first channel by broadcasting, thereby ensuring that spectrum resources can always be efficiently utilized.
  • the third information element may include at least one of the following: channel identification information, bandwidth information, and a switching counter, wherein: The channel identification information is used to identify the first channel, the bandwidth information is used to indicate the bandwidth of the first channel, and the switching counter is used to indicate the time of switching to the first channel to ensure that the second device can switch to the designated channel, ie, the first channel, on time.
  • the method described in the first aspect may further include: the first device sends a fourth information element to the first device, wherein the fourth information element is used to indicate that the first device needs to switch to the first channel.
  • the method described in the first aspect may further include: the first device receives a fourth information element from the second device, wherein the fourth information element is used to indicate that the first device needs to switch to the first channel.
  • the fourth information element may include at least one of the following: channel identification information, bandwidth information, or a switching counter, wherein the channel identification information is used to identify the first channel, the bandwidth information is used to indicate the bandwidth of the first channel, and the switching counter is used to indicate the time of switching to the first channel.
  • the above information can be carried together in a fourth information element to improve the transmission and channel switching efficiency, or can be carried separately in respective corresponding fourth information elements to improve the flexibility of transmission and channel switching.
  • the bandwidth of the second channel is greater than the bandwidth of the first channel
  • the interference of the second channel is greater than the interference of the first channel
  • the transmission distance using the second channel is greater than the transmission distance using the first channel
  • the first information element is carried in a first beacon frame, and the first beacon frame is a frame sent by broadcasting. That is, broadcasting the first information element can be implemented by multiplexing an existing broadcast frame to reduce the difficulty of implementation.
  • the third information element is carried in a second beacon frame, and the second beacon frame is a frame sent by broadcasting. That is, broadcasting the third information element can be implemented by multiplexing an existing broadcast frame to reduce the difficulty of implementation.
  • the fourth information element is at least one of the following: a channel switching announcement CSA information element, or a bandwidth switching WBCS information element, wherein the CSA information element and the WBCS information element are unicast information elements, that is, sending the fourth information element can be achieved by multiplexing existing unicast information elements to reduce the difficulty of implementation.
  • the bandwidth and symbol of the first channel satisfy the following relationship: the smaller the bandwidth of the first channel, the longer the symbol of the first channel.
  • the number of subcarriers, symbol, and bandwidth of the first channel satisfy the following relationship:
  • BW wb is the reference bandwidth
  • BW nb is the bandwidth of the first channel
  • the reference bandwidth is greater than the bandwidth of the first channel
  • CP is the cyclic prefix
  • the value of ⁇ is greater than 0 and less than 1
  • N sc is the number of subcarriers of the first channel
  • OFDM wop indicates that the symbol of the first channel is a symbol without a cyclic prefix
  • OFDM wp indicates that the symbol of the first channel is a symbol including a cyclic prefix.
  • the bandwidth and symbol of the first channel change in geometric proportion, such as the bandwidth of the first channel is reduced by one time, and the symbol of the first channel is correspondingly doubled, the number of subcarriers of the first channel remains unchanged, or the number of schedulable frequency domain resources is not affected.
  • the bandwidth and symbol of the first channel can also change in non-geo-proportional proportion, such as the bandwidth of the first channel is reduced by two times, and the symbol of the first channel is correspondingly doubled, without limitation.
  • a communication method comprising: a second device receives first data from a first device through a first channel in an unlicensed frequency band, thereby processing the first data, wherein the frequency band where the first channel is located is a frequency band in the unlicensed frequency band except for a frequency band used by Wireless Fidelity WiFi.
  • a bandwidth of the first channel is less than 20 MHz.
  • the bandwidth of the first channel is any one of the following: 1 MHz, 5 MHz, 10 MHz, or 15 MHz.
  • the bandwidth of the first channel is 1 MHz or 5 MHz
  • the frequency band of the first channel is any of the following: 5150 MHz to 5155 MHz, 5155 MHz to 5160 MHz, 5160 MHz to 5165 MHz, 5165 MHz to 5170 MHz, 5330 MHz to 5335 MHz, 5335 MHz to 5340 MHz, 5340 MHz to 5345 MHz, 5345 MHz to 5350 MHz, 5470 MHz to 5475MHz, 5475MHz to 5480MHz, 5480MHz to 5485MHz, 5485MHz to 5490MHz, 5710MHz to 5715MHz, 5715MHz to 5720MHz, 5720MHz to 5725MHz, 5725MHz to 5730MHz, 5730MHz to 5735MHz, 5835MHz to 5840MHz, 5840MHz to 5845MHz, 5845MHz to 5850MHz.
  • the bandwidth of the first channel is 10 MHz
  • the frequency band of the first channel is any one of the following: 5150 MHz to 5160 MHz, 5155 MHz to 5165 MHz, 5160 MHz to 5170 MHz, 5330 MHz to 5340 MHz, 5335 MHz to 5345 MHz, 5340 MHz to 5350 MHz, 5470 MHz to 5480 MHz, 5480 MHz to 5490 MHz, 5710 MHz to 5720 MHz, 5715 MHz to 5725 MHz, 5720 MHz to 5730 MHz, 5725 MHz to 5735 MHz, 5835 MHz to 5845 MHz, and 5840 MHz to 5850 MHz.
  • the bandwidth of the first channel is 15 MHz
  • the frequency band of the first channel is any one of the following: 5150 MHz to 5165 MHz, 5155 MHz to 5170 MHz, 5330 MHz to 5345 MHz, 5335 MHz to 5350 MHz, 5470 MHz to 5485 MHz, 5475 MHz to 5490 MHz, 5710 MHz to 5725 MHz, 5715 MHz to 5730 MHz, 5720 MHz to 5735 MHz, and 5835 MHz to 5850 MHz.
  • the method described in the second aspect may further include: the second device receives the first information element, and then sends the second information element to the first device according to the first information element.
  • the first information element is used to indicate the channels supported by the first device, and the first device supports including the first channel; the second information element is used to indicate that the second device requests to access the first channel.
  • the method described in the second aspect may further include: the second device receives a third information element.
  • the third information element is used to indicate that the device needs to switch to a second channel in the unlicensed frequency band, the bandwidth of the second channel is different from the bandwidth of the first channel, and the frequency band where the second channel is located is a frequency band used by WiFi in the unlicensed frequency band.
  • the third information element may include at least one of the following: channel identification information, bandwidth information, or a switching counter, wherein the channel identification information is used to identify the second channel, the bandwidth information is used to indicate the bandwidth of the second channel, and the switching counter is used to indicate the time of switching to the second channel.
  • the method described in the second aspect may further include: the second device receives a fourth information element from the first device.
  • the fourth information element is used to indicate that the second device needs to switch to a second channel in the unlicensed frequency band, the bandwidth of the second channel is different from the bandwidth of the first channel, and the frequency band where the second channel is located is a frequency band used by WiFi in the unlicensed frequency band.
  • the method described in the second aspect may also include: the second device sends a fourth information element to the first device, the fourth information element being used to indicate that the second device needs to switch to a second channel in an unlicensed frequency band, the bandwidth of the second channel being different from the bandwidth of the first channel, and the frequency band in which the second channel is located is a frequency band used by WiFi in the unlicensed frequency band.
  • the fourth information element may include at least one of the following: channel identification information, bandwidth information, or a switching counter, wherein the channel identification information is used to identify the second channel, the bandwidth information is used to indicate the bandwidth of the second channel, and the switching counter is used to indicate the time of switching to the second channel.
  • interference of the second channel is less than or equal to interference of the first channel, and/or a distance for transmission using the second channel is less than or equal to a distance for transmission using the first channel.
  • the method described in the second aspect may also include: the second device receives the first information element, and then sends the second information element to the first device based on the first information element, wherein the first information element is used for a channel supported by the first device, and the first device supports a second channel in an unlicensed frequency band, the bandwidth of the second channel is different from the bandwidth of the first channel, and the frequency band where the second channel is located is a frequency band used by WiFi in the unlicensed frequency band; the second information element is used to indicate that the second device requests access to the second channel.
  • the method described in the second aspect may further include: the second device receives a third information element, wherein the third information element is used to indicate that the device needs to switch to the first channel.
  • the third information element may include at least one of the following: channel identification information, bandwidth information, and a switching counter, wherein the channel identification information is used to identify the first channel, the bandwidth information is used to indicate the bandwidth of the first channel, and the switching counter is used to indicate the time of switching to the first channel.
  • the method described in the second aspect may further include: the second device receives a fourth information element from the first device, wherein the fourth information element is used to indicate that the first device needs to switch to the first channel.
  • the method described in the second aspect may further include: the second device sends a fourth information element to the first device, wherein the fourth information element is used to indicate that the first device needs to switch to the first channel.
  • the fourth information element may include at least one of the following: channel identification information, bandwidth information, or a switching counter, wherein the channel identification information is used to identify the first channel, the bandwidth information is used to indicate the bandwidth of the first channel, and the switching counter is used to indicate The moment to switch to the first channel.
  • interference of the second channel is greater than interference of the first channel, and/or a distance for transmission using the second channel is greater than a distance for transmission using the first channel.
  • the first information element is carried in a first beacon frame, and the first beacon frame is a frame sent by broadcasting.
  • the third information element is carried in a second beacon frame, and the second beacon frame is a frame sent by broadcasting.
  • the fourth information element is at least one of the following: a channel switching announcement CSA information element, or a bandwidth switching WBCS information element, wherein the CSA information element and the WBCS information element are unicast-sent information elements.
  • the bandwidth and symbol of the first channel satisfy the following relationship: the smaller the bandwidth of the first channel, the longer the symbol of the first channel.
  • the number of subcarriers, symbol, and bandwidth of the first channel satisfy the following relationship:
  • BW wb is the reference bandwidth
  • BW nb is the bandwidth of the first channel
  • the reference bandwidth is greater than the bandwidth of the first channel
  • CP is the cyclic prefix
  • the value of ⁇ is greater than 0 and less than 1
  • N sc is the number of subcarriers of the first channel
  • OFDM wop indicates that the symbol of the first channel is a symbol without a cyclic prefix
  • OFDM wp indicates that the symbol of the first channel is a symbol including a cyclic prefix.
  • a communication method comprising: a first device acquires first data, and sends the first data to a second device through a first channel in an unlicensed frequency band.
  • the second device receives the first data from the first device through the first channel in the unlicensed frequency band, thereby processing the first data.
  • the frequency band where the first channel is located is a frequency band in the unlicensed frequency band other than a frequency band used by wireless fidelity WiFi.
  • a bandwidth of the first channel is less than 20 MHz.
  • the bandwidth of the first channel is any one of the following: 1 MHz, 5 MHz, 10 MHz, or 15 MHz.
  • the bandwidth of the first channel is 1 MHz or 5 MHz
  • the frequency band of the first channel is any of the following: 5150 MHz to 5155 MHz, 5155 MHz to 5160 MHz, 5160 MHz to 5165 MHz, 5165 MHz to 5170 MHz, 5330 MHz to 5335 MHz, 5335 MHz to 5340 MHz, 5340 MHz to 5345 MHz, 5345 MHz to 5350 MHz, 5470 MHz to 5475 MHz Hz, 5475MHz to 5480MHz, 5480MHz to 5485MHz, 5485MHz to 5490MHz, 5710MHz to 5715MHz, 5715MHz to 5720MHz, 5720MHz to 5725MHz, 5725MHz to 5730MHz, 5730MHz to 5735MHz, 5835MHz to 5840MHz, 5840MHz to 5845MHz, 5845MHz to 5850MHz.
  • the bandwidth of the first channel is 10 MHz
  • the frequency band of the first channel is any one of the following: 5150 MHz to 5160 MHz, 5155 MHz to 5165 MHz, 5160 MHz to 5170 MHz, 5330 MHz to 5340 MHz, 5335 MHz to 5345 MHz, 5340 MHz to 5350 MHz, 5470 MHz to 5480 MHz, 5480 MHz to 5490 MHz, 5710 MHz to 5720 MHz, 5715 MHz to 5725 MHz, 5720 MHz to 5730 MHz, 5725 MHz to 5735 MHz, 5835 MHz to 5845 MHz, and 5840 MHz to 5850 MHz.
  • the bandwidth of the first channel is 15 MHz
  • the frequency band of the first channel is any one of the following: 5150 MHz to 5165 MHz, 5155 MHz to 5170 MHz, 5330 MHz to 5345 MHz, 5335 MHz to 5350 MHz, 5470 MHz to 5485 MHz, 5475 MHz to 5490 MHz, 5710 MHz to 5725 MHz, 5715 MHz to 5730 MHz, 5720 MHz to 5735 MHz, and 5835 MHz to 5850 MHz.
  • the method described in the third aspect may further include: the first device broadcasts a first information element.
  • the second device receives the first information element, and then sends a second information element to the first device according to the first information element.
  • the first device receives the second information element returned by the second device in response to the first information element.
  • the first information element is used for the first device to support a channel, and the first device supports including the first channel; the second information element is used to indicate that the second device requests to access the first channel.
  • the method of the third aspect may further include: the first device broadcasts a third information element, and the second device receives the third information element.
  • the third information element is used to indicate that the device needs to switch to a second channel in the unlicensed frequency band, and the bandwidth of the second channel is the same as that of the first channel. The bandwidth is different, and the frequency band where the second channel is located is the frequency band used by WiFi in the unlicensed frequency band.
  • the third information element may include at least one of the following: channel identification information, bandwidth information, or a switching counter, wherein the channel identification information is used to identify the second channel, the bandwidth information is used to indicate the bandwidth of the second channel, and the switching counter is used to indicate the time of switching to the second channel.
  • the method described in the third aspect may further include: the first device sends a fourth information element to the second device, and the second device receives the fourth information element from the first device.
  • the fourth information element is used to indicate that the second device needs to switch to a second channel in the unlicensed frequency band, the bandwidth of the second channel is different from the bandwidth of the first channel, and the frequency band where the second channel is located is the frequency band used by WiFi in the unlicensed frequency band.
  • the method described in the third aspect may further include: the second device sends a fourth information element to the first device, and the first device receives the fourth information element from the second device.
  • the fourth information element is used to indicate that the second device needs to switch to a second channel in the unlicensed frequency band, the bandwidth of the second channel is different from the bandwidth of the first channel, and the frequency band where the second channel is located is the frequency band used by WiFi in the unlicensed frequency band.
  • the fourth information element may include at least one of the following: channel identification information, bandwidth information, or a switching counter, wherein the channel identification information is used to identify the second channel, the bandwidth information is used to indicate the bandwidth of the second channel, and the switching counter is used to indicate the time of switching to the second channel.
  • interference of the second channel is less than or equal to interference of the first channel, and/or a distance for transmission using the second channel is less than or equal to a distance for transmission using the first channel.
  • the method described in the third aspect may also include: the first device broadcasts a first information element.
  • the second device receives the first information element, and then sends a second information element to the first device based on the first information element.
  • the first device receives the second information element returned by the second device in response to the first information element.
  • the first information element is used to indicate the channels supported by the first device, the first device supports a second channel in an unlicensed frequency band, the bandwidth of the second channel is different from the bandwidth of the first channel, and the frequency band where the second channel is located is the frequency band used by WiFi in the unlicensed frequency band; the second information element is used to indicate that the second device requests access to the second channel.
  • the method described in the third aspect may further include: the first device broadcasts a third information element, and the second device receives the third information element, wherein the third information element is used to indicate that the device needs to switch to the first channel.
  • the third information element may include at least one of the following: channel identification information, bandwidth information, and a switching counter, wherein the channel identification information is used to identify the first channel, the bandwidth information is used to indicate the bandwidth of the first channel, and the switching counter is used to indicate the time of switching to the first channel.
  • the method described in the third aspect may further include: the first device sends a fourth information element to the first device, and the second device receives the fourth information element from the first device, wherein the fourth information element is used to indicate that the first device needs to switch to the first channel.
  • the method described in the third aspect may further include: the second device sends a fourth information element to the first device, and the first device receives the fourth information element from the second device, wherein the fourth information element is used to indicate that the first device needs to switch to the first channel.
  • the fourth information element may include at least one of the following: channel identification information, bandwidth information, or a switching counter, wherein the channel identification information is used to identify the first channel, the bandwidth information is used to indicate the bandwidth of the first channel, and the switching counter is used to indicate the time of switching to the first channel.
  • interference of the second channel is greater than interference of the first channel, and/or a distance for transmission using the second channel is greater than a distance for transmission using the first channel.
  • the first information element is carried in a first beacon frame, and the first beacon frame is a frame sent by broadcasting.
  • the third information element is carried in a second beacon frame, and the second beacon frame is a frame sent by broadcasting.
  • the fourth information element is at least one of the following: a channel switching announcement CSA information element, or a bandwidth switching WBCS information element, wherein the CSA information element and the WBCS information element are unicast-sent information elements.
  • the bandwidth and symbol of the first channel satisfy the following relationship: the smaller the bandwidth of the first channel, the longer the symbol of the first channel.
  • the number of subcarriers, symbol, and bandwidth of the first channel satisfy the following relationship:
  • BW wb is the reference bandwidth
  • BW nb is the bandwidth of the first channel
  • the reference bandwidth is greater than the bandwidth of the first channel
  • CP is the cyclic prefix
  • the value of ⁇ is greater than 0 and less than 1
  • N sc is the number of subcarriers of the first channel
  • OFDM wop indicates that the symbol of the first channel is a symbol without a cyclic prefix
  • OFDM wp indicates that the symbol of the first channel is a symbol including a cyclic prefix.
  • a communication device in a fourth aspect, includes: a module for executing the method described in the first aspect, for example, a transceiver module and a processing module.
  • the transceiver module is used to indicate the transceiver function of the communication device
  • the processing module is used to execute functions of the communication device other than the transceiver function.
  • the transceiver module may include a sending module and a receiving module, wherein the sending module is used to implement the sending function of the communication device described in the fourth aspect, and the receiving module is used to implement the receiving function of the communication device described in the fourth aspect.
  • the communication device described in the fourth aspect may further include a storage module, wherein the storage module stores a program or an instruction.
  • the processing module executes the program or the instruction
  • the communication device may execute the method described in the first aspect.
  • the communication device described in the fourth aspect can be a terminal or a network device, or a chip (system) or other parts or components that can be set in a terminal or a network device, or a device that includes a terminal or a network device, and this application does not limit this.
  • a communication device in a fifth aspect, includes: a module for executing the method described in the second aspect, such as a transceiver module and a processing module.
  • a module for executing the method described in the second aspect such as a transceiver module and a processing module.
  • the transceiver module is used to indicate the transceiver function of the communication device
  • the processing module is used to execute functions of the communication device other than the transceiver function.
  • the transceiver module may include a sending module and a receiving module, wherein the sending module is used to implement the sending function of the communication device described in the fifth aspect, and the receiving module is used to implement the receiving function of the communication device described in the fifth aspect.
  • the communication device described in the fifth aspect may further include a storage module, wherein the storage module stores a program or an instruction.
  • the processing module executes the program or the instruction
  • the communication device may execute the method described in the second aspect.
  • the communication device described in the fifth aspect can be a terminal or a network device, or it can be a chip (system) or other parts or components that can be set in a terminal or a network device, or it can be a device or network device that includes a terminal, and this application does not limit this.
  • a communication device including: a processor, the processor being configured to execute the method described in any possible implementation manner of the first aspect or the second aspect.
  • the communication device described in the sixth aspect may further include a transceiver.
  • the transceiver may be a transceiver circuit or an interface circuit.
  • the transceiver may be used for the communication device described in the sixth aspect to communicate with other communication devices.
  • the communication device described in the sixth aspect may also include a memory.
  • the memory may be integrated with the processor or may be separately provided.
  • the memory may be used to store the computer program and/or data involved in the method described in any one of the first aspect or the second aspect.
  • the communication device described in the sixth aspect may be a terminal or network device described in any one of the first aspect or the second aspect, or a chip (system) or other parts or components that may be arranged in the terminal or network device, or a device including the terminal or network device.
  • the technical effects of the communication device described in the sixth aspect can refer to the technical effects of the method described in any one of the implementation methods of the first aspect or the second aspect, and will not be repeated here.
  • a communication device comprising: a processor, the processor being coupled to a memory, the processor being configured to execute a computer program stored in the memory, so that the communication device executes the method described in any possible implementation manner in the first aspect or the second aspect.
  • the communication device described in the seventh aspect may further include a transceiver.
  • the transceiver may be a transceiver circuit or an interface circuit.
  • the transceiver may be used for the communication device described in the seventh aspect to communicate with other communication devices.
  • the communication device described in the seventh aspect may be a terminal or network device described in any one of the first aspect or the second aspect, or a chip (system) or other parts or components that may be arranged in the terminal or network device, or a device including the terminal or network device.
  • the technical effects of the communication device described in the seventh aspect can refer to the technical effects of the method described in any one of the implementation methods of the first aspect or the second aspect, and will not be repeated here.
  • a communication device comprising: a processor and a memory; the memory is used to store a computer program, and when the processor executes the computer program, the communication device executes the method described in any one of the implementation methods of the first aspect or the second aspect.
  • the communication device described in the eighth aspect may further include a transceiver.
  • the transceiver may be a transceiver circuit or an interface circuit.
  • the transceiver may be used for the communication device described in the eighth aspect to communicate with other communication devices.
  • the communication device described in the eighth aspect may be a terminal or network device described in any one of the first aspect or the second aspect, or a chip (system) or other parts or components that may be arranged in the terminal or network device, or a device including the terminal or network device.
  • the technical effects of the communication device described in the eighth aspect can refer to the technical effects of the method described in any one of the implementation methods of the first aspect or the second aspect, and will not be repeated here.
  • a communication system comprising: a first device for executing the method according to the first aspect, and a second device for executing the method according to the second aspect.
  • a computer-readable storage medium comprising: a computer program or instructions; when the computer program or instructions are executed on a computer, the computer executes the method described in any possible implementation method of the first aspect or the second aspect.
  • a computer program product comprising a computer program or instructions, which, when executed on a computer, enables the computer to execute the method described in any possible implementation of the first aspect or the second aspect.
  • FIG. 1 is a schematic diagram of a WiFi frame structure
  • FIG2 is a schematic diagram of the architecture of a communication system provided in an embodiment of the present application.
  • FIG3 is a flow chart of a communication method according to an embodiment of the present application.
  • FIG4 is a schematic diagram of frequency domain resources in a communication method provided in an embodiment of the present application.
  • FIG5 is a second flow chart of a communication method provided in an embodiment of the present application.
  • FIG6 is a third flow chart of the communication method provided in an embodiment of the present application.
  • FIG7 is a first structural diagram of a communication device provided in an embodiment of the present application.
  • FIG8 is a second schematic diagram of the structure of the communication device provided in an embodiment of the present application.
  • WiFi Wireless fidelity
  • WiFi as a convenient wireless communication method for local area networks, has been popularized and entered thousands of households.
  • a major technical feature of WiFi is that it needs to compete for channels in unlicensed frequency bands (industrial scientific medical, ISM) through the listen before talk (LBT) technology to obtain the right to use wireless channels.
  • ISM industrial scientific medical
  • LBT listen before talk
  • the structure of a non-HT frame may include: a legacy short training field (L-STF), a legacy long training field (L-LTF), a legacy signal field (L-SIG), And data (data).
  • L-STF, L-LTF and L-SIG can be understood as the leading part, and their time domain length is usually fixed.
  • the time domain length of L-STF and L-LTF is 8 microseconds (us)
  • the time domain length of L-SIG is 4us.
  • the dynamics of the time domain length of the data part usually depends on the amount of data.
  • the length of the cyclic prefix (CP) of the data part is also not fixed.
  • the length of the CP can be 0.4us, 0.8us, 1.6us, 3.2us, etc.
  • the structure of the HT frame may include: L-STF, L-LTF, L-SIG, high throughput (HT)-SIG, HT-STF, HT-LTF and data.
  • L-STF, L-LTF and L-SIG can be understood with reference to non-HT frames and will not be repeated.
  • the time domain length of HT-SIG is 8us
  • the time domain length of HT-STF is 4us
  • HT-LTF can be one or more
  • the time domain length of each HT-LTF is one symbol, such as 4us.
  • the data part can be understood with reference to non-HT frames and will not be repeated.
  • the structure of a VHT frame may include: L-STF, L-LTF, L-SIG, very high throughput (VHT)-SIG, VTH-STF, VHT-LTF, VHT-SIGB, and data.
  • L-STF, L-LTF, and L-SIG can be understood with reference to non-HT frames and will not be described in detail.
  • the time domain length of VHT-SIG is 8us, and the time domain length of VTH-STF is 4us.
  • VHT-LTF may be one or more, and the time domain length of each VHT-LTF may be one symbol, such as 4us.
  • the time domain length of VHT-SIGB is 4us.
  • the IEEE 802.11 series of protocols stipulate that the corresponding channels have at least 64 subcarriers (SC) and the minimum channel bandwidth is 20MHz.
  • SC subcarriers
  • the channel bandwidth will also increase proportionally.
  • the channel bandwidth will increase by a power of 2, that is, the channel bandwidth can be 20MHz, 40MHz, 80MHz, 160MHz, and 320MHz.
  • increasing by a power of 2 will result in a large difference in channel bandwidth, which will result in the spectrum resources in the unlicensed frequency band not being fully utilized, resulting in a waste of spectrum resources.
  • the transmission demand is 170MHz bandwidth for transmission
  • selecting a channel with a bandwidth of 160MHz cannot meet the transmission demand
  • selecting a channel with a bandwidth of 320MHz will result in the spectrum resources with a bandwidth of 150MHz not being fully utilized.
  • user devices using WiFi will compete for channels through LBT technology, as more and more user devices are added, limited spectrum resources become extremely crowded, and the interference between them becomes increasingly greater, resulting in a serious decline in user experience.
  • the embodiments of the present application propose the following technical solutions to improve spectrum resource utilization and user experience.
  • Wi-Fi wireless network
  • V2X vehicle to everything
  • D2D device-to-device
  • Internet of Vehicles communication systems fourth generation (4G) mobile communication systems, such as long term evolution (LTE) systems, worldwide interoperability for microwave access (WiMAX) communication systems
  • 5G systems such as new radio (NR) systems, and future communication systems.
  • the network architecture and business scenarios described in the embodiments of the present application are intended to more clearly illustrate the technical solutions of the embodiments of the present application, and do not constitute a limitation on the technical solutions provided in the embodiments of the present application.
  • a person of ordinary skill in the art can appreciate that with the evolution of the network architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • FIG2 is a schematic diagram of the architecture of a communication system applicable to the communication method provided in the embodiments of the present application. picture.
  • the communication system may include: a first device and a second device, wherein the first device and the second device may both be terminals or network devices, or the first device may be a network device and the second device may be a terminal, which is not specifically limited.
  • the terminal may be a terminal with transceiver functions, or a chip or chip system that can be set in the terminal.
  • the terminal may also be called a user equipment (UE), a station (STA), an access terminal, a subscriber unit, a user station, a mobile station (MS), a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent or a user device.
  • the terminal in the embodiments of the present application can be a mobile phone, a cellular phone, a smart phone, a tablet computer, a wireless data card, a personal digital assistant (PDA), a wireless modem, a handheld device (handset), a laptop computer, a machine type communication (MTC) terminal, a computer with wireless transceiver function, a virtual reality (VR) terminal, an augmented reality (AR) terminal, a wireless terminal in industrial control, a wireless terminal in self driving, a wireless terminal in remote medical, a wireless terminal in smart grid, a wireless terminal in transportation safety, a wireless terminal in smart city, a wireless terminal in smart home, a vehicle-mounted terminal, a road side unit (RSU) with terminal function, etc.
  • PDA personal digital assistant
  • MTC machine type communication
  • VR virtual reality
  • AR augmented reality
  • the terminal of the present application may also be a vehicle-mounted module, a vehicle-mounted module, a vehicle-mounted component, a vehicle-mounted chip or a vehicle-mounted unit built into a vehicle as one or more components or units.
  • the terminal of the present application may also be a drone module, a drone module, a drone component, a drone chip or a drone unit built into a drone as one or more components or units.
  • the network device may be a device that provides access to the terminal.
  • the network device may also include an access point (AP) in a wireless fidelity (WiFi) system, a wireless relay node, a wireless backhaul node, various forms of macro base stations, micro base stations (also called small stations), relay stations, access points, wearable devices, vehicle-mounted devices, drone devices, etc.
  • the network device may include: a next-generation mobile communication system, such as a 6G access network device, such as a 6G base station, or in a next-generation mobile communication system, the network device may also have other naming methods, which are all covered within the protection scope of the embodiments of the present application, and the present application does not make any limitation on this.
  • the network device may also include 5G, such as a gNB in a new radio (NR) system, or one or a group of (including multiple antenna panels) antenna panels of a base station in 5G, or a network node constituting a gNB, a transmission point (transmission and reception point, TRP or transmission point, TP) or a transmission measurement function (transmission measurement function, TMF), such as a baseband unit (building base band unit, BBU), or a centralized unit (centralized unit, CU) or a distributed unit (distributed unit, DU), an RSU with base station function, or a wired access gateway, or a 5G core network.
  • 5G such as a gNB in a new radio (NR) system, or one or a group of (including multiple antenna panels) antenna panels of a base station in 5G, or a network node constituting a gNB, a transmission point (transmission and reception point, TRP or transmission point, TP) or a transmission measurement function (trans
  • the first device can use part of the frequency domain resources to send the first data to the second device, thereby improving the spectrum resource utilization rate of the unlicensed frequency band.
  • the communication method is applicable to the above communication system, and involves interaction between a first device and a second device.
  • the specific process is as follows:
  • S301 A first device obtains first data.
  • the first data may be WiFi-related data.
  • the first data may be data in a WiFi format or a WiFi frame structure.
  • the first data may be WiFi data or non-WiFi data, without limitation.
  • the first data may be WiFi data.
  • the WiFi frame structure may refer to the relevant description of FIG. 1 above, and will not be described in detail.
  • the first device can obtain the first data locally or from other devices.
  • the first device is a controller of a drone
  • the second device is a drone.
  • the controller can generate control signaling for the drone locally, which is the first data.
  • the first device is an AP
  • the second device is a STA, such as a mobile phone.
  • the AP can obtain the service data of the mobile phone from the application server, which is the first data.
  • the first device sends first data to the second device via a first channel in an unlicensed frequency band.
  • the second device receives first data from the first device via the first channel in the unlicensed frequency band.
  • the unlicensed frequency band may include at least one of the following: 5150MHz to 5350MHz, 5470MHz to 5725MHz, or 5725MHz to 5850MHz, or any other possible frequency band, without specific limitation.
  • the unlicensed frequency band may include the frequency band used by WiFi, and the frequency band other than the frequency band used by WiFi, which is recorded as the frequency band not used by WiFi.
  • the frequency bands used by WiFi may include: frequency band #1 (5170MHz to 5330MHz), and frequency band #2 (5735MHz to 5835MHz), and optionally, may also include: frequency band #3 (5490MHz to 5710MHz).
  • the channels therein can be expressed as [x:y:z], where x represents the starting channel number, i.e., it starts with channel #x; y represents the channel step, i.e., the difference in channel numbers between two adjacent channels is y; z represents the ending channel number, i.e., it ends with channel #z.
  • the channel bandwidth is 20MHz, and frequency band #1 can include channels [36:4:64].
  • the channel bandwidth is 40MHz, and frequency band #1 can include channels [36:8:60].
  • the channel bandwidth is 80MHz, and frequency band #1 can include channels [36:8:52].
  • the channel bandwidth is 16MHz, and frequency band #1 can include channel #36.
  • the bandwidth of the channel is 20 MHz, and frequency band #2 may include channels [149:4:165].
  • the bandwidth of the channel is 40 MHz, and frequency band #2 may include channels [149:8:157].
  • the bandwidth of the channel is 80 MHz, and frequency band #2 may include channel #149.
  • the bandwidth of the channel is 20 MHz, and frequency band #3 may include channels [100:4:140].
  • the bandwidth of the channel is 40 MHz, and frequency band #3 may include channels [100:8:132].
  • the bandwidth of the channel is 80 MHz, and frequency band #3 may include channels [100:8:132].
  • the bandwidth of the channel is 160 MHz, and frequency band #3 may include channel #100.
  • the minimum bandwidth of the WiFi channel is 20MHz, and it can be increased by a power of 2.
  • the spectrum resources that WiFi does not use in band #1 such as 20MHz from 5150MHz to 5170MHz, or 20MHz from 5130MHz to 5350MHz
  • the WiFi channel occupies this part of the spectrum resources with a bandwidth of 20MHz, it will cause energy out-of-band leakage. Therefore, this part of the spectrum resources is the spectrum resources that WiFi cannot use, or the frequency band that is not used by WiFi in band #1.
  • the frequency bands that are not used by WiFi in the unlicensed frequency bands may include: frequency bands that are not used by WiFi in frequency band #1 and frequency band #2, and optionally, may also include: frequency bands that are not used by WiFi in frequency band #3.
  • the bandwidth of the first channel may be less than 20 MHz to fully utilize spectrum resources that cannot be used by WiFi and further improve spectrum resource utilization.
  • the bandwidth of the first channel is less than 20 MHz, it may also be referred to as narrowband, or other possible names, without limitation. Therefore, the narrowband mentioned below in the embodiments of the present application may be understood as a channel with a bandwidth less than 20 MHz.
  • the bandwidth of the first channel is any of the following: 1MHz, 5MHz, 10MHz, or 15MHz, so as to flexibly adapt to various transmission requirements. For example, when the transmission rate requirement is relatively low, 1MHz or 5MHz can be selected. For another example, when the transmission rate needs to be guaranteed, 10MHz or 15MHz can be selected.
  • the bandwidth of the first channel is not limited to the above values, for example, it can also be any other possible value, such as 2MHz, 4MHz, 8MHz, 16MHz, etc., without limitation.
  • the frequency band of the first channel is any of the following: 5150 MHz to 5155 MHz, 5155 MHz to 5160 MHz, 5160 MHz to 5165 MHz, 5165 MHz to 5170 MHz, 5330 MHz to 5335 MHz, 5335 MHz to 5340 MHz, 5340 MHz to 5345 MHz, 5345 MHz to 5350 MHz, 5470 MHz to 5475 MHz MHz, 5475MHz to 5480MHz, 5480MHz to 5485MHz, 5485MHz to 5490MHz, 5710MHz to 5715MHz, 5715MHz to 5720MHz, 5720MHz to 5725MHz, 5725MHz to 5730MHz, 5730MHz to 5735MHz, 5835MHz to 5840MHz, 5840MHz to 5845MHz, 5845MHz to 5850MHz. That is, the remaining spectrum resources in the unlicensed band can be divided into more bandwidths with a granularity of 5MHz to provide services to more
  • the frequency band where the first channel is located is any one of the following: 5150 MHz to 5160 MHz, 5155 MHz to 5165 MHz, 5160 MHz to 5170 MHz, 5330 MHz to 5340 MHz, 5335 MHz to 5345 MHz, 5340 MHz to 5350 MHz, 5470 MHz to 5480 MHz, 5480 MHz to 5490 MHz, 5710 MHz to 5720 MHz, 5715 MHz to 5725 MHz, 5720 MHz to 5730 MHz, 5725 MHz to 5735 MHz, 5835 MHz to 5845 MHz, 5840 MHz to 5850 MHz. That is, the remaining spectrum resources in the unlicensed frequency band can be divided into multiple bandwidths with a granularity of 10 MHz to balance the transmission rate and the number of service users.
  • the frequency band where the first channel is located is any of the following: 5150MHz to 5165MHz, 5155MHz to 5170MHz, 5330MHz to 5345MHz, 5335MHz to 5350MHz, 5470MHz to 5485MHz, 5475MHz to 5490MHz, 5710MHz to 5725MHz, 5715MHz to 5730MHz, 5720MHz to 5735MHz, 5835MHz to 5850MHz. That is, the remaining spectrum resources in the unlicensed frequency band can be divided into multiple bandwidths with a granularity of 15MHz to ensure the transmission rate.
  • the bandwidth of the first channel can be flexibly adjusted within the range of 1MHz to 20MHz according to actual needs.
  • the symbol of the first channel can also change dynamically according to the adjustment of its bandwidth to ensure that the carrying capacity of the channel remains unchanged, or does not change too much.
  • the symbol of the first channel can be an orthogonal frequency division multiplexing (OFDM) symbol, or any other possible symbol, without limitation.
  • OFDM orthogonal frequency division multiplexing
  • the bandwidth and symbol of the first channel may satisfy the following relationship: the smaller the bandwidth of the first channel, the larger the symbol of the first channel; conversely, the larger the bandwidth of the first channel, the shorter the symbol of the first channel.
  • the number of subcarriers of the first channel may be the product of the bandwidth of the first channel and the bandwidth
  • the number of subcarriers, symbol and bandwidth of the first channel may satisfy the relationship shown in the following equation (1):
  • BW wb can be a reference bandwidth, which is usually greater than or equal to 20 MHz.
  • BW nb can be the bandwidth of the first channel
  • CP can be a cyclic prefix
  • the value of ⁇ can be greater than 0 and less than 1
  • N sc can be the number of subcarriers of the first channel
  • OFDM wop can indicate that the symbol of the first channel is a symbol that does not include a cyclic prefix
  • OFDM wp can indicate that the symbol of the first channel is a symbol that includes a cyclic prefix.
  • the bandwidth and symbol of the first channel change in geometric proportion, such as the bandwidth of the first channel is reduced by one time, and the symbol of the first channel is correspondingly doubled, the number of subcarriers of the first channel remains unchanged, or the number of schedulable frequency domain resources is not affected.
  • the bandwidth and symbol of the first channel can also change in non-geo-proportional proportion, for example, the bandwidth of the first channel is reduced by two times, and the symbol of the first channel is doubled, without limitation.
  • the first device can send the first data to the second device through the first channel when the second device accesses the first channel.
  • the second device can receive the first data sent by the first device through the first channel when the second device accesses the first channel.
  • the second device can directly access the first channel, or can switch from other channels to the first channel in a switching manner. For details, please refer to the relevant introduction below, which will not be repeated here.
  • S303 The second device processes the first data.
  • the second device can perform corresponding operations according to the first data.
  • the first device is a drone controller, and the second device is a drone.
  • the drone can adjust its flight attitude according to the control signaling, that is, the first data.
  • the first device is an AP, and the second device is a mobile phone.
  • the mobile phone can perform corresponding operations according to the service data. For example, if the service data is a video stream, the mobile phone can display the video stream.
  • the bandwidth of the WiFi channel increases by a power of 2
  • the bandwidth of the remaining spectrum resources in the unlicensed frequency band such as the frequency band other than the frequency band used by wireless fidelity WiFi
  • the first device can use part of the frequency domain resources to send the first data to the second device to improve the spectrum resource utilization rate of the unlicensed frequency band.
  • the first device and the second device may access the channel, which is described in detail below.
  • S501 A first device broadcasts a first information element, and a second device receives the first information element.
  • the first information element may be used to indicate a channel supported by the first device, or a narrowband supported by the first device, such as the first channel mentioned above.
  • the first information element may include at least one of the following: information element identification information (recorded as information element identification information #1), device identification information (recorded as device identification information #1), or channel bandwidth information (recorded as channel bandwidth information #1).
  • the cell identification information #1 can be used to identify the first cell.
  • the cell identification information #1 may include: information for identifying the first cell, and information for characterizing the length of the first cell.
  • the information for identifying the first cell may be an element identifier (EID), denoted as EID#1, which is used to uniquely identify the first cell.
  • the information for characterizing the length of the first cell may be an information element (IE) length (IE length), denoted as IE length #1, which is used to characterize the length of the first cell, or may also be used to characterize the remaining length of the first cell excluding EID#1 and IE length #1, without limitation.
  • IE information element
  • Device identification information #1 can be used to identify the identity and type of the first device.
  • device identification information #1 may include: an organizationally unique identifier (OUI) field (recorded as OUI field #1), or an OUI type field (recorded as OUI type field #1).
  • OUI field #1 can be used to indicate the identity of the first device, such as the device manufacturer of the first device, so as to identify the device as the first device through the device manufacturer.
  • OUI type field #1 can be used to indicate the meaning of subsequent information, such as the meaning of channel bandwidth information #1. For example, the value of OUI type field #1 is 0, which is used to indicate that channel bandwidth information #1 is information used to indicate that the device supports narrowband.
  • Channel bandwidth information #1 can be used to indicate the bandwidth and/or channel number of the narrowband supported by the first device, such as including a narrowband field, which can be used to indicate the bandwidth of the narrowband supported by the device, such as indicating that its bandwidth is less than 20MHz, or indicating that its bandwidth is specifically 1MHz, 5MHz, 10MHz, or 15MHz, etc., without limitation.
  • the narrowband field can also be used for the channel number of the narrowband supported by the device (including the channel number of the first channel).
  • the narrowband field can include a bitmap to indicate the bandwidth and/or channel number of the narrowband supported by the device through a combination of values of multiple bits in the bitmap.
  • the narrowband field can also be implemented in any other possible manner without limitation.
  • the narrowband field is an exemplary naming, which is not limited, and it can also be replaced by any possible naming, such as bandwidth field #1, frequency band field #1, etc.
  • the narrowband channel number can be set according to actual conditions, for example, it can use the existing channel number, or it can also define a new channel number, which is not limited.
  • OUI field #1 can indicate that the device is the first device
  • OUI type field #1 can indicate that subsequent information indicates that the device supports narrowband
  • the narrowband field can indicate the bandwidth and/or channel number of the narrowband supported by the device, on this basis, OUI field #1, OUI type field #1 and narrowband field can be combined to indicate the bandwidth and/or channel number of the narrowband supported by the first device.
  • the cell identification information #1 may be carried in the EID and the IE length, and both the EID and the IE length may be fields of 1 octet in length.
  • the channel bandwidth information #1 may be carried in the IE body.
  • OUI field #1 can be a field with a length of 3 bytes
  • OUI type field #1 is a field with a length of 1 byte
  • the narrowband field can be a field with a length of n bytes, where n is an integer greater than or equal to 1, that is, the length of the narrowband field can be dynamically adjusted according to the amount of information it indicates.
  • an example of the first information element may be shown in Table 3 below.
  • each field can be represented by 16 characters.
  • EID#1 is 0xDD, which is used to represent the content of EID#1.
  • IE length #1 is 0x5, which is used to indicate that the length of the first information element is specifically 7 bytes.
  • OUI field #1 is 0x3D85AC, which is used to indicate which manufacturer the device manufacturer is, such as a HW manufacturer.
  • OUI type field #1 is 0x31, which is used to indicate that the meaning of the narrowband field is that the device supports narrowband.
  • the narrowband field is 0x7, which can be converted into binary as 0000_0111, that is, an 8-bit bit map (1 byte), which is used to indicate that the bandwidth of the narrowband supported by the device is 1MHz, 5MHz and 10MHz.
  • the first information element may be used to indicate a channel supported by the first device, or the first device Supported broadband, such as a second channel in an unlicensed frequency band.
  • the frequency band where the second channel is located can be a frequency band used by WiFi in an unlicensed frequency band, and the bandwidth of the second channel can be different from the bandwidth of the first channel, such as 20MHz, 40MHz, 80MHz, etc. Since the bandwidth of the second channel is greater than or equal to 20MHz, it can also be called broadband, or other possible names, without limitation. Therefore, the broadband mentioned below in the embodiments of the present application can be understood as a channel with a bandwidth greater than or equal to 20MHz.
  • the first cell may also include at least one of the following: cell identification information (recorded as cell identification information #2), device identification information (recorded as device identification information #2), or channel bandwidth information (recorded as channel bandwidth information #2).
  • the cell identification information #2 can be used to identify the first cell, such as including EID #2 and IE length #2.
  • the specific implementation can be understood by referring to the above-mentioned cell identification information #1, which will not be repeated here.
  • Device identification information #2 can be used to identify the identity and type of the first device.
  • device identification information #2 may include: an OUI field (recorded as OUI field #2), or an OUI type field (recorded as OUI type field #2).
  • OUI field #2 can be understood with reference to the above-mentioned OUI field #1 and will not be repeated here.
  • OUI type field #2 can be used to indicate the meaning of subsequent information, such as the meaning of channel bandwidth information #2.
  • the value of OUI type field #2 is 1, which indicates that channel bandwidth information #2 is information used to indicate that the device supports broadband.
  • Channel bandwidth information #2 can be used to indicate the bandwidth and/or channel number of the broadband supported by the first device, such as including a wide band field, which can be used to indicate the bandwidth of the broadband supported by the device, such as indicating that its bandwidth is greater than or equal to 20 MHz, or indicating that its bandwidth is specifically 20 MHz, 40 MHz, 80 MHz, or 160 MHz, etc., without limitation.
  • the wide band field can also be used for the channel number of the broadband supported by the device (including the channel number of the second channel).
  • the wide band field can also include a bitmap to indicate the bandwidth and/or channel number of the broadband supported by the device through a combination of values of multiple bits in the bitmap.
  • the wide band field can also be implemented in any other possible manner without limitation.
  • the broadband field is an exemplary name and is not limited, and it can also be replaced by any possible name, such as bandwidth field #2, frequency band field #2, etc.
  • the broadband field and the above narrowband field can be replaced by the same name, such as both are named bandwidth field or frequency band field.
  • the different meanings of the same field can be indicated by the OUI type field.
  • the OUI field #2, the OUI type field #2, and the narrowband field can also indicate the bandwidth and/or channel number of the broadband supported by the first device.
  • the broadband field can also be a field with a length of n bytes, that is, the length of the broadband field can be dynamically adjusted according to the amount of information indicated by it.
  • OUI type field #2 is 0x32, which is used to indicate that the meaning of the broadband field is that the device supports broadband.
  • the narrowband field is 0x7, which can be converted into binary as 0000_0111, that is, an 8-bit bitmap (1 byte), which is used to indicate that the bandwidth of the broadband supported by the device is 20MHz, 40MHz, and 80MHz.
  • the first information element when the first information element indicates broadband, the first information element can also use the design of the existing technology.
  • the first information element can also use the design of the existing technology.
  • the first information element may be carried in a first beacon frame.
  • the first beacon frame may be a frame sent by broadcasting, that is, broadcasting the first information element may be implemented by multiplexing an existing broadcast frame structure to reduce the difficulty of implementation.
  • the structure of the first beacon frame may be as shown in Table 6 below.
  • the timestamp can be used to indicate the time point of broadcasting the first beacon frame.
  • the beacon period can be used for the broadcast period of the first beacon frame, that is, the first beacon frame can be broadcast periodically.
  • the first device can broadcast the first beacon frame periodically at the bandwidth and frequency of the narrowband.
  • the first device can broadcast the first beacon frame periodically at the bandwidth and frequency of the broadband.
  • the first device regardless of whether the first information element indicates that the first device supports narrowband or broadband, the first device periodically broadcasts the first beacon frame at any bandwidth and frequency supported by the first device.
  • Capability information can be used to indicate the relevant capabilities of the first beacon frame, such as extended service set (ESS), independent basic service set (IBSS), privacy information (privacy), short preamble (short preamble), etc.
  • ESS extended service set
  • IBSS independent basic service set
  • N is an integer greater than or equal to 1
  • the first information element can be any IE from IE_1 to IE_N.
  • the second device may continue to scan on the bandwidth and frequency supported by the second device. If the bandwidth and frequency supported by the second device include the bandwidth and frequency where the first beacon frame is located, the second device may receive the first beacon frame by scanning and obtain the first information element carried by the first beacon frame.
  • S502 The second device sends a second information element to the first device according to the first information element, and the first device receives the second information element returned by the second device in response to the first information element.
  • the second information element may be used to indicate that the second device requests to access the first channel or the second channel, such as including information such as a service set identifier (SSID), supported rates and BSS membership selectors.
  • the second device may learn the channels supported by the first device, such as the bandwidth and/or channel number of the first channel, or the bandwidth and/or channel number of the second channel, based on the first information element. If the second device wants to access the first channel or the second channel, the second device sends a probe request frame carrying the second information element to the first device, which is recorded as a probe request frame #1.
  • the first device may also return confirmation information (ACK) for the probe request frame #1 to the second device, which is recorded as confirmation information #1, or a probe response frame, to indicate that the first device has received the probe request frame #1.
  • ACK confirmation information
  • both the first device and the second device determine that the opposite end can access the corresponding channel, so as to use the channel for data transmission.
  • the first device and the second device may use the first channel to transmit data.
  • the first device and the second device can use the second channel to transmit data.
  • the first device and the second device after the first device and the second device access the corresponding channel, they can also switch channels, such as switching from the first channel to the second channel, or from the second channel to the first channel.
  • the first device and the second device can switch channels by broadcasting (S601), or can also switch channels by unicasting (S602-S603), which is described in detail below.
  • a first device broadcasts a third information element, and a second device receives the third information element.
  • the third information element may be used to indicate that the device needs to switch to the second channel. That is, when data transmission is required in the frequency band used by WiFi, the first device may instruct the corresponding device to switch from a frequency band not used by WiFi to a frequency band used by WiFi, that is, switch from the first channel to the second channel, to meet actual transmission requirements.
  • the third information element may include at least one of the following: channel identification information (recorded as channel identification information #1), bandwidth information (recorded as bandwidth information #1), or a switching counter (recorded as switching counter #1), so as to ensure that the second device can switch to the designated channel, i.e., the second channel, on time.
  • the third information element may also include: information element identification information (recorded as information element identification information #3), and device identification information (recorded as device identification information #3).
  • the cell identification information #3 can be used to identify the third cell, such as including EID #3 and IE length #3.
  • the specific implementation can be understood by referring to the above-mentioned cell identification information #1, which will not be repeated here.
  • Device identification information #3 can be used to identify the identity and type of the first device.
  • device identification information #3 may include: an OUI field (recorded as OUI field #3), or an OUI type field (recorded as OUI type field #3).
  • OUI field #3 can be understood with reference to the above-mentioned OUI field #1, and will not be repeated here.
  • OUI type field #3 can be used to indicate the meaning of subsequent information.
  • the value of OUI type field #3 is 2, which indicates that the subsequent information is information for indicating switching to broadband.
  • the channel identification information #1 may be used to identify the channel to be switched to, such as the second channel.
  • the channel identification information #1 may include a new wide band channel number field, which may be used to indicate the channel number of the second channel. It is understood that the new wide band channel number field is an exemplary name, which is not limited, and may also be replaced by any possible name, such as new channel number #1, switched channel number #1, etc.
  • Bandwidth information #1 may be used to indicate the bandwidth of the channel to be switched to, such as the bandwidth of the second channel, so as to quickly complete the channel switching.
  • bandwidth information #1 may include a new wide bandwidth field, which may be used to indicate the bandwidth of the second channel. It is understood that the new wide bandwidth is an exemplary name and is not limited thereto, and it may also be replaced by any possible name, such as new bandwidth #1, switching channel bandwidth #1, etc.
  • Switch counter #1 can be used to indicate the moment of switching to the second channel.
  • switch counter #1 can be a channel switch counter (channel switch count), recorded as channel switch counter #1.
  • the count value of channel switch counter #1 can be an integer greater than or equal to 0.
  • the count value is 0, which can indicate that the channel switch can be performed immediately, that is, the channel switch is performed immediately after the third information element is broadcast.
  • the count value is 1, which can indicate that the channel switch is performed after an interval of 1 cycle, and the cycle can be the broadcast cycle of the beacon frame, and the beacon frame can be the second beacon frame carrying the third information element.
  • the specific implementation can refer to the following related introduction, which will not be repeated here.
  • the count value is 2, which can indicate that the channel switch is performed after an interval of 2 cycles, and so on.
  • the count value can also start from 1, that is, the count value is 1, which indicates that the channel switch can be performed immediately, and so on; or, the count value can also start from any value without limitation.
  • EID#3, IE length#3, OUI field#3 and OUI type field#3 can be understood by referring to Table 2 above, and will not be described in detail.
  • the length of the new broadband channel number field, the new broadband bandwidth field and the channel switching counter#1 can all be 1 byte.
  • the first device can trigger switching to the second channel to increase the transmission rate.
  • the third information element may be used to indicate that the device needs to switch to the first channel. That is, even if the second device accesses the second channel first, it may switch to the first channel by broadcasting, thereby ensuring that spectrum resources can always be efficiently utilized.
  • the third information element may also include at least one of the following: channel identification information (recorded as channel identification information #2), bandwidth information (recorded as bandwidth information #2), or a switching counter (recorded as switching counter #2) to ensure that the second device can switch to the designated channel, i.e., the first channel, on time.
  • the third information element may also include: information element identification information (recorded as information element identification information #4), and device identification information (recorded as device identification information #4).
  • the cell identification information #4 can also be used to identify the third cell, such as including EID #4 and IE length #4.
  • the specific implementation can be understood by referring to the above-mentioned cell identification information #1, which will not be repeated here.
  • the device identification information #4 may be used to identify the identity and type of the first device.
  • the device identification information #4 may include: an OUI field (recorded as OUI field #4), or an OUI type field (recorded as OUI type field #4).
  • OUI field #4 can be understood with reference to the above-mentioned OUI field #1, and will not be described in detail.
  • OUI type field #4 may be used to indicate the meaning of subsequent information.
  • the value of OUI type field #3 is 3, which indicates that the subsequent information is information for indicating switching to narrowband.
  • Channel identification information #2 can be used to identify the channel to be switched to, such as the first channel.
  • channel identification information #2 may include a new narrowband channel number field, which can be used to indicate the channel number of the first channel.
  • the new narrowband channel number field is an exemplary naming, which is not limited, and it can also be replaced with any possible naming, such as new channel number #2, switched channel number #2, etc.
  • the new narrowband channel number field and the above-mentioned new broadband channel number field can be replaced with the same name, such as both are named new channel number or switched channel number.
  • the different meanings of the same field can be indicated by the OUI type field.
  • Bandwidth information #2 can be used to indicate the bandwidth of the channel to be switched to, such as the bandwidth of the first channel, in order to quickly complete the channel switching.
  • bandwidth information #2 may include a new narrow band bandwidth field, which can be used to indicate the bandwidth of the first channel.
  • the new narrow band bandwidth field is an exemplary name, which is not limited, and it can also be replaced with any possible name, such as new bandwidth #2, switching channel bandwidth #2, etc.
  • the new narrow band bandwidth field and the above-mentioned new broadband bandwidth field can be replaced with the same name, such as both are named new bandwidth or switching channel bandwidth.
  • the different meanings of the same field can also be indicated by the OUI type field.
  • Switching counter #2 can be used to indicate the time of switching to the first channel.
  • switching counter #2 can also be a channel switching counter (recorded as channel switching counter #2).
  • channel switching counter #2 The specific implementation can be understood by referring to the above channel switching counter #1, which will not be described in detail.
  • EID#4, IE length#4, OUI field#4 and OUI type field#4 can be understood by referring to Table 2 above, and will not be described in detail.
  • the length of the new narrowband channel number field, the new narrowband bandwidth field and the channel switching counter#2 can all be 1 byte.
  • the first device may also trigger priority switching to the first channel to ensure the reliability and latency of the transmission.
  • the third information element may be carried in the second beacon frame.
  • the second beacon frame may be a frame sent by broadcasting, that is, broadcasting the third information element may be implemented by multiplexing an existing broadcast frame structure to reduce the difficulty of implementation.
  • the specific implementation may be understood with reference to the first beacon frame mentioned above, and will not be described in detail.
  • the first device may switch to the second channel at the corresponding time according to the channel switching counter #1, or switch to the first channel at the corresponding time according to the channel switching counter #2.
  • the second device may also switch to the second channel at the corresponding time according to the channel switching counter #1, or switch to the first channel at the corresponding time according to the channel switching counter #2.
  • both the first device and the second device switch to the corresponding channel, thereby using the channel for data transmission.
  • the first device and the second device can use the first channel to transmit data.
  • the first device and the second device can use the second channel to transmit data.
  • the first device and the second device can use the second channel to transmit data.
  • S602 The first device sends a fourth information element to the second device, and the second device receives the fourth information element from the first device.
  • the fourth information element may be used to indicate that the second device needs to switch to the second channel.
  • the fourth information element may be at least one of the following: a CSA information element or a WBCS information element, wherein the CSA information element and the WBCS information element are unicast information elements, that is, the sending of the fourth information element may be implemented by multiplexing the existing unicast information elements to reduce the implementation difficulty.
  • the fourth information element is a different information element, and the information contained therein is also different, which is described in detail below.
  • the fourth cell is a WBCS cell (recorded as WBCS cell #1).
  • WBCS cell #1 may include: channel identification information (recorded as channel identification information #3), or bandwidth information (recorded as bandwidth information #3).
  • WBCS cell #1 may also include: cell identification information (recorded as cell identification information #5).
  • the cell identification information #5 can also be used to identify the fourth cell, such as including EID #5 and IE length #5.
  • the specific implementation can be understood by referring to the above-mentioned cell identification information #1, which will not be repeated here.
  • Bandwidth information #3 may be used to indicate the bandwidth of the channel to be switched to, such as the bandwidth of the second channel.
  • bandwidth information #3 may include a new bandwidth field, which may be used to indicate the bandwidth of the second channel.
  • the new bandwidth field may have a value range of 0 to 255, and a value of 0-3 may be used to indicate the bandwidth of the second channel, or any other possible value may be used to indicate the bandwidth of the second channel.
  • Channel identification information #3 may be used to indicate a channel to be switched to, such as the second channel.
  • channel identification information #3 may include: a new channel center frequency segment 0 field, and a new channel center frequency segment 1 field.
  • the new channel center frequency segment 0 may be used to indicate the channel number of the main channel to be switched to, such as the channel number of the second channel.
  • the new channel center frequency segment 1 field may be used to indicate the channel number of the auxiliary channel to be switched to, such as other channels in the frequency band used by WiFi except the second channel.
  • WBCS cell #1 For ease of understanding, a specific structure of WBCS cell #1 is shown in Table 9 below.
  • EID#5 and IE length #5 can be understood by referring to the above Table 2, and will not be described in detail.
  • the length of the new bandwidth field, the new channel center frequency band 0 field, and the new channel center frequency band 1 field can all be 1 byte.
  • the fourth cell is a CSA cell (recorded as CSA cell #1).
  • CSA cell #1 may include: channel identification information (recorded as channel identification information #4), bandwidth information (recorded as bandwidth information #4), and a switching counter (recorded as switching counter #3).
  • CSA cell #1 may also include: cell identification information (recorded as cell identification information #6), and switching mode information (recorded as switching mode information #1).
  • the cell identification information #6 can also be used to identify the fourth cell, such as including EID #6 and IE length #6.
  • the specific implementation can be understood by referring to the above-mentioned cell identification information #1, which will not be repeated here.
  • the switching mode information #1 may be used to indicate whether data transmission continues before the channel is switched.
  • the switching mode information #1 may include a channel switch mode field.
  • the value of the channel switch mode field is 0, indicating that the interaction before the channel is switched is not restricted, that is, data transmission can continue.
  • the value of the channel switch mode field is 1, indicating that the interaction needs to be stopped immediately before the channel is switched, that is, data transmission cannot continue.
  • Bandwidth information #4 may be used to indicate the bandwidth of the channel to be switched to, such as the bandwidth of the second channel.
  • bandwidth information #4 may include a new channel bandwidth field, which may be used to indicate the bandwidth of the second channel.
  • the new channel bandwidth field may have a value range of 0 to 255, and a value of 0-3 may be used to indicate the bandwidth of the second channel, or any other possible value may be used to indicate the bandwidth of the second channel.
  • the channel identification information #4 may be used to indicate a channel to be switched to, such as the second channel.
  • the channel identification information #4 may include a new channel number field.
  • the new channel number field may be used to indicate the channel number of the main channel to be switched to, such as the channel number of the second channel.
  • Switching counter #3 can be used to indicate the time of switching to the second channel.
  • switching counter #3 can also be a channel switching counter (recorded as channel switching counter #3).
  • channel switching counter #3 The specific implementation can be understood by referring to the above-mentioned channel switching counter #1, which will not be described in detail.
  • EID#6 and IE length #6 can be understood by referring to Table 2 above, and will not be described in detail.
  • the length of the channel switching mode field, the new channel number field, the channel switching counter #3 and the new channel bandwidth field can all be 1 byte.
  • the first device can trigger switching to the second channel.
  • the fourth information element when the first device and the second device have accessed the second channel, the fourth information element may be used to indicate that the second device needs to switch to the first channel.
  • the fourth information element may also be at least one of the following: a CSA information element or a WBCS information element, which is described in detail below.
  • the fourth cell is a WBCS cell (recorded as WBCS cell #2).
  • WBCS cell #2 may include: channel identification information (recorded as channel identification information #5), or bandwidth information (recorded as bandwidth information #5).
  • WBCS cell #1 may also include: cell identification information (recorded as cell identification information #7).
  • the cell identification information #7 can also be used to identify the fourth cell, such as including EID #7 and IE length #7.
  • the specific implementation can be understood by referring to the above-mentioned cell identification information #1, which will not be repeated here.
  • Bandwidth information #5 may be used to indicate the bandwidth of the channel to be switched to, such as the bandwidth of the first channel.
  • bandwidth information #5 may include a new bandwidth field, which may be used to indicate the bandwidth of the second channel.
  • the value range of the new bandwidth field may be 0 to 255, and a value of 4 to 7 may be used to indicate the bandwidth of the first channel, or any other possible value may be used to indicate the bandwidth of the first channel.
  • the channel identification information #5 may be used to indicate the channel to be switched to, such as the first channel.
  • the channel identification information #5 may include: a new channel center frequency band 0 field, and a new channel center frequency band 1 field.
  • the new channel center frequency band 0 field and the new channel center frequency band 1 field may both be used to indicate the channel number of the first channel.
  • WBCS cell #2 can also be understood by referring to the above Table 9, which will not be described in detail.
  • the fourth cell is a CSA cell (recorded as CSA cell #2).
  • CSA cell #2 may include: channel identification information (recorded as channel identification information #6), bandwidth information (recorded as bandwidth information #6), and a switching counter (recorded as switching counter #4).
  • CSA cell #2 may also include: cell identification information (recorded as cell identification information #8), and switching mode information (recorded as switching mode information #2).
  • the cell identification information #8 can also be used to identify the fourth cell, such as including EID #8 and IE length #8.
  • the specific implementation can be understood by referring to the above-mentioned cell identification information #1, which will not be repeated here.
  • the switching mode information #2 can be used to indicate whether data transmission should continue before the channel is switched.
  • the specific implementation can be understood by referring to the above-mentioned switching mode information #1, which will not be described in detail.
  • Bandwidth information #6 may be used to indicate the bandwidth of the channel to be switched to, such as the bandwidth of the first channel.
  • bandwidth information #6 may include a new channel bandwidth field, which may be used to indicate the bandwidth of the second channel.
  • the value of the new channel bandwidth field is 4-7, which indicates the bandwidth of the first channel, or any other possible value may be used to indicate the bandwidth of the first channel.
  • the channel identification information #6 may be used to indicate the channel to be switched to, such as the first channel.
  • the channel identification information #6 may include a new channel number field.
  • the new channel number field may be used to indicate the channel number of the primary channel to be switched to, such as the channel number of the first channel.
  • Switching counter #4 can be used to indicate the time of switching to the first channel.
  • switching counter #4 can also be a channel switching counter (recorded as channel switching counter #4).
  • channel switching counter #4 The specific implementation can be understood by referring to the above-mentioned channel switching counter #2, which will not be described in detail.
  • a CSA cell (such as CSA cell #1 or CSA cell #2), and/or a WBCS cell (such as WBCS cell #1 or WBCS cell #2) can be carried in a channel switch announcement frame (CSAf). That is, the first device can instruct the second device to switch to the corresponding channel by sending a channel switch notification frame to the second device. In addition, the first device can also switch to the corresponding channel by itself after sending the channel switch notification frame.
  • the second device after receiving the channel switch notification frame, the second device can return confirmation information to the first device, recorded as confirmation information #2, to indicate that the second device has received the channel switch notification frame.
  • the second device can also switch to the corresponding channel according to the channel switch notification frame.
  • both parties can use the channel for data transmission.
  • the first device and the second device can use the first channel to transmit data.
  • the specific implementation can refer to the relevant content shown in Figure 3 above, and will not be repeated.
  • the first device and the second device may use the second channel to transmit data.
  • the channel identification information, bandwidth information and switching counter in the fourth information element can all be carried in one channel switching notification frame to improve the transmission and channel switching efficiency, but this information can also be carried separately in multiple channel switching notification frames to improve the flexibility of transmission and channel switching.
  • the first device can first send a channel switching notification frame #1 carrying channel identification information to the second device, and after confirming receipt of the confirmation information #2 returned by the second device, the second device sends a channel switching notification frame #2 carrying bandwidth information and a switching counter.
  • S603 The second device sends a fourth information element to the first device, and the first device receives the fourth information element from the second device.
  • S603 is similar to that of S602, which can be referred to for understanding and will not be repeated here.
  • S602 and S603 are in an OR relationship. That is, when switching from a frequency band not used by WiFi to a frequency band used by WiFi is implemented by unicast, that is, when switching from a first channel to a second channel, or when switching from a frequency band used by WiFi to a frequency band not used by WiFi is implemented by unicast, that is, when switching from a second channel to a first channel, it can be triggered by the second device or by the first device to achieve more flexible channel switching.
  • the first device can broadcast beacon frames on the channel at a shorter period to quickly inform other devices that the first device has switched to the corresponding channel.
  • the second device sends a probe request frame to the first device, recorded as probe request frame #2, to indicate that the second device has switched to the corresponding channel.
  • the first device can broadcast beacon frames on the channel at a normal period to reduce overhead.
  • Fig. 7 is a schematic diagram of the structure of a communication device provided in an embodiment of the present application.
  • a communication device 700 includes: a transceiver module 701 and a processing module 702.
  • Fig. 7 only shows the main components of the communication device.
  • the communication apparatus 700 may be applicable to the communication system shown in FIG. 2 to perform the function of the first device in the methods shown in the above-mentioned FIGS. 3 to 6 .
  • the transceiver module 701 is used to indicate the transceiver function of the communication device 700, and the processing module 702 is used to perform functions other than the transceiver function of the communication device 700. For example, the processing module 702 is used to obtain the first data.
  • the transceiver module 701 is used to send the first data to the second device through the first channel in the unlicensed frequency band; wherein the frequency band where the first channel is located is a frequency band in the unlicensed frequency band except the frequency band used by Wireless Fidelity WiFi.
  • a bandwidth of the first channel is less than 20 MHz.
  • the bandwidth of the first channel is any one of the following: 1 MHz, 5 MHz, 10 MHz, or 15 MHz.
  • the bandwidth of the first channel is 1 MHz or 5 MHz
  • the frequency band of the first channel is any of the following: 5150 MHz to 5155 MHz, 5155 MHz to 5160 MHz, 5160 MHz to 5165 MHz, 5165 MHz to 5170 MHz, 5330 MHz to 5335 MHz, 5335 MHz to 5340 MHz, 5340 MHz to 5345 MHz, 5345 MHz to 5350 MHz, 5470 MHz to 5475 MHz Hz, 5475MHz to 5480MHz, 5480MHz to 5485MHz, 5485MHz to 5490MHz, 5710MHz to 5715MHz, 5715MHz to 5720MHz, 5720MHz to 5725MHz, 5725MHz to 5730MHz, 5730MHz to 5735MHz, 5835MHz to 5840MHz, 5840MHz to 5845MHz, 5845MHz to 5850MHz.
  • the bandwidth of the first channel is 10 MHz
  • the frequency band of the first channel is any one of the following: 5150 MHz to 5160 MHz, 5155 MHz to 5165 MHz, 5160 MHz to 5170 MHz, 5330 MHz to 5340 MHz, 5335 MHz to 5345 MHz, 5340 MHz to 5350 MHz, 5470 MHz to 5480 MHz, 5480 MHz to 5490 MHz, 5710 MHz to 5720 MHz, 5715 MHz to 5725 MHz, 5720 MHz to 5730 MHz, 5725 MHz to 5735 MHz, 5835 MHz to 5845 MHz, and 5840 MHz to 5850 MHz.
  • the bandwidth of the first channel is 15 MHz
  • the frequency band of the first channel is any one of the following: 5150 MHz to 5165 MHz, 5155 MHz to 5170 MHz, 5330 MHz to 5345 MHz, 5335 MHz to 5350 MHz, 5470 MHz to 5485 MHz, 5475 MHz to 5490 MHz, 5710 MHz to 5725 MHz, 5715 MHz to 5730 MHz, 5720 MHz to 5735 MHz, and 5835 MHz to 5850 MHz.
  • the transceiver module 701 is further used for the communication device 700 to broadcast a first information element to receive a second information element returned by the second device in response to the first information element.
  • the first information element is used to indicate channels supported by the communication device 700, including the first channel; and the second information element is used to indicate that the second device requests to access the first channel.
  • the transceiver module 701 is further used to broadcast a third information element, wherein the third information element is used to indicate that the device needs to switch to a second channel in the unlicensed frequency band, the bandwidth of the second channel is different from the bandwidth of the first channel, and the frequency band where the second channel is located is the frequency band used by WiFi in the unlicensed frequency band.
  • the third information element may include at least one of the following: channel identification information, bandwidth information, or a switching counter, wherein the channel identification information is used to identify the second channel, the bandwidth information is used to indicate the bandwidth of the second channel, and the switching counter is used to indicate the time of switching to the second channel.
  • the transceiver module 701 is further used to send a fourth information element to the second device.
  • the fourth information element is used to indicate that the second device needs to switch to a second channel in the unlicensed frequency band, the bandwidth of the second channel is different from the bandwidth of the first channel, and the frequency band where the second channel is located is a frequency band used by WiFi in the unlicensed frequency band.
  • the transceiver module 701 is also used to receive a fourth signal element from the second device, the fourth signal element being used to indicate that the second device needs to switch to a second channel in an unlicensed frequency band, the bandwidth of the second channel being different from the bandwidth of the first channel, and the frequency band in which the second channel is located is a frequency band used by WiFi in the unlicensed frequency band.
  • the fourth information element may include at least one of the following: channel identification information, bandwidth information, or a switching counter, wherein the channel identification information is used to identify the second channel, the bandwidth information is used to indicate the bandwidth of the second channel, and the switching counter is used to indicate the time of switching to the second channel.
  • interference of the second channel is less than or equal to interference of the first channel, and/or a distance for transmission using the second channel is less than or equal to a distance for transmission using the first channel.
  • the transceiver module 701 is also used to broadcast a first information element to receive a second information element returned by a second device in response to the first information element, wherein the first information element is used to indicate a channel supported by the communication device 700, and the communication device 700 supports a second channel in an unlicensed frequency band, the bandwidth of the second channel is different from the bandwidth of the first channel, and the frequency band where the second channel is located is a frequency band used by WiFi in the unlicensed frequency band; the second information element is used to indicate that the second device requests access to the second channel.
  • the transceiver module 701 is further used to broadcast a third information element, wherein the third information element is used to indicate that the device needs to switch to the first channel.
  • the third information element may include at least one of the following: channel identification information, bandwidth information, and a switching counter, wherein the channel identification information is used to identify the first channel, the bandwidth information is used to indicate the bandwidth of the first channel, and the switching counter is used to indicate the time of switching to the first channel.
  • the transceiver module 701 is further used to send a fourth information element to the communication device 700, wherein the fourth information element is used to indicate that the communication device 700 needs to switch to the first channel.
  • the transceiver module 701 is further used to receive a fourth information element from the second device, wherein the fourth information element is used to indicate that the communication apparatus 700 needs to switch to the first channel.
  • the fourth information element may include at least one of the following: channel identification information, bandwidth information, or a switching counter, wherein the information
  • the channel identification information is used to identify the first channel
  • the bandwidth information is used to indicate the bandwidth of the first channel
  • the switching counter is used to indicate the time of switching to the first channel.
  • interference of the second channel is greater than interference of the first channel, and/or a distance for transmission using the second channel is greater than a distance for transmission using the first channel.
  • the first information element is carried in a first beacon frame, and the first beacon frame is a frame sent by broadcasting.
  • the third information element is carried in a second beacon frame, and the second beacon frame is a frame sent by broadcasting.
  • the fourth information element is at least one of the following: a channel switching announcement CSA information element, or a bandwidth switching WBCS information element, wherein the CSA information element and the WBCS information element are unicast-sent information elements.
  • the bandwidth and symbol of the first channel satisfy the following relationship: the smaller the bandwidth of the first channel, the longer the symbol of the first channel.
  • the number of subcarriers, symbol, and bandwidth of the first channel satisfy the following relationship:
  • BW wb is the reference bandwidth
  • BW nb is the bandwidth of the first channel
  • the reference bandwidth is greater than the bandwidth of the first channel
  • CP is the cyclic prefix
  • the value of ⁇ is greater than 0 and less than 1
  • N sc is the number of subcarriers of the first channel
  • OFDM wop indicates that the symbol of the first channel is a symbol without a cyclic prefix
  • OFDM wp indicates that the symbol of the first channel is a symbol including a cyclic prefix.
  • the transceiver module 701 may include a sending module (not shown in FIG. 7 ) and a receiving module (not shown in FIG. 7 ).
  • the sending module is used to implement the sending function of the communication device 700
  • the receiving module is used to implement the receiving function of the communication device 700 .
  • the communication device 700 may further include a storage module (not shown in FIG. 7 ), which stores a program or instruction.
  • the processing module 702 executes the program or instruction, the communication device 700 may perform the function of the first device in the method shown in FIG. 3 to FIG. 6 above.
  • the communication device 700 can be a terminal or a network device, or a chip (system) or other parts or components that can be set in a terminal or a network device, or a device that includes a terminal or a network device, and this application does not limit this.
  • the technical effects of the communication device 700 can refer to the technical effects of the communication method shown in Figures 3 to 6, and will not be repeated here.
  • the communication apparatus 700 may be applicable to the communication system shown in FIG. 2 to perform the function of the second device in the methods shown in the above-mentioned FIGS. 3 to 6 .
  • the transceiver module 701 is used to indicate the transceiver function of the communication device 700, and the processing module 702 is used to perform functions other than the transceiver function of the communication device 700.
  • the transceiver module 701 is used to receive first data from a first device through a first channel in an unlicensed frequency band.
  • the processing module 702 is used to process the first data.
  • the frequency band where the first channel is located is a frequency band in the unlicensed frequency band except the frequency band used by Wireless Fidelity WiFi.
  • a bandwidth of the first channel is less than 20 MHz.
  • the bandwidth of the first channel is any one of the following: 1 MHz, 5 MHz, 10 MHz, or 15 MHz.
  • the bandwidth of the first channel is 1 MHz or 5 MHz
  • the frequency band of the first channel is any of the following: 5150 MHz to 5155 MHz, 5155 MHz to 5160 MHz, 5160 MHz to 5165 MHz, 5165 MHz to 5170 MHz, 5330 MHz to 5335 MHz, 5335 MHz to 5340 MHz, 5340 MHz to 5345 MHz, 5345 MHz to 5350 MHz, 5470 MHz to 5475 MHz Hz, 5475MHz to 5480MHz, 5480MHz to 5485MHz, 5485MHz to 5490MHz, 5710MHz to 5715MHz, 5715MHz to 5720MHz, 5720MHz to 5725MHz, 5725MHz to 5730MHz, 5730MHz to 5735MHz, 5835MHz to 5840MHz, 5840MHz to 5845MHz, 5845MHz to 5850MHz.
  • the bandwidth of the first channel is 10 MHz
  • the frequency band of the first channel is any of the following: 5150 MHz to 5160 MHz, 5155 MHz to 5165 MHz, 5160 MHz to 5170 MHz, 5330 MHz to 5340 MHz, 5335 MHz to 5345 MHz, 5340 MHz to 5350 MHz, 5470 MHz to 5480 MHz, 5480 MHz to 5490 MHz, 5710 MHz to 5720 MHz, 5715 MHz to 5725 MHz, 5720 MHz to 5730 MHz, 5725 MHz to 5735 MHz, 5835 MHz to 5845 MHz, and 5840 MHz to 5850 MHz.
  • the bandwidth of the first channel is 15 MHz
  • the frequency band of the first channel is any of the following: 5150 MHz to 5165 MHz, 5155 MHz to 5170 MHz, 5330 MHz to 5345 MHz, 5335 MHz to 5350 MHz, 5470 MHz to 5485 MHz, 5475 MHz To 5490MHz, 5710MHz to 5725MHz, 5715MHz to 5730MHz, 5720MHz to 5735MHz, 5835MHz to 5850MHz.
  • the transceiver module 701 is further used to receive a first information element
  • the processing module 702 is further used to control the transceiver module 701 to send a second information element to the first device according to the first information element.
  • the first information element is used to indicate a channel supported by the first device, and the first device supports including the first channel; the second information element is used to indicate that the second device requests to access the first channel.
  • the transceiver module 701 is further used to receive a third information element, wherein the third information element is used to indicate that the device needs to switch to a second channel in the unlicensed frequency band, the bandwidth of the second channel is different from the bandwidth of the first channel, and the frequency band where the second channel is located is the frequency band used by WiFi in the unlicensed frequency band.
  • the third information element may include at least one of the following: channel identification information, bandwidth information, or a switching counter, wherein the channel identification information is used to identify the second channel, the bandwidth information is used to indicate the bandwidth of the second channel, and the switching counter is used to indicate the time of switching to the second channel.
  • the transceiver module 701 is further used to receive a fourth information element from the first device.
  • the fourth information element is used to indicate that the second device needs to switch to a second channel in the unlicensed frequency band, the bandwidth of the second channel is different from the bandwidth of the first channel, and the frequency band where the second channel is located is a frequency band used by WiFi in the unlicensed frequency band.
  • the transceiver module 701 is also used to send a fourth information element to the first device, and the fourth information element is used to indicate that the second device needs to switch to a second channel in the unlicensed frequency band, the bandwidth of the second channel is different from the bandwidth of the first channel, and the frequency band where the second channel is located is the frequency band used by WiFi in the unlicensed frequency band.
  • the fourth information element may include at least one of the following: channel identification information, bandwidth information, or a switching counter, wherein the channel identification information is used to identify the second channel, the bandwidth information is used to indicate the bandwidth of the second channel, and the switching counter is used to indicate the time of switching to the second channel.
  • interference of the second channel is less than or equal to interference of the first channel, and/or a distance for transmission using the second channel is less than or equal to a distance for transmission using the first channel.
  • the transceiver module 701 is also used to receive a first information element
  • the processing module 702 is also used to control the transceiver module 701 to send a second information element to the first device based on the first information element, wherein the first information element is used for a channel supported by the first device, and the first device supports a second channel in an unlicensed frequency band, the bandwidth of the second channel is different from the bandwidth of the first channel, and the frequency band where the second channel is located is a frequency band used by WiFi in the unlicensed frequency band; the second information element is used to indicate that the second device requests access to the second channel.
  • the transceiver module 701 is further used to receive a third information element, wherein the third information element is used to indicate that the device needs to switch to the first channel.
  • the third information element may include at least one of the following: channel identification information, bandwidth information, and a switching counter, wherein the channel identification information is used to identify the first channel, the bandwidth information is used to indicate the bandwidth of the first channel, and the switching counter is used to indicate the time of switching to the first channel.
  • the transceiver module 701 is further used to receive a fourth information element from the first device, wherein the fourth information element is used to indicate that the first device needs to switch to the first channel.
  • the transceiver module 701 is further used to send a fourth information element to the first device, wherein the fourth information element is used to indicate that the first device needs to switch to the first channel.
  • the fourth information element may include at least one of the following: channel identification information, bandwidth information, or a switching counter, wherein the channel identification information is used to identify the first channel, the bandwidth information is used to indicate the bandwidth of the first channel, and the switching counter is used to indicate the time of switching to the first channel.
  • interference of the second channel is greater than interference of the first channel, and/or a distance for transmission using the second channel is greater than a distance for transmission using the first channel.
  • the first information element is carried in a first beacon frame, and the first beacon frame is a frame sent by broadcasting.
  • the third information element is carried in a second beacon frame, and the second beacon frame is a frame sent by broadcasting.
  • the fourth information element is at least one of the following: a channel switching announcement CSA information element, or a bandwidth switching WBCS information element, wherein the CSA information element and the WBCS information element are unicast-sent information elements.
  • the bandwidth and symbol of the first channel satisfy the following relationship: the smaller the bandwidth of the first channel, the longer the symbol of the first channel.
  • the number of subcarriers, symbol, and bandwidth of the first channel satisfy the following relationship:
  • BW wb is the reference bandwidth
  • BW nb is the bandwidth of the first channel
  • the reference bandwidth is greater than the bandwidth of the first channel
  • CP is the cyclic prefix
  • the value of ⁇ is greater than 0 and less than 1
  • N sc is the number of subcarriers of the first channel
  • OFDM wop indicates that the symbol of the first channel is a symbol without a cyclic prefix
  • OFDM wp indicates that the symbol of the first channel is a symbol including a cyclic prefix.
  • the transceiver module 701 may include a sending module (not shown in FIG. 7 ) and a receiving module (not shown in FIG. 7 ).
  • the sending module is used to implement the sending function of the communication device 700
  • the receiving module is used to implement the receiving function of the communication device 700 .
  • the communication device 700 may further include a storage module (not shown in FIG. 7 ), which stores a program or instruction.
  • the processing module 702 executes the program or instruction, the communication device 700 may perform the function of the second device in the method shown in FIG. 3 to FIG. 6 above.
  • the communication device 700 can be a terminal or a network device, or a chip (system) or other parts or components that can be set in a terminal or a network device, or a device that includes a terminal or a network device, and this application does not limit this.
  • the technical effects of the communication device 700 can refer to the technical effects of the communication method shown in Figures 3 to 6, and will not be repeated here.
  • FIG8 is a second schematic diagram of the structure of a communication device provided in an embodiment of the present application.
  • the communication device may be a terminal, or a chip (system) or other component or assembly that may be provided in a terminal.
  • a communication device 800 may include a processor 801.
  • the communication device 800 may further include a memory 802 and/or a transceiver 803.
  • the processor 801 is coupled to the memory 802 and the transceiver 803, such as by a communication bus.
  • the processor 801 is the control center of the communication device 800, which can be a processor or a general term for multiple processing elements.
  • the processor 801 is one or more central processing units (CPUs), or an application specific integrated circuit (ASIC), or one or more integrated circuits configured to implement the embodiments of the present application, such as one or more microprocessors (digital signal processors, DSPs), or one or more field programmable gate arrays (field programmable gate arrays, FPGAs).
  • CPUs central processing units
  • ASIC application specific integrated circuit
  • integrated circuits configured to implement the embodiments of the present application, such as one or more microprocessors (digital signal processors, DSPs), or one or more field programmable gate arrays (field programmable gate arrays, FPGAs).
  • the processor 801 may execute various functions of the communication device 800 , such as executing the communication method shown in FIGS. 3 to 6 above, by running or executing a software program stored in the memory 802 and calling data stored in the memory 802 .
  • the processor 801 may include one or more CPUs, such as CPU0 and CPU1 shown in FIG. 8 .
  • the communication device 800 may also include multiple processors, such as the processor 801 and the processor 804 shown in FIG8. Each of these processors may be a single-core processor (single-CPU) or a multi-core processor (multi-CPU).
  • the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (e.g., computer program instructions).
  • the memory 802 is used to store the software program for executing the solution of the present application, and the execution is controlled by the processor 801.
  • the specific implementation method can refer to the above method embodiment, which will not be repeated here.
  • the memory 802 may be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, a random access memory (RAM) or other types of dynamic storage devices that can store information and instructions, or an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compressed optical disc, laser disc, optical disc, digital versatile disc, Blu-ray disc, etc.), a magnetic disk storage medium or other magnetic storage device, or any other medium that can be used to carry or store the desired program code in the form of instructions or data structures and can be accessed by a computer, but is not limited thereto.
  • the memory 802 may be integrated with the processor 801, or may exist independently and be coupled to the processor 801 through an interface circuit (not shown in FIG. 8 ) of the communication device 800, which is not specifically limited in the embodiments of the present application.
  • the transceiver 803 is used for communication with other communication devices. For example, if the communication device 800 is a terminal, the transceiver 803 can be used to communicate with a network device or another terminal device. For another example, if the communication device 800 is a network device, the transceiver 803 can be used to communicate with a network device or another terminal device. Used to communicate with a terminal or with another network device.
  • the transceiver 803 may include a receiver and a transmitter (not shown separately in FIG8 ), wherein the receiver is used to implement a receiving function, and the transmitter is used to implement a sending function.
  • the transceiver 803 may be integrated with the processor 801, or may exist independently and be coupled to the processor 801 via an interface circuit (not shown in FIG. 8 ) of the communication device 800, which is not specifically limited in the embodiment of the present application.
  • the structure of the communication device 800 shown in FIG. 8 does not constitute a limitation on the communication device, and an actual communication device may include more or fewer components than shown in the figure, or combine certain components, or arrange the components differently.
  • the technical effects of the communication device 800 can refer to the technical effects of the method described in the above method embodiment, which will not be repeated here.
  • processors in the embodiments of the present application may be a central processing unit (CPU), and the processor may also be other general-purpose processors, digital signal processors (DSP), application-specific integrated circuits (ASIC), field programmable gate arrays (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processor
  • ASIC application-specific integrated circuits
  • FPGA field programmable gate arrays
  • a general-purpose processor may be a microprocessor or the processor may also be any conventional processor, etc.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memories.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory.
  • the volatile memory may be a random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static RAM
  • DRAM dynamic random access memory
  • SDRAM synchronous DRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced SDRAM
  • SLDRAM synchronous link DRAM
  • DR RAM direct rambus RAM
  • the above embodiments can be implemented in whole or in part by software, hardware (such as circuits), firmware or any other combination.
  • the above embodiments can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions or computer programs. When the computer instructions or computer programs are loaded or executed on a computer, the process or function described in the embodiment of the present application is generated in whole or in part.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions can be transmitted from one website site, computer, server or data center to another website site, computer, server or data center by wired (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available medium that a computer can access or a data storage device such as a server or data center that contains one or more available media sets.
  • the available medium can be a magnetic medium (for example, a floppy disk, a hard disk, a tape), an optical medium (for example, a DVD), or a semiconductor medium.
  • the semiconductor medium can be a solid-state hard disk.
  • At least one means one or more, and “more than one” means two or more.
  • At least one of the following” or similar expressions refers to any combination of these items, including any combination of single or plural items.
  • at least one of a, b, or c can mean: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple.
  • the size of the serial numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not constitute any limitation on the implementation process of the embodiments of the present application.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the computer software product is stored in a storage medium, including several instructions for a computer device (which can be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), disk or optical disk, and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法、装置及***,属于通信技术领域,用以提高非授权频段的频谱资源利用率。在该方法中,在WiFi的信道的带宽以2的幂次方倍增加的情况下,对于非授权频段中剩余的频谱资源,如除无线保真WiFi使用的频段以外的频段,其带宽通常无法满足WiFi的信道的最小带宽要求,也即,这部分频谱资源是WiFi无法使用的。因此,第一设备可以使用部分频域资源向第二设备发送第一数据,以提高非授权频段的频谱资源利用率。

Description

通信方法、装置及***
本申请要求于2022年12月02日提交国家知识产权局、申请号为202211538153.2、申请名称为“通信方法、装置及***”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种通信方法、装置及***。
背景技术
目前,无线保真(wireless fidelity,WiFi)作为一种便捷的局域网无线通信方式,已经普及进入了千家万户。电气与电子工程师协会(institute of electrical and electronics engineers,IEEE)802.11系列协议规定,在非授权频段(industrial scientific medical,ISM)上,WiFi的信道为最少为64个子载波(subcarrier,SC),ISM 5G频段信道的带宽最小为20MHz。此时,信道的子载波数目增加,信道的带宽也会等比增加,例如,信道的带宽会以2的幂次方倍增加,也即,信道的带宽可以为20MHz、40MHz、80MHz、160MHz,以及320MHz。
然而,WiFi的信道的带宽以2的幂次方倍增加会导致非授权频段的频谱资源无法被充分利用,造成频谱资源的浪费。
发明内容
本申请实施例提供一种通信方法、装置及***,用以提高非授权频段的频谱资源利用率。
为达到上述目的,本申请采用如下技术方案:
第一方面,提供一种通信方法,该方法包括:第一设备获取第一数据,并通过非授权频段中的第一信道,向第二设备发送第一数据;其中,第一信道所在的频段是非授权频段中除无线保真WiFi使用的频段以外的频段。
基于第一方面所述的方法可知,在WiFi的信道的带宽以2的幂次方倍增加的情况下,对于非授权频段中剩余的频谱资源,如除无线保真WiFi使用的频段以外的频段,其带宽通常无法满足WiFi的信道的最小带宽要求,也即,这部分频谱资源是WiFi无法使用的。因此,第一设备可以使用部分频域资源向第二设备发送第一数据,以提高非授权频段的频谱资源利用率。
其中,第一数据可以是WiFi相关的数据。例如,第一数据可以是WiFi格式,或者WiFi的帧结构的数据,此时,第一数据可以是WiFi数据,也可以是非WiFi数据,不做限定。又例如,第一数据也可以即为WiFi数据。
一种可能的设计方案中,第一信道的带宽小于20MHz,以充分利用WiFi无法使用频谱资源,进一步提高频谱资源利用率。此外,由于第一信道的带宽小于20MHz,其也可以被称为窄带,或者其他任何可能的命名,不做限定。
可选地,第一信道的带宽为如下任一项:1MHz、5MHz、10MHz、或15MHz,以灵活适用各种传输需求。例如,在传输速率要求比较低的情况下,可以选择1MHz或5MHz。又例如,在需要保障传输速率的情况下,可以选择10MHz或15MHz。
例如,第一信道的带宽为1MHz或5MHz,第一信道所在的频段为如下任一项:5150MHz至5155MHz、5155MHz至5160MHz、5160MHz至5165MHz、5165MHz至5170MHz、5330MHz至5335MHz、5335MHz至5340MHz、5340MHz至5345MHz、5345MHz至5350MHz、5470MHz至5475MHz、5475MHz至5480MHz、5480MHz至5485MHz、5485MHz至5490MHz、5710MHz至5715MHz、5715MHz至5720MHz、5720MHz至5725MHz、5725MHz至5730MHz、5730MHz至5735MHz、5835MHz至5840MHz、5840MHz至5845MHz、5845MHz至5850MHz。也即,非授权频段中剩余的频谱资源可以以5MHz为粒度,被划分成更多份的带宽,以实现能够为更多用户提供服务。
又例如,第一信道的带宽为10MHz,第一信道所在的频段为如下任一项:5150MHz至5160MHz、5155MHz至5165MHz、5160MHz至5170MHz、5330MHz至5340MHz、5335MHz至 5345MHz、5340MHz至5350MHz、5470MHz至5480MHz、5480MHz至5490MHz、5710MHz至5720MHz、5715MHz至5725MHz、5720MHz至5730MHz、5725MHz至5735MHz、5835MHz至5845MHz、5840MHz至5850MHz。也即,非授权频段中剩余的频谱资源可以以10MHz为粒度,被划分成多份带宽,以兼顾传输速率和服务用户的数目。
再例如,第一信道的带宽为15MHz,第一信道所在的频段为如下任一项:5150MHz至5165MHz、5155MHz至5170MHz、5330MHz至5345MHz、5335MHz至5350MHz、5470MHz至5485MHz、5475MHz至5490MH、5710MHz至5725MHz、5715MHz至5730MHz、5720MHz至5735MHz、5835MHz至5850MHz。也即,非授权频段中剩余的频谱资源可以以15MHz为粒度,被划分成多份带宽,以保障传输速率。
一种可能的设计方案中,第一方面所述的方法还可以包括:第一设备广播第一信元,以接收第二设备针对第一信元返回的第二信元。其中,第一信元用于指示第一设备支持的信道,第一设备支持包括第一信道;第二信元用于指示第二设备请求接入第一信道。也即,第二设备可以直接接入第一信道,以实现与第一设备快速建立交互,降低通信时延。
可选地,第一方面所述的方法还可以包括:第一设备广播第三信元。其中,第三信元用于指示设备需要切换到非授权频段中的第二信道,第二信道的带宽与第一信道的带宽不同,且第二信道所在的频段是非授权频段中WiFi使用的频段。也就是说,当需要在WiFi使用的频段下进行数据传输时,第一设备可以通过广播的方式,指示对应的设备从非WiFi使用的频段切换到WiFi使用的频段,也即,由第一信道切换为第二信道,以满足实际传输需求。
进一步的,第三信元可以包括如下至少一项:信道标识信息、带宽信息、或切换计数器。其中,信道标识信息用于标识第二信道,带宽信息用于指示第二信道的带宽,切换计数器用于指示切换到第二信道的时刻,以确保第二设备能够按时切换到指定的信道,也即第二信道。
可选地,第一方面所述的方法还可以包括:第一设备向第二设备发送第四信元。其中,第四信元用于指示第二设备需要切换到非授权频段中的第二信道,第二信道的带宽与第一信道的带宽不同,且第二信道所在的频段是非授权频段中WiFi使用的频段。
或者,可选地,第一方面所述的方法还可以包括:第一设备接收来自第二设备的第四信元,第四信元用于指示第二设备需要切换到非授权频段中的第二信道,第二信道的带宽与第一信道的带宽不同,且第二信道所在的频段是非授权频段中WiFi使用的频段。
可以看出,在通过单播的方式实现从非WiFi使用的频段切换到WiFi使用的频段时,也即,由第一信道切换为第二信道时,其可以由第二设备触发,或者也可以由第一设备触发,以实现更灵活的信道切换。
进一步的,第四信元可以包括如下至少一项:信道标识信息、带宽信息、或切换计数器,其中,信道标识信息用于标识第二信道,带宽信息用于指示第二信道的带宽,切换计数器用于指示切换到第二信道的时刻。类似的,上述的这些信息可以一起携带在一个第四信元中,以提高传输和信道切换效率,或者,也可以分别携带在各自对应的第四信元中,以提高传输的灵活性和信道切换的灵活性。
可选地,由于第二信道的带宽比第一信道的带宽更大,因此,如果第二信道的干扰小于或等于第一信道的干扰,和/或,使用第二信道进行传输的距离小于或等于使用第一信道进行传输的距离,或者说,使用第二信道进行传输的时延小于或等于使用第一信道进行传输的时延,则可以优先切换到第二信道,以提高传输速率。
一种可能的设计方案中,第一方面所述的方法还可以包括:第一设备广播第一信元,以接收第二设备针对第一信元返回的第二信元,其中,第一信元用于指示第一设备支持的信道,第一设备支持包括非授权频段中的第二信道,第二信道的带宽与第一信道的带宽不同,且第二信道所在的频段是非授权频段中WiFi使用的频段;第二信元用于指示第二设备请求接入第二信道。
可选地,第一方面所述的方法还可以包括:第一设备广播第三信元,其中,第三信元用于指示设备需要切换到第一信道。也就是说,即使第二设备先接入第二信道,其也可以通过广播的方式切换到第一信道,从而确保频谱资源始终能够被高效利用。
进一步的,第三信元可以包括如下至少一项:信道标识信息、带宽信息、切换计数器,其中, 信道标识信息用于标识第一信道,带宽信息用于指示第一信道的带宽,切换计数器用于指示切换到第一信道的时刻,以确保第二设备能够按时切换到指定的信道,也即第一信道。
可选地,第一方面所述的方法还可以包括:第一设备向第一设备发送第四信元,其中,第四信元用于指示第一设备需要切换到第一信道。
或者,可选地,第一方面所述的方法还可以包括:第一设备接收来自第二设备的第四信元,其中,第四信元用于指示第一设备需要切换到第一信道。
可以看出,与上述实现类似,在通过单播的方式实现从WiFi使用的频段时切换到非WiFi使用的频段,也即,由第二信道切换为第一信道时,其可以由第二设备触发,或者也可以由第一设备触发,以实现更灵活的信道切换。
进一步的,第四信元可以包括如下至少一项:信道标识信息、带宽信息、或切换计数器,其中,信道标识信息用于标识第一信道,带宽信息用于指示第一信道的带宽,切换计数器用于指示切换到第一信道的时刻。类似的,上述的这些信息可以一起携带在一个第四信元中,以提高传输和信道切换效率,或者,也可以分别携带在各自对应的第四信元中,以提高传输的灵活性和信道切换的灵活性。
可选地,虽然第二信道的带宽大于第一信道的带宽,但在第二信道的干扰大于第一信道的干扰,和/或,使用第二信道进行传输的距离大于使用第一信道进行传输的距离的情况下,也需要优先切换到的第一信道,以保障传输的可靠性和时延。
一种可能的设计方案中,第一信元携带在第一信标帧中,第一信标帧是通过广播发送的帧,也即,广播第一信元可以通过复用已有的广播帧实现,以降低实现难度。
一种可能的设计方案中,第三信元携带在第二信标帧中,第二信标帧是通过广播发送的帧,也即,广播第三信元可以通过复用已有的广播帧实现,以降低实现难度。
一种可能的设计方案中,第四信元为如下至少一项:信道切换公告CSA信元、或带宽切换WBCS信元,其中,CSA信元和WBCS信元是单播发送的信元,也即,发送第四信元可以通过复用已有的单播信元实现,以降低实现难度。
一种可能的设计方案中,第一信道的带宽和符号满足如下关系:第一信道的带宽越小,第一信道的符号越长。例如,第一信道的子载波数目、符号以及带宽满足如下关系:
其中,BWwb为参考带宽,BWnb为第一信道的带宽,参考带宽大于第一信道的带宽,CP为循环前缀,γ的取值大于0且小于1,Nsc为第一信道的子载波数目,OFDMwop表示第一信道的符号为不包含循环前缀的符号,OFDMwp表示第一信道的符号为包含循环前缀的符号。
可以看出,如果第一信道的带宽与符号等比变化,如第一信道的带宽减少一倍,第一信道的符号相应增长一倍,则第一信道的子载波数量不变,或者说,可调度的频域资源数目不受影响。当然,第一信道的带宽与符号也可以非等比变化,如第一信道的带宽减少两倍,第一信道的符号相应增长一倍,不做限定。
第二方面,提供一种通信方法,该方法包括:第二设备通过非授权频段中的第一信道,接收来自第一设备的第一数据,从而处理第一数据。其中,第一信道所在的频段是非授权频段中除无线保真WiFi使用的频段以外的频段。
一种可能的设计方案中,第一信道的带宽小于20MHz。
可选地,第一信道的带宽为如下任一项:1MHz、5MHz、10MHz、或15MHz。
例如,第一信道的带宽为1MHz或5MHz,第一信道所在的频段为如下任一项:5150MHz至5155MHz、5155MHz至5160MHz、5160MHz至5165MHz、5165MHz至5170MHz、5330MHz至5335MHz、5335MHz至5340MHz、5340MHz至5345MHz、5345MHz至5350MHz、5470MHz至 5475MHz、5475MHz至5480MHz、5480MHz至5485MHz、5485MHz至5490MHz、5710MHz至5715MHz、5715MHz至5720MHz、5720MHz至5725MHz、5725MHz至5730MHz、5730MHz至5735MHz、5835MHz至5840MHz、5840MHz至5845MHz、5845MHz至5850MHz。
又例如,第一信道的带宽为10MHz,第一信道所在的频段为如下任一项:5150MHz至5160MHz、5155MHz至5165MHz、5160MHz至5170MHz、5330MHz至5340MHz、5335MHz至5345MHz、5340MHz至5350MHz、5470MHz至5480MHz、5480MHz至5490MHz、5710MHz至5720MHz、5715MHz至5725MHz、5720MHz至5730MHz、5725MHz至5735MHz、5835MHz至5845MHz、5840MHz至5850MHz。
再例如,第一信道的带宽为15MHz,第一信道所在的频段为如下任一项:5150MHz至5165MHz、5155MHz至5170MHz、5330MHz至5345MHz、5335MHz至5350MHz、5470MHz至5485MHz、5475MHz至5490MH、5710MHz至5725MHz、5715MHz至5730MHz、5720MHz至5735MHz、5835MHz至5850MHz。
一种可能的设计方案中,第二方面所述的方法还可以包括:第二设备接收第一信元,从而根据第一信元,向第一设备发送第二信元。其中,第一信元用于指示第一设备支持的信道,第一设备支持包括第一信道;第二信元用于指示第二设备请求接入第一信道。
可选地,第二方面所述的方法还可以包括:第二设备接收第三信元。其中,第三信元用于指示设备需要切换到非授权频段中的第二信道,第二信道的带宽与第一信道的带宽不同,且第二信道所在的频段是非授权频段中WiFi使用的频段。
进一步的,第三信元可以包括如下至少一项:信道标识信息、带宽信息、或切换计数器。其中,信道标识信息用于标识第二信道,带宽信息用于指示第二信道的带宽,切换计数器用于指示切换到第二信道的时刻。
可选地,第二方面所述的方法还可以包括:第二设备接收来自第一设备的第四信元。其中,第四信元用于指示第二设备需要切换到非授权频段中的第二信道,第二信道的带宽与第一信道的带宽不同,且第二信道所在的频段是非授权频段中WiFi使用的频段。
或者,可选地,第二方面所述的方法还可以包括:第二设备向第一设备发送第四信元,第四信元用于指示第二设备需要切换到非授权频段中的第二信道,第二信道的带宽与第一信道的带宽不同,且第二信道所在的频段是非授权频段中WiFi使用的频段。
进一步的,第四信元可以包括如下至少一项:信道标识信息、带宽信息、或切换计数器,其中,信道标识信息用于标识第二信道,带宽信息用于指示第二信道的带宽,切换计数器用于指示切换到第二信道的时刻。
可选地,第二信道的干扰小于或等于第一信道的干扰,和/或,使用第二信道进行传输的距离小于或等于使用第一信道进行传输的距离。
一种可能的设计方案中,第二方面所述的方法还可以包括:第二设备接收第一信元,从而根据第一信元,向第一设备发送第二信元,其中,第一信元用于第一设备支持的信道,第一设备支持包括非授权频段中的第二信道,第二信道的带宽与第一信道的带宽不同,且第二信道所在的频段是非授权频段中WiFi使用的频段;第二信元用于指示第二设备请求接入第二信道。
可选地,第二方面所述的方法还可以包括:第二设备接收第三信元,其中,第三信元用于指示设备需要切换到第一信道。
进一步的,第三信元可以包括如下至少一项:信道标识信息、带宽信息、切换计数器,其中,信道标识信息用于标识第一信道,带宽信息用于指示第一信道的带宽,切换计数器用于指示切换到第一信道的时刻。
可选地,第二方面所述的方法还可以包括:第二设备接收来自第一设备的第四信元,其中,第四信元用于指示第一设备需要切换到第一信道。
或者,可选地,第二方面所述的方法还可以包括:第二设备向第一设备发送第四信元,其中,第四信元用于指示第一设备需要切换到第一信道。
进一步的,第四信元可以包括如下至少一项:信道标识信息、带宽信息、或切换计数器,其中,信道标识信息用于标识第一信道,带宽信息用于指示第一信道的带宽,切换计数器用于指示 切换到第一信道的时刻。
可选地,第二信道的干扰大于第一信道的干扰,和/或,使用第二信道进行传输的距离大于使用第一信道进行传输的距离。
一种可能的设计方案中,第一信元携带在第一信标帧中,第一信标帧是通过广播发送的帧。
一种可能的设计方案中,第三信元携带在第二信标帧中,第二信标帧是通过广播发送的帧。
一种可能的设计方案中,第四信元为如下至少一项:信道切换公告CSA信元、或带宽切换WBCS信元,其中,CSA信元和WBCS信元是单播发送的信元。
一种可能的设计方案中,第一信道的带宽和符号满足如下关系:第一信道的带宽越小,第一信道的符号越长。例如,第一信道的子载波数目、符号以及带宽满足如下关系:
其中,BWwb为参考带宽,BWnb为第一信道的带宽,参考带宽大于第一信道的带宽,CP为循环前缀,γ的取值大于0且小于1,Nsc为第一信道的子载波数目,OFDMwop表示第一信道的符号为不包含循环前缀的符号,OFDMwp表示第一信道的符号为包含循环前缀的符号。
此外,第二方面所述的方法的技术效果也可以参考第一方面所述的方法的技术效果,此处不再赘述。
第三方面,提供一种通信方法,该方法包括:第一设备获取第一数据,并通过非授权频段中的第一信道,向第二设备发送第一数据。第二设备通过非授权频段中的第一信道,接收来自第一设备的第一数据,从而处理第一数据。其中,第一信道所在的频段是非授权频段中除无线保真WiFi使用的频段以外的频段。
一种可能的设计方案中,第一信道的带宽小于20MHz。
可选地,第一信道的带宽为如下任一项:1MHz、5MHz、10MHz、或15MHz。
例如,第一信道的带宽为1MHz或5MHz,第一信道所在的频段为如下任一项:5150MHz至5155MHz、5155MHz至5160MHz、5160MHz至5165MHz、5165MHz至5170MHz、5330MHz至5335MHz、5335MHz至5340MHz、5340MHz至5345MHz、5345MHz至5350MHz、5470MHz至5475MHz、5475MHz至5480MHz、5480MHz至5485MHz、5485MHz至5490MHz、5710MHz至5715MHz、5715MHz至5720MHz、5720MHz至5725MHz、5725MHz至5730MHz、5730MHz至5735MHz、5835MHz至5840MHz、5840MHz至5845MHz、5845MHz至5850MHz。
又例如,第一信道的带宽为10MHz,第一信道所在的频段为如下任一项:5150MHz至5160MHz、5155MHz至5165MHz、5160MHz至5170MHz、5330MHz至5340MHz、5335MHz至5345MHz、5340MHz至5350MHz、5470MHz至5480MHz、5480MHz至5490MHz、5710MHz至5720MHz、5715MHz至5725MHz、5720MHz至5730MHz、5725MHz至5735MHz、5835MHz至5845MHz、5840MHz至5850MHz。
再例如,第一信道的带宽为15MHz,第一信道所在的频段为如下任一项:5150MHz至5165MHz、5155MHz至5170MHz、5330MHz至5345MHz、5335MHz至5350MHz、5470MHz至5485MHz、5475MHz至5490MH、5710MHz至5725MHz、5715MHz至5730MHz、5720MHz至5735MHz、5835MHz至5850MHz。
一种可能的设计方案中,第三方面所述的方法还可以包括:第一设备广播第一信元。第二设备接收第一信元,从而根据第一信元,向第一设备发送第二信元。第一设备接收第二设备针对第一信元返回的第二信元。其中,第一信元用于第一设备支持信道,第一设备支持包括第一信道;第二信元用于指示第二设备请求接入第一信道。
可选地,第三方面所述的方法还可以包括:第一设备广播第三信元,第二设备接收第三信元。其中,第三信元用于指示设备需要切换到非授权频段中的第二信道,第二信道的带宽与第一信道 的带宽不同,且第二信道所在的频段是非授权频段中WiFi使用的频段。
进一步的,第三信元可以包括如下至少一项:信道标识信息、带宽信息、或切换计数器。其中,信道标识信息用于标识第二信道,带宽信息用于指示第二信道的带宽,切换计数器用于指示切换到第二信道的时刻。
可选地,第三方面所述的方法还可以包括:第一设备向第二设备发送第四信元,第二设备接收来自第一设备的第四信元。其中,第四信元用于指示第二设备需要切换到非授权频段中的第二信道,第二信道的带宽与第一信道的带宽不同,且第二信道所在的频段是非授权频段中WiFi使用的频段。
可选地,第三方面所述的方法还可以包括:第二设备向第一设备发送第四信元,第一设备接收来自第二设备的第四信元。其中,第四信元用于指示第二设备需要切换到非授权频段中的第二信道,第二信道的带宽与第一信道的带宽不同,且第二信道所在的频段是非授权频段中WiFi使用的频段。
进一步的,第四信元可以包括如下至少一项:信道标识信息、带宽信息、或切换计数器,其中,信道标识信息用于标识第二信道,带宽信息用于指示第二信道的带宽,切换计数器用于指示切换到第二信道的时刻。
可选地,第二信道的干扰小于或等于第一信道的干扰,和/或,使用第二信道进行传输的距离小于或等于使用第一信道进行传输的距离。
一种可能的设计方案中,第三方面所述的方法还可以包括:第一设备广播第一信元。第二设备接收第一信元,从而根据第一信元,向第一设备发送第二信元。第一设备接收第二设备针对第一信元返回的第二信元。其中,第一信元用于指示第一设备支持的信道,第一设备支持包括非授权频段中的第二信道,第二信道的带宽与第一信道的带宽不同,且第二信道所在的频段是非授权频段中WiFi使用的频段;第二信元用于指示第二设备请求接入第二信道。
可选地,第三方面所述的方法还可以包括:第一设备广播第三信元,第二设备接收第三信元,其中,第三信元用于指示设备需要切换到第一信道。
进一步的,第三信元可以包括如下至少一项:信道标识信息、带宽信息、切换计数器,其中,信道标识信息用于标识第一信道,带宽信息用于指示第一信道的带宽,切换计数器用于指示切换到第一信道的时刻。
可选地,第三方面所述的方法还可以包括:第一设备向第一设备发送第四信元,第二设备接收来自第一设备的第四信元,其中,第四信元用于指示第一设备需要切换到第一信道。
或者,可选地,第三方面所述的方法还可以包括:第二设备向第一设备发送第四信元,第一设备接收来自第二设备的第四信元,其中,第四信元用于指示第一设备需要切换到第一信道。
进一步的,第四信元可以包括如下至少一项:信道标识信息、带宽信息、或切换计数器,其中,信道标识信息用于标识第一信道,带宽信息用于指示第一信道的带宽,切换计数器用于指示切换到第一信道的时刻。
可选地,第二信道的干扰大于第一信道的干扰,和/或,使用第二信道进行传输的距离大于使用第一信道进行传输的距离。
一种可能的设计方案中,第一信元携带在第一信标帧中,第一信标帧是通过广播发送的帧。
一种可能的设计方案中,第三信元携带在第二信标帧中,第二信标帧是通过广播发送的帧。
一种可能的设计方案中,第四信元为如下至少一项:信道切换公告CSA信元、或带宽切换WBCS信元,其中,CSA信元和WBCS信元是单播发送的信元。
一种可能的设计方案中,第一信道的带宽和符号满足如下关系:第一信道的带宽越小,第一信道的符号越长。例如,第一信道的子载波数目、符号以及带宽满足如下关系:
其中,BWwb为参考带宽,BWnb为第一信道的带宽,参考带宽大于第一信道的带宽,CP为循环前缀,γ的取值大于0且小于1,Nsc为第一信道的子载波数目,OFDMwop表示第一信道的符号为不包含循环前缀的符号,OFDMwp表示第一信道的符号为包含循环前缀的符号。
此外,第三方面所述的方法的技术效果也可以参考第一方面所述的方法的技术效果,此处不再赘述。
第四方面,提供一种通信装置。该通信装置包括:用于执行第一方面所述的方法的模块,例如,收发模块和处理模块。其中,收发模块,用于指示该通信装置的收发功能,处理模块,用于执行该通信装置除收发功能以外的功能。
可选地,收发模块可以包括发送模块和接收模块。其中,发送模块用于实现第四方面所述的通信装置的发送功能,接收模块用于实现第四方面所述的通信装置的接收功能。
可选地,第四方面所述的通信装置还可以包括存储模块,该存储模块存储有程序或指令。当该处理模块执行该程序或指令时,使得该通信装置可以执行第一方面所述的方法。
可以理解的是,第四方面所述的通信装置可以是终端或网络设备,也可以是可设置于终端或网络设备中的芯片(***)或其他部件或组件,还可以是包含终端或网络设备的装置,本申请对此不做限定。
此外,第四方面所述的通信装置的技术效果可以参考第一方面所述的方法的技术效果,此处不再赘述。
第五方面,提供一种通信装置。该通信装置包括:用于执行第二方面所述的方法的模块,例如收发模块和处理模块。例如,收发模块,用于指示该通信装置的收发功能,处理模块,用于执行该通信装置除收发功能以外的功能。
可选地,收发模块可以包括发送模块和接收模块。其中,发送模块用于实现第五方面所述的通信装置的发送功能,接收模块用于实现第五方面所述的通信装置的接收功能。
可选地,第五方面所述的通信装置还可以包括存储模块,该存储模块存储有程序或指令。当该处理模块执行该程序或指令时,使得该通信装置可以执行第二方面所述的方法。
可以理解的是,第五方面所述的通信装置可以是终端或网络设备,也可以是可设置于终端或网络设备中的芯片(***)或其他部件或组件,还可以是包含终端的装置或网络设备,本申请对此不做限定。
此外,第五方面所述的通信装置的技术效果可以参考第二方面所述的方法的技术效果,此处不再赘述。
第六方面,提供一种通信装置。该通信装置包括:处理器,该处理器用于执行第一方面或第二方面中任意一种可能的实现方式所述的方法。
在一种可能的设计方案中,第六方面所述的通信装置还可以包括收发器。该收发器可以为收发电路或接口电路。该收发器可以用于第六方面所述的通信装置与其他通信装置通信。
在一种可能的设计方案中,第六方面所述的通信装置还可以包括存储器。该存储器可以与处理器集成在一起,也可以分开设置。该存储器可以用于存储第一方面或第二方面中任一方面所述的方法所涉及的计算机程序和/或数据。
在本申请实施例中,第六方面所述的通信装置可以为第一方面或第二方面中任一方面所述的终端或网络设备,或者可设置于该终端或网络设备中的芯片(***)或其他部件或组件,或者包含该终端或网络设备的装置。
此外,第六方面所述的通信装置的技术效果可以参考第一方面或第二方面中任意一种实现方式所述的方法的技术效果,此处不再赘述。
第七方面,提供一种通信装置。该通信装置包括:处理器,该处理器与存储器耦合,该处理器用于执行存储器中存储的计算机程序,以使得该通信装置执行第一方面或第二方面中任意一种可能的实现方式所述的方法。
在一种可能的设计方案中,第七方面所述的通信装置还可以包括收发器。该收发器可以为收发电路或接口电路。该收发器可以用于第七方面所述的通信装置与其他通信装置通信。
在本申请实施例中,第七方面所述的通信装置可以为第一方面或第二方面中任一方面所述的终端或网络设备,或者可设置于该终端或网络设备中的芯片(***)或其他部件或组件,或者包含该终端或网络设备的装置。
此外,第七方面所述的通信装置的技术效果可以参考第一方面或第二方面中任意一种实现方式所述的方法的技术效果,此处不再赘述。
第八方面,提供了一种通信装置,包括:处理器和存储器;该存储器用于存储计算机程序,当该处理器执行该计算机程序时,以使该通信装置执行第一方面或第二方面中的任意一种实现方式所述的方法。
在一种可能的设计方案中,第八方面所述的通信装置还可以包括收发器。该收发器可以为收发电路或接口电路。该收发器可以用于第八方面所述的通信装置与其他通信装置通信。
在本申请实施例中,第八方面所述的通信装置可以为第一方面或第二方面中任一方面所述的终端或网络设备,或者可设置于该终端或网络设备中的芯片(***)或其他部件或组件,或者包含该终端或网络设备的装置。
此外,第八方面所述的通信装置的技术效果可以参考第一方面或第二方面中任意一种实现方式所述的方法的技术效果,此处不再赘述。
第九方面,提供一种通信***。该通信***包括:用于执行第一方面所述的方法的第一设备,以及用于执行第二方面所述的方法的第二设备。
第十方面,提供一种计算机可读存储介质,包括:计算机程序或指令;当该计算机程序或指令在计算机上运行时,使得该计算机执行第一方面或第二方面中任意一种可能的实现方式所述的方法。
第十一方面,提供一种计算机程序产品,包括计算机程序或指令,当该计算机程序或指令在计算机上运行时,使得该计算机执行第一方面或第二方面中任意一种可能的实现方式所述的方法。
附图说明
图1为WiFi的帧结构的示意图;
图2为本申请实施例提供的通信***的架构示意图;
图3为本申请实施例提供的通信方法的流程示意图一;
图4为本申请实施例提供的通信方法中频域资源的示意图;
图5为本申请实施例提供的通信方法的流程示意图二;
图6为本申请实施例提供的通信方法的流程示意图三;
图7为本申请实施例提供的通信装置的结构示意图一;
图8为本申请实施例提供的通信装置的结构示意图二。
具体实施方式
方便理解,下面先介绍本申请实施例所涉及的技术术语。
1、无线保真(wireless fidelity,WiFi):
目前WiFi作为一种便捷的局域网无线通信方式,已经普及进入了千家万户。WiFi的一大技术特点是在非授权频段(industrial scientific medical,ISM)需要通过先听再接(listen before talk,LBT)技术竞争信道,以取得无线信道的使用权。IEEE 802.11系列协议规定WiFi支持的帧主要包括:非高吞吐量(non-high throughput,non-HT)、高吞吐量(high throughput,HT),以及非常高吞吐量(very high throughput,VHT)。
如图1所示,non-HT帧的结构可以包括:传统短训练字段(legacy short training field,L-STF)、传统长训练字段(legacy long training field,L-LTF)、传统信号字段(legacy signal field,L-SIG)、 以及数据(data)。其中,L-STF、L-LTF和L-SIG可以理解为前导部分,其时域长度通常是固定的。例如,L-STF和L-LTF的时域长度都为8微秒(us)、L-SIG的时域长度为4us。数据部分的时域长度的动态,其通常取决与数据量的大小。此外,数据部分的循环前缀(cyclic prefix,CP)的长度也不固定,例如,根据实际情况不同,CP的长度可以为0.4us,0.8us,1.6us,3.2us等。
如图1所示,HT帧的结构可以包括:L-STF、L-LTF、L-SIG、高吞吐(high throughput,HT)-SIG、HT-STF、HT-LTF以及数据。其中,L-STF、L-LTF以及L-SIG的时域长度可以参考non-HT帧进行理解,不再赘述。HT-SIG的时域长度为8us、HT-STF的时域长度为4us、HT-LTF可以为一个或多个,每个HT-LTF的时域长度为一个符号(symbol),如4us。数据部分可以参考non-HT帧进行理解,不再赘述。
如图1所示,VHT帧的结构可以包括:L-STF、L-LTF、L-SIG、甚高吞吐(very high throughput,VHT)-SIG、VTH-STF、VHT-LTF、VHT-SIGB以及数据。其中,L-STF、L-LTF以及L-SIG的时域长度可以参考non-HT帧进行理解,不再赘述。VHT-SIG的时域长度为8us,VTH-STF的时域长度为4us。VHT-LTF可以为一个或多个,每个VHT-LTF可以的时域长度为一个符号,如4us。VHT-SIGB的时域长度为4us。部分可以参考non-HT帧进行理解,不再赘述。
对于上述的non-HT帧、HT帧以及VHT帧,IEEE 802.11系列协议规定其对应的信道最少为64个子载波(subcarrier,SC),信道的带宽最小为20MHz。此时,信道的子载波数目增加,信道的带宽也会等比增加,例如,信道的带宽会以2的幂次方倍增加,也即,信道的带宽可以为20MHz、40MHz、80MHz、160MHz,以及320MHz。然而,以2的幂次方倍增加会导致信道的带宽差异比较大,从而导致非授权频段的频谱资源无法被充分利用,造成频谱资源的浪费。例如,在传输需求为需要170MHz的带宽进行传输的情况下,选择带宽为160MHz的信道无法满足传输需求,选择带宽为320MHz的信道会导致带宽为150MHz频谱资源无法被充分利用。此外,由于采用WiFi的用户设备会通过LBT技术竞争信道,随着用户设备的越来越多,有限的频谱资源变得异常拥挤,相互之间的干扰也越来越大,导致用户体验严重下降。
针对上述技术问题,本申请实施例提出了如下技术方案,用以提高频谱资源利用率和用户体验。
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信***,例如无线网络(Wi-Fi)***,车到任意物体(vehicle to everything,V2X)通信***、设备间(device-todevie,D2D)通信***、车联网通信***、***(4th generation,4G)移动通信***,如长期演进(long term evolution,LTE)***、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信***、第五代(5th generation,5G),如新空口(new radio,NR)***,以及未来的通信***等。
本申请将围绕可包括多个设备、组件、模块等的***来呈现各个方面、实施例或特征。应当理解和明白的是,各个***可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
另外,在本申请实施例中,“示例的”、“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例中,“信息(information)”,“信号(signal)”,“消息(message)”,“信道(channel)”、“信令(singaling)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是匹配的。“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是匹配的。此外,本申请提到的“/”可以用于表示“或”的关系。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
为便于理解本申请实施例,首先以图2中示出的通信***为例详细说明适用于本申请实施例的通信***。示例性的,图2为本申请实施例提供的通信方法所适用的一种通信***的架构示意 图。
如图2所示,该通信***可以包括:第一设备和第二设备。其中,第一设备和第二设备都可以是终端或网络设备,或者第一设备可以是网络设备,第二设备可以是终端,对此不做具体限定。
上述终端可以为具有收发功能的终端,或为可设置于该终端的芯片或芯片***。该终端也可以称为用户装置(uesr equipment,UE)、站点(station,STA)、接入终端、用户单元(subscriber unit)、用户站、移动站(mobile station,MS)、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端可以是手机(mobile phone)、蜂窝电话(cellular phone)、智能电话(smart phone)、平板电脑(Pad)、无线数据卡、个人数字助理电脑(personal digital assistant,PDA)、无线调制解调器(modem)、手持设备(handset)、膝上型电脑(laptop computer)、机器类型通信(machine type communication,MTC)终端、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、车载终端、具有终端功能的路边单元(road side unit,RSU)等。本申请的终端还可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元。本申请的终端还可以是作为一个或多个部件或者单元而内置于无人机的无人机模块、无人机模组、无人机部件、无人机芯片或者无人机单元。
网络设备可以是为终端提供接入的设备。例如,网络设备还可以包括无线保真(wireless fidelity,WiFi)***中的接入点(access point,AP),无线中继节点、无线回传节点、各种形式的宏基站、微基站(也称为小站)、中继站、接入点、可穿戴设备、车载设备、无人机设备等等。网络设备可以包括:下一代移动通信***,例如6G的接入网设备,例如6G基站,或者在下一代移动通信***中,该网络设备也可以有其他命名方式,其均涵盖在本申请实施例的保护范围以内,本申请对此不做任何限定。或者,网络设备也可以包括5G,如新空口(new radio,NR)***中的gNB,或,5G中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB、传输点(transmission and reception point,TRP或者transmission point,TP)或传输测量功能(transmission measurement function,TMF)的网络节点,如基带单元(building base band unit,BBU),或,集中单元(centralized unit,CU)或分布单元(distributed unit,DU)、具有基站功能的RSU,或者有线接入网关,或者5G的核心网。
本申请实施例中,由于WiFi的信道的带宽是以2的幂次方倍增加,此时,对于非授权频段中剩余的频谱资源,也即除无线保真WiFi使用的频段以外的频段,其带宽通常无法满足WiFi的信道的最小带宽要求,也即,这部分频谱资源是WiFi无法使用的。因此,第一设备可以使用部分频域资源向第二设备发送第一数据,从而可以提高非授权频段的频谱资源利用率。
下面将结合图3-图6,通过方法实施例具体介绍上述通信***中各设备之间的交互流程。本申请实施例提供的通信方法可以适用于上述通信***,下面具体介绍。
如图3所示,该通信方法适用到上述通信***,涉及第一设备和第二设备之间的交互。具体流程如下:
S301,第一设备获取第一数据。
其中,第一数据可以是WiFi相关的数据。例如,第一数据可以是WiFi格式,或者WiFi的帧结构的数据,此时,第一数据可以是WiFi数据,也可以是非WiFi数据,不做限定。又例如,第一数据也可以即为WiFi数据。其中,WiFi的帧结构可以参考上述图1的相关介绍,不再赘述。
第一设备可以从本地获取第一数据,也可以从其他设备获取第一数据。例如,第一设备是无人机的控制器,第二设备是无人机,控制器可以在本地生成针对无人机的控制信令,也即第一数据。又例如,第一设备是AP,第二设备是STA,如手机,AP可以从应用服务器获取手机的业务数据,也即第一数据。
S302,第一设备通过非授权频段中的第一信道,向第二设备发送第一数据。第二设备通过非授权频段中的第一信道,接收来自第一设备的第一数据。
如图4所示,非授权频段可以包括如下至少一项:5150MHz至5350MHz、5470MHz至5725MHz、或5725MHz至5850MHz,或者其他任何可能的频段,不做具体限定。非授权频段可以包括WiFi使用的频段,以及除WiFi使用的频段以外的频段,记为非WiFi使用的频段。
WiFi使用的频段可以包括:频段#1(5170MHz至5330MHz),以及频段#2(5735MHz至5835MHz),可选地,还可以包括:频段#3(5490MHz至5710MHz)。
如图4中的(a)所示,对于频段#1,其中的信道可以表示为[x:y:z],x表示起始信道号,也即以信道#x开始;y表示信道步进,也即,相邻两个信道之间的信道号相差为y;z表示结束信道号,也即以信道#z结束。信道的带宽是20MHz,频段#1可以包括信道[36:4:64]。信道的带宽是40MHz,频段#1可以包括信道[36:8:60]。信道的带宽是80MHz,频段#1可以包括信道[36:8:52]。信道的带宽是16MHz,频段#1可以包括信道#36。
如图4中的(b)所示,对于频段#2,信道的带宽是20MHz,频段#2可以包括信道[149:4:165]。信道的带宽是40MHz,频段#2可以包括信道[149:8:157]。信道的带宽是80MHz,频段#2可以包括信道#149。
如图4中的(c)所示,对于频段#3,信道的带宽是20MHz,频段#3可以包括信道[100:4:140]。信道的带宽是40MHz,频段#3可以包括信道[100:8:132]。信道的带宽是80MHz,频段#3可以包括信道[100:8:132]。信道的带宽是160MHz,频段#3可以包括信道#100。
可以看出,WiFi的信道的带宽最小为20MHz,且能够以2的幂次方倍增加。此时,对于频段#1中WiFi没有使用频谱资源,如5150MHz至5170MHz共20MHz,或者,5130MHz至5350MHz共20MHz,如果WiFi的信道以20MHz的带宽占用这部分频谱资源,则会导致能量出现带外泄漏,因此,这部分频谱资源是WiFi不能使用的频谱资源,或者说,频段#1中非WiFi使用的频段。对于频段#2,5725MHz至5735MHz共10MHz,或者,5840MHz至5850MHz共10MHz,其小于WiFi的信道的最小带宽,因此,这部分频谱资源也是WiFi不能使用的频谱资源,或者说,频段#2中非WiFi使用的频段。同理,对于频段#3,5470MHz至5490MHz,以及5715MHz至5725MHz,也是WiFi不能使用的频谱资源,或者说,频段#3中非WiFi使用的频段。因此,非授权频段中非WiFi使用的频段可以包括:频段#1和频段#2中非WiFi使用的频段,可选地,还可以包括:频段#3中非WiFi使用的频段。
第一信道的带宽可以小于20MHz,以充分利用WiFi无法使用频谱资源,进一步提高频谱资源利用率。此外,由于第一信道的带宽小于20MHz,其也可以被称为窄带,或者其他可能的命名,不做限定。因此,本申请实施例下文提到的窄带可以理解为带宽小于20MHz的信道。
例如,第一信道的带宽为如下任一项:1MHz、5MHz、10MHz、或15MHz,以灵活适用各种传输需求。比如,在传输速率要求比较低的情况下,可以选择1MHz或5MHz。又比如,在需要保障传输速率的情况下,可以选择10MHz或15MHz。当然,第一信道的带宽也不限于上述取值,例如,也可以为其他任何可能的取值,如2MHz、4MHz、8MHz、16MHz等,不做限定。
其中,如果第一信道的带宽为1MHz或5MHz,则第一信道所在的频段为如下任一项:5150MHz至5155MHz、5155MHz至5160MHz、5160MHz至5165MHz、5165MHz至5170MHz、5330MHz至5335MHz、5335MHz至5340MHz、5340MHz至5345MHz、5345MHz至5350MHz、5470MHz至5475MHz、5475MHz至5480MHz、5480MHz至5485MHz、5485MHz至5490MHz、5710MHz至5715MHz、5715MHz至5720MHz、5720MHz至5725MHz、5725MHz至5730MHz、5730MHz至5735MHz、5835MHz至5840MHz、5840MHz至5845MHz、5845MHz至5850MHz。也即,非授权频段中剩余的频谱资源可以以5MHz为粒度,被划分成更多份的带宽,以实现能够为更多用户提供服务。
或者,如果第一信道的带宽为10MHz,则第一信道所在的频段为如下任一项:5150MHz至5160MHz、5155MHz至5165MHz、5160MHz至5170MHz、5330MHz至5340MHz、5335MHz至5345MHz、5340MHz至5350MHz、5470MHz至5480MHz、5480MHz至5490MHz、5710MHz至5720MHz、5715MHz至5725MHz、5720MHz至5730MHz、5725MHz至5735MHz、5835MHz至5845MHz、5840MHz至5850MHz。也即,非授权频段中剩余的频谱资源可以以10MHz为粒度,被划分成多份带宽,以兼顾传输速率和服务用户的数目。
或者,如果第一信道的带宽为15MHz,则第一信道所在的频段为如下任一项:5150MHz至5165MHz、5155MHz至5170MHz、5330MHz至5345MHz、5335MHz至5350MHz、5470MHz至5485MHz、5475MHz至5490MH、5710MHz至5725MHz、5715MHz至5730MHz、5720MHz至5735MHz、5835MHz至5850MHz。也即,非授权频段中剩余的频谱资源可以以15MHz为粒度,被划分成多份带宽,以保障传输速率。
可以看出,第一信道的带宽可以根据实际需求在1MHz至20MHz的范围内灵活可调,此时,第一信道的符号也可以根据其带宽的调整而动态变化,以保障信道的承载能力不变,或者说不至于发生过大的变化。可以理解,第一信道的符号可以是正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,或者其他任何可能的符号,不做限定。
例如,第一信道的带宽和符号可以满足如下关系:第一信道的带宽越小,第一信道的符号越大;反之,第一信道的带宽越大,第一信道的符号越短。此时,由于第一信道的子载波数目可以为第一信道的带宽和带宽的乘积,因此,第一信道的子载波数目、符号以及带宽可以满足如下式(1)所示的关系:
其中,BWwb可以为参考带宽,该参考带宽通常大于或等于20MHz,方便理解,本申请实施例以20MHz为例进行介绍。BWnb可以为第一信道的带宽,CP可以为循环前缀,γ的取值可以大于0且小于1,Nsc可以为第一信道的子载波数目,OFDMwop可以表示第一信道的符号为不包含循环前缀的符号,OFDMwp可以表示第一信道的符号为包含循环前缀的符号。
可以看出,如果第一信道的带宽与符号等比变化,如第一信道的带宽减少一倍,第一信道的符号相应增长一倍,则第一信道的子载波数量不变,或者说,可调度的频域资源数目不受影响。当然,第一信道的带宽与符号也可以非等比变化,例如,第一信道的带宽减少两倍,第一信道的符号增长一倍,不做限定。
本申请实施例中,第一设备可以在第二设备接入第一信道的情况下,通过第一信道向第二设备发送第一数据。同理,第二设备可以在第二设备接入第一信道的情况下,接收第一设备通过第一信道发送的第一数据。其中,第二设备可以直接接入第一信道,或者也可以以切换的方式从其他信道切换接入到第一信道,具体可以参见下文的相关介绍,在此不做赘述。
S303,第二设备处理第一数据。
其中,第二设备可以根据第一数据,执行相应的操作。例如,第一设备是无人机的控制器,第二设备是无人机,无人机可以根据控制信令,也即第一数据,进行飞行姿态调整。又例如,第一设备是AP,第二设备是手机,手机可以根据业务数据,执行相应的操作,如业务数据是视频流,手机可以显示该视频流。
综上,在WiFi的信道的带宽以2的幂次方倍增加的情况下,对于非授权频段中剩余的频谱资源,如除无线保真WiFi使用的频段以外的频段,其带宽通常无法满足WiFi的信道的最小带宽要求,也即,这部分频谱资源是WiFi无法使用的。因此,第一设备可以使用部分频域资源向第二设备发送第一数据,以提高非授权频段的频谱资源利用率。
结合上述实施例,一种可能的方案中,第一设备与第二设备在使用相应的信道进行数据传输之前,例如,在图3所述的流程之前,第一设备和第二设备可以接入该信道,下面具体介绍。
如图5所示,接入信道的流程具体如下:
S501,第一设备广播第一信元,第二设备接收第一信元。
一种可能的方式中,第一信元可以用于指示第一设备支持的信道,或者说第一设备支持的窄带,如包括上述的第一信道。例如,第一信元可以包括如下至少一项:信元标识信息,(记为信元标识信息#1)、设备标识信息(记为设备标识信息#1)、或信道带宽信息(记为信道带宽信息 #1)。
信元标识信息#1可以用于标识第一信元。例如,信元标识信息#1可以包括:用于标识第一信元的信息,以及用于表征第一信元的长度的信息。用于标识第一信元的信息可以是元素标识符(element identifier,EID),记为EID#1,用以唯一的标识第一信元。用于表征第一信元的长度的信息可以是信息元素(information element,IE)长度(IE length),记为IE长度#1,用以表征第一信元的长度,或者也可以用于表征第一信元除EID#1和IE长度#1以外剩余的长度,不做限定。
设备标识信息#1可以用于标识第一设备的身份和类型。例如,设备标识信息#1可以包括:组织唯一标识符(organizationally unique identifier,OUI)字段(记为OUI字段#1)、或OUI类型(type)字段(记为OUI类型字段#1)。其中,OUI字段#1可以用于指示第一设备的身份,如第一设备的设备厂商,以通过设备厂商来标识该设备为第一设备。OUI类型字段#1可以用于指示后续信息的含义,如信道带宽信息#1的含义。例如,OUI类型字段#1的取值为0,用以指示信道带宽信息#1为用于指示设备支持窄带的信息。
信道带宽信息#1可以用于指示第一设备支持的窄带的带宽和/或信道号,如包括窄带(narrow band)字段,该窄带字段可以用于指示设备支持的窄带的带宽,如指示其带宽小于20MHz,或者指示其带宽具体为1MHz、5MHz、10MHz、或15MHz等,不做限定。和/或,窄带字段还可以用于设备支持的窄带的信道号(包含第一信道的信道号)。一种实现方式中,窄带字段可以包括比特位图(bitmap),以通过该比特位图中多个比特的取值组合,指示设备支持的窄带的带宽和/或信道号。或者,窄带字段也可以采用其他任何可能的方式实现,不做限定。
可以理解,窄带字段为一种示例性的命名,不做限定,其也可以替换为任何可能的命名,如带宽(band width)字段#1、频带字段#1等。此外,窄带的信道号可以根据实际情况进行设置,例如,其可以沿用现有的信道号,或者也可以定义新的信道号,不做限定。
还可以理解,由于OUI字段#1可以指示设备为第一设备,OUI类型字段#1可以指示后续信息指示设备支持窄带,窄带字段可以指示设备支持的窄带的带宽和/或信道号,在此基础上,OUI字段#1、OUI类型字段#1以及窄带字段联合起来便可以指示第一设备支持的窄带的带宽和/或信道号。
方便理解,下面通过表1示出第一信元的结构。
表1
其中,信元标识信息#1可以承载在EID和IE长度中,EID和IE长度都可以是1个字节(octets)长度的字段。信道带宽信息#1可以承载在IE主体中。这样,第一信元的一种具体结构可以如下表2所示。
表2
其中,OUI字段#1可以是3个字节长度的字段,OUI类型字段#1是1个字节长度的字段,窄带字段可以是n个字节长度的字段,n为大于或等于1的整数,也即,窄带字段的长度可以根据其指示的信息量大小动态调整。
例如,第一信元的一种示例可以如下表3所示。
表3
在表3中,各个字段都可以通过16进行的字符表示。EID#1为0xDD,用于表示EID#1的内容。IE长度#1为0x5,用以表示第一信元的长度具体为7个字节。OUI字段#1为0x3D85AC,用以表示设备厂商具体为哪一个厂商,如HW厂商。OUI类型字段#1为0x31,用以表示窄带字段的含义为设备支持窄带。窄带字段为0x7,其换算成二进制可以表示为0000_0111,也即8个比特的比特位图(1个字节),用以指示设备支持的窄带的带宽为1MHz、5MHz和10MHz。
或者,另一种可能的方式中,第一信元可以用于指示第一设备支持的信道,或者说第一设备 支持的宽带,如包括非授权频段中的第二信道。第二信道所在的频段可以是非授权频段中WiFi使用的频段,第二信道的带宽与第一信道的带宽可以不同,如为20MHz、40MHz、80MHz等。由于第二信道的带宽大于或等于20MHz,其也可以被称为宽带,或者其他可能的命名,不做限定。因此,本申请实施例下文提到的宽带可以理解为带宽大于或等于20MHz的信道。
例如,第一信元也可以包括如下至少一项:信元标识信息(记为信元标识信息#2)、设备标识信息(记为设备标识信息#2)、或信道带宽信息(记为信道带宽信息#2)。
信元标识信息#2可以用于标识第一信元,如包括EID#2和IE长度#2,具体实现可以参考上述信元标识信息#1进行理解,不再赘述。
设备标识信息#2可以用于标识第一设备的身份和类型。例如,设备标识信息#2可以包括:OUI字段(记为OUI字段#2)、或OUI类型字段(记为OUI类型字段#2)。其中,OUI字段#2可以参考上述OUI字段#1进行理解,不再赘述。OUI类型字段#2可以用于指示后续信息的含义,如信道带宽信息#2的含义。例如,OUI类型字段#2的取值为1,用以指示信道带宽信息#2为用于指示设备支持宽带的信息。
信道带宽信息#2可以用于指示第一设备支持的宽带的带宽和/或信道号,如包括宽带(wide band)字段,该宽带字段可以用于指示设备支持的宽带的带宽,如指示其带宽大于或等于20MHz,或者指示其带宽具体为20MHz、40MHz、80MHz、或160MHz等,不做限定。和/或,宽带字段还可以用于设备支持的宽带的信道号(包含第二信道的信道号)。一种实现方式中,宽带字段也可以包括比特位图,以通过该比特位图中多个比特的取值组合,指示设备支持的宽带的带宽和/或信道号。或者,宽带字段也可以采用其他任何可能的方式实现,不做限定。
可以理解,宽带字段为一种示例性的命名,不做限定,其也可以替换为任何可能的命名,如带宽字段#2、频带字段#2等。或者,宽带字段和上述的窄带字段可以替换为同一个名称,如都被命名为带宽字段或频带字段,此时,可以通过OUI类型字段指示来同一字段的不同含义。
还可以理解,与上述的相关介绍类似,OUI字段#2、OUI类型字段#2,以及窄带字段联合起来也可以指示第一设备支持的宽带的带宽和/或信道号。
方便理解,下面通过表4示出第一信元的另一种具体结构。
表4
其中,EID#2、IE长度#2、OUI字段#2,以及OUI类型字段#2可以参考上述表2进行理解,不再赘述。此外,与上述的表2类似,宽带字段也可以是n个字节长度的字段,也即,宽带字段的长度可以根据其指示的信息量大小动态调整。
例如,第一信元的另一种示例可以如下表5所示。
表5
其中,EID#2、IE长度#2,以及OUI字段#2可以参考上述表3进行理解,不再赘述。OUI类型字段#2为0x32,用以表示宽带字段的含义为设备支持宽带。窄带字段为0x7,其换算成二进制可以表示为0000_0111,也即8个比特的比特位图(1个字节),用以指示设备支持的宽带的带宽为20MHz、40MHz和80MHz。
还可以理解,在第一信元指示宽带的情况下,第一信元也可以沿用现有技术的设计,具体可以参考IEEE P802.11-REVmeTM/D1.0,December 2021,Part 11,不再赘述。
本申请实施例中,第一信元可以携带在第一信标(beacon)帧中。第一信标帧可以是通过广播发送的帧,也即,广播第一信元可以通过复用已有的广播帧结构实现,以降低实现难度。例如,第一信标帧的结构可以如下表6所示。
表6
其中,时间戳可以用于指示广播第一信标帧的时间点。信标周期可以用于第一信标帧的广播周期,也就是说,第一信标帧可以周期性地被广播。例如,在第一信元指示第一设备支持的窄带的情况下,第一设备可以在窄带的带宽和频点上,周期性广播第一信标帧。或者,在第一信元指示第一设备支持的宽带的情况下,第一设备可以在宽带的带宽和频点上,周期性广播第一信标帧。或者,不论第一信元指示第一设备支持的是窄带还是宽带,第一设备都在第一设备支持的任意带宽和频点上,周期性广播第一信标帧。能力信息可以用于指示第一信标帧的相关能力,如扩展服务集(extended service set,ESS)、独立基本服务集(independent basic service set,IBSS)、隐私信息(privacy)、短前导码(short preamble)等。N为大于或等于1的整数,第一信元可以是IE_1至IE_N中的任一个IE。
第二设备可以在第二设备支持的带宽和频点上持续进行扫描。如果第二设备支持的带宽和频点包含第一信标帧所在的带宽和频点,则第二设备通过扫描,可以接收到第一信标帧,并获取第一信标帧携带的第一信元。
S502,第二设备根据第一信元,向第一设备发送第二信元,第一设备接收第二设备针对第一信元返回的第二信元。
第二信元可以用于指示第二设备请求接入第一信道或第二信道,如包括服务集标识(service set identifier,SSID),支持速率和服务集成员选择(supported rates and BSS membership selectors)等信息。例如,第二设备可以根据第一信元,获知第一设备支持的信道,如第一信道的带宽和/或信道号,或者,第二信道的带宽和/或信道号。如果第二设备想要接入第一信道或第二信道,则第二设备向第一设备发送携带第二信元的探测请求(probe request)帧,记为探测请求帧#1。相应的,第一设备接收到探测请求帧#1后,第一设备还可以向第二设备返回针对探测请求帧#1的确认信息(ACK),记为确认信息#1,或者探测响应(Probe Response)帧,用以指示第一设备已接收到探测请求帧#1。至此,第一设备和第二设备都确定对端可以接入对应的信道,从而使用该信道进行数据传输。例如,在接入第一信道的情况下,第一设备与第二设备可以使用第一信道传输数据,具体实现可以参考上述图3所示的相关内容,不再赘述。或者,在接入第二信道的情况下,第一设备与第二设备可以使用第二信道传输数据,具体实现可以参考IEEE P802.11-REVmeTM/D1.0,December 2021,Part 11,不再赘述。
结合上述实施例,一种可能的方案中,第一设备和第二设备在接入相应的信道后,其也可以切换信道,如从第一信道切换到第二信道,或者从第二信道切换到第一信道。其中,第一设备和第二设备可以通过广播的方式切换信道(S601),或者也可以通过单播的方式切换信道(S602-S603),下面具体介绍。
如图6所示,切换信道的流程具体如下:
S601,第一设备广播第三信元,第二设备接收第三信元。
一种可能的方式中,在第一设备和第二设备已接入第一信道的情况下,第三信元可以用于指示设备需要切换到第二信道。也就是说,当需要在WiFi使用的频段下进行数据传输时,第一设备可以通过广播的方式,指示对应的设备从非WiFi使用的频段切换到WiFi使用的频段,也即,由第一信道切换为第二信道,以满足实际传输需求。
其中,第三信元可以包括如下至少一项:信道标识信息(记为信道标识信息#1)、带宽信息(记为带宽信息#1)、或切换计数器(记为切换计数器#1),以确保第二设备能够按时切换到指定的信道,也即第二信道。可选地,第三信元还可以包括:信元标识信息(记为信元标识信息#3),以及设备标识信息(记为设备标识信息#3)。
信元标识信息#3可以用于标识第三信元,如包括EID#3和IE长度#3,具体实现可以参考上述信元标识信息#1进行理解,不再赘述。
设备标识信息#3可以用于标识第一设备的身份和类型。例如,设备标识信息#3可以包括:OUI字段(记为OUI字段#3)、或OUI类型字段(记为OUI类型字段#3)。其中,OUI字段#3可以参考上述OUI字段#1进行理解,不再赘述。OUI类型字段#3可以用于指示后续信息的含义,例如,OUI类型字段#3的取值为2,用以指示后续的信息为用于指示切换到宽带的信息。
信道标识信息#1可以用于标识需要切换至的信道,如第二信道。例如,信道标识信息#1可以包括新宽带信道号(new wide band channel number)字段,该新宽带信道号字段可以用于指示第二信道的信道号。可以理解,新宽带信道号字段为一种示例性的命名,不做限定,其也可以替换为任何可能的命名,如新信道号#1、切换的信道号#1等。
带宽信息#1可以用于指示需要切换至的信道的带宽,如第二信道的带宽,用以快速完成信道切换。例如,带宽信息#1可以包括新宽带带宽(new wide band width)字段,该新宽带带宽字段可以用于指示第二信道的带宽。可以理解,新宽带带宽为一种示例性的命名,不做限定,其也可以替换为任何可能的命名,如新带宽#1、切换信道带宽#1等。
切换计数器#1可以用于指示切换到第二信道的时刻。例如,切换计数器#1具体可以是信道切换计数器(channel switch count),记为信道切换计数器#1。其中,信道切换计数器#1的计数值可以为大于或等于0的整数。此时,计数值为0,可以表示信道切换可以立即进行,也即,在广播第三信元后立即进行信道切换。计数值为1,可以表示信道切换在间隔1个周期后进行,该周期可以的信标帧的广播周期,该信标帧可以是携带第三信元的第二信标帧,具体实现可以参考下述的相关介绍,在此不再赘述。计数值为2,可以表示信道切换在间隔2个周期后进行,之后依次类推。当然,计数值也可以从1开始,也即计数值为1表示信道切换可以立即进行,之后依次类推;或者,计数值也可以从任意值开始,不做限定。
方便理解,下面通过表7示出第三信元的一种具体结构。
表7
其中,EID#3、IE长度#3、OUI字段#3以及OUI类型字段#3可以参考上述表2进行理解,不再赘述。新宽带信道号字段、新宽带带宽字段以及信道切换计数器#1的长度都可以是1个字节。
可以理解,由于第二信道的带宽比第一信道的带宽更大,因此,在已接入第一信道的情况下,如果第二信道的干扰小于或等于第一信道的干扰,和/或,使用第二信道进行传输的距离小于或等于使用第一信道进行传输的距离,或者说,使用第二信道进行传输的时延小于或等于使用第一信道进行传输的时延,则第一设备可以触发切换到第二信道,以提高传输速率。
或者,另一种可能的方式中,在第一设备和第二设备已接入第二信道的情况下,第三信元可以用于指示设备需要切换到第一信道。也就是说,即使第二设备先接入第二信道,其也可以通过广播的方式切换到第一信道,从而确保频谱资源始终能够被高效利用。
其中,第三信元也可以包括如下至少一项:信道标识信息(记为信道标识信息#2)、带宽信息(记为带宽信息#2)、或切换计数器(记为切换计数器#2),以确保第二设备能够按时切换到指定的信道,也即第一信道。可选地,第三信元还可以包括:信元标识信息(记为信元标识信息#4),以及设备标识信息(记为设备标识信息#4)。
信元标识信息#4也可以用于标识第三信元,如包括EID#4和IE长度#4,具体实现可以参考上述的信元标识信息#1进行理解,不再赘述。
设备标识信息#4可以用于标识第一设备的身份和类型。例如,设备标识信息#4可以包括:OUI字段(记为OUI字段#4)、或OUI类型字段(记为OUI类型字段#4)。其中,OUI字段#4可以参考上述OUI字段#1进行理解,不再赘述。OUI类型字段#4可以用于指示后续信息的含义,例如,OUI类型字段#3的取值为3,用以指示后续的信息为用于指示切换到窄带的信息。
信道标识信息#2可以用于标识需要切换至的信道,如第一信道。例如,信道标识信息#2可以包括新窄带信道号(new narrow band channel number)字段,该新窄带信道号字段可以用于指示第一信道的信道号。可以理解,该新窄带信道号字段为一种示例性的命名,不做限定,其也可以替换为任何可能的命名,如新信道号#2、切换的信道号#2等。或者,新窄带信道号字段和上述的新宽带信道号字段可以替换为同一个名称,如都被命名为新信道号或切换的信道号,此时,可以通过OUI类型字段指示来同一字段的不同含义。
带宽信息#2可以用于指示需要切换至的信道的带宽,如第一信道的带宽,用以快速完成信道切换。例如,带宽信息#2可以包括新窄带带宽(new narrow band width)字段,该新窄带带宽字段可以用于指示第一信道的带宽。可以理解,新窄带带宽字段为一种示例性的命名,不做限定,其也可以替换为任何可能的命名,如新带宽#2、切换信道带宽#2等。或者,新窄带带宽字段和上述的新宽带带宽字段可以替换为同一个名称,如都被命名为新带宽或切换信道带宽,此时,也可以通过OUI类型字段指示来同一字段的不同含义。
切换计数器#2可以用于指示切换到第一信道的时刻。例如,切换计数器#2具体也可以是信道切换计数器(记为信道切换计数器#2),具体实现可以参考上述信道切换计数器#1进行理解,不再赘述。
方便理解,下面通过表8示出第三信元的另一种具体结构。
表8
其中,EID#4、IE长度#4、OUI字段#4以及OUI类型字段#4可以参考上述表2进行理解,不再赘述。新窄带信道号字段、新窄带带宽字段以及信道切换计数器#2的长度都可以是1个字节。
还可以理解,在已接入第二信道的情况下,虽然第二信道的带宽大于第一信道的带宽,但如果第二信道的干扰大于第一信道的干扰,和/或,使用第二信道进行传输的距离大于使用第一信道进行传输的距离,则第一设备也可以触发优先切换到的第一信道,以保障传输的可靠性和时延。
本申请实施例中,第三信元可以携带在第二信标帧中。第二信标帧可以是通过广播发送的帧,也即,广播第三信元可以通过复用已有的广播帧结构实现,以降低实现难度,具体实现可以参考上述的第一信标帧进行理解,不再赘述。
本申请实施例中,第一设备在广播第二信标帧后,可以按照信道切换计数器#1,在对应的时刻切换到第二信道,或者,按照信道切换计数器#2,在对应的时刻切换到第一信道。相应的,第二设备在接收到第二信标帧后,也可以按照信道切换计数器#1,在对应的时刻切换到第二信道,或者,按照信道切换计数器#2,在对应的时刻切换到第一信道。至此,第一设备和第二设备都切换到对应的信道,从而使用该信道进行数据传输。例如,在切换到的第一信道的情况下,第一设备与第二设备可以使用第一信道传输数据,具体实现可以参考上述图3所示的相关内容,不再赘述。或者,在切换到第二信道的情况下,第一设备与第二设备可以使用第二信道传输数据,具体实现可以参考IEEE P802.11-REVmeTM/D1.0,December 2021,Part 11,不再赘述。
S602,第一设备向第二设备发送第四信元,第二设备接收来自第一设备的第四信元。
一种可能的方式中,在第一设备和第二设备已接入第一信道的情况下,第四信元可以用于指示第二设备需要切换到第二信道。例如,第四信元可以为如下至少一项:CSA信元、或WBCS信元,其中,CSA信元和WBCS信元是单播发送的信元,也即,发送第四信元可以通过复用已有的单播信元实现,以降低实现难度。其中,第四信元为不同的信元,其包含的信息也有所不同,下面具体介绍。
方式1:第四信元为WBCS信元(记为WBCS信元#1)。WBCS信元#1可以包括:信道标识信息(记为信道标识信息#3)、或带宽信息(记为带宽信息#3)。可选地,WBCS信元#1还可以包括:信元标识信息(记为信元标识信息#5)。
信元标识信息#5也可以用于标识第四信元,如包括EID#5和IE长度#5,具体实现可以参考上述的信元标识信息#1进行理解,不再赘述。
带宽信息#3可以用于指示需要切换至的信道的带宽,如第二信道的带宽。例如,带宽信息#3可以包括新带宽(new band width)字段,该新带宽字段可以用于指示第二信道的带宽。例如,新带宽字段的取值范围可以为0至255,采用取值为0-3指示第二信道的带宽,或者其他任何可能的取值来指示第二信道的带宽。
信道标识信息#3可以用于指示需要切换至的信道,如第二信道。例如,信道标识信息#3可以包括:新信道中心频段0(new channel center frequency segment 0)字段,以及新信道中心频段1(new channel center frequency segment 1)字段。其中,新信道中心频段0可以用于指示需要切换至的主信道的信道号,如第二信道的信道号。新信道中心频段1字段可以用于指示需要切换至的辅信道的信道号,如WiFi使用的频段中除第二信道以外的其他信道。
方便理解,下面通过表9示出WBCS信元#1的一种具体结构。
表9
其中,EID#5和IE长度#5可以参考上述表2进行理解,不再赘述。新带宽字段、新信道中心频段0字段以及新信道中心频段1字段的长度都可以是1个字节。
方式2:第四信元为CSA信元(记为CSA信元#1)。CSA信元#1可以包括:信道标识信息(记为信道标识信息#4)、带宽信息(记为带宽信息#4),以及切换计数器(记为切换计数器#3)。可选地,CSA信元#1还可以包括:信元标识信息(记为信元标识信息#6),以及切换模式信息(记为切换模式信息#1)。
信元标识信息#6也可以用于标识第四信元,如包括EID#6和IE长度#6,具体实现可以参考上述的信元标识信息#1进行理解,不再赘述。
切换模式信息#1可以用于指示在信道切换前是否还继续进行数据传输。例如,切换模式信息#1可以包括信道切换模式(channel switch mode)字段。其中,信道切换模式字段的取值为0,用以指示在信道切换前的交互不受限制,也即还能继续进行数据传输。信道切换模式字段的取值为1,用以指示在信道切换前需要立即停止交互,也即不能继续进行数据传输。
带宽信息#4可以用于指示需要切换至的信道的带宽,如第二信道的带宽。例如,带宽信息#4可以包括新信道带宽(new channel band width)字段,该新信道带宽字段可以用于指示第二信道的带宽。例如,新信道带宽字段的取值范围可以为0至255,采用取值为0-3指示第二信道的带宽,或者其他任何可能的取值来指示第二信道的带宽。
信道标识信息#4可以用于指示需要切换至的信道,如第二信道。例如,信道标识信息#4可以包括新信道号(new channel number)字段。其中,新信道号字段可以用于指示需要切换至的主信道的信道号,如第二信道的信道号。
切换计数器#3可以用于指示切换到第二信道的时刻。例如,切换计数器#3具体也可以是信道切换计数器(记为信道切换计数器#3),具体实现可以参考上述的信道切换计数器#1进行理解,不再赘述。
方便理解,下面通过表10示出CSA信元#1的一种具体结构。
表10
其中,EID#6和IE长度#6可以参考上述表2进行理解,不再赘述。信道切换模式字段、新信道号字段、信道切换计数器#3以及新信道带宽字段的长度都可以是1个字节。
可以理解,与上述S601的触发条件类似,如果第二信道的干扰小于或等于第一信道的干扰,和/或,使用第二信道进行传输的距离小于或等于使用第一信道进行传输的距离,则第一设备可以触发切换到第二信道。
或者,一种可能的方式中,在第一设备和第二设备已接入第二信道的情况下,第四信元可以用于指示第二设备需要切换到第一信道。此时,第四信元也可以为如下至少一项:CSA信元、或WBCS信元,下面具体介绍。
方式3:第四信元为WBCS信元(记为WBCS信元#2)。WBCS信元#2可以包括:信道标识信息(记为信道标识信息#5)、或带宽信息(记为带宽信息#5)。可选地,WBCS信元#1还可以包括:信元标识信息(记为信元标识信息#7)。
信元标识信息#7也可以用于标识第四信元,如包括EID#7和IE长度#7,具体实现可以参考上述的信元标识信息#1进行理解,不再赘述。
带宽信息#5可以用于指示需要切换至的信道的带宽,如第一信道的带宽。例如,带宽信息#5可以包括新带宽字段,该新带宽字段可以用于指示第二信道的带宽。例如,新带宽字段的取值范围可以为0至255,采用取值为4-7指示第一信道的带宽,或者其他任何可能的取值来指示第一信道的带宽。
信道标识信息#5可以用于指示需要切换至的信道,如第一信道。例如,信道标识信息#5可以包括:新信道中心频段0字段,以及新信道中心频段1字段。此时,新信道中心频段0字段以及新信道中心频段1字段都可以用于指示第一信道的信道号。
此外,WBCS信元#2的具体结构也可以参考上述的表9进行理解,不再赘述。
方式4:第四信元为CSA信元(记为CSA信元#2)。CSA信元#2可以包括:信道标识信息(记为信道标识信息#6)、带宽信息(记为带宽信息#6),以及切换计数器(记为切换计数器#4)。可选地,CSA信元#2还可以包括:信元标识信息(记为信元标识信息#8),以及切换模式信息(记为切换模式信息#2)。
信元标识信息#8也可以用于标识第四信元,如包括EID#8和IE长度#8,具体实现可以参考上述的信元标识信息#1进行理解,不再赘述。
切换模式信息#2可以用于指示在信道切换前是否还继续进行数据传输,具体实现可以参考上述的切换模式信息#1进行理解,不再赘述。
带宽信息#6可以用于指示需要切换至的信道的带宽,如第一信道的带宽。例如,带宽信息#6可以包括新信道带宽字段,该新信道带宽字段可以用于指示第二信道的带宽。例如,新信道带宽字段的取值为4-7,用以指示第一信道的带宽,或者采用其他任何可能的取值来指示第一信道的带宽。
信道标识信息#6可以用于指示需要切换至的信道,如第一信道。例如,信道标识信息#6可以包括新信道号字段。其中,新信道号字段可以用于指示需要切换至的主信道的信道号,如第一信道的信道号。
切换计数器#4可以用于指示切换到第一信道的时刻。例如,切换计数器#4具体也可以是信道切换计数器(记为信道切换计数器#4),具体实现可以参考上述的信道切换计数器#2进行理解,不再赘述。
此外,CSA信元#2的具体结构也可以参考上述的表10进行理解,不再赘述。
本申请实施例中,CSA信元(如CSA信元#1或CSA信元#2),和/或,WBCS信元(如WBCS信元#1或WBCS信元#2)可以携带在信道切换通知帧(channel switch announcement frames,CSAf)中。也即,第一设备可以通过向第二设备发送信道切换通知帧,指示第二设备切换到对应的信道。此外,第一设备还可以在发送信道切换通知帧后,自行切换到对应的信道。相应的,第二设备在接收到信道切换通知帧后,可以向第一设备返回确认信息,记为确认信息#2,用以指示第二设备已接收到该信道切换通知帧。此外,第二设备还可以根据信道切换通知帧,切换到对应的信道。当第一设备和第二设备都切换到对应的信道后,双方便可以使用该信道进行数据传输。例如,在切换到的第一信道的情况下,第一设备与第二设备可以使用第一信道传输数据,具体实现可以参考上述图3所示的相关内容,不再赘述。或者,在切换到第二信道的情况下,第一设备与第二设备可以使用第二信道传输数据,具体实现可以参考IEEE P802.11-REVmeTM/D1.0,December 2021,Part 11,不再赘述。
可以理解,通常情况下,上述的第四信元中的信道标识信息、带宽信息以及切换计数器可以全部携带在一条信道切换通知帧,以提高传输和信道切换效率,但不作为限定,这些信息也可以分开携带在多条信道切换通知帧中,以提高传输的灵活性和信道切换的灵活性。例如,第一设备可以先向第二设备发送携带信道标识信息的信道切换通知帧#1,在确认接收到第二设备返回的确认信息#2后,再第二设备发送携带带宽信息以及切换计数器的信道切换通知帧#2。
S603,第二设备向第一设备发送第四信元,第一设备接收来自第二设备的第四信元。
其中,S603的具体实现与S602类似,可以参考理解,不再赘述。
可以理解,S602与S603是或的关系。也即,在通过单播的方式实现从非WiFi使用的频段切换到WiFi使用的频段时,也即,由第一信道切换为第二信道时,或者,在通过单播的方式实现从WiFi使用的频段时切换到非WiFi使用的频段,也即,由第二信道切换为第一信道时,其可以由第二设备触发,或者也可以由第一设备触发,以实现更灵活的信道切换。
可选地,结合上述的S601-S603,第一设备在切换到对应的信道后,第一设备可以以较短的周期在该信道上广播信标帧,以将第一设备已切换到对应的信道快速告知其他设备。同理,第二设备在切换到对应的信道后,第二设备向第一设备发送探测请求帧,记为探测请求帧#2,用以指示第二设备已切换到对应的信道。相应的,第一设备在接收到来自第二设备的探测请求帧#2后,第一设备便可以以正常的周期在该信道上广播信标帧,以降低开销。
以上结合图3-图6详细说明了本申请实施例提供的通信方法。以下结合图7-图8详细说明用于执行本申请实施例提供的通信方法的通信装置。
图7是本申请实施例提供的通信装置的结构示意图一。示例性的,如图7所示,通信装置700包括:收发模块701和处理模块702。为了便于说明,图7仅示出了该通信装置的主要部件。
一些实施例中,通信装置700可适用于图2中所示出的通信***中,执行上述图3-图6所示的方法中的第一设备的功能。
其中,收发模块701,用于指示该通信装置700的收发功能,处理模块702,用于执行该通信装置700除收发功能以外的功能。例如,处理模块702,用于获取第一数据。收发模块701,用于通过非授权频段中的第一信道,向第二设备发送第一数据;其中,第一信道所在的频段是非授权频段中除无线保真WiFi使用的频段以外的频段。
一种可能的设计方案中,第一信道的带宽小于20MHz。
可选地,第一信道的带宽为如下任一项:1MHz、5MHz、10MHz、或15MHz。
例如,第一信道的带宽为1MHz或5MHz,第一信道所在的频段为如下任一项:5150MHz至5155MHz、5155MHz至5160MHz、5160MHz至5165MHz、5165MHz至5170MHz、5330MHz至5335MHz、5335MHz至5340MHz、5340MHz至5345MHz、5345MHz至5350MHz、5470MHz至5475MHz、5475MHz至5480MHz、5480MHz至5485MHz、5485MHz至5490MHz、5710MHz至5715MHz、5715MHz至5720MHz、5720MHz至5725MHz、5725MHz至5730MHz、5730MHz至5735MHz、5835MHz至5840MHz、5840MHz至5845MHz、5845MHz至5850MHz。
又例如,第一信道的带宽为10MHz,第一信道所在的频段为如下任一项:5150MHz至5160MHz、5155MHz至5165MHz、5160MHz至5170MHz、5330MHz至5340MHz、5335MHz至5345MHz、5340MHz至5350MHz、5470MHz至5480MHz、5480MHz至5490MHz、5710MHz至5720MHz、5715MHz至5725MHz、5720MHz至5730MHz、5725MHz至5735MHz、5835MHz至5845MHz、5840MHz至5850MHz。
再例如,第一信道的带宽为15MHz,第一信道所在的频段为如下任一项:5150MHz至5165MHz、5155MHz至5170MHz、5330MHz至5345MHz、5335MHz至5350MHz、5470MHz至5485MHz、5475MHz至5490MH、5710MHz至5725MHz、5715MHz至5730MHz、5720MHz至5735MHz、5835MHz至5850MHz。
一种可能的设计方案中,收发模块701,还用于通信装置700广播第一信元,以接收第二设备针对第一信元返回的第二信元。其中,第一信元用于指示通信装置700支持的信道,通信装置700支持包括第一信道;第二信元用于指示第二设备请求接入第一信道。
可选地,收发模块701,还用于广播第三信元。其中,第三信元用于指示设备需要切换到非授权频段中的第二信道,第二信道的带宽与第一信道的带宽不同,且第二信道所在的频段是非授权频段中WiFi使用的频段。
进一步的,第三信元可以包括如下至少一项:信道标识信息、带宽信息、或切换计数器。其中,信道标识信息用于标识第二信道,带宽信息用于指示第二信道的带宽,切换计数器用于指示切换到第二信道的时刻。
可选地,收发模块701,还用于向第二设备发送第四信元。其中,第四信元用于指示第二设备需要切换到非授权频段中的第二信道,第二信道的带宽与第一信道的带宽不同,且第二信道所在的频段是非授权频段中WiFi使用的频段。
或者,可选地,收发模块701,还用于接收来自第二设备的第四信元,第四信元用于指示第二设备需要切换到非授权频段中的第二信道,第二信道的带宽与第一信道的带宽不同,且第二信道所在的频段是非授权频段中WiFi使用的频段。
进一步的,第四信元可以包括如下至少一项:信道标识信息、带宽信息、或切换计数器,其中,信道标识信息用于标识第二信道,带宽信息用于指示第二信道的带宽,切换计数器用于指示切换到第二信道的时刻。
可选地,第二信道的干扰小于或等于第一信道的干扰,和/或,使用第二信道进行传输的距离小于或等于使用第一信道进行传输的距离。
一种可能的设计方案中,收发模块701,还用于广播第一信元,以接收第二设备针对第一信元返回的第二信元,其中,第一信元用于指示通信装置700支持的信道,通信装置700支持包括非授权频段中的第二信道,第二信道的带宽与第一信道的带宽不同,且第二信道所在的频段是非授权频段中WiFi使用的频段;第二信元用于指示第二设备请求接入第二信道。
可选地,收发模块701,还用于广播第三信元,其中,第三信元用于指示设备需要切换到第一信道。
进一步的,第三信元可以包括如下至少一项:信道标识信息、带宽信息、切换计数器,其中,信道标识信息用于标识第一信道,带宽信息用于指示第一信道的带宽,切换计数器用于指示切换到第一信道的时刻。
可选地,收发模块701,还用于向通信装置700发送第四信元,其中,第四信元用于指示通信装置700需要切换到第一信道。
或者,可选地,收发模块701,还用于接收来自第二设备的第四信元,其中,第四信元用于指示通信装置700需要切换到第一信道。
进一步的,第四信元可以包括如下至少一项:信道标识信息、带宽信息、或切换计数器,其中,信 道标识信息用于标识第一信道,带宽信息用于指示第一信道的带宽,切换计数器用于指示切换到第一信道的时刻。
可选地,第二信道的干扰大于第一信道的干扰,和/或,使用第二信道进行传输的距离大于使用第一信道进行传输的距离。
一种可能的设计方案中,第一信元携带在第一信标帧中,第一信标帧是通过广播发送的帧。
一种可能的设计方案中,第三信元携带在第二信标帧中,第二信标帧是通过广播发送的帧。
一种可能的设计方案中,第四信元为如下至少一项:信道切换公告CSA信元、或带宽切换WBCS信元,其中,CSA信元和WBCS信元是单播发送的信元。
一种可能的设计方案中,第一信道的带宽和符号满足如下关系:第一信道的带宽越小,第一信道的符号越长。例如,第一信道的子载波数目、符号以及带宽满足如下关系:
其中,BWwb为参考带宽,BWnb为第一信道的带宽,参考带宽大于第一信道的带宽,CP为循环前缀,γ的取值大于0且小于1,Nsc为第一信道的子载波数目,OFDMwop表示第一信道的符号为不包含循环前缀的符号,OFDMwp表示第一信道的符号为包含循环前缀的符号。
可选地,收发模块701可以包括发送模块(图7中未示出)和接收模块(图7中未示出)。其中,发送模块用于实现通信装置700的发送功能,接收模块用于实现通信装置700的接收功能。
可选地,通信装置700还可以包括存储模块(图7中未示出),该存储模块存储有程序或指令。当该处理模块702执行该程序或指令时,使得该通信装置700可以执行上述图3-图6所示的方法中第一设备的功能。
可以理解,通信装置700可以是终端或网络设备,也可以是可设置于终端或网络设备中的芯片(***)或其他部件或组件,还可以是包含终端或网络设备的装置,本申请对此不做限定。
此外,通信装置700的技术效果可以参考图3-图6所示的通信方法的技术效果,此处不再赘述。
一些实施例中,通信装置700可适用于图2中所示出的通信***中,执行上述图3-图6所示的方法中的第二设备的功能。
其中,收发模块701,用于指示该通信装置700的收发功能,处理模块702,用于执行该通信装置700除收发功能以外的功能。例如,收发模块701,用于通过非授权频段中的第一信道,接收来自第一设备的第一数据。处理模块702,用于处理第一数据。其中,第一信道所在的频段是非授权频段中除无线保真WiFi使用的频段以外的频段。
一种可能的设计方案中,第一信道的带宽小于20MHz。
可选地,第一信道的带宽为如下任一项:1MHz、5MHz、10MHz、或15MHz。
例如,第一信道的带宽为1MHz或5MHz,第一信道所在的频段为如下任一项:5150MHz至5155MHz、5155MHz至5160MHz、5160MHz至5165MHz、5165MHz至5170MHz、5330MHz至5335MHz、5335MHz至5340MHz、5340MHz至5345MHz、5345MHz至5350MHz、5470MHz至5475MHz、5475MHz至5480MHz、5480MHz至5485MHz、5485MHz至5490MHz、5710MHz至5715MHz、5715MHz至5720MHz、5720MHz至5725MHz、5725MHz至5730MHz、5730MHz至5735MHz、5835MHz至5840MHz、5840MHz至5845MHz、5845MHz至5850MHz。
又例如,第一信道的带宽为10MHz,第一信道所在的频段为如下任一项:5150MHz至5160MHz、5155MHz至5165MHz、5160MHz至5170MHz、5330MHz至5340MHz、5335MHz至5345MHz、5340MHz至5350MHz、5470MHz至5480MHz、5480MHz至5490MHz、5710MHz至5720MHz、5715MHz至5725MHz、5720MHz至5730MHz、5725MHz至5735MHz、5835MHz至5845MHz、5840MHz至5850MHz。
再例如,第一信道的带宽为15MHz,第一信道所在的频段为如下任一项:5150MHz至5165MHz、5155MHz至5170MHz、5330MHz至5345MHz、5335MHz至5350MHz、5470MHz至5485MHz、5475MHz 至5490MH、5710MHz至5725MHz、5715MHz至5730MHz、5720MHz至5735MHz、5835MHz至5850MHz。
一种可能的设计方案中,收发模块701,还用于接收第一信元,处理模块702,还用于根据第一信元,控制收发模块701向第一设备发送第二信元。其中,第一信元用于指示第一设备支持的信道,第一设备支持包括第一信道;第二信元用于指示第二设备请求接入第一信道。
可选地,收发模块701,还用于接收第三信元。其中,第三信元用于指示设备需要切换到非授权频段中的第二信道,第二信道的带宽与第一信道的带宽不同,且第二信道所在的频段是非授权频段中WiFi使用的频段。
进一步的,第三信元可以包括如下至少一项:信道标识信息、带宽信息、或切换计数器。其中,信道标识信息用于标识第二信道,带宽信息用于指示第二信道的带宽,切换计数器用于指示切换到第二信道的时刻。
可选地,收发模块701,还用于接收来自第一设备的第四信元。其中,第四信元用于指示第二设备需要切换到非授权频段中的第二信道,第二信道的带宽与第一信道的带宽不同,且第二信道所在的频段是非授权频段中WiFi使用的频段。
或者,可选地,收发模块701,还用于向第一设备发送第四信元,第四信元用于指示第二设备需要切换到非授权频段中的第二信道,第二信道的带宽与第一信道的带宽不同,且第二信道所在的频段是非授权频段中WiFi使用的频段。
进一步的,第四信元可以包括如下至少一项:信道标识信息、带宽信息、或切换计数器,其中,信道标识信息用于标识第二信道,带宽信息用于指示第二信道的带宽,切换计数器用于指示切换到第二信道的时刻。
可选地,第二信道的干扰小于或等于第一信道的干扰,和/或,使用第二信道进行传输的距离小于或等于使用第一信道进行传输的距离。
一种可能的设计方案中,收发模块701,还用于接收第一信元,处理模块702,还用于根据第一信元,控制收发模块701向第一设备发送第二信元,其中,第一信元用于第一设备支持的信道,第一设备支持包括非授权频段中的第二信道,第二信道的带宽与第一信道的带宽不同,且第二信道所在的频段是非授权频段中WiFi使用的频段;第二信元用于指示第二设备请求接入第二信道。
可选地,收发模块701,还用于接收第三信元,其中,第三信元用于指示设备需要切换到第一信道。
进一步的,第三信元可以包括如下至少一项:信道标识信息、带宽信息、切换计数器,其中,信道标识信息用于标识第一信道,带宽信息用于指示第一信道的带宽,切换计数器用于指示切换到第一信道的时刻。
可选地,收发模块701,还用于接收来自第一设备的第四信元,其中,第四信元用于指示第一设备需要切换到第一信道。
或者,可选地,收发模块701,还用于向第一设备发送第四信元,其中,第四信元用于指示第一设备需要切换到第一信道。
进一步的,第四信元可以包括如下至少一项:信道标识信息、带宽信息、或切换计数器,其中,信道标识信息用于标识第一信道,带宽信息用于指示第一信道的带宽,切换计数器用于指示切换到第一信道的时刻。
可选地,第二信道的干扰大于第一信道的干扰,和/或,使用第二信道进行传输的距离大于使用第一信道进行传输的距离。
一种可能的设计方案中,第一信元携带在第一信标帧中,第一信标帧是通过广播发送的帧。
一种可能的设计方案中,第三信元携带在第二信标帧中,第二信标帧是通过广播发送的帧。
一种可能的设计方案中,第四信元为如下至少一项:信道切换公告CSA信元、或带宽切换WBCS信元,其中,CSA信元和WBCS信元是单播发送的信元。
一种可能的设计方案中,第一信道的带宽和符号满足如下关系:第一信道的带宽越小,第一信道的符号越长。例如,第一信道的子载波数目、符号以及带宽满足如下关系:
其中,BWwb为参考带宽,BWnb为第一信道的带宽,参考带宽大于第一信道的带宽,CP为循环前缀,γ的取值大于0且小于1,Nsc为第一信道的子载波数目,OFDMwop表示第一信道的符号为不包含循环前缀的符号,OFDMwp表示第一信道的符号为包含循环前缀的符号。
可选地,收发模块701可以包括发送模块(图7中未示出)和接收模块(图7中未示出)。其中,发送模块用于实现通信装置700的发送功能,接收模块用于实现通信装置700的接收功能。
可选地,通信装置700还可以包括存储模块(图7中未示出),该存储模块存储有程序或指令。当该处理模块702执行该程序或指令时,使得该通信装置700可以执行上述图3-图6所示的方法中第二设备的功能。
可以理解,通信装置700可以是终端或网络设备,也可以是可设置于终端或网络设备中的芯片(***)或其他部件或组件,还可以是包含终端或网络设备的装置,本申请对此不做限定。
此外,通信装置700的技术效果可以参考图3-图6所示的通信方法的技术效果,此处不再赘述。
图8为本申请实施例提供的通信装置的结构示意图二。示例性地,该通信装置可以是终端,也可以是可设置于终端的芯片(***)或其他部件或组件。如图8所示,通信装置800可以包括处理器801。可选地,通信装置800还可以包括存储器802和/或收发器803。其中,处理器801与存储器802和收发器803耦合,如可以通过通信总线连接。
下面结合图8对通信装置800的各个构成部件进行具体的介绍:
其中,处理器801是通信装置800的控制中心,可以是一个处理器,也可以是多个处理元件的统称。例如,处理器801是一个或多个中央处理器(central processing unit,CPU),也可以是特定集成电路(application specific integrated circuit,ASIC),或者是被配置成实施本申请实施例的一个或多个集成电路,例如:一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)。
可选地,处理器801可以通过运行或执行存储在存储器802内的软件程序,以及调用存储在存储器802内的数据,执行通信装置800的各种功能,例如执行上述图3-图6所示的通信方法。
在具体的实现中,作为一种实施例,处理器801可以包括一个或多个CPU,例如图8中所示出的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置800也可以包括多个处理器,例如图8中所示的处理器801和处理器804。这些处理器中的每一个可以是一个单核处理器(single-CPU),也可以是一个多核处理器(multi-CPU)。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
其中,所述存储器802用于存储执行本申请方案的软件程序,并由处理器801来控制执行,具体实现方式可以参考上述方法实施例,此处不再赘述。
可选地,存储器802可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器802可以和处理器801集成在一起,也可以独立存在,并通过通信装置800的接口电路(图8中未示出)与处理器801耦合,本申请实施例对此不作具体限定。
收发器803,用于与其他通信装置之间的通信。例如,通信装置800为终端,收发器803可以用于与网络设备通信,或者与另一个终端设备通信。又例如,通信装置800为网络设备,收发器803可以用 于与终端通信,或者与另一个网络设备通信。
可选地,收发器803可以包括接收器和发送器(图8中未单独示出)。其中,接收器用于实现接收功能,发送器用于实现发送功能。
可选地,收发器803可以和处理器801集成在一起,也可以独立存在,并通过通信装置800的接口电路(图8中未示出)与处理器801耦合,本申请实施例对此不作具体限定。
可以理解的是,图8中示出的通信装置800的结构并不构成对该通信装置的限定,实际的通信装置可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
此外,通信装置800的技术效果可以参考上述方法实施例所述的方法的技术效果,此处不再赘述。
应理解,在本申请实施例中的处理器可以是中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件(如电路)、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系,但也可能表示的是一种“和/或”的关系,具体可参考前后文进行理解。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具 体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (39)

  1. 一种通信方法,其特征在于,所述方法包括:
    第一设备获取第一数据;
    所述第一设备通过非授权频段中的第一信道,向第二设备发送所述第一数据;其中,所述第一信道所在的频段是所述非授权频段中除无线保真WiFi使用的频段以外的频段。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一设备广播第一信元,其中,所述第一信元用于所述第一设备支持的信道,所述第一设备支持的信道包括所述第一信道;
    所述第一设备接收所述第二设备针对所述第一信元返回的第二信元,其中,所述第二信元用于指示所述第二设备请求接入所述第一信道。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    所述第一设备广播第三信元,其中,所述第三信元用于指示设备需要切换到所述非授权频段中的第二信道,所述第二信道的带宽与所述第一信道的带宽不同,且所述第二信道所在的频段是所述非授权频段中WiFi使用的频段。
  4. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    所述第一设备向所述第二设备发送第四信元,其中,所述第四信元用于指示所述第二设备需要切换到所述非授权频段中的第二信道,所述第二信道的带宽与所述第一信道的带宽不同,且所述第二信道所在的频段是所述非授权频段中WiFi使用的频段。
  5. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    所述第一设备接收来自所述第二设备的第四信元,其中,所述第四信元用于指示所述第二设备需要切换到所述非授权频段中的第二信道,所述第二信道的带宽与所述第一信道的带宽不同,且所述第二信道所在的频段是所述非授权频段中WiFi使用的频段。
  6. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一设备广播第一信元,其中,所述第一信元用于指示所述第一设备支持的信道,所述第一设备支持的信道包括所述非授权频段中的第二信道,所述第二信道的带宽与所述第一信道的带宽不同,且所述第二信道所在的频段是所述非授权频段中WiFi使用的频段;
    所述第一设备接收所述第二设备针对所述第一信元返回的第二信元,其中,所述第二信元用于指示所述第二设备请求接入所述第二信道。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    所述第一设备广播第三信元,其中,所述第三信元用于指示设备需要切换到所述第一信道。
  8. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    所述第一设备向所述第一设备发送第四信元,其中,所述第四信元用于指示所述第一设备需要切换到所述第一信道。
  9. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    所述第一设备接收来自所述第二设备的第四信元,其中,所述第四信元用于指示所述第一设备需要切换到所述第一信道。
  10. 一种通信方法,其特征在于,所述方法包括:
    第二设备通过非授权频段中的第一信道,接收来自第一设备的第一数据;其中,所述第一信道所在的频段是所述非授权频段中除无线保真WiFi使用的频段以外的频段;
    所述第二设备处理第一数据。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    所述第二设备接收第一信元,其中,所述第一信元用于所述第一设备支持的信道,所述第一设备支持的信道包括所述第一信道;
    所述第二设备根据所述第一信元,向所述第一设备发送第二信元,其中,所述第二信元用于指示所述第二设备请求接入所述第一信道。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    所述第二设备接收第三信元,其中,所述第三信元用于指示设备需要切换到所述非授权频段中的第 二信道,所述第二信道的带宽与所述第一信道的带宽不同,且所述第二信道所在的频段是所述非授权频段中WiFi使用的频段。
  13. 根据权利要求3或12所述的方法,其特征在于,所述第三信元包括如下至少一项:信道标识信息、带宽信息、或切换计数器,其中,所述信道标识信息用于标识所述第二信道,所述带宽信息用于指示所述第二信道的带宽,所述切换计数器用于指示切换到所述第二信道的时刻。
  14. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    所述第二设备接收来自所述第一设备的第四信元,其中,所述第四信元用于指示所述第二设备需要切换到所述非授权频段中的第二信道,所述第二信道的带宽与所述第一信道的带宽不同,且所述第二信道所在的频段是所述非授权频段中WiFi使用的频段。
  15. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    所述第二设备向所述第一设备发送第四信元,其中,所述第四信元用于指示所述第二设备需要切换到所述非授权频段中的第二信道,所述第二信道的带宽与所述第一信道的带宽不同,且所述第二信道所在的频段是所述非授权频段中WiFi使用的频段。
  16. 根据权利要求4、5、14或15所述的方法,其特征在于,所述第四信元包括如下至少一项:信道标识信息、带宽信息、或切换计数器,其中,所述信道标识信息用于标识所述第二信道,所述带宽信息用于指示所述第二信道的带宽,所述切换计数器用于指示切换到所述第二信道的时刻。
  17. 根据权利要求3-5、12-16任一项所述的方法,其特征在于,所述第二信道的干扰小于或等于所述第一信道的干扰,和/或,使用所述第二信道进行传输的距离小于或等于使用所述第一信道进行传输的距离。
  18. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    所述第二设备接收第一信元,其中,所述第一信元用于指示所述第一设备支持的信道,所述第一设备支持的信道包括所述非授权频段中的第二信道,所述第二信道的带宽与所述第一信道的带宽不同,且所述第二信道所在的频段是所述非授权频段中WiFi使用的频段;
    所述第二设备根据所述第一信元,向所述第一设备发送第二信元,其中,所述第二信元用于指示所述第二设备请求接入所述第二信道。
  19. 根据权利要求18所述的方法,其特征在于,所述方法还包括:
    所述第二设备接收第三信元,其中,所述第三信元用于指示设备需要切换到所述第一信道。
  20. 根据权利要求7或19所述的方法,其特征在于,所述第三信元包括如下至少一项:信道标识信息、带宽信息、切换计数器,其中,所述信道标识信息用于标识所述第一信道,所述带宽信息用于指示所述第一信道的带宽,所述切换计数器用于指示切换到所述第一信道的时刻。
  21. 根据权利要求20所述的方法,其特征在于,所述方法还包括:
    所述第二设备接收来自所述第一设备的第四信元,其中,所述第四信元用于指示所述第一设备需要切换到所述第一信道。
  22. 根据权利要求20所述的方法,其特征在于,所述方法还包括:
    所述第二设备向所述第一设备发送第四信元,其中,所述第四信元用于指示所述第一设备需要切换到所述第一信道。
  23. 根据权利要求8、9、21或22所述的方法,其特征在于,所述第四信元包括如下至少一项:信道标识信息、带宽信息、或切换计数器,其中,所述信道标识信息用于标识所述第一信道,所述带宽信息用于指示所述第一信道的带宽,所述切换计数器用于指示切换到所述第一信道的时刻。
  24. 根据权利要求6-9、18-23中任一项所述的方法,其特征在于,所述第二信道的干扰大于所述第一信道的干扰,和/或,使用所述第二信道进行传输的距离大于使用所述第一信道进行传输的距离。
  25. 根据权利要求2-9、11-24中任一项所述的方法,其特征在于,所述第一信元携带在第一信标帧中,所述第一信标帧是通过广播发送的帧。
  26. 根据权利要求3、7、12、13、19或20所述的方法,其特征在于,所述第三信元携带在第二信标帧中,所述第二信标帧是通过广播发送的帧。
  27. 根据权利要求4、5、8、9、14-16、21-23中任一项所述的方法,其特征在于,所述第四信元为如下至少一项:信道切换公告CSA信元、或带宽切换WBCS信元,其中,所述CSA信元和所述WBCS 信元是单播发送的信元。
  28. 根据权利要求1-17中任一项所述的方法,其特征在于,所述第一信道的带宽小于20MHz。
  29. 根据权利要求28所述的方法,其特征在于,所述第一信道的带宽为如下任一项:1MHz、5MHz、10MHz、或15MHz。
  30. 根据权利要求29所述的方法,其特征在于,所述第一信道的带宽为1MHz或5MHz,所述第一信道所在的频段为如下任一项:5150MHz至5155MHz、5155MHz至5160MHz、5160MHz至5165MHz、5165MHz至5170MHz、5330MHz至5335MHz、5335MHz至5340MHz、5340MHz至5345MHz、5345MHz至5350MHz、5470MHz至5475MHz、5475MHz至5480MHz、5480MHz至5485MHz、5485MHz至5490MHz、5710MHz至5715MHz、5715MHz至5720MHz、5720MHz至5725MHz、5725MHz至5730MHz、5730MHz至5735MHz、5835MHz至5840MHz、5840MHz至5845MHz、5845MHz至5850MHz。
  31. 根据权利要求29所述的方法,其特征在于,所述第一信道的带宽为10MHz,所述第一信道所在的频段为如下任一项:5150MHz至5160MHz、5155MHz至5165MHz、5160MHz至5170MHz、5330MHz至5340MHz、5335MHz至5345MHz、5340MHz至5350MHz、5470MHz至5480MHz、5480MHz至5490MHz、5710MHz至5720MHz、5715MHz至5725MHz、5720MHz至5730MHz、5725MHz至5735MHz、5835MHz至5845MHz、5840MHz至5850MHz。
  32. 根据权利要求29所述的方法,其特征在于,所述第一信道的带宽为15MHz,所述第一信道所在的频段为如下任一项:5150MHz至5165MHz、5155MHz至5170MHz、5330MHz至5345MHz、5335MHz至5350MHz、5470MHz至5485MHz、5475MHz至5490MH、5710MHz至5725MHz、5715MHz至5730MHz、5720MHz至5735MHz、5835MHz至5850MHz。
  33. 根据权利要求1-32中任一项所述的方法,其特征在于,所述第一信道的带宽和符号满足如下关系:所述第一信道的带宽越小,所述第一信道的符号越长。
  34. 根据权利要求33所述的方法,其特征在于,所述第一信道的子载波数目、符号以及带宽满足如下关系:
    其中,BWwb为参考带宽,BWnb为所述第一信道的带宽,所述参考带宽大于所述第一信道的带宽,CP为循环前缀,γ的取值大于0且小于1,Nsc为所述第一信道的子载波数目,OFDMwop表示所述第一信道的符号为不包含循环前缀的符号,OFDMwp表示所述第一信道的符号为包含循环前缀的符号。
  35. 一种通信装置,其特征在于,所述装置包括:用于执行如权利要求1-9中任一项所述的方法的模块。
  36. 一种通信装置,其特征在于,所述装置包括:用于执行如权利要求10-34中任一项所述的方法的模块。
  37. 一种通信装置,其特征在于,所述通信装置包括:处理器;所述处理器与存储器耦合,所述存储器用于存储计算机指令,当所述处理器执行所述指令时,以使所述通信装置执行如权利要求1-34中任一项所述的方法。
  38. 一种通信***,其特征在于,所述通信***包括:用于执行如权利要求1-9中任一项所述的方法的第一设备,以及用于执行如权利要求10-34中任一项所述的方法的第二设备。
  39. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得所述计算机执行如权利要求1-34中任一项所述的方法。
PCT/CN2023/131255 2022-12-02 2023-11-13 通信方法、装置及*** WO2024114350A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211538153.2A CN118139179A (zh) 2022-12-02 2022-12-02 通信方法、装置及***
CN202211538153.2 2022-12-02

Publications (1)

Publication Number Publication Date
WO2024114350A1 true WO2024114350A1 (zh) 2024-06-06

Family

ID=91230641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/131255 WO2024114350A1 (zh) 2022-12-02 2023-11-13 通信方法、装置及***

Country Status (2)

Country Link
CN (1) CN118139179A (zh)
WO (1) WO2024114350A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016082216A1 (zh) * 2014-11-28 2016-06-02 华为技术有限公司 使用频谱资源进行通信的方法和通信设备
WO2020150957A1 (zh) * 2019-01-24 2020-07-30 Oppo广东移动通信有限公司 用于非授权频谱的无线通信方法和设备
CN113473622A (zh) * 2021-06-25 2021-10-01 荣耀终端有限公司 Ofdma频域资源调度方法、sta、ap及通信***
CN113853016A (zh) * 2020-06-28 2021-12-28 华为技术有限公司 跨***干扰避让方法、设备及***
CN113873650A (zh) * 2020-06-30 2021-12-31 华为技术有限公司 异***干扰避让方法、设备及***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016082216A1 (zh) * 2014-11-28 2016-06-02 华为技术有限公司 使用频谱资源进行通信的方法和通信设备
WO2020150957A1 (zh) * 2019-01-24 2020-07-30 Oppo广东移动通信有限公司 用于非授权频谱的无线通信方法和设备
CN113853016A (zh) * 2020-06-28 2021-12-28 华为技术有限公司 跨***干扰避让方法、设备及***
CN113873650A (zh) * 2020-06-30 2021-12-31 华为技术有限公司 异***干扰避让方法、设备及***
CN113473622A (zh) * 2021-06-25 2021-10-01 荣耀终端有限公司 Ofdma频域资源调度方法、sta、ap及通信***

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Support of flexible bandwidth", 3GPP DRAFT; R1-166106, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Gothenburg, Sweden; 20160822 - 20160826, 21 August 2016 (2016-08-21), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051125217 *

Also Published As

Publication number Publication date
CN118139179A (zh) 2024-06-04

Similar Documents

Publication Publication Date Title
KR102015825B1 (ko) 2차 채널 상의 기본 대역폭 디바이스
US9794878B2 (en) Method and apparatus for updating listen interval in wireless LAN system
US10904866B2 (en) Information transmission method, user equipment, access network device, and core network device
CN109150379B (zh) 一种通信方法、网络设备及终端设备
KR20090026184A (ko) Wlan 내 노드, 포인트 또는 단말에서 전송 대기중인 데이터를 가진 각 그룹 어드레스에 대한 정보를 제공하는 방법 및 장치
JP7410328B2 (ja) ワイヤレスローカルエリアネットワークにおいてマルチリンクデバイスに適用される通信方法および装置
CN113726473A (zh) 无线局域网中的信令信息的交互方法及通信装置
US9622115B2 (en) Channel negotiation method, device, and system
EP4207910A1 (en) Ofdma frequency domain resource scheduling method, sta, ap and communication system
US20210360480A1 (en) Apparatus and method for signaling ran-assisted codec adaptation capabilities in ims multimedia telephony sessions
WO2022166240A1 (zh) 一种通信方法及装置
JP7193609B2 (ja) データ送信方法及び関連する装置
EP3627922A1 (en) Method and apparatus for transmission control
US12003399B2 (en) Request and response method for probing MLD, station, and access point
US20210359912A1 (en) Network slicing in radio interface
CN112106423A (zh) 用于物理下行链路控制信道监测的方法、终端设备和基站
US20140092857A1 (en) Method and apparatus for wireless medium access
WO2016112499A1 (zh) 资源指示的方法、接入点和终端
WO2024114350A1 (zh) 通信方法、装置及***
WO2024098796A1 (zh) 通信方法及装置
JP7417769B2 (ja) マルチ接続での通信方法及び通信機器
WO2023134607A1 (zh) 边链路传输方法及装置、存储介质、终端设备
WO2024032796A1 (zh) 通信方法及相关装置
WO2024139664A1 (zh) 一种通信方法及装置
WO2022206745A1 (zh) 寻呼指示方法及装置