WO2020177040A1 - 无线通信的方法、终端设备和网络设备 - Google Patents

无线通信的方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2020177040A1
WO2020177040A1 PCT/CN2019/076773 CN2019076773W WO2020177040A1 WO 2020177040 A1 WO2020177040 A1 WO 2020177040A1 CN 2019076773 W CN2019076773 W CN 2019076773W WO 2020177040 A1 WO2020177040 A1 WO 2020177040A1
Authority
WO
WIPO (PCT)
Prior art keywords
ssb
pbch
bit field
bit
extended
Prior art date
Application number
PCT/CN2019/076773
Other languages
English (en)
French (fr)
Inventor
贺传峰
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to BR112021016911A priority Critical patent/BR112021016911A2/pt
Priority to JP2021549354A priority patent/JP7403550B2/ja
Priority to CN202310251072.2A priority patent/CN116321511A/zh
Priority to PCT/CN2019/076773 priority patent/WO2020177040A1/zh
Priority to KR1020217029115A priority patent/KR20210122306A/ko
Priority to CN202110590386.6A priority patent/CN113316267B/zh
Priority to CN201980057997.5A priority patent/CN112655258A/zh
Priority to EP19918337.7A priority patent/EP3914007A4/en
Publication of WO2020177040A1 publication Critical patent/WO2020177040A1/zh
Priority to US17/409,463 priority patent/US20210385774A1/en
Priority to JP2023065645A priority patent/JP2023089155A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2656Frame synchronisation, e.g. packet synchronisation, time division duplex [TDD] switching point detection or subframe synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular to a wireless communication method, terminal device, and network device.
  • the index of the synchronization signal block (Synchronization Signal/Physical Broadcast Channel block, SSB) can be sent periodically. During the period, the sending position of the SSB is determined, and the terminal device can determine the sending position of the SSB according to the index of the received SSB.
  • SSB Synchronization Signal/Physical Broadcast Channel block
  • the communication equipment follows the "Listen Before Talk (LBT)" principle, that is, the communication device needs to perform channel detection before sending signals on the channel of the unlicensed spectrum.
  • LBT Listen Before Talk
  • the communication device can send signals; if the channel listening result of the communication device on the channel of the unlicensed spectrum is that the channel is busy, the communication device cannot send signals.
  • the network device When the 5G NR system is applied to the unlicensed spectrum, the network device must successfully obtain the channel use right through the LBT before sending the SSB. That is to say, in the unlicensed frequency band, the actual starting position of the SSB is uncertain, and the terminal device receives After arriving at the SSB, the Quasi-co-located (QCL) relationship between the SSBs cannot be known, and the SSBs with the QCL relationship cannot be merged and filtered, which affects the system performance. Therefore, how to determine the QCL relationship between SSBs is a problem worth studying.
  • QCL Quasi-co-located
  • the embodiments of the present application provide a wireless communication method, terminal equipment, and network equipment, which can determine the QCL relationship of the SSB based on it.
  • a wireless communication method includes: a terminal device receives a first synchronization signal block SSB on an unlicensed spectrum; according to the first bit field in the physical broadcast channel PBCH of the first SSB and /Or the second bit field, determining the extended SSB index of the first SSB and/or the first parameter N used to determine the quasi-co-located QCL relationship, where N is a positive integer, and the first bit field is
  • the bit position in the PBCH is the same as the bit position of the subcarrier spacing bit field in the PBCH on the licensed spectrum, and the bit position of the second bit field in the PBCH is offset from the subcarrier in the PBCH on the licensed spectrum.
  • the bit positions of the shift bit field are partially or completely the same; according to the extended SSB index of the first SSB and the N, the QCL relationship between the first SSB and other SSBs is determined.
  • a wireless communication method including: a network device sends a first synchronization signal block SSB to a terminal device on an unlicensed spectrum, wherein the first bit in the physical broadcast channel PBCH of the first SSB Field and/or the second bit field, determine the extended SSB index of the first SSB and/or the first parameter N used to determine the quasi co-located QCL relationship, where N is a positive integer, and the first bit
  • the bit position of the second bit field in the PBCH is the same as the bit position of the subcarrier spacing bit field in the PBCH on the licensed spectrum
  • the bit position of the second bit field in the PBCH is the same as the sub-carrier spacing bit field in the PBCH on the licensed spectrum.
  • bit positions of the carrier offset bit field are partially or completely the same, the extended SSB index of the first SSB and the N are used by the terminal device to determine the QCL relationship between the first SSB and other SSBs, where the N Is a positive integer.
  • a wireless communication method includes:
  • the terminal device determines the first parameter N for determining the quasi co-located QCL relationship according to the received demodulation reference signal DMRS sequence of the physical broadcast channel PBCH in the first synchronization signal block SSB in combination with the second correspondence relationship, where the The second correspondence is the correspondence between multiple DMRS sequences and multiple values of the first parameters.
  • the second correspondence is a correspondence between a plurality of DMRS sequences and a combination of a plurality of first parameters and partial bits in the extended SSB index.
  • the N is the number of SSBs actually sent by the network device.
  • a wireless communication method includes:
  • the network device sends a second corresponding relationship to the terminal device, where the second corresponding relationship is used by the terminal device to determine the first parameter N used to determine the quasi co-located QCL relationship, where the second corresponding relationship is a plurality of DMRS The corresponding relationship between the sequence and the values of the multiple first parameters.
  • the second correspondence is a correspondence between a plurality of DMRS sequences and a combination of a plurality of first parameters and partial bits in the extended SSB index.
  • the N is the number of SSBs actually sent by the network device.
  • a terminal device which is used to execute the method in the first aspect or any possible implementation of the first aspect, or to execute the third aspect or any possible implementation of the third aspect.
  • the terminal device includes a unit for executing the method in the first aspect or any possible implementation of the first aspect, or includes the third aspect or any possible implementation of the third aspect. The unit of the method.
  • a network device which is used to execute the method in the second aspect or any possible implementation of the second aspect, or used to implement the fourth aspect or any possible implementation of the fourth aspect.
  • the network device includes a unit for executing the method in the second aspect or any possible implementation of the second aspect, or includes a unit for executing the fourth aspect or any possible implementation of the fourth aspect. The unit of the method.
  • a terminal device in a seventh aspect, includes a processor and a memory.
  • the memory is used to store a computer program, and the processor is used to call and run the computer program stored in the memory, to execute the method in the first aspect or its implementation, or to execute the third aspect or the third aspect. Any possible implementation method.
  • a network device in an eighth aspect, includes a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory, to execute the method in the second aspect or its implementation, or to execute the fourth aspect or the fourth aspect. Any possible implementation method.
  • a chip is provided for implementing any one of the above-mentioned first to fourth aspects or the method in each implementation manner thereof.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes any one of the above-mentioned first aspect to the fourth aspect or any of the implementations thereof method.
  • a computer-readable storage medium for storing a computer program that enables a computer to execute any one of the above-mentioned first to fourth aspects or the method in each implementation manner thereof.
  • a computer program product including computer program instructions that cause a computer to execute any one of the above-mentioned first to fourth aspects or the method in each implementation manner thereof.
  • a computer program which, when run on a computer, causes the computer to execute any one of the above-mentioned first to fourth aspects or the method in each implementation manner thereof.
  • the terminal device can determine the extended SSB index and the index of the first SSB according to the first bit field and/or the second bit field in the physical broadcast channel PBCH of the first SSB.
  • the first parameter N used to determine the quasi-co-located QCL relationship can further determine the QCL relationship between the first SSB and other SSBs according to the extended SSB index of the first SSB and the N.
  • Fig. 1 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • Figure 2 is a schematic diagram of SSB transmission on unlicensed spectrum.
  • Fig. 3 is a schematic diagram of the relationship between SSB candidate positions and QCL.
  • FIG. 4 is a schematic diagram of SSB transmission based on the relationship between candidate positions and QCL shown in FIG. 3.
  • FIG. 5 is a schematic diagram of a wireless communication method provided by an embodiment of the present application.
  • Fig. 6 is a schematic diagram of an indication mode of extending the SSB index and N.
  • Fig. 7 is a schematic diagram of another indication mode of extending the SSB index and N.
  • Fig. 8 is a schematic diagram of another indication mode of extending the SSB index and N.
  • FIG. 9 is a schematic diagram of another wireless communication method provided by an embodiment of the present application.
  • FIG. 10 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 11 is a schematic block diagram of a network device provided by an embodiment of the present application.
  • FIG. 12 is a schematic block diagram of a communication device according to another embodiment of the present application.
  • FIG. 13 is a schematic block diagram of a chip provided by an embodiment of the present application.
  • FIG. 14 is a schematic block diagram of a communication system provided by an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GSM Global System of Mobile Communication
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • LTE-A Advanced long term evolution
  • NR New Radio
  • NR NR system evolution system
  • LTE on unlicensed frequency bands LTE-based access to unlicensed spectrum, LTE-U
  • NR NR-based access to unlicensed spectrum, NR-U
  • UMTS Universal Mobile Telecommunication System
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • WiMAX Wireless Local Area Networks
  • WLAN Wireless Fidelity
  • WiFi next-generation communication systems or other communication systems, etc.
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC machine type communication
  • V2V vehicle to vehicle
  • the communication system 100 applied in the embodiment of the present application is shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or called a communication terminal or terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminal devices located in the coverage area.
  • the network device 110 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system (Evolutional Node B, eNB or eNodeB), or the wireless controller in the Cloud Radio Access Network (CRAN), or the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches, bridges, routers, network-side devices in 5G networks, or network devices in the future evolution of the Public Land Mobile Network (PLMN), etc.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • LTE Long Term Evolutional Node B
  • eNB evolved base station
  • CRAN Cloud Radio Access Network
  • the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches
  • the communication system 100 also includes at least one terminal device 120 located within the coverage area of the network device 110.
  • the "terminal equipment” used here includes but is not limited to connection via wired lines, such as via Public Switched Telephone Networks (PSTN), Digital Subscriber Line (DSL), digital cable, and direct cable connection ; And/or another data connection/network; and/or via a wireless interface, such as for cellular networks, wireless local area networks (WLAN), digital TV networks such as DVB-H networks, satellite networks, AM- FM broadcast transmitter; and/or another terminal device that is set to receive/send communication signals; and/or Internet of Things (IoT) equipment.
  • PSTN Public Switched Telephone Networks
  • DSL Digital Subscriber Line
  • WLAN wireless local area networks
  • IoT Internet of Things
  • a terminal device set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal” or a “mobile terminal”.
  • mobile terminals include, but are not limited to, satellites or cellular phones; Personal Communications System (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, Internet/intranet PDA with internet access, web browser, memo pad, calendar, and/or Global Positioning System (GPS) receiver; and conventional laptop and/or palmtop receivers or others including radio phone transceivers Electronic device.
  • PCS Personal Communications System
  • GPS Global Positioning System
  • Terminal equipment can refer to access terminals, user equipment (UE), user units, user stations, mobile stations, mobile stations, remote stations, remote terminals, mobile equipment, user terminals, terminals, wireless communication equipment, user agents, or User device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in 5G networks, or terminal devices in the future evolution of PLMN, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • direct terminal connection (Device to Device, D2D) communication may be performed between the terminal devices 120.
  • the 5G system or 5G network may also be referred to as a New Radio (NR) system or NR network.
  • NR New Radio
  • Figure 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. The embodiment does not limit this.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • the devices with communication functions in the network/system in the embodiments of the present application may be referred to as communication devices.
  • the communication device may include a network device 110 and a terminal device 120 with communication functions, and the network device 110 and the terminal device 120 may be the specific devices described above, which will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the application.
  • SSB can be sent within a certain time window (for example, a time window of 5ms), and can be repeatedly sent in a certain period.
  • the period can be, for example, 5ms, 10ms, 20ms, 40ms, 80ms. , 160ms, etc.
  • the maximum number of SSBs that a network device can send is L, and the actual number of SSBs sent can be less than L.
  • the index of the SSB can be obtained through the received SSB.
  • the SSB index corresponds to the relative position of the SSB within the time window.
  • the half-frame indication carried in the PBCH) determines the position of the SSB in the radio frame to obtain frame synchronization.
  • the terminal device may assume that the SSBs of the same SSB index have a QCL relationship, that is, if the indexes of the SSBs received by the terminal device are the same at different times, they are considered to have a QCL relationship.
  • Y SSB candidate locations can be configured, and at most L SSBs can be transmitted at the Y SSB candidate locations, where L is less than Y, and SSB can only obtain available channels on the sending device It can be sent later.
  • L is 4 and Y is 20 as an example.
  • Y is 20 as an example.
  • the network device if the network device succeeds in LBT before candidate position 12, it will start sending SSB with SSB index 0 to 3 at candidate position 12.
  • the actual sending position of the SSB may start from any one of the Y candidate positions. Therefore, if the terminal device needs to obtain frame synchronization through the SSB received at the candidate position, in one implementation manner, an extended SSB index (extended SSB index) can be defined to indicate the Y candidate positions.
  • SSB The carried index is extended from 0 to Y-1, so that the terminal device can determine the actual sending position of the SSB within the time window according to the extended SSB index carried by the received SSB, thereby obtaining frame synchronization.
  • the extended SSB index carried by the SSB can be understood as the position index of the SSB within the time window, which can also be called the SSB position index, or in other words, the extended SSB index carried by the SSB is used to indicate the actual transmission position of the SSB. Position index among the Y candidate positions.
  • the problem brought by the above solution is that the QCL attribute of the SSB actually sent by the network device has a binding relationship with the candidate position, that is, the SSB that satisfies the QCL relationship can only be sent in a few fixed positions, and cannot be Sending at any of the candidate locations, because the signal usage on the unlicensed spectrum is based on the LBT mechanism, this restriction will inevitably reduce the channel usage efficiency.
  • the time-frequency resources between the candidate positions 8-11 are not occupied, it may cause other devices to succeed in LBT listening in the time-frequency resources and occupy the channel, which will affect the candidate.
  • the embodiments of the present application provide a new determination method, which can be used to determine the QCL relationship of the SSB, and is beneficial to reduce the waste of resources on the unlicensed spectrum.
  • FIG. 5 is a schematic flowchart of a wireless communication method according to an embodiment of the present application.
  • the method 200 may be executed by a terminal device in the communication system shown in FIG. 1. As shown in FIG. 5, the method 200 includes the following At least part of:
  • the terminal device receives the first synchronization signal block SSB on the unlicensed spectrum.
  • S220 According to the first bit field and/or the second bit field in the physical broadcast channel PBCH of the first SSB, determine the extended SSB index of the first SSB and/or the first bit field used to determine the quasi co-located QCL relationship A parameter N, where N is a positive integer, the bit position of the first bit field in the PBCH is the same as the bit position of the subcarrier spacing bit field in the PBCH on the licensed spectrum, and the second bit The bit position of the domain in the PBCH is partly or completely the same as the bit position of the subcarrier offset bit domain in the PBCH on the licensed spectrum;
  • S230 Determine the QCL relationship between the first SSB and other SSBs according to the extended SSB index of the first SSB and the N.
  • the terminal device in order for the terminal device to determine the QCL relationship between the SSBs, can obtain the first parameter N, and determine to receive the first SSB and other parameters based on the received extended SSB index of the first SSB and the N The QCL relationship of SSB.
  • the terminal device may assume that SSBs with the same result of modulo N by the extended SSB index have a QCL relationship.
  • the terminal device can filter the SSB with the QCL relationship as a beam-level measurement result, which is beneficial to improve system performance.
  • the extended SSB index of the SSB can be understood as the position index of the SSB within the time window used to send the SSB, which can be called the SSB position index; in other words, the extended SSB index carried by the SSB It is used to indicate the position index of the actual transmission position of the SSB in the Y candidate positions.
  • the N may be the number of SSBs actually sent by the network device, or may also be other parameters for determining the QCL relationship of the SSB, which is not limited in the embodiment of the present application.
  • the first SSB includes at least one of the following signals:
  • Primary synchronization signal Primary Synchronization Signal
  • secondary synchronization signal Secondary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • Physical layer broadcast channel Physical Broadcast Channel
  • the terminal device may determine the extended SSB index and the value in N according to at least one of the first bit field and the second bit field in the received PBCH of the first SSB.
  • the first bit field in the PBCH may correspond to the subcarrier spacing bit field in the PBCH on the licensed spectrum
  • the second bit field in the PBCH may correspond to the subcarrier offset in the PBCH on the licensed spectrum Shift part or all of the bit position in the bit field.
  • the information carried by the PBCH channel on the unlicensed spectrum includes the A-bit information from the higher layer and the information related to the physical layer (layer 1).
  • the information related to the layer 1 includes the system frame number (SFN) and half frame indication , SSB index, etc.
  • the information carried by the PBCH channel includes a master information block (Master Information Block, MIB) from a higher layer, with a total of A bits, namely And 8 bits of information from layer 1, Among them, the A-bit MIB includes 6 bits of SFN, 1 bit of subcarrier spacing information (subCarrierSpacingCommon), 4 bits of SSB subcarrier offset information (ssb-SubcarrierOffset), and demodulation reference signal (DMRS). Related information, physical downlink control channel (Physical Downlink Control Channel, PDCCH) resource information of the scheduling system information block (System Information Block, SIB), etc., which also include 1 free bit.
  • MIB Master Information Block
  • SIB System Information Block
  • the ssb-SubcarrierOffset bit field includes 4 bits, which are used to indicate the offset k SSB between the physical resource block (physical resource block, PRB) grids between the SSB and the non-SSB channel or signal.
  • the shift k SSB includes 0-11 subcarriers or 0-23 subcarriers, and the ssb-SubcarrierOffset bit field may correspond to the lower 4 bits of the parameter k SSB .
  • subCarrierSpacingCommon is used to indicate the subcarrier spacing of SIB1, message 2/message 4 (Msg.2/4) for initial access, paging message and broadcast SI-messages.
  • 8-bit information of layer 1, namely in, Is the lowest 4 bits of SFN; Is a half-frame indication; when L SSB 64, Is the highest 3 bits of the SSB index, otherwise, Is the highest bit of parameter k SSB , For reserved bits, or idle bits.
  • L SSB is the maximum number of SSBs, which corresponds to the aforementioned L
  • k SSB is the subcarrier offset information of the SSB.
  • the PBCH of the SSB received on the unlicensed spectrum may include a first bit field and a second bit field, and the first bit field may correspond to the subcarrier spacing bit field in the PBCH on the licensed spectrum (Namely, subCarrierSpacingCommon), the second bit field in the PBCH may correspond to part or all of the bit positions of the subcarrier offset bit field (ssb-SubcarrierOffset) in the PBCH on the licensed spectrum.
  • the first bit field may correspond to the subcarrier spacing bit field in the PBCH on the licensed spectrum (Namely, subCarrierSpacingCommon)
  • the second bit field in the PBCH may correspond to part or all of the bit positions of the subcarrier offset bit field (ssb-SubcarrierOffset) in the PBCH on the licensed spectrum.
  • the first bit field may correspond to one bit of subCarrierSpacingCommon, and the second bit field may correspond to some or all of the 4 or 5 bits of the ssb-SubcarrierOffset.
  • the number of bits occupied by each bit field in the PBCH on the authorized spectrum is only an example, and the number of bits occupied by each bit field above can also be adjusted according to implementation requirements and protocol regulations. This is not limited.
  • the sub-carrier spacing of SSB and the sub-carrier spacing of the PDCCH scheduling SIB1 are usually the same. Therefore, in the NR-U system, there is no need to use subCarrierSpacingCommon.
  • the PRB grids between SSB and non-SSB channels or signals are aligned, or the offset is a limited offset.
  • the number of bits contained in the bit field indicating k SSB can be reduced, and the extra bits can be used to indicate at least part of the information of the extended SSB index or N.
  • authorized frequency bands may be allocated to different operators, and the PRB grid of SSB is predefined. Operators can flexibly set non-SSB PRB grids when using the allocated authorized frequency bands. There is no need to be restricted by the pre-defined SSB PRB grid, so that spectrum resources can be used more flexibly and efficiently.
  • the PRB grid between the SSB and non-SSB channels or signals is aligned, or the offset is limited The value of.
  • the number of bits occupied by the bit field of k SSB can be reduced, and some or all of the bits in the ssb-SubcarrierOffset bit field can be used to indicate the extended SSB index and at least part of the information of the N.
  • ssb-SubcarrierOffset if the PRB grid between the SSB and non-SSB channels or signals is aligned, in this case, all 5 bits of the ssb-SubcarrierOffset can be used to indicate the extended SSB index or the value in N At least part of the information, or if the PRB grid between the SSB and non-SSB channels or signals uses a limited offset, the 1-4 bits of the ssb-SubcarrierOffset can be used to indicate the extended SSB index or part of N Information, the extended SSB index or other parts of N can be indicated by other information, such as idle bits or DMRS sequence indication.
  • the first bit field in the PBCH on the unlicensed spectrum may also be referred to as the subCarrierSpacingCommon bit field in some cases, or may also be determined according to the content actually indicated by the first bit field, for example, in the first bit field
  • the first bit field When it is used to indicate N, the first bit field may be called an N bit field, or when the first bit field is used to indicate a part of the extended SSB index, the first bit field may be called an extended SSB index bit field.
  • the application embodiment does not limit this.
  • the second bit field in the PBCH on the unlicensed spectrum may also be called the ssb-SubcarrierOffset bit field in some cases, or it may also be determined according to the content actually indicated by the second bit field, for example, in the second bit field.
  • the bit field is used to indicate N
  • the second bit field may be referred to as the N bit field
  • the second bit field may be referred to as extended SSB index bit Domain, this embodiment of the application does not limit this.
  • the extended SSB index may be carried by the first bit field and/or the second bit field in the PBCH.
  • the extended SSB index includes 5 bits of information
  • 1 of the 5 bits can be carried by the first bit field
  • the other 4 bits of the 5 bits can be carried by the second bit field.
  • At least part of the bits, or, 2 bits of the 5 bits are carried by the second bit field, and other bits of the 5 bits are carried by other information, such as idle bits or DMRS signaling.
  • the N may be carried by the first bit field and/or the second bit field in the PBCH.
  • P1 of the P bits can be carried by the first bit field, and the other bits of the P bits can be carried by the second bit field, or carried by idle bits, etc. .
  • the terminal device may also determine the N according to the DMRS sequence of the PBCH.
  • the N may be determined according to the DMRS sequence of the PBCH and the second correspondence.
  • the second correspondence may be a correspondence between multiple DMRS sequences and multiple values of N, so that the terminal device may determine the corresponding DMRS sequence according to the received DMRS sequence corresponding to the PBCH of the first SSB N.
  • the second correspondence relationship may also be a correspondence relationship between multiple DMRS sequences, multiple values of N, and combinations of partial bits in the extended SSB index.
  • the terminal device can determine the corresponding partial bits of the extended SSB index and N according to the received DMRS sequence corresponding to the PBCH of the first SSB. That is to say, N and some bits in the scalable SSB index can be jointly coded and corresponded to the DMRS sequence.
  • the N may be pre-configured or configured by a network device.
  • S220 may specifically include:
  • the first bit field is determined
  • the extended SSB index of an SSB and/or the N wherein the bit position of the third bit field in the PBCH is partially or completely the same as the bit position of the idle bit field in the PBCH on the licensed spectrum.
  • At least one of the first bit field and the second bit field, and at least one of the DMRS sequence and the third bit field may carry part or all of the information of the extended SSB index of the first SSB.
  • at least one of the first bit field and the second bit field, and at least one of the DMRS sequence and the third bit field may carry part or all of the information of the N.
  • the extended SSB index occupies K bits
  • N occupies P bits
  • the first bit field is Q bits
  • the second bit field is M bits
  • Embodiment 1 at least part of the information of the extended SSB index and N is carried by the first bit field.
  • the DMRS sequence may be used to determine part of the bits of the extended SSB index. Specifically, the DMRS sequence determines K 1 bits in the extended SSB index, where K 1 , K 1 ⁇ K, where: The K 1 bits are the low K 1 bit or the high K 1 bit among the K bits of the extended SSB index.
  • the index of the DMRS sequence and extended SSB bits of K 1 may have a first correspondence relationship, indicating the different values of K1 bits through different DMRS sequence.
  • At least one of the other KK 1 bits in the K bits may be carried by the third bit field, or may also be carried by the first bit field.
  • the N can be carried in the first bit field, or can be carried in the third bit field, or can also be carried in the first bit field and the third bit field.
  • the DMRS sequence can be used to determine the lower 3 bits (B0 ⁇ B2) of the 5 bits of the extended SSB index, and the third bit field can be used to carry the upper 2 bits of the extended SSB index (B3 ⁇ B4)
  • each bit field the number of bits occupied by the extended SSB index and N, and the indication manner are only examples.
  • the embodiment of the present application may also pass the third bit field and the first bit field.
  • One bit field collectively carries some bits of the extended SSB index, and the embodiment of the present application is not limited to this.
  • the first bit field (for subCarrierSpacingCommon) that is no longer meaningful in the NR-U system is used to carry the extended SSB index and part of the information of N, and the terminal device obtains the information according to the first bit field.
  • the information of the SSB index and N is extended, so that the terminal device can determine the QCL relationship of the SSB according to the information of the extended SSB index and N.
  • Embodiment 2 at least part of the information of the extended SSB index and N is carried by the second bit field.
  • the M1 bit in the M bits of the ssb-SubcarrierOffset can be used to carry the extended SSB index and at least part of the information in N, that is, the second bit field is M1 bits, and optionally, the M can be 4. Or 5.
  • M1 can be 4 or 5, or can be any value from 1 to 3.
  • the DMRS sequence may be used to determine part of the bits of the extended SSB index. Specifically, the DMRS sequence may be used to determine K 1 bits in the extended SSB index.
  • the specific determination method may refer to the correlation in the foregoing embodiment. Description, I won’t repeat it here.
  • the other KK 1 bits in the K bits may be carried by the second bit field and/or the third bit field.
  • the N may be carried by the second bit field and/or the third bit field.
  • the K 1 bits are the lower 3 bits of the K bits, as shown in FIG. 7, the DMRS sequence can be used to determine the extended SSB index
  • the lower 3 bits (B0 ⁇ B2) of the 5 bits of, the third bit field can be used to carry the upper 2 bits (B3 ⁇ B4) of the extended SSB index, and the second bit field is used to carry N.
  • the second bit field may be used to carry the upper 2 bits (B3 to B4) of the extended SSB index, and the second bit field is also used to carry N.
  • the length of each bit field, the number of bits occupied by the extended SSB index and N, and the indication manner are only examples.
  • the embodiment of the present application may also carry the N through the third bit field.
  • the third bit field and the second bit field jointly carry part of the bits of the extended SSB index, and the embodiment of the present application is not limited to this.
  • part of the ssb-SubcarrierOffset information (corresponding to the second bit field) can be saved for carrying the extended SSB index and Part of the information of N, and the terminal device obtains the extended SSB index and the information of N according to the second bit field, so that the terminal device can determine the QCL relationship of the SSB according to the information of the extended SSB index and N.
  • Embodiment 3 at least part of the information of the extended SSB index and N is carried by the first bit field and the second bit field.
  • This embodiment 3 combines embodiment 1 and embodiment 2, and the first bit field and the second bit field can be used to jointly carry at least part of the information of the extended SSB index and N.
  • the DMRS sequence may be used to determine the K 1 bits in the extended SSB index.
  • the DMRS sequence may be used to determine the K 1 bits in the extended SSB index.
  • the first bit field and the second bit field may be used to carry the extended SSB index and at least one of the other K+PK 1 bits in the K+P bit information of N.
  • the third bit field may also be used to carry at least one of the K+PK 1 bits.
  • the K 1 bits are the lower 3 bits of the K bits.
  • the DMRS sequence can be used to determine The lower 3 bits (B0 ⁇ B2) of the 5 bits of the extended SSB index
  • the third bit field can be used to carry the higher 2 bits (B3 ⁇ B4) of the extended SSB index, through the first bit field
  • the second bit field carries N
  • the second bit field can carry the higher 2 bits
  • the third bit field carries the N.
  • the above-mentioned extended SSB index and the number of bits occupied by N and the indication manner are only examples.
  • the embodiments of the present application may also combine the first bit field, the second bit field and the number of bits occupied by the extended SSB index and N
  • the length of the third bit field is flexibly adjusted for the foregoing indication manner, and the embodiment of the present application is not limited to this.
  • the terminal device by using part or all of the subCarrierSpacingCommon (corresponding to the first bit field) and ssb-SubcarrierOffset (corresponding to the second bit field) to carry the extended SSB index and part of the information of N, the ability to The number of bits used to carry the information of the extended SSB index and N, and then the terminal device obtains the information of the extended SSB index and N according to the first bit field and the second bit field, so that the terminal device can be based on the extended SSB index and the information of N Information to determine the QCL relationship of the SSB.
  • the subCarrierSpacingCommon corresponding to the first bit field
  • ssb-SubcarrierOffset corresponding to the second bit field
  • FIG. 9 is a schematic flowchart of a wireless communication method 300 according to another embodiment of the present application.
  • the method 300 may be executed by a network device in the communication system shown in FIG. 1. As shown in FIG. 9, the method 300 includes The following content:
  • the network device sends the first synchronization signal block SSB to the terminal device on the unlicensed spectrum, where the first bit field and/or the second bit field in the physical broadcast channel PBCH of the first SSB determines the first bit field.
  • the extended SSB index of an SSB and/or the first parameter N used to determine the quasi co-location QCL relationship, where N is a positive integer, and the first bit field is on the bit position in the PBCH and the authorized spectrum
  • the bit positions of the subcarrier spacing bit fields in the PBCH are the same, and the bit positions of the second bit fields in the PBCH are partially or completely the same as the bit positions of the subcarrier offset bit fields in the PBCH on the licensed spectrum,
  • the extended SSB index of the first SSB and the N are used by the terminal device to determine the QCL relationship between the first SSB and other SSBs, where the N is a positive integer.
  • the extended SSB index of the first SSB passes through the first bit field and/or the second bit field in the PBCH of the first SSB, and the demodulation reference signal of the PBCH
  • the DMRS sequence and/or the third bit field in the PBCH is carried, wherein the bit position of the third bit field in the PBCH is partly or completely the same as the bit position of the idle bit field in the PBCH on the licensed spectrum .
  • the low K 1 bit in the extended SSB index is carried by the DMRS sequence of the PBCH, where the extended SSB index is K bits, and the K 1 , K are Positive integer, and K 1 ⁇ K;
  • At least one of the other KK 1 bits in the extended SSB index is carried by the first bit field and/or the second bit field in the PBCH of the first SSB.
  • the N passes through the subcarrier spacing information and/or subcarrier offset information in the PBCH of the first SSB, and the DMRS sequence of the PBCH and/or the PBCH The idle bits are carried.
  • the N is carried by the DMRS sequence of the PBCH.
  • the DMRS sequence of the PBCH and the first parameter N wherein the second correspondence is a correspondence between multiple DMRS sequences and values of multiple first parameters.
  • the second correspondence is a correspondence between a plurality of DMRS sequences and a combination of a plurality of first parameters and partial bits in the extended SSB index.
  • the extended SSB index is used to indicate the position index of the actual transmission position of the first SSB among multiple candidate transmission positions.
  • the N is the number of SSBs actually sent by the network device.
  • FIG. 10 shows a schematic block diagram of a terminal device 400 according to an embodiment of the present application.
  • the terminal device 400 includes:
  • the communication module 410 is configured to receive the first synchronization signal block SSB on the unlicensed spectrum
  • the determining module 420 is configured to determine the extended SSB index of the first SSB and/or determine the quasi co-location according to the first bit field and/or the second bit field in the physical broadcast channel PBCH of the first SSB
  • the first parameter N of the QCL relationship where N is a positive integer, the bit position of the first bit field in the PBCH is the same as the bit position of the subcarrier spacing bit field in the PBCH on the licensed spectrum, so The bit position of the second bit field in the PBCH is partly or completely the same as the bit position of the subcarrier offset bit field in the PBCH on the licensed spectrum; and
  • the determining module 420 is specifically configured to:
  • the first bit field is determined
  • bit position of the third bit field in the PBCH is partially or completely the same as the bit position of the idle bit field in the PBCH on the licensed spectrum.
  • the determining module 420 is specifically configured to:
  • the DMRS sequence of the PBCH combined with a first corresponding relationship, determine the low K 1 bit in the extended SSB index, where the first corresponding relationship is a combination of multiple DMRS sequences and multiple extended SSB indexes
  • the extended SSB index is K bits, the K 1 and K are positive integers, and K 1 ⁇ K;
  • At least one of the other KK 1 bits in the extended SSB index is determined.
  • the determining module 420 is further configured to determine the N according to the DMRS sequence of the PBCH.
  • the determining module 420 is specifically configured to: determine the N according to the DMRS sequence of the PBCH in combination with a second correspondence, where the second correspondence is multiple DMRSs The corresponding relationship between the sequence and the values of the multiple first parameters.
  • the second correspondence is a correspondence between a plurality of DMRS sequences and a combination of a plurality of first parameters and partial bits in the extended SSB index.
  • the N is pre-configured or configured by a network device.
  • the extended SSB index is used to indicate the position index of the actual transmission position of the first SSB among multiple candidate transmission positions.
  • the N is the number of SSBs actually sent by the network device.
  • the determining module 420 is specifically configured to:
  • the determining module 420 is further configured to:
  • the result of modulo the N by the extended SSB index of the second SSB is equal to the result of modulo the N by the extended SSB index of the first SSB, it is determined that the first SSB and the second SSB have QCL relationship.
  • terminal device 400 may correspond to the terminal device in the method embodiment of the present application, and the above and other operations and/or functions of each unit in the terminal device 400 are to implement the method shown in FIG. 5, respectively.
  • the corresponding process of the terminal equipment in 200 will not be repeated here.
  • Fig. 11 is a schematic block diagram of a network device according to an embodiment of the present application.
  • the network device 500 of FIG. 11 includes:
  • the communication module 510 is configured to send the first synchronization signal block SSB to the terminal device on the unlicensed spectrum, where the first bit field and/or the second bit field in the physical broadcast channel PBCH of the first SSB determines the The extended SSB index of the first SSB and/or the first parameter N used to determine the quasi-co-location QCL relationship, where N is a positive integer, and the bit position of the first bit field in the PBCH and the authorization The bit position of the subcarrier spacing bit field in the PBCH on the spectrum is the same, and the bit position of the second bit field in the PBCH is partially or completely offset from the bit position of the subcarrier in the PBCH on the licensed spectrum.
  • the extended SSB index of the first SSB and the N are used by the terminal device to determine the QCL relationship between the first SSB and other SSBs, where the N is a positive integer.
  • the extended SSB index of the first SSB passes through the first bit field and/or the second bit field in the PBCH of the first SSB, and the demodulation reference signal of the PBCH
  • the DMRS sequence and/or the third bit field in the PBCH is carried, wherein the bit position of the third bit field in the PBCH is partly or completely the same as the bit position of the idle bit field in the PBCH on the licensed spectrum .
  • the low K 1 bit in the extended SSB index is carried by the DMRS sequence of the PBCH, where the extended SSB index is K bits, and the K 1 , K are Positive integer, and K 1 ⁇ K;
  • At least one of the other KK 1 bits in the extended SSB index is carried by the first bit field and/or the second bit field in the PBCH of the first SSB.
  • the N passes through the subcarrier spacing information and/or subcarrier offset information in the PBCH of the first SSB, and the DMRS sequence of the PBCH and/or the PBCH The idle bits are carried.
  • the N is carried by the DMRS sequence of the PBCH.
  • the DMRS sequence of the PBCH and the first parameter N wherein the second correspondence is a correspondence between multiple DMRS sequences and values of multiple first parameters.
  • the second correspondence is a correspondence between a plurality of DMRS sequences and a combination of a plurality of first parameters and partial bits in the extended SSB index.
  • the extended SSB index is used to indicate the position index of the actual transmission position of the first SSB among multiple candidate transmission positions.
  • the N is the number of SSBs actually sent by the network device.
  • the network device 500 may correspond to the terminal device in the method embodiment of the present application, and the foregoing and other operations and/or functions of each unit in the network device 500 are to implement the method shown in FIG. 8 respectively.
  • the corresponding process of the network equipment in 300 will not be repeated here.
  • FIG. 12 is a schematic structural diagram of a communication device 600 according to an embodiment of the present application.
  • the communication device 600 shown in FIG. 12 includes a processor 610, and the processor 610 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 600 may further include a memory 620.
  • the processor 610 may call and run a computer program from the memory 620 to implement the method in the embodiment of the present application.
  • the memory 620 may be a separate device independent of the processor 610, or may be integrated in the processor 610.
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 600 may specifically be a network device in an embodiment of the present application, and the communication device 600 may implement the corresponding process implemented by the network device in each method of the embodiment of the present application. For brevity, details are not repeated here. .
  • the communication device 600 may specifically be a mobile terminal/terminal device of an embodiment of the application, and the communication device 600 may implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiment of the application.
  • I won’t repeat it here.
  • FIG. 13 is a schematic structural diagram of a chip of an embodiment of the present application.
  • the chip 700 shown in FIG. 13 includes a processor 710, and the processor 710 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 700 may further include a memory 720.
  • the processor 710 may call and run a computer program from the memory 720 to implement the method in the embodiment of the present application.
  • the memory 720 may be a separate device independent of the processor 710, or may be integrated in the processor 710.
  • the chip 700 may further include an input interface 730.
  • the processor 710 may control the input interface 730 to communicate with other devices or chips, and specifically, may obtain information or data sent by other devices or chips.
  • the chip 700 may further include an output interface 740.
  • the processor 710 can control the output interface 740 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the network device in the various methods of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the network device in the various methods of the embodiment of the present application.
  • the chip can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the chip can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the chip can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the chip mentioned in the embodiment of the present application may also be referred to as a system-level chip, a system-on-chip, a system-on-chip, or a system-on-chip.
  • FIG. 14 is a schematic block diagram of a communication system 900 according to an embodiment of the present application.
  • the communication system 900 includes a terminal device 910 and a network device 920.
  • the terminal device 910 can be used to implement the corresponding function implemented by the terminal device in the above method
  • the network device 920 can be used to implement the corresponding function implemented by the network device in the above method. For brevity, it will not be repeated here. .
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • Synchlink DRAM SLDRAM
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous DRAM (SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is to say, the memory in the embodiment of the present application is intended to include but not limited to these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium may be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program enables the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application ,
  • the computer program enables the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application ,
  • I will not repeat it here.
  • the embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product may be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, For brevity, I won't repeat them here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program runs on the computer, the computer is caused to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiment of the present application.
  • the computer program runs on the computer, the computer executes each method in the embodiment of the present application. For the sake of brevity, the corresponding process will not be repeated here.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种无线通信的方法、终端设备和网络设备,能够确定SSB的QCL关系,该方法包括:终端设备在非授权频谱上接收第一同步信号块SSB;根据所述第一SSB的物理广播信道PBCH中的第一比特域和/或第二比特域,确定所述第一SSB的扩展SSB索引和/或用于确定准共址QCL关系的第一参数N,其中,所述N为正整数,所述第一比特域在所述PBCH中的比特位置与授权频谱上的PBCH中的子载波间隔比特域的比特位置相同,所述第二比特域在所述PBCH中的比特位置与授权频谱上的PBCH中的子载波偏移比特域的比特位置部分或完全相同;根据所述第一SSB的扩展SSB索引和所述N,确定所述第一SSB与其他SSB的QCL关系。

Description

无线通信的方法、终端设备和网络设备 技术领域
本申请实施例涉及通信领域,具体涉及一种无线通信的方法、终端设备和网络设备。
背景技术
在第五代移动通信技术新空口(5-Generation New Radio,5G NR)***中,同步信号块(Synchronization Signal/Physical Broadcast Channel block,SSB)的索引(index)可以周期性地发送,在一个SSB周期内,SSB的发送位置是确定的,终端设备可以根据接收的SSB的索引确定SSB的发送位置。
在非授权频谱上,通信设备遵循“先听后说(Listen Before Talk,LBT)”原则,即通信设备在非授权频谱的信道上进行信号发送前,需要先进行信道侦听,只有当信道侦听结果为信道空闲时,该通信设备才能进行信号发送;如果通信设备在非授权频谱的信道上的信道侦听结果为信道忙,该通信设备不能进行信号发送。
在5G NR***应用到非授权频谱上时,网络设备必须LBT成功获得信道使用权之后,才能发送SSB,也就是说,在非授权频段,实际发送SSB的起始位置并不确定,终端设备接收到SSB后,不能获知SSB之间的准共址(Quasi-co-located,QCL)关系,也就不能对具有QCL关系的SSB进行合并、滤波处理,影响***性能。因此,如何确定SSB之间的QCL关系是一个值得研究的问题。
发明内容
本申请实施例提供一种无线通信的方法、终端设备和网络设备,能够根据确定SSB的QCL关系。
第一方面,提供了一种无线通信的方法,该方法包括:终端设备在非授权频谱上接收第一同步信号块SSB;根据所述第一SSB的物理广播信道PBCH中的第一比特域和/或第二比特域,确定所述第一SSB的扩展SSB索引和/或用于确定准共址QCL关系的第一参数N,其中,所述N为正整数,所述第一比特域在所述PBCH中的比特位置与授权频谱上的PBCH中的子载波间隔比特域的比特位置相同,所述第二比特域在所述PBCH中的比特位置与授权频谱上的PBCH中的子载波偏移比特域的比特位置部分或完全相同;根据所述第一SSB的扩展SSB索引和所述N,确定所述第一SSB与其他SSB的QCL关系。
第二方面,提供了一种无线通信的方法,包括:网络设备在非授权频谱上向终端设备发送第一同步信号块SSB,其中,所述第一SSB的物理广播信道PBCH中的第一比特域和/或第二比特域,确定所述第一SSB的扩展SSB索引和/或用于确定准共址QCL关系的第一参数N,其中,所述N为正整数,所述第一比特域在所述PBCH中的比特位置与授权频谱上的PBCH中的子载波间隔比特域的比特位置相同,所述第二比特域在所述PBCH中的比特位置与授权频谱上的PBCH中的子载波偏移比特域的比特位置部分或完全相同,所述第一SSB的扩展SSB索引和所述N用于所述终端设备确定所述第一SSB与其他SSB的QCL关系,其中,所述N为正整数。
第三方面,提供了一种无线通信的方法,所述方法包括:
终端设备根据接收的第一同步信号块SSB中的物理广播信道PBCH的解调参考信号DMRS序列,结合第二对应关系,确定用于确定准共址QCL关系的第一参数N,其中,所述第二对应关系为多个DMRS序列和多个第一参数的取值的对应关系。
在一些可能的实现方式中,所述第二对应关系是多个DMRS序列与多个第一参数和扩展SSB索引中的部分比特的组合之间的对应关系。
在一些可能的实现方式中,所述N为网络设备实际发送的SSB的数量。
第四方面,提供了一种无线通信的方法,所述方法包括:
网络设备向终端设备发送第二对应关系,所述第二对应关系用于所述终端设备确定用于确定准共址QCL关系的第一参数N,其中,所述第二对应关系为多个DMRS序列和多个第一参数的取值的对应关系。
在一些可能的实现方式中,所述第二对应关系是多个DMRS序列与多个第一参数和扩展SSB索引中的部分比特的组合之间的对应关系。
在一些可能的实现方式中,所述N为网络设备实际发送的SSB的数量。
第五方面,提供了一种终端设备,用于执行上述第一方面或第一方面的任意可能的实现方式中的方法,或用于执行上述第三方面或第三方面的任意可能的实现方式中的方法。具体地,该终端设备包括用于执行上述第一方面或第一方面的任一可能的实现方式中的方法的单元,或包括用于执行上述第三方面或第三方面的任意可能的实现方式中的方法的单元。
第六方面,提供了一种网络设备,用于执行上述第二方面或第二方面的任意可能的实现方式中的方法,或用于执行上述第四方面或第四方面的任意可能的实现方式中的方法。具体地,该网络设备包括用于执行上述第二方面或第二方面的任一可能的实现方式中的方法的单元,或包括用于执行上述第四方面或第四方面的任意可能的实现方式中的方法的单元。
第七方面,提供了一种终端设备,该终端设备包括:包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法,或用于执行上述第三方面或第三方面的任意可能的实现方式中的方法。
第八方面,提供了一种网络设备,该网络设备包括:包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面或其各实现方式中的方法,或用于执行上述第四方面或第四方面的任意可能的实现方式中的方法。
第九方面,提供了一种芯片,用于实现上述第一方面至第四方面中的任一方面或其各实现方式中的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行如上述第一方面至第四方面中的任一方面或其各实现方式中的方法。
第十方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第四方面中的任一方面或其各实现方式中的方法。
第十一方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面至第四方面中的任一方面或其各实现方式中的方法。
第十二方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第四方面中的任一方面或其各实现方式中的方法。
基于上述技术方案,终端设备在接收到SSB后,可以根据所述第一SSB的物理广播信道PBCH中的第一比特域和/或第二比特域,确定所述第一SSB的扩展SSB索引和/或用于确定准共址QCL关系的第一参数N,进一步能够根据所述第一SSB的扩展SSB索引和所述N,确定所述第一SSB与其他SSB的QCL关系。
附图说明
图1是本申请实施例提供的一种应用场景的示意性图。
图2是在非授权频谱上传输SSB的示意图。
图3是一种SSB候选位置和QCL关系的示意图。
图4是基于图3所示的候选位置和QCL关系进行SSB传输的示意图。
图5是本申请实施例提供的一种无线通信的方法的示意性图。
图6是扩展SSB索引和N的一种指示方式的示意图。
图7是扩展SSB索引和N的另一种指示方式的示意图。
图8是扩展SSB索引和N的再一种指示方式的示意图。
图9是本申请实施例提供的另一种无线通信的方法的示意性图。
图10是本申请实施例提供的一种终端设备的示意性框图。
图11是本申请实施例提供的一种网络设备的示意性框图。
图12是本申请另一实施例提供的一种通信设备的示意性框图。
图13是本申请实施例提供的一种芯片的示意性框图。
图14是本申请实施例提供的一种通信***的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信***,例如:全球移动通讯(Global System of Mobile communication,GSM)***、码分多址(Code Division Multiple Access,CDMA)***、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)***、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)***、LTE频分双工(Frequency Division Duplex,FDD)***、LTE时分双工(Time Division Duplex,TDD)***、先进的长期演进(Advanced long term evolution,LTE-A)***、新无线(New Radio,NR)***、NR***的演进***、非授权频段上的LTE(LTE-based access to unlicensed spectrum,LTE-U)***、非授权频段上的NR(NR-based access to unlicensed spectrum,NR-U)***、通用移动通信***(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信***、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、下一代通信***或其他通信***等。
通常来说,传统的通信***支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信***将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),以及车辆间(Vehicle to Vehicle,V2V)通信等,本申请实施例也可以应用于这些通信***。
示例性的,本申请实施例应用的通信***100如图1所示。该通信***100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。可选地,该网络设备110可以是GSM***或CDMA***中的基站(Base Transceiver Station,BTS),也可以是WCDMA***中的基站(NodeB,NB),还可以是LTE***中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信***100还包括位于网络设备110覆盖范围内的至少一个终端设备120。作为在此使用的“终端设备”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line, DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端设备的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端设备可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信***(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位***(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端设备可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
可选地,终端设备120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G***或5G网络还可以称为新无线(New Radio,NR)***或NR网络。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信***100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信***100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/***中具有通信功能的设备可称为通信设备。以图1示出的通信***100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信***100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“***”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在NR***中,SSB可以在一定的时间窗(例如,5ms的时间窗)内发送,并且可以以一定的周期重复发送,可选地,该周期例如可以为5ms,10ms,20ms,40ms,80ms,160ms等。一个时间窗内,网络设备能够发送的SSB的最大数量为L,实际发送的SSB的个数可以小于L。
对于终端设备来说,通过接收到的SSB可以得到该SSB的索引(index),SSB index对应该SSB在该时间窗内的相对位置,终端设备根据该SSB index和物理层广播信道(Physical Broadcast Channel,PBCH)中承载的半帧指示,确定该SSB在无线帧中的位置,从而获得帧同步。
对于QCL关系,终端设备可以假设相同的SSB index的SSB具有QCL关系,即,若在不同的时刻,终端设备接收到的SSB的index相同,则认为它们之间具有QCL关系。
在NR-U***中,由于非授权频谱上的信道资源是共享的,而通信设备使用这些共享资源时需要先侦听到空闲信道再对信道加以利用,这种情况下,很难保证在固定位置周期性地发送及接收SSB。因为发送设备LBT成功的时序位置是不可预期的,由于LBT失败的原因,很有可能造成SSB的发送及接收失败。
因此,在NR-U***中,提供多个SSB的候选位置,以便于LBT成功后,仍然有足够的SSB的候选位置可以用来发送SSB,以及相应地避免LBT失败对SSB接收造成影响。具体地,在一个时间窗内,可以配置Y个SSB候选位置,在这Y个SSB传输的候选位置上最多能传L个SSB,其中,L小于Y,并且SSB只能在发送设备获得可用信道后才可发送。
以5ms的时间窗,L为4,Y为20为例,如图2所示,若网络设备在候选位置12之前LBT成功,则在候选位置12开始发送SSB index为0~3的SSB,因此在NR-U***中,SSB的实际发送位置可能从该Y个候选位置的任意一个开始。因此,如果终端设备需要通过候选位置上接收到的SSB获得帧同步,在一种实现方式中,可以定义扩展SSB index(extended SSB index),用于指示该Y个候选位置,此情况下,SSB携带的index扩展至0至Y-1,这样,终端设备可以根据接收到的SSB携带的扩展SSB index确定SSB在时间窗内的实际发送位置,进而获得帧同步。
也就是说,SSB携带的扩展SSB index可以理解为该SSB在时间窗内的位置索引,也可称为SSB位置索引,或者说,SSB携带的扩展SSB index用于指示该SSB的实际发送位置在该Y个候选位置中的位置索引。
为了使得终端设备确定SSB之间的QCL关系,在一种实现方式中,可以假设一个时间窗内SSB的扩展SSB索引对L取模的结果相同的SSB具有QCL关系,基于这种假设,对于同一个波束的SSB,则只能在特定的候选位置发送了。如图3所示,以L=8,Y=32为例,extended SSB index对8取模的结果相同的SSB具有QCL关系,其中,extended SSB index取0-31,则可以确定extended SSB index为0,8,16,24的SSB之间具有QCL关系。
但是,上述方案带来的问题是,网络设备实际发送的SSB的QCL属性和候选位置具有绑定关系,也就是说,满足QCL关系的SSB只能在固定的几个位置上发送,并不能在候选位置中的任一位置发送,由于非授权频谱上的信号使用是基于LBT机制的,这种限制势必降低信道的使用效率。
结合图4,以L=8,Y=20为例进行说明,若网络设备实际发送的SSB的数量为4,该4个SSB的SSB index为4,5,6,7,基于上述假设,该SSB索引为4的SSB只能在候选位置4,12上发送,若网络设备在候选位置8之前LBT成功,则该网络设备需要等到候选位置12才能开始发送该SSB索引为4,5,6,7的4个SSB,造成候选位置8-11上的信道不能被使用从而造成资源浪费。另一方面,在NR-U***中,如果候选位置8-11之间的时频资源不被占用,则可能导致有其他设备在该时频资源内LBT侦听成功并占用信道,继而影响候选位置12之后的SSB传输。
有鉴于此,本申请实施例提供了一种新的确定方式,可以用于确定SSB的QCL关系,并有利于降低对非授权频谱上的资源的浪费。
图5是根据本申请实施例的无线通信的方法的示意性流程图,该方法200可以由图1所示的通信***中的终端设备执行,如图5所示,该方法200包括以下内容中的至少部分内容:
S210,终端设备在非授权频谱上接收第一同步信号块SSB;
S220,根据所述第一SSB的物理广播信道PBCH中的第一比特域和/或第二比特域,确定所述第一SSB的扩展SSB索引和/或用于确定准共址QCL关系的第一参数N,其中,所述N为正整数,所述第一比特域在所述PBCH中的比特位置与授权频谱上的PBCH中的子载波间隔比特域的比特位置相同,所述第二比特域在所述PBCH中的比特位置与授权频谱上的PBCH中的子载波偏移比特域的比特位置部分或完全相同;
S230,根据所述第一SSB的扩展SSB索引和所述N,确定所述第一SSB与其他SSB的QCL关系。
在本申请实施例中,为了终端设备确定SSB之间的QCL关系,该终端设备可以获 得第一参数N,并基于接收的第一SSB的扩展SSB索引和该N确定接收该第一SSB和其他SSB的QCL关系。在一些实现方式中,该终端设备可以假设扩展SSB索引对N取模的结果相同的SSB之间是具有QCL关系的。进一步地,该终端设备可以将具有QCL关系的SSB作滤波处理,作为beam级别的测量结果,有利于提升***性能。
可选地,在本申请实施例中,SSB的扩展SSB index可以理解为该SSB在用于发送SSB的时间窗内的位置索引,可称为SSB位置索引;或者说,SSB携带的扩展SSB index用于指示该SSB的实际发送位置在该Y个候选位置中的位置索引。
可选地,在本申请实施例中,所述N可以为网络设备实际发送的SSB的数量,或者,也可以为其他用于确定SSB的QCL关系的参数,本申请实施例对此不作限定。
可选地,在本申请实施例中,该第一SSB包括以下中的至少一种信号:
主同步信号(Primary Synchronization Signal,PSS),辅同步信号(Secondary Synchronization Signal,SSS),物理层广播信道(Physical Broadcast Channel,PBCH)。
可选地,在本申请实施例中,所述终端设备可以根据接收到的第一SSB的PBCH中的第一比特域和第二比特域中的至少一个,确定该扩展SSB索引和N中的至少一个,其中,该PBCH中的第一比特域可以对应于该授权频谱上的PBCH中的子载波间隔比特域,该PBCH中的第二比特域可以对应授权频谱上的PBCH中的子载波偏移比特域的比特位置部分或全部。
为便于理解和说明,对授权频谱上的PBCH中承载的信息做个简单介绍:
非授权频谱上的PBCH信道承载的信息包括来自高层的A比特信息和物理层(层1)相关的信息,其中,层1相关的信息包括***帧号(System Frame Number,SFN)、半帧指示、SSB index等。
具体地,PBCH信道承载的信息包括来自高层的主信息块(Master Information Block,MIB),共A比特,即
Figure PCTCN2019076773-appb-000001
以及来自层1的8比特信息,
Figure PCTCN2019076773-appb-000002
其中,A比特的MIB包括SFN的6比特,子载波间隔信息(subCarrierSpacingCommon)的1比特,SSB的子载波偏移信息(ssb-SubcarrierOffset)的4比特,解调参考信号(Demodulation Reference Signal,DMRS)相关信息、调度***信息块(System Information Block,SIB)的物理下行控制信道(Physical Downlink Control Channel,PDCCH)的资源信息等,其中,还包含了1个空闲比特。
其中,ssb-SubcarrierOffset比特域包括4比特,用于指示SSB与非SSB的信道或信号之间的物理资源块物理资源块(physical resource block,PRB)栅格之间的偏移k SSB,该偏移k SSB包括0-11个子载波或者0-23个子载波,ssb-SubcarrierOffset比特域可以对应于参数k SSB的低4位。subCarrierSpacingCommon用于指示SIB1,用于初始接入的消息2/消息4(Msg.2/4),寻呼(paging)消息和广播***消息(broadcast SI-messages)的子载波间隔。
层1的8比特信息,即
Figure PCTCN2019076773-appb-000003
中,
Figure PCTCN2019076773-appb-000004
为SFN的最低4位;
Figure PCTCN2019076773-appb-000005
为半帧指示;当L SSB=64时,
Figure PCTCN2019076773-appb-000006
为SSB index的最高3位,否则,
Figure PCTCN2019076773-appb-000007
为参数k SSB的最高位,
Figure PCTCN2019076773-appb-000008
为保留比特,或者说空闲比特。其中,L SSB为最大的SSB个数,对应于前文所述的L,k SSB为SSB的子载波偏移信息。当***频带小于6GHz时,即L SSB小于64时,层1相关的信息有2比特的空闲比特。
在本申请实施例中,在非授权频谱上接收的SSB的PBCH中可以包括第一比特域和第二比特域,该第一比特域可以对应于授权频谱上的PBCH中的子载波间隔比特域(即subCarrierSpacingCommon),该PBCH中的第二比特域可以对应授权频谱上的PBCH中的子载波偏移比特域(ssb-SubcarrierOffset)的比特位置的部分或全部。
例如,该第一比特域可以对应subCarrierSpacingCommon的一个比特,该第二比特域可以对应ssb-SubcarrierOffset的4个或5个比特中的部分比特或全部比特。
可以理解,以上,授权频谱上的PBCH中的各个比特域所占的比特数仅为示例,上述各个比特域所占的比特数也可以根据实现需求和协议规定等进行调整,本申请实施例对此不作限定。
在基于非授权频谱的通信***中,例如NR-U***,SSB的子载波间隔与调度SIB1的PDCCH的子载波间隔通常是相同的,因此,在NR-U***中,可以不需要通过subCarrierSpacingCommon来指示SIB1,用于初始接入的Msg.2/4,paging消息和广播***消息的子载波间隔,而直接可以认为其与SSB的子载波间隔是相同的。因此,该subCarrierSpacingCommon对应的非授权频谱上的PBCH中的第一比特域可以用于指示扩展SSB索引和所述N的至少部分信息。
在基于非授权频谱的通信***中,例如NR-U***,SSB与非SSB的信道或信号之间的PRB栅格是对齐的,或者其偏移为有限的偏移,此情况下,用于指示k SSB的比特域包含的比特数可以减少,那么多余的比特可以用于指示扩展SSB索引或N的至少部分信息。具体地,在NR***中,授权频段可能分配给不同的运营商,SSB的PRB栅格是预定义的,运营商在利用分配的授权频段时,可以灵活的设置非SSB的PRB栅格,而不必受预定义的SSB的PRB栅格的限制,从而更加灵活和高效的利用频谱资源。然而在NR-U***中,由于是非授权频谱,不存在频谱分配的问题,此情况下,可以规定SSB与非SSB的信道或信号之间的PRB栅格是对齐的,或者其偏移为有限的取值。从而能够降低k SSB的比特域所占的比特数,进一步可以使用该ssb-SubcarrierOffset比特域中的部分或全部比特指示该扩展SSB索引和所述N的至少部分信息。
以ssb-SubcarrierOffset为例,若该SSB与非SSB的信道或信号之间的PRB栅格是对齐的,此情况下,该ssb-SubcarrierOffset的5比特都可以用于指示扩展SSB索引或N中的至少部分信息,或者,若SSB与非SSB的信道或信号之间的PRB栅格采用有限的偏移,则该ssb-SubcarrierOffset的1-4个比特可以用于指示扩展SSB索引或N中的部分信息,扩展SSB索引或N的其他部分可以通过其他信息指示,例如通过空闲比特或DMRS序列指示等。
应理解,非授权频谱上的PBCH中的第一比特域在一些情况下也可以称为subCarrierSpacingCommon比特域,或者也可以根据该第一比特域实际指示的内容确定,例如,在该第一比特域用于指示N时,该第一比特域可以称为N比特域,或者在该第一比特域用于指示扩展SSB索引的部分时,该第一比特域可以称为extended SSB index比特域,本申请实施例对此不作限定。
类似地,非授权频谱上的PBCH中的第二比特域在一些情况下也可以称为ssb-SubcarrierOffset比特域,或者也可以根据该第二比特域实际指示的内容确定,例如,在该第二比特域用于指示N时,该第二比特域可以称为N比特域,或者在该第二比特域用于指示扩展SSB索引的至少部分时,该第二比特域可以称为extended SSB index比特域,本申请实施例对此不作限定。
可选地,在本申请实施例中,该扩展SSB索引可以通过PBCH中的第一比特域和/或第二比特域承载。
例如,若该扩展SSB索引包括5比特信息,此情况下,可以通过该第一比特域承载该5比特中的1比特,通过该第二比特域承载该5比特中的其他4个比特中的至少部分比特,或者,通过该第二比特域承载该5比特中的2比特,通过其他信息,例如空闲比特或DMRS信令承载该5比特中的其他比特。
可选地,在本申请实施例中,该N可以通过PBCH中的第一比特域和/或第二比特域承载。
例如,可以通过该第一比特域承载该N,假设该第一比特域长度为1比特,则可以根据该第一比特域的取值,确定该N的取值,例如可以在第一比特域的取值为0时,确定N=2,在第一比特域的取值为1时,确定N=4。
又例如,可以通过该第二比特域承载该N,假设该第二比特域长度为4比特,则可以根据该第二比特域中的2个比特承载该N,例如可以在该2个比特的取值为00时,确定N=2,在该2个比特的取值为01时,确定N=4,在该2个比特的取值为10时,确定N=6,在2个比特的取值为11时,确定N=8。
再例如,如该N占P个比特,该P个比特中的P1个比特可以通过第一比特域承载,该P个比特中的其他比特通过该第二比特域承载,或者通过空闲比特承载等。
可选地,在本申请实施例中,该终端设备也可以根据PBCH的DMRS序列,确定该N。例如,可以根据该PBCH的DMRS序列和第二对应关系,确定该N。
在一个实施例中,该第二对应关系可以为多个DMRS序列和多个N的取值的对应关系,从而该终端设备可以根据接收到的第一SSB的PBCH对应的DMRS序列,确定对应的N。
在另一个实施例中,该第二对应关系也可以是多个DMRS序列和多个N的取值和扩展SSB索引中的部分比特的组合之间的对应关系。
例如,在该第二对应关系中,第一DMRS序列指示扩展SSB索引的二进制低两位为10,且N为2,第二DMRS序列指示扩展SSB索引的二进制低两位为11,且N为4,从而,该终端设备可以根据接收到的第一SSB的PBCH对应的DMRS序列,确定对应的扩展SSB索引的部分比特和N。也就是说,可以将N和可扩展SSB索引中的部分比特进行联合编码,并与DMRS序列进行对应。
可选地,在其他实施例中,该N可以是预配置的,或者由网络设备配置的。
可选地,在一些实施例中,S220可以具体包括:
根据所述第一SSB的PBCH中的第一比特域和/或第二比特域,结合所述PBCH的解调参考信号DMRS序列和/或所述PBCH中的第三比特域,确定所述第一SSB的扩展SSB索引和/或所述N,其中,所述第三比特域在所述PBCH中的比特位置与授权频谱上的PBCH中的空闲比特域的比特位置部分或完全相同。
也就是说,可以通过第一比特域和第二比特域至少一个,以及DMRS序列和第三比特域中的至少一个承载所述第一SSB的扩展SSB索引的部分或全部信息。以及可以通过第一比特域和第二比特域至少一个,以及DMRS序列和第三比特域中的至少一个承载所述N的部分或全部信息。
以下,结合具体实施例,即实施例1~实施例3,具体说明扩展SSB索引和N的承载方式。
在以下实施例中,假设扩展SSB索引占K个比特,N占P个比特,第一比特域为Q个比特,第二比特域为M个比特,其中,K,P,Q,M为正整数。
实施例1,通过第一比特域承载所述扩展SSB索引和N的至少部分信息。
在一些实施例中,DMRS序列可以用于确定扩展SSB索引的部分比特,具体地,该DMRS序列确定所述扩展SSB索引中的K 1个比特,所述K 1,K 1<K,其中,该K 1个比特位为该扩展SSB索引的K个比特中的低K 1个比特或高K 1个比特。具体地,该DMRS序列和扩展SSB索引的K 1个比特可以具有第一对应关系,通过不同的DMRS序列指示该K1个比特的不同取值。
该K个比特中其他K-K 1个比特中的至少一个可以通过该第三比特域承载,或者也可以通过第一比特域承载。
该N可以承载在第一比特域中,或者也可以承载在第三比特域中,或者也可以通过第一比特域和第三比特域共同承载。
在一个具体例子中,K=5,K 1=3,该K 1个比特位为该K个比特中的低3个比特,第 一比特域为1个比特,即Q=1,如图6所示,该DMRS序列可以用于确定该扩展SSB索引的5个比特中的低3个比特(B0~B2),该第三比特域可以用于承载该扩展SSB索引的高2个比特(B3~B4),该第一比特域可以指示N,例如,可以在第一比特域的取值为0时,确定N=2,在第一比特域的取值为1时,确定N=4。
应理解,在该实施例中,上述各个比特域的长度,以及扩展SSB索引和N所占的比特数,以及指示方式仅为示例,例如,本申请实施例也可以通过第三比特域和第一比特域共同承载该扩展SSB索引的部分比特,本申请实施例并不限于此。
因此,本申请实施例中,通过利用在NR-U***中不再有意义的第一比特域(对于subCarrierSpacingCommon)承载扩展SSB索引和N的部分信息,进而终端设备根据根据该第一比特域获得扩展SSB索引和N的信息,从而终端设备可以根据扩展SSB索引和N的信息,确定SSB的QCL关系。
实施例2,通过第二比特域承载所述扩展SSB索引和N的至少部分信息。
由上文描述可知,在基于非授权频谱的通信***中,通过规定SSB和非SSB的信道的PRB栅格对齐或者有限取值的偏移,可以节省该ssb-SubcarrierOffset中的部分或全部比特(对应第二比特域)来承载该扩展SSB索引和N中的至少部分信息。
假设该ssb-SubcarrierOffset的该M个比特中的M1比特可以用于承载该扩展SSB索引和N中的至少部分信息,即该第二比特域为M1个比特,可选地,该M可以为4或5,对应地,M1可以为4或5,或者也可以为1至3中的任一值。
作为一个实施例,DMRS序列可以用于确定扩展SSB索引的部分比特,具体地,该DMRS序列可以用于确定所述扩展SSB索引中的K 1个比特,具体确定方式可以参考前述实施例的相关描述,这里不再赘述。
该K个比特中其他K-K 1个比特可以通过该第二比特域和/或第三比特域承载。
所述N可以通过该第二比特域和/或第三比特域承载。
在一个具体例子中,K=5,K 1=3,该K 1个比特位为该K个比特中的低3个比特,如图7所示,该DMRS序列可以用于确定该扩展SSB索引的5个比特中的低3个比特(B0~B2),该第三比特域可以用于承载该扩展SSB索引的高2个比特(B3~B4),该第二比特域用于承载N。或者,该第二比特域可以用于承载该扩展SSB索引的高2个比特(B3~B4),该第二比特域还用于承载N。
应理解,在该实施例中,上述各个比特域的长度,以及扩展SSB索引和N所占的比特数,以及指示方式仅为示例,本申请实施例也可以通过第三比特域承载该N,或者,通过第三比特域和第二比特域共同承载扩展SSB索引的部分比特,本申请实施例并不限于此。
因此,本申请实施例中,通过规定SSB和非SSB的信道的PRB栅格对齐或者有限取值的偏移,可以节省部分ssb-SubcarrierOffset信息(对应第二比特域)用于承载扩展SSB索引和N的部分信息,进而终端设备根据根据该第二比特域获得扩展SSB索引和N的信息,从而终端设备可以根据扩展SSB索引和N的信息,确定SSB的QCL关系。
实施例3,通过第一比特域和第二比特域承载所述扩展SSB索引和N的至少部分信息。
本实施例3综合实施例1和实施例2,可以利用第一比特域和第二比特域共同承载该扩展SSB索引和N的至少部分信息。
在一个实施例中,DMRS序列可以用于确定扩展SSB索引中的K 1个比特,具体确定方式请参考前文实施例的相关描述,这里不再赘述。
该第一比特域和第二比特域中可以用于承载该该扩展SSB索引和N的K+P比特信息中的其他K+P-K 1个比特中的至少一个比特。
可选地,在一些实施例中,若该第一比特域和第二比特域的长度不足,该第三比特域也可以用于承载该K+P-K 1个比特中的至少一个比特。
在一个具体例子中,K=5,K 1=3,P=2,该K 1个比特位为该K个比特中的低3个比特,如图8所示,该DMRS序列可以用于确定该扩展SSB索引的5个比特中的低3个比特(B0~B2),该第三比特域可以用于承载该扩展SSB索引的高2个比特(B3~B4),通过该第一比特域和第二比特域承载N,或者也可以通过第二比特域承载该高2个比特,通过第三比特域承载该N。
应理解,上述扩展SSB索引和N所占的比特数和指示方式仅为示例,本申请实施例也可以根据扩展SSB索引和N所占的比特数,结合第一比特域,第二比特域和第三比特域的长度对于上述指示方式进行灵活调整,本申请实施例并不限于此。
因此,本申请实施例中,通过利用subCarrierSpacingCommon(对应第一比特域)和ssb-SubcarrierOffset的部分或全部比特域(对应第二比特域)承载扩展SSB索引和N的部分信息,进一步增大了能够用于承载扩展SSB索引和N的信息的比特数,进而终端设备根据根据该第一比特域和该第二比特域获得扩展SSB索引和N的信息,从而终端设备可以根据扩展SSB索引和N的信息,确定SSB的QCL关系。
上文结合图2至图8,从终端设备的角度详细描述了根据本申请实施例的无线通信的方法,下文结合图9,从网络设备的角度详细描述根据本申请另一实施例的无线通信的方法。应理解,网络设备侧的描述与终端设备侧的描述相互对应,相似的描述可以参见上文,为避免重复,此处不再赘述。
图9是根据本申请另一实施例的无线通信的方法300的示意性流程图,该方法300可以由图1所示的通信***中的网络设备执行,如图9所示,该方法300包括如下内容:
S310,网络设备在非授权频谱上向终端设备发送第一同步信号块SSB,其中,所述第一SSB的物理广播信道PBCH中的第一比特域和/或第二比特域,确定所述第一SSB的扩展SSB索引和/或用于确定准共址QCL关系的第一参数N,其中,所述N为正整数,所述第一比特域在所述PBCH中的比特位置与授权频谱上的PBCH中的子载波间隔比特域的比特位置相同,所述第二比特域在所述PBCH中的比特位置与授权频谱上的PBCH中的子载波偏移比特域的比特位置部分或完全相同,所述第一SSB的扩展SSB索引和所述N用于所述终端设备确定所述第一SSB与其他SSB的QCL关系,其中,所述N为正整数。
可选地,在一些实施例中,所述第一SSB的扩展SSB索引通过所述第一SSB的PBCH中的第一比特域和/或第二比特域,以及所述PBCH的解调参考信号DMRS序列和/或所述PBCH中的第三比特域承载,其中,所述第三比特域在所述PBCH中的比特位置与授权频谱上的PBCH中的空闲比特域的比特位置部分或完全相同。
可选地,在一些实施例中,所述扩展SSB索引中的低K 1个比特通过所述PBCH的DMRS序列承载,其中,所述扩展SSB索引为K个比特,所述K 1,K为正整数,且K 1<K;
所述扩展SSB索引中的其他K-K 1个比特中的至少一个通过所述第一SSB的PBCH中的所述第一比特域和/或第二比特域承载。
可选地,在一些实施例中,所述N通过所述第一SSB的PBCH中的子载波间隔信息和/或子载波偏移信息,以及所述PBCH的DMRS序列和/或所述PBCH中的空闲比特承载。
可选地,在一些实施例中,所述N通过所述PBCH的DMRS序列承载。
可选地,在一些实施例中,所述PBCH的DMRS序列和所述第一参数N,其中,所述第二对应关系为多个DMRS序列和多个第一参数的取值的对应关系。
可选地,在一些实施例中,所述第二对应关系是多个DMRS序列与多个第一参数和扩展SSB索引中的部分比特的组合之间的对应关系。
可选地,在一些实施例中,所述扩展SSB索引用于指示所述第一SSB的实际发送位置在多个候选发送位置中的位置索引。
可选地,在一些实施例中,所述N为所述网络设备实际发送的SSB的数量。
上文结合图2至图9,详细描述了本申请的方法实施例,下文结合图10至图14,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图10示出了根据本申请实施例的终端设备400的示意性框图。如图10所示,该终端设备400包括:
通信模块410,用于在非授权频谱上接收第一同步信号块SSB;
确定模块420,用于根据所述第一SSB的物理广播信道PBCH中的第一比特域和/或第二比特域,确定所述第一SSB的扩展SSB索引和/或用于确定准共址QCL关系的第一参数N,其中,所述N为正整数,所述第一比特域在所述PBCH中的比特位置与授权频谱上的PBCH中的子载波间隔比特域的比特位置相同,所述第二比特域在所述PBCH中的比特位置与授权频谱上的PBCH中的子载波偏移比特域的比特位置部分或完全相同;以及
根据所述第一SSB的扩展SSB索引和所述N,确定所述第一SSB与其他SSB的QCL关系。
可选地,在一些实施例中,所述确定模块420具体用于:
根据所述第一SSB的PBCH中的第一比特域和/或第二比特域,结合所述PBCH的解调参考信号DMRS序列和/或所述PBCH中的第三比特域,确定所述第一SSB的扩展SSB索引和/或所述N
其中,所述第三比特域在所述PBCH中的比特位置与授权频谱上的PBCH中的空闲比特域的比特位置部分或完全相同。
可选地,在一些实施例中,所述确定模块420具体用于:
根据所述PBCH的DMRS序列,结合第一对应关系,确定所述扩展SSB索引中的低K 1个比特,其中,所述第一对应关系为多个DMRS序列和多个所述扩展SSB索引的对应关系,所述扩展SSB索引为K个比特,所述K 1,K为正整数,且K 1<K;
根据所述第一SSB的PBCH中的所述第一比特域和/或第二比特域,确定所述扩展SSB索引中的其他K-K 1个比特中的至少一个。
可选地,在一些实施例中,所述确定模块420还用于:根据所述PBCH的DMRS序列,确定所述N。
可选地,在一些实施例中,所述确定模块420具体用于:根据所述PBCH的DMRS序列,结合第二对应关系,确定所述N,其中,所述第二对应关系为多个DMRS序列和多个第一参数的取值的对应关系。
可选地,在一些实施例中,所述第二对应关系是多个DMRS序列与多个第一参数和扩展SSB索引中的部分比特的组合之间的对应关系。
可选地,在一些实施例中,所述N是预配置的或由网络设备配置的。
可选地,在一些实施例中,所述扩展SSB索引用于指示所述第一SSB的实际发送位置在多个候选发送位置中的位置索引。
可选地,在一些实施例中,所述N为网络设备实际发送的SSB的数量。
可选地,在一些实施例中,所述确定模块420具体用于:
根据所述第一SSB的扩展SSB索引对所述N取模的结果,确定所述第一SSB与其他SSB的QCL关系。
可选地,在一些实施例中,所述确定模块420还用于:
若第二SSB的扩展SSB索引对所述N取模的结果和所述第一SSB的扩展SSB索引对所述N取模的结果相等,确定所述第一SSB和所述第二SSB具有QCL关系。
应理解,根据本申请实施例的终端设备400可对应于本申请方法实施例中的终端设备,并且终端设备400中的各个单元的上述和其它操作和/或功能分别为了实现图5所示 方法200中终端设备的相应流程,为了简洁,在此不再赘述。
图11是根据本申请实施例的网络设备的示意性框图。图11的网络设备500包括:
通信模块510,用于在非授权频谱上向终端设备发送第一同步信号块SSB,其中,所述第一SSB的物理广播信道PBCH中的第一比特域和/或第二比特域,确定所述第一SSB的扩展SSB索引和/或用于确定准共址QCL关系的第一参数N,其中,所述N为正整数,所述第一比特域在所述PBCH中的比特位置与授权频谱上的PBCH中的子载波间隔比特域的比特位置相同,所述第二比特域在所述PBCH中的比特位置与授权频谱上的PBCH中的子载波偏移比特域的比特位置部分或完全相同,所述第一SSB的扩展SSB索引和所述N用于所述终端设备确定所述第一SSB与其他SSB的QCL关系,其中,所述N为正整数。
可选地,在一些实施例中,所述第一SSB的扩展SSB索引通过所述第一SSB的PBCH中的第一比特域和/或第二比特域,以及所述PBCH的解调参考信号DMRS序列和/或所述PBCH中的第三比特域承载,其中,所述第三比特域在所述PBCH中的比特位置与授权频谱上的PBCH中的空闲比特域的比特位置部分或完全相同。
可选地,在一些实施例中,所述扩展SSB索引中的低K 1个比特通过所述PBCH的DMRS序列承载,其中,所述扩展SSB索引为K个比特,所述K 1,K为正整数,且K 1<K;
所述扩展SSB索引中的其他K-K 1个比特中的至少一个通过所述第一SSB的PBCH中的所述第一比特域和/或第二比特域承载。
可选地,在一些实施例中,所述N通过所述第一SSB的PBCH中的子载波间隔信息和/或子载波偏移信息,以及所述PBCH的DMRS序列和/或所述PBCH中的空闲比特承载。
可选地,在一些实施例中,所述N通过所述PBCH的DMRS序列承载。
可选地,在一些实施例中,所述PBCH的DMRS序列和所述第一参数N,其中,所述第二对应关系为多个DMRS序列和多个第一参数的取值的对应关系。
可选地,在一些实施例中,所述第二对应关系是多个DMRS序列与多个第一参数和扩展SSB索引中的部分比特的组合之间的对应关系。
可选地,在一些实施例中,所述扩展SSB索引用于指示所述第一SSB的实际发送位置在多个候选发送位置中的位置索引。
可选地,在一些实施例中,所述N为所述网络设备实际发送的SSB的数量。
应理解,根据本申请实施例的网络设备500可对应于本申请方法实施例中的终端设备,并且网络设备500中的各个单元的上述和其它操作和/或功能分别为了实现图8所示方法300中网络设备的相应流程,为了简洁,在此不再赘述。
图12是本申请实施例提供的一种通信设备600示意性结构图。图12所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图12所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图12所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600具体可为本申请实施例的网络设备,并且该通信设备600 可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600具体可为本申请实施例的移动终端/终端设备,并且该通信设备600可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图13是本申请实施例的芯片的示意性结构图。图13所示的芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图13所示,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为***级芯片,***芯片,芯片***或片上***芯片等。
图14是本申请实施例提供的一种通信***900的示意性框图。如图14所示,该通信***900包括终端设备910和网络设备920。
其中,该终端设备910可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备920可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的 RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的***和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单 元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (51)

  1. 一种无线通信的方法,其特征在于,包括:
    终端设备在非授权频谱上接收第一同步信号块SSB;
    根据所述第一SSB的物理广播信道PBCH中的第一比特域和/或第二比特域,确定所述第一SSB的扩展SSB索引和/或用于确定准共址QCL关系的第一参数N,其中,所述N为正整数,所述第一比特域在所述PBCH中的比特位置与授权频谱上的PBCH中的子载波间隔比特域的比特位置相同,所述第二比特域在所述PBCH中的比特位置与授权频谱上的PBCH中的子载波偏移比特域的比特位置部分或完全相同;
    根据所述第一SSB的扩展SSB索引和所述N,确定所述第一SSB与其他SSB的QCL关系。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述第一SSB的物理广播信道PBCH中的第一比特域和/或第二比特域,确定所述第一SSB的扩展SSB索引和/或用于确定准共址QCL关系的第一参数N,包括:
    根据所述第一SSB的PBCH中的第一比特域和/或第二比特域,结合所述PBCH的解调参考信号DMRS序列和/或所述PBCH中的第三比特域,确定所述第一SSB的扩展SSB索引和/或所述N
    其中,所述第三比特域在所述PBCH中的比特位置与授权频谱上的PBCH中的空闲比特域的比特位置部分或完全相同。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述第一SSB的PBCH中的第一比特域和/或第二比特域,结合所述PBCH的解调参考信号DMRS序列和/或所述PBCH中的第三比特域,确定所述第一SSB的扩展SSB索引和/或所述N,包括:
    根据所述PBCH的DMRS序列,结合第一对应关系,确定所述扩展SSB索引中的低K 1个比特,其中,所述第一对应关系为多个DMRS序列和多个所述扩展SSB索引的对应关系,所述扩展SSB索引为K个比特,所述K 1,K为正整数,且K 1<K;
    根据所述第一SSB的PBCH中的所述第一比特域和/或第二比特域,确定所述扩展SSB索引中的其他K-K 1个比特中的至少一个。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据所述PBCH的DMRS序列,确定所述N。
  5. 根据权利要求4所述的方法,其特征在于,所述终端设备根据所述PBCH的DMRS序列,确定所述N,包括:
    根据所述PBCH的DMRS序列,结合第二对应关系,确定所述N,其中,所述第二对应关系为多个DMRS序列和多个第一参数的取值的对应关系。
  6. 根据权利要求5所述的方法,其特征在于,所述第二对应关系是多个DMRS序列与多个第一参数和扩展SSB索引中的部分比特的组合之间的对应关系。
  7. 根据权利要求1至3中任一项所述的方法,其特征在于,所述N是预配置的或由网络设备配置的。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述扩展SSB索引用于指示所述第一SSB的实际发送位置在多个候选发送位置中的位置索引。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述N为网络设备实际发送的SSB的数量。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述根据所述第一SSB的扩展SSB索引和所述N,确定所述第一SSB与其他SSB的QCL关系,包括:
    所述终端设备根据所述第一SSB的扩展SSB索引对所述N取模的结果,确定所述第一SSB与其他SSB的QCL关系。
  11. 根据权利要求10所述的方法,其特征在于,所述终端设备根据所述第一SSB的扩展SSB索引对所述N取模的结果,确定所述第一SSB与其他SSB的QCL关系,包 括:
    若第二SSB的扩展SSB索引对所述N取模的结果和所述第一SSB的扩展SSB索引对所述N取模的结果相等,确定所述第一SSB和所述第二SSB具有QCL关系。
  12. 一种无线通信的方法,其特征在于,包括:
    网络设备在非授权频谱上向终端设备发送第一同步信号块SSB,其中,所述第一SSB的物理广播信道PBCH中的第一比特域和/或第二比特域,确定所述第一SSB的扩展SSB索引和/或用于确定准共址QCL关系的第一参数N,其中,所述N为正整数,所述第一比特域在所述PBCH中的比特位置与授权频谱上的PBCH中的子载波间隔比特域的比特位置相同,所述第二比特域在所述PBCH中的比特位置与授权频谱上的PBCH中的子载波偏移比特域的比特位置部分或完全相同,所述第一SSB的扩展SSB索引和所述N用于所述终端设备确定所述第一SSB与其他SSB的QCL关系,其中,所述N为正整数。
  13. 根据权利要求12所述的方法,其特征在于,所述第一SSB的扩展SSB索引通过所述第一SSB的PBCH中的第一比特域和/或第二比特域,以及所述PBCH的解调参考信号DMRS序列和/或所述PBCH中的第三比特域承载,其中,所述第三比特域在所述PBCH中的比特位置与授权频谱上的PBCH中的空闲比特域的比特位置部分或完全相同。
  14. 根据权利要求13所述的方法,其特征在于,所述扩展SSB索引中的低K 1个比特通过所述PBCH的DMRS序列承载,其中,所述扩展SSB索引为K个比特,所述K 1,K为正整数,且K 1<K;
    所述扩展SSB索引中的其他K-K 1个比特中的至少一个通过所述第一SSB的PBCH中的所述第一比特域和/或第二比特域承载。
  15. 根据权利要求12至14中任一项所述的方法,其特征在于,所述N通过所述第一SSB的PBCH中的子载波间隔信息和/或子载波偏移信息,以及所述PBCH的DMRS序列和/或所述PBCH中的空闲比特承载。
  16. 根据权利要求12至14中任一项所述的方法,其特征在于,所述N通过所述PBCH的DMRS序列承载。
  17. 根据权利要求16所述的方法,其特征在于,所述PBCH的DMRS序列和所述第一参数N,其中,所述第二对应关系为多个DMRS序列和多个第一参数的取值的对应关系。
  18. 根据权利要求17所述的方法,其特征在于,所述第二对应关系是多个DMRS序列与多个第一参数和扩展SSB索引中的部分比特的组合之间的对应关系。
  19. 根据权利要求12至18中任一项所述的方法,其特征在于,所述扩展SSB索引用于指示所述第一SSB的实际发送位置在多个候选发送位置中的位置索引。
  20. 根据权利要求12至19中任一项所述的方法,其特征在于,所述N为所述网络设备实际发送的SSB的数量。
  21. 一种终端设备,其特征在于,包括:
    通信模块,用于在非授权频谱上接收第一同步信号块SSB;
    确定模块,用于根据所述第一SSB的物理广播信道PBCH中的第一比特域和/或第二比特域,确定所述第一SSB的扩展SSB索引和/或用于确定准共址QCL关系的第一参数N,其中,所述N为正整数,所述第一比特域在所述PBCH中的比特位置与授权频谱上的PBCH中的子载波间隔比特域的比特位置相同,所述第二比特域在所述PBCH中的比特位置与授权频谱上的PBCH中的子载波偏移比特域的比特位置部分或完全相同;以及
    根据所述第一SSB的扩展SSB索引和所述N,确定所述第一SSB与其他SSB的QCL关系。
  22. 根据权利要求21所述的终端设备,其特征在于,所述确定模块具体用于:
    根据所述第一SSB的PBCH中的第一比特域和/或第二比特域,结合所述PBCH的解调参考信号DMRS序列和/或所述PBCH中的第三比特域,确定所述第一SSB的扩展 SSB索引和/或所述N
    其中,所述第三比特域在所述PBCH中的比特位置与授权频谱上的PBCH中的空闲比特域的比特位置部分或完全相同。
  23. 根据权利要求22所述的终端设备,其特征在于,所述确定模块具体用于:
    根据所述PBCH的DMRS序列,结合第一对应关系,确定所述扩展SSB索引中的低K 1个比特,其中,所述第一对应关系为多个DMRS序列和多个所述扩展SSB索引的对应关系,所述扩展SSB索引为K个比特,所述K 1,K为正整数,且K 1<K;
    根据所述第一SSB的PBCH中的所述第一比特域和/或第二比特域,确定所述扩展SSB索引中的其他K-K 1个比特中的至少一个。
  24. 根据权利要求21至23中任一项所述的终端设备,其特征在于,所述确定模块还用于:根据所述PBCH的DMRS序列,确定所述N。
  25. 根据权利要求24所述的终端设备,其特征在于,所述确定模块具体用于:根据所述PBCH的DMRS序列,结合第二对应关系,确定所述N,其中,所述第二对应关系为多个DMRS序列和多个第一参数的取值的对应关系。
  26. 根据权利要求25所述的终端设备,其特征在于,所述第二对应关系是多个DMRS序列与多个第一参数和扩展SSB索引中的部分比特的组合之间的对应关系。
  27. 根据权利要求21至23中任一项所述的终端设备,其特征在于,所述N是预配置的或由网络设备配置的。
  28. 根据权利要求21至27中任一项所述的终端设备,其特征在于,所述扩展SSB索引用于指示所述第一SSB的实际发送位置在多个候选发送位置中的位置索引。
  29. 根据权利要求21至28中任一项所述的终端设备,其特征在于,所述N为网络设备实际发送的SSB的数量。
  30. 根据权利要求21至29中任一项所述的终端设备,其特征在于,所述确定模块具体用于:
    根据所述第一SSB的扩展SSB索引对所述N取模的结果,确定所述第一SSB与其他SSB的QCL关系。
  31. 根据权利要求30所述的终端设备,其特征在于,所述确定模块还用于:
    若第二SSB的扩展SSB索引对所述N取模的结果和所述第一SSB的扩展SSB索引对所述N取模的结果相等,确定所述第一SSB和所述第二SSB具有QCL关系。
  32. 一种网络设备,其特征在于,包括:
    通信模块,用于在非授权频谱上向终端设备发送第一同步信号块SSB,其中,所述第一SSB的物理广播信道PBCH中的第一比特域和/或第二比特域,确定所述第一SSB的扩展SSB索引和/或用于确定准共址QCL关系的第一参数N,其中,所述N为正整数,所述第一比特域在所述PBCH中的比特位置与授权频谱上的PBCH中的子载波间隔比特域的比特位置相同,所述第二比特域在所述PBCH中的比特位置与授权频谱上的PBCH中的子载波偏移比特域的比特位置部分或完全相同,所述第一SSB的扩展SSB索引和所述N用于所述终端设备确定所述第一SSB与其他SSB的QCL关系,其中,所述N为正整数。
  33. 根据权利要求32所述的网络设备,其特征在于,所述第一SSB的扩展SSB索引通过所述第一SSB的PBCH中的第一比特域和/或第二比特域,以及所述PBCH的解调参考信号DMRS序列和/或所述PBCH中的第三比特域承载,其中,所述第三比特域在所述PBCH中的比特位置与授权频谱上的PBCH中的空闲比特域的比特位置部分或完全相同。
  34. 根据权利要求33所述的网络设备,其特征在于,所述扩展SSB索引中的低K 1个比特通过所述PBCH的DMRS序列承载,其中,所述扩展SSB索引为K个比特,所述K 1,K为正整数,且K 1<K;
    所述扩展SSB索引中的其他K-K 1个比特中的至少一个通过所述第一SSB的PBCH中的所述第一比特域和/或第二比特域承载。
  35. 根据权利要求32至34中任一项所述的网络设备,其特征在于,所述N通过所述第一SSB的PBCH中的子载波间隔信息和/或子载波偏移信息,以及所述PBCH的DMRS序列和/或所述PBCH中的空闲比特承载。
  36. 根据权利要求32至34中任一项所述的网络设备,其特征在于,所述N通过所述PBCH的DMRS序列承载。
  37. 根据权利要求36所述的网络设备,其特征在于,所述PBCH的DMRS序列和所述第一参数N,其中,所述第二对应关系为多个DMRS序列和多个第一参数的取值的对应关系。
  38. 根据权利要求37所述的网络设备,其特征在于,所述第二对应关系是多个DMRS序列与多个第一参数和扩展SSB索引中的部分比特的组合之间的对应关系。
  39. 根据权利要求32至38中任一项所述的网络设备,其特征在于,所述扩展SSB索引用于指示所述第一SSB的实际发送位置在多个候选发送位置中的位置索引。
  40. 根据权利要求32至39中任一项所述的网络设备,其特征在于,所述N为所述网络设备实际发送的SSB的数量。
  41. 一种终端设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至11中任一项所述的方法。
  42. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至11中任一项所述的方法。
  43. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至11中任一项所述的方法。
  44. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至11中任一项所述的方法。
  45. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至11中任一项所述的方法。
  46. 一种网络设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求12至20中任一项所述的方法。
  47. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求12至20中任一项所述的方法。
  48. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求12至20中任一项所述的方法。
  49. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求12至20中任一项所述的方法。
  50. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求12至20中任一项所述的方法。
  51. 一种通信***,其特征在于,包括:
    如权利要求21至31中任一项所述的终端设备;以及
    如权利要求32至40中任一项所述的网络设备。
PCT/CN2019/076773 2019-03-01 2019-03-01 无线通信的方法、终端设备和网络设备 WO2020177040A1 (zh)

Priority Applications (10)

Application Number Priority Date Filing Date Title
BR112021016911A BR112021016911A2 (pt) 2019-03-01 2019-03-01 Método de comunicação sem fio, dispositivo terminal e dispositivo de rede
JP2021549354A JP7403550B2 (ja) 2019-03-01 2019-03-01 無線通信方法、端末装置及びネットワーク装置
CN202310251072.2A CN116321511A (zh) 2019-03-01 2019-03-01 无线通信的方法、终端设备和网络设备
PCT/CN2019/076773 WO2020177040A1 (zh) 2019-03-01 2019-03-01 无线通信的方法、终端设备和网络设备
KR1020217029115A KR20210122306A (ko) 2019-03-01 2019-03-01 무선 통신의 방법, 단말 장치와 네트워크 장치
CN202110590386.6A CN113316267B (zh) 2019-03-01 2019-03-01 无线通信的方法、终端设备和网络设备
CN201980057997.5A CN112655258A (zh) 2019-03-01 2019-03-01 无线通信的方法、终端设备和网络设备
EP19918337.7A EP3914007A4 (en) 2019-03-01 2019-03-01 WIRELESS COMMUNICATION METHOD, TERMINAL DEVICE AND NETWORK DEVICE
US17/409,463 US20210385774A1 (en) 2019-03-01 2021-08-23 Wireless communication method, terminal device and network device
JP2023065645A JP2023089155A (ja) 2019-03-01 2023-04-13 無線通信方法、端末装置及びネットワーク装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/076773 WO2020177040A1 (zh) 2019-03-01 2019-03-01 无线通信的方法、终端设备和网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/409,463 Continuation US20210385774A1 (en) 2019-03-01 2021-08-23 Wireless communication method, terminal device and network device

Publications (1)

Publication Number Publication Date
WO2020177040A1 true WO2020177040A1 (zh) 2020-09-10

Family

ID=72338169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/076773 WO2020177040A1 (zh) 2019-03-01 2019-03-01 无线通信的方法、终端设备和网络设备

Country Status (7)

Country Link
US (1) US20210385774A1 (zh)
EP (1) EP3914007A4 (zh)
JP (2) JP7403550B2 (zh)
KR (1) KR20210122306A (zh)
CN (3) CN113316267B (zh)
BR (1) BR112021016911A2 (zh)
WO (1) WO2020177040A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220217660A1 (en) * 2019-04-29 2022-07-07 Beijing Xiaomi Mobile Software Co., Ltd. Information transmission method and apparatus and computer-readable storage medium
US20220217665A1 (en) * 2019-04-29 2022-07-07 Beijing Xiaomi Mobile Software Co., Ltd. Information transmission method and apparatus, and computer readable storage medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114125999B (zh) * 2021-12-03 2024-02-09 星思连接(上海)半导体有限公司 一种小区接入方法及装置、小区广播方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180205585A1 (en) * 2017-01-17 2018-07-19 Qualcomm Incorporated Association between synchronization signal beams and reference signal beams
CN109392144A (zh) * 2017-08-11 2019-02-26 华为技术有限公司 通信方法和通信设备

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3737186B1 (en) * 2014-10-31 2023-06-28 Sony Group Corporation Wireless communication device and method of wireless communication
US9876604B2 (en) * 2015-05-06 2018-01-23 Qualcomm, Incorporated Channel bonding signaling to in-range devices
US20200205095A1 (en) * 2017-03-23 2020-06-25 Telefonaktiebolaget Lm Ericsson (Publ) Network node, wireless communication device, methods and computer programs
WO2018195777A1 (zh) * 2017-04-25 2018-11-01 Oppo广东移动通信有限公司 处理信号的方法和设备
US20180359149A1 (en) * 2017-06-08 2018-12-13 Sharp Laboratories Of America, Inc. Systems and methods for adding and modifying signaling radio bearers and data radio bearers that include numerology (sub-carrier spacing) information
TW201907680A (zh) * 2017-06-14 2019-02-16 美商Idac控股公司 無線網路中統一波束管理
WO2019050379A1 (en) * 2017-09-11 2019-03-14 Lg Electronics Inc. METHOD AND APPARATUS FOR TRANSMITTING DOWNLINK CONTROL INFORMATION IN WIRELESS COMMUNICATION SYSTEM
US10812202B2 (en) * 2017-10-02 2020-10-20 Qualcomm Incorporated Resources for channel measurements
EP3713136A4 (en) * 2017-11-17 2021-09-29 LG Electronics Inc. METHOD OF SENDING AND RECEIVING A REFERENCE SIGNAL AND DEVICE FOR IT
CN110034891B (zh) * 2018-01-12 2020-10-20 电信科学技术研究院有限公司 一种***信息配置方法和装置
US11115892B2 (en) * 2018-02-15 2021-09-07 Ofinno, Llc Beam failure information for radio configuration
US10785804B2 (en) * 2018-02-17 2020-09-22 Ofinno, Llc Bandwidth part configuration information
EP3537835A1 (en) * 2018-03-05 2019-09-11 ASUSTek Computer Inc. Method and apparatus of handling beam failure recovery in a wireless communication system
CN110365438B (zh) * 2018-03-26 2021-05-11 华为技术有限公司 信号传输方法、相关设备及***
US11330453B2 (en) * 2018-04-04 2022-05-10 Telefonaktiebolaget Lm Ericsson (Publ) Performing cell measurements
US11368956B2 (en) * 2018-04-05 2022-06-21 Qualcomm Incorporated Radio link management under bandwidth part switching
CN112567673A (zh) * 2018-08-09 2021-03-26 康维达无线有限责任公司 用于nr v2x的波束赋形和分组
US10993196B2 (en) * 2018-08-10 2021-04-27 Lenovo (Singapore) Pte. Ltd. Identifying synchronization signal/physical broadcast channel block occasions
KR20210042116A (ko) * 2018-08-10 2021-04-16 가부시키가이샤 엔티티 도코모 유저단말 및 무선 통신 방법
CN116963169A (zh) * 2018-12-04 2023-10-27 华为技术有限公司 一种通信方法及设备
WO2020146850A1 (en) * 2019-01-11 2020-07-16 Apple Inc. Discovery reference signal design for quasi co-location and frame timing information in new radio user equipment
CN111182562B (zh) * 2019-02-15 2021-08-10 维沃移动通信有限公司 一种测量处理方法、参数配置方法、终端和网络设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180205585A1 (en) * 2017-01-17 2018-07-19 Qualcomm Incorporated Association between synchronization signal beams and reference signal beams
CN109392144A (zh) * 2017-08-11 2019-02-26 华为技术有限公司 通信方法和通信设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "Enhancements to Initial Access and Mobility for NR-unlicensed", 3GPP TSG RAN WG1 MEETING #96 R1-1903322, 22 February 2019 (2019-02-22), XP051600997, DOI: 20191031150207A *
OPPO: "Enhancements to Initial Access Procedure for NR-U", 3GPP TSG RAN WG1 MEETING #96 R1-1901923, 16 February 2019 (2019-02-16), XP051599617, DOI: 20191031145905Y *
QUALCOMM INCORPORATED: "Initial Access and Mobility Procedures for NR Unlicensed", 3GPP TSG RAN WG1 MEETING #96 R1-1902986, 16 February 2019 (2019-02-16), XP051600683, DOI: 20191031145658Y *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220217660A1 (en) * 2019-04-29 2022-07-07 Beijing Xiaomi Mobile Software Co., Ltd. Information transmission method and apparatus and computer-readable storage medium
US20220217665A1 (en) * 2019-04-29 2022-07-07 Beijing Xiaomi Mobile Software Co., Ltd. Information transmission method and apparatus, and computer readable storage medium
US11956742B2 (en) * 2019-04-29 2024-04-09 Beijing Xiaomi Mobile Software Co., Ltd. Information transmission method and apparatus, and computer readable storage medium

Also Published As

Publication number Publication date
CN113316267B (zh) 2023-01-13
JP2022521747A (ja) 2022-04-12
KR20210122306A (ko) 2021-10-08
US20210385774A1 (en) 2021-12-09
EP3914007A1 (en) 2021-11-24
CN113316267A (zh) 2021-08-27
CN116321511A (zh) 2023-06-23
JP2023089155A (ja) 2023-06-27
CN112655258A (zh) 2021-04-13
BR112021016911A2 (pt) 2021-11-03
EP3914007A4 (en) 2022-03-02
JP7403550B2 (ja) 2023-12-22

Similar Documents

Publication Publication Date Title
CN113726496B (zh) 非授权频段上ssb的传输方法和设备
US20210385774A1 (en) Wireless communication method, terminal device and network device
JP7465289B2 (ja) 制御情報の伝送方法、端末装置及びネットワーク装置
US11483116B2 (en) Signal transmission method and device and terminal
WO2020150957A1 (zh) 用于非授权频谱的无线通信方法和设备
CN114339974B (zh) 无线通信的方法、终端设备和网络设备
CN113039842B (zh) 无线通信方法、终端设备和网络设备
WO2020103160A1 (zh) 无线通信方法、网络设备和终端设备
CN113170317A (zh) 用于非授权频谱的通信方法和设备
CN113905445A (zh) 一种d2d***中的通信方法及终端设备、网络设备
WO2021098570A1 (en) Method for determining prach occasion and terminal device, network device
CN112929975A (zh) 一种资源确定及配置方法、装置、终端、网络设备
WO2020164075A1 (zh) 无线通信的方法、终端设备和网络设备
KR20210089235A (ko) 무선 통신 방법과 단말 장치
US11856539B2 (en) Method and device for transmitting downlink control information
CN114172627B (zh) 无线通信的方法、网络设备和终端设备
WO2022021085A1 (zh) 一种信息指示方法及装置、终端设备、网络设备
WO2020248281A1 (zh) 无线通信的方法、终端设备和网络设备
CN113452495B (zh) 配置取消传输资源指示信息的方法、终端设备和网络设备
CN113056945A (zh) 一种信息生成及指示方法、装置、终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19918337

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021549354

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019918337

Country of ref document: EP

Effective date: 20210817

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021016911

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20217029115

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021126627

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 112021016911

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210826