WO2020149679A1 - 리튬 이차전지 및 이의 제조방법 - Google Patents

리튬 이차전지 및 이의 제조방법 Download PDF

Info

Publication number
WO2020149679A1
WO2020149679A1 PCT/KR2020/000829 KR2020000829W WO2020149679A1 WO 2020149679 A1 WO2020149679 A1 WO 2020149679A1 KR 2020000829 W KR2020000829 W KR 2020000829W WO 2020149679 A1 WO2020149679 A1 WO 2020149679A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
current collector
positive electrode
mixture
lithium secondary
Prior art date
Application number
PCT/KR2020/000829
Other languages
English (en)
French (fr)
Inventor
유민규
이경록
신지아
최상순
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202080008759.8A priority Critical patent/CN113273014A/zh
Priority to US17/422,583 priority patent/US20220102731A1/en
Priority to JP2021539358A priority patent/JP7242120B2/ja
Priority to EP20740822.0A priority patent/EP3893314B1/en
Publication of WO2020149679A1 publication Critical patent/WO2020149679A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0481Compression means other than compression means for stacks of electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0416Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/044Activating, forming or electrochemical attack of the supporting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/78Shapes other than plane or cylindrical, e.g. helical
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • Korean Patent Publication No. 10-2016-0053849 discloses a positive electrode active material and a secondary battery comprising the same.
  • the current collector particles are distributed between the electrode active materials, the problem of output reduction due to the increase in the distance between the current collector layer and the upper portion of the electrode active material layer can be solved.
  • the current collector in the form of particles is used instead of the conventional current collector layer, it is possible to manufacture an electrode having a high capacity and a high energy density compared to an electrode of the conventional coating method.
  • FIG. 3 is a schematic view for explaining a method of manufacturing a lithium secondary battery of the present invention.
  • the positive electrode 20 includes positive electrode current collector particles.
  • the spherical shape may be understood to encompass not only a complete spherical shape but also a substantial spherical shape.
  • a substantial spherical shape may be understood as a concept in which the particles are substantially spherical or include a slightly distorted spherical shape.
  • the porosity of the anode 20 may be 20% to 30%, preferably 22% to 28%, more preferably 24.5% to 25.5%.
  • the positive electrode 20 may have a porosity of the above-described level by using a particle-shaped current collector, and accordingly, the positive electrode active material and the positive electrode current collector particles may be packed to an excellent level, and the voids inside the positive electrode may be By reducing, it is possible to further improve the electrical connection of the positive electrode active materials. If a mesh-type current collector is used as the positive electrode current collector rather than a particle-type current collector, the incidence is inevitably generated between the positive electrode active materials and the mesh-type current collector, thereby increasing the void content inside the positive electrode. Therefore, the electrical connectivity of the positive electrode active materials is reduced, the resistance of the positive electrode is increased, and energy density may be reduced.
  • the negative electrode 30 is formed in another region inside the battery case 10 and includes a negative electrode active material and negative electrode current collector particles.
  • the cathode 30 may be formed in a region different from the region where the anode is formed, that is, another region in the battery case 10. That is, the positive electrode 20 and the negative electrode 30 are formed in different regions of the battery case 10 with the separator 11 as a boundary.
  • a metal lithium thin film may be used as the negative electrode active material.
  • both low-crystalline carbon and high-crystalline carbon may be used as the carbon material.
  • Soft carbon and hard carbon are typical examples of low crystalline carbon, and amorphous or plate-like, scaly, spherical or fibrous natural graphite or artificial graphite, and kissy graphite are examples of high crystalline carbon. graphite), pyrolytic carbon, mesophase pitch based carbon fibers, meso-carbon microbeads, mesophase pitches, and petroleum or coal tar pitch derived cokes).
  • the negative electrode current collector particles can impart an excellent effect to simplifying the manufacturing process of the battery and improving the output and capacity characteristics of the battery.
  • the negative electrode current collector particles may include copper in terms of promoting stability of the battery in consideration of the oxidation potential of at least one selected from the group consisting of aluminum, copper, stainless steel, nickel, and titanium, preferably the negative electrode active material. .
  • the positive electrode 20 and the negative electrode 30 may further include at least one additive selected from the group consisting of a binder and a conductive material independently of each other, and preferably further include a conductive material in terms of further improving conductivity. Can.
  • the binder may serve to improve adhesion between the active material particles and adhesion between the active material and the current collector particles.
  • Specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, and carboxymethyl cellulose (CMC) ), starch, hydroxypropyl cellulose, recycled cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene butadiene rubber (SBR), fluorine rubber, or various copolymers thereof, and one of these may be used alone or a mixture of two or more thereof.
  • the binder may be included in the positive electrode 20 or the negative electrode 30 at 1 to 10% by weight, preferably 3 to 8% by weight.
  • the porosity of the cathode 30 may be 25% to 35%, preferably 27% to 33%, more preferably 29.5% to 30.5%.
  • the negative electrode 30 may have a porosity of the above-described level by using a particle type current collector, so that the negative electrode active material and the negative electrode current collector particles can be packed to an excellent level, and the voids inside the negative electrode By reducing, it is possible to further improve the electrical connection of the negative electrode active materials. If a mesh-type current collector other than a particle-type current collector is used as the negative electrode current collector, an inevitably occurs between the negative electrode active materials and the mesh-type current collector, thereby increasing the void content inside the negative electrode. Therefore, there is a fear that the electrical connectivity of the negative electrode active materials is reduced, the resistance of the negative electrode is increased, and the energy density is reduced.
  • the porosity of the negative electrode 30 is realized by controlling the use of the negative electrode active material and the negative electrode current collector particles, the average particle diameter (D 50 ) and/or content of the negative electrode active material and the negative electrode current collector particles, and the degree of rolling when manufacturing a lithium secondary battery. Can be.
  • Porosity of cathode (%) ⁇ 1-(true density of cathode/electrode density of cathode) ⁇ 100
  • the true density of the negative electrode is the density of the negative electrode active material layer measured when the negative electrode is collected to a certain size and pressed until the thickness of the negative electrode does not change with the press equipment, and the electrode density of the negative electrode Is the density of the negative electrode active material layer measured by collecting the negative electrode to a certain size.
  • the electrolyte may include an organic solvent and a lithium salt.
  • the organic solvent may be used without particular limitation as long as it can serve as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • the organic solvent methyl acetate (methyl acetate), ethyl acetate (ethyl acetate), ⁇ -butyrolactone ( ⁇ -butyrolactone), ⁇ -caprolactone ( ⁇ -caprolactone), such as ester-based solvents; Ether-based solvents such as dibutyl ether or tetrahydrofuran; Ketone solvents such as cyclohexanone; Aromatic hydrocarbon-based solvents such as benzene and fluorobenzene; Dimethylcarbonate (DMC), diethylcarbonate (DEC), methylethylcarbonate (MEC), ethylmethylcarbonate (EMC), ethylene carbonate (EC), propylene carbonate (propylene carbonate, PC) and other carbonate-based solvents; Alcohol-based solvents such as ethyl
  • carbonate-based solvents are preferred, and cyclic carbonates (for example, ethylene carbonate or propylene carbonate) having high ionic conductivity and high dielectric constant that can improve the charge and discharge performance of the battery, and low-viscosity linear carbonate-based compounds (for example, a mixture of ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate) is more preferable.
  • the mixture of the cyclic carbonate and the chain carbonate in a volume ratio of about 1:1 to about 1:9 may be used to exhibit excellent electrolyte performance.
  • the lithium salt may be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery.
  • the lithium salt is LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAl0 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN(C 2 F 5 SO 3 ) 2 , LiN(C 2 F 5 SO 2 ) 2 , LiN(CF 3 SO 2 ) 2 .
  • LiCl, LiI, or LiB(C 2 O 4 ) 2 and the like can be used.
  • the concentration of the lithium salt is preferably used within the range of 0.1 to 2.0M. When the concentration of the lithium salt is included in the above range, since the electrolyte has an appropriate conductivity and viscosity, it can exhibit excellent electrolyte performance, and lithium ions can be effectively moved.
  • the electrolyte includes haloalkylene carbonate-based compounds such as difluoro ethylene carbonate, pyridine, and tree for the purpose of improving the life characteristics of the battery, suppressing the decrease in battery capacity, and improving the discharge capacity of the battery.
  • haloalkylene carbonate-based compounds such as difluoro ethylene carbonate, pyridine, and tree for the purpose of improving the life characteristics of the battery, suppressing the decrease in battery capacity, and improving the discharge capacity of the battery.
  • Ethylphosphite triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N,N-substituted imida
  • One or more additives such as zolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol, or aluminum trichloride may also be included. At this time, the additive may be included in an amount of 0.1 to 5% by weight based on the total weight of the electrolyte.
  • the present invention provides a battery module including the lithium secondary battery as a unit cell and a battery pack including the same.
  • the battery module or battery pack includes a power tool;
  • An electric vehicle including an electric vehicle (EV), a hybrid electric vehicle, and a plug-in hybrid electric vehicle (PHEV); Alternatively, it can be used as a power supply for any one or more medium-to-large devices in a power storage system.
  • EV electric vehicle
  • PHEV plug-in hybrid electric vehicle
  • the present invention provides a method for manufacturing a lithium secondary battery.
  • the method for manufacturing the lithium secondary battery may be the method for manufacturing the lithium secondary battery described above.
  • the method for manufacturing a lithium secondary battery of the present invention comprises the steps of preparing a battery case in which one region and the other region are separated by a separator; Preparing a first mixture comprising a positive electrode active material and a positive electrode current collector particle, and preparing a second mixture comprising a negative electrode active material and a negative electrode current collector particle; Injecting the first mixture into one region of the battery case, and injecting the second mixture into another region of the battery case; And rolling by applying pressure to the battery case in which the first mixture and the second mixture are injected.
  • current collector particles positive electrode current collector particles or negative electrode current collector particles
  • an electrode active material positive electrode active material or negative electrode active material
  • the manufacturing method of the lithium secondary battery of the present invention since the positive electrode and the negative electrode can be integrally manufactured in the battery case, there is no need for a process of separately manufacturing the positive electrode and the negative electrode and assembling them. Accordingly, the manufacturing method of the lithium secondary battery of the present invention can simplify the manufacturing process of the battery and improve productivity.
  • a current collector in a particle form is used instead of a conventional current collector layer, it is possible to manufacture an electrode having a high capacity and a high energy density compared to an electrode of the conventional coating method. Do.
  • the battery case 10 and the separator 11 have been described above.
  • the method of manufacturing a lithium secondary battery of the present invention comprises the steps of preparing a first mixture 20a comprising a positive electrode active material and positive electrode current collector particles, and preparing a second mixture 30a comprising a negative electrode active material and negative electrode current collector particles. It includes.
  • the first mixture 20a may be injected into a region within the battery case 10 as shown in FIG. 2, and may be formed into an anode after a process such as rolling.
  • the first mixture 20a includes a positive electrode active material and positive electrode current collector particles.
  • the positive electrode active material may be included in the first mixture (20a) 80% to 98% by weight, preferably 82% to 94% by weight, more preferably 87% to 91% by weight. When in the above content range, it is preferable in terms of energy density and power improvement.
  • the positive electrode current collector particles may be included in the first mixture 20a at 1% to 15% by weight, preferably 1.5% to 13% by weight, more preferably 4% to 8% by weight, and the content When in the range, the distance between the active material and the current collector is maintained at an appropriate level to improve the output characteristics of the battery, and at the same time, it is more preferable to achieve high energy density of the positive electrode active material.
  • positive electrode active material and the positive electrode current collector particles may be as described above.
  • the second mixture 30a may be injected into a region different from the region into which the first mixture 20a is injected, that is, another region within the battery case 10 and subjected to a process such as rolling. After that, a cathode may be formed. That is, the first mixture 20a and the second mixture 30a are injected into different regions of the battery case 10 around the separator 11.
  • the second mixture 30a includes a negative electrode active material and negative electrode current collector particles.
  • the negative active material may be included in the second mixture 30a at 80% to 98% by weight, preferably 82% to 94% by weight, and more preferably 87% to 91% by weight. When in the above content range, energy density and output can be improved, which is preferable.
  • the negative electrode current collector particles may be included in the second mixture 30a at 1% to 15% by weight, preferably 1.5% to 13% by weight, and more preferably 4% to 8% by weight. When in the above-mentioned content range, it is possible to maintain the distance between the active material and the current collector at an appropriate level to improve the output characteristics of the battery and at the same time to achieve high energy density of the negative electrode active material.
  • negative electrode active material and the negative electrode current collector particles may be as described above.
  • the first mixture 20a and the second mixture 30a may further include at least one additive selected from the group consisting of a binder and a conductive material independently of each other, and preferably a conductive material in terms of further improving conductivity. It may further include.
  • the conductive material may be included in 1 to 10% by weight, preferably 3 to 8% by weight relative to the total weight of the first mixture (20a) or the second mixture (30a).
  • the description of the conductive material may be as described above.
  • the binder may be included in 1 to 10% by weight, preferably 3 to 8% by weight relative to the total weight of the first mixture (20a) or the second mixture (30a).
  • the description of the binder may be as described above.
  • the method of manufacturing a lithium secondary battery of the present invention injects the first mixture 20a into one region of the battery case 10, and the second mixture 30a into the other region of the battery case 10 ).
  • the injection of the first mixture 20a and the second mixture 30a may be performed simultaneously or separately.
  • the first mixture 20a and the second mixture 30a When the first mixture 20a and the second mixture 30a are injected, a process of vibrating the battery case 10 may be further performed. As a result, the first mixture 20a and the second mixture 30a can be smoothly injected into the battery case 10, and the pores inside the mixture can be reduced as vibration is performed during injection, so that high energy density is achieved. And high capacity.
  • the vibration process may be performed by vibrating the battery case at a frequency of 15 to 45 Hz, preferably 20 to 35 Hz in terms of smooth injection into the battery case and achieving high energy density.
  • the first mixture 20a and the second mixture 30a may be injected into the battery case 10 in the form of a slurry or powder independently of each other.
  • the first mixture (20a) and the second mixture (30a) may be injected into the battery case 10 in a powder form, in which case the time for performing the drying step, which will be described later, will be shorter than in the case of being injected in a slurry form. It is preferable because it is possible to simplify the process by performing a rolling step and a drying step together.
  • a separate binder may not be used for the binding force of the electrode active material. The problem of rising resistance of the electrode can be prevented.
  • the first mixture 20a and the second mixture 30a may not include separate solvents.
  • the first mixture 20a is at least one selected from the group consisting of a positive electrode active material, a positive electrode current collector particle, and optionally a binder and a conductive material.
  • the second mixture (30a) may be made of at least one additive selected from the group consisting of a negative electrode active material, negative electrode current collector particles and optionally a binder and a conductive material.
  • the first mixture 20a and the second mixture 30a are in the form of a slurry
  • the first mixture 20a and the second mixture 30a are electrode active materials (positive electrode active material or negative electrode active material), electrode current collector particles (positive electrode collector)
  • electrode active materials positive electrode active material or negative electrode active material
  • electrode current collector particles positive electrode collector
  • a solvent may be further included.
  • the solvent may include at least one selected from the group consisting of water and NMP (N-methyl-2-pyrrolidone).
  • the solvent is of a solid content comprising at least one additive selected from the group consisting of electrode active material (anode active material or cathode active material), electrode current collector particles (anode current collector particles or cathode current collector particles) and optionally a binder and a conductive material.
  • the concentration may be included in the first mixture 20a or the second mixture 30a such that the concentration is 50% to 95% by weight, preferably 70% to 90% by weight.
  • the method of manufacturing a lithium secondary battery of the present invention includes rolling by applying pressure to the battery case 10 into which the first mixture 20a and the second mixture 30a are injected.
  • a rolling process is performed by applying pressure to the battery case 10 with a pressing means or the like.
  • voids and the like existing inside the battery case 10 may be removed, and one region and the other region in the battery case may be pressed by pressing the battery case 10 that may expand due to injection of an electrode active material.
  • the positive electrode and the negative electrode through the rolling process may be in close contact with each other with a separator therebetween, and thus, the exchange of lithium ions may be smoothly performed.
  • the manufacturing method of the lithium secondary battery of the present invention is preferable because the manufacturing process of the battery can be simplified because it is possible to simultaneously manufacture the positive electrode and the negative electrode by the rolling process.
  • Pressure at the time of the rolling is 400kgf / cm 2 to 600kgf / cm 2, preferably from 450kgf / cm 2 to 550kgf / cm 2 may be a battery, producing a high energy density without damaging the electrode active material when rolled in the above-described pressure range Is possible.
  • the rolling process may be performed for 2 seconds to 60 seconds, preferably 3 seconds to 30 seconds, more preferably 5 seconds to 10 seconds, and in this case, the rolling process may be smoothly performed without damaging the electrode active material. desirable.
  • the method for manufacturing a lithium secondary battery of the present invention may further include drying the battery case 10 in which the first mixture 20a and the second mixture 30a are injected.
  • the first mixture 20a and the second mixture 30a may be dried by applying heat inside the battery case 10 in which the first mixture 20a and the second mixture 30a are injected.
  • the drying may be performed at 65°C to 90°C, preferably 75°C to 85°C.
  • the drying may be performed before the rolling, or may be performed simultaneously with the rolling. Particularly, when the rolling step and the drying step are performed simultaneously, the process can be further simplified, which is preferable.
  • the drying may be performed before or simultaneously with rolling, preferably rolling and It can be performed simultaneously. That is, when the first mixture 20a and the second mixture 30a are injected in a powder form, the time required for drying can be shortened, so that drying can be completed simultaneously with rolling. Specifically, when the first mixture 20a and the second mixture 30a are injected in a powder form, the drying is 2 seconds to 60 seconds, preferably 3 seconds to 30 seconds, more preferably 5 seconds to 10 seconds Can be performed during.
  • the drying step may be performed before the rolling step in terms of sufficiently securing a drying time.
  • the drying is 5 minutes to 30 minutes for sufficient drying of the first mixture 20a and the second mixture 30a. , Preferably 7 minutes to 15 minutes.
  • the method for manufacturing a lithium secondary battery of the present invention may further include injecting an electrolyte into the battery case 10 in which the rolling is performed.
  • the electrolyte has been described above.
  • the method for manufacturing a lithium secondary battery of the present invention may further include sealing the battery case 10 in which the electrolyte is injected.
  • the sealing step may include a step of evacuating the inside of the battery case 10 in which the electrolyte is injected, thereby effectively removing bubbles or voids existing in the battery case 10 to further improve energy density. I can do it.
  • An aluminum pouch type battery case was prepared.
  • a propylene polymer separator (thickness 15 ⁇ m) was formed to separate one region and the other region.
  • LiNi 0.8 Co 0.1 Mn 0.1 O 2 (average particle diameter (D 50 ) 12 ⁇ m) as the positive electrode active material, spherical aluminum particles (average particle diameter (D 50 ) 2 ⁇ m) as the positive electrode current collector particles, and acetylene black 90 as the conductive material:
  • a first mixture in powder form was prepared by mixing in a weight ratio of 5:5.
  • the first mixture and the second mixture were respectively injected into one region and the other region of the battery case.
  • the battery case was vibrated at 30 Hz.
  • the battery case was dried simultaneously with rolling to form an anode and a cathode.
  • the rolling was performed at a surface pressure of 500 kgf/cm 2 , drying was performed at 80° C., and rolling and drying were performed for 7 seconds.
  • LiPF 6 was dissolved in a solvent in which ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) were mixed at a volume ratio of 30:40:30 to a concentration of 1 M.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • the thickness of the positive electrode was 130 ⁇ m and the thickness of the negative electrode was 145 ⁇ m.
  • the porosity of the positive electrode was 25%, and the porosity of the negative electrode was 30%.
  • LiNi 0.8 Co 0.1 Mn 0.1 O 2 (average particle diameter (D 50 ) 12 ⁇ m) as the positive electrode active material, spherical aluminum particles (average particle diameter (D 50 ) 2 ⁇ m) as the positive electrode current collector particles, and acetylene black 93 as the conductive material: 2: 5 was used as the first mixture to one (powder) mixed in a weight ratio of the artificial graphite (average particle size (D 50) 18 ⁇ m), the anode current collector particles as copper particles (average particle size as the negative electrode active material (D 50 ) 2 ⁇ m), a lithium secondary battery was prepared in the same manner as in Example 1, except that acetylene black as a conductive material was mixed in a weight ratio of 93:2:5 (powder form) as the second mixture.
  • the anode had a porosity of 26% and the cathode had a porosity of 31%.
  • LiNi 0.8 Co 0.1 Mn 0.1 O 2 (average particle diameter (D 50 ) 12 ⁇ m) as the positive electrode active material, spherical aluminum particles (average particle diameter (D 50 ) 2 ⁇ m) as the positive electrode current collector particles, and acetylene black 83 as the conductive material: 12:05 weight ratio, would be (in powder form), the use of a first mixture, and a negative electrode active material artificial graphite (average particle size (D 50) 18 ⁇ m), as a whole, the particles mixed in the negative electrode collector of copper particles (average particle diameter (D 50 ) 2 ⁇ m), a lithium secondary battery was manufactured in the same manner as in Example 1, except that acetylene black as a conductive material was mixed in a weight ratio of 83:12:5 as a second mixture (powder form).
  • the anode had a porosity of 23% and the cathode had a porosity of 29%.
  • the positive electrode active material LiNi 0.8 Co 0.1 Mn 0.1 O 2 (average particle diameter (D 50 ) 14 ⁇ m) and the second positive electrode active material LiNi 0.8 Co 0.1 Mn 0.1 O 2 (average particle diameter (D 50 )
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that 4 ⁇ m) was mixed in a weight ratio of 80:20.
  • the anode had a porosity of 24% and the cathode had a porosity of 29%.
  • LiNi 0.8 Co 0.1 Mn 0.1 O 2 (average particle diameter (D 50 ) 12 ⁇ m) as a positive electrode active material, acetylene black as a conductive material, and PVdF as a binder in an N-methylpyrrolidone solvent at a weight ratio of 90:5:5
  • An anode slurry was prepared, which was coated on one surface of an aluminum current collector (thickness: 15 ⁇ m), dried at 130° C., and rolled to prepare an anode. The thickness of the anode was 130 ⁇ m.
  • An electrode assembly is manufactured by interposing a polypropylene separator (thickness 15 ⁇ m) between the anode and the cathode for a secondary battery prepared above, and placing the electrode assembly inside an aluminum pouch type battery case, and then injecting electrolyte into the case to lithium.
  • a secondary battery was prepared.
  • As the electrolyte LiPF 6 was dissolved in a solvent in which ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) were mixed at a volume ratio of 30:40:30 to a concentration of 1 M.
  • the anode had a porosity of 25%, and the cathode had a porosity of 30%.
  • the lithium secondary batteries of Examples 1 to 4 were evaluated to have low resistance and excellent output characteristics because the current collector particles can be evenly distributed between the electrode active materials as the current collector is used in the form of particles.
  • the lithium secondary batteries prepared in Examples 1 to 4 and Comparative Example 1 were initially charged (0.2C CC/CV charging 4.2V/0.05C cut) and evaluated for discharge capacity after initial discharge (0.2C CC discharge 2.5V cut). Did.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

본 발명은 분리막에 의해 내부의 일 영역과 타 영역이 구분되는 전지 케이스; 상기 전지 케이스 내부의 일 영역에 형성되며, 양극 활물질 및 양극 집전체 입자를 포함하는 양극; 및 상기 전지 케이스 내부의 타 영역에 형성되며, 음극 활물질 및 음극 집전체 입자를 포함하는 음극;을 포함하는 리튬 이차전지에 관한 것이다.

Description

리튬 이차전지 및 이의 제조방법
관련출원과의 상호인용
본 출원은 2019년 1월 16일 자 한국 특허 출원 제10-2019-0005688호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 리튬 이차전지 및 이의 제조방법에 관한 것이다.
최근 휴대전화, 노트북 컴퓨터, 전기 자동차 등 전지를 사용하는 전자기구의 급속한 보급에 수반하여 소형, 경량이면서도 상대적으로 고용량인 이차전지의 수요가 급속히 증대되고 있다. 특히, 리튬 이차전지는 경량이고 고에너지 밀도를 가지고 있어 휴대 기기의 구동 전원으로서 각광을 받고 있다. 이에 따라, 리튬 이차전지의 성능 향상을 위한 연구개발 노력이 활발하게 진행되고 있다.
리튬 이차전지는 양극과 음극이 서로 전기화학적으로 반응하여 전기를 생산하는 디바이스로, 종래에는 전극 집전체층 상에 전극 활물질, 도전재, 바인더 등을 포함하는 전극 슬러리를 코팅한 후, 압연, 건조하는 방식으로 전극을 제조하였다.
한편, 최근 리튬 이차전지의 고용량, 고출력 및 저가화에 따른 수요가 증가하면서, 전지 내 전극 활물질 로딩량을 늘릴 필요가 있다. 그러나, 상기와 같은 종래 공정을 통해 전극을 제조할 경우, 코팅, 압연, 건조 등 여러 공정을 수행함에 따라 전지 불량 증가의 문제가 있으며, 상기 공정 상의 한계에 따라 전극 활물질 로딩량의 불균형, 전극 활물질층의 집전체층에 대한 접착 불량 문제가 발생할 우려가 있다. 또한, 종래 공정의 경우, 집전체층과 전극 활물질층의 상부와의 거리로 인해 전지의 출력 특성이 급격히 저하되는 현상이 발생하여 문제가 된다.
한국공개특허 제10-2016-0053849호는 양극 활물질 및 이를 포함하는 이차 전지를 개시하고 있다.
[선행기술문헌]
[특허문헌]
한국공개특허 제10-2016-0053849호
본 발명의 일 과제는 집전체로서 종래 판형의 집전체 대신 집전체 입자를 사용하여, 전지의 고용량 및 고에너지 밀도를 달성할 수 있는 리튬 이차전지를 제공하는 것이다.
본 발명의 다른 과제는 종래 전극 제조 공정에서 필수적이었던 활물질층 제조를 위한 코팅 공정이 생략되어 공정이 단순화되고 생산성이 향상된 리튬 이차전지의 제조방법을 제공하는 것이다.
본 발명은 분리막에 의해 내부의 일 영역과 타 영역이 구분되는 전지 케이스; 상기 전지 케이스 내부의 일 영역에 형성되며, 양극 활물질 및 양극 집전체 입자를 포함하는 양극; 및 상기 전지 케이스 내부의 타 영역에 형성되며, 음극 활물질 및 음극 집전체 입자를 포함하는 음극;을 포함하는 리튬 이차전지를 제공한다.
또한, 본 발명은 분리막에 의해 내부의 일 영역과 타 영역이 구분되는 전지 케이스를 준비하는 단계; 양극 활물질 및 양극 집전체 입자를 포함하는 제1 혼합물을 제조하고, 음극 활물질 및 음극 집전체 입자를 포함하는 제2 혼합물을 제조하는 단계; 상기 전지 케이스의 일 영역에 상기 제1 혼합물을 주입하고, 상기 전지 케이스의 타 영역에 상기 제2 혼합물을 주입하는 단계; 및 상기 제1 혼합물 및 상기 제2 혼합물이 주입된 전지 케이스에 압력을 가해 압연하는 단계;를 포함하는 리튬 이차전지의 제조방법을 제공한다.
본 발명의 리튬 이차전지에 따르면, 전극 활물질들 사이에 집전체 입자가 분포되어 있으므로, 종래 집전체층과 전극 활물질층의 상부 사이의 거리 증가로 인한 출력 감소 문제가 해소될 수 있다.
또한, 본 발명의 리튬 이차전지에 따르면, 종래의 집전체층 대신 입자 형태의 집전체를 사용하므로, 종래 코팅 방식의 전극과 비교할 때 동일 두께 대비 고용량 및 고에너지 밀도의 전극 제조가 가능하다.
또한, 본 발명의 리튬 이차전지의 제조방법에 따르면, 종래 판형의 집전체층이 아닌 집전체 입자를 전극 활물질과 혼합하여, 이를 전지 케이스에 주입하는 공정을 수행한다. 즉, 전극 집전체층 상에 전극 활물질을 코팅하는 공정이 수행되지 않으므로, 전지의 제조 공정이 단순화될 수 있다.
또한, 본 발명의 리튬 이차전지의 제조방법에 따르면, 전지 케이스 내에서 양극과 음극이 일시에 제조될 수 있으므로, 양극과 음극을 별도로 제조하고 이들을 조립하는 공정이 필요하지 않다. 이에 따라 본 발명의 리튬 이차전지의 제조방법은 전지의 제조 공정이 단순화되고 생산성이 향상될 수 있다.
도 1은 본 발명의 리튬 이차전지를 설명하기 위한 개략적인 도면이다.
도 2는 본 발명의 리튬 이차전지의 제조방법을 설명하기 위한 개략적인 도면이다.
도 3은 본 발명의 리튬 이차전지의 제조방법을 설명하기 위한 개략적인 도면이다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 명세서에서 평균 입경(D50)은 입자의 입경 분포 곡선에 있어서, 체적 누적량의 50%에 해당하는 입경으로 정의할 수 있다. 상기 평균 입경(D50)은 예를 들어, 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 상기 레이저 회절법은 일반적으로 서브미크론(submicron) 영역에서부터 수 mm 정도의 입경의 측정이 가능하며, 고 재현성 및 고 분해성의 결과를 얻을 수 있다.
이하, 본 발명에 대해 구체적으로 설명한다.
<리튬 이차전지>
이하, 본 발명을 도면을 참조하여 상세히 설명하기로 한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 기재된 구성은 본 발명의 바람직한 일 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
도 1은 본 발명의 리튬 이차전지를 개략적으로 설명하기 위한 도면이다.
도 1을 참조하면, 본 발명의 리튬 이차전지는 분리막(11)에 의해 내부의 일 영역과 타 영역이 구분되는 전지 케이스(10); 전지 케이스(10) 내부의 일 영역에 형성되며, 양극 활물질 및 양극 집전체 입자를 포함하는 양극(20); 및 전지 케이스(10) 내부의 타 영역에 형성되며, 음극 활물질 및 음극 집전체 입자를 포함하는 음극(30);을 포함한다.
종래의 집전체층 및 전극 활물질층으로 이루어진 전극의 경우, 전극 하부에 집전체층이 존재함에 따라, 전극 활물질층의 상부에 존재하는 전극 활물질과 집전체층 사이의 거리 증가로 인한 출력 감소, 저항 증가가 문제된다. 그러나, 본 발명의 리튬 이차전지에 따르면, 판형의 집전체가 아닌 입자 형태의 집전체가 전극 활물질과 혼합된 형태이므로, 전극 내 존재하는 전극 활물질이 집전체 입자와 균일한 수준으로 접촉될 수 있으므로 전지의 출력 향상 및 저항 저감에 바람직하다.
또한, 본 발명의 리튬 이차전지에 따르면, 판형의 집전체 대신 입자 형태의 집전체를 사용하므로, 종래 전극과 비교할 때 동일 두께 대비 고용량 및 고에너지 밀도의 전극 제조가 가능하다.
전지 케이스(10)는 제조된 전지의 외장재 역할을 위해 제공되며, 통상의 리튬 이차전지에 사용되는 전지 케이스가 제한 없이 사용될 수 있다. 구체적으로, 전지 케이스(10)는 파우치 또는 캔 형태일 수 있으며, 구체적으로 알루미늄 파우치 또는 캔 형태일 수 있다.
전지 케이스(10)는 케이스 외부로의 절연을 위해, 내부에 부도체 물질을 포함하는 코팅층을 포함할 수 있다.
전지 케이스(10)는 분리막(11)에 의해 내부의 일 영역과 타 영역이 구분될 수 있다. 분리막(11)은 음극과 양극을 분리하여 단락을 방지하며, 리튬 이온의 이동 통로를 제공하는 기능을 수행할 수 있다.
분리막(11)은 도 1에 도시된 바와 같이 전지 케이스(10)의 일 영역과 타 영역을 구분하며, 전지 케이스(10) 내의 일 영역과 타 영역은 각각 양극과 음극이 형성되는 장소로 제공될 수 있다.
분리막(11)은 당분야에서 일반적으로 사용되는 분리막이 제한 없이 사용될 수 있다. 분리막(11)은 전해질의 이온 이동에 대해 저저항이면서도 전해액 함습 능력이 우수한 것이 바람직하며, 다공성 고분자 필름, 예를 들어 에틸렌 중합체, 프로필렌 중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또한, 분리막(11)은 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또한, 분리막(11)은 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 분리막이 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
전지 케이스(10)는 메쉬 구조의 집전체를 더 포함할 수 있다. 상기 메쉬 구조의 집전체는 후술하는 양극 집전체 입자 및 음극 집전체 입자에 대하여 추가 집전체로 제공될 수 있으며, 상기 양극 집전체 입자 및 상기 집전체 입자와 함께 도전성 향상 및 양극 활물질/음극 활물질에 대한 접착력 향상 효과를 구현할 수 있다.
상기 메쉬 구조의 집전체는 양극 활물질 또는 음극 활물질의 로딩량 향상, 고에너지 밀도 달성 측면에서, 단층 구조일 수 있다. 구체적으로, 상기 메쉬 구조의 집전체의 두께는 10nm 내지 50nm, 바람직하게는 20nm 내지 40nm일 수 있다.
전지 케이스(10)는 생성된 전자를 외부로 전달하기 위한 양극 탭(12a), 음극 탭(12b)을 더 포함할 수 있다.
양극(20)은 전지 케이스(10) 내부의 일 영역에 형성되며, 양극 활물질 및 양극 집전체 입자를 포함한다.
상기 양극 활물질은 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물로서, 구체적으로는 코발트, 망간, 니켈 또는 알루미늄과 같은 1종 이상의 금속과 리튬을 포함하는 리튬 복합금속 산화물을 포함할 수 있다. 보다 구체적으로, 상기 리튬 복합금속 산화물은 리튬-망간계 산화물(예를 들면, LiMnO2, LiMn2O4 등), 리튬-코발트계 산화물(예를 들면, LiCoO2 등), 리튬-니켈계 산화물(예를 들면, LiNiO2 등), 리튬-니켈-망간계 산화물(예를 들면, LiNi1-YMnYO2(여기에서, 0<Y<1), LiMn2-zNizO4(여기에서, 0<Z<2) 등), 리튬-니켈-코발트계 산화물(예를 들면, LiNi1-Y1CoY1O2(여기에서, 0<Y1<1) 등), 리튬-망간-코발트계 산화물(예를 들면, LiCo1-Y2MnY2O2(여기에서, 0<Y2<1), LiMn2-z1Coz1O4(여기에서, 0<Z1<2) 등), 리튬-니켈-망간-코발트계 산화물(예를 들면, Li(NipCoqMnr1)O2(여기에서, 0<p<1, 0<q<1, 0<r1<1, p+q+r1=1) 또는 Li(Nip1Coq1Mnr2)O4(여기에서, 0<p1<2, 0<q1<2, 0<r2<2, p1+q1+r2=2) 등), 또는 리튬-니켈-코발트-전이금속(M) 산화물(예를 들면, Li(Nip2Coq2Mnr3MS2)O2(여기에서, M은 Al, Fe, V, Cr, Ti, Ta, Mg 및 Mo로 이루어지는 군으로부터 선택되고, p2, q2, r3 및 s2는 각각 독립적인 원소들의 원자분율로서, 0<p2<1, 0<q2<1, 0<r3<1, 0<s2<1, p2+q2+r3+s2=1이다) 등) 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 화합물이 포함될 수 있다. 이중에서도 전지의 용량 특성 및 안정성을 높일 수 있다는 점에서 상기 리튬 복합금속 산화물은 LiCoO2, LiMnO2, LiNiO2, 리튬 니켈망간코발트 산화물(예를 들면, Li(Ni0.6Mn0.2Co0.2)O2, Li(Ni0.5Mn0.3Co0.2)O2, 또는 Li(Ni0.8Mn0.1Co0.1)O2 등), 또는 리튬 니켈코발트알루미늄 산화물(예를 들면, Li(Ni0.8Co0.15Al0.05)O2 등) 등일 수 있으며, 리튬 복합금속 산화물을 형성하는 구성원소의 종류 및 함량비 제어에 따른 개선 효과의 현저함을 고려할 때 상기 리튬 복합금속 산화물은 Li(Ni0.6Mn0.2Co0.2)O2, Li(Ni0.5Mn0.3Co0.2)O2, Li(Ni0.7Mn0.15Co0.15)O2 또는 Li(Ni0.8Mn0.1Co0.1)O2 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
상기 양극 활물질은 양극(20)에 80중량% 내지 98중량%, 바람직하게는 82중량% 내지 94중량%, 보다 바람직하게는 87중량% 내지 91중량%로 포함될 수 있다. 상기 함량 범위일 때, 에너지 밀도 및 출력 향상 측면에서 바람직하다.
상기 양극 활물질의 평균 입경(D50)은 2㎛ 내지 20㎛, 바람직하게는 3㎛ 내지 16㎛일 수 있으며, 상술한 입경 범위에 있을 때, 압연 밀도를 높여 에너지 밀도를 증가시킬 수 있다는 측면에서 바람직하다.
상기 양극 활물질은 서로 다른 제1 양극 활물질 및 제2 양극 활물질을 포함할 수 있다. 구체적으로 상기 제1 양극 활물질 및 상기 제2 양극 활물질은 서로 다른 평균 입경(D50)을 가질 수 있으며, 상기 제1 양극 활물질의 평균 입경(D50)이 상기 제2 양극 활물질의 평균 입경(D50)보다 클 수 있다. 즉, 대입경인 제1 양극 활물질과 소입경인 제2 양극 활물질을 혼합하는 바이모달 양극 활물질을 사용함으로써 압연 성능을 높이고 에너지 밀도를 더욱 증가시킬 수 있다.
상기 제1 양극 활물질의 평균 입경(D50)은 10㎛ 내지 18㎛, 바람직하게는 12㎛ 내지 16㎛일 수 있으며, 상기 제2 양극 활물질의 평균 입경(D50)은 2㎛ 내지 8㎛, 바람직하게는 3㎛ 내지 6㎛일 수 있으며, 상술한 입경 범위에 있을 때 후술하는 집전체 입자와의 혼합에 따라 압연 성능 및 에너지 밀도를 더욱 향상시킬 수 있어 바람직하다.
상기 양극 활물질은 상기 제1 양극 활물질 및 상기 제2 양극 활물질을 60:40 내지 90:10의 중량비, 바람직하게는 70:30 내지 85:15의 중량비로 포함할 수 있으며, 이 경우 전술한 압연 밀도 및 에너지 밀도 향상 효과가 우수한 수준으로 발휘될 수 있다.
양극(20)은 양극 집전체 입자를 포함한다.
본 발명은 판형이 아닌 입자 형태의 집전체 입자를 양극 집전체 또는 음극 집전체로 사용한다. 통상의 전극 제조 공정의 경우, 일반적으로 판형의 집전체층 상에 전극 활물질(양극 활물질 또는 음극 활물질)을 로딩 및 코팅하여 전극을 제조하는데, 코팅 공정을 수행함에 따른 전극 활물질 로딩량의 불균형, 전극 활물질과 집전체의 거리 증가에 따른 접착 불량, 출력 감소 등이 문제가 된다. 그러나, 본 발명은 집전체를 입자 형태로 사용하며, 집전체 입자가 전극 활물질과 혼합되어 전극 활물질들 사이에 분포되므로, 이로부터 제조된 리튬 이차전지는 전극 활물질과 집전체 입자가 서로 균일하게 거리를 유지할 수 있어 전극 활물질과 집전체의 거리 증가에 따른 출력 감소, 결합력 감소 문제가 해소되고, 또한 전극 활물질 로딩량의 불균형, 전극 활물질의 접착 불량 문제가 방지될 수 있다.
또한, 본 발명의 경우, 판형 집전체를 사용하는 통상의 전극에 비해, 동일 부피 대비 높은 수준으로 전극 활물질의 로딩이 가능하므로 고용량 및 고에너지 밀도의 전지 제조가 가능하다.
상기 양극 집전체 입자는 알루미늄, 구리, 스테인레스 스틸, 니켈 및 티타늄으로 이루어진 군에서 선택된 적어도 1종, 바람직하게는 양극 활물질의 산화 전위를 고려하여 전지의 안정성을 도모하는 측면에서 알루미늄을 포함할 수 있다.
상기 양극 집전체 입자의 평균 입경(D50)은 0.5㎛ 내지 3㎛, 바람직하게는 1㎛ 내지 2.5㎛일 수 있다. 상술한 범위에 있을 때, 양극 활물질과 접촉하는 양극 집전체의 표면적을 증대하는 측면에서 바람직하고, 양극 활물질 입자와 혼합될 때 압연 밀도를 더욱 향상시킬 수 있어 바람직하다.
상기 양극 집전체 입자는 양극(20)에 1중량% 내지 15중량%, 바람직하게는 1.5중량% 내지 13중량%, 보다 바람직하게는 4중량% 내지 8중량%로 포함될 수 있고, 상기 함량 범위에 있을 때, 활물질과 집전체의 거리를 적정 수준으로 유지하여 전지의 출력 특성을 향상시킬 수 있음과 동시에 양극 활물질의 고에너지 밀도 달성을 도모할 수 있어 더욱 바람직하다.
상기 양극 집전체 입자는 구형, 섬유형, 및 판상형으로 이루어진 군에서 선택된 적어도 1종, 바람직하게는 구형 및 섬유형으로 이루어진 군에서 선택된 적어도 1종일 수 있으며, 더 바람직하게는 양극 활물질과의 접촉 표면적을 더 향상시키는 측면에서 구형일 수 있다.
본 명세서에서 상기 구형이란 완전한 구 형상뿐만 아니라 실질적인 구 형상을 포괄하는 것으로 이해될 수 있다. 이 때 실질적인 구 형상이란 상기 입자가 거의 구 형상이거나 다소 찌그러진 구 형상을 포함하는 개념으로 이해될 수 있다.
양극(20)의 공극률은 20% 내지 30%, 바람직하게는 22% 내지 28%, 더 바람직하게는 24.5% 내지 25.5%일 수 있다. 양극(20)은 입자 형태의 집전체를 사용함에 따라 전술한 수준의 공극률을 가질 수 있으며, 이에 따라 양극 활물질과 양극 집전체 입자들이 우수한 수준으로 팩킹(packing)될 수 있고, 양극 내부의 공극을 감소시켜 양극 활물질들의 전기적 연결을 더욱 향상시킬 수 있다. 만일 양극 집전체로서 입자 형태의 집전체가 아닌 메쉬 형태의 집전체를 양극에 사용할 경우에는, 필연적으로 양극 활물질들과 메쉬 형태 집전체 사이에 들뜸이 발생할 수 밖에 없어 양극 내부의 공극 함량이 증가하게 되므로, 양극 활물질들의 전기적 연결성이 감소되고, 양극의 저항이 증가하며, 에너지 밀도가 감소될 우려가 있다.
상기 양극(20)의 공극률은 양극 활물질 및 양극 집전체 입자의 사용, 양극 활물질 및 양극 집전체 입자의 평균 입경(D50) 및/또는 함량, 리튬 이차전지 제조 시의 압연 정도 등을 조절하여 구현될 수 있다.
본 명세서에서 양극의 공극률은 하기 수학식 1에 의해 계산될 수 있다.
[수학식 1]
양극의 공극률(%) = {1-(양극의 진밀도/양극의 전극 밀도)}× 100
상기 수학식 1에서, 양극의 진밀도(true density)는 양극을 일정 크기로 채취하여 프레스 장비로 양극의 두께가 변화하지 않을 때까지 눌렀을 때 측정된 양극 활물질층의 밀도이고, 상기 양극의 전극 밀도는 양극을 일정 크기로 채취하여 측정된 양극 활물질층의 밀도이다.
음극(30)은 전지 케이스(10) 내부의 타 영역에 형성되며, 음극 활물질 및 음극 집전체 입자를 포함한다.
음극(30)은 도 1에 도시된 바와 같이, 양극이 형성된 영역과는 다른 영역, 즉 전지 케이스(10) 내의 타 영역에 형성될 수 있다. 즉, 양극(20)과 음극(30)은 분리막(11)을 경계로 전지 케이스(10)의 서로 다른 영역에서 형성된다.
상기 음극 활물질은 당분야에서 일반적으로 사용되는 음극 활물질이 제한 없이 사용될 수 있고, 예를 들면 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물이 사용될 수 있다. 구체적인 예로는 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소질 재료; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 등 리튬과 합금화가 가능한 금속질 화합물; SiOβ(0 < β < 2), SnO2, 바나듐 산화물, 리튬 바나듐 산화물과 같이 리튬을 도프 및 탈도프할 수 있는 금속산화물; 또는 Si-C 복합체 또는 Sn-C 복합체과 같이 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또한, 상기 음극 활물질로서 금속 리튬 박막이 사용될 수도 있다. 또, 탄소재료는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 무정형, 판상, 인편상, 구형 또는 섬유형의 천연 흑연 또는 인조 흑연, 키시흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.
상기 음극 활물질은 음극(30)에 80중량% 내지 98중량%, 바람직하게는 82중량% 내지 94중량%, 보다 바람직하게는 87중량% 내지 91중량%로 포함될 수 있다. 상기 함량 범위에 있을 때, 에너지 밀도 및 출력을 향상시킬 수 있어 바람직하다.
상기 음극 활물질의 평균 입경(D50)은 10㎛ 내지 25㎛, 바람직하게는 15㎛ 내지 20㎛일 수 있으며, 상술한 입경 범위에 있을 때, 압연 밀도를 높여 에너지 밀도를 향상시킬 수 있고, 후술하는 음극 집전체 입자와의 접촉 또는 거리 감소 측면에서 바람직하다.
상기 음극 집전체 입자는 상술한 양극 집전체 입자와 같이, 전지의 제조 공정 단순화, 전지의 출력 및 용량 특성 향상 측면에 우수한 효과를 부여할 수 있다.
상기 음극 집전체 입자는 알루미늄, 구리, 스테인레스 스틸, 니켈 및 티타늄으로 이루어진 군에서 선택된 적어도 1종, 바람직하게는 음극 활물질의 산화 전위를 고려하여 전지의 안정성을 도모하는 측면에서 구리를 포함할 수 있다.
상기 음극 집전체 입자의 평균 입경(D50)은 0.5㎛ 내지 3㎛, 바람직하게는 1㎛ 내지 2.5㎛일 수 있다. 상술한 범위에 있을 때, 음극 활물질과 접촉하는 양극 집전체의 표면적을 증대하는 측면에서 바람직하고, 음극 활물질 입자와 혼합될 때 압연 밀도를 더욱 향상시킬 수 있어 바람직하다.
상기 음극 집전체 입자는 음극(30)에 1중량% 내지 15중량%, 바람직하게는 1.5중량% 내지 13중량%, 보다 바람직하게는 4중량% 내지 8중량%로 포함될 수 있다. 상기 함량 범위에 있을 때, 활물질과 집전체의 거리를 적정 수준으로 유지하여 전지의 출력 특성을 향상시킬 수 있음과 동시에 음극 활물질의 고에너지 밀도 달성을 도모할 수 있어 좋다.
상기 음극 집전체 입자는 구형, 섬유형 및 판상형으로 이루어진 군에서 선택된 적어도 1종, 바람직하게는 구형 및 섬유형으로 이루어진 군에서 선택된 적어도 1종일 수 있으며, 더 바람직하게는 음극 활물질과의 접촉 표면적을 더 향상시키는 측면에서 구형일 수 있다.
양극(20) 및 음극(30)은 서로 독립적으로 바인더 및 도전재로 이루어진 군에서 선택된 적어도 1종의 첨가제를 더 포함할 수 있으며, 바람직하게는 도전성을 더욱 향상시키는 측면에서 도전재를 더 포함할 수 있다.
상기 도전재는 전극에 도전성을 향상시키기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한 없이 사용할 수 있다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티타늄산 칼륨 등의 도전성 위스키; 산화 티타늄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 도전재는 통상적으로 양극(20) 또는 음극(30)에 1 내지 10중량%, 바람직하게는 3 내지 8중량%로 포함될 수 있다.
상기 바인더는 활물질 입자들 간의 부착 및 활물질과 집전체 입자간의 접착력을 향상시키는 역할을 할 수 있다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 바인더는 양극(20) 또는 음극(30)에 1 내지 10중량%, 바람직하게는 3 내지 8중량%로 포함될 수 있다.
음극(30)의 공극률은 25% 내지 35%, 바람직하게는 27% 내지 33%, 더 바람직하게는 29.5% 내지 30.5%일 수 있다. 음극(30)은 입자 형태의 집전체를 사용함에 따라 전술한 수준의 공극률을 가질 수 있으며, 이에 따라 음극 활물질과 음극 집전체 입자들이 우수한 수준으로 팩킹(packing)될 수 있고, 음극 내부의 공극을 감소시켜 음극 활물질들의 전기적 연결을 더욱 향상시킬 수 있다. 만일 음극 집전체로서 입자 형태의 집전체가 아닌 메쉬 형태의 집전체를 음극에 사용할 경우에는, 필연적으로 음극 활물질들과 메쉬 형태 집전체 사이에 들뜸이 발생할 수 밖에 없어 음극 내부의 공극 함량이 증가하게 되므로, 음극 활물질들의 전기적 연결성이 감소되고, 음극의 저항이 증가하며, 에너지 밀도가 감소될 우려가 있다.
상기 음극(30)의 공극률은 음극 활물질 및 음극 집전체 입자의 사용, 음극 활물질 및 음극 집전체 입자의 평균 입경(D50) 및/또는 함량, 리튬 이차전지 제조 시의 압연 정도 등을 조절하여 구현될 수 있다.
본 명세서에서 음극의 공극률은 하기 수학식 2에 의해 계산될 수 있다.
[수학식 2]
음극의 공극률(%) = {1-(음극의 진밀도/음극의 전극 밀도)}× 100
상기 수학식 2에서, 음극의 진밀도(true density)는 음극을 일정 크기로 채취하여 프레스 장비로 음극의 두께가 변화하지 않을 때까지 눌렀을 때 측정된 음극 활물질층의 밀도이고, 상기 음극의 전극 밀도는 음극을 일정 크기로 채취하여 측정된 음극 활물질층의 밀도이다.
본 발명의 리튬 이차전지는 전해질을 더 포함할 수 있다.
또, 본 발명에서 사용되는 전해질로는 리튬 이차전지 제조 시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
구체적으로, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; R-CN(R은 C2 내지 C20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다. 이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 약 1:1 내지 약 1:9의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다.
상기 리튬염은 리튬 이차전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한 없이 사용될 수 있다. 구체적으로 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2. LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염의 농도는 0.1 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다. 이때 상기 첨가제는 전해질 총 중량에 대하여 0.1 내지 5 중량%로 포함될 수 있다.
또한, 본 발명은 상기 리튬 이차전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩을 제공한다.
상기 전지모듈 또는 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차, 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.
<리튬 이차전지의 제조방법>
또한, 본 발명은 리튬 이차전지의 제조방법을 제공한다. 상기 리튬 이차전지의 제조방법은 전술한 리튬 이차전지의 제조방법일 수 있다.
구체적으로, 본 발명의 리튬 이차전지의 제조방법은 분리막에 의해 내부의 일 영역과 타 영역이 구분되는 전지 케이스를 준비하는 단계; 양극 활물질 및 양극 집전체 입자를 포함하는 제1 혼합물을 제조하고, 음극 활물질 및 음극 집전체 입자를 포함하는 제2 혼합물을 제조하는 단계; 상기 전지 케이스의 일 영역에 상기 제1 혼합물을 주입하고, 상기 전지 케이스의 타 영역에 상기 제2 혼합물을 주입하는 단계; 및 상기 제1 혼합물 및 상기 제2 혼합물이 주입된 전지 케이스에 압력을 가해 압연하는 단계;를 포함한다.
본 발명의 리튬 이차전지의 제조방법에 따르면, 종래 판형의 집전체층이 아닌 집전체 입자(양극 집전체 입자 또는 음극 집전체 입자)를 전극 활물질(양극 활물질 또는 음극 활물질)과 혼합하여, 이를 전지 케이스에 주입하는 공정을 수행한다. 즉, 종래 전극 집전체층 상에 전극 활물질을 코팅하는 공정이 수행되지 않으므로, 전지의 제조 공정이 단순화될 수 있다.
또한, 본 발명의 리튬 이차전지의 제조방법에 따르면, 전지 케이스 내에서 양극과 음극이 일체적으로 제조될 수 있으므로, 양극과 음극을 별도로 제조하고 이들을 조립하는 공정이 필요하지 않다. 이에 따라 본 발명의 리튬 이차전지의 제조방법은 전지의 제조 공정이 단순화되고 생산성이 향상될 수 있다.
또한, 본 발명의 리튬 이차전지의 제조방법에 따르면, 전극 활물질들 사이에 집전체 입자가 분포되어 있는 전지의 제조가 가능하며, 이에 따라 종래와 같이 집전체층과 전극 활물질층 상부 사이의 거리 증가로 인한 출력 감소 문제가 해소될 수 있다.
또한, 본 발명의 리튬 이차전지의 제조방법에 따르면, 종래의 집전체층 대신 입자 형태의 집전체를 사용하므로, 종래 코팅 방식의 전극과 비교할 때 동일 두께 대비 고용량 및 고에너지 밀도의 전극 제조가 가능하다.
도 2 및 도 3은 본 발명의 리튬 이차전지의 제조방법을 개략적으로 설명하기 위한 도면이다.
도 2를 참조하면, 본 발명에 따른 리튬 이차전지의 제조방법은 분리막(11)에 의해 내부의 일 영역과 타 영역이 구분되는 전지 케이스(10)를 준비하는 단계를 포함한다.
전지 케이스(10) 및 분리막(11)에 대한 설명은 전술하였다.
본 발명의 리튬 이차전지의 제조방법은 양극 활물질 및 양극 집전체 입자를 포함하는 제1 혼합물(20a)을 제조하고, 음극 활물질 및 음극 집전체 입자를 포함하는 제2 혼합물(30a)을 제조하는 단계를 포함한다.
제1 혼합물(20a)은 도 2에 도시된 바와 같이 전지 케이스(10) 내의 일 영역에 주입될 수 있으며, 압연 등의 공정을 거친 후 양극을 형성할 수 있다.
제1 혼합물(20a)은 양극 활물질 및 양극 집전체 입자를 포함한다.
상기 양극 활물질은 제1 혼합물(20a)에 80중량% 내지 98중량%, 바람직하게는 82중량% 내지 94중량%, 보다 바람직하게는 87중량% 내지 91중량%로 포함될 수 있다. 상기 함량 범위일 때, 에너지 밀도 및 출력 향상 측면에서 바람직하다.
상기 양극 집전체 입자는 제1 혼합물(20a)에 1중량% 내지 15중량%, 바람직하게는 1.5중량% 내지 13중량%, 보다 바람직하게는 4중량% 내지 8중량%로 포함될 수 있고, 상기 함량 범위에 있을 때, 활물질과 집전체의 거리를 적정 수준으로 유지하여 전지의 출력 특성을 향상시킬 수 있음과 동시에 양극 활물질의 고에너지 밀도 달성을 도모할 수 있어 더욱 바람직하다.
그 외 상기 양극 활물질 및 상기 양극 집전체 입자에 대한 설명은 전술한 바와 같을 수 있다.
제2 혼합물(30a)은 도 2에 도시된 바와 같이 제1 혼합물(20a)이 주입된 영역과는 다른 영역, 즉 전지 케이스(10) 내의 타 영역에 주입될 수 있으며, 압연 등의 공정을 거친 후 음극을 형성할 수 있다. 즉, 제1 혼합물(20a)과 제2 혼합물(30a)은 분리막(11)을 경계로 전지 케이스(10)의 서로 다른 영역에 주입된다.
제2 혼합물(30a)은 음극 활물질 및 음극 집전체 입자를 포함한다.
상기 음극 활물질은 제2 혼합물(30a)에 80중량% 내지 98중량%, 바람직하게는 82중량% 내지 94중량%, 보다 바람직하게는 87중량% 내지 91중량%로 포함될 수 있다. 상기 함량 범위에 있을 때, 에너지 밀도 및 출력을 향상시킬 수 있어 바람직하다.
상기 음극 집전체 입자는 제2 혼합물(30a)에 1중량% 내지 15중량%, 바람직하게는 1.5중량% 내지 13중량%, 보다 바람직하게는 4중량% 내지 8중량%로 포함될 수 있다. 상기 함량 범위에 있을 때, 활물질과 집전체의 거리를 적정 수준으로 유지하여 전지의 출력 특성을 향상시킬 수 있음과 동시에 음극 활물질의 고에너지 밀도 달성을 도모할 수 있어 좋다.
그 외, 상기 음극 활물질 및 상기 음극 집전체 입자에 대한 설명은 전술한 바와 같을 수 있다.
제1 혼합물(20a) 및 제2 혼합물(30a)은 서로 독립적으로 바인더 및 도전재로 이루어진 군에서 선택된 적어도 1종의 첨가제를 더 포함할 수 있으며, 바람직하게는 도전성을 더욱 향상시키는 측면에서 도전재를 더 포함할 수 있다.
상기 도전재는 제1 혼합물(20a) 또는 제2 혼합물(30a) 전체 중량에 대하여 1 내지 10중량%, 바람직하게는 3 내지 8중량%로 포함될 수 있다. 그 외, 상기 도전재에 대한 설명은 전술한 바와 같을 수 있다.
상기 바인더는 제1 혼합물(20a) 또는 제2 혼합물(30a) 전체 중량에 대하여 1 내지 10중량%, 바람직하게는 3 내지 8중량%로 포함될 수 있다. 그 외, 상기 바인더에 대한 설명은 전술한 바와 같을 수 있다.
본 발명의 리튬 이차전지의 제조방법은 도 2에 도시된 바와 같이 전지 케이스(10)의 일 영역에 제1 혼합물(20a)을 주입하고, 전지 케이스(10)의 타 영역에 제2 혼합물(30a)을 주입하는 단계를 포함한다.
제1 혼합물(20a) 및 제2 혼합물(30a)의 주입은 동시에 수행될 수도 있고 각각 별개로 수행될 수도 있다.
제1 혼합물(20a) 및 제2 혼합물(30a)의 주입 시 전지 케이스(10)을 진동시키는 공정을 더 수행할 수 있다. 이로써, 제1 혼합물(20a) 및 제2 혼합물(30a)이 원활하게 전지 케이스(10) 내부로 주입될 수 있고, 주입 시 진동이 함께 수행됨에 따라 혼합물 내부의 기공이 감소될 수 있어 고에너지 밀도 및 고용량 달성이 가능하다.
상기 진동 공정은 전지 케이스로의 원활한 주입 및 고에너지 밀도 달성 측면에서 15 내지 45Hz, 바람직하게는 20 내지 35Hz의 진동수로 전지 케이스를 진동시켜 수행될 수 있다.
제1 혼합물(20a) 및 제2 혼합물(30a)은 서로 독립적으로 슬러리 형태 또는 분말 형태로 전지 케이스(10)에 주입될 수 있다. 바람직하게는, 제1 혼합물(20a) 및 제2 혼합물(30a)은 분말 형태로 전지 케이스(10)에 주입될 수 있으며, 이 경우 슬러리 형태로 주입되는 경우보다 후술하는 건조 단계 수행 시간이 단축될 수 있고, 압연 단계와 건조 단계를 함께 수행하여 공정의 단순화를 도모할 수 있어 바람직하다. 특히, 제1 혼합물(20a) 및 제2 혼합물(30a)이 분말 형태로 전지 케이스(10)에 주입될 경우, 전극 활물질의 결착력을 위해 별도의 바인더를 사용하지 않을 수 있으므로, 바인더를 사용함에 따른 전극의 저항 상승 문제가 방지될 수 있다.
제1 혼합물(20a) 및 제2 혼합물(30a)이 분말 형태일 경우, 제1 혼합물(20a) 및 제2 혼합물(30a)은 별도의 용매를 포함하지 않을 수 있다. 구체적으로 제1 혼합물(20a) 및 제2 혼합물(30a)이 분말 형태일 경우, 제1 혼합물(20a)은 양극 활물질, 양극 집전체 입자 및 선택적으로 바인더 및 도전재로 이루어진 군에서 선택된 적어도 1종의 첨가제로 이루어질 수 있고, 제2 혼합물(30a)은 음극 활물질, 음극 집전체 입자 및 선택적으로 바인더 및 도전재로 이루어진 군에서 선택된 적어도 1종의 첨가제로 이루어질 수 있다.
제1 혼합물(20a) 및 제2 혼합물(30a)이 슬러리 형태일 경우, 제1 혼합물(20a) 및 제2 혼합물(30a)은 전극 활물질(양극 활물질 또는 음극 활물질), 전극 집전체 입자(양극 집전체 입자 또는 음극 집전체 입자) 및 선택적으로 바인더 및 도전재로 이루어진 군에서 선택된 적어도 1종의 첨가제에 더하여 용매를 더 포함할 수 있다.
상기 용매는 물 및 NMP(N-methyl-2-pyrrolidone)로 이루어진 군에서 선택된 적어도 1종을 포함할 수 있다. 상기 용매는 전극 활물질(양극 활물질 또는 음극 활물질), 전극 집전체 입자(양극 집전체 입자 또는 음극 집전체 입자) 및 선택적으로 바인더 및 도전재로 이루어진 군에서 선택된 적어도 1종의 첨가제를 포함하는 고형분의 농도가 50 중량% 내지 95 중량%, 바람직하게 70중량% 내지 90 중량%이 되도록 제1 혼합물(20a) 또는 제2 혼합물(30a)에 포함될 수 있다.
본 발명의 리튬 이차전지의 제조방법은 제1 혼합물(20a) 및 제2 혼합물(30a)이 주입된 전지 케이스(10)에 압력을 가해 압연하는 단계를 포함한다.
도 3에 도시된 바와 같이 제1 혼합물(20a) 및 제2 혼합물(30a)이 전지 케이스(10) 내부에 각각 주입되면, 전지 케이스(10)에 가압 수단 등으로 압력을 가해 압연 공정을 수행할 수 있으며, 상기 압연 공정을 통해 전지 케이스(10) 내부에 존재하는 공극 등이 제거될 수 있고, 전극 활물질 주입으로 인해 팽창될 수 있는 전지 케이스(10)를 눌러 전지 케이스 내의 일 영역 및 타 영역이 각각 양극 및 음극의 형태를 갖출 수 있게 된다. 또한, 상기 압연 공정을 통해 양극과 음극은 분리막을 사이에 두고 서로 밀착될 수 있고, 이에 따라 리튬 이온의 교환이 원활하게 이루어질 수 있다.
또한, 본 발명의 리튬 이차전지의 제조방법은 상기 압연 공정에 의해 양극과 음극을 따로 제조할 필요 없이 동시에 제조가 가능하므로, 전지의 제조 공정을 단순화할 수 있어 바람직하다.
상기 압연 시의 압력은 400kgf/cm2 내지 600kgf/cm2, 바람직하게는 450kgf/cm2 내지 550kgf/cm2일 수 있으며, 상술한 압력 범위로 압연할 때 전극 활물질 손상 없이 고에너지 밀도의 전지 제조가 가능하다.
상기 압연 공정은 2초 내지 60초, 바람직하게는 3초 내지 30초, 더 바람직하게는 5초 내지 10초 동안 수행될 수 있으며, 이 경우 전극 활물질의 손상 없이 압연 공정을 원활하게 수행할 수 있어 바람직하다.
본 발명의 리튬 이차전지의 제조방법은 제1 혼합물(20a) 및 제2 혼합물(30a)이 주입된 전지 케이스(10)를 건조하는 단계를 더 포함할 수 있다. 구체적으로, 제1 혼합물(20a) 및 제2 혼합물(30a)이 주입된 전지 케이스(10) 내부에 열을 가함으로써, 제1 혼합물(20a) 및 제2 혼합물(30a)이 건조될 수 있다.
상기 건조는 65℃ 내지 90℃, 바람직하게는 75℃ 내지 85℃ 에서 수행될 수 있다.
상기 건조는 상기 압연 전에 수행되거나, 상기 압연과 동시에 수행될 수 있다. 특히, 상기 압연 단계와 상기 건조 단계를 동시에 수행할 경우 공정이 더욱 단순화될 수 있어 바람직하다.
구체적으로 제1 혼합물(20a) 및 제2 혼합물(30a)이 분말 형태로 전지 케이스(10)에 주입될 경우, 상기 건조는 상기 압연 전에 수행되거나 압연과 동시에 수행될 수 있고, 바람직하게는 압연과 동시에 수행될 수 있다. 즉, 제1 혼합물(20a) 및 제2 혼합물(30a)이 분말 형태로 주입될 경우 건조에 필요한 시간을 단축시킬 수 있으므로 압연과 동시에 건조가 완료될 수 있다. 구체적으로 제1 혼합물(20a) 및 제2 혼합물(30a)이 분말 형태로 주입될 경우, 상기 건조는 2초 내지 60초, 바람직하게는 3초 내지 30초, 더 바람직하게는 5초 내지 10초 동안 수행될 수 있다.
한편, 제1 혼합물(20a) 및 제2 혼합물(30a)이 슬러리 형태로 전지 케이스(10)에 주입될 경우, 건조 시간을 충분히 확보하는 측면에서 상기 건조 단계는 상기 압연 단계 전에 수행될 수 있다. 구체적으로, 제1 혼합물(20a) 및 제2 혼합물(30a)이 슬러리 형태로 주입될 경우, 상기 건조는 제1 혼합물(20a) 및 제2 혼합물(30a)의 충분한 건조를 위하여 5분 내지 30분, 바람직하게는 7분 내지 15분 동안 수행될 수 있다.
본 발명의 리튬 이차전지의 제조방법은 상기 압연이 수행된 전지 케이스(10) 내부로 전해질을 주입하는 단계를 더 포함할 수 있다. 상기 전해질에 대한 설명은 전술하였다.
본 발명의 리튬 이차전지의 제조방법은 전해질이 주입된 전지 케이스(10)를 밀봉하는 단계를 더 포함할 수 있다.
구체적으로 상기 밀봉 단계는 전해질이 주입된 전지 케이스(10)의 내부를 진공화하는 단계를 포함할 수 있으며, 이에 따라 전지 케이스(10) 내에 존재하는 기포 또는 공극이 효과적으로 제거되어 에너지 밀도를 더 향상시킬 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
실시예
실시예 1: 리튬 이차전지의 제조
알루미늄 파우치형 전지 케이스를 준비하였다. 상기 전지 케이스 내에는 일 영역 및 타 영역을 분리하는 프로필렌 중합체 분리막(두께 15㎛)을 형성하였다.
양극 활물질로서 LiNi0.8Co0.1Mn0.1O2(평균 입경(D50) 12㎛), 양극 집전체 입자로서 구형의 알루미늄 입자(평균 입경(D50) 2㎛), 도전재로서 아세틸렌 블랙을 90:5:5의 중량비로 혼합하여 분말 형태의 제1 혼합물을 제조하였다.
음극 활물질로서 인조흑연(평균 입경(D50) 18㎛), 음극 집전체 입자로서 구리 입자(평균 입경(D50) 2㎛), 도전재로서 아세틸렌 블랙을 90:5:5의 중량비로 혼합하여 분말 형태의 제2 혼합물을 제조하였다.
상기 제1 혼합물 및 상기 제2 혼합물을 상기 전지 케이스의 일 영역 및 타 영역에 각각 주입하였다. 상기 주입 시에 전지 케이스를 30Hz로 진동시켰다.
상기 제1 혼합물 및 상기 제2 혼합물을 주입한 후, 전지 케이스를 압연과 동시에 건조하여 양극과 음극을 형성하였다. 상기 압연은 500kgf/cm2의 면압으로 수행되었고, 건조는 80℃로 수행되었으며, 압연 및 건조는 7초 동안 수행되었다.
이후, 전해질을 전지 케이스 내부로 주입하고 전지 케이스 내부를 진공화하면서 밀봉하여 리튬 이차전지를 제조하였다. 상기 전해질로는 에틸렌 카보네이트(EC), 디메틸 카보네이트(DMC) 및 에틸메틸 카보네이트(EMC)를 30:40:30의 부피비로 혼합한 용매에 LiPF6을 1M 농도가 되도록 용해한 것을 사용하였다.
제조된 리튬 이차전지에 있어서, 양극의 두께는 130㎛이고, 음극의 두께는 145㎛였다. 또한, 상기 양극의 공극률은 25%이고, 상기 음극의 공극률은 30%였다.
실시예 2: 리튬 이차전지의 제조
양극 활물질로서 LiNi0.8Co0.1Mn0.1O2(평균 입경(D50) 12㎛), 양극 집전체 입자로서 구형의 알루미늄 입자(평균 입경(D50) 2㎛), 도전재로서 아세틸렌 블랙을 93:2:5의 중량비로 혼합한 것(분말 형태)을 제1 혼합물로 사용하였고, 음극 활물질로서 인조흑연(평균 입경(D50) 18㎛), 음극 집전체 입자로서 구리 입자(평균 입경(D50) 2㎛), 도전재로서 아세틸렌 블랙을 93:2:5의 중량비로 혼합한 것(분말 형태)을 제2 혼합물로 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.
상기 양극의 공극률은 26%이고, 상기 음극의 공극률은 31%였다.
실시예 3: 리튬 이차전지의 제조
양극 활물질로서 LiNi0.8Co0.1Mn0.1O2(평균 입경(D50) 12㎛), 양극 집전체 입자로서 구형의 알루미늄 입자(평균 입경(D50) 2㎛), 도전재로서 아세틸렌 블랙을 83:12:5의 중량비로 혼합한 것(분말 형태)을 제1 혼합물로 사용하고, 음극 활물질로서 인조흑연(평균 입경(D50) 18㎛), 음극 집전체 입자로서 구리 입자(평균 입경(D50) 2㎛), 도전재로서 아세틸렌 블랙을 83:12:5의 중량비로 혼합한 것을 제2 혼합물로 사용한 것(분말 형태)을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.
상기 양극의 공극률은 23%이고, 상기 음극의 공극률은 29%였다.
실시예 4: 리튬 이차전지의 제조
제1 혼합물 중, 양극 활물질로 제1 양극 활물질 LiNi0.8Co0.1Mn0.1O2(평균 입경(D50) 14㎛) 및 제2 양극 활물질 LiNi0.8Co0.1Mn0.1O2(평균 입경(D50) 4㎛)을 80:20의 중량비로 혼합한 것을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.
상기 양극의 공극률은 24%이고, 상기 음극의 공극률은 29%였다.
비교예 1: 리튬 이차전지의 제조
양극 활물질로서 LiNi0.8Co0.1Mn0.1O2(평균 입경(D50) 12㎛), 도전재로서 아세틸렌 블랙, 바인더로서 PVdF를 N-메틸피롤리돈 용매 중에서 90:5:5의 중량비로 혼합하여 양극 슬러리를 제작하고, 이를 알루미늄 집전체 (두께: 15㎛)의 일면에 도포한 후 130℃에서 건조 후, 압연하여 양극을 제조하였다. 상기 양극의 두께는 130㎛였다.
음극 활물질로서 인조흑연(평균 입경(D50) 18㎛), 도전재로서 아세틸렌 블랙, 바인더로서 PVdF를 N-메틸피롤리돈 용매 중에서 90:5:5의 중량비로 혼합하여 음극 슬러리를 제작하고, 이를 구리 집전체층(두께 15㎛)의 일면에 도포한 후 80℃에서 건조 후, 압연하여 음극을 제조하였다. 상기 음극의 두께는 145㎛였다.
상기에서 제조된 이차전지용 양극과 음극 사이에 폴리프로필렌 분리막(두께 15㎛)을 개재하여 전극 조립체를 제조하고, 상기 전극 조립체를 알루미늄 파우치형 전지 케이스 내부에 위치시킨 후 케이스 내부로 전해질을 주입하여 리튬 이차전지를 제조하였다. 상기 전해질로는 에틸렌 카보네이트(EC), 디메틸 카보네이트(DMC) 및 에틸메틸 카보네이트(EMC)를 30:40:30의 부피비로 혼합한 용매에 LiPF6을 1M 농도가 되도록 용해한 것을 사용하였다.
상기 양극의 공극률은 25%이고, 상기 음극의 공극률은 30%였다.
실험예
실험예 1: 출력 특성 평가
실시예 1~4 및 비교예 1에서 제조된 리튬 이차전지 각각의 출력 특성을 평가하였다. 출력 특성 평가는 실시예 및 비교예들의 리튬 이차전지를 충전(0.2C CC/CV충전 4.2V 0.05C cut)시키고, 10분 간 휴지(rest)시키고, 방전(0.2C CC방전 2.5V cut)시켰다.
이때, 상기 휴지 시에 측정된 전압과 상기 방전 시작 후 60초가 경과한 시점의 전압의 차이를 전류로 나누어 저항(DCIR)을 계산하고, 그 결과를 하기 표 1에 나타내었다.
Figure PCTKR2020000829-appb-T000001
표 1을 참조하면, 실시예 1~4의 리튬 이차전지는 집전체를 입자 형태로 사용함에 따라 전극 활물질 사이에 집전체 입자가 고루 분포될 수 있어 저항이 낮고 출력 특성이 우수한 것으로 평가되었다.
그러나, 비교예 1의 리튬 이차전지는 집전체층이 양극 또는 음극 하부에 위치함에 따라 전극 활물질층 상부에 존재하는 전극 활물질과의 거리 증가로 인해 출력 특성이 저하되는 것을 확인할 수 있다.
실험예 2: 용량 특성 평가
실시예 1~4 및 비교예 1에서 제조된 리튬 이차전지를 초기 충전(0.2C CC/CV충전 4.2V/0.05C cut)하고 초기 방전(0.2C CC방전 2.5V cut)시킨 후의 방전 용량을 평가하였다.
그 결과를 하기 표 2에 나타낸다.
Figure PCTKR2020000829-appb-T000002
표 2를 참조하면, 집전체를 입자 형태로 사용하는 실시예 1~4의 경우 집전체를 판의 형태로 사용하는 비교예 1에 비해 동일 두께 대비 고용량을 달성할 수 있음을 확인할 수 있다.
[부호의 설명]
10: 전지 케이스 11: 분리막
12a: 양극 탭 12b: 음극 탭
20: 양극 20a: 제1 혼합물
30: 음극 30a: 제2 혼합물

Claims (15)

  1. 분리막에 의해 내부의 일 영역과 타 영역이 구분되는 전지 케이스;
    상기 전지 케이스 내부의 일 영역에 형성되며, 양극 활물질 및 양극 집전체 입자를 포함하는 양극; 및
    상기 전지 케이스 내부의 타 영역에 형성되며, 음극 활물질 및 음극 집전체 입자를 포함하는 음극;을 포함하는 리튬 이차전지.
  2. 청구항 1에 있어서,
    상기 양극의 공극률은 20% 내지 30%인 리튬 이차전지.
  3. 청구항 1에 있어서,
    상기 음극의 공극률은 25% 내지 35%인 리튬 이차전지.
  4. 청구항 1에 있어서,
    상기 양극은 상기 양극 집전체 입자를 1중량% 내지 15중량%로 포함하고,
    상기 음극은 상기 음극 집전체 입자를 1중량% 내지 15중량%로 포함하는 리튬 이차전지.
  5. 청구항 1에 있어서,
    상기 양극 집전체 입자 및 상기 음극 집전체 입자의 평균 입경(D50)은 서로 독립적으로 0.5㎛ 내지 3㎛인 리튬 이차전지.
  6. 청구항 1에 있어서,
    상기 양극 집전체 입자 및 상기 음극 집전체 입자는 서로 독립적으로 알루미늄, 구리, 스테인레스 스틸, 니켈 및 티타늄으로 이루어진 군에서 선택된 적어도 1종을 포함하는 리튬 이차전지.
  7. 청구항 1에 있어서,
    상기 양극 활물질은 제1 양극 활물질 및 제2 양극 활물질을 포함하며,
    상기 제1 양극 활물질의 평균 입경(D50)이 상기 제2 양극 활물질의 평균 입경(D50)보다 큰 리튬 이차전지.
  8. 청구항 7에 있어서,
    상기 제1 양극 활물질의 평균 입경(D50)은 10㎛ 내지 18㎛이고,
    상기 제2 양극 활물질의 평균 입경(D50)은 2㎛ 내지 8㎛인 리튬 이차전지.
  9. 분리막에 의해 내부의 일 영역과 타 영역이 구분되는 전지 케이스를 준비하는 단계;
    양극 활물질 및 양극 집전체 입자를 포함하는 제1 혼합물을 제조하고, 음극 활물질 및 음극 집전체 입자를 포함하는 제2 혼합물을 제조하는 단계;
    상기 전지 케이스의 일 영역에 상기 제1 혼합물을 주입하고, 상기 전지 케이스의 타 영역에 상기 제2 혼합물을 주입하는 단계; 및
    상기 제1 혼합물 및 상기 제2 혼합물이 주입된 전지 케이스에 압력을 가해 압연하는 단계;를 포함하는 리튬 이차전지의 제조방법.
  10. 청구항 9에 있어서,
    상기 제1 혼합물 및 상기 제2 혼합물은 서로 독립적으로 슬러리 형태 또는 분말 형태로 상기 전지 케이스에 주입되는 리튬 이차전지의 제조방법.
  11. 청구항 9에 있어서,
    상기 제1 혼합물 및 상기 제2 혼합물의 주입 시 상기 전지 케이스를 진동시키는 공정을 더 수행하는 리튬 이차전지의 제조방법.
  12. 청구항 9에 있어서,
    상기 제1 혼합물 및 상기 제2 혼합물이 주입된 상기 전지 케이스를 건조하는 단계를 더 포함하는 리튬 이차전지의 제조방법.
  13. 청구항 12에 있어서,
    상기 건조는 상기 압연 전에 수행되거나 상기 압연과 동시에 수행되는 리튬 이차전지의 제조방법.
  14. 청구항 9에 있어서,
    상기 압연이 수행된 상기 전지 케이스 내부로 전해질을 주입하는 단계를 더 포함하는 리튬 이차전지의 제조방법.
  15. 청구항 9에 있어서,
    상기 전해질이 주입된 상기 전지 케이스의 내부를 진공화하여 상기 전지 케이스를 밀봉하는 단계를 더 포함하는 리튬 이차전지의 제조방법.
PCT/KR2020/000829 2019-01-16 2020-01-16 리튬 이차전지 및 이의 제조방법 WO2020149679A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080008759.8A CN113273014A (zh) 2019-01-16 2020-01-16 锂二次电池及其制造方法
US17/422,583 US20220102731A1 (en) 2019-01-16 2020-01-16 Lithium Secondary Battery and Production Method Thereof
JP2021539358A JP7242120B2 (ja) 2019-01-16 2020-01-16 リチウム二次電池およびその製造方法
EP20740822.0A EP3893314B1 (en) 2019-01-16 2020-01-16 Lithium secondary battery and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20190005688 2019-01-16
KR10-2019-0005688 2019-01-16

Publications (1)

Publication Number Publication Date
WO2020149679A1 true WO2020149679A1 (ko) 2020-07-23

Family

ID=71613810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/000829 WO2020149679A1 (ko) 2019-01-16 2020-01-16 리튬 이차전지 및 이의 제조방법

Country Status (6)

Country Link
US (1) US20220102731A1 (ko)
EP (1) EP3893314B1 (ko)
JP (1) JP7242120B2 (ko)
KR (1) KR102605649B1 (ko)
CN (1) CN113273014A (ko)
WO (1) WO2020149679A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102359103B1 (ko) * 2018-02-01 2022-02-08 주식회사 엘지에너지솔루션 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2024029802A1 (ko) * 2022-08-04 2024-02-08 주식회사 엘지에너지솔루션 리튬이차전지, 전지 모듈 및 전지 팩
WO2024042820A1 (ja) * 2022-08-25 2024-02-29 パナソニックIpマネジメント株式会社 電池
CN117059735B (zh) * 2023-10-12 2024-04-12 宁德时代新能源科技股份有限公司 电极极片、二次电池、用电装置、制备方法及再利用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004281418A (ja) * 2004-06-25 2004-10-07 Kawasaki Heavy Ind Ltd 三次元電池
JP2009193802A (ja) * 2008-02-14 2009-08-27 Toyota Motor Corp 全固体電池およびその製造方法
KR20120131308A (ko) * 2011-05-25 2012-12-05 주식회사 엘지화학 서로 다른 크기를 가진 양극 활물질의 이차전지용 양극 및 이를 포함하는 리튬 이차전지
KR101506319B1 (ko) * 2008-04-01 2015-03-26 재단법인서울대학교산학협력재단 리튬 이온 배터리용 일체형 전극 제조방법 및 그 방법에의해 제조된 일체형 전극
KR20160053849A (ko) 2016-04-05 2016-05-13 한양대학교 산학협력단 양극활물질, 및 이를 포함하는 이차 전지
KR20180113417A (ko) * 2017-04-06 2018-10-16 주식회사 엘지화학 리튬 이차전지의 제조방법

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001223029A (ja) * 2000-02-09 2001-08-17 Shin Kobe Electric Mach Co Ltd 非水電解液二次電池
KR100378007B1 (ko) * 2000-11-22 2003-03-29 삼성에스디아이 주식회사 리튬-황 전지용 양극 및 그를 포함하는 리튬-황 전지
KR100635737B1 (ko) * 2005-03-24 2006-10-17 삼성에스디아이 주식회사 리튬 이차 전지
JP5220273B2 (ja) * 2005-11-15 2013-06-26 日立マクセル株式会社 電極及びそれを用いた非水二次電池
JP5573474B2 (ja) * 2010-08-06 2014-08-20 ソニー株式会社 電池の製造方法
JP2012079471A (ja) * 2010-09-30 2012-04-19 Sanyo Electric Co Ltd 非水電解質二次電池の製造方法及び非水電解質二次電池
US9048502B2 (en) * 2010-12-13 2015-06-02 Sanyo Electric Co., Ltd. Lithium secondary battery and method for producing the same
KR20160079508A (ko) * 2014-12-26 2016-07-06 주식회사 엘지화학 리튬 이차전지
JP2016134296A (ja) * 2015-01-20 2016-07-25 株式会社カネカ セパレータ一体型電極、及びその製造方法、並びにこれを有するリチウムイオン二次電池
JP6734703B2 (ja) * 2015-06-11 2020-08-05 三洋化成工業株式会社 リチウムイオン電池の製造方法
KR101664826B1 (ko) * 2015-06-22 2016-10-14 재단법인 포항산업과학연구원 전고체 이차 전지 및 그 제조방법
JP6601500B2 (ja) * 2015-10-02 2019-11-06 日立金属株式会社 正極材料及びその製造方法並びにリチウムイオン二次電池
US10276856B2 (en) * 2015-10-08 2019-04-30 Nanotek Instruments, Inc. Continuous process for producing electrodes and alkali metal batteries having ultra-high energy densities
JP6528666B2 (ja) * 2015-12-09 2019-06-12 株式会社村田製作所 正極活物質、正極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
JP6839028B2 (ja) * 2017-04-25 2021-03-03 三洋化成工業株式会社 リチウムイオン電池の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004281418A (ja) * 2004-06-25 2004-10-07 Kawasaki Heavy Ind Ltd 三次元電池
JP2009193802A (ja) * 2008-02-14 2009-08-27 Toyota Motor Corp 全固体電池およびその製造方法
KR101506319B1 (ko) * 2008-04-01 2015-03-26 재단법인서울대학교산학협력재단 리튬 이온 배터리용 일체형 전극 제조방법 및 그 방법에의해 제조된 일체형 전극
KR20120131308A (ko) * 2011-05-25 2012-12-05 주식회사 엘지화학 서로 다른 크기를 가진 양극 활물질의 이차전지용 양극 및 이를 포함하는 리튬 이차전지
KR20160053849A (ko) 2016-04-05 2016-05-13 한양대학교 산학협력단 양극활물질, 및 이를 포함하는 이차 전지
KR20180113417A (ko) * 2017-04-06 2018-10-16 주식회사 엘지화학 리튬 이차전지의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3893314A4

Also Published As

Publication number Publication date
US20220102731A1 (en) 2022-03-31
KR102605649B1 (ko) 2023-11-24
JP7242120B2 (ja) 2023-03-20
EP3893314A1 (en) 2021-10-13
EP3893314A4 (en) 2022-02-09
EP3893314B1 (en) 2023-07-26
JP2022517927A (ja) 2022-03-11
CN113273014A (zh) 2021-08-17
KR20200089239A (ko) 2020-07-24

Similar Documents

Publication Publication Date Title
WO2018097562A1 (ko) 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2019103460A1 (ko) 이차전지용 양극재 및 이를 포함하는 리튬 이차전지
WO2021029652A1 (ko) 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2019103463A1 (ko) 리튬이차전지용 양극재, 이를 포함하는 양극 및 리튬이차전지
WO2019151834A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019147017A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019164319A1 (ko) 리튬 이차전지용 음극, 이의 제조방법 및 상기 리튬 이차전지용 음극을 포함하는 리튬 이차전지
WO2020149679A1 (ko) 리튬 이차전지 및 이의 제조방법
WO2020145639A1 (ko) 양극 활물질, 상기 양극 활물질의 제조 방법, 상기 양극 활물질을 포함하는 양극 및 리튬 이차전지
WO2019194433A1 (ko) 리튬 이차전지용 음극, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2020116858A1 (ko) 이차전지용 양극 활물질, 이의 제조 방법, 이를 포함하는 이차전지용 양극
WO2021101188A1 (ko) 음극 및 이를 포함하는 이차전지
WO2019194554A1 (ko) 리튬 이차전지용 음극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 음극, 및 리튬 이차전지
WO2020085823A1 (ko) 리튬 이차전지용 음극의 제조방법
WO2021015511A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법 및 상기 제조 방법에 의해 제조된 양극 활물질
WO2020111649A1 (ko) 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2021187907A1 (ko) 리튬 이차전지용 양극재, 이를 포함하는 양극 및 리튬 이차전지
WO2021101281A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법, 상기 제조 방법에 의해 제조된 양극 활물질
WO2022055308A1 (ko) 음극재, 이를 포함하는 음극 및 이차전지
WO2021049918A1 (ko) 이차전지용 양극재 및 이를 포함하는 리튬 이차전지
WO2021154035A1 (ko) 리튬 이차전지용 양극 활물질 및 이의 제조 방법
WO2020149683A1 (ko) 이차전지용 음극 활물질, 이의 제조방법, 이를 포함하는 이차전지용 음극 및 리튬 이차전지
WO2020067830A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2021125873A1 (ko) 리튬 이차전지용 양극, 상기 양극을 포함하는 리튬 이차전지
WO2021172857A1 (ko) 이차전지의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20740822

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021539358

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020740822

Country of ref document: EP

Effective date: 20210707