WO2020149371A1 - Electrical resistance measuring instrument, and electrical resistance measuring method employing same - Google Patents

Electrical resistance measuring instrument, and electrical resistance measuring method employing same Download PDF

Info

Publication number
WO2020149371A1
WO2020149371A1 PCT/JP2020/001323 JP2020001323W WO2020149371A1 WO 2020149371 A1 WO2020149371 A1 WO 2020149371A1 JP 2020001323 W JP2020001323 W JP 2020001323W WO 2020149371 A1 WO2020149371 A1 WO 2020149371A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
resistance measuring
electric resistance
conductive
conductive portion
Prior art date
Application number
PCT/JP2020/001323
Other languages
French (fr)
Japanese (ja)
Inventor
松井 良平
弘子 綿貫
拓磨 堀園
川戸 進
Original Assignee
東邦化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東邦化成株式会社 filed Critical 東邦化成株式会社
Priority to JP2020566479A priority Critical patent/JPWO2020149371A1/en
Publication of WO2020149371A1 publication Critical patent/WO2020149371A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/04Corrosion probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/20Investigating the presence of flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/22Measuring resistance of fluids

Definitions

  • the present invention relates to an electric resistance measuring device and an electric resistance measuring method using the same.
  • the method of manufacturing a semiconductor element has a step (for example, an etching step, a cleaning step) of bringing an intermediate product (more specifically, a wafer or the like) into contact with various fluids.
  • a step for example, an etching step, a cleaning step
  • the wafer is brought into contact with a fluid to remove impurities (more specifically, ionic substances, particulate substances, etc.) attached to the surface of the wafer.
  • the fluid (cleaning liquid) used in the cleaning step removes impurities by dissolving impurities adhering to the surface of the wafer or by flushing impurities adhering to the surface of the wafer.
  • the fluid may contain various chemicals (acid, alkali, organic solvent, etc.) in addition to pure water, a member (more specifically, a metal base material, etc.) for handling the wafer of the semiconductor device manufacturing apparatus should be used. It is protected from the fluid by being coated with a coating material having excellent chemical resistance (for example, fluororesin). Since the wafer can be cleaned at high temperature, the coating material may be required to have a harsh performance of chemical resistance at high temperature.
  • a coating material having excellent chemical resistance for example, fluororesin
  • the coating material covering the member deteriorates (heat deterioration, molecular chain cutting).
  • defects more specifically, cracks, cracks, blisters, swelling, peeling, solvent cracks, etc.
  • the member coated with the coating material is exposed to the cleaning liquid, and the base material may be dissolved in the cleaning liquid.
  • the cleaning liquid may be contaminated and the manufactured semiconductor element may be defective.
  • a defect often occurs, and the base material is already exposed to the cleaning liquid, and the base material is often dissolved in the cleaning liquid.
  • a defect may have already occurred in the semiconductor element.
  • an object of the present invention is to provide a measuring machine (testing machine or device) and a measuring method capable of finding defects in a coating material easily, quickly, and preferably in a timely manner. Furthermore, preferably even while the apparatus (for example, semiconductor element manufacturing apparatus) is in operation, the generation of contamination inside the apparatus is suppressed, and preferably it does not occur, and has excellent chemical resistance (especially excellent resistance to high temperatures). It is to provide a measuring machine having both chemical properties and cleanliness, and a measuring method using the measuring machine.
  • the present inventor as a result of extensive studies to solve the above problems, has an electrode formed of a specific composition containing a carbon nanotube and a fluororesin, a new electrical resistance measuring device of high sensitivity compared to the conventional Manufactured.
  • a high-sensitivity electric resistance machine By measuring the electric resistance using such a high-sensitivity electric resistance machine, when microscopic defects (more specifically, microcracks, pinholes, swelling, etc.) occur, they can be detected. By doing so, it was found that the occurrence of macroscopic defects can be prevented and the above problems can be solved, and the present invention has been completed. That is, the present invention includes a novel electric resistance measuring device and an electric resistance measuring method using the same, and provides the following aspects.
  • An electric resistance measuring instrument having a first terminal and a second terminal; An electrical resistance measuring instrument having a first electrode electrically connected to a first terminal, The first electrode is an electric resistance measuring device including a conductive material and a polymer. 2.
  • the conductive material includes a carbon-based material, and the above 1.
  • the electrical resistance measuring device according to any one of 1 to 4 above, wherein the conductive material includes carbon nanotubes, and the polymer includes a fluorine-based polymer. 6.
  • the electrical resistance measuring instrument according to any one of 1 to 5 above, which is for in-line use. 7.
  • the electrical resistance measuring instrument according to any one of 1 to 6 above, which is used for detecting a defect of a member in which a conductive portion is covered with a non-conductive portion.
  • An apparatus comprising the electric resistance measuring device according to any one of 1 to 7 above.
  • An electric resistance measuring method comprising using the electric resistance measuring device according to any one of 1 to 7 above. 10.
  • the measuring method according to 10 above which comprises: 12.
  • the electrical resistance measuring machine according to any one of items 1 to 7 above is used without removing the member in which the conductive part is covered with the non-conductive part from the device.
  • a method of detecting defects in a non-conductive portion comprising measuring the electrical resistance of the non-conductive portion.
  • a non-conductive member covered with a non-conductive portion is not removed from the device while the device is in operation, and the electrical resistance measuring machine according to claim 1 is used to A method of monitoring a non-conductive portion for defects, comprising measuring the electrical resistance of the conductive portion.
  • FIG. 1 schematically shows an example of an electric resistance measuring machine according to an embodiment of the present invention.
  • FIG. 2 schematically shows a method for evaluating the chemical resistance of the first electrode included in the electric resistance measuring machine according to the embodiment of the present invention.
  • FIG. 3 schematically shows an example of a wafer carrier (wafer carrying member) as a measurement target.
  • FIG. 4 schematically shows an example of a lining tank (metal tank lined with a lining layer) as a measurement target.
  • FIG. 5 schematically shows an example of a lining pipe (a metal pipe lined with a lining layer) as a measurement target and an example of the connection thereof.
  • FIG. 6 schematically shows an example of the method for confirming the conductivity of the conductive layer of the wafer carrier.
  • FIG. 7 schematically shows an example of an electric resistance measuring method (defect detecting method) of the non-conductive layer of the wafer carrier.
  • the volume resistivity of the first electrode and the second electrode may be any value suitable for measuring electric resistance.
  • the volume resistivity of the electrode is preferably 1 ⁇ 10 ⁇ 1 to 1 ⁇ 10 7 ⁇ cm, more preferably 1 ⁇ 10 0 to 1 ⁇ 10 5 ⁇ . Cm, and more preferably 1 ⁇ 10 1 to 1 ⁇ 10 3 ⁇ cm. The method for measuring the volume resistivity will be described in detail in Examples.
  • the shape and size (size) of the electrode are not particularly limited as long as the electric resistance measuring machine targeted by the present invention can be obtained and the electric resistance can be measured.
  • a cylindrical shape or a prismatic shape triangular prism, quadrangular prism, pentagonal prism, hexagonal prism, etc.
  • a bottom area of 0.01 to 100 cm 2 and a length of 0.1 to 100 cm may be exemplified. it can.
  • the electrodes may be clips, needles, plates, etc.
  • Conductive Material for example, a non-metallic conductive material (more specifically, a carbon-based material or the like) can be used.
  • the carbon-based material include graphite, graphene, fullerene, carbon nanotube (CNT), carbon fiber, silicon carbide, conductive polymer (more specifically, polyacetylene and polythiophene, etc.), and their chemical modifications (derivatives).
  • the conductive material may preferably include a non-metallic conductive material, more preferably a carbon-based material, and further preferably CNT.
  • the CNT may be a single layer or a multilayer (for example, two layers).
  • a commercially available product can be used as the CNT, and for example, the CNT-uni (trade name) series manufactured by Taiyo Nippon Sanso Co., Ltd. can be used.
  • the CNTs can be used alone or in combination.
  • the average length of CNTs is preferably 50 ⁇ m or more, more preferably 100 to 200 ⁇ m, still more preferably 150 to 200 ⁇ m.
  • the conductive paths are easily connected to each other, and the conductivity is further improved, which is preferable.
  • the content of the conductive material is preferably 0.01 to 2.0 mass %, more preferably 0.1% by mass based on the mass of the electrode containing the conductive material as 100 mass% (reference).
  • the content is 04 to 1.5% by mass, more preferably 0.05 to 1.0% by mass, and particularly preferably 0.05 to 0.5% by mass.
  • the content of the conductive material is 0.05 to 0.5% by mass, the amount is sufficient to form a conductive path, and the conductivity of the electrode is further improved, which is preferable.
  • FEP Polymer
  • ETFE ethylene/tetrafluoroethylene copolymer
  • ECTFE ethylene/chlorotrifluoroethylene copolymer
  • PCTFE polychlorotrifluoroethylene
  • PVDF polyvinylidene fluoride
  • At least one selected from the group consisting of (PVF) can be exemplified.
  • polytetrafluoroethylene for example, polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE), tetrafluoroethylene/perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene/hexafluoropropylene copolymer ( FEP), ethylene/tetrafluoroethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), polyvinylidene fluoride (PVDF) are preferable, and polytetrafluoroethylene (PTFE) and modified polytetrafluoroethylene (modified PTFE) , Tetrafluoroethylene/perfluoroalkyl vinyl ether copolymer (PFA), and polychlorotrifluoroethylene (PCTFE) are more preferable.
  • PTFE polytetrafluoroethylene
  • modified PTFE modified polytetrafluoroethylene
  • PFA te
  • Examples of the tetrafluoroethylene/perfluoroalkyl vinyl ether (PFA) include AP-230 (trade name), AP-210 (trade name), and NEOFLON PFA (trade name) manufactured by Daikin Industries, Ltd.
  • the fluororesins can be used alone or in combination.
  • the polymer contained in the conductive material composition may be in the form of particles.
  • the average particle diameter of such a particulate polymer is preferably 500 ⁇ m or less, more preferably 8 to 250 ⁇ m, further preferably 10 to 50 ⁇ m, and particularly preferably 10 to 25 ⁇ m.
  • the conductive material and the polymer can be uniformly dispersed in the electrode, so that the conductivity of the electrode is further improved.
  • the average particle diameter means an average particle diameter D 50 (measured by a laser diffraction/scattering method) obtained by measuring a particle size distribution using a laser diffraction/scattering particle size distribution device (“MT3300II” manufactured by Nikkiso Co., Ltd.).
  • the median diameter means the particle diameter at an integrated value of 50% in the required particle size distribution.
  • the electrode of the embodiment of the present invention is preferably manufactured by a manufacturing method including compression molding of a polymer composition in which a conductive material is dispersed, for example, a fluororesin composition in which carbon nanotubes are dispersed.
  • the compression molding conditions can be appropriately selected.
  • the method of manufacturing an electrode relating to PTFE and modified PTFE is as follows. Providing a fluororesin composition in which carbon nanotubes are dispersed in a fluororesin (preferably particulate fluororesin); The fluororesin composition is placed in a mold (after being subjected to appropriate pretreatment (preliminary drying, granulation, etc.) as necessary), preferably 0.1 to 100 MPa, more preferably 1 to 80 MPa, Even more preferably, it is pressed at a pressure of 5 to 50 MPa and compressed to produce a preform; Producing a molded product by firing the preformed product at a temperature not lower than the melting point of the fluororesin composition (preferably 345 to 400° C., more preferably 360 to 390° C.), preferably for 2 hours or longer; Processing the molded body (preferably cutting) to produce an electrode.
  • a fluororesin composition in which carbon nanotubes are dispersed in a fluororesin (preferably particulate fluororesin)
  • 0.1 to It includes compressing at a pressure of 100 MPa (preferably 1 to 80 MPa, more preferably 5 to 50 MPa) to obtain a molded body; and processing (preferably cutting) the molded body to obtain an electrode.
  • the electric resistance measuring machine main body has a measuring range, a measurement sensitivity, etc. corresponding to an object to be measured, and is not particularly limited as long as the electric resistance measuring machine intended by the present invention can be obtained.
  • the measuring range of the electric resistance measuring device body is preferably 10 M ⁇ to 4000 M ⁇ .
  • the body has a first terminal and a second terminal.
  • the first terminal can function as a high voltage output side terminal and is electrically connected to the first electrode.
  • the second terminal functions as a ground side terminal and is electrically connected to the conductive portion of the member to be measured.
  • the connection between the second terminal and the conductive portion to be measured may or may not be via the second electrode.
  • FIG. 1 schematically shows an example of an electric resistance measuring machine according to an embodiment of the present invention.
  • the electric resistance measuring machine 1 includes a measuring machine body 3 having a first terminal (not shown) and a second terminal (not shown), and a first electrode electrically connected to the first terminal of the measuring machine body 3. 7 and may have a second electrode 8 which may be connected to the second terminal.
  • the first electrode 7 can be connected to the first terminal via the wiring 5, and the second electrode 8 can be connected to the second terminal via the wiring 6.
  • the first electrode 7 may be, for example, a columnar or prismatic column containing a conductive material and a polymer, and the second electrode may be, for example, a brass or SUS clip, a round bar, or the like.
  • the electrical resistance measuring method has a conductive part and a non-conductive part, and a member (measurement target) in which the conductive part is covered with the non-conductive part has a defect in the non-conductive part. It can be preferably used for investigating whether or not
  • a member whose conductive part is covered with a non-conductive part for example, a metal tank (lining tank) lined with a lining layer (non-conductive layer, non-conductive part), a lining layer
  • a metal pipe lining pipe
  • a wafer transfer member for example, a wafer carrier, a wafer chuck, a wafer tweezers, a wafer lifter
  • the wafer carrier 20 can use a conductive base material (for example, a stainless steel base material) instead of the insulating base material 22. If a conductive base material is used, the conductive layer 25 is unnecessary, so the coating layer 24 includes only the insulating layer 26. In this case as well, it can be used as a measurement target by being in contact with the chemical solution for a long time to form defects.
  • a conductive base material for example, a stainless steel base material
  • FIG. 4 schematically shows an example of the lining tank 30 as a measurement target.
  • the lining tank 30 is provided with a cylindrical metal main body 31, a non-conductive lining layer 32 provided on the inner side of the main body 31, and some ports provided on the upper portion of the main body 31.
  • a chemical solution inlet 33 provided with the lining layer 32
  • a chemical solution outlet 34 provided with the lining layer 32
  • a lid 35 provided with the lining layer 32
  • an entrance 36 of the first electrode provided with the lining layer 32 The chemical liquid 15 can be put into the tank 30 through the chemical liquid inlet 33
  • the measurement electrode 7 of the measuring instrument can be put inside the tank through the first electrode inlet 36 to bring the chemical liquid 15 and the measurement electrode 7 into contact with each other.
  • FIG. 5 schematically shows an example in which at least three lining pipes 40 to be measured are connected.
  • the lining pipe 40 can have, for example, a metal pipe 41, a non-conductive lining 42 inside the pipe, and metal flanges (connection portions) 43 at both ends of the pipe.
  • the pipe 41 is a straight pipe with two ports, but may be a curved pipe or three ports.
  • it may have a three-way tube 45 made of metal, a non-conductive lining 46 inside the tube, and metal flanges 47 at the three ends of the tube.
  • These lining pipes can be connected to each other by flanges.
  • the first electrode of the measuring instrument can be put into the lining pipe from the three-ported pipe to bring the chemical solution 15 into contact with the first electrode.
  • the electric resistance measuring method of the embodiment of the present invention for example, (A) Contacting a member (measurement target) in which a conductive portion is covered with a non-conductive portion with a conductive fluid; (C) A conductive part covered with a non-conductive part by bringing the first electrode into contact with a conductive fluid in a state where the second terminal of the electric resistance measuring device is electrically connected to the conductive part of the member. Measuring the electrical resistance between the conductive fluid and the conductive fluid; Can be included.
  • the electrical resistance measuring method according to the embodiment of the present invention is performed before (C) (before or after (A)), (B)
  • the first terminal and the second terminal of the electric resistance measuring device are electrically connected to the conductive portion of the member as far as possible, and the electric resistance of the conductive portion is measured to obtain the conductive portion.
  • the conductive portion of the entire member is electrically connected by separating the portion where the first terminal is electrically connected to the conductive portion of the member and the portion where the second terminal is electrically connected to the conductive portion of the member as far as possible. As a result, it becomes possible to detect a defect in the non-conductive portion of the entire member.
  • the electric resistance of the conductive portion of the wafer carrier 20 was measured. This confirmed the conductivity of the conductive layer of the wafer carrier 20. The conductivity may be confirmed before (without applying) the wafer carrier to the chemical solution, or after measuring the electric resistance value of the insulating layer (non-conductive layer or non-conductive portion). May be.
  • the first electrode 7 was removed from the conductive layer of the wafer carrier 20, and the first electrode 7 was brought into contact with the chemical solution 15. The distance between the surface of the first electrode 7 and the surface of the wafer carrier 20 was about 5 cm. The electric resistance value was measured in this state. A voltage of 1000 V was applied for 10 seconds.
  • the defect detectability of the insulating layer (non-conductive portion) to be measured was evaluated. Further, for other measurement objects, the first electrode is brought into contact with the chemical solution, and the conductive portion of the measurement object is brought into contact with the second electrode, so that the electrical resistance of the non-conductive portion is similarly measured and a defect is detected. You can
  • the electrical resistance measuring device can be used by incorporating it into various apparatuses, and includes, for example, a manufacturing apparatus (for example, a semiconductor manufacturing apparatus (for example, a pattern forming apparatus, a cleaning apparatus, a peeling apparatus), and a chemical). It can be used by incorporating it into a chemical production device or the like, or a transportation device (for example, a chemicals transportation device or the like). More specifically, these devices may be devices that handle chemicals (including water, acidic and alkaline media, organic solvents, etc.).
  • the electrical resistance measuring device of the embodiment of the present invention can be used for “in-line”.
  • "for in-line” has the following meanings. (1) When the operation (or operation) of the apparatus is temporarily stopped, a member whose conductive portion is covered with the non-conductive portion is not removed from the apparatus, and the non-conductive portion is And (2) the non-conductive part of the member in which the conductive part is covered with the non-conductive part using the electric resistance measuring device while the device is in operation (or in operation). Being able to monitor for defects.
  • the mold After heating for a predetermined period of time, the mold was taken out of the electric furnace and cooled to near room temperature while being compressed under a surface pressure of 25 kg/cm 2 or more using a hydraulic press, and then 0.1% CNT-containing PCTFE composition. An electrode (1) which is a molded product of the product was obtained.
  • Electrode (2) contained 0.1% CNT by the same method as in the above-mentioned manufacturing method of the electrode (1) except that the PCTFE particles were changed to the PTFE particles (Polyflon PTFE-M manufactured by Daikin Industries, Ltd.).
  • a PTFE composition (2) was obtained.
  • the PTFE composition (2) was compressed by pressurizing at 15 MPa and holding for a certain period of time to obtain a preform.
  • the obtained preformed body was taken out of the molding die, baked in a hot air circulation type electric furnace set at 345° C. or higher for 2 hours or more, gradually cooled, then taken out of the electric furnace, and 0.1% CNT-containing PTFE was added.
  • An electrode (2) which is a molded product of the composition was obtained.
  • Electrode (3) The mold was heated for 2 hours or longer in a hot air circulation type electric furnace set to 200° C. or higher to melt the PCTFE particles (“NEOFLON PCTFE” manufactured by Daikin Industries, Ltd.). After heating for a predetermined time, the mold is taken out from the electric furnace, and the mold is cooled to near room temperature while being compressed under a surface pressure of 25 kg/cm 2 or more using a hydraulic press, and then an electrode which is a molded body of PCTFE particles. (3) was obtained. The electrode (3) does not contain CNT.
  • the coating layer 24 includes only the insulating layer 26.
  • the electric resistance measuring machine 1 has a measuring machine body 3 having a first terminal and a second terminal, a first electrode 7 electrically connected to the first terminal of the measuring machine body 3, and a second terminal. It has a second electrode 8 connected.
  • the first electrode 7 is connected to the first terminal via the wiring 5, and the second electrode 8 is connected to the second terminal via the wiring 6.
  • the first electrode 7 corresponds to the electrodes (1), (2), (3) and (4) in the order of the electrical resistance measuring machines of Examples 1 and 2 and Comparative Examples 1 and 2.
  • Each of the second electrodes corresponds to the electrode (4).
  • FIG. 2 shows a method for evaluating the chemical resistance of the electrode.
  • a 20 L polypropylene container 11 was charged with a chemical liquid (SPM or SC2) 15 having a liquid temperature of 130°C.
  • the first electrode 7 was brought into contact with the chemical solution 15. The contact state was maintained and the contact portion of the first electrode 7 was visually observed. From the observation results, the chemical resistance of the first electrode 7 was evaluated based on the following evaluation criteria.
  • the electrodes (1) to (4) are used as the first electrode 7, each evaluation result is shown in Table 1.
  • the electrical resistance value of the first electrode 7 was measured by bringing the end of the first electrode 7 connected to the wiring 5 into contact with the wiring 6 not connected to the second electrode 8. Regarding the detection limit of the measuring instrument body, the lower limit value is 10 M ⁇ and the upper limit value is 4000 M ⁇ .
  • the electrical conductivity of the first electrode 7 was evaluated from the measured electrical resistance value based on the following evaluation criteria. When the electrodes (1) to (4) are used as the first electrode 7, each evaluation result is shown in Table 1. (Evaluation criteria) A (excellent): The electric resistance value of the electrode was less than 10 M ⁇ . B (bad): The electric resistance value of the electrode was 10 M ⁇ or more.
  • the container 11 is filled with the chemical liquid 15 (SPM or SC2), and the wafer carrier 20 (the base material 22 includes the coating layer 24 (conductive layer (conductive portion) 25 and non-conductive layer (non-conductive layer)) is used.
  • the part () coated with the sex part) 26) was brought into contact with the chemical solution 15.
  • the first electrode 7 and the second electrode 8 were brought into contact with the conductive portion 25 of the wafer carrier 20 (the base material 22 when the base material was conductive), and were connected to the measurement device body 3.
  • the electric resistance of the wafer carrier 20 was measured. This confirmed the conductivity of the conductive portion of the wafer carrier 20.
  • the first electrode 7 was removed from the wafer carrier 20, and the first electrode 7 was brought into contact with the chemical solution 15.
  • the distance between the surface of the first electrode 7 and the surface of the wafer carrier 20 was about 5 cm.
  • the electric resistance value was measured in this state. A voltage of 1000 V was applied for 10 seconds.
  • test piece was immersed in 0.5 L of 3.6% hydrochloric acid (EL-UM grade manufactured by Kanto Chemical Co., Ltd.) for about 1 hour, and then washed by pouring it over with ultrapure water (specific resistance: ⁇ 18.0 M ⁇ cm). .. Further, the entire test piece was immersed in 0.1 L of 3.6% hydrochloric acid and stored in a room temperature environment for 24 hours and 168 hours. After the elapse of the specified time, the immersion liquid was collected in its entirety (all the immersed hydrochloric acid was collected), and the concentration of metal impurities in the immersion liquid was analyzed. Three test pieces were prepared and the maximum value was used as the detection amount. The evaluation criteria are as follows.
  • A The detected amount of all metals is less than 5 ppb.
  • B The detected amount of Al, Cr, Cu, Fe, Ni, Zn, Ca, K and Na is less than 5 ppb.
  • C The detected amount of Al, Cr, Cu, Fe, Ni and Zn is less than 5 ppb.
  • D The detected amount of any one of Al, Cr, Cu, Fe, Ni and Zn is 5 ppb or more. The results are shown in Table 1.
  • the degree of carbon nanotube desorption from the electrode was evaluated by measuring TOC (total organic carbon) using a total organic carbon meter (“TOCvwp” manufactured by Shimadzu Corporation). Specifically, a 10 mm ⁇ 20 mm ⁇ 50 mm test piece obtained by cutting is immersed in 0.5 L of 3.6% hydrochloric acid (Kanto Kagaku EL-UM grade) for about 1 hour, and after immersion for 1 hour, it is taken out to be ultra pure. Washing was carried out by pouring with water (specific resistance value: ⁇ 18.0 M ⁇ cm), and the whole test piece was immersed in ultrapure water and stored at room temperature for 24 hours and 168 hours.
  • TOCvwp total organic carbon meter
  • the immersion liquid was collected in its entirety (collecting all the immersed ultrapure water), and the organic liquid carbon was analyzed for the immersion liquid. Three test pieces were prepared and the maximum value was used as the detection amount.
  • the evaluation criteria are as follows. A: The detected amount of total organic carbon is less than 50 ppb. D: The detected amount of total organic carbon is 50 ppb or more.
  • Example 2 Comparative Examples 1-2
  • Example 2 Comparative Examples 1 and 2
  • Example 2 Using the same method as in Example 1 except that the electrode (1) was changed to the electrodes (2) to (4), the electrodes and the electrical resistance measuring devices of Example 2 and Comparative Examples 1 and 2 were evaluated. The results are shown in Table 1.
  • Examples 1 and 2 were excellent in chemical resistance, electrical conductivity, detectability and cleanliness. On the other hand, in Comparative Examples 1 and 2, at least one of chemical resistance, electrical conductivity, detectability, and cleanness was poor. Therefore, it is apparent that Examples 1 and 2 have better chemical resistance, electrical conductivity, detectability and cleanability than Comparative Examples 1 and 2.
  • the electric resistance measuring device and the electric resistance measuring method of the present invention can be used by being incorporated in a semiconductor device manufacturing apparatus, but the invention is not limited to such applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Electrochemistry (AREA)
  • Environmental Sciences (AREA)
  • Ecology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

This electrical resistance measuring instrument includes an electrical resistance measuring instrument main body having a first terminal and a second terminal, and a first electrode electrically connected to the first terminal, wherein the first electrode includes an electrically conductive material and a polymer.

Description

電気抵抗測定機及びそれを用いる電気抵抗測定方法Electric resistance measuring machine and electric resistance measuring method using the same
 本発明は、電気抵抗測定機及びそれを用いる電気抵抗測定方法に関する。 The present invention relates to an electric resistance measuring device and an electric resistance measuring method using the same.
 半導体素子の製造方法は、中間製造物(より具体的には、ウェハ等)を種々の流体に接触させる工程(例えば、エッチング工程、洗浄工程)を有する。例えば、洗浄工程では、ウェハを流体と接触させて、ウェハの表面に付着した不純物(より具体的には、イオン性物質、粒子状物質等)を除去する。洗浄工程で使用される流体(洗浄液)は、ウェハの表面に付着した不純物を溶解すること、又はウェハの表面に付着した不純物を押し流すことなどによって、不純物を除去する。 The method of manufacturing a semiconductor element has a step (for example, an etching step, a cleaning step) of bringing an intermediate product (more specifically, a wafer or the like) into contact with various fluids. For example, in the cleaning step, the wafer is brought into contact with a fluid to remove impurities (more specifically, ionic substances, particulate substances, etc.) attached to the surface of the wafer. The fluid (cleaning liquid) used in the cleaning step removes impurities by dissolving impurities adhering to the surface of the wafer or by flushing impurities adhering to the surface of the wafer.
 従って、流体は、純水以外に、種々の薬品(酸、アルカリ、有機溶剤など)を含み得るので、半導体素子製造装置のウェハを取り扱う部材(より具体的には、金属製基材等)を耐薬品性に優れるコーティング材(例えば、フッ素樹脂等)で被覆することによって、上記流体から保護する。高温でウェハを洗浄し得るので、コーティング材は、高温時の耐薬品性という、過酷な性能が要求され得る。 Therefore, since the fluid may contain various chemicals (acid, alkali, organic solvent, etc.) in addition to pure water, a member (more specifically, a metal base material, etc.) for handling the wafer of the semiconductor device manufacturing apparatus should be used. It is protected from the fluid by being coated with a coating material having excellent chemical resistance (for example, fluororesin). Since the wafer can be cleaned at high temperature, the coating material may be required to have a harsh performance of chemical resistance at high temperature.
 しかし、部材は、洗浄工程で長期間通常使用されるので、部材を被覆したコーティング材が劣化(熱劣化、分子鎖の切断)する。その結果、コーティング材に欠陥(より具体的には、ひび、割れ、ふくれ、膨潤、剥離、及びソルベントクラック等)が生じ得る。欠陥が形成されると、コーティング材で被覆された部材(より具体的には、金属製基材)が洗浄液に曝露され、その基材が洗浄液に溶解し得る。基材が洗浄液に溶解すると、洗浄液の汚染を生じ、製造される半導体素子に不良を生じ得る。 However, since the member is usually used for a long time in the cleaning process, the coating material covering the member deteriorates (heat deterioration, molecular chain cutting). As a result, defects (more specifically, cracks, cracks, blisters, swelling, peeling, solvent cracks, etc.) may occur in the coating material. When the defect is formed, the member coated with the coating material (more specifically, the metal base material) is exposed to the cleaning liquid, and the base material may be dissolved in the cleaning liquid. When the base material is dissolved in the cleaning liquid, the cleaning liquid may be contaminated and the manufactured semiconductor element may be defective.
 コーティング材の欠陥を検査する方法として、ピンホールテスト等が知られているが、製造装置等の運転中にコーティング材の劣化を診断する方法は、ほとんど実用化されていない(非特許文献1参照)。
 半導体素子の不良の発生を防止するために、例えば、コーティング材の劣化を想定して、半導体素子製造装置の部材を定期的に交換していた。その交換時期は、各技術者が、経験的に又は感覚的に定めることが多い。更に、半導体素子製造装置の運転を停止したときに、半導体素子製造装置の部材のコーティング材を目視で観察して、その欠陥の有無を確認していた。
 従って、部材の交換が遅れると、欠陥が発生して、既に基材が洗浄液に曝露され、基材が洗浄液に溶解している状態まで進行していることが多い。欠陥の発見時(例えば、治具から泡が発生するような剥がれの発見時)には既に半導体素子に不良が生じている場合があった。
Although a pinhole test or the like is known as a method for inspecting a coating material for defects, a method for diagnosing deterioration of the coating material during operation of a manufacturing apparatus or the like has hardly been put into practical use (see Non-Patent Document 1). ).
In order to prevent the occurrence of defects in semiconductor elements, for example, assuming the deterioration of the coating material, the members of the semiconductor element manufacturing apparatus have been regularly replaced. The replacement time is often set empirically or sensibly by each engineer. Further, when the operation of the semiconductor element manufacturing apparatus is stopped, the coating material of the member of the semiconductor element manufacturing apparatus is visually observed to confirm the presence or absence of the defect.
Therefore, if the replacement of the member is delayed, a defect often occurs, and the base material is already exposed to the cleaning liquid, and the base material is often dissolved in the cleaning liquid. At the time of finding a defect (for example, at the time of finding peeling such as generation of bubbles from a jig), a defect may have already occurred in the semiconductor element.
 形成された欠陥の発見に時間を要すると、部材の基材成分が洗浄液に溶解して、洗浄液を汚染する(コンタミネーション)という問題があった。かかる場合、半導体素子製造装置のコーティング材が劣化した部材の交換のみならず、製造工程(プロセス)を止めて、その半導体素子製造装置を洗浄することが必要であった。ゆえに、欠陥が形成されると、製造装置の再稼働に多くの労力と時間を要していた。 There was a problem that if it takes time to find the formed defects, the base material component of the member dissolves in the cleaning liquid and contaminates the cleaning liquid (contamination). In such a case, it is necessary not only to replace the member in which the coating material of the semiconductor element manufacturing apparatus has deteriorated but also to stop the manufacturing process (process) and clean the semiconductor element manufacturing apparatus. Therefore, if a defect is formed, it takes a lot of labor and time to restart the manufacturing apparatus.
 従って、本発明の目的は、コーティング材の欠陥を、容易に、迅速に、好ましくは適時に発見することができる測定機(試験機又はデバイス)及び測定方法を提供することである。更に、好ましくは装置(例えば半導体素子製造装置)の運転中であっても、その装置内部の汚染の発生を抑制し、好ましくは生じることなく、優れた耐薬品性(特に高温での優れた耐薬品性)及びクリーン性を兼ね備えた測定機及びそれを用いる測定方法を提供することである。 Therefore, an object of the present invention is to provide a measuring machine (testing machine or device) and a measuring method capable of finding defects in a coating material easily, quickly, and preferably in a timely manner. Furthermore, preferably even while the apparatus (for example, semiconductor element manufacturing apparatus) is in operation, the generation of contamination inside the apparatus is suppressed, and preferably it does not occur, and has excellent chemical resistance (especially excellent resistance to high temperatures). It is to provide a measuring machine having both chemical properties and cleanliness, and a measuring method using the measuring machine.
 本発明者は、上記課題を解決するために鋭意検討した結果、カーボンナノチューブとフッ素樹脂とを含む特定の組成物で形成された電極を有する、従来に比べ高感度の新たな電気抵抗測定機を製造した。このような高感度の電気抵抗機を用いて電気抵抗を測定することによって、微視的な欠陥(より具体的には、マイクロクラック、ピンホール、膨潤等)が発生した段階で、それを検知することによって、巨視的な欠陥の発生を予防し、上記課題を解決できることを見出し、本発明を完成するに至った。即ち、本発明は、新規な電気抵抗測定機及びそれを用いる電気抵抗測定方法を含み、以下の態様を提供するものである。 The present inventor, as a result of extensive studies to solve the above problems, has an electrode formed of a specific composition containing a carbon nanotube and a fluororesin, a new electrical resistance measuring device of high sensitivity compared to the conventional Manufactured. By measuring the electric resistance using such a high-sensitivity electric resistance machine, when microscopic defects (more specifically, microcracks, pinholes, swelling, etc.) occur, they can be detected. By doing so, it was found that the occurrence of macroscopic defects can be prevented and the above problems can be solved, and the present invention has been completed. That is, the present invention includes a novel electric resistance measuring device and an electric resistance measuring method using the same, and provides the following aspects.
1.第1端子と第2端子を有する電気抵抗測定機本体;
 第1端子と電気的に接続されている第1電極を有する電気抵抗測定機であって、
 第1電極は、導電性材料とポリマーを含む、電気抵抗測定機。
2.導電性材料は、炭素系材料を含む、上記1.に記載の電気抵抗測定機。
3.第1電極は、導電性材料を、第1電極の質量を100質量%として、0.01~2.0質量%の量で含む、上記1又は2に記載の電気抵抗測定機。
4.ポリマーは、シリコーン系ポリマー、フッ素系ポリマー、含窒素ポリマー及びポリオレフィンから選択される少なくとも1種を含む、上記1~3のいずれか1に記載の電気抵抗測定機。
5.導電性材料は、カーボンナノチューブを含み、ポリマーは、フッ素系ポリマーを含む、上記1~4のいずれか1に記載の電気抵抗測定機。
6.インライン用の、上記1~5のいずれか1に記載の電気抵抗測定機。
7.導電性部分が非導電性部分で覆われている部材の欠陥検知に使用される、上記1~6のいずれか1に記載の電気抵抗測定機。
8.上記1~7のいずれか1に記載の電気抵抗測定機を含む、装置。
9.上記1~7のいずれか1に記載の電気抵抗測定機を用いることを含む、電気抵抗測定方法。
10.(A)導電性部分が非導電性部分で被覆されている部材を、導電性を有する流体に接触させること; 
 (C)電気抵抗測定機の第2端子を、前記部材の導電性部分に電気的に接続した状態で、第1電極を導電性流体に接触させて、非導電性部分で被覆された導電性部分と導電性流体との間の電気抵抗を測定すること;
を含む、上記1~7のいずれか1に記載の電気抵抗測定機を用いる、電気抵抗測定方法。
11.(C)の前に、
 (B)電気抵抗測定機の第1端子と第2端子を、部材の導電性部分に、可能な限り離して電気的に接続して、導電性部分の電気抵抗を測定して、導電性部分の導電性を確認すること;
を含む、上記10に記載の測定方法。
12.装置の運転を一時停止したとき、導電性部分が非導電性部分で覆われている部材を装置から取り外すことなく、上記1~7項のいずれか1に記載の電気抵抗測定機を用いて、非導電性部分の電気抵抗を測定することを含む、非導電性部分の欠陥を検知する方法。
13.装置を運転中に、導電性部分が非導電性部分で覆われている部材を装置から取り外すことなく、請求項1~7項のいずれか1項に記載の電気抵抗測定機を用いて、非導電性部分の電気抵抗を測定することを含む、非導電性部分の欠陥を監視する方法。
1. An electric resistance measuring instrument having a first terminal and a second terminal;
An electrical resistance measuring instrument having a first electrode electrically connected to a first terminal,
The first electrode is an electric resistance measuring device including a conductive material and a polymer.
2. The conductive material includes a carbon-based material, and the above 1. An electric resistance measuring device described in.
3. 3. The electric resistance measuring instrument according to 1 or 2 above, wherein the first electrode contains a conductive material in an amount of 0.01 to 2.0 mass% with the mass of the first electrode as 100 mass %.
4. 4. The electrical resistance measuring device according to any one of 1 to 3 above, wherein the polymer contains at least one selected from silicone-based polymers, fluorine-based polymers, nitrogen-containing polymers and polyolefins.
5. The electrical resistance measuring device according to any one of 1 to 4 above, wherein the conductive material includes carbon nanotubes, and the polymer includes a fluorine-based polymer.
6. The electrical resistance measuring instrument according to any one of 1 to 5 above, which is for in-line use.
7. 7. The electrical resistance measuring instrument according to any one of 1 to 6 above, which is used for detecting a defect of a member in which a conductive portion is covered with a non-conductive portion.
8. An apparatus comprising the electric resistance measuring device according to any one of 1 to 7 above.
9. An electric resistance measuring method, comprising using the electric resistance measuring device according to any one of 1 to 7 above.
10. (A) contacting a member in which a conductive portion is covered with a non-conductive portion with a conductive fluid;
(C) A conductive material coated with a non-conductive portion by bringing the first electrode into contact with a conductive fluid in a state where the second terminal of the electric resistance measuring device is electrically connected to the conductive portion of the member. Measuring the electrical resistance between the part and the conductive fluid;
An electric resistance measuring method using the electric resistance measuring device according to any one of 1 to 7 above.
11. Before (C)
(B) The first terminal and the second terminal of the electric resistance measuring device are electrically connected to the conductive portion of the member as far as possible, and the electric resistance of the conductive portion is measured to obtain the conductive portion. Check the conductivity of;
11. The measuring method according to 10 above, which comprises:
12. When the operation of the device is temporarily stopped, the electrical resistance measuring machine according to any one of items 1 to 7 above is used without removing the member in which the conductive part is covered with the non-conductive part from the device. A method of detecting defects in a non-conductive portion, comprising measuring the electrical resistance of the non-conductive portion.
13. A non-conductive member covered with a non-conductive portion is not removed from the device while the device is in operation, and the electrical resistance measuring machine according to claim 1 is used to A method of monitoring a non-conductive portion for defects, comprising measuring the electrical resistance of the conductive portion.
 本発明によれば、コーティング材の欠陥を、容易に、迅速に、好ましくは適時に、発見することができる測定機及び測定方法を提供することができる。上述の測定機は優れた耐薬品性及びクリーン性を有し、その測定機を用いて電気抵抗を測定することで、コーティング材の欠陥を、好ましくは軽微な段階で(微視的な欠陥の状態で)発見することができ、より好ましくは、巨視的な欠陥発生を予測することができる。
更に、好ましくは装置(例えば半導体素子製造装置)の運転中であっても、その装置内部の汚染の発生を抑制し、好ましくは生じることなく、優れた耐薬品性(特に高温での優れた耐薬品性)及びクリーン性を兼ね備えた測定機及びそれを用いる測定方法を提供することができる。
According to the present invention, it is possible to provide a measuring machine and a measuring method capable of finding defects in a coating material easily, quickly, and preferably in time. The above-mentioned measuring machine has excellent chemical resistance and cleanliness, and by measuring the electric resistance using the measuring machine, defects in the coating material can be detected, preferably at a minor stage (of microscopic defects). Conditions) and, more preferably, macroscopic defect development can be predicted.
Furthermore, preferably even while the apparatus (for example, semiconductor element manufacturing apparatus) is in operation, the generation of contamination inside the apparatus is suppressed, and preferably it does not occur, and has excellent chemical resistance (especially excellent resistance to high temperatures). It is possible to provide a measuring machine having both chemical properties) and cleanliness, and a measuring method using the measuring machine.
図1は、本発明の一実施形態の電気抵抗測定機の一例を模式的に示す。FIG. 1 schematically shows an example of an electric resistance measuring machine according to an embodiment of the present invention. 図2は、本発明の一実施形態の電気抵抗測定機が有する第1電極の耐薬品性評価方法を模式的に示す。FIG. 2 schematically shows a method for evaluating the chemical resistance of the first electrode included in the electric resistance measuring machine according to the embodiment of the present invention. 図3は、測定対象としての、ウェハキャリア(ウェハ搬送部材)の一例を模式的に示す。FIG. 3 schematically shows an example of a wafer carrier (wafer carrying member) as a measurement target. 図4は、測定対象としての、ライニングタンク(ライニング層でライニングされた金属製タンク)の一例を模式的に示す。FIG. 4 schematically shows an example of a lining tank (metal tank lined with a lining layer) as a measurement target. 図5は、測定対象としての、ライニング配管(ライニング層でライニングされた金属製配管)の例と、それらの接続の一例を模式的に示す。FIG. 5 schematically shows an example of a lining pipe (a metal pipe lined with a lining layer) as a measurement target and an example of the connection thereof. 図6は、ウェハキャリアの導電層の導電性確認方法の一例を模式的に示す。FIG. 6 schematically shows an example of the method for confirming the conductivity of the conductive layer of the wafer carrier. 図7は、ウェハキャリアの非導電層の電気抵抗測定方法(欠陥検知方法)の一例を模式的に示す。FIG. 7 schematically shows an example of an electric resistance measuring method (defect detecting method) of the non-conductive layer of the wafer carrier.
 以下、本発明の実施形態について、添付した図面を参照しながら、詳細に説明する。
<電気抵抗測定機>
 本発明の実施形態に係る電気抵抗測定機は、
 第1端子と第2端子を有する電気抵抗測定機本体;
 第1端子と電気的に接続されている第1電極を有する電気抵抗測定機であって、
 第1電極は、導電性材料とポリマーを含む。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
<Electric resistance measuring machine>
The electrical resistance measuring machine according to the embodiment of the present invention,
An electric resistance measuring instrument having a first terminal and a second terminal;
An electrical resistance measuring instrument having a first electrode electrically connected to a first terminal,
The first electrode includes a conductive material and a polymer.
 1.電極
 本発明の実施形態に係る電気抵抗測定機は、第1電極を有する。第1電極は、電気抵抗測定機本体の第1端子と電気的に接続されている。第1電極は、導電性材料とポリマーとを含む。
本発明の実施形態に係る電気抵抗測定機は、第2電極を有してもよい。第2電極は、電気抵抗測定機本体の第2端子と電気的に接続されてよい。従って、電気抵抗測定機は、第2端子と電気的に接続されている第2電極を有することができる。第2電極は、導電性材料とポリマーとを含んでよい。第2電極が、導電性材料とポリマーを含まない場合、例えば、真ちゅう、銅、ステンレス、鉄、アルミニウム等を含んでよく、使用環境などに応じて、電極材料を適切に選択することができる。
1. Electrode The electrical resistance measuring device according to the embodiment of the present invention has a first electrode. The first electrode is electrically connected to the first terminal of the electric resistance measuring device body. The first electrode includes a conductive material and a polymer.
The electrical resistance measuring machine according to the embodiment of the present invention may have a second electrode. The second electrode may be electrically connected to the second terminal of the electric resistance measuring device body. Therefore, the electrical resistance measuring device can have a second electrode electrically connected to the second terminal. The second electrode may include a conductive material and a polymer. When the second electrode does not contain a conductive material and a polymer, it may contain, for example, brass, copper, stainless steel, iron, aluminum or the like, and the electrode material can be appropriately selected according to the use environment and the like.
 第1電極及び第2電極の体積抵抗率は、電気抵抗を測定するために適する値であればよい。電極が、導電性材料とポリマーとを含む場合、その電極の体積抵抗率は、好ましくは1×10-1~1×10Ω・cm、より好ましくは1×10~1×10Ω・cm、さらに好ましくは1×10~1×10Ω・cmである。体積抵抗率の測定方法は、実施例にて詳細に説明する。 The volume resistivity of the first electrode and the second electrode may be any value suitable for measuring electric resistance. When the electrode contains a conductive material and a polymer, the volume resistivity of the electrode is preferably 1×10 −1 to 1×10 7 Ω·cm, more preferably 1×10 0 to 1×10 5 Ω. Cm, and more preferably 1×10 1 to 1×10 3 Ω·cm. The method for measuring the volume resistivity will be described in detail in Examples.
 電極の形状及び寸法(サイズ)は、本発明が目的とする電気抵抗測定機を得ることができ、電気抵抗の測定が可能な限り特に制限されることはない。例えば、円柱状、角柱状(三角柱、四角柱、五角柱、六角柱等)の形状、例えば、底面積が0.01~100cm、長さが0.1~100cmの寸法を例示することができる。更に、電極は、クリップ、ニードル、板状等であってよい。 The shape and size (size) of the electrode are not particularly limited as long as the electric resistance measuring machine targeted by the present invention can be obtained and the electric resistance can be measured. For example, a cylindrical shape or a prismatic shape (triangular prism, quadrangular prism, pentagonal prism, hexagonal prism, etc.), for example, a bottom area of 0.01 to 100 cm 2 and a length of 0.1 to 100 cm may be exemplified. it can. Further, the electrodes may be clips, needles, plates, etc.
1-1.導電性材料
 導電性材料として、例えば、非金属性導電材料(より具体的には、炭素系材料等)が挙げられる。炭素系材料としては、例えば、黒鉛、グラフェン、フラーレン、カーボンナノチューブ(CNT)、カーボンファイバー、炭化珪素、導電性ポリマー(より具体的には、ポリアセチレン及びポリチオフェン等)及びこれらの化学修飾物(誘導体)が挙げられる。導電性材料は、耐薬品性及びクリーン性をさらに向上させる観点から、好ましくは非金属製導電性材料、より好ましくは炭素系材料、さらに好ましくはCNTを含むことができる。
1-1. Conductive Material As the conductive material, for example, a non-metallic conductive material (more specifically, a carbon-based material or the like) can be used. Examples of the carbon-based material include graphite, graphene, fullerene, carbon nanotube (CNT), carbon fiber, silicon carbide, conductive polymer (more specifically, polyacetylene and polythiophene, etc.), and their chemical modifications (derivatives). Are listed. From the viewpoint of further improving chemical resistance and cleanliness, the conductive material may preferably include a non-metallic conductive material, more preferably a carbon-based material, and further preferably CNT.
 本明細書において、「CNT」とは、通常CNTと理解される物質であって、本発明が目的とする電気抵抗測定デバイスに含まれる電極を得ることができる限り、特に制限されることはない。 In the present specification, “CNT” is a substance that is generally understood as CNT, and is not particularly limited as long as the electrode included in the electric resistance measuring device targeted by the present invention can be obtained. ..
 CNTは、単層であっても、多層(例えば、2層)であってもよい。CNTとして市販品を使用することができ、例えば、大陽日酸社製のCNT-uni(商品名)シリーズを使用することができる。
 CNTは、単独又は組み合わせて使用することができる。
The CNT may be a single layer or a multilayer (for example, two layers). A commercially available product can be used as the CNT, and for example, the CNT-uni (trade name) series manufactured by Taiyo Nippon Sanso Co., Ltd. can be used.
The CNTs can be used alone or in combination.
 本発明の実施形態において、CNTの平均長さは、好ましくは50μm以上、より好ましくは100~200μm、さらに好ましくは150~200μmである。
 CNTの平均長さが50μm以上である場合、導電パスが繋がりやすいである点から、導電性がより向上し、好ましい。
In the embodiment of the present invention, the average length of CNTs is preferably 50 μm or more, more preferably 100 to 200 μm, still more preferably 150 to 200 μm.
When the average length of CNTs is 50 μm or more, the conductive paths are easily connected to each other, and the conductivity is further improved, which is preferable.
 本明細書において、CNTの平均長さ(又は平均繊維長)とは、SEMで撮影した画像から得られる平均長さをいう。即ち、導電性材料とポリマーとを含む電極の一部を、300℃~600℃に加熱して、灰化し、残渣物(SEM撮影用サンプル)を得る。その残渣物のSEM画像を撮影する。そのSEM画像に含まれる各CNTの長さを画像処理によって求める。その画像処理によって得た長さの平均値を計算によって求め、その平均値をCNTの平均長さという。 In the present specification, the average length of CNT (or average fiber length) refers to the average length obtained from an image taken by SEM. That is, a part of the electrode containing the conductive material and the polymer is heated to 300° C. to 600° C. to be incinerated to obtain a residue (SEM imaging sample). Take a SEM image of the residue. The length of each CNT included in the SEM image is obtained by image processing. The average value of the lengths obtained by the image processing is calculated, and the average value is referred to as the average length of CNT.
 本発明の実施形態において、導電性材料の含有量は、その導電性材料を含む電極の質量を100質量%(基準)として、好ましくは0.01~2.0質量%、より好ましくは0.04~1.5質量%、さらに好ましくは0.05~1.0質量%、特に好ましくは0.05~0.5質量%である。
 導電性材料の含有量が0.05~0.5質量%である場合、導電パスを形成するために十分な量なので、電極の導電性がより向上し、好ましい。
In the embodiment of the present invention, the content of the conductive material is preferably 0.01 to 2.0 mass %, more preferably 0.1% by mass based on the mass of the electrode containing the conductive material as 100 mass% (reference). The content is 04 to 1.5% by mass, more preferably 0.05 to 1.0% by mass, and particularly preferably 0.05 to 0.5% by mass.
When the content of the conductive material is 0.05 to 0.5% by mass, the amount is sufficient to form a conductive path, and the conductivity of the electrode is further improved, which is preferable.
1-2.ポリマー
 ポリマーとして、例えば、耐薬品性ポリマー(より具体的には、シリコーン系ポリマー、フッ素系ポリマー、含窒素ポリマー、ポリオレフィンおよびその他のポリマー等)を例示できる。シリコーン系ポリマーとして、例えば、シリコーン樹脂及びシリコーンゴムを例示できる。フッ素系ポリマーとして、例えば、フッ素樹脂およびフッ素ゴムを例示できる。ポリオレフィンとして、例えば、ポリプロピレン及びポリエチレンを例示できる。含窒素系ポリマーとして、ポリアミド、ポリイミド、またはポリアミドイミドを例示できる。その他のポリマーとして、例えば、エポキシ樹脂、及び液晶ポリマーを例示できる。耐熱性を有し、耐薬品性及びクリーン性をさらに向上させる観点から、ポリマーは、好ましくは耐薬品性ポリマーを含み、より好ましくはフッ素系樹脂を含み、さらに好ましくはフッ素樹脂を含む。
1-2. Polymers Examples of polymers include chemical resistant polymers (more specifically, silicone-based polymers, fluorine-based polymers, nitrogen-containing polymers, polyolefins and other polymers). Examples of the silicone-based polymer include silicone resin and silicone rubber. Examples of fluoropolymers include fluororesins and fluororubbers. Examples of the polyolefin include polypropylene and polyethylene. Examples of the nitrogen-containing polymer include polyamide, polyimide, and polyamide-imide. Examples of other polymers include epoxy resins and liquid crystal polymers. From the viewpoint of having heat resistance and further improving chemical resistance and cleanliness, the polymer preferably contains a chemical resistant polymer, more preferably a fluororesin, and further preferably a fluororesin.
 本明細書において、「フッ素樹脂」とは、通常フッ素樹脂と理解される樹脂であって、本発明が目的とする電気抵抗測定デバイスに含まれる電極を得ることができる限り、特に制限されることはない。
 そのようなフッ素樹脂として、例えば、ポリテトラフルオロエチレン(PTFE)、変性ポリテトラフルオロエチレン(変性PTFE)、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)、エチレン/テトラフルオロエチレン共重合体(ETFE)、エチレン/クロロトリフルオロエチレン共重合体(ECTFE)、ポリクロロトリフルオロエチレン(PCTFE)、ポリフッ化ビニリデン(PVDF)およびポリフッ化ビニル(PVF)からなる群から選択される少なくとも1種を例示できる。
In the present specification, the “fluororesin” is a resin that is generally understood to be a fluororesin, and is particularly limited as long as the electrode included in the electric resistance measuring device intended by the present invention can be obtained. There is no.
Examples of such fluororesin include polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE), tetrafluoroethylene/perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene/hexafluoropropylene copolymer. Polymer (FEP), ethylene/tetrafluoroethylene copolymer (ETFE), ethylene/chlorotrifluoroethylene copolymer (ECTFE), polychlorotrifluoroethylene (PCTFE), polyvinylidene fluoride (PVDF) and polyvinyl fluoride. At least one selected from the group consisting of (PVF) can be exemplified.
 フッ素樹脂として、例えば、ポリテトラフルオロエチレン(PTFE)、変性ポリテトラフルオロエチレン(変性PTFE)、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)、エチレン/テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、ポリフッ化ビニリデン(PVDF)が好ましく、ポリテトラフルオロエチレン(PTFE)、変性ポリテトラフルオロエチレン(変性PTFE)、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(PFA)、およびポリクロロトリフルオロエチレン(PCTFE)がより好ましい。 As the fluororesin, for example, polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE), tetrafluoroethylene/perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene/hexafluoropropylene copolymer ( FEP), ethylene/tetrafluoroethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), polyvinylidene fluoride (PVDF) are preferable, and polytetrafluoroethylene (PTFE) and modified polytetrafluoroethylene (modified PTFE) , Tetrafluoroethylene/perfluoroalkyl vinyl ether copolymer (PFA), and polychlorotrifluoroethylene (PCTFE) are more preferable.
 フッ素樹脂は、市販品を使用することができる。例えば、
 ポリテトラフルオロエチレン(PTFE)として、ダイキン工業株式会社製のM-12(商品名)、M-11(商品名)、及びポリフロンPTFE-M(商品名)、
 変性ポリテトラフルオロエチレン(変性PTFE)として、ダイキン工業株式会社製のM-112(商品名)、M-111(商品名)、及びポリフロンPTFE-M(商品名)、
 ポリクロロトリフルオロエチレン(PCTFE)として、ダイキン工業株式会社製のM-300PL(商品名)、M-300H(商品名)、及びネオフロンPCTFE(商品名)
 テトラフルオロエチレン/パーフルオロアルキルビニルエーテル(PFA)として、ダイキン工業株式会社製のAP-230(商品名)、AP-210(商品名)、及びネオフロンPFA(商品名)等を例示できる。
 フッ素樹脂は、単独で又は組み合わせて使用できる。
As the fluororesin, a commercially available product can be used. For example,
As polytetrafluoroethylene (PTFE), M-12 (trade name), M-11 (trade name), and Polyflon PTFE-M (trade name) manufactured by Daikin Industries, Ltd.,
As modified polytetrafluoroethylene (modified PTFE), M-112 (trade name), M-111 (trade name), and Polyflon PTFE-M (trade name) manufactured by Daikin Industries, Ltd.,
As polychlorotrifluoroethylene (PCTFE), M-300PL (trade name), M-300H (trade name), and NEOFLON PCTFE (trade name) manufactured by Daikin Industries, Ltd.
Examples of the tetrafluoroethylene/perfluoroalkyl vinyl ether (PFA) include AP-230 (trade name), AP-210 (trade name), and NEOFLON PFA (trade name) manufactured by Daikin Industries, Ltd.
The fluororesins can be used alone or in combination.
1-3.導電性材料とポリマーを含む電極の製造方法
 電極の製造方法は、本発明が目的とする電気抵抗測定機を得ることができる限り、特に制限されることはないが、電極は、例えば、導電性材料とポリマーとを含む導電性材料組成物を成形して製造することができる。
1-3. Method for producing an electrode containing a conductive material and a polymer The method for producing an electrode is not particularly limited as long as the electrical resistance measuring device of the present invention can be obtained, but the electrode may be, for example, a conductive material. A conductive material composition containing a material and a polymer can be molded and manufactured.
 導電性材料組成物に含まれるポリマーは、粒子の形態であってもよい。このような粒子状ポリマーの平均粒子径は、好ましくは500μm以下、より好ましくは8~250μm、さらに好ましくは10~50μm、特に好ましくは10~25μmである。粒子状ポリマーの平均粒子径が500μm以下である場合、電極内に導電性材料とポリマーとを均一に分散させることができるため、電極の導電性がより向上する。 The polymer contained in the conductive material composition may be in the form of particles. The average particle diameter of such a particulate polymer is preferably 500 μm or less, more preferably 8 to 250 μm, further preferably 10 to 50 μm, and particularly preferably 10 to 25 μm. When the average particle diameter of the particulate polymer is 500 μm or less, the conductive material and the polymer can be uniformly dispersed in the electrode, so that the conductivity of the electrode is further improved.
 本明細書において、平均粒子径とは、レーザー回折散乱式粒度分布装置(日機装製「MT3300II」)を用いて、粒度分布を測定して得られる、平均粒子径D50を(レーザー回折散乱法によって求められる粒度分布における積算値50%での粒子径を意味するメジアン径)いう。 In the present specification, the average particle diameter means an average particle diameter D 50 (measured by a laser diffraction/scattering method) obtained by measuring a particle size distribution using a laser diffraction/scattering particle size distribution device (“MT3300II” manufactured by Nikkiso Co., Ltd.). The median diameter means the particle diameter at an integrated value of 50% in the required particle size distribution.
 本発明の実施形態の電極は、導電性材料が分散したポリマー組成物、例えば、カーボンナノチューブが分散したフッ素樹脂組成物を、圧縮成形することを含む製造方法で製造することが好ましい。圧縮成形条件は、適宜選択することができる。 The electrode of the embodiment of the present invention is preferably manufactured by a manufacturing method including compression molding of a polymer composition in which a conductive material is dispersed, for example, a fluororesin composition in which carbon nanotubes are dispersed. The compression molding conditions can be appropriately selected.
 導電性材料組成物がフッ素樹脂組成物である場合、PTFE及び変性PTFEに関する電極の製造方法と、その他のフッ素樹脂(例えば、PFA、FEP、ETFE、ECTFE、PCTFE、PVDF及びPVF)に関する電極の製造方法は、一部相違する。 When the conductive material composition is a fluororesin composition, a method for producing an electrode for PTFE and modified PTFE and an electrode for other fluororesins (for example, PFA, FEP, ETFE, ECTFE, PCTFE, PVDF and PVF) The method is partially different.
 PTFE及び変性PTFEに関する電極の製造方法は、
 フッ素樹脂(好ましくは粒子状フッ素樹脂)にカーボンナノチューブが分散したフッ素樹脂組成物を準備すること;
 フッ素樹脂組成物を、(必要に応じて適切な前処理(予備乾燥、造粒等)を行った後、)金型に入れて、好ましくは0.1~100MPa、より好ましくは1~80MPa、さらにより好ましくは5~50MPaの圧力で加圧して圧縮して、予備成形体を製造すること;
 予備成形体を、フッ素樹脂組成物の融点以上の温度(好ましくは345~400℃、より好ましくは360~390℃の温度)で、好ましくは2時間以上焼成して、成形体を製造すること;
 成形体を加工(好ましくは切削加工)して電極を製造すること
を含む。
The method of manufacturing an electrode relating to PTFE and modified PTFE is as follows.
Providing a fluororesin composition in which carbon nanotubes are dispersed in a fluororesin (preferably particulate fluororesin);
The fluororesin composition is placed in a mold (after being subjected to appropriate pretreatment (preliminary drying, granulation, etc.) as necessary), preferably 0.1 to 100 MPa, more preferably 1 to 80 MPa, Even more preferably, it is pressed at a pressure of 5 to 50 MPa and compressed to produce a preform;
Producing a molded product by firing the preformed product at a temperature not lower than the melting point of the fluororesin composition (preferably 345 to 400° C., more preferably 360 to 390° C.), preferably for 2 hours or longer;
Processing the molded body (preferably cutting) to produce an electrode.
 PTFE及び変性PTFE以外のフッ素樹脂(例えば、PFA、FEP、ETFE、ECTFE、PCTFE、PVDF及びPVF)に関する電極の製造方法は、
 フッ素樹脂(好ましくは粒子状フッ素樹脂)にカーボンナノチューブが分散したフッ素樹脂組成物を準備すること;
 フッ素樹脂組成物を、金型に入れ、必要に応じて適切な前処理(予備乾燥等)をした後、例えば、150~400℃の温度で1~5時間加熱後、例えば、0.1~100MPa(好ましくは、1~80MPa、より好ましくは、5~50MPa)の圧力で圧縮して、成形体を得ること;及び
 成形体を加工(好ましくは切削加工)して電極を得ること
を含む。
A method for manufacturing an electrode relating to fluororesins other than PTFE and modified PTFE (for example, PFA, FEP, ETFE, ECTFE, PCTFE, PVDF and PVF) is as follows.
Providing a fluororesin composition in which carbon nanotubes are dispersed in a fluororesin (preferably particulate fluororesin);
The fluororesin composition is placed in a mold and, if necessary, subjected to appropriate pretreatment (preliminary drying, etc.), and then heated at a temperature of 150 to 400° C. for 1 to 5 hours, for example, 0.1 to It includes compressing at a pressure of 100 MPa (preferably 1 to 80 MPa, more preferably 5 to 50 MPa) to obtain a molded body; and processing (preferably cutting) the molded body to obtain an electrode.
 2.電気抵抗測定機本体
 電気抵抗測定機本体は、測定対象に対応する測定レンジ、測定感度等を有し、本発明が目的とする電気抵抗測定機を得られる限り、特に制限されることはない。電気抵抗測定機本体は、測定レンジが、10MΩ~4000MΩであることが好ましい。本体は、第1端子と第2端子を有する。第1端子は、高電圧出力側端子として機能することができ、第1電極と電気的に接続される。第2端子は、接地側端子として機能し、測定対象の部材の導電性部分と電気的に接続される。第2端子と測定対象の導電性部分との接続は、第2電極を介しても、介さなくてもよい。第1端子及び第2端子は、共に、本発明が目的とする電気抵抗測定機を得られる限り、特に制限されることはなく、通常、電気抵抗測定機の端子として使用されている端子であってよい。
 そのような電気抵抗測定機本体は、市販品を使用することができる。そのような市販品として、例えば、日置電機社製の「絶縁抵抗計HIOKI IR4050S(商品名)」、サンコウ電子研究所社製の「マイクロチェッカーKS1」等を例示できる。
2. Electric Resistance Measuring Machine Main Body The electric resistance measuring machine main body has a measuring range, a measurement sensitivity, etc. corresponding to an object to be measured, and is not particularly limited as long as the electric resistance measuring machine intended by the present invention can be obtained. The measuring range of the electric resistance measuring device body is preferably 10 MΩ to 4000 MΩ. The body has a first terminal and a second terminal. The first terminal can function as a high voltage output side terminal and is electrically connected to the first electrode. The second terminal functions as a ground side terminal and is electrically connected to the conductive portion of the member to be measured. The connection between the second terminal and the conductive portion to be measured may or may not be via the second electrode. The first terminal and the second terminal are not particularly limited as long as the electric resistance measuring machine intended by the present invention can be obtained, and are terminals normally used as terminals of the electric resistance measuring machine. You can
A commercial item can be used for such an electric resistance measuring device main body. Examples of such commercially available products include "Insulation resistance meter HIOKI IR4050S (trade name)" manufactured by Hioki Electric Co., Ltd., "Micro Checker KS1" manufactured by Sanko Denshi Kenkyusho Co., Ltd., and the like.
 3.配線
 電極と端子は、電気的に接続することができれば、その接続方法は特に制限されることはないが、例えば、配線を用いで接続することができる。配線は、2つの電極と、電気抵抗測定機本体とを(電気的に)接続することができ、本発明が目的とする電気抵抗測定機を得られる限り、特に制限されることはない。
 配線は、電気抵抗測定機が使用される環境などに応じて、耐熱性、耐薬品性、耐光性等の種々の性質を有することが求められる。このような場合、要求される性質に対応して、適切な構造を有する配線が求められる。例えば、銅線の周囲を、フッ素樹脂、塩化ビニル、又はポリエチレン等で被覆した配線を例示できる。
3. The wiring electrode and the terminal are not particularly limited in connection method as long as they can be electrically connected. For example, wiring can be used for connection. The wiring is not particularly limited as long as the two electrodes can be (electrically) connected to the electric resistance measuring instrument main body and the electric resistance measuring instrument intended by the present invention can be obtained.
The wiring is required to have various properties such as heat resistance, chemical resistance, and light resistance depending on the environment in which the electric resistance measuring device is used. In such a case, wiring having an appropriate structure is required according to the required properties. For example, a wiring in which the periphery of a copper wire is covered with fluororesin, vinyl chloride, polyethylene or the like can be exemplified.
 図1は、本発明の実施形態の電気抵抗測定機の一例を模式的に示す。電気抵抗測定機1は、第1端子(図示せず)及び第2端子(図示せず)を有する測定機本体3、測定機本体3の第1端子と電気的に接続されている第1電極7を有し、及び第2端子と接続されてよい第2電極8を有し得る。第1電極7は、配線5を介して第1端子と接続され、第2電極8は、配線6を介して第2端子と接続することができる。第1電極7は、例えば、導電性材料とポリマーを含む円柱状、角柱状であってよく、第2電極は、例えば、真鍮製およびSUS製のクリップ、丸棒等であってよい。 FIG. 1 schematically shows an example of an electric resistance measuring machine according to an embodiment of the present invention. The electric resistance measuring machine 1 includes a measuring machine body 3 having a first terminal (not shown) and a second terminal (not shown), and a first electrode electrically connected to the first terminal of the measuring machine body 3. 7 and may have a second electrode 8 which may be connected to the second terminal. The first electrode 7 can be connected to the first terminal via the wiring 5, and the second electrode 8 can be connected to the second terminal via the wiring 6. The first electrode 7 may be, for example, a columnar or prismatic column containing a conductive material and a polymer, and the second electrode may be, for example, a brass or SUS clip, a round bar, or the like.
 第1端子は、耐薬品性を有する。図2は、第1電極の耐薬品性の評価方法を模式的に示す。対象薬品に侵されないプラスチック製容器11に、対象薬液15が入れられた。薬液15の温度等は、評価対象の使用条件等を考慮して適宜選択することができる。薬液15に、第1電極7が接触させられた。接触状態を維持して、第1電極7の接触部分を目視で観察して、第1電極7の耐薬品性を評価した。詳細は、実施例に示した。 The first terminal has chemical resistance. FIG. 2 schematically shows a method for evaluating the chemical resistance of the first electrode. The target drug solution 15 was placed in a plastic container 11 that was not affected by the target drug. The temperature and the like of the chemical liquid 15 can be appropriately selected in consideration of the usage conditions and the like to be evaluated. The first electrode 7 was brought into contact with the chemical liquid 15. While maintaining the contact state, the contact portion of the first electrode 7 was visually observed to evaluate the chemical resistance of the first electrode 7. Details are shown in the examples.
<電気抵抗測定方法>
 本発明は、他の要旨において、新たな電気抵抗測定方法を提供し、それは、本発明の実施形態の電気抵抗測定機を用いることを含む、電気抵抗測定方法である。本発明の実施形態の電気抵抗測定デバイスを用いて測定することができる限り、測定条件及び測定対象等は特に制限されることはない。
<Electrical resistance measurement method>
The present invention provides, in another aspect, a new electrical resistance measuring method, which comprises using the electrical resistance measuring machine of an embodiment of the present invention. As long as the electric resistance measuring device according to the embodiment of the present invention can be used for the measurement, the measurement condition, the measurement target, and the like are not particularly limited.
 本発明の実施形態の電気抵抗測定方法は、導電性部分と非導電性部分を有し、導電性部分が非導電性部分で被覆されている部材(測定対象)について、非導電性部分に欠陥を生じているか否かを調べるために好ましく使用することができる。 The electrical resistance measuring method according to the embodiment of the present invention has a conductive part and a non-conductive part, and a member (measurement target) in which the conductive part is covered with the non-conductive part has a defect in the non-conductive part. It can be preferably used for investigating whether or not
4.測定対象
 導電性部分が非導電性部分で被覆されている部材として、例えば、ライニング層(非導電性層、非導電性部分)でライニングされた金属製タンク(ライニングタンク)、ライニング層でライニングされた金属製配管(ライニング配管)、非導電性層で被覆された導電層を有するウエハ搬送部材(例えば、ウェハキャリア、ウェハチャック、ウェハピンセット、ウェハリフター)等を例示することができる。
4. Object to be measured As a member whose conductive part is covered with a non-conductive part, for example, a metal tank (lining tank) lined with a lining layer (non-conductive layer, non-conductive part), a lining layer Other examples include a metal pipe (lining pipe), a wafer transfer member (for example, a wafer carrier, a wafer chuck, a wafer tweezers, a wafer lifter) having a conductive layer covered with a non-conductive layer.
 図3は、測定対象としてのウェハキャリア(ウェハ搬送部材)20の一例を示す。図2右は、そのウェハキャリアの断面の一部を模式的に示す。一般的に、ウェハキャリアは、シリコンウェハを収納して搬送する部材であり、例えば、直径200mmのウェハを収納可能である。
 ウェハキャリア20は、例えば、絶縁性基材22がコーティング層24(導電層25及び絶縁層26)で被覆されている。図3では、導電層25に斜線を施した。ウェハキャリア20は、薬液に長期間接触させ、絶縁層26に欠陥(例えばピンホール)を形成させた。後述するピンホールテストを行って、欠陥の存在を確認した。しかし、欠陥を、目視で確認できなかった。
FIG. 3 shows an example of a wafer carrier (wafer carrying member) 20 as a measurement target. The right side of FIG. 2 schematically shows a part of the cross section of the wafer carrier. Generally, the wafer carrier is a member that stores and conveys a silicon wafer, and can store, for example, a wafer having a diameter of 200 mm.
In the wafer carrier 20, for example, the insulating base material 22 is covered with the coating layer 24 (conductive layer 25 and insulating layer 26). In FIG. 3, the conductive layer 25 is shaded. The wafer carrier 20 was brought into contact with the chemical solution for a long time to form a defect (for example, a pinhole) in the insulating layer 26. The presence of defects was confirmed by conducting a pinhole test described later. However, the defect could not be visually confirmed.
 ウェハキャリア20は、絶縁性基材22の代わりに、導電性基材(例えば、ステンレス製基材)を使用することができる。導電性基材を使用すると、導電層25は不要なので、コーティング層24は、絶縁層26のみを含む。この場合も、薬液に長時間接触させて、欠陥を形成させて測定対象として使用できる。 The wafer carrier 20 can use a conductive base material (for example, a stainless steel base material) instead of the insulating base material 22. If a conductive base material is used, the conductive layer 25 is unnecessary, so the coating layer 24 includes only the insulating layer 26. In this case as well, it can be used as a measurement target by being in contact with the chemical solution for a long time to form defects.
 図4は、測定対象としてのライニングタンク30の一例を模式的に示す。ライニングタンク30は、円筒形の金属製の本体31、本体31の内側に施されている非導電性のライニング層32、本体31の上部にいくつかの口が設けられている。例えば、ライニング層32が施された薬液入り口33、ライニング層32が施された薬液出口34、ライニング層32が施されたふた35、ライニング層32が施された第1電極の入り口36である。薬液入り口33から、薬液15をタンク30に入れることができ、測定機の測定電極7を第1電極入り口36からタンク内部に入れて、薬液15と測定電極7を接触させことができる。 FIG. 4 schematically shows an example of the lining tank 30 as a measurement target. The lining tank 30 is provided with a cylindrical metal main body 31, a non-conductive lining layer 32 provided on the inner side of the main body 31, and some ports provided on the upper portion of the main body 31. For example, there are a chemical solution inlet 33 provided with the lining layer 32, a chemical solution outlet 34 provided with the lining layer 32, a lid 35 provided with the lining layer 32, and an entrance 36 of the first electrode provided with the lining layer 32. The chemical liquid 15 can be put into the tank 30 through the chemical liquid inlet 33, and the measurement electrode 7 of the measuring instrument can be put inside the tank through the first electrode inlet 36 to bring the chemical liquid 15 and the measurement electrode 7 into contact with each other.
 図5は、測定対象としてのライニング配管40が少なくとも3つ接続されている例を模式的に示す。ライニング配管40は、例えば、金属製の管41、管の内側に非導電性ライニング42、及び管の両端に金属製フランジ(接続部)43を有すことができる。管41は、二口の直管であるが、曲管であってもよいし、三口であってもよい。例えば、金属製の三口の管45、管の内側に非導電性ライニング46、及び管の三つの端に金属製フランジ47を有してもよい。これらのライニング配管は、フランジで相互に接続することができる。三口の配管から、測定機の第1電極をライニング配管内に入れて、薬液15と第1電極を接触させることができる。 FIG. 5 schematically shows an example in which at least three lining pipes 40 to be measured are connected. The lining pipe 40 can have, for example, a metal pipe 41, a non-conductive lining 42 inside the pipe, and metal flanges (connection portions) 43 at both ends of the pipe. The pipe 41 is a straight pipe with two ports, but may be a curved pipe or three ports. For example, it may have a three-way tube 45 made of metal, a non-conductive lining 46 inside the tube, and metal flanges 47 at the three ends of the tube. These lining pipes can be connected to each other by flanges. The first electrode of the measuring instrument can be put into the lining pipe from the three-ported pipe to bring the chemical solution 15 into contact with the first electrode.
 本発明の実施形態の電気抵抗測定方法は、例えば、
 (A)導電性部分が非導電性部分で被覆されている部材(測定対象)を、導電性を有する流体に接触させること;
 (C)電気抵抗測定デバイスの第2端子を、部材の導電性部分と電気的に接続した状態で、第1電極を導電性流体に接触させて、非導電性部分で被覆された導電性部分と導電性流体との間の電気抵抗を測定すること;
を含むことができる。
The electric resistance measuring method of the embodiment of the present invention, for example,
(A) Contacting a member (measurement target) in which a conductive portion is covered with a non-conductive portion with a conductive fluid;
(C) A conductive part covered with a non-conductive part by bringing the first electrode into contact with a conductive fluid in a state where the second terminal of the electric resistance measuring device is electrically connected to the conductive part of the member. Measuring the electrical resistance between the conductive fluid and the conductive fluid;
Can be included.
 本発明の実施形態の電気抵抗測定方法は、(C)の前に((A)の前又は後で)、
 (B)電気抵抗測定機の第1端子と第2端子を、部材の導電性部分に、可能な限り離して電気的に接続して、導電性部分の電気抵抗を測定して、導電性部分の導電性を確認すること;
を更に含むことができる。
 第1端子が部材の導電性部分に電気的に接続する箇所と、第2端子が部材の導電性部分に電気的に接続する箇所を可能な限り離すことで、部材全体の導電性部分が導通していることが確認され、その結果、部材全体の非導電性部分の欠陥を検知することが可能になる。
The electrical resistance measuring method according to the embodiment of the present invention is performed before (C) (before or after (A)),
(B) The first terminal and the second terminal of the electric resistance measuring device are electrically connected to the conductive portion of the member as far as possible, and the electric resistance of the conductive portion is measured to obtain the conductive portion. Check the conductivity of;
Can be further included.
The conductive portion of the entire member is electrically connected by separating the portion where the first terminal is electrically connected to the conductive portion of the member and the portion where the second terminal is electrically connected to the conductive portion of the member as far as possible. As a result, it becomes possible to detect a defect in the non-conductive portion of the entire member.
 図6及び図7を参照して、電気抵抗測定機1を使用する測定対象の非導電性部分の電気抵抗測定方法及び欠陥検知方法を説明する。
 図6に示すように、容器11内に薬液(導電性流体)15を満たし、例えば、上述のウェハキャリア20(基材22がコーティング層24(導電層25及び絶縁層26)で被覆されている部分)を、測定対象の1例として、薬液15に接触させた。
 ウェハキャリア20の導電層(導電性部分)25(基材が導電性の場合、基材22)に、第1電極7及び第2電極8を、両者が可能な限り離れるように接触させて、導電層25と接続した。ウェハキャリア20の導電性部分の電気抵抗を測定した。これによりウェハキャリア20の導電層の導電性を確認した。尚、導電性の確認は、ウェハキャリアを、薬液につける前に(つけることなく)、行ってよいし、絶縁層(非導電層又は非導電性部分)の電気抵抗値の測定の後で行ってもよい。
 次に、図7に示すように、ウェハキャリア20の導電層から第1電極7を外し、第1電極7を薬液15に接触させた。第1電極7の表面とウェハキャリア20の表面の距離は、約5cmであった。この状態で電気抵抗値を測定した。1000Vの電圧を10秒間印加した。測定した電気抵抗値から、測定対象の絶縁層(非導電性部分)の欠陥探知性を評価した。
 更に、他の測定対象についても、薬液に第1電極を接触させ、測定対象の導電性部分に第2電極に接触させることで、同様に非導電性部分の電気抵抗測定及び欠陥検知をすることができる。
With reference to FIG. 6 and FIG. 7, a method of measuring the electric resistance of the non-conductive portion of the measurement target and a method of detecting a defect using the electric resistance measuring machine 1 will be described.
As shown in FIG. 6, the container 11 is filled with the chemical liquid (conductive fluid) 15, and for example, the above-described wafer carrier 20 (the substrate 22 is covered with the coating layer 24 (the conductive layer 25 and the insulating layer 26)). Part) was brought into contact with the chemical solution 15 as an example of the measurement target.
The first electrode 7 and the second electrode 8 are brought into contact with the conductive layer (conductive portion) 25 (the base material 22 when the base material is conductive) of the wafer carrier 20 so that they are separated as much as possible, It was connected to the conductive layer 25. The electric resistance of the conductive portion of the wafer carrier 20 was measured. This confirmed the conductivity of the conductive layer of the wafer carrier 20. The conductivity may be confirmed before (without applying) the wafer carrier to the chemical solution, or after measuring the electric resistance value of the insulating layer (non-conductive layer or non-conductive portion). May be.
Next, as shown in FIG. 7, the first electrode 7 was removed from the conductive layer of the wafer carrier 20, and the first electrode 7 was brought into contact with the chemical solution 15. The distance between the surface of the first electrode 7 and the surface of the wafer carrier 20 was about 5 cm. The electric resistance value was measured in this state. A voltage of 1000 V was applied for 10 seconds. From the measured electric resistance value, the defect detectability of the insulating layer (non-conductive portion) to be measured was evaluated.
Further, for other measurement objects, the first electrode is brought into contact with the chemical solution, and the conductive portion of the measurement object is brought into contact with the second electrode, so that the electrical resistance of the non-conductive portion is similarly measured and a defect is detected. You can
<電気抵抗測定デバイスを有する装置>
 本発明の実施形態に係る電気抵抗測定デバイスは、各種装置に組み込んで使用することができ、例えば、製造装置(例えば、半導体製造装置(例えば、パターン形成装置、洗浄装置、剥離装置)、及び化学薬品製造装置等)、搬送装置(例えば、化学薬品搬送装置等)に組み込んで使用することができる。それらの装置は、より具体的には、薬液(水、酸性及びアルカリ性媒体、有機溶剤等を含む)を取り扱う装置であってよい。
<A device having an electric resistance measuring device>
The electrical resistance measuring device according to the embodiment of the present invention can be used by incorporating it into various apparatuses, and includes, for example, a manufacturing apparatus (for example, a semiconductor manufacturing apparatus (for example, a pattern forming apparatus, a cleaning apparatus, a peeling apparatus), and a chemical). It can be used by incorporating it into a chemical production device or the like, or a transportation device (for example, a chemicals transportation device or the like). More specifically, these devices may be devices that handle chemicals (including water, acidic and alkaline media, organic solvents, etc.).
 本発明の実施形態の電気抵抗測定デバイスは、「インライン用」に使用することができる。
 本明細書において、「インライン用」とは、以下の意味を有する。
(1)装置の運転(又は稼働)を一時停止したとき、導電性部分が非導電性部分で覆われている部材を装置から取り外さずに、電気抵抗測定デバイスを用いて、その非導電性部分の欠陥の有無を検知できること;及び
(2)装置が運転(又は稼働)中に、電気抵抗測定デバイスを用いて、導電性部分が非導電性部分で覆われている部材のその非導電性部分の欠陥の有無を監視できること。
The electrical resistance measuring device of the embodiment of the present invention can be used for “in-line”.
In the present specification, "for in-line" has the following meanings.
(1) When the operation (or operation) of the apparatus is temporarily stopped, a member whose conductive portion is covered with the non-conductive portion is not removed from the apparatus, and the non-conductive portion is And (2) the non-conductive part of the member in which the conductive part is covered with the non-conductive part using the electric resistance measuring device while the device is in operation (or in operation). Being able to monitor for defects.
 本実施形態に係る電気抵抗測定デバイスは、上記装置に組み込まれた場合、上記装置が稼働している状態で連続的または断続的に欠陥の検知を行うことができる。従って、欠陥を検知するために、装置の運転を一時的に停止し、又は長期的に中止する必要がなく、装置の稼働率を高めることができる。
 更に、本実施形態に係る電気抵抗測定デバイスは、微視的で軽微な欠陥を検知することができるので、装置に深刻な汚染を生ずる前に、好ましくは装置を実質的に汚染することなく、欠陥を検知して、装置の安定した運転を確保することができる。
When the electrical resistance measuring device according to the present embodiment is incorporated in the above apparatus, it is possible to detect defects continuously or intermittently while the apparatus is operating. Therefore, it is not necessary to temporarily stop the operation of the apparatus or stop the operation for a long period in order to detect a defect, and it is possible to increase the operation rate of the apparatus.
Further, the electrical resistance measuring device according to the present embodiment can detect microscopic and slight defects, and therefore, before causing serious contamination of the apparatus, preferably without substantially contaminating the apparatus, Defects can be detected to ensure stable operation of the device.
 以下、本発明を実施例及び比較例により具体的かつ詳細に説明するが、これらの実施例は本発明の一態様にすぎず、本発明はこれらの例によって何ら限定されるものではない。 Hereinafter, the present invention will be described specifically and in detail with reference to Examples and Comparative Examples, but these Examples are merely one aspect of the present invention, and the present invention is not limited to these Examples.
 実施例及び比較例で使用した電気抵抗測定機を構成する部材、その評価に使用した薬液、その評価に使用した測定対象などを以下に示す。
<部材>
(測定機本体)
 電気抵抗測定機本体:日置電機製「絶縁抵抗計HIOKI IR4050S(商品名)」
(配線)
 配線:日置電機製「絶縁抵抗計HIOKI IR4050S(商品名)」付属の配線
(電極)
 電極(1):カーボンナノチューブ(CNT)0.1質量%含有ポリクロロトリフルオロエチレン(PCTFE)電極
 電極(2):CNT0.1質量%含有ポリテトラフルオロエチレン(PTFE)PTFE電極
 電極(3):PCTFE電極(CNTを含まず)
 電極(4):日置電機製「絶縁抵抗計HIOKI IR4050S(商品名)」付属の真鍮製電極
The members constituting the electric resistance measuring machine used in the examples and comparative examples, the chemical solution used for the evaluation, the measurement target used for the evaluation, and the like are shown below.
<Material>
(Measuring machine body)
Electric resistance measuring machine main body: Hioki Denki "Insulation resistance meter HIOKI IR4050S (product name)"
(wiring)
Wiring: Wiring (electrode) attached to "Insulation resistance meter HIOKI IR4050S (product name)" manufactured by Hioki
Electrode (1): Carbon nanotube (CNT) 0.1 mass%-containing polychlorotrifluoroethylene (PCTFE) electrode Electrode (2): CNT 0.1 mass%-containing polytetrafluoroethylene (PTFE) PTFE electrode Electrode (3): PCTFE electrode (not including CNT)
Electrode (4): Brass electrode attached to Hioki Denki's "Insulation resistance meter HIOKI IR4050S (product name)"
(電極(1)~(3)の製造)
 電極(1)~(3)を下記のように製造した。
(電極(1))
 CNT分散液(分散剤0.15%、CNT0.025%、溶媒:水)2000部にエタノール3500部を添加して希釈した。さらに、PCTFE粒子(ダイキン工業製「ネオフロンPCTFE)1000部を添加して混合スラリーを製造した。
 その混合スラリーを耐圧容器に供給し、耐圧容器内の混合スラリーに含まれる分散剤1mgに対して0.03g/分の供給速度で液化二酸化炭素を供給し、耐圧容器内の圧力を20MPa、温度を50℃となるまで昇圧し、昇温させた。上記圧力及び温度を3時間保持しながら、二酸化炭素を、二酸化炭素中に溶け込んだ溶媒(水、エタノール)及び分散剤と共に耐圧容器から排出させた。
 耐圧容器内の圧力及び温度をそれぞれ大気圧及び常温まで下げることにより耐圧容器内の二酸化炭素を除去し、0.1%CNT含有PCTFE組成物(1)を得た。
 PCTFE組成物(1)を、金型に入れ、必要に応じて適切な前処理(予備乾燥等)を行った。金型を200度以上に設定した熱風循環式電気炉で2時間以上加熱させてPCTFE組成物(1)を溶融させた。所定時間加熱後、電気炉から金型を取り出し、油圧プレスを用いて25kg/cm以上の面圧で加圧圧縮しながら常温付近まで金型を冷却した後、0.1%CNT含有PCTFE組成物の成形体である電極(1)を得た。
(Production of electrodes (1) to (3))
Electrodes (1) to (3) were manufactured as follows.
(Electrode (1))
3500 parts of ethanol was added to 2000 parts of CNT dispersion liquid (dispersant 0.15%, CNT 0.025%, solvent: water) to dilute. Further, 1000 parts of PCTFE particles (“Neotron PCTFE” manufactured by Daikin Industries, Ltd.) were added to produce a mixed slurry.
The mixed slurry is supplied to a pressure container, and liquefied carbon dioxide is supplied at a supply rate of 0.03 g/min to 1 mg of the dispersant contained in the mixed slurry in the pressure container, the pressure in the pressure container is 20 MPa, and the temperature is 20 MPa. Was raised to 50° C. and the temperature was raised. While maintaining the above pressure and temperature for 3 hours, carbon dioxide was discharged from the pressure resistant container together with the solvent (water, ethanol) dissolved in carbon dioxide and the dispersant.
Carbon dioxide in the pressure resistant container was removed by lowering the pressure and temperature in the pressure resistant container to atmospheric pressure and room temperature, respectively, to obtain 0.1% CNT-containing PCTFE composition (1).
The PCTFE composition (1) was placed in a mold and subjected to appropriate pretreatment (preliminary drying, etc.) as necessary. The PCTFE composition (1) was melted by heating the mold in a hot air circulation type electric furnace set to 200 degrees or higher for 2 hours or longer. After heating for a predetermined period of time, the mold was taken out of the electric furnace and cooled to near room temperature while being compressed under a surface pressure of 25 kg/cm 2 or more using a hydraulic press, and then 0.1% CNT-containing PCTFE composition. An electrode (1) which is a molded product of the product was obtained.
(電極(2))
 電極(2)は、上述の電極(1)の製造方法において、PCTFE粒子をPTFE粒子(ダイキン工業製ポリフロンPTFE-M)に変更した以外は、同様の方法を用いて、0.1%CNT含有PTFE組成物(2)を得た。
 15MPaで加圧し一定時間保持することによりPTFE組成物(2)を圧縮し、予備成形体を得た。得られた予備成形体を成形金型から取り出して、345℃以上に設定した熱風循環式電気炉で2時間以上焼成し、徐冷を行った後電気炉から取り出し、0.1%CNT含有PTFE組成物の成形体である電極(2)を得た。
(Electrode (2))
The electrode (2) contained 0.1% CNT by the same method as in the above-mentioned manufacturing method of the electrode (1) except that the PCTFE particles were changed to the PTFE particles (Polyflon PTFE-M manufactured by Daikin Industries, Ltd.). A PTFE composition (2) was obtained.
The PTFE composition (2) was compressed by pressurizing at 15 MPa and holding for a certain period of time to obtain a preform. The obtained preformed body was taken out of the molding die, baked in a hot air circulation type electric furnace set at 345° C. or higher for 2 hours or more, gradually cooled, then taken out of the electric furnace, and 0.1% CNT-containing PTFE was added. An electrode (2) which is a molded product of the composition was obtained.
(電極(3))
 金型を200度以上に設定した熱風循環式電気炉で2時間以上加熱して、PCTFE粒子(ダイキン工業製「ネオフロンPCTFE」)を溶融させた。所定時間加熱後、電気炉から金型を取り出し、油圧プレスを用いて25kg/cm以上の面圧で加圧圧縮しながら常温付近まで金型を冷却した後、PCTFE粒子の成形体である電極(3)を得た。尚、電極(3)は、CNTを含有しない。
(Electrode (3))
The mold was heated for 2 hours or longer in a hot air circulation type electric furnace set to 200° C. or higher to melt the PCTFE particles (“NEOFLON PCTFE” manufactured by Daikin Industries, Ltd.). After heating for a predetermined time, the mold is taken out from the electric furnace, and the mold is cooled to near room temperature while being compressed under a surface pressure of 25 kg/cm 2 or more using a hydraulic press, and then an electrode which is a molded body of PCTFE particles. (3) was obtained. The electrode (3) does not contain CNT.
<薬液>
 SPM:97%硫酸(林純薬 電子工業用ELグレード)及び30%過酸化水素水(林純薬 電子工業用ELグレード」)の混合薬液(混合比(質量比) 硫酸:過酸化水素水=2:1)
 SC2:35%塩酸(林純薬 電子工業用ELグレード)、30%過酸化水素水、及び脱イオン水の混合薬液(混合比(質量比) 塩酸:過酸化水素水:脱イオン水=1:1:5)
<Medicinal solution>
SPM: 97% sulfuric acid (Hayashi Junyaku Electronics EL grade) and 30% hydrogen peroxide water (Hayashi Junyaku Electronics industry EL grade") mixed chemical solution (mixing ratio (mass ratio) sulfuric acid: hydrogen peroxide water = 2:1)
SC2: 35% hydrochloric acid (Hayashi Junyaku Electronics EL grade), 30% hydrogen peroxide solution, and a mixture of deionized water (mixing ratio (mass ratio) hydrochloric acid: hydrogen peroxide solution: deionized water = 1:) 1:5)
<測定対象>
 ウェハキャリア(1):
 石英ガラス(ヒメジ理化製「GE124グレード」)基材上に、導電層(CNT含有PCTFE層)と絶縁層(PCTFE層)が形成されている、ウェハキャリア。
 ウェハキャリア(2):
 ステンレス(井本工業製「SUS304」)基材上に、絶縁層(PCTFE層)が形成されている、ウェハキャリア。(金属製基材が、導電層を兼ねる。)
<Measurement target>
Wafer carrier (1):
Wafer carrier in which a conductive layer (CNT-containing PCTFE layer) and an insulating layer (PCTFE layer) are formed on a quartz glass (“GE124 grade” manufactured by Himedi Rika) substrate.
Wafer carrier (2):
A wafer carrier in which an insulating layer (PCTFE layer) is formed on a stainless steel (“SUS304” manufactured by Imoto Kogyo) substrate. (The metal base material also serves as the conductive layer.)
(測定対象の準備)
 測定対象としてのウェハキャリア(1)及び(2)を、下記のように準備した。
 ウェハキャリア(1)20は、図3に示す構造を有し、石英ガラス製の基材22がコーティング層24(導電層25及び絶縁層26:具体的にはCNT含有PCTFE層25及びPCTFE層26)で被覆されている。ウェハキャリア20を薬液15(SPM)に130℃(SPM)で長期間(約90日間)接触させ、絶縁層26に欠陥(例えばピンホール)を形成させた。SC2及びSPMの組成比を維持するために過酸化水素水を供給しながら、接触させた。下記のピンホールテストを行って、欠陥の存在を確認した。欠陥の存在は、目視で確認できなかった。実施例1~2及び比較例1~2のいずれの電気抵抗測定機の評価の際も、このウェハキャリア(1)20を使用した。従って、全ての電気抵抗測定デバイスの評価をするために、同一のウェハ搬送部材を使用した。
(Preparation of measurement target)
Wafer carriers (1) and (2) to be measured were prepared as follows.
The wafer carrier (1) 20 has a structure shown in FIG. 3, in which a quartz glass substrate 22 includes a coating layer 24 (conductive layer 25 and insulating layer 26: specifically, CNT-containing PCTFE layer 25 and PCTFE layer 26). ) Is covered. The wafer carrier 20 was brought into contact with the chemical solution 15 (SPM) at 130° C. (SPM) for a long time (about 90 days) to form defects (for example, pinholes) in the insulating layer 26. Contact was made while supplying hydrogen peroxide solution in order to maintain the composition ratio of SC2 and SPM. The following pinhole test was conducted to confirm the presence of defects. The presence of defects could not be visually confirmed. This wafer carrier (1) 20 was used for evaluation of the electrical resistance measuring machines of Examples 1 and 2 and Comparative Examples 1 and 2. Therefore, the same wafer carrier was used to evaluate all electrical resistance measurement devices.
 ウェハ搬送部材(2)20についても、同様の方法を用いて、絶縁層26(PCTFE層26)に欠陥を形成させて、実施例1~2及び比較例1~2の電気抵抗測定デバイスの評価に使用した。
 尚、ウェハ搬送部材(2)では、ステンレス製基材が、導電層25も兼ねるので、コーティング層24は、絶縁層26のみを含む。
With respect to the wafer transfer member (2) 20 as well, defects are formed in the insulating layer 26 (PCTFE layer 26) using the same method, and evaluation of the electrical resistance measurement devices of Examples 1 and 2 and Comparative Examples 1 and 2 is performed. Used for.
In the wafer transfer member (2), since the stainless steel base material also serves as the conductive layer 25, the coating layer 24 includes only the insulating layer 26.
 (ピンホールテスト)
 ピンホールテストは、日本工業規格(JIS K 6766:2008)に準拠した方法で行った。
(Pinhole test)
The pinhole test was performed by a method based on Japanese Industrial Standards (JIS K 6766:2008).
<電気抵抗測定機>
 図1に示すような電気抵抗測定機を準備した。電気抵抗測定機1は、第1端子及び第2端子を有する測定機本体3、測定機本体3の第1端子と電気的に接続されている第1電極7を有し、及び第2端子と接続されている第2電極8を有する。第1電極7は、配線5を介して第1端子と接続され、第2電極8は、配線6を介して第2端子と接続されている。第1電極7は、実施例1、2、比較例1、2の電気抵抗測定機の順に、電極(1)、(2)、(3)及び(4)に対応する。第2電極は、いずれも電極(4)に対応する。
<Electric resistance measuring machine>
An electric resistance measuring machine as shown in FIG. 1 was prepared. The electric resistance measuring machine 1 has a measuring machine body 3 having a first terminal and a second terminal, a first electrode 7 electrically connected to the first terminal of the measuring machine body 3, and a second terminal. It has a second electrode 8 connected. The first electrode 7 is connected to the first terminal via the wiring 5, and the second electrode 8 is connected to the second terminal via the wiring 6. The first electrode 7 corresponds to the electrodes (1), (2), (3) and (4) in the order of the electrical resistance measuring machines of Examples 1 and 2 and Comparative Examples 1 and 2. Each of the second electrodes corresponds to the electrode (4).
<電極の評価方法>
(1.電極の耐薬品性の評価)
 図2に、電極の耐薬品性の評価方法を示す。
 20Lのポリプロピレン製容器11に、液温が130℃の薬液(SPM又はSC2)15を入れた。その薬液15に、第1電極7を接触させた。接触状態を維持して、第1電極7の接触部分を目視にて観察した。観察結果から下記の評価基準に基づき、第1電極7の耐薬品性を評価した。電極(1)~(4)を第1電極7として使用した場合、各々の評価結果を表1に示す。
(評価基準)
A(優良):電極の表面に泡の発生(電極の溶解)が全く観察されない。
B(悪い):電極の表面に泡の発生が観察される。
<Evaluation method of electrodes>
(1. Evaluation of chemical resistance of electrodes)
FIG. 2 shows a method for evaluating the chemical resistance of the electrode.
A 20 L polypropylene container 11 was charged with a chemical liquid (SPM or SC2) 15 having a liquid temperature of 130°C. The first electrode 7 was brought into contact with the chemical solution 15. The contact state was maintained and the contact portion of the first electrode 7 was visually observed. From the observation results, the chemical resistance of the first electrode 7 was evaluated based on the following evaluation criteria. When the electrodes (1) to (4) are used as the first electrode 7, each evaluation result is shown in Table 1.
(Evaluation criteria)
A (excellent): No generation of bubbles (dissolution of the electrode) is observed on the surface of the electrode.
B (bad): Bubbles are observed on the surface of the electrode.
(2.電極の電気伝導性の評価)
 配線5と接続した第1電極7の端に、第2電極8と接続していない配線6を接触させて、第1電極7の電気抵抗値を測定した。上記測定機本体の検出限界は、下限値が10MΩであり、上限値が4000MΩである。測定した電気抵抗値から以下の評価基準に基づいて第1電極7の電気伝導性を評価した。電極(1)~(4)を第1電極7として使用した場合、各々の評価結果を表1に示す。
(評価基準)
A(優良):電極の電気抵抗値は、10MΩ未満であった。
B(悪い):電極の電気抵抗値は、10MΩ以上であった。
(2. Evaluation of electrical conductivity of electrode)
The electrical resistance value of the first electrode 7 was measured by bringing the end of the first electrode 7 connected to the wiring 5 into contact with the wiring 6 not connected to the second electrode 8. Regarding the detection limit of the measuring instrument body, the lower limit value is 10 MΩ and the upper limit value is 4000 MΩ. The electrical conductivity of the first electrode 7 was evaluated from the measured electrical resistance value based on the following evaluation criteria. When the electrodes (1) to (4) are used as the first electrode 7, each evaluation result is shown in Table 1.
(Evaluation criteria)
A (excellent): The electric resistance value of the electrode was less than 10 MΩ.
B (bad): The electric resistance value of the electrode was 10 MΩ or more.
(3.電気抵抗測定機を用いる、測定対象の非導電性部分の欠陥検知方法:測定対象の電気抵抗値の測定方法)
 図6及び図7を参照して、電気抵抗測定機1を使用する非導電性部分の欠陥検知方法を説明する。
 図6に示すように、容器11内に薬液15(SPM又はSC2)を満たし、上述のウェハキャリア20(基材22がコーティング層24(導電層(導電性部分)25及び非導電層(非導電性部分)26)で被覆されている部分)を、薬液15に接触させた。
 ウェハキャリア20の導電性部分25(基材が導電性の場合、基材22)に、第1電極7及び第2電極8を各々接触させて、測定装置本体3と接続させた。ウェハキャリア20の電気抵抗を測定した。これによりウェハキャリア20の導電性部分の導電性を確認した。
 次いで、図7に示すように、ウェハキャリア20から第1電極7を外し、第1電極7を薬液15中に接触させた。第1電極7の表面とウェハキャリア20の表面の距離は、約5cmであった。この状態で電気抵抗値を測定した。1000Vの電圧を10秒間印加した。測定した電気抵抗値から以下の評価基準に基づいて、電気抵抗測定機1の測定対象の非導電性部分の欠陥探知性を評価した。その結果を表1に示す。
(評価基準)
A(優良):電気抵抗値は、4000MΩを超えた。
B(悪い):電気抵抗値は、4000MΩ以下であった。
(3. Defect detection method of non-conductive portion of measurement target using electric resistance measuring device: measurement method of electric resistance value of measurement target)
With reference to FIGS. 6 and 7, a method for detecting a defect in a non-conductive portion using the electric resistance measuring instrument 1 will be described.
As shown in FIG. 6, the container 11 is filled with the chemical liquid 15 (SPM or SC2), and the wafer carrier 20 (the base material 22 includes the coating layer 24 (conductive layer (conductive portion) 25 and non-conductive layer (non-conductive layer)) is used. The part () coated with the sex part) 26) was brought into contact with the chemical solution 15.
The first electrode 7 and the second electrode 8 were brought into contact with the conductive portion 25 of the wafer carrier 20 (the base material 22 when the base material was conductive), and were connected to the measurement device body 3. The electric resistance of the wafer carrier 20 was measured. This confirmed the conductivity of the conductive portion of the wafer carrier 20.
Next, as shown in FIG. 7, the first electrode 7 was removed from the wafer carrier 20, and the first electrode 7 was brought into contact with the chemical solution 15. The distance between the surface of the first electrode 7 and the surface of the wafer carrier 20 was about 5 cm. The electric resistance value was measured in this state. A voltage of 1000 V was applied for 10 seconds. From the measured electric resistance value, the defect detectability of the non-conductive portion of the measurement target of the electric resistance measuring instrument 1 was evaluated based on the following evaluation criteria. The results are shown in Table 1.
(Evaluation criteria)
A (excellent): The electric resistance value exceeded 4000 MΩ.
B (bad): The electric resistance value was 4000 MΩ or less.
 なお、予め、絶縁層25に欠陥を生じさせる前のウェハキャリアについて、上述の図7に示す方法で電気抵抗を測定したところ、検出限界の上限値(4000MΩ)を超える電気抵抗値を得た。従って、絶縁層25に欠陥が無いことを、確認後欠陥を生じさせて、欠陥探知性の評価に使用した。 Incidentally, when the electric resistance of the wafer carrier before the defects were caused in the insulating layer 25 was measured in advance by the method shown in FIG. 7, an electric resistance value exceeding the upper limit of detection limit (4000 MΩ) was obtained. Therefore, after confirming that there is no defect in the insulating layer 25, a defect is produced after the confirmation and used for evaluation of defect detectability.
 (4.電極のクリーン性(汚染防止性)の評価)
 電極の金属溶出量の測定
 電極における金属汚染の程度を、ICP質量分析装置(パーキンエルマー製「ELAN DRCII」)を用いて金属系17元素(Li、Na、Mg、Al、K、Ca、Ti、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ag、Cd及びPb)の金属溶出量を測定することで、評価した。
 10mm×20mm×50mmの試験片を切削取得した。試験片を、3.6%塩酸(関東化学製EL-UMグレード)0.5Lに1時間程度浸漬後、超純水(比抵抗値:≧18.0MΩ・cm)で掛け流し洗浄を行った。更に、3.6%塩酸0.1Lに、試験片全体を浸漬して、室温環境で24時間及び168時間保存した。規定時間経過後に浸漬液を全量回収し(浸漬した塩酸を全量集めて)、浸漬液の金属不純物濃度を分析した。試験片を3つ準備して、その最大値を検出量とした。
 評価基準は下記の通りである。
 A:全ての金属の検出量が、5ppb未満である。
 B:Al、Cr、Cu、Fe、Ni、Zn、Ca、K及びNaの検出量が、5ppb未満である。
 C:Al、Cr、Cu、Fe、Ni及びZnの検出量が、5ppb未満である。
 D:Al、Cr、Cu、Fe、Ni及びZnのいずれか1種の検出量が、5ppb以上である。
 結果は、表1に示した。
(4. Evaluation of electrode cleanliness (contamination prevention))
Measurement of metal elution amount of electrode The degree of metal contamination in the electrode was measured by using an ICP mass spectrometer (“ELAN DRCII” manufactured by Perkin Elmer), and 17 metal elements (Li, Na, Mg, Al, K, Ca, Ti, It was evaluated by measuring the metal elution amount of Cr, Mn, Fe, Co, Ni, Cu, Zn, Ag, Cd and Pb).
A 10 mm×20 mm×50 mm test piece was cut and acquired. The test piece was immersed in 0.5 L of 3.6% hydrochloric acid (EL-UM grade manufactured by Kanto Chemical Co., Ltd.) for about 1 hour, and then washed by pouring it over with ultrapure water (specific resistance: ≧18.0 MΩ·cm). .. Further, the entire test piece was immersed in 0.1 L of 3.6% hydrochloric acid and stored in a room temperature environment for 24 hours and 168 hours. After the elapse of the specified time, the immersion liquid was collected in its entirety (all the immersed hydrochloric acid was collected), and the concentration of metal impurities in the immersion liquid was analyzed. Three test pieces were prepared and the maximum value was used as the detection amount.
The evaluation criteria are as follows.
A: The detected amount of all metals is less than 5 ppb.
B: The detected amount of Al, Cr, Cu, Fe, Ni, Zn, Ca, K and Na is less than 5 ppb.
C: The detected amount of Al, Cr, Cu, Fe, Ni and Zn is less than 5 ppb.
D: The detected amount of any one of Al, Cr, Cu, Fe, Ni and Zn is 5 ppb or more.
The results are shown in Table 1.
 電極の炭素脱落の測定
 電極からのカーボンナノチューブの脱離の程度を、全有機体炭素計(島津製作所製「TOCvwp」)を用いてTOC(全有機体炭素)を測定することにより評価した。具体的には、切削取得した10mm×20mm×50mmの試験片を、3.6%塩酸(関東化学製EL-UMグレード)0.5Lに1時間程度浸漬し、1時間浸漬後に取出して超純水(比抵抗値:≧18.0MΩ・cm)で掛け流し洗浄を行い、超純水に試験片全体を浸漬して室温環境下で24時間および168時間保存した。規定時間経過後に浸漬液を全量回収し(浸漬した超純水を全量集めて)、浸漬液について全有機体炭素分析をした。試験片を3つ準備して、その最大値を検出量とした。
 評価基準は下記の通りである。
 A:全有機体炭素の検出量が、50ppb未満である。
 D:全有機体炭素の検出量が、50ppb以上である。
Measurement of carbon loss of electrode The degree of carbon nanotube desorption from the electrode was evaluated by measuring TOC (total organic carbon) using a total organic carbon meter (“TOCvwp” manufactured by Shimadzu Corporation). Specifically, a 10 mm×20 mm×50 mm test piece obtained by cutting is immersed in 0.5 L of 3.6% hydrochloric acid (Kanto Kagaku EL-UM grade) for about 1 hour, and after immersion for 1 hour, it is taken out to be ultra pure. Washing was carried out by pouring with water (specific resistance value: ≧18.0 MΩ·cm), and the whole test piece was immersed in ultrapure water and stored at room temperature for 24 hours and 168 hours. After the lapse of the specified time, the immersion liquid was collected in its entirety (collecting all the immersed ultrapure water), and the organic liquid carbon was analyzed for the immersion liquid. Three test pieces were prepared and the maximum value was used as the detection amount.
The evaluation criteria are as follows.
A: The detected amount of total organic carbon is less than 50 ppb.
D: The detected amount of total organic carbon is 50 ppb or more.
(実施例2、比較例1~2)
 電極(1)を電極(2)~(4)に変更した以外は実施例1と同様の方法を用いて、それぞれ実施例2及び比較例1~2の電極及び電気抵抗測定デバイスを評価した。その結果を表1に示す。
(Example 2, Comparative Examples 1-2)
Using the same method as in Example 1 except that the electrode (1) was changed to the electrodes (2) to (4), the electrodes and the electrical resistance measuring devices of Example 2 and Comparative Examples 1 and 2 were evaluated. The results are shown in Table 1.
(まとめ)
 実施例1~2は、耐薬品性、電気伝導性、検知性及びクリーン性のいずれも、優良、であった。一方、比較例1~2は、耐薬品性、電気伝導性、検知性及びクリーン性のうち少なくとも1つが、悪い、であった。従って、実施例1~2は比較例1~2に比べ、良好な耐薬品性、電気伝導性、検知性及クリーン性を有することが明らかである。
(Summary)
Examples 1 and 2 were excellent in chemical resistance, electrical conductivity, detectability and cleanliness. On the other hand, in Comparative Examples 1 and 2, at least one of chemical resistance, electrical conductivity, detectability, and cleanness was poor. Therefore, it is apparent that Examples 1 and 2 have better chemical resistance, electrical conductivity, detectability and cleanability than Comparative Examples 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明の電気抵抗測定デバイス及び電気抵抗測定方法は、特に半導体素子製造装置に組み込んで利用可能であるが、かかる用途のみに限定されない。 The electric resistance measuring device and the electric resistance measuring method of the present invention can be used by being incorporated in a semiconductor device manufacturing apparatus, but the invention is not limited to such applications.
 [関連出願]
 尚、本出願は、2019年1月18日に日本国でされた出願番号2019- 7341を基礎出願とするパリ条約第4条に基づく優先権を主張する。この基礎出願の内容は、参照することによって、本明細書に組み込まれる。
[Related application]
This application claims priority under Article 4 of the Paris Convention based on application number 2019-7341 filed in Japan on January 18, 2019. The contents of this basic application are incorporated herein by reference.
 1 電気抵抗測定機
 3 測定機本体
 5 配線
 6 配線
 7 第1電極
 8 第2電極
 11 容器
 15 薬液(導電性流体)
 20 ウェハキャリア(ウェハ搬送部材)
 22 基材
 24 コーティング層
 25 導電性部分(導電層)
 26 非導電性部分(非導電層、絶縁層)
 30 ライニングタンク
 31 金属製本体
 32 ライニング層
 33 薬液入り口
 34 薬液出口
 35 ふた
 36 第1電極入り口
 40 ライニング配管
 41 金属製直管
 42 ライニング層
 43 フランジ(接続部)
 45 金属製三口管
 46 ライニング層
 47 フランジ
1 Electrical Resistance Measuring Machine 3 Measuring Machine Main Body 5 Wiring 6 Wiring 7 First Electrode 8 Second Electrode 11 Container 15 Chemical Solution (Conductive Fluid)
20 Wafer carrier (wafer transfer member)
22 base material 24 coating layer 25 conductive portion (conductive layer)
26 Non-conductive part (non-conductive layer, insulating layer)
30 Lining Tank 31 Metal Main Body 32 Lining Layer 33 Chemical Solution Inlet 34 Chemical Solution Outlet 35 Lid 36 First Electrode Entrance 40 Lining Pipe 41 Metal Straight Pipe 42 Lining Layer 43 Flange (Connecting Portion)
45 Metal Three-Port Tube 46 Lining Layer 47 Flange

Claims (13)

  1.  第1端子と第2端子を有する電気抵抗測定機本体;
     第1端子と電気的に接続されている第1電極を有する電気抵抗測定機であって、
     第1電極は、導電性材料とポリマーを含む、電気抵抗測定機。
    An electric resistance measuring instrument having a first terminal and a second terminal;
    An electrical resistance measuring instrument having a first electrode electrically connected to a first terminal,
    The first electrode is an electric resistance measuring device including a conductive material and a polymer.
  2.  導電性材料は、炭素系材料を含む、請求項1に記載の電気抵抗測定機。 The electric resistance measuring device according to claim 1, wherein the conductive material includes a carbon-based material.
  3.  第1電極は、導電性材料を、第1電極の質量を100質量%として、0.01~2.0質量%の量で含む、請求項1又は2に記載の電気抵抗測定機。 The electric resistance measuring device according to claim 1 or 2, wherein the first electrode contains a conductive material in an amount of 0.01 to 2.0% by mass, with the mass of the first electrode being 100% by mass.
  4.  ポリマーは、シリコーン系ポリマー、フッ素系ポリマー、含窒素ポリマー及びポリオレフィンから選択される少なくとも1種を含む、請求項1~3のいずれか1項に記載の電気抵抗測定機。 The electrical resistance measuring device according to any one of claims 1 to 3, wherein the polymer includes at least one selected from silicone-based polymers, fluorine-based polymers, nitrogen-containing polymers and polyolefins.
  5.  導電性材料は、カーボンナノチューブを含み、ポリマーは、フッ素系ポリマーを含む、請求項1~4のいずれか1項に記載の電気抵抗測定機。 The electric resistance measuring device according to any one of claims 1 to 4, wherein the conductive material includes carbon nanotubes, and the polymer includes a fluorine-based polymer.
  6.  インライン用の、請求項1~5のいずれか1項に記載の電気抵抗測定機。 An electric resistance measuring device according to any one of claims 1 to 5 for in-line use.
  7.  導電性部分が非導電性部分で覆われている部材の欠陥検知に使用される、請求項1~6のいずれか1項に記載の電気抵抗測定機。 The electric resistance measuring device according to any one of claims 1 to 6, which is used for detecting a defect of a member in which a conductive portion is covered with a non-conductive portion.
  8.  請求項1~7のいずれか1項に記載の電気抵抗測定機を含む、装置。 An apparatus including the electric resistance measuring device according to any one of claims 1 to 7.
  9.  請求項1~7のいずれか1項に記載の電気抵抗測定機を用いることを含む、電気抵抗測定方法。 A method for measuring electric resistance, which comprises using the electric resistance measuring device according to any one of claims 1 to 7.
  10.  (A)導電性部分が非導電性部分で被覆されている部材を、導電性を有する流体に接触させること; 
     (C)電気抵抗測定機の第2端子を、前記部材の導電性部分に電気的に接続した状態で、第1電極を導電性流体に接触させて、非導電性部分で被覆された導電性部分と導電性流体との間の電気抵抗を測定すること;
    を含む、請求項1~7のいずれか1項に記載の電気抵抗測定機を用いる、電気抵抗測定方法。
    (A) contacting a member in which a conductive portion is covered with a non-conductive portion with a conductive fluid;
    (C) A conductive material coated with a non-conductive portion by bringing the first electrode into contact with a conductive fluid in a state where the second terminal of the electric resistance measuring device is electrically connected to the conductive portion of the member. Measuring the electrical resistance between the part and the conductive fluid;
    An electric resistance measuring method using the electric resistance measuring device according to any one of claims 1 to 7.
  11.  (C)の前に、
     (B)電気抵抗測定機の第1端子と第2端子を、部材の導電性部分に、可能な限り離して電気的に接続して、導電性部分の電気抵抗を測定して、導電性部分の導電性を確認すること;
    を含む、請求項10に記載の測定方法。
    Before (C)
    (B) The first terminal and the second terminal of the electric resistance measuring device are electrically connected to the conductive portion of the member as far as possible, and the electric resistance of the conductive portion is measured to obtain the conductive portion. Check the conductivity of;
    The measuring method according to claim 10, which comprises:
  12.  装置の運転を一時停止したとき、導電性部分が非導電性部分で覆われている部材を装置から取り外すことなく、請求項1~7項のいずれか1項に記載の電気抵抗測定機を用いて、非導電性部分の電気抵抗を測定することを含む、非導電性部分の欠陥を検知する方法。 The electric resistance measuring machine according to any one of claims 1 to 7 is used when the operation of the device is temporarily stopped without removing the member in which the conductive part is covered with the non-conductive part from the device. And measuring the electrical resistance of the non-conductive portion to detect defects in the non-conductive portion.
  13.  装置を運転中に、導電性部分が非導電性部分で覆われている部材を装置から取り外すことなく、請求項1~7項のいずれか1項に記載の電気抵抗測定機を用いて、非導電性部分の電気抵抗を測定することを含む、非導電性部分の欠陥を監視する方法。 A non-conductive member covered with a non-conductive portion is not removed from the device while the device is in operation, and the electrical resistance measuring machine according to claim 1 is used to A method of monitoring a non-conductive portion for defects, comprising measuring the electrical resistance of the conductive portion.
PCT/JP2020/001323 2019-01-18 2020-01-16 Electrical resistance measuring instrument, and electrical resistance measuring method employing same WO2020149371A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020566479A JPWO2020149371A1 (en) 2019-01-18 2020-01-16 Electric resistance measuring machine and electric resistance measuring method using it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-007341 2019-01-18
JP2019007341 2019-01-18

Publications (1)

Publication Number Publication Date
WO2020149371A1 true WO2020149371A1 (en) 2020-07-23

Family

ID=71613154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001323 WO2020149371A1 (en) 2019-01-18 2020-01-16 Electrical resistance measuring instrument, and electrical resistance measuring method employing same

Country Status (3)

Country Link
JP (1) JPWO2020149371A1 (en)
TW (1) TW202104869A (en)
WO (1) WO2020149371A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0285193A (en) * 1988-09-22 1990-03-26 Mitsubishi Kasei Corp Metal device with electric non-conductive material lining
JPH02293657A (en) * 1989-05-09 1990-12-04 Mitsubishi Kasei Corp Device and method for detecting defect
US5378991A (en) * 1992-05-27 1995-01-03 Anderson; Thomas F. Detecting degradation of non-conductive inert wall layers in fluid containers
JP2005291914A (en) * 2004-03-31 2005-10-20 Miura Co Ltd Electric conductivity sensor equipped with temperature sensor
JP2006017691A (en) * 2004-06-30 2006-01-19 United Microelectronics Corp Corrosion supervision and control system for chemical tank
US20080042662A1 (en) * 2006-08-16 2008-02-21 George Abraham Method For Detecting Stent Coating Defects
JP2012198163A (en) * 2011-03-23 2012-10-18 Dainippon Printing Co Ltd Biosensor, biosensor cartridge, measuring device, and measuring method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0285193A (en) * 1988-09-22 1990-03-26 Mitsubishi Kasei Corp Metal device with electric non-conductive material lining
JPH02293657A (en) * 1989-05-09 1990-12-04 Mitsubishi Kasei Corp Device and method for detecting defect
US5378991A (en) * 1992-05-27 1995-01-03 Anderson; Thomas F. Detecting degradation of non-conductive inert wall layers in fluid containers
JP2005291914A (en) * 2004-03-31 2005-10-20 Miura Co Ltd Electric conductivity sensor equipped with temperature sensor
JP2006017691A (en) * 2004-06-30 2006-01-19 United Microelectronics Corp Corrosion supervision and control system for chemical tank
US20080042662A1 (en) * 2006-08-16 2008-02-21 George Abraham Method For Detecting Stent Coating Defects
JP2012198163A (en) * 2011-03-23 2012-10-18 Dainippon Printing Co Ltd Biosensor, biosensor cartridge, measuring device, and measuring method

Also Published As

Publication number Publication date
JPWO2020149371A1 (en) 2021-11-25
TW202104869A (en) 2021-02-01

Similar Documents

Publication Publication Date Title
JP4989370B2 (en) Nozzle and substrate processing apparatus having the same
Kidambi et al. Assessment and control of the impermeability of graphene for atomically thin membranes and barriers
WO2019017489A1 (en) Semiconductor element manufacturing device and semiconductor element manufacturing method
WO2020149371A1 (en) Electrical resistance measuring instrument, and electrical resistance measuring method employing same
US11964417B2 (en) Melt processible fluororesin molded article
TW201840691A (en) Member contacting chemical liquid for semiconductor product manufacture when chemical liquid is caused to flow
WO2019155975A1 (en) Static elimination tube and method for producing same
JP6571304B2 (en) Tank and chemical supply system
TW202039714A (en) Fluororesin-containing coating composition, coating film, and substrate
JP2006017691A (en) Corrosion supervision and control system for chemical tank
WO2020230472A1 (en) Filter housing and filter comprising same
JP3723502B2 (en) Cleaning method of polycrystalline silicon for semiconductor
TW201938939A (en) Conductive welding material and method of manufacturing the same
JPH06293069A (en) Method for smoothing fluoroplastic molded product and smooth molded product
JP6539426B1 (en) Conductive welding material and method of manufacturing the same
JP2020119923A (en) Member for conveying semiconductor substrate and manufacturing apparatus of semiconductor device having the same
JP6024595B2 (en) Gas filter life management method
JP6649529B2 (en) Composite resin material and molded body
JP4636659B2 (en) Substrate cleaning device
JP7473931B1 (en) Temperature measurement and static elimination structure using silicon carbide
JP3097608U (en) Structure of fluororesin composite plate
CN115815238A (en) Method for cleaning pipe fitting of semiconductor equipment
JP2008525176A (en) System and method for dispensing liquid chemicals
JP3962756B1 (en) Inspection method of ceramic parts
TWI247107B (en) In-situ monitoring and controlling system for chemical vessels or tanks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20740787

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020566479

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20740787

Country of ref document: EP

Kind code of ref document: A1