WO2019017489A1 - Semiconductor element manufacturing device and semiconductor element manufacturing method - Google Patents

Semiconductor element manufacturing device and semiconductor element manufacturing method Download PDF

Info

Publication number
WO2019017489A1
WO2019017489A1 PCT/JP2018/027360 JP2018027360W WO2019017489A1 WO 2019017489 A1 WO2019017489 A1 WO 2019017489A1 JP 2018027360 W JP2018027360 W JP 2018027360W WO 2019017489 A1 WO2019017489 A1 WO 2019017489A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
wafer
composite resin
nozzle
molded body
Prior art date
Application number
PCT/JP2018/027360
Other languages
French (fr)
Japanese (ja)
Inventor
弘和 山本
宏貴 伊丹
勇 野口
忠和 塚本
川戸 進
Original Assignee
東邦化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東邦化成株式会社 filed Critical 東邦化成株式会社
Priority to JP2019530624A priority Critical patent/JPWO2019017489A1/en
Publication of WO2019017489A1 publication Critical patent/WO2019017489A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05FSTATIC ELECTRICITY; NATURALLY-OCCURRING ELECTRICITY
    • H05F1/00Preventing the formation of electrostatic charges

Definitions

  • the present invention relates to a semiconductor device manufacturing apparatus and a semiconductor device manufacturing method.
  • the solution When applying a cleaning solution, a resist solution, an etching solution, etc. to a semiconductor wafer, the solution is discharged onto the wafer surface while rotating the semiconductor wafer for the purpose of applying the solution uniformly and efficiently removing the excess solution.
  • the method is used.
  • the rotation stage, the chemical solution, and the semiconductor wafer are electrostatically charged by the friction between the air and the rotation stage, the friction between the chemical solution and the nozzle when the chemical solution passes through the nozzle, and the friction between the chemical solution and the wafer surface.
  • electrostatic discharge can cause electrostatic damage to the surface of the semiconductor wafer.
  • Patent Document 1 For the purpose of preventing the above-mentioned electrification, various studies are made on, for example, a cleaning step.
  • a light source is provided on the mounting surface of the cleaning stage, and the semiconductor substrate is irradiated with light from the light source to generate ionized air in the light irradiation area, thereby removing static electricity present on the stage mounting surface.
  • the method is described.
  • Patent Document 2 by using a device provided with a substrate vapor supply nozzle, vapor such as water or carbonated water is supplied to the surface of the substrate, whereby the ionized vapor causes the static electricity present on the surface of the substrate.
  • Patent Document 3 describes a method of manufacturing a semiconductor device in which the surface of a semiconductor wafer is cleaned using a first cleaning water and a second cleaning water having a specific resistance smaller than the first cleaning water. .
  • an object of the present invention is to provide a semiconductor device manufacturing apparatus and a semiconductor device manufacturing method that have an efficient static electricity removing effect, are excellent in cleanability, and are excellent in chemical resistance.
  • the present inventors diligently studied on parts used in a semiconductor device manufacturing apparatus. As a result, it is found that the above object can be achieved by using a manufacturing apparatus having a chuck pin and / or a wafer pin and a nozzle, which is a resin molded body containing a composite resin material containing a fluorocarbon resin and carbon nanotubes. Came to complete.
  • An apparatus for manufacturing a semiconductor device comprising at least a stage for holding a semiconductor wafer, comprising a chuck pin and / or a wafer pin; and a nozzle for supplying a cleaning solution, an etching solution or a resist solution,
  • the nozzle is a resin molded body containing a composite resin material containing at least one fluorocarbon resin and carbon nanotubes; and / or at least one (or one) selected from chuck pins, wafer pins and stages is at least one.
  • the manufacturing apparatus of the semiconductor element which is a resin molding which contains the composite resin material containing a kind of fluoro resin and a carbon nanotube.
  • the chuck pin and / or wafer pin is a resin molded body containing a composite resin material containing at least one fluorocarbon resin and carbon nanotube, and the nozzle is a composite resin containing at least one fluorocarbon resin and carbon nanotube
  • the manufacturing apparatus of the semiconductor element as described in said [1] which is a resin molding containing a material. ([2] can also be described as follows.
  • the stage includes chuck pins and / or wafer pins which are resin moldings including a composite resin material containing at least one fluorocarbon resin and carbon nanotubes,
  • Fluororesins are polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), ethylene / tetrafluoroethylene copolymer (ETFE), ethylene / chlorotrifluoroethylene copolymer (ECTFE), polychlorotrifluoroethylene (PCTFE), polyvinylidene fluoride (PVDF) and polyvinyl fluoride (PVF)
  • PTFE polytetrafluoroethylene
  • modified PTFE modified polytetrafluoroethylene
  • PFA perfluoroalkyl vinyl ether copolymer
  • FEP tetrafluoroethylene / hexafluoropropylene copolymer
  • EFE ethylene / te
  • the resin molded body constituting the chuck pin and / or the wafer pin contains 0.01 to 2.0% by mass of carbon nanotubes based on the total amount of the resin molded body, according to the above [1] to [4]
  • the manufacturing apparatus in any one.
  • an apparatus for manufacturing a semiconductor device and a method for manufacturing a semiconductor device which have an efficient static electricity removing effect, are excellent in cleanability, and are excellent in chemical resistance.
  • the manufacturing apparatus of the present invention has at least a stage for holding a semiconductor wafer, and a nozzle for supplying a cleaning solution, an etching solution or a resist solution.
  • the semiconductor device is generally used in the steps of applying a resist solution on the surface of the semiconductor wafer, applying the etching solution, removing particles (impurities) on the semiconductor wafer before and after each treatment step, and used for each treatment.
  • the semiconductor wafer is manufactured through a process of cleaning the surface of the semiconductor wafer and the like.
  • the manufacturing apparatus of the present invention is a manufacturing apparatus used in the above-described process.
  • the manufacturing apparatus of the embodiment of the present disclosure can be used for any process for manufacturing a semiconductor device as long as the manufacturing apparatus can be used.
  • the process includes, for example, a wafer (or wafer) process process (process of processing a semiconductor wafer).
  • Wafer processes include device formation, electrode formation, and wafer inspection. These steps may include, for example, the following steps, more specifically, based on the order of processing the wafers.
  • the above-described processes include wafer cleaning processes as needed.
  • the above-described processes, including the wafer cleaning process can include, for example, the following processes based on the processes on the wafer.
  • Wafer cleaning process eg, wet cleaning, dry cleaning, etc.
  • Wafer heat treatment process eg, oxidation treatment, annealing treatment, etc.
  • Impurity introduction step to the wafer eg, ion implantation method, thermal diffusion method, ion doping method, etc.
  • Thin film formation process on wafer eg, epitaxial growth, CVD, PVD, coating film, plating method, etc.
  • Lithography process eg, resist processing, pattern etching, exposure, etc.
  • Planarization process for example, CMP, etch back, etc.
  • Exposure drawing apparatus contact proximity exposure apparatus, projection exposure apparatus, electron beam exposure apparatus, etc.
  • Resist processing apparatus coating apparatus, developing apparatus, resist peeling apparatus, ashing apparatus, baking apparatus, resist stabilization apparatus, wafer peripheral exposure apparatus, etc.
  • Etching equipment dry etching equipment etc.
  • Cleaning and drying apparatus wet etching apparatus, dry cleaning apparatus, wet cleaning apparatus, scrub cleaning apparatus, drying apparatus, high-pressure jet cleaning apparatus, etc.
  • Heat treatment apparatus oxidation apparatus, diffusion apparatus, annealing apparatus, etc.
  • Ion implantation apparatus high current ion implantation apparatus, medium current ion implantation apparatus, high energy ion implantation apparatus, doping apparatus, etc.
  • CVD apparatus atmospheric pressure CVD apparatus, SACVD apparatus, low pressure CVD apparatus, plasma CVD apparatus, metal CVD apparatus, ALD apparatus, etc.
  • Sputtering apparatus Other thin film forming devices (vacuum deposition)
  • CMP apparatus CMP apparatus, CMP cleaning apparatus, etc.
  • Other processing equipment wafer marking equipment, mark reader, back grinding machine, bump plating equipment, tape grinder for back grinder, back grinder, tape peeling machine for back grinder, etc.
  • the manufacturing apparatus of the present invention at least includes a stage and a nozzle, and the stage includes chuck pins for holding a semiconductor wafer and / or wafer pins in contact with the semiconductor wafer.
  • the semiconductor wafer can be held on the mounting surface of the stage by, for example, holding the outer edge of the semiconductor wafer by the chuck pins provided on the stage. Also, for example, a semiconductor wafer can be supported from the back side by a wafer pin provided on the stage.
  • a rotary drive shaft is attached to the stage. By rotating the rotation drive shaft, the semiconductor wafer can be rotated while being held by the mounting surface of the stage.
  • the resist solution or the etching solution can be uniformly applied to the wafer surface. It becomes possible to remove excess liquid efficiently. Similarly, by supplying the cleaning liquid from the nozzle, the semiconductor wafer can be cleaned efficiently.
  • the manufacturing apparatus of the present invention holds a semiconductor wafer using at least one (or one) selected from conductive chuck pins, wafer pins, and stages, and / or conductivity.
  • the cleaning liquid, the etching liquid or the resist liquid from the nozzle it is possible to reduce the charge of the semiconductor wafer while efficiently preventing the static electricity charged on the semiconductor wafer while avoiding the mixing of impurities.
  • the volume resistivity can be efficiently reduced with a small amount of carbon nanotubes, the conductivity of the semiconductor wafer in contact with at least one selected from the chuck pin, the wafer pin and the stage and / or the chemical solution passing through the nozzle can be reduced. It is possible to suppress the contamination of the chemical solution and the like due to the mixing of the volatile material.
  • the manufacturing apparatus of the present invention uses a conductive chuck pin and / or a wafer pin to hold a semiconductor wafer, and / or a conductive nozzle from a cleaning solution, an etchant or a resist.
  • a conductive chuck pin and / or a wafer pin to hold a semiconductor wafer, and / or a conductive nozzle from a cleaning solution, an etchant or a resist.
  • the cleaning solution, the etching solution, the resist solution, and the like are not particularly limited as long as they can be used in the manufacturing apparatus of the embodiment of the present disclosure.
  • Such cleaning solution, etching solution, resist solution and the like are, for example, organic solvents (eg, isopropyl alcohol etc.), flammable liquids (eg, isopropyl alcohol etc.), acidic liquids (eg, hydrofluoric acid, fluoro acid and nitric acid).
  • the manufacturing apparatus of the present invention holds a semiconductor wafer on the mounting surface of a rotary stage using conductive chuck pins, and uses a conductive nozzle to wash liquid, etching liquid or resist liquid.
  • a conductive nozzle to wash liquid, etching liquid or resist liquid.
  • the manufacturing apparatus of the present invention further includes a wafer pin for supporting the semiconductor wafer from the back side, static electricity can be removed also from the back side of the semiconductor wafer, so that a more efficient static electricity removing effect can be obtained.
  • the stage preferably has a chuck pin and / or a wafer pin which is a resin molded body containing a composite resin material containing at least one fluorocarbon resin and carbon nanotube.
  • the stage preferably includes at least either the chuck pin which is the resin molded body or the wafer pin which is the resin molded body.
  • the stage may or may not have a wafer pin, and the wafer pin may be the above-mentioned resin molded body, or It may not be a resin molded body.
  • the stage When the stage has a wafer pin which is the above-mentioned resin molded body, it may or may not have a chuck pin, and the chuck pin may be the above-mentioned resin molded body, or the above-mentioned resin molding It does not have to be the body.
  • the chuck pins are pins for holding the semiconductor wafer on the stage, and the number and shape thereof are not particularly limited as long as the semiconductor wafer can be held on the mounting surface of the stage.
  • the stage preferably includes three or more, and more preferably four or more chuck pins, from the viewpoint of easily fixing the semiconductor wafer on the stage.
  • the wafer pins are pins in contact with the semiconductor wafer, and the number and shape thereof are not particularly limited.
  • the volume resistivity of the chuck pin is preferably 1.0 ⁇ 10 8 as measured in accordance with JIS K6911 from the viewpoint of antistaticity. ⁇ ⁇ cm or less, more preferably 1.0 ⁇ 10 7 ⁇ ⁇ cm or less, and still more preferably 1.0 ⁇ 10 6 ⁇ ⁇ cm or less.
  • ⁇ ⁇ cm or less preferably 1.0 ⁇ 10 7 ⁇ ⁇ cm or less
  • 1.0 ⁇ 10 6 ⁇ ⁇ cm or less Favorable antistatic property is acquired as a volume resistivity is below the said upper limit.
  • the lower limit value of the volume resistivity of the chuck pin is not particularly limited and may be 0 or more, but is usually 10 ⁇ ⁇ cm or more.
  • the volume resistivity of the chuck pin is Xc ⁇ ⁇ cm
  • the amount of carbon nanotubes contained in the chuck pin based on the total amount of resin molded body constituting the chuck pin is Yc mass
  • Xc and Yc have the following formula (1): Xc / Yc -14 4 4 x 10 -10 (1) It is preferable to satisfy When the above relationship is satisfied, the volume resistivity of the chuck pin can be efficiently reduced. In addition, since the volume resistivity can be sufficiently reduced with a small amount of carbon nanotubes, the cleanness of the chuck pin can be easily improved.
  • Value calculated from the above equation (1) is the volume resistivity of the chuck pins from the viewpoint of easy effectively reduced, more preferably 10 -11 or less, more preferably 10 - It is 12 or less.
  • the lower limit value of the value (Xc / Yc -14 ) calculated from the above formula (1) is not particularly limited, but is usually 10 -18 or more, preferably 10 -16 or more.
  • the above relationship can be achieved by manufacturing a molded body by a manufacturing method to be described later, or manufacturing a chuck pin using composite resin particles that are preferable for efficiently reducing the volume resistivity.
  • the volume resistivity of the chuck pin is measured according to JIS K6911 using a chuck pin as a measurement sample with a resistivity meter (for example, "Loresta” or “Hiresta” manufactured by Mitsubishi Chemical Analytech Co., Ltd.).
  • a resistivity meter for example, "Loresta” or “Hiresta” manufactured by Mitsubishi Chemical Analytech Co., Ltd.
  • the amount of carbon nanotubes contained in the chuck pin is measured by carbon component analysis.
  • the volume resistivity of the wafer pin is measured according to JIS K6911 from the viewpoint of antistaticity, preferably 1.0 ⁇ 10 8 ⁇ ⁇ . It is at most cm, more preferably at most 1.0 ⁇ 10 7 ⁇ ⁇ cm, even more preferably at most 1.0 ⁇ 10 6 ⁇ ⁇ cm.
  • Favorable antistatic property is acquired as a volume resistivity is below the said upper limit.
  • the lower limit of the volume resistivity of the wafer pin is not particularly limited, and may be 0 or more, but is usually 10 ⁇ ⁇ cm or more.
  • the stage has a wafer pin which is the above resin molded body
  • the volume resistivity of the wafer pin is Xw ⁇ ⁇ cm
  • the amount of carbon nanotubes contained in the wafer pin based on the total amount of resin molded body constituting the wafer pin is Yw mass% Xw and Yw have the following formula (2): Xw / Yw -14 4 4 x 10 -10 (2) It is preferable to satisfy When the above relationship is satisfied, the volume resistivity of the wafer pin can be efficiently reduced. In addition, since the volume resistivity can be sufficiently reduced with a small amount of carbon nanotubes, the cleanness of the wafer pin can be easily improved.
  • the value (Xw / Yw -14 ) calculated from the above equation (2) is more preferably 10 -11 or less, and still more preferably 10 -12 from the viewpoint of easily reducing the volume resistivity of the wafer pin. It is below.
  • the lower limit value of the value (Xc / Yc -14 ) calculated from the above formula (2) is not particularly limited, but is usually 10 -18 or more, preferably 10 -16 or more.
  • the above relationship can be achieved by manufacturing a molded body by a manufacturing method to be described later, or manufacturing a wafer pin using composite resin particles that are preferable for reducing the volume resistivity efficiently.
  • the volume resistivity of the wafer pin is measured according to JIS K6911 using a wafer pin as a measurement sample with a resistivity meter (for example, "Loresta” or “Hiresta” manufactured by Mitsubishi Chemical Analytech Co., Ltd.). Further, the amount of carbon nanotubes contained in the wafer pin is measured by carbon component analysis.
  • the resin molded body constituting the chuck pin and / or the wafer pin is preferably 0.01 to 2.0% by mass, more preferably 0.02 to 0.5% by mass, and further more preferably based on the total amount of the resin molded body.
  • it contains 0.025 to 0.2% by mass of carbon nanotubes.
  • the amount of carbon nanotubes it is preferable for the amount of carbon nanotubes to be not less than the above lower limit, since it is easy to lower the volume resistivity in order to enhance the antistatic property or the conductivity. When the amount of carbon nanotubes is equal to or less than the above upper limit, the volume resistivity can be easily reduced efficiently, and the cleanness of the resin molded product can be easily improved.
  • the amount of carbon nanotubes contained in the resin molding is measured by carbon component analysis.
  • the chuck pins and / or the wafer pins are electrically connected to the housing of the manufacturing apparatus, and the static electricity flowing from the semiconductor wafer to the chuck pins and / or the wafer pins finally flows into the housing of the manufacturing apparatus, It is removed outside the device.
  • a rotary drive shaft having a metal portion is used, the chuck pin and / or the wafer pin and the metal portion of the rotary drive shaft are connected to ground, and the metal portion of the rotary drive shaft and the casing of the manufacturing apparatus are grounded. By connecting, static electricity can be removed from the housing of the manufacturing apparatus to the outside of the apparatus.
  • stage In the manufacturing apparatus of the present invention, a stage is provided to hold a semiconductor wafer on its surface.
  • the semiconductor wafer may be directly mounted on the stage, or may be mounted via chuck pins and / or wafer pins provided on the stage.
  • the material of the stage is not particularly limited, and may be appropriately selected from the viewpoint of chemical resistance, mechanical properties and the like, and may be, for example, a molded product of fluorocarbon resin, polypropylene, vinyl chloride or the like.
  • the size of the stage may be appropriately determined according to the size of the semiconductor wafer to be processed, and is not particularly limited. For example, when the diameter of the semiconductor wafer is 300 mm, the thickness is 15 to 30 mm and the outer diameter 330 to It is about 350 mm in size.
  • the stage in view of easy removal of static electricity from a semiconductor wafer more efficiently, is a resin molded body including a composite resin material containing at least one fluorocarbon resin and carbon nanotube.
  • the volume resistivity of the stage is preferably 1.0 ⁇ 10 8 ⁇ ⁇ cm or less, more preferably 1.0 ⁇ 10 7 ⁇ ⁇ , as measured in accordance with JIS K 6911 from the viewpoint of antistatic property. It is at most cm, still more preferably at most 1.0 ⁇ 10 6 ⁇ ⁇ cm.
  • the volume resistivity of the stage is less than the above upper limit, better antistatic properties of the production apparatus of the present invention can be obtained.
  • the lower limit value of the volume resistivity of the stage is not particularly limited, and may be 0 or more, but is usually 10 ⁇ ⁇ cm or more.
  • the volume resistivity of the rotary stage is measured by a resistivity meter (for example, "Loresta” or “Hiresta” manufactured by Mitsubishi Chemical Analytech Co., Ltd.) using the stage as a measurement sample according to JIS K6911.
  • the resin molded product constituting the stage is preferably 0.01 to 2.0% by mass, more preferably 0.02 to 0.5% by mass, and still more preferably, based on the total amount of the resin molded product. It contains 0.025 to 0.2% by mass of carbon nanotubes.
  • the amount of carbon nanotubes prefferably be not less than the above lower limit, since it is easy to lower the volume resistivity in order to enhance the antistatic property or the conductivity.
  • the amount of carbon nanotubes is equal to or less than the above upper limit, the volume resistivity can be easily reduced efficiently, and the cleanness of the resin molded product can be easily improved.
  • the amount of carbon nanotubes contained in the resin molded product constituting the stage is measured by carbon component analysis.
  • the volume resistivity of the stage is Xs ⁇ ⁇ cm
  • the total amount of resin molded bodies constituting the stage is Assuming that the amount of carbon nanotubes contained in the stage based on Ys mass%, Xs and Ys have the following formula (3): Xs / Ys -14 4 4 x 10 -10 (3) It is preferable to satisfy When the above relationship is satisfied, the volume resistivity of the stage can be efficiently reduced. In addition, since the volume resistivity can be sufficiently reduced with a small amount of carbon nanotubes, it is easy to improve the cleanness of the stage.
  • the value (Xs / Ys -14 ) calculated from the above equation (3) is more preferably 10 -11 or less, and further preferably 10 -12 from the viewpoint of easily reducing the volume resistivity of the stage. It is below.
  • the lower limit of the value (Xs / Ys- 14 ) calculated from the above equation (3) is not particularly limited, but is usually 10-18 or more, preferably 10-16 or more.
  • the above relationship can be achieved by manufacturing a molded product by a manufacturing method to be described later, or manufacturing a stage using composite resin particles that are preferable for effectively reducing the volume resistivity. The method of measuring the volume resistivity and the amount of carbon nanotubes in the stage is as described above.
  • the nozzle is a tube for supplying a cleaning solution, an etching solution or a resist solution to the surface of the semiconductor wafer held on the stage, usually.
  • the nozzle is preferably provided such that the liquid supply port of the nozzle is located above the semiconductor wafer held on the stage.
  • the diameter and length of the nozzle, and the position of the liquid supply port of the nozzle may be appropriately determined according to the size of the semiconductor wafer to be processed, the required liquid supply amount, and the like, and are not particularly limited.
  • the diameter of the nozzle is, for example, 1/2 inch or less, preferably 1/4 to 3/8 inch, and the nozzle length is, for example, 200 mm or more
  • the setting position of the liquid supply port of the nozzle can be 150 mm or more above the surface of the semiconductor wafer.
  • the nozzle is preferably a resin molded body containing a composite resin material containing at least one fluorocarbon resin and carbon nanotube.
  • the volume resistivity of the nozzle is preferably 1.0 ⁇ 10 8 ⁇ ⁇ cm or less, more preferably 1.0 ⁇ 10 7 ⁇ ⁇ cm or less, further preferably 1.0 ⁇ 10 8 ⁇ ⁇ cm or less, as measured in accordance with JIS K 6911, from the viewpoint of antistatic properties.
  • it is 1.0 * 10 ⁇ 6 > ohm * cm or less.
  • Favorable antistatic property is acquired as a volume resistivity is below the said upper limit.
  • the lower limit value of the volume resistivity of the nozzle is not particularly limited, and may be 0 or more, but is usually 10 ⁇ ⁇ cm or more.
  • the volume resistivity of the nozzle is measured according to JIS K6911 using a nozzle as a measurement sample with a resistivity meter (for example, "Loresta” or "Hiresta” manufactured by Mitsubishi Chemical Analytech Co., Ltd.).
  • the resin molded body constituting the nozzle is preferably 0.01 to 2.0% by mass, more preferably 0.02 to 0.5% by mass, still more preferably 0.025 to 2.5% by mass, based on the total amount of the resin molded body. It contains 0.2% by mass of carbon nanotubes.
  • the amount of carbon nanotubes prefferably be not less than the above lower limit, since it is easy to lower the volume resistivity in order to enhance the antistatic property or the conductivity.
  • the amount of carbon nanotubes is equal to or less than the above upper limit, the volume resistivity can be easily reduced efficiently, and the cleanness of the resin molded product can be easily improved.
  • the amount of carbon nanotubes contained in the resin molding constituting the nozzle is measured by carbon component analysis.
  • the volume resistivity of the nozzle is X n ⁇ ⁇ cm
  • the amount of carbon nanotubes contained in the nozzle based on the total amount of resin moldings constituting the nozzle is Yn mass%
  • Xn and Yn Formula (4) Xn / Yn -14 4 4 x 10 -10 (4) It is preferable to satisfy When the above relationship is satisfied, the volume resistivity of the nozzle can be efficiently reduced. In addition, since the volume resistivity can be sufficiently reduced with a small amount of carbon nanotubes, it is easy to improve the cleanness of the nozzle.
  • the value (Xn / Yn -14 ) calculated from the above equation (4) is more preferably 10 -11 or less, and still more preferably 10 -12 from the viewpoint of easily reducing the volume resistivity of the nozzle efficiently. It is below.
  • the lower limit of the value (Xn / Yn- 14 ) calculated from the above formula (4) is not particularly limited, but is usually 10-18 or more, preferably 10-16 or more.
  • the above relationship can be achieved by manufacturing a molded body by a manufacturing method to be described later, or manufacturing a nozzle using composite resin particles preferable for effectively reducing the volume resistivity.
  • the method for measuring the volume resistivity and the amount of carbon nanotubes in the nozzle is as described above.
  • the nozzle being a resin molded body containing a composite resin material containing a fluorocarbon resin and a carbon nanotube.
  • the resin molded body containing a composite resin material is excellent in cleanness and excellent in chemical resistance, it is possible to avoid the mixing of impurities into the liquid from the inner surface of the nozzle.
  • the nozzle is electrically connected, for example, to the housing of the manufacturing apparatus, and static electricity generated by friction between the inner surface of the nozzle and the liquid finally flows into the housing of the manufacturing apparatus and is removed to the outside of the apparatus.
  • Ru for example, by providing a metal portion on the outer peripheral portion of the nozzle, the nozzle and the housing of the manufacturing apparatus can be electrically connected, and static electricity can be removed from the housing of the manufacturing apparatus to the outside of the apparatus.
  • the nozzles are used to supply the cleaning solution.
  • a cleaning solution generally used for cleaning a semiconductor wafer can be mentioned, and specifically, water, isopropyl alcohol (IPA), hydrofluoric acid (hydrofluoric acid aqueous solution) and the like can be mentioned.
  • IPA isopropyl alcohol
  • hydrofluoric acid hydrofluoric acid aqueous solution
  • a nozzle is used to supply the etchant.
  • the etchant include etchants commonly used in the etching of semiconductor wafers.
  • strong acid aqueous solutions such as hydrofluoric acid and hydrofluoric-nitric acid (mixed aqueous solution of hydrofluoric acid and nitric acid), and potassium hydroxide
  • An aqueous solution, a strong base aqueous solution such as tetramethyl ammonium hydroxide aqueous solution, and the like can be mentioned.
  • a nozzle is used to supply a resist solution.
  • the resist solution include resist solutions generally used for resisting semiconductor wafers, and specific examples include mixed solutions of a polymer, a photosensitizer, and a solvent (tetramethylammonium hydroxide).
  • the manufacturing apparatus of the present invention may further be provided with a cup body, for example, so as to surround a semiconductor wafer held on a stage.
  • the cup body is provided for the purpose of receiving a liquid that is scattered when removing the liquid such as the cleaning liquid from the semiconductor wafer.
  • a cup body the thing of the structure which has an outer cup and an inner cup, for example is mentioned.
  • the upper side of the cup body may be open.
  • the outer cup has a rectangular shape on the upper side and a cylindrical shape on the lower side.
  • a step may be provided on the lower side of the outer cup, and in this case, an elevating part for raising and lowering the outer cup may be connected to the step.
  • the inner cup may be cylindrical in shape, for example its upper side sloped inwards.
  • the inner cup may be configured to be pushed upward by bringing the lower end surface of the inner cup into contact with the step of the outer cup when the outer cup is lifted.
  • the cup body (outer cup and inner cup) can be lifted to receive the liquid scattered from the semiconductor wafer.
  • the cup body (for example, the outer cup and / or the inner cup) is a resin molded body containing a composite resin material containing at least one fluorocarbon resin and carbon nanotubes.
  • the volume resistivity of the cup body is preferably 1.0 ⁇ 10 8 ⁇ ⁇ cm or less, more preferably 1.0 ⁇ 10 7 ⁇ ⁇ or less, as measured in accordance with JIS K 6911, from the viewpoint of antistaticity. It is at most cm, still more preferably at most 1.0 ⁇ 10 6 ⁇ ⁇ cm.
  • Favorable antistatic property is acquired as a volume resistivity is below the said upper limit.
  • the lower limit of the volume resistivity of the cup body is not particularly limited, and may be 0 or more, but is usually 10 ⁇ ⁇ cm or more.
  • the volume resistivity of the cup body is measured according to JIS K6911 using a cup body as a measurement sample with a resistivity meter (for example, "Loresta” or "Hiresta” manufactured by Mitsubishi Chemical Analytech Co., Ltd.).
  • the resin molded body constituting the cup body is preferably 0.01 to 2.0% by mass, more preferably 0.02 to 0.5% by mass, and still more preferably 0.025% by mass, based on the total amount of the resin molded body. It contains ⁇ 0.2 mass% of carbon nanotubes.
  • the amount of carbon nanotubes prefferably be not less than the above lower limit, since it is easy to lower the volume resistivity in order to enhance the antistatic property or the conductivity.
  • the amount of carbon nanotubes is equal to or less than the above upper limit, the volume resistivity can be easily reduced efficiently, and the cleanness of the resin molded product can be easily improved.
  • the amount of carbon nanotubes contained in the resin molding that constitutes the cup body is measured by carbon component analysis.
  • the volume resistivity of the cup body is Xc ⁇ ⁇ cm
  • the amount of carbon nanotubes contained in the cup body based on the total amount of resin moldings forming the cup body is Yc mass%
  • Xc and Yc Is the following equation (5): Xc / Yc -14 4 4 x 10 -10 (5) It is preferable to satisfy When the above relationship is satisfied, the volume resistivity of the cup can be efficiently reduced. In addition, since the volume resistivity can be sufficiently reduced with a small amount of carbon nanotubes, it is easy to enhance the cleanness of the cup body.
  • Value calculated from the above equation (5) is the volume resistivity of the cup body from the viewpoint of easy effectively reduced, more preferably 10 -11 or less, more preferably 10 - It is 12 or less.
  • the lower limit value of the value (Xc / Yc -14 ) calculated from the above formula (5) is not particularly limited, but is usually 10 -18 or more, preferably 10 -16 or more.
  • the above relationship can be achieved by manufacturing a molded body by a manufacturing method to be described later, or manufacturing a cup body using composite resin particles preferable for effectively reducing the volume resistivity. The methods for measuring the volume resistivity and the amount of carbon nanotubes in the cup body are as described above.
  • the manufacturing apparatus of the present invention may further include a configuration for discharging a liquid such as a cleaning liquid, an etching liquid, or a resist liquid removed from the semiconductor wafer from the apparatus.
  • a liquid receiving unit may be provided, a waste liquid pipe may be connected to the bottom of the liquid receiving part, and the liquid may finally flow to the waste liquid tank.
  • At least one selected from the chuck pin, the wafer pin, and the stage, and / or the nozzle is a resin molded body including a composite resin material including at least one fluorocarbon resin and carbon nanotube.
  • the resin molded article contains a composite resin material which also contains at least one fluorocarbon resin and carbon nanotube as the stage.
  • the composite resin material is a molded article of composite resin particles containing at least one fluorocarbon resin and carbon nanotubes.
  • the composite resin particle is a material in which fluorocarbon resin particles and carbon nanotubes are complexed, and carbon nanotubes exist on at least the surface and / or surface layer of the fluorocarbon resin particles.
  • at least a part of the carbon nanotube is supported or buried on the particle surface of the fluorine resin.
  • the carbon nanotubes may be attached to and supported on the particle surface of the fluorocarbon resin, or a part may be buried and supported, or may be completely embedded in the surface layer of the particles of the fluorocarbon resin .
  • a composite resin material which is a molded product of such composite resin particles, at least a part of the composite resin particles may be contained while maintaining the particle shape, and the composite resin particles are integrated to form a composite resin material. It may be done.
  • the average particle diameter of the composite resin particles is preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less, still more preferably 200 ⁇ m or less, particularly preferably 100 ⁇ m or less, very preferably 50 ⁇ m or less, most preferably 30 ⁇ m or less.
  • the lower limit of the average particle size of the composite resin particles is not particularly limited, but is usually 5 ⁇ m or more.
  • the average particle size of the composite resin particles giving the composite resin material contained in the chuck pin, the wafer pin and at least one selected from the wafer pin and the stage and / or the nozzle, preferably the chuck pin and / or the wafer pin May be the average particle size of the composite resin particles used for producing the above chuck pins etc.
  • the average particle size means the particle size at 50% of the integrated value in the particle size distribution determined by laser diffraction / scattering method Median diameter (D 50 ), which is measured using a laser diffraction scattering particle size distribution apparatus.
  • a molded article such as a chuck pin is made of a composite resin material which is a molded article of composite resin particles having the above average particle diameter.
  • the composite resin material in the state of being contained therein may be a composite resin particle having a particle diameter in the above-mentioned preferable range, or the composite resin particles are integrated to form a composite resin material, and the particle shape is not maintained. It is also good.
  • the amount of the fluorine resin contained in the composite resin material is preferably 98.0% by mass or more, more preferably 99.5% by mass or more, still more preferably 99.0% by mass or more, based on the total amount of the composite resin material. Particularly preferably, it is 99.8% by mass or more.
  • the upper limit of the amount of the fluorine resin is not particularly limited, but is about 99.99% by mass or less.
  • the amount of the fluorine resin contained in the composite resin material is measured by carbon component analysis. In the manufacturing apparatus of the present invention, the above-mentioned preferable statement about the amount of fluorine resin applies similarly to the amount of fluorine resin contained in the chuck pin and / or the wafer pin and the nozzle and optionally the stage.
  • the preferable description regarding the amount of the fluorocarbon resin is at least one selected from a chuck pin, a wafer pin and a stage and / or a nozzle, preferably a chuck pin and / or a wafer pin The same applies to the amount of
  • the composite resin material is a molded article of composite resin particles, and the specific surface area of the composite resin particles is preferably 0.5 to 9.0 m 2 / g, more preferably 0.8, as measured in accordance with JIS Z8830. It is -4.0 m 2 / g, still more preferably 1.0 to 3.0 m 2 / g. It is preferable from the viewpoint of easily improving the adhesion between the fluorine resin and the carbon nanotube that the specific surface area is the above lower limit or more, and it is preferable from the viewpoint of easiness of producing the composite resin material that it is the above upper limit.
  • the specific surface area of the resin particles used in the manufacture of the chuck pin or the like may be the specific surface area, which is specifically a specific surface area / pore distribution measuring apparatus which is a fixed capacity gas adsorption method (for example, Japan It is measured by BET method which is a general measurement method of specific surface area using Bell made BELSORP-miniII).
  • a molded body such as a chuck pin is made of a composite resin material which is a molded body of composite resin particles having the above specific surface area.
  • the composite resin material in the state of being contained in may be a composite resin particle having a specific surface area in the above-mentioned preferable range, or the composite resin particles are integrated to form a composite resin material, and the above specific surface area is maintained. You do not have to.
  • the volume resistivity of the composite resin particles is preferably 1.0 ⁇ 10 8 ⁇ ⁇ cm or less, more preferably 1.0 ⁇ 10 7 ⁇ ⁇ cm or less, as measured in accordance with JIS K 6911 from the viewpoint of antistatic properties. Still more preferably, it is 1.0 ⁇ 10 6 ⁇ ⁇ cm or less.
  • Favorable antistatic property is acquired as a volume resistivity is below the said upper limit.
  • the lower limit value of the volume resistivity of the composite resin material is not particularly limited, and may be 0 or more, but is usually 10 ⁇ ⁇ cm or more.
  • the volume resistivity of the composite resin material is measured by a resistivity meter (for example, "Loresta” or “Hyresta” manufactured by Mitsubishi Chemical Analytech Co., Ltd.) using a molding material or a cut test piece according to JIS K6911.
  • a resistivity meter for example, "Loresta” or “Hyresta” manufactured by Mitsubishi Chemical Analytech Co., Ltd.
  • the composite resin particles exhibit the above-mentioned volume resistivity when measured using a test piece of ⁇ 110 ⁇ 10 mm produced by compression molding (compression molding).
  • the fluorine resin contained in the composite resin material is not particularly limited.
  • PTFE polytetrafluoroethylene
  • modified polytetrafluoroethylene modified polytetrafluoroethylene
  • PFA perfluoroalkyl vinyl ether copolymer
  • FEP tetratetra Fluoroethylene / hexafluoropropylene copolymer
  • ETFE ethylene / tetrafluoroethylene copolymer
  • ECTFE ethylene / chlorotrifluoroethylene copolymer
  • PCTFE polychlorotrifluoroethylene
  • PVDF polyvinylidene fluoride
  • PVDF polyvinylidene fluoride
  • PVDF polyvinylidene fluoride
  • the fluorine resin is preferably selected from the group consisting of PTFE, modified PTFE, PFA, PCTFE and PVDF from the viewpoints of mechanical strength properties and molding processability, and from the viewpoint of easily enhancing the conductivity, preferably PTFE. It is selected from the group consisting of modified PTFE and PCTFE, and is more preferably modified PTFE or PCTFE from the viewpoint of facilitating the improvement of the conductivity efficiently as well as mechanical strength properties and molding processability.
  • At least one of the chuck pin, the wafer pin and the stage and / or the nozzle selected from the stage, preferably the chuck pin and / or the wafer pin and the nozzle are manufactured from the same composite resin material It may be manufactured from different composite resin materials, each of which contains different fluorocarbon resin or carbon nanotube.
  • Polytetrafluoroethylene is a homopolymer of tetrafluoroethylene.
  • Modified polytetrafluoroethylene is a compound of formula (I) derived from tetrafluoroethylene: In addition to the tetrafluoroethylene units represented by [Wherein, X represents a C 1-6 perfluoroalkyl group or a C 4-9 perfluoroalkoxyalkyl group] And the amount of the perfluorovinyl ether unit represented by the formula (II) is 0.01 to 1% by mass based on the total mass of the modified polytetrafluoroethylene Some modified polytetrafluoroethylenes can be mentioned.
  • Examples of X in the formula (II) include a perfluoroalkyl group having 1 to 6 carbon atoms or a perfluoroalkoxyalkyl group having 4 to 9 carbon atoms.
  • Examples of the perfluoroalkyl group having 1 to 6 carbon atoms include perfluoromethyl group, perfluoroethyl group, perfluorobutyl group, perfluoropropyl group, perfluorobutyl group and the like.
  • Examples of the perfluoroalkoxyalkyl group having 4 to 9 carbon atoms include perfluoro 2-methoxypropyl group and perfluoro 2-propoxypropyl group.
  • X is preferably a perfluoropropyl group, a perfluoroethyl group, or a perfluoromethyl group, more preferably a perfluoropropyl group.
  • the modified PTFE may have one type of perfluorovinylether unit represented by the formula (II) or may have two or more perfluorovinylether units represented by the formula (II) Good.
  • the amount of the perfluorovinyl ether unit represented by the formula (II) contained in the modified PTFE is less than 1 mol%, preferably 0.001 mol% or more, based on the amount of all structural units contained in the modified PTFE It is less than 1 mol%.
  • the amount of the perfluorovinyl ether unit represented by the formula (II) is increased, the melting point of the fluorine resin is increased, the weldability and the flexibility are improved, and the melt flowability of the fluorine resin is increased, so that the formability Tend to improve.
  • the amount of units is too high, the adhesion at the time of welding may be reduced.
  • the amount of the perfluorovinyl ether unit represented by the formula (II) is equal to or more than the above lower limit, the flowability becomes higher compared to PTFE, and the moldability becomes good. Moreover, it is easy to improve the adhesiveness at the time of welding as the quantity of the said unit is below the said upper limit.
  • the amount of the perfluorovinyl ether unit is measured, for example, by performing infrared spectroscopy in the range of 1040 to 890 cm ⁇ 1 characteristic absorption.
  • the amount of perfluorovinyl ether unit represented by the formula (II) contained in the modified PTFE is 0.01 to 1% by mass, preferably 0.03 to 0.2% by mass, based on the total mass of the modified PTFE is there.
  • the tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA) is a compound of formula (I) derived from tetrafluoroethylene: In addition to the tetrafluoroethylene units represented by [Wherein, X represents a C 1-6 perfluoroalkyl group or a C 4-9 perfluoroalkoxyalkyl group] And a compound having an amount of perfluorovinylether unit represented by the formula (II) is more than 1% by mass based on the total mass of PFA.
  • Examples of X in the formula (II) include the groups described above for the modified PTFE, and the same applies to the preferred descriptions.
  • PFA may have one type of perfluorovinylether unit represented by formula (II), or may have two or more perfluorovinylether units represented by formula (II) .
  • the amount of the perfluorovinyl ether unit represented by the formula (II) contained in PFA is 1 mol% or more, preferably 1 to 3 mol%, based on the amount of all the structural units contained in PFA.
  • the amount of the perfluorovinyl ether unit represented by the formula (II) is measured, for example, by performing infrared spectroscopy in the range of 1040 to 890 cm ⁇ 1 characteristic absorption.
  • PCTFE Polychlorotrifluoroethylene
  • the melting point of the fluororesin is preferably 130 to 380 ° C., more preferably 150 to 380 ° C., still more preferably 180 to 350 ° C., and particularly preferably 200 to 350 ° C.
  • the melting point of the fluorine resin is a value determined as the temperature of the heat of fusion peak which can be measured using a differential scanning calorimeter (DSC) in accordance with ASTM-D 4591.
  • the fluororesin when the fluororesin is PCTFE, its melting point is preferably 130 to 290 ° C., more preferably 160 to 270 ° C., and still more preferably 180 to 250 ° C.
  • the melting point is the above lower limit or more, the formability is preferably improved, and the melting point is preferably the above upper limit or the like because the optimum mechanical properties of the resin are easily obtained.
  • the melting point of PCTFE is measured using a differential scanning calorimeter (DSC) according to ASTM-D 4591.
  • the fluororesin when the fluororesin is a modified PTFE, its melting point is preferably 300 to 380 ° C., more preferably 320 to 380 ° C., and still more preferably 320 to 350 ° C.
  • the melting point is the above lower limit or more, the formability is preferably improved, and the melting point is preferably the above upper limit or the like because the optimum mechanical properties of the resin can be easily obtained.
  • the melting point of the modified PTFE is a value determined as the temperature of the heat of fusion peak which can be measured using a differential scanning calorimeter (DSC) in accordance with ASTM-D 4591.
  • the heat of crystallization is preferably 18.0 to 25.0 J / g, more preferably 18.0 to 23.5 J / g.
  • the heat of crystallization is measured by a differential scanning calorimeter (for example, "DSC-50" manufactured by Shimadzu Corporation). Specifically, the temperature is raised to 250 ° C. at a rate of 50 ° C./min, and temporarily held, and then the crystal is melted by raising the temperature to 380 ° C. at a rate of 10 ° C./min. After that, the peak of the crystallization point measured when the temperature is lowered at a rate of 10 ° C./min is measured in terms of heat.
  • a carbon nanotube (hereinafter also referred to as “CNT”) contained in the composite resin material has a structure in which one or a plurality of graphene sheets composed of six-membered rings of carbon atoms are cylindrically wound.
  • the CNT is a single-walled CNT (single-walled carbon nanotube) in which one graphene sheet is concentrically wound, or a multilayer CNT (multi-walled carbon nanotube) in which two or more graphene sheets are concentrically wound. It is.
  • the above carbon nanomaterials may be used alone or in combination. It is more preferable that the carbon nanotube is a multi-walled carbon nanotube from the viewpoint of being easily complexed with the modified PTFE particles and easily lowering the volume resistivity.
  • the composite resin material is a material obtained by combining a fluorocarbon resin and a carbon nanotube.
  • the method for producing the composite resin material is not particularly limited as long as a material having a physical property as described above and in which a fluorocarbon resin and a carbon nanotube are composited is obtained.
  • the composite resin material is manufactured from composite resin particles in which a fluorocarbon resin and a carbon nanotube are composited.
  • the method for producing composite resin particles is not particularly limited as long as composite resin particles in which carbon nanotubes exist on at least the surface and / or surface layer of the fluorocarbon resin can be obtained.
  • composite resin particles can be produced by combining the particles of the fluorocarbon resin and the carbon nanotube.
  • carbon nanotubes are dispersed in a solvent to prepare a carbon nanotube dispersion.
  • a solvent water, alcohol solvents (ethanol, n-butyl alcohol, isopropyl alcohol, ethylene glycol etc.), ester solvents (ethyl acetate etc.), ether solvents (diethyl ether, dimethyl ether etc.), ketone solvents (methyl ethyl ketone) , Acetone, diethyl ketone, methyl propyl ketone, cyclohexanone etc., aliphatic hydrocarbon solvents (hexane, heptane etc), aromatic hydrocarbon solvents (toluene, benzene etc), chlorinated hydrocarbon solvents (dichloromethane, chloroform) , Chlorobenzene, etc.).
  • One type of solvent may be used, or two or more types of solvents may be used in combination. From the viewpoint of easily forming a fluorocarbon resin and a carbon nanotube, it is preferable to use a solvent which easily swells the particle surface of the fluorocarbon resin. Specifically, it is preferable to use a ketone-based solvent.
  • the amount of the solvent contained in the carbon nanotube dispersion is preferably 20,000 to 1, relative to 100 parts by mass of the carbon nanotubes contained in the carbon nanotube dispersion, from the viewpoint of facilitating single dispersion of the carbon nanotubes in the solvent.
  • 000, 000 parts by weight more preferably 30,000 to 300,000 parts by weight, even more preferably 50,000 to 200,000 parts by weight.
  • the carbon nanotubes used for producing the composite resin particles preferably have an average length of 50 to 600 ⁇ m, more preferably 50 to 300 ⁇ m, and still more preferably 100 to 200 ⁇ m.
  • the average length of the carbon nanotubes is measured by a scanning electron microscope (SEM, FE-SEM) or a transmission electron microscope (TEM).
  • Carbon nanotubes can be produced by conventional production methods. Specifically, catalytic hydrogen reduction of carbon dioxide, arc discharge method, laser evaporation method, vapor phase growth method such as CVD method, gas phase flow method, carbon monoxide is reacted with iron catalyst at high pressure and high pressure to be a gas phase Such as the HiPco method to grow by Commercially available carbon nanotubes such as "NC7000" from Nanocyl may be used.
  • a dispersant When dispersing carbon nanotubes in a solvent, a dispersant may be used for the purpose of enhancing the dispersibility of carbon nanotubes.
  • the dispersant include acrylic dispersants, synthetic polymers such as polyvinyl pyrrolidone and polyaniline sulfonic acid, DNA, peptides, organic amine compounds and the like.
  • One dispersant may be used, or two or more dispersants may be used in combination. From the viewpoint of easily reducing the amount of the dispersant remaining in the finally obtained molded article, the dispersant preferably has a boiling point at a temperature lower than the molding temperature of the composite resin particles preferred for the present invention.
  • the amount of the dispersant contained in the carbon nanotube dispersion may be appropriately selected according to the type and the amount of the carbon nanotube, the solvent and the dispersant.
  • the amount of dispersant used is preferably 100 to 6,000 parts by mass, more preferably 200 to 3,000 parts by mass, and still more preferably 300 to 1,000 parts by mass with respect to 100 parts by mass of carbon nanotubes. It is.
  • the carbon nanotube dispersion is mixed with an alcohol solvent or the like before the second step described later. This is because the affinity between the fluororesin and water to be added in the subsequent second step is low, and it is difficult to disperse the particles of the fluororesin in the carbon nanotube dispersion using water as a solvent. Then, the affinity of the particles of the fluorocarbon resin and the carbon nanotube dispersion liquid can be enhanced by mixing the alcohol solvent.
  • particles of a fluorocarbon resin are added to the carbon nanotube dispersion and stirred to prepare a mixed slurry in which carbon nanotube and fluorocarbon resin particles are dispersed.
  • carbon nanotubes in the dispersion liquid are gently adsorbed on the fluorocarbon resin particle surfaces.
  • the carbon nanotube and the fluorocarbon resin particles are maintained while maintaining a high dispersion state of the carbon nanotubes and fluorocarbon resin. It can be adsorbed on the surface.
  • the addition of the fluorine resin may be performed by adding the particles of the fluorine resin as it is or in the form of a dispersion in which the particles of the fluorine resin are previously dispersed in a solvent.
  • the particles of the fluorocarbon resin used for producing the composite resin particles of the present invention are preferably 5 to 500 ⁇ m, more preferably 10 to 250 ⁇ m, still more preferably 10 to 100 ⁇ m, particularly preferably 10 to 50 ⁇ m, and most preferably 15 to It has an average particle size of 30 ⁇ m. It is easy to enhance the dispersibility of carbon nanotubes in a molded article (composite resin material) produced from composite resin particles and that the average particle diameter of the fluorine resin is not more than the above upper limit, and to enhance the antistatic properties uniformly and efficiently Because it is preferable. It is preferable from the viewpoint of easiness of production of the composite resin particles that the average particle diameter of the fluorine resin is not less than the above lower limit.
  • the average particle diameter of the fluorine resin is a median diameter (D 50 ) which means the particle diameter at an integrated value of 50% in the particle size distribution determined by the laser diffraction / scattering method, and is measured using a laser diffraction scattering type particle size distribution device Be done.
  • D 50 median diameter
  • the particles of the fluorocarbon resin used for producing the composite resin particles are preferably 0.5 to 9.0 m 2 / g, more preferably 0.8 to 4.0 m 2 / g, still more preferably, as measured according to JIS Z8830. Is from 1.0 to 3.0. It has a specific surface area of m 2 / g.
  • the specific surface area is preferably not more than the above upper limit from the viewpoint of easily improving the adhesion between the particles of the fluorocarbon resin and the carbon nanotube, and it is preferably not less than the above lower limit from the viewpoint of easiness of producing the composite resin particles preferable.
  • the specific surface area of the fluorine resin particles is measured by the BET method, which is a general measurement method of the specific surface area, using a specific surface area / pore distribution measuring apparatus which is a fixed capacity gas adsorption method. .
  • the method for producing the particles of the fluorine resin having an average particle diameter and specific surface area in the above preferable range is not particularly limited, and the fluorine resin is produced by a conventionally known polymerization method, preferably suspension polymerization, Method of spray-drying a dispersion containing a polymer, method of mechanically pulverizing the obtained fluororesin using a grinder such as a hammer mill, turbo mill, cutting mill, jet mill or the like, the obtained fluororesin less than room temperature
  • a grinder such as a hammer mill, turbo mill, cutting mill, jet mill or the like
  • the obtained fluororesin less than room temperature examples of the method include freeze grinding which mechanically grinds at a temperature. From the viewpoint of easily obtaining particles of the fluorine resin having a desired average particle diameter and specific surface area, it is preferable to produce particles of the fluorine resin using a pulverizer such as a jet mill.
  • the particles of the fluorocarbon resin having an average particle diameter in the above preferable range may be manufactured by adjusting the average particle diameter by a classification step using a sieve or an air stream.
  • the mixed slurry obtained in the second step is supplied to the pressure container, and the carbon dioxide is specified while maintaining the temperature and pressure at which carbon dioxide becomes subcritical or supercritical in the pressure container.
  • carbon dioxide any of liquefied carbon dioxide, carbon dioxide in gas-liquid mixture, and gaseous carbon dioxide may be used.
  • carbon dioxide in the supercritical state refers to a temperature above the critical point and a pressure above the critical point, specifically, a temperature above 31.1 ° C. and a pressure above 72.8 atmospheres I say the state.
  • a subcritical state means the state which exists in the pressure below a critical point, and the temperature below a critical point.
  • the solvent and dispersant contained in the mixed slurry dissolve in carbon dioxide, and carbon nanotubes dispersed in the mixed slurry adhere to the particles of the fluorocarbon resin.
  • the feed rate of carbon dioxide is preferably 0.25 g with respect to, for example, 1 mg of the dispersing agent contained in the mixed slurry, from the viewpoint of suppressing aggregation of carbon nanotubes and allowing carbon nanotubes to adhere uniformly to the particle surface of the fluorocarbon resin.
  • / Min or less more preferably 0.07 g / min or less, still more preferably 0.05 g / min or less.
  • carbon dioxide is discharged from the pressure container together with the solvent and dispersant dissolved in carbon dioxide while maintaining the temperature and pressure at which carbon dioxide is in the subcritical or supercritical state for a predetermined time.
  • the entrainer having high affinity to the dispersant is added to the pressure container while maintaining the state of the fourth step. Thereby, the remaining dispersant can be efficiently removed.
  • the solvent used in preparing the carbon nanotube dispersion in the first step may be used.
  • the same organic solvent may be used as an entrainer.
  • water is used as the solvent in the first step, it is preferable to use an alcohol solvent as the entrainer.
  • the fifth step is an optional step for efficiently removing the dispersant, and is not an essential step. It is also possible to remove the dispersant, for example by maintaining the fourth step without adding an entrainer.
  • the pressure of the pressure resistant container is lowered to remove carbon dioxide in the pressure resistant container to obtain composite resin particles.
  • carbon dioxide and a solvent may remain in the composite resin particles. Therefore, residual carbon dioxide and a solvent can be efficiently removed by exposing the composite resin particles obtained to vacuum or heating.
  • At least one of the chuck pin, the wafer pin, and the stage and / or the nozzle is a resin molded body including a composite resin material including at least one fluorocarbon resin and carbon nanotube.
  • a resin molded body including a composite resin material including at least one fluorocarbon resin and carbon nanotube is preferably a molded product of the composite resin particles described above.
  • a method of producing a composite resin material from composite resin particles and manufacturing a chuck pin, which is a resin molded body containing the composite resin material will be described as an example.
  • a resin molded body having the shape of a chuck pin may be manufactured, for example, by melting composite resin particles and forming the shape into a chuck pin shape, or the composite resin particles may be chuck pin by compression molding, for example.
  • the shape may be formed into the shape of (1), or the shape of the chuck pin may be cut out from the composite resin material obtained by the compression molding.
  • the composite resin particles are molded into a shape of the chuck pin by compression molding, and the molded body obtained by the compression molding is cut. It is preferable to manufacture a chuck pin by this. The reason why the conductivity of the chuck pin can be efficiently enhanced by the above preferred manufacturing method is not clear, but is considered to be due to the following mechanism.
  • the manufacturing apparatus of the present invention is not limited to the mechanism described later.
  • carbon nanotubes are present on at least the surface and / or surface layer of the fluorine resin, and these carbon nanotubes are considered to form a conductive network.
  • the conductive network of the carbon nanotube is considered to be easily cut when the carbon nanotube is cut by the external force applied to the composite resin particles or the carbon nanotube is aggregated. Therefore, when manufacturing a chuck pin or the like from composite resin particles, it is considered that the conductivity of the chuck pin or the like can be efficiently enhanced by using a method in which the network is not cut as much as possible.
  • a method of manufacturing a chuck pin or the like by forming composite resin particles into a shape of a chuck pin by compression molding, and a method of manufacturing a chuck pin or the like by cutting a composite resin material obtained by the compression molding are composites.
  • a resin molded body a resin molded body containing a composite resin material containing a fluorocarbon resin and a carbon nanotube is manufactured by mixing the composite resin particles and other resin particles and melting or compression molding or the like. May be
  • a polytetrafluoroethylene (PTFE) is included as a fluorine resin contained in a composite resin material from the viewpoint of facilitating production of a chuck pin or the like through compression molding of composite resin particles and facilitating efficient improvement of the conductivity of the chuck pin or the like. It is preferable to use a fluorocarbon resin selected from the group consisting of modified polytetrafluoroethylene (modified PTFE) and polychlorotetrafluoroethylene (PCTFE).
  • modified PTFE modified polytetrafluoroethylene
  • PCTFE polychlorotetrafluoroethylene
  • a composite resin material having a predetermined shape may be produced, or composite resin particles are produced by molding into a predetermined shape by compression molding, but they are produced by cutting from the composite resin material obtained by the compression molding.
  • the fluorine resin is a PTFE resin and a modified PTFE resin
  • a method of subjecting a preform obtained by compressing the composite resin particles to a firing treatment is mentioned as a method of producing the composite resin material by compression molding the composite resin particles.
  • the preformed body before firing is produced by subjecting the composite resin particles to a suitable pretreatment (eg, preliminary drying, granulation, etc.) as necessary, and then placing the composite resin particles in a mold and compressing it.
  • the pressure applied during compression to produce a preform before firing is preferably 0.1 to 100 MPa, more preferably 1 to 80 MPa, and still more preferably 5 to 50 MPa.
  • the preformed body obtained as described above is fired, for example, at a temperature equal to or higher than the melting point of the resin contained in the composite resin particles to produce a molded body.
  • the firing temperature is preferably 345 to 400 ° C., more preferably 360 to 390 ° C., although it depends on the size of the preform before firing and the firing time.
  • the preform before firing is placed in a firing furnace, and preferably fired at the above-mentioned firing temperature to produce a formed product.
  • the obtained molded product may be used as it is as a chuck pin, a nozzle, a stage or the like, or may be cut from the molded product to manufacture a chuck pin, a nozzle, a stage or the like.
  • the fluorocarbon resin is PCTFE resin, PFA resin, FEP resin, ETFE resin, ECTFE resin, PVDF resin and PVF resin (other than PTFE resin and modified PTFE resin)
  • a method of compression molding the composite resin particles to produce a composite resin material As the heat treatment, appropriate pre-treatment such as pre-drying is performed according to the size of the molding, and after pre-treatment, the mold is heated to 200 ° C. or higher, preferably 200 to 400 ° C., more preferably 210 to 380 ° C. The resin is melted by heating in a circulating electric furnace for 2 hours or more, preferably 2 to 12 hours.
  • the mold After heating for a predetermined time, the mold is taken out of the electric furnace, and the mold is cooled to around normal temperature while pressing and compressing with a hydraulic pressure and a surface pressure of 25 kg / cm 2 or more, preferably 50 kg / cm 2 or more.
  • a molded article (resin material) of composite resin particles was obtained.
  • the obtained molded product may be used as it is as a chuck pin, a nozzle, a stage or the like, or may be cut from the molded product to manufacture a chuck pin, a nozzle, a stage or the like.
  • the present specification can be obtained from a composite resin material obtained by compression molding composite resin particles (for example, fluororesin particles having an average particle diameter of 5 ⁇ m to 500 ⁇ m) including fluorocarbon resin particles and carbon nanotubes.
  • a semiconductor device manufacturing apparatus can be provided that includes at least one selected from a chuck pin, a wafer pin, and a stage and / or a nozzle.
  • the present invention also provides a step of supplying a cleaning liquid from the nozzle to the surface of the semiconductor wafer using the manufacturing apparatus of the present invention described above to clean the semiconductor wafer, and supplying an etching solution from the nozzle to the surface of the semiconductor wafer.
  • a method of manufacturing a semiconductor device including at least one step selected from the group consisting of: etching a semiconductor wafer; and supplying a resist solution from a nozzle to the surface of the semiconductor wafer to resist the semiconductor wafer.
  • FIG. 1 is a longitudinal sectional view of the manufacturing apparatus of the present embodiment
  • FIG. 2 is a top view of the manufacturing apparatus of the present embodiment.
  • the manufacturing apparatus of the present embodiment includes a stage 2, a chuck pin 3, a nozzle 4 and a cup body 10.
  • the semiconductor wafer 1 is held on the stage 2 by fixing its outer periphery with four chuck pins 3.
  • the stage 2 is rotated together with the semiconductor wafer 1 held by the stage 2 in the direction indicated by the arrow in FIG. It can be done.
  • the nozzle 4 and the chuck pin 3 are a resin molded body including a composite resin material including at least one fluorocarbon resin and carbon nanotube.
  • the chuck pin 3 is electrically connected to, for example, the apparatus housing 7. Since the nozzle 4 is the resin molded body, charging of the liquid supplied to the surface of the semiconductor wafer 1 from the liquid supply port 6 through the nozzle 4 is prevented, and contamination of the liquid is also avoided. Since the chuck pin 3 is the above resin molded body, static electricity charged on the front surface, side surface, back surface, etc. of the semiconductor wafer 1 flows into the chuck pin 3 and finally flows into the device housing 7 and flows out of the device. .
  • the stage 2 may or may not be a resin molding containing a composite resin material containing at least one fluorocarbon resin and carbon nanotubes.
  • static electricity flowing into the chuck pin 3 may be designed to flow from the stage 2 to the rotary drive shaft 5 and finally to flow out of the apparatus.
  • the apparatus shown in FIGS. 1 and 2 includes four chuck pins, the number and position of the chuck pins may be changed as appropriate.
  • at least one of the four chuck pins may be the resin molded body.
  • a liquid such as a cleaning liquid is scattered to the outside of the semiconductor wafer 1.
  • the liquid scattered from the semiconductor wafer 1 can be received.
  • the semiconductor wafer 1 can be placed on the stage or taken out of the stage.
  • the outer cup 10a and the inner cup 10b may or may not be resin moldings each including a composite resin material including at least one fluorocarbon resin and carbon nanotube.
  • the apparatus shown in FIG. 1 may further have a wafer pin which is the above-mentioned resin molded body. In that case, more efficient removal of static electricity is possible.
  • the manufacturing apparatus of the present embodiment includes a stage 2, a chuck pin 3, a wafer pin 8 and a nozzle 4.
  • the semiconductor wafer 1 is held on the stage 2 by fixing its outer periphery with the chuck pin 3 and supporting it from the back side with the wafer pin 8.
  • the stage 2 can be rotated together with the semiconductor wafer 1 held by the stage 2 by rotating the rotational drive shaft 5 attached to the stage 2 in the direction indicated by the arrow in FIG.
  • the numbers and positions of chuck pins and wafer pins are not limited and may be selected as appropriate.
  • At least one of the nozzle 4, the chuck pin 3 and the wafer pin 8 is a resin molded body including a composite resin material including at least one fluorocarbon resin and carbon nanotube.
  • at least one of the plurality of chuck pins 3 and wafer pins 8 may be the resin molded body. Since the nozzle 4 is the resin molded body, charging of the liquid supplied to the surface of the semiconductor wafer 1 from the liquid supply port 6 through the nozzle 4 is prevented, and contamination of the liquid is also avoided.
  • the chuck pin 3 is the above-mentioned resin molded body, although not shown, by electrically connecting the chuck pin 3 and the device housing 7, static electricity charged on the semiconductor wafer 1 flows into the chuck pin 3.
  • the wafer pin 8 is the above-mentioned resin molded body
  • static electricity charged on the semiconductor wafer 1 can be obtained by connecting the rotary drive shaft 5 made of metal, for example, to the wafer pin 8 as illustrated.
  • the stage 2 may or may not be a resin molding containing a composite resin material containing at least one fluorocarbon resin and carbon nanotubes.
  • stage 2 is the above-mentioned resin molded body
  • static electricity which has flowed into the chuck pin 3 and / or the wafer pin 8 is flowed from the stage 2 to the rotary drive shaft 5 and finally designed to flow out of the apparatus.
  • the manufacturing apparatus of the present embodiment includes a stage 2, a chuck pin 3 and a nozzle 4.
  • the semiconductor wafer 1 is held on the stage 2 by fixing its outer periphery with chuck pins 3.
  • the semiconductor wafer 1 is in contact with the mounting surface of the stage 2.
  • the stage 2 can be rotated together with the semiconductor wafer 1 held by the stage 2 by rotating the rotational drive shaft 5 attached to the stage 2 in the direction indicated by the arrow in FIG. 4, for example.
  • the number and position of the chuck pins are not limited and may be selected as appropriate.
  • At least the nozzle 4 and the chuck pin 3 are a resin molded body including a composite resin material containing at least one fluorocarbon resin and carbon nanotube.
  • at least one of the plurality of chuck pins 3 may be the resin molded body. Since the nozzle 4 is the resin molded body, charging of the liquid supplied to the surface of the semiconductor wafer 1 from the liquid supply port 6 through the nozzle 4 is prevented, and contamination of the liquid is also avoided.
  • the chuck pin 3 is the above-mentioned resin molded body, although not shown, by electrically connecting the chuck pin 3 and the device housing 7, static electricity charged on the semiconductor wafer 1 flows into the chuck pin 3. Finally, it flows to the device case 7 and flows to the outside of the device.
  • the stage 2 may or may not be a resin molding containing a composite resin material containing at least one fluorocarbon resin and carbon nanotubes.
  • the stage 2 when the stage 2 is the above-described resin molded body, static electricity is removed more efficiently from the entire back side of the semiconductor wafer 1 because the back surface of the semiconductor wafer 1 and the mounting surface of the stage 2 are in contact. Is possible.
  • the static electricity flowing into the chuck pin 3 may be designed to flow from the stage 2 to the rotary drive shaft 5 and finally to flow out of the apparatus.
  • the composite resin particles obtained in the production example described later were subjected to pretreatment (eg, preliminary drying, granulation, etc.) as necessary, and then uniformly filled in a predetermined amount in a molding die.
  • the preparation procedure after filling varies depending on the type of fluororesin.
  • the fluorocarbon resin was a PTFE resin and a modified PTFE resin
  • the composite resin particles were compressed by pressing at 15 MPa and holding for a certain period of time to obtain a preformed body.
  • the obtained preform is taken out of the molding die, fired in a hot air circulating electric furnace set at 345 ° C.
  • the fluorocarbon resin is PCTFE resin, PFA resin, FEP resin, ETFE resin, ECTFE resin, PVDF resin, and PVF resin (other than PTFE resin and modified PTFE resin), appropriate pre-drying etc. depending on the size of the molded product
  • the resin is melted by heating for 2 hours or more in a hot air circulating electric furnace in which the mold is set to 200 ° C. or more. After heating for a predetermined time, the mold is taken out of the electric furnace, and the mold is cooled to around normal temperature while pressing and compressing with a hydraulic press at a surface pressure of 25 kg / cm 2 or more. The material was obtained.
  • a test piece of ⁇ 110 ⁇ 10 mm was produced from the resin material (molded body) obtained as described above from the composite resin particles, and used as a measurement sample.
  • the measurement of volume resistivity was performed using a resistivity meter ("Loresta” or “Hiresta” manufactured by Mitsubishi Chemical Analytech Co., Ltd.) according to JIS K6911.
  • the degree of detachment of carbon nanotubes from the molded body was evaluated by measuring TOC using a total organic carbon meter (“TOCvwp” manufactured by Shimadzu Corporation). Specifically, a 10 mm ⁇ 20 mm ⁇ 50 mm test piece obtained by cutting the resin material obtained as described above is immersed in 0.5 L of 3.6% hydrochloric acid (EL-UM grade made by Kanto Chemical) for about 1 hour. After immersion for 1 hour, take out and wash with ultra pure water (specific resistance: 118.0 M ⁇ ⁇ cm), and immerse the entire test piece in ultra pure water for 24 hours and 168 hours at room temperature. saved. After the specified time elapsed, the entire amount of the immersion liquid was recovered, and the total organic carbon analysis was performed on the immersion liquid.
  • TOCvwp total organic carbon meter
  • the weight of the piece was measured using an electronic balance in the same manner as before immersion.
  • the weight change before and after immersion was calculated by the following equation and used as an index of chemical resistance.
  • Weight change (%) [(weight after immersion-weight before immersion) / weight before immersion] x 100
  • SPM treatment sulfuric acid soaking treatment
  • a sulfuric acid / hydrogen peroxide solution was prepared by mixing 98% sulfuric acid and 30% hydrogen peroxide water at a weight ratio of 2: 1 in a glass beaker.
  • a dumbbell test piece made according to JIS K7137-2-A prepared by cutting from the composite resin particles obtained by the above method is put in a place where the temperature of the prepared sulfuric acid / hydrogen peroxide reaches the maximum temperature by the reaction heat, and it is immersed for 24 hours The After immersion for 24 hours, preparation of sulfuric acid / hydrogen peroxide was repeated, immersion for 24 hours was repeated, and measurement of volume resistivity was performed according to JIS K6911 for test pieces immersed for 30 days by accumulation.
  • modified PTFE particles or polychlorotetrafluoroethylene (PCTFE) particles shown in the following Table 1 were used.
  • Modified PTFE particles 1 and 2 shown in Table 1 are represented by the tetrafluoroethylene unit represented by the above formula (I) and the above formula (II) (wherein X is a perfluoropropyl group). It was confirmed that the amount of perfluorovinyl ether unit was 0.01 to 1% by mass based on the total mass of the modified polytetrafluoroethylene.
  • Production Example 3 Production of CNT Composite Resin Particles 3
  • a CNT composite resin particle 3 was obtained in the same manner as in Production Example 1 except that the amount of CNT was set to 0.1% by mass based on the total amount of the composite resin particle.
  • Production Example 4 Production of CNT Composite Resin Particles 4
  • a CNT composite resin particle 4 was obtained in the same manner as in Production Example 1 except that the modified PTFE particle 2 was used in place of the modified PTFE particle 1.
  • a CNT composite resin particle 5 was obtained in the same manner as in Production Example 4 except that the amount of CNT was set to 0.05% by mass based on the total amount of the composite resin particle.
  • Production Example 6 Production of CNT Composite Resin Particles 6
  • a CNT composite resin particle 6 was obtained in the same manner as in Production Example 1 except that PCTFE particles 2 were used instead of the modified PTFE 1.
  • Production Example 7 Production of CNT Composite Resin Particles 7
  • a CNT composite resin particle 7 was obtained in the same manner as in Production Example 2 except that PCTFE particles 2 were used instead of the modified PTFE 1.
  • Production Example 8 Production of CNT Composite Resin Particles 8
  • the CNT composite resin particles 8 were obtained in the same manner as in Production Example 7 except that the amount of CNTs was 0.1% by mass based on the total amount of the composite resin particles.
  • Production Example 9 Production of CNT Composite Resin Particles 9
  • the CNT composite resin particles 9 were obtained in the same manner as in Production Example 7 except that the amount of CNTs was 0.125% by mass based on the total amount of the composite resin particles.
  • a CNT composite resin particle 10 was obtained in the same manner as in Production Example 7 except that the amount of CNT was set to 0.15% by mass based on the total amount of the composite resin particle.
  • Production Example 11 Production of CNT Composite Resin Particles 11 CNT composite resin particles 11 were obtained in the same manner as in Production Example 8 except that PCTFE particles 3 were used instead of PCTFE particles 2.
  • Production Example 12 Production of CNT Composite Resin Particles 12 CNT composite resin particles 12 were obtained in the same manner as in Production Example 8 except that PCTFE particles 1 were used instead of PCTFE particles 2.
  • X is the volume resistivity [ ⁇ ⁇ cm] of the resin material
  • Y is the amount of CNT contained in the resin material [mass%] (equal to the amount of CNT used for the production of the resin material) is there.
  • composite resin materials prepared according to the above method from composite resin particles 1-12 are also referred to as composite resin materials 1-12, respectively, and composite resin materials prepared according to the above method from comparative resin particles 13-15 Also referred to as composite resin materials 13 to 15, respectively.
  • the amount of CNTs in the composite resin particles is equal to the amount of CNTs in the resin material obtained from the composite resin particles and the amount of CNTs in the chuck pins obtained from the resin material.
  • the metal elution amount and the carbon dropout were evaluated.
  • the obtained results are shown in Table 3.
  • the metal elution amount is not shown in Table 3 as the measurements were taken but at the instrument detection limit (ND).
  • all the results in Table 3 are the results after immersion for 24 hours.
  • the composite resin particles 2, 7 and 8 prepared according to the above method using the composite resin particles obtained in the above Example 2, 7 and 8 are subjected to sulfuric acid / hydrogen peroxide immersion treatment (SPM treatment) under the above conditions, The volume resistivity after treatment was measured. As a result, as shown in Table 5 below, it was confirmed that the resin material used in the apparatus of the present invention does not increase in volume resistivity even when SPM treatment is performed.
  • the surface potential after DIW cleaning The ultrapure water was discharged from the liquid supply port 6 through the nozzle 4, and the ultrapure water was supplied to the upper surface of the semiconductor wafer 1, and the semiconductor wafer 1 was cleaned for 1 minute. Then, the surface potential (after DIW cleaning) of the semiconductor wafer 1 was measured by an electrostatic measuring instrument.
  • the nozzle made from PFA was used in the present Example, the static elimination effect can be further heightened by making a nozzle also into the said composite resin material.
  • the nozzle can be manufactured by cutting using a device such as a CNC common lathe from the molded product of the composite resin material obtained as described above.
  • N 2 is sprayed from the nozzle 4 onto the semiconductor wafer 1 and the ultrapure water remaining on the surface of the wafer 1 is flushed through the chuck pin 3 and the stage 2 to the apparatus casing 7 to carry out the semiconductor wafer 1. It was allowed to dry. Then, the surface potential (after N 2 drying) of the semiconductor wafer 1 was measured by an electrostatic measuring instrument.
  • Table 6 shows the results obtained by measuring the charge removal effect of wafer charging during the above chemical solution cleaning.
  • test pieces of 10 mm ⁇ 10 mm ⁇ thickness 2 mm were obtained.
  • the test pieces were immersed in various chemical solutions shown in Table 7, and weight changes before and after immersion for about 1 week (1 W) and about 1 month (1 M) were measured.
  • the obtained results are shown in Table 7.
  • the immersion test to APM in Table 7 was performed on temperature conditions of 80 degreeC, and the immersion test to another chemical
  • the details of each chemical solution in Table 7 are as shown in Table 8.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Weting (AREA)

Abstract

The present invention provides a semiconductor element manufacturing device and a semiconductor element manufacturing method that have an efficient static elimination effect, and exhibit excellent cleanliness and chemical resistance. This semiconductor element manufacturing device includes: a stage that is equipped with a chuck pin and/or a wafer pin, and is used for holding a semiconductor wafer; and a nozzle that is used for supplying a washing solution, etching solution, or resist solution. The nozzle is a resin molded body that includes a composite resin material including carbon nanotubes and at least one fluororesin, and/or at least one selected from the chuck pin, the wafer pin, and the stage is a resin molded body that includes a composite resin material including carbon nanotubes and at least one fluororesin.

Description

半導体素子の製造装置および半導体素子の製造方法Semiconductor device manufacturing apparatus and semiconductor device manufacturing method
 本発明は、半導体素子の製造装置および半導体素子の製造方法に関する。 The present invention relates to a semiconductor device manufacturing apparatus and a semiconductor device manufacturing method.
 本特許出願は、日本国特許出願第2017-142266号(2017年7月21日出願)及び日本国特許出願第2018-021651号(2018年2月9日出願)に基づくパリ条約上の優先権を主張し、ここに参照することによって、上記出願に記載された内容の全体が、本明細書に組み込まれる。
 半導体素子は、通常、半導体ウエハ表面にレジスト液を塗付することにより形成させたレジスト膜を部分的に変質させてパターンを転写し、エッチング液を塗付することにより転写されたパターンに従い膜を除去し、エッチング後に不要となったレジスト膜を除去する工程を経て製造される。上記様々な各処理工程の前後においては、半導体ウエハ上のパーティクル(不純物)を除去する目的、各処理に使用した薬液を洗い流す目的等の種々の目的で、半導体ウエハを洗浄する工程が適宜行われている。
This patent application claims priority under the Paris Convention based on Japanese Patent Application No. 2017-142266 (filed on July 21, 2017) and Japanese Patent Application No. 2018-021651 (filed on February 9, 2018) The entire contents of the above application are incorporated herein by reference.
In a semiconductor device, usually, a resist film formed by applying a resist solution on the surface of a semiconductor wafer is partially degraded to transfer a pattern, and a film is formed according to a pattern transferred by applying an etching solution. It is manufactured through the process of removing and removing the resist film which became unnecessary after the etching. Before and after the above-described various processing steps, the step of cleaning the semiconductor wafer is appropriately performed for various purposes such as the purpose of removing particles (impurity) on the semiconductor wafer and the purpose of washing away the chemical solution used in each process. ing.
 半導体ウエハに、洗浄液、レジスト液、エッチング液等を塗付する際、液を均一に塗布すると共に過剰な液を効率的に除去する目的で、半導体ウエハを回転させながらウエハ表面に液を吐出する方法が用いられている。しかし、回転により生じる空気と回転ステージとの摩擦、薬液がノズルを通過する際の薬液とノズルとの摩擦、薬液とウエハ表面との摩擦等によって、回転ステージ、薬液、半導体ウエハに静電気が帯電するという問題がある。静電気の放電が発生すると、半導体ウエハの表面に静電気損傷がもたらされ得る。 When applying a cleaning solution, a resist solution, an etching solution, etc. to a semiconductor wafer, the solution is discharged onto the wafer surface while rotating the semiconductor wafer for the purpose of applying the solution uniformly and efficiently removing the excess solution. The method is used. However, the rotation stage, the chemical solution, and the semiconductor wafer are electrostatically charged by the friction between the air and the rotation stage, the friction between the chemical solution and the nozzle when the chemical solution passes through the nozzle, and the friction between the chemical solution and the wafer surface. There is a problem of The occurrence of electrostatic discharge can cause electrostatic damage to the surface of the semiconductor wafer.
 上記帯電を防止する目的で、例えば洗浄工程に関して種々の検討がなされている。特許文献1には、光源を洗浄ステージの載置面に設け、光源から半導体基板に光を照射することにより光照射領域にイオン化エアを生成させて、ステージ載置面に存在する静電気を除電する方法が記載されている。特許文献2には、基板用蒸気供給ノズルを備えた装置を用いて基板の表面に例えば水、炭酸水等の蒸気を供給することにより、イオン化された蒸気によって、基板の表面に存在する静電気を中和する方法が記載されている。特許文献3には、第1の洗浄水と、第1の洗浄水よりも小さい比抵抗を有する第2の洗浄水を用いて半導体ウエハの表面を洗浄する半導体装置の製造方法が記載されている。 For the purpose of preventing the above-mentioned electrification, various studies are made on, for example, a cleaning step. In Patent Document 1, a light source is provided on the mounting surface of the cleaning stage, and the semiconductor substrate is irradiated with light from the light source to generate ionized air in the light irradiation area, thereby removing static electricity present on the stage mounting surface. The method is described. According to Patent Document 2, by using a device provided with a substrate vapor supply nozzle, vapor such as water or carbonated water is supplied to the surface of the substrate, whereby the ionized vapor causes the static electricity present on the surface of the substrate. A method of neutralization is described. Patent Document 3 describes a method of manufacturing a semiconductor device in which the surface of a semiconductor wafer is cleaned using a first cleaning water and a second cleaning water having a specific resistance smaller than the first cleaning water. .
特開2007-88262号公報JP 2007-88262 A 特開2007-214347号公報JP 2007-214347 A 特開2008-4880号公報JP 2008-4880 A
 従来種々の方法が検討されてはいるものの、従来技術の帯電防止方法は十分とはいえない。例えば特許文献1に記載される方法では、洗浄装置を構成する部品点数が増加することと、軟X線を使用するために遮蔽カバーを用いる等の被爆対策が必要となるために、装置が複雑になるという問題が生じる場合がある。特許文献2に記載される方法では、蒸気のイオンバランスをコントロールする必要があり、イオンバランスが崩れると半導体ウエハを帯電させてしまうという不具合が生じる場合がある。特許文献3に記載される方法では、洗浄を2回に分けて行う必要があるため、製造工数が増えるという問題が生じ得る。そのため、帯電をさらに効率的に防止するための方法がなお求められている。特に半導体素子の製造においては、効率的に静電気を除去することに加えて、不純物の混入を高い精度で回避できることも求められる。また、半導体ウエハの処理に腐食性の薬液が使用される場合もあるため、耐薬品性に優れる方法を用いて、帯電を防止すると共に不純物の混入を回避する必要がある。したがって、本発明は、効率的な静電気除去効果を有し、クリーン性に優れ、耐薬品性に優れる、半導体素子の製造装置および半導体素子の製造方法を提供することを課題とする。 Although various methods have been considered in the past, the conventional antistatic methods are not sufficient. For example, in the method described in Patent Document 1, since the number of parts constituting the cleaning apparatus is increased and exposure measures such as using a shielding cover are required to use soft X-rays, the apparatus is complicated. Problems may occur. In the method described in Patent Document 2, it is necessary to control the ion balance of the vapor, and if the ion balance is broken, there may occur a problem that the semiconductor wafer is charged. In the method described in Patent Document 3, since the cleaning needs to be performed twice, there is a possibility that the number of manufacturing steps increases. Therefore, there is still a need for a method to prevent charging more efficiently. In particular, in the manufacture of semiconductor devices, in addition to efficiently removing static electricity, it is also required to be able to avoid the mixing of impurities with high accuracy. In addition, since a corrosive chemical solution may be used for processing a semiconductor wafer, it is necessary to prevent charging and prevent the mixing of impurities by using a method which is excellent in chemical resistance. Therefore, an object of the present invention is to provide a semiconductor device manufacturing apparatus and a semiconductor device manufacturing method that have an efficient static electricity removing effect, are excellent in cleanability, and are excellent in chemical resistance.
 本発明者らは、上記課題を解決すべく、半導体素子の製造装置に用いる部品について鋭意検討を行った。その結果、フッ素樹脂およびカーボンナノチューブを含む複合樹脂材料を含む樹脂成形体である、チャックピンおよび/またはウエハピンならびにノズルを有する製造装置を用いることにより、上記課題が達成されることを見出し、本発明を完成させるに至った。 Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors diligently studied on parts used in a semiconductor device manufacturing apparatus. As a result, it is found that the above object can be achieved by using a manufacturing apparatus having a chuck pin and / or a wafer pin and a nozzle, which is a resin molded body containing a composite resin material containing a fluorocarbon resin and carbon nanotubes. Came to complete.
 すなわち、本発明は、以下の好適な態様を包含する。
[1]チャックピン及び/又はウエハピンを備え、半導体ウエハを保持するためのステージ;及び
 洗浄液、エッチング液又はレジスト液を供給するためのノズル
を、少なくとも有する半導体素子の製造装置であって、
 ノズルは、少なくとも1種のフッ素樹脂およびカーボンナノチューブを含む複合樹脂材料を含む樹脂成形体であり、;及び/又は
 チャックピン、ウエハピン及びステージから選択される少なくとも1(又は1つ)は、少なくとも1種のフッ素樹脂およびカーボンナノチューブを含む複合樹脂材料を含む樹脂成形体である、半導体素子の製造装置。
[2]チャックピン及び/又はウエハピンは、少なくとも1種のフッ素樹脂およびカーボンナノチューブを含む複合樹脂材料を含む樹脂成形体であり、及び
 ノズルは、少なくとも1種のフッ素樹脂およびカーボンナノチューブを含む複合樹脂材料を含む樹脂成形体である、前記[1]に記載の半導体素子の製造装置。
([2]は、下記のように、記載することもできる。
[2]半導体ウエハを保持するためのステージと、
 洗浄液、エッチング液またはレジスト液を供給するためのノズルとを少なくとも有し、
 ステージは、少なくとも1種のフッ素樹脂およびカーボンナノチューブを含む複合樹脂材料を含む樹脂成形体であるチャックピンおよび/またはウエハピンを備え、
 ノズルは少なくとも1種のフッ素樹脂およびカーボンナノチューブを含む複合樹脂材料を含む樹脂成形体である、半導体素子の製造装置。)
[3]フッ素樹脂は、ポリテトラフルオロエチレン(PTFE)、変性ポリテトラフルオロエチレン(変性PTFE)、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)、エチレン/テトラフルオロエチレン共重合体(ETFE)、エチレン/クロロトリフルオロエチレン共重合体(ECTFE)、ポリクロロトリフルオロエチレン(PCTFE)、ポリフッ化ビニリデン(PVDF)およびポリフッ化ビニル(PVF)からなる群から選択される、前記[1]又は[2]に記載の製造装置。
[4]ステージは、少なくとも1種のフッ素樹脂およびカーボンナノチューブを含む複合樹脂材料を含む樹脂成形体である、前記[1]~[3]のいずれかに記載の製造装置。
[5]チャックピンおよび/またはウエハピンを構成する樹脂成形体は、樹脂成形体の総量に基づいて0.01~2.0質量%のカーボンナノチューブを含有する、前記[1]~[4]のいずれかに記載の製造装置。
[6]ノズルを構成する樹脂成形体は、樹脂成形体の総量に基づいて0.01~2.0質量%のカーボンナノチューブを含有する、前記[1]~[5]のいずれかに記載の製造装置。
[7]ステージを構成する樹脂成形体は、樹脂成形体の総量に基づいて0.01~2.0質量%のカーボンナノチューブを含有する、前記[1]~[6]のいずれかに記載の製造装置。
[8]チャックピンおよび/またはウエハピンを構成する樹脂成形体は1.0×10Ω・cm以下の体積抵抗率を有する、前記[1]~[7]のいずれかに記載の製造装置。
[9]ノズルを構成する樹脂成形体は1.0×10Ω・cm以下の体積抵抗率を有する、前記[1]~[8]のいずれかに記載の製造装置。
[10]ステージを構成する樹脂成形体は1.0×10Ω・cm以下の体積抵抗率を有する、前記[1]~[9]のいずれかに記載の製造装置。
[11]前記[1]~[10]のいずれかに記載の製造装置を用いて、半導体ウエハの表面にノズルから洗浄液を供給して半導体ウエハを洗浄する工程、半導体ウエハの表面にノズルからエッチング液を供給して半導体ウエハをエッチングする工程、および、半導体ウエハの表面にノズルからレジスト液を供給して半導体ウエハをレジストする工程からなる群から選択される少なくとも1つの工程を含む半導体素子の製造方法。
That is, the present invention includes the following preferred embodiments.
[1] An apparatus for manufacturing a semiconductor device, comprising at least a stage for holding a semiconductor wafer, comprising a chuck pin and / or a wafer pin; and a nozzle for supplying a cleaning solution, an etching solution or a resist solution,
The nozzle is a resin molded body containing a composite resin material containing at least one fluorocarbon resin and carbon nanotubes; and / or at least one (or one) selected from chuck pins, wafer pins and stages is at least one. The manufacturing apparatus of the semiconductor element which is a resin molding which contains the composite resin material containing a kind of fluoro resin and a carbon nanotube.
[2] The chuck pin and / or wafer pin is a resin molded body containing a composite resin material containing at least one fluorocarbon resin and carbon nanotube, and the nozzle is a composite resin containing at least one fluorocarbon resin and carbon nanotube The manufacturing apparatus of the semiconductor element as described in said [1] which is a resin molding containing a material.
([2] can also be described as follows.
[2] A stage for holding a semiconductor wafer
And at least a nozzle for supplying a cleaning solution, an etching solution or a resist solution,
The stage includes chuck pins and / or wafer pins which are resin moldings including a composite resin material containing at least one fluorocarbon resin and carbon nanotubes,
An apparatus for manufacturing a semiconductor device, wherein the nozzle is a resin molded body containing a composite resin material containing at least one fluorocarbon resin and carbon nanotubes. )
[3] Fluororesins are polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), ethylene / tetrafluoroethylene copolymer (ETFE), ethylene / chlorotrifluoroethylene copolymer (ECTFE), polychlorotrifluoroethylene (PCTFE), polyvinylidene fluoride (PVDF) and polyvinyl fluoride (PVF) The production apparatus according to the above [1] or [2], which is selected from the group consisting of
[4] The production apparatus according to any one of the above [1] to [3], wherein the stage is a resin molded body containing a composite resin material containing at least one fluorocarbon resin and carbon nanotubes.
[5] The resin molded body constituting the chuck pin and / or the wafer pin contains 0.01 to 2.0% by mass of carbon nanotubes based on the total amount of the resin molded body, according to the above [1] to [4] The manufacturing apparatus in any one.
[6] The resin molded product constituting the nozzle according to any one of the above [1] to [5], which contains 0.01 to 2.0% by mass of carbon nanotubes based on the total amount of the resin molded product. manufacturing device.
[7] The resin molded product constituting the stage according to any one of the above [1] to [6], which contains 0.01 to 2.0% by mass of carbon nanotubes based on the total amount of the resin molded product. manufacturing device.
[8] The manufacturing apparatus according to any one of the above [1] to [7], wherein the resin molded body constituting the chuck pin and / or the wafer pin has a volume resistivity of 1.0 × 10 8 Ω · cm or less.
[9] The manufacturing apparatus according to any one of the above [1] to [8], wherein the resin molded product constituting the nozzle has a volume resistivity of 1.0 × 10 8 Ω · cm or less.
[10] The manufacturing apparatus according to any one of the above [1] to [9], wherein the resin molded product constituting the stage has a volume resistivity of 1.0 × 10 8 Ω · cm or less.
[11] Using the manufacturing apparatus according to any one of the above [1] to [10], supplying a cleaning liquid from the nozzle to the surface of the semiconductor wafer to clean the semiconductor wafer; etching the surface of the semiconductor wafer from the nozzle Manufacturing a semiconductor device including at least one step selected from the group consisting of: supplying a liquid to etch a semiconductor wafer; and supplying a resist liquid to the surface of the semiconductor wafer from a nozzle to resist the semiconductor wafer. Method.
 本発明によれば、効率的な静電気除去効果を有し、クリーン性に優れ、耐薬品性に優れる、半導体素子の製造装置および半導体素子の製造方法を提供することができる。 According to the present invention, it is possible to provide an apparatus for manufacturing a semiconductor device and a method for manufacturing a semiconductor device, which have an efficient static electricity removing effect, are excellent in cleanability, and are excellent in chemical resistance.
本発明の第1実施形態の製造装置の縦断面図である。It is a longitudinal cross-sectional view of the manufacturing apparatus of 1st Embodiment of this invention. 本発明の第1実施形態の製造装置の上面図である。It is a top view of the manufacturing apparatus of 1st Embodiment of this invention. 本発明の第2実施形態の製造装置の縦断面図である。It is a longitudinal cross-sectional view of the manufacturing apparatus of 2nd Embodiment of this invention. 本発明の第3実施形態の製造装置の縦断面図である。It is a longitudinal cross-sectional view of the manufacturing apparatus of 3rd Embodiment of this invention. 静電気除去効果の評価方法を説明するための図である。It is a figure for demonstrating the evaluation method of the static elimination effect.
 以下、本発明の実施の形態について詳細に説明する。なお、本発明の範囲はここで説明する実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更をすることができる。 Hereinafter, embodiments of the present invention will be described in detail. The scope of the present invention is not limited to the embodiments described herein, and various modifications can be made without departing from the spirit of the present invention.
<半導体素子の製造装置>
 本発明の製造装置は、半導体ウエハを保持するためのステージと、洗浄液、エッチング液またはレジスト液を供給するためのノズルとを少なくとも有する。半導体素子は、通常、半導体ウエハ表面にレジスト液を塗付する工程、エッチング液を塗付する工程、各処理工程の前後において、半導体ウエハ上のパーティクル(不純物)を除去する目的、各処理に使用した薬液を洗い流す目的等の種々の目的で、半導体ウエハの表面を洗浄する工程等を経て製造される。本発明の製造装置は、上記のような工程に使用される製造装置である。
<Manufacturing device of semiconductor device>
The manufacturing apparatus of the present invention has at least a stage for holding a semiconductor wafer, and a nozzle for supplying a cleaning solution, an etching solution or a resist solution. The semiconductor device is generally used in the steps of applying a resist solution on the surface of the semiconductor wafer, applying the etching solution, removing particles (impurities) on the semiconductor wafer before and after each treatment step, and used for each treatment. For various purposes such as washing away the chemical solution, the semiconductor wafer is manufactured through a process of cleaning the surface of the semiconductor wafer and the like. The manufacturing apparatus of the present invention is a manufacturing apparatus used in the above-described process.
 本開示の実施形態の製造装置は、その製造装置を使用することができる限り、半導体素子を製造するためのいずれの工程についても使用することができる。その工程は、例えば、ウエハ(又はウェーハ)プロセス工程(半導体ウエハを処理する工程)を含む。ウエハプロセスは、素子形成、電極形成、及びウエハ検査を含む。それらの工程は、より具体的には、ウエハを処理する順序に基づいて、例えば、下記の工程を含むことができる。:
 ウエハに酸化膜をつける工程;
 フォトレジストを塗布する工程;
 フォトマスクを介し露光してパターンを焼き付け、現像して感光したレジストを定着し、感光しなかった部分のレジストを洗浄する工程;
 エッチングしてレジストのない部分の酸化膜を除去し、レジストも取り除く工程;
 ウエハにイオン注入及び高温拡散等を行い、酸化膜のないシリコンが出ている部分だけを半導体にする工程;
 (すべてのパターンが形成されるまで次の平坦化工程に進み、レジスト塗布に戻って繰り返す。すべてのパターンが形成されたら繰り返しから抜けてアルミ金属膜形成工程に進む。)
 ウエハ表面を研磨し、パターンの凹凸を平坦化する工程;
 (上記平坦化工程後、レジスト工程に戻り、すべてのパターンを形成するまで繰り返す。)
 スパッタで、電線配線用のアルミ金属膜を形成する工程;
 ウエハをチップごとに試験し、良品と不良品の確定をし、不良品にマークをつける工程。
The manufacturing apparatus of the embodiment of the present disclosure can be used for any process for manufacturing a semiconductor device as long as the manufacturing apparatus can be used. The process includes, for example, a wafer (or wafer) process process (process of processing a semiconductor wafer). Wafer processes include device formation, electrode formation, and wafer inspection. These steps may include, for example, the following steps, more specifically, based on the order of processing the wafers. :
Attaching an oxide film to the wafer;
Applying a photoresist;
Exposing through a photo mask to print a pattern, developing and fixing the exposed resist, and cleaning the unexposed portion of the resist;
Etching to remove the oxide film of the portion without the resist and also removing the resist;
A step of performing ion implantation and high temperature diffusion on the wafer to make only a portion from which silicon without oxide film is a semiconductor;
(Go to the next planarization process until all the patterns are formed, and return to resist application and repeat. When all the patterns are formed, go through the repetition and proceed to the aluminum metal film formation process.)
Polishing the wafer surface to planarize the irregularities of the pattern;
(After the above planarization process, return to the resist process and repeat until all the patterns are formed.)
Forming an aluminum metal film for wire wiring by sputtering;
The process of testing the wafer chip by chip, determining non-defective products and defective products, and marking defective products.
 上述の工程は、必要に応じてウエハの洗浄工程を含む。上述の工程は、そのウエハ洗浄工程も含めて、ウエハに対する処理に基づいて、例えば、下記の処理を含むことができる。
 ウエハに処理をする間のウエハの洗浄工程(例えば、ウェット洗浄、ドライ洗浄など);
 ウエハの熱処理工程(例えば、酸化処理、アニール処理など);
 ウエハへの不純物導入工程(例えば、イオン打ち込み法、熱拡散法、イオンドーピング法など);
 ウエハ上への薄膜形成工程(例えば、エピタキシャル成長、CVD、PVD、塗布膜、メッキ法など);
 リソグラフィー工程(例えば、レジスト処理、パターンエッチング、露光など);
 平坦化工程(例えば、CMP、エッチバックなど)。
The above-described processes include wafer cleaning processes as needed. The above-described processes, including the wafer cleaning process, can include, for example, the following processes based on the processes on the wafer.
Wafer cleaning process (eg, wet cleaning, dry cleaning, etc.) while processing the wafer;
Wafer heat treatment process (eg, oxidation treatment, annealing treatment, etc.);
Impurity introduction step to the wafer (eg, ion implantation method, thermal diffusion method, ion doping method, etc.);
Thin film formation process on wafer (eg, epitaxial growth, CVD, PVD, coating film, plating method, etc.);
Lithography process (eg, resist processing, pattern etching, exposure, etc.);
Planarization process (for example, CMP, etch back, etc.).
 そのようなウエハプロセス用処理装置として、例えば、下記の装置を例示することができる:
 露光描画装置(コンタクトプロキシミティ露光装置、投影露光装置、電子ビーム露光装置等);
 レジスト処理装置(塗布装置、現像装置、レジスト剥離装置、アッシング装置、ベーキング装置、レジスト安定化装置、ウエハ周辺露光装置等);
 エッチング装置(ドライエッチング装置等);
 洗浄乾燥装置(ウェットエッチング装置、乾式洗浄装置、湿式洗浄装置、スクラブ洗浄装置、乾燥装置、高圧噴射洗浄装置等);
 熱処理装置(酸化装置、拡散装置、アニール装置等);
 イオン注入装置(大電流イオン注入装置、中電流イオン注入装置、高エネルギーイオン注入装置、ドーピング装置等);
 CVD装置(常圧CVD装置、SACVD装置、減圧CVD装置、プラズマCVD装置、メタルCVD装置、ALD装置等);
 スパッタリング装置;
 その他の薄膜形成装置(真空蒸着装置、シリコンエピタキシャル成長装置、化合物半導体エピタキシャル装置(MOCVD装置、MBE装置)、めっき装置等);
 検査評価装置(外観検査装置、異物検査装置、ダストカウンタ、測長SEM、膜厚計、反射率測定機、オージェ電子分光装置、赤外分光光度計、シート抵抗測定器、ライフタイム測定器、その他各種計測分析用装置等の;
 CMP装置(CMP装置、CMP用洗浄装置等);
 その他の処理装置(ウエハマーキング装置、マーク読み取り装置、裏面研削盤、バンプメッキ装置、バックグラインダ用テープ張り付け機、バックグラインダ、バックグラインダ用テープ剥離機等)。
As such a processing apparatus for wafer processing, for example, the following apparatus can be exemplified:
Exposure drawing apparatus (contact proximity exposure apparatus, projection exposure apparatus, electron beam exposure apparatus, etc.)
Resist processing apparatus (coating apparatus, developing apparatus, resist peeling apparatus, ashing apparatus, baking apparatus, resist stabilization apparatus, wafer peripheral exposure apparatus, etc.);
Etching equipment (dry etching equipment etc.);
Cleaning and drying apparatus (wet etching apparatus, dry cleaning apparatus, wet cleaning apparatus, scrub cleaning apparatus, drying apparatus, high-pressure jet cleaning apparatus, etc.);
Heat treatment apparatus (oxidation apparatus, diffusion apparatus, annealing apparatus, etc.);
Ion implantation apparatus (high current ion implantation apparatus, medium current ion implantation apparatus, high energy ion implantation apparatus, doping apparatus, etc.);
CVD apparatus (atmospheric pressure CVD apparatus, SACVD apparatus, low pressure CVD apparatus, plasma CVD apparatus, metal CVD apparatus, ALD apparatus, etc.);
Sputtering apparatus;
Other thin film forming devices (vacuum deposition devices, silicon epitaxial growth devices, compound semiconductor epitaxial devices (MOCVD devices, MBE devices), plating devices, etc.);
Inspection and evaluation equipment (visual inspection equipment, foreign substance inspection equipment, dust counter, length measurement SEM, film thickness meter, reflectance meter, auger electron spectrometer, infrared spectrophotometer, sheet resistance meter, lifetime meter, etc. Various measurement and analysis devices, etc.
CMP apparatus (CMP apparatus, CMP cleaning apparatus, etc.);
Other processing equipment (wafer marking equipment, mark reader, back grinding machine, bump plating equipment, tape grinder for back grinder, back grinder, tape peeling machine for back grinder, etc.).
 本発明の製造装置は、ステージとノズルとを少なくとも有し、ステージは半導体ウエハを保持するためのチャックピンおよび/または半導体ウエハに接するウエハピンを備える。ステージに備えられたチャックピンによって、例えば半導体ウエハの外縁を保持することにより、半導体ウエハをステージの載置面に保持することができる。また、ステージに備えられたウエハピンによって、例えば半導体ウエハを裏側から支持することができる。ステージには、回転駆動軸が取り付けられている。回転駆動軸を回転させることにより、半導体ウエハをステージの載置面に保持された状態で回転させることができる。上記のようにして半導体ウエハを回転させながら、保持された半導体ウエハの表面にエッチング液またはレジスト液をノズルから供給することにより、レジスト液またはエッチング液をウエハ表面に均一に塗布することができると共に過剰な液を効率的に除去することが可能となる。また、同様にして洗浄液をノズルから供給することにより、半導体ウエハを効率的に洗浄することが可能となる。 The manufacturing apparatus of the present invention at least includes a stage and a nozzle, and the stage includes chuck pins for holding a semiconductor wafer and / or wafer pins in contact with the semiconductor wafer. The semiconductor wafer can be held on the mounting surface of the stage by, for example, holding the outer edge of the semiconductor wafer by the chuck pins provided on the stage. Also, for example, a semiconductor wafer can be supported from the back side by a wafer pin provided on the stage. A rotary drive shaft is attached to the stage. By rotating the rotation drive shaft, the semiconductor wafer can be rotated while being held by the mounting surface of the stage. By supplying the etching solution or the resist solution to the surface of the held semiconductor wafer from the nozzle while rotating the semiconductor wafer as described above, the resist solution or the etching solution can be uniformly applied to the wafer surface. It becomes possible to remove excess liquid efficiently. Similarly, by supplying the cleaning liquid from the nozzle, the semiconductor wafer can be cleaned efficiently.
 本発明の一態様において、本発明の製造装置は、導電性を有するチャックピン、ウエハピン及びステージから選択される少なくとも1(又は1つ)を用いて半導体ウエハを保持し、及び/又は導電性を有するノズルから洗浄液、エッチング液またはレジスト液を供給することにより、不純物の混入を回避しつつ、半導体ウエハの帯電を低減すると共に、半導体ウエハに帯電した静電気を効率的に除去することが可能となる。また、少量のカーボンナノチューブで体積抵抗率を効率的に低下させることができるため、チャックピン、ウエハピン及びステージから選択される少なくとも1と接する半導体ウエハの汚染及び/又はノズルを通過する薬液等に導電性材料が混入することによる薬液等の汚染を抑制することができる。 In one aspect of the present invention, the manufacturing apparatus of the present invention holds a semiconductor wafer using at least one (or one) selected from conductive chuck pins, wafer pins, and stages, and / or conductivity. By supplying the cleaning liquid, the etching liquid or the resist liquid from the nozzle, it is possible to reduce the charge of the semiconductor wafer while efficiently preventing the static electricity charged on the semiconductor wafer while avoiding the mixing of impurities. . In addition, since the volume resistivity can be efficiently reduced with a small amount of carbon nanotubes, the conductivity of the semiconductor wafer in contact with at least one selected from the chuck pin, the wafer pin and the stage and / or the chemical solution passing through the nozzle can be reduced. It is possible to suppress the contamination of the chemical solution and the like due to the mixing of the volatile material.
 本発明の他の態様において、本発明の製造装置は、導電性を有するチャックピン及び/又は/ウエハピンを用いて半導体ウエハを保持し、及び/又は導電性を有するノズルから洗浄液、エッチング液またはレジスト液を供給することにより、不純物の混入を回避しつつ、半導体ウエハの帯電を低減すると共に、半導体ウエハに帯電した静電気を効率的に除去することが可能となる。また、少量のカーボンナノチューブで体積抵抗率を効率的に低下させることができるため、チャックピン及び/又はウエハピンと接する半導体ウエハの汚染及び/又はノズルを通過する薬液等に導電性材料が混入することによる薬液等の汚染を抑制することができる。 In another aspect of the present invention, the manufacturing apparatus of the present invention uses a conductive chuck pin and / or a wafer pin to hold a semiconductor wafer, and / or a conductive nozzle from a cleaning solution, an etchant or a resist. By supplying the liquid, it is possible to reduce the charge of the semiconductor wafer and efficiently remove the static electricity charged on the semiconductor wafer while avoiding the mixing of impurities. In addition, since the volume resistivity can be efficiently reduced with a small amount of carbon nanotubes, contamination of the semiconductor wafer in contact with the chuck pins and / or wafer pins and / or mixing of the conductive material in the chemical solution passing through the nozzles, etc. It is possible to suppress the contamination of the drug solution and the like due to
 本開示の実施形態の製造装置において、洗浄液、エッチング液及びレジスト液等は、本開示の実施形態の製造装置において使用できる流体であれば特に制限されることはない。そのような洗浄液、エッチング液及びレジスト液等は、例えば、有機溶剤(例えば、イソプロピルアルコール等)、可燃性液体(例えば、イソプロピルアルコール等)、酸性液体(例えば、フッ酸、フッ素酸と硝酸との混合水溶液、硝酸、硫酸、過酸化水素水等)、塩基性液体(例えば、水酸化テトラメチルアンモニウム水溶液、アンモニア水、水酸化カリウム水溶液)、中性液体(例えば、イソプロピルアルコール、水、超純水、オゾン水等)、導電性液体(例えば、フッ酸、フッ素酸と硝酸との混合水溶液、硝酸、硫酸、過酸化水素水、水酸化テトラメチルアンモニウム水溶液、アンモニア水、水酸化カリウム水溶液)、ポリマーと感光剤と溶剤との混合液等を含むことができる。 In the manufacturing apparatus of the embodiment of the present disclosure, the cleaning solution, the etching solution, the resist solution, and the like are not particularly limited as long as they can be used in the manufacturing apparatus of the embodiment of the present disclosure. Such cleaning solution, etching solution, resist solution and the like are, for example, organic solvents (eg, isopropyl alcohol etc.), flammable liquids (eg, isopropyl alcohol etc.), acidic liquids (eg, hydrofluoric acid, fluoro acid and nitric acid). Mixed aqueous solution, nitric acid, sulfuric acid, hydrogen peroxide water, etc., basic liquid (eg, tetramethyl ammonium hydroxide aqueous solution, ammonia water, potassium hydroxide aqueous solution), neutral liquid (eg, isopropyl alcohol, water, ultrapure water) , Ozone water, etc., conductive liquid (eg, hydrofluoric acid, mixed aqueous solution of fluoro acid and nitric acid, nitric acid, sulfuric acid, hydrogen peroxide water, tetramethyl ammonium hydroxide aqueous solution, ammonia water, potassium hydroxide aqueous solution), polymer And a mixture of a photosensitizer and a solvent.
 本発明の好ましい一態様において、本発明の製造装置は、導電性を有するチャックピンを用いて回転ステージの載置面に半導体ウエハを保持し、導電性を有するノズルから洗浄液、エッチング液またはレジスト液を供給することにより、不純物の混入を回避しつつ、半導体ウエハの帯電を低減すると共に、半導体ウエハに接するチャックピンを介して、半導体ウエハに帯電した静電気を効率的に除去することが可能となる。また、少量のカーボンナノチューブで体積抵抗率を効率的に低下させることができるため、チャックピンと接する半導体ウエハの汚染や、ノズルを通過する薬液等に導電性材料が混入することによる薬液等の汚染が抑制され、クリーン性に優れる。この態様において、本発明の製造装置がさらに、半導体ウエハを裏側から支えるウエハピンを有する場合には、半導体ウエハの裏側からも静電気を除去することができるため、より効率的な静電気除去効果が得られる。 In a preferred embodiment of the present invention, the manufacturing apparatus of the present invention holds a semiconductor wafer on the mounting surface of a rotary stage using conductive chuck pins, and uses a conductive nozzle to wash liquid, etching liquid or resist liquid. By supplying the above, it is possible to reduce the charge of the semiconductor wafer while preventing the mixing of impurities, and to efficiently remove the static electricity charged on the semiconductor wafer through the chuck pins in contact with the semiconductor wafer. . Further, since the volume resistivity can be efficiently reduced with a small amount of carbon nanotubes, contamination of the semiconductor wafer in contact with the chuck pins, contamination of the chemical solution or the like due to mixing of the conductive material into the chemical solution passing through the nozzle, etc. It is suppressed and excellent in cleanness. In this aspect, when the manufacturing apparatus of the present invention further includes a wafer pin for supporting the semiconductor wafer from the back side, static electricity can be removed also from the back side of the semiconductor wafer, so that a more efficient static electricity removing effect can be obtained. .
(チャックピンおよびウエハピン)
 本発明の製造装置において、ステージは、少なくとも1種のフッ素樹脂およびカーボンナノチューブを含む複合樹脂材料を含む樹脂成形体であるチャックピンおよび/またはウエハピンを有することが好ましい。上記記載は、ステージが、上記樹脂成形体であるチャックピンまたは上記樹脂成形体であるウエハピンのいずれかを少なくとも有することが好ましいことを意味する。具体的には、ステージが上記樹脂成形体であるチャックピンを有する場合には、ウエハピンを有しても有さなくてもよく、該ウエハピンは、上記樹脂成形体であってもよいし、上記樹脂成形体でなくてもよい。また、ステージが上記樹脂成形体であるウエハピンを有する場合には、チャックピンを有しても有さなくてもよく、該チャックピンは、上記樹脂成形体であってもよいし、上記樹脂成形体でなくてもよい。
(Chuck pin and wafer pin)
In the manufacturing apparatus of the present invention, the stage preferably has a chuck pin and / or a wafer pin which is a resin molded body containing a composite resin material containing at least one fluorocarbon resin and carbon nanotube. The above description means that the stage preferably includes at least either the chuck pin which is the resin molded body or the wafer pin which is the resin molded body. Specifically, when the stage has a chuck pin which is the above-mentioned resin molded body, it may or may not have a wafer pin, and the wafer pin may be the above-mentioned resin molded body, or It may not be a resin molded body. When the stage has a wafer pin which is the above-mentioned resin molded body, it may or may not have a chuck pin, and the chuck pin may be the above-mentioned resin molded body, or the above-mentioned resin molding It does not have to be the body.
 チャックピンは、半導体ウエハをステージ上に保持するためのピンであり、ステージの載置面に半導体ウエハを保持することが可能な限り、その個数および形状は特に限定されない。ステージは、半導体ウエハをステージ上に固定しやすい観点から、好ましくは3個以上、より好ましくは4個以上のチャックピンを備えることが好ましい。ウエハピンは、半導体ウエハに接するピンであり、その個数および形状は特に限定されない。 The chuck pins are pins for holding the semiconductor wafer on the stage, and the number and shape thereof are not particularly limited as long as the semiconductor wafer can be held on the mounting surface of the stage. The stage preferably includes three or more, and more preferably four or more chuck pins, from the viewpoint of easily fixing the semiconductor wafer on the stage. The wafer pins are pins in contact with the semiconductor wafer, and the number and shape thereof are not particularly limited.
 本発明の製造装置においてステージが上記樹脂成形体であるチャックピンを有する場合、チャックピンの体積抵抗率は、帯電防止性の観点から、JIS K6911に従い測定して、好ましくは1.0×10Ω・cm以下、より好ましくは1.0×10Ω・cm以下、さらにより好ましくは1.0×10Ω・cm以下である。体積抵抗率が上記の上限以下であると良好な帯電防止性が得られる。チャックピンの体積抵抗率の下限値は特に限定されず、0以上であってよいが、通常10Ω・cm以上である。ステージが上記樹脂成形体であるチャックピンを有する場合、チャックピンの体積抵抗率をXcΩ・cmとし、チャックピンを構成する樹脂成形体の総量に基づくチャックピンに含まれるカーボンナノチューブの量をYc質量%とすると、XcおよびYcは次の式(1):
Xc/Yc-14≦4×10-10           (1)
を満たすことが好ましい。上記関係を満たす場合、チャックピンの体積抵抗率を効率的に低下させることができる。また、少量のカーボンナノチューブで、体積抵抗率を十分に低下させることができるため、チャックピンのクリーン性を高めやすい。上記式(1)より算出される値(Xc/Yc-14)は、チャックピンの体積抵抗率を効率的に低下させやすい観点から、より好ましくは10-11以下であり、さらに好ましくは10-12以下である。なお、上記式(1)より算出される値(Xc/Yc-14)の下限値は特に限定されないが、通常10-18以上、好ましくは10-16以上である。上記関係は、後述する製造方法で成形体を製造することや、体積抵抗率を効率的に低下させるに好ましい複合樹脂粒子を用いてチャックピンを製造することで、達成することができる。なお、チャックピンの体積抵抗率は、JIS K6911に従い、チャックピンを測定試料として抵抗率計(例えば三菱化学アナリテック製「ロレスタ」または「ハイレスタ」)により測定される。また、チャックピンに含まれるカーボンナノチューブの量は、炭素成分分析法により測定される。
In the production apparatus of the present invention, when the stage has a chuck pin which is the above resin molded body, the volume resistivity of the chuck pin is preferably 1.0 × 10 8 as measured in accordance with JIS K6911 from the viewpoint of antistaticity. Ω · cm or less, more preferably 1.0 × 10 7 Ω · cm or less, and still more preferably 1.0 × 10 6 Ω · cm or less. Favorable antistatic property is acquired as a volume resistivity is below the said upper limit. The lower limit value of the volume resistivity of the chuck pin is not particularly limited and may be 0 or more, but is usually 10 Ω · cm or more. When the stage has a chuck pin which is the above resin molded body, the volume resistivity of the chuck pin is Xc Ω · cm, and the amount of carbon nanotubes contained in the chuck pin based on the total amount of resin molded body constituting the chuck pin is Yc mass Assuming%, Xc and Yc have the following formula (1):
Xc / Yc -14 4 4 x 10 -10 (1)
It is preferable to satisfy When the above relationship is satisfied, the volume resistivity of the chuck pin can be efficiently reduced. In addition, since the volume resistivity can be sufficiently reduced with a small amount of carbon nanotubes, the cleanness of the chuck pin can be easily improved. Value calculated from the above equation (1) (Xc / Yc -14 ) is the volume resistivity of the chuck pins from the viewpoint of easy effectively reduced, more preferably 10 -11 or less, more preferably 10 - It is 12 or less. The lower limit value of the value (Xc / Yc -14 ) calculated from the above formula (1) is not particularly limited, but is usually 10 -18 or more, preferably 10 -16 or more. The above relationship can be achieved by manufacturing a molded body by a manufacturing method to be described later, or manufacturing a chuck pin using composite resin particles that are preferable for efficiently reducing the volume resistivity. The volume resistivity of the chuck pin is measured according to JIS K6911 using a chuck pin as a measurement sample with a resistivity meter (for example, "Loresta" or "Hiresta" manufactured by Mitsubishi Chemical Analytech Co., Ltd.). In addition, the amount of carbon nanotubes contained in the chuck pin is measured by carbon component analysis.
 本発明の製造装置においてステージが上記樹脂成形体であるウエハピンを有する場合、ウエハピンの体積抵抗率は、帯電防止性の観点から、JIS K6911に従い測定して、好ましくは1.0×10Ω・cm以下、より好ましくは1.0×10Ω・cm以下、さらにより好ましくは1.0×10Ω・cm以下である。体積抵抗率が上記の上限以下であると良好な帯電防止性が得られる。ウエハピンの体積抵抗率の下限値は特に限定されず、0以上であってよいが、通常10Ω・cm以上である。ステージが上記樹脂成形体であるウエハピンを有する場合、ウエハピンの体積抵抗率をXwΩ・cmとし、ウエハピンを構成する樹脂成形体の総量に基づくウエハピンに含まれるカーボンナノチューブの量をYw質量%とすると、XwおよびYwは次の式(2):
Xw/Yw-14≦4×10-10           (2)
を満たすことが好ましい。上記関係を満たす場合、ウエハピンの体積抵抗率を効率的に低下させることができる。また、少量のカーボンナノチューブで、体積抵抗率を十分に低下させることができるため、ウエハピンのクリーン性を高めやすい。上記式(2)より算出される値(Xw/Yw-14)は、ウエハピンの体積抵抗率を効率的に低下させやすい観点から、より好ましくは10-11以下であり、さらに好ましくは10-12以下である。なお、上記式(2)より算出される値(Xc/Yc-14)の下限値は特に限定されないが、通常10-18以上、好ましくは10-16以上である。上記関係は、後述する製造方法で成形体を製造することや、体積抵抗率を効率的に低下させるに好ましい複合樹脂粒子を用いてウエハピンを製造することで、達成することができる。なお、ウエハピンの体積抵抗率は、JIS K6911に従い、ウエハピンを測定試料として抵抗率計(例えば三菱化学アナリテック製「ロレスタ」または「ハイレスタ」)により測定される。また、ウエハピンに含まれるカーボンナノチューブの量は、炭素成分分析法により測定される。
In the production apparatus of the present invention, when the stage has a wafer pin which is the above resin molded body, the volume resistivity of the wafer pin is measured according to JIS K6911 from the viewpoint of antistaticity, preferably 1.0 × 10 8 Ω ·. It is at most cm, more preferably at most 1.0 × 10 7 Ω · cm, even more preferably at most 1.0 × 10 6 Ω · cm. Favorable antistatic property is acquired as a volume resistivity is below the said upper limit. The lower limit of the volume resistivity of the wafer pin is not particularly limited, and may be 0 or more, but is usually 10 Ω · cm or more. When the stage has a wafer pin which is the above resin molded body, assuming that the volume resistivity of the wafer pin is XwΩ · cm, and the amount of carbon nanotubes contained in the wafer pin based on the total amount of resin molded body constituting the wafer pin is Yw mass% Xw and Yw have the following formula (2):
Xw / Yw -14 4 4 x 10 -10 (2)
It is preferable to satisfy When the above relationship is satisfied, the volume resistivity of the wafer pin can be efficiently reduced. In addition, since the volume resistivity can be sufficiently reduced with a small amount of carbon nanotubes, the cleanness of the wafer pin can be easily improved. The value (Xw / Yw -14 ) calculated from the above equation (2) is more preferably 10 -11 or less, and still more preferably 10 -12 from the viewpoint of easily reducing the volume resistivity of the wafer pin. It is below. The lower limit value of the value (Xc / Yc -14 ) calculated from the above formula (2) is not particularly limited, but is usually 10 -18 or more, preferably 10 -16 or more. The above relationship can be achieved by manufacturing a molded body by a manufacturing method to be described later, or manufacturing a wafer pin using composite resin particles that are preferable for reducing the volume resistivity efficiently. The volume resistivity of the wafer pin is measured according to JIS K6911 using a wafer pin as a measurement sample with a resistivity meter (for example, "Loresta" or "Hiresta" manufactured by Mitsubishi Chemical Analytech Co., Ltd.). Further, the amount of carbon nanotubes contained in the wafer pin is measured by carbon component analysis.
 チャックピンおよび/またはウエハピンを構成する樹脂成形体は、樹脂成形体の総量に基づいて、好ましくは0.01~2.0質量%、より好ましくは0.02~0.5質量%、さらにより好ましくは0.025~0.2質量%のカーボンナノチューブを含有する。カーボンナノチューブの量が上記の下限以上であると、帯電防止性または導電性を高めるために体積抵抗率を低下させやすいため好ましい。カーボンナノチューブの量が上記の上限以下であると、体積抵抗率を効率的に低下させやすく、樹脂成形体のクリーン性を高めやすいため好ましい。樹脂成形体に含まれるカーボンナノチューブの量は、炭素成分分析法により測定される。 The resin molded body constituting the chuck pin and / or the wafer pin is preferably 0.01 to 2.0% by mass, more preferably 0.02 to 0.5% by mass, and further more preferably based on the total amount of the resin molded body. Preferably, it contains 0.025 to 0.2% by mass of carbon nanotubes. It is preferable for the amount of carbon nanotubes to be not less than the above lower limit, since it is easy to lower the volume resistivity in order to enhance the antistatic property or the conductivity. When the amount of carbon nanotubes is equal to or less than the above upper limit, the volume resistivity can be easily reduced efficiently, and the cleanness of the resin molded product can be easily improved. The amount of carbon nanotubes contained in the resin molding is measured by carbon component analysis.
 チャックピンおよび/またはウエハピンは、製造装置の筐体と電気的に接続されており、半導体ウエハからチャックピンおよび/またはウエハピンへと流れ込んだ静電気は、最終的に製造装置の筐体へと流れ込み、装置外部へと除去される。例えば、金属製部分を有する回転駆動軸を使用し、チャックピンおよび/またはウエハピンと回転駆動軸の金属製部分とをアース接続し、回転駆動軸の金属製部分と製造装置の筐体とをアース接続することにより、静電気を製造装置の筐体から装置外部へと除去することができる。 The chuck pins and / or the wafer pins are electrically connected to the housing of the manufacturing apparatus, and the static electricity flowing from the semiconductor wafer to the chuck pins and / or the wafer pins finally flows into the housing of the manufacturing apparatus, It is removed outside the device. For example, a rotary drive shaft having a metal portion is used, the chuck pin and / or the wafer pin and the metal portion of the rotary drive shaft are connected to ground, and the metal portion of the rotary drive shaft and the casing of the manufacturing apparatus are grounded. By connecting, static electricity can be removed from the housing of the manufacturing apparatus to the outside of the apparatus.
(ステージ)
 本発明の製造装置において、ステージは、その表面に半導体ウエハを保持するために設けられる。半導体ウエハは、ステージ上に直接載置されていてもよいし、ステージ上に設けられたチャックピンおよび/またはウエハピンを介して載置されていてもよい。ステージの材質は特に限定されず、耐薬品性、機械特性等の観点から適宜選択してよく、例えばフッ素樹脂の成形体や、ポリプロピレン、塩化ビニル等であってよい。
(stage)
In the manufacturing apparatus of the present invention, a stage is provided to hold a semiconductor wafer on its surface. The semiconductor wafer may be directly mounted on the stage, or may be mounted via chuck pins and / or wafer pins provided on the stage. The material of the stage is not particularly limited, and may be appropriately selected from the viewpoint of chemical resistance, mechanical properties and the like, and may be, for example, a molded product of fluorocarbon resin, polypropylene, vinyl chloride or the like.
 ステージの大きさは、処理する半導体ウエハの大きさに応じて適宜決定すればよく、特に限定されないが、例えば半導体ウエハの直径が300mmである場合、目安としては厚み15~30mm、外直径330~350mm程度の大きさである。 The size of the stage may be appropriately determined according to the size of the semiconductor wafer to be processed, and is not particularly limited. For example, when the diameter of the semiconductor wafer is 300 mm, the thickness is 15 to 30 mm and the outer diameter 330 to It is about 350 mm in size.
 本発明の製造装置の好ましい一態様において、半導体ウエハからより効率的に静電気を除去しやすい観点からは、ステージが、少なくとも1種のフッ素樹脂およびカーボンナノチューブを含む複合樹脂材料を含む樹脂成形体であることが好ましい。この態様においては、ステージの体積抵抗率は、帯電防止性の観点から、JIS K6911に従い測定して、好ましくは1.0×10Ω・cm以下、より好ましくは1.0×10Ω・cm以下、さらにより好ましくは1.0×10Ω・cm以下である。ステージの体積抵抗率が上記の上限以下であると、本発明の製造装置のより良好な帯電防止性が得られる。ステージの体積抵抗率の下限値は特に限定されず、0以上であってよいが、通常10Ω・cm以上である。回転ステージの体積抵抗率は、JIS K6911に従い、ステージを測定試料として抵抗率計(例えば三菱化学アナリテック製「ロレスタ」または「ハイレスタ」)により測定される。この態様において、ステージを構成する樹脂成形体は、樹脂成形体の総量に基づいて好ましくは0.01~2.0質量%、より好ましくは0.02~0.5質量%、さらにより好ましくは0.025~0.2質量%のカーボンナノチューブを含有する。カーボンナノチューブの量が上記の下限以上であると、帯電防止性または導電性を高めるために体積抵抗率を低下させやすいため好ましい。カーボンナノチューブの量が上記の上限以下であると、体積抵抗率を効率的に低下させやすく、樹脂成形体のクリーン性を高めやすいため好ましい。ステージを構成する樹脂成形体に含まれるカーボンナノチューブの量は、炭素成分分析法により測定される。 In a preferable embodiment of the manufacturing apparatus according to the present invention, in view of easy removal of static electricity from a semiconductor wafer more efficiently, the stage is a resin molded body including a composite resin material containing at least one fluorocarbon resin and carbon nanotube. Is preferred. In this aspect, the volume resistivity of the stage is preferably 1.0 × 10 8 Ω · cm or less, more preferably 1.0 × 10 7 Ω ·, as measured in accordance with JIS K 6911 from the viewpoint of antistatic property. It is at most cm, still more preferably at most 1.0 × 10 6 Ω · cm. When the volume resistivity of the stage is less than the above upper limit, better antistatic properties of the production apparatus of the present invention can be obtained. The lower limit value of the volume resistivity of the stage is not particularly limited, and may be 0 or more, but is usually 10 Ω · cm or more. The volume resistivity of the rotary stage is measured by a resistivity meter (for example, "Loresta" or "Hiresta" manufactured by Mitsubishi Chemical Analytech Co., Ltd.) using the stage as a measurement sample according to JIS K6911. In this embodiment, the resin molded product constituting the stage is preferably 0.01 to 2.0% by mass, more preferably 0.02 to 0.5% by mass, and still more preferably, based on the total amount of the resin molded product. It contains 0.025 to 0.2% by mass of carbon nanotubes. It is preferable for the amount of carbon nanotubes to be not less than the above lower limit, since it is easy to lower the volume resistivity in order to enhance the antistatic property or the conductivity. When the amount of carbon nanotubes is equal to or less than the above upper limit, the volume resistivity can be easily reduced efficiently, and the cleanness of the resin molded product can be easily improved. The amount of carbon nanotubes contained in the resin molded product constituting the stage is measured by carbon component analysis.
 ステージが、少なくとも1種のフッ素樹脂およびカーボンナノチューブを含む複合樹脂材料を含む樹脂成形体である上記好ましい態様において、ステージの体積抵抗率をXsΩ・cmとし、ステージを構成する樹脂成形体の総量に基づくステージに含まれるカーボンナノチューブの量をYs質量%とすると、XsおよびYsは次の式(3):
Xs/Ys-14≦4×10-10           (3)
を満たすことが好ましい。上記関係を満たす場合、ステージの体積抵抗率を効率的に低下させることができる。また、少量のカーボンナノチューブで、体積抵抗率を十分に低下させることができるため、ステージのクリーン性を高めやすい。上記式(3)より算出される値(Xs/Ys-14)は、ステージの体積抵抗率を効率的に低下させやすい観点から、より好ましくは10-11以下であり、さらに好ましくは10-12以下である。なお、上記式(3)より算出される値(Xs/Ys-14)の下限値は特に限定されないが、通常10-18以上、好ましくは10-16以上である。上記関係は、後述する製造方法で成形体を製造することや、体積抵抗率を効率的に低下させるに好ましい複合樹脂粒子を用いてステージを製造することで、達成することができる。なお、ステージにおける体積抵抗率およびカーボンナノチューブの量の測定方法は、上記に述べたとおりである。
In the above preferred embodiment in which the stage is a resin molded body including a composite resin material containing at least one fluorocarbon resin and carbon nanotubes, the volume resistivity of the stage is Xs Ω · cm, and the total amount of resin molded bodies constituting the stage is Assuming that the amount of carbon nanotubes contained in the stage based on Ys mass%, Xs and Ys have the following formula (3):
Xs / Ys -14 4 4 x 10 -10 (3)
It is preferable to satisfy When the above relationship is satisfied, the volume resistivity of the stage can be efficiently reduced. In addition, since the volume resistivity can be sufficiently reduced with a small amount of carbon nanotubes, it is easy to improve the cleanness of the stage. The value (Xs / Ys -14 ) calculated from the above equation (3) is more preferably 10 -11 or less, and further preferably 10 -12 from the viewpoint of easily reducing the volume resistivity of the stage. It is below. The lower limit of the value (Xs / Ys- 14 ) calculated from the above equation (3) is not particularly limited, but is usually 10-18 or more, preferably 10-16 or more. The above relationship can be achieved by manufacturing a molded product by a manufacturing method to be described later, or manufacturing a stage using composite resin particles that are preferable for effectively reducing the volume resistivity. The method of measuring the volume resistivity and the amount of carbon nanotubes in the stage is as described above.
(ノズル)
 本発明の製造装置において、ノズルは、ステージ上に保持された半導体ウエハの、通常は表面に、洗浄液、エッチング液またはレジスト液を供給するための管である。半導体ウエハの表面に上記液をノズルから供給する場合、ノズルの液供給口がステージ上に保持された半導体ウエハの上方に位置するように、ノズルを設けることが好ましい。
(nozzle)
In the manufacturing apparatus of the present invention, the nozzle is a tube for supplying a cleaning solution, an etching solution or a resist solution to the surface of the semiconductor wafer held on the stage, usually. When the liquid is supplied from the nozzle to the surface of the semiconductor wafer, the nozzle is preferably provided such that the liquid supply port of the nozzle is located above the semiconductor wafer held on the stage.
 ノズルの径および長さ、ノズルの液供給口の位置は、処理する半導体ウエハの大きさや、必要な液の供給量等に応じて適宜決定すればよく、特に限定されない。目安として、処理する半導体ウエハのサイズが直径300mmである場合、ノズルの径は例えば直径1/2インチ以下、好ましくは1/4~3/8インチであり、ノズルの長さは、例えば200mm以上であり、ノズルの液供給口の設定位置は半導体ウエハの表面から上方に150mm以上の位置とすることができる。 The diameter and length of the nozzle, and the position of the liquid supply port of the nozzle may be appropriately determined according to the size of the semiconductor wafer to be processed, the required liquid supply amount, and the like, and are not particularly limited. As a guide, when the size of the semiconductor wafer to be processed is 300 mm in diameter, the diameter of the nozzle is, for example, 1/2 inch or less, preferably 1/4 to 3/8 inch, and the nozzle length is, for example, 200 mm or more The setting position of the liquid supply port of the nozzle can be 150 mm or more above the surface of the semiconductor wafer.
 本発明の製造装置において、ノズルは、少なくとも1種のフッ素樹脂およびカーボンナノチューブを含む複合樹脂材料を含む樹脂成形体であることが好ましい。ノズルの体積抵抗率は、帯電防止性の観点から、JIS K6911に従い測定して、好ましくは1.0×10Ω・cm以下、より好ましくは1.0×10Ω・cm以下、さらにより好ましくは1.0×10Ω・cm以下である。体積抵抗率が上記の上限以下であると良好な帯電防止性が得られる。ノズルの体積抵抗率の下限値は特に限定されず、0以上であってよいが、通常10Ω・cm以上である。ノズルの体積抵抗率は、JIS K6911に従い、ノズルを測定試料として抵抗率計(例えば三菱化学アナリテック製「ロレスタ」または「ハイレスタ」)により測定される。ノズルを構成する樹脂成形体は、樹脂成形体の総量に基づいて好ましくは0.01~2.0質量%、より好ましくは0.02~0.5質量%、さらにより好ましくは0.025~0.2質量%のカーボンナノチューブを含有する。カーボンナノチューブの量が上記の下限以上であると、帯電防止性または導電性を高めるために体積抵抗率を低下させやすいため好ましい。カーボンナノチューブの量が上記の上限以下であると、体積抵抗率を効率的に低下させやすく、樹脂成形体のクリーン性を高めやすいため好ましい。ノズルを構成する樹脂成形体に含まれるカーボンナノチューブの量は、炭素成分分析法により測定される。 In the production apparatus of the present invention, the nozzle is preferably a resin molded body containing a composite resin material containing at least one fluorocarbon resin and carbon nanotube. The volume resistivity of the nozzle is preferably 1.0 × 10 8 Ω · cm or less, more preferably 1.0 × 10 7 Ω · cm or less, further preferably 1.0 × 10 8 Ω · cm or less, as measured in accordance with JIS K 6911, from the viewpoint of antistatic properties. Preferably it is 1.0 * 10 < 6 > ohm * cm or less. Favorable antistatic property is acquired as a volume resistivity is below the said upper limit. The lower limit value of the volume resistivity of the nozzle is not particularly limited, and may be 0 or more, but is usually 10 Ω · cm or more. The volume resistivity of the nozzle is measured according to JIS K6911 using a nozzle as a measurement sample with a resistivity meter (for example, "Loresta" or "Hiresta" manufactured by Mitsubishi Chemical Analytech Co., Ltd.). The resin molded body constituting the nozzle is preferably 0.01 to 2.0% by mass, more preferably 0.02 to 0.5% by mass, still more preferably 0.025 to 2.5% by mass, based on the total amount of the resin molded body. It contains 0.2% by mass of carbon nanotubes. It is preferable for the amount of carbon nanotubes to be not less than the above lower limit, since it is easy to lower the volume resistivity in order to enhance the antistatic property or the conductivity. When the amount of carbon nanotubes is equal to or less than the above upper limit, the volume resistivity can be easily reduced efficiently, and the cleanness of the resin molded product can be easily improved. The amount of carbon nanotubes contained in the resin molding constituting the nozzle is measured by carbon component analysis.
 本発明の製造装置において、ノズルの体積抵抗率をXnΩ・cmとし、ノズルを構成する樹脂成形体の総量に基づくノズルに含まれるカーボンナノチューブの量をYn質量%とすると、XnおよびYnは次の式(4):
Xn/Yn-14≦4×10-10           (4)
を満たすことが好ましい。上記関係を満たす場合、ノズルの体積抵抗率を効率的に低下させることができる。また、少量のカーボンナノチューブで、体積抵抗率を十分に低下させることができるため、ノズルのクリーン性を高めやすい。上記式(4)より算出される値(Xn/Yn-14)は、ノズルの体積抵抗率を効率的に低下させやすい観点から、より好ましくは10-11以下であり、さらに好ましくは10-12以下である。なお、上記式(4)より算出される値(Xn/Yn-14)の下限値は特に限定されないが、通常10-18以上、好ましくは10-16以上である。上記関係は、後述する製造方法で成形体を製造することや、体積抵抗率を効率的に低下させるに好ましい複合樹脂粒子を用いてノズルを製造することで、達成することができる。なお、ノズルにおける体積抵抗率およびカーボンナノチューブの量の測定方法は、上記に述べたとおりである。
In the manufacturing apparatus of the present invention, assuming that the volume resistivity of the nozzle is X n Ω · cm, and the amount of carbon nanotubes contained in the nozzle based on the total amount of resin moldings constituting the nozzle is Yn mass%, Xn and Yn Formula (4):
Xn / Yn -14 4 4 x 10 -10 (4)
It is preferable to satisfy When the above relationship is satisfied, the volume resistivity of the nozzle can be efficiently reduced. In addition, since the volume resistivity can be sufficiently reduced with a small amount of carbon nanotubes, it is easy to improve the cleanness of the nozzle. The value (Xn / Yn -14 ) calculated from the above equation (4) is more preferably 10 -11 or less, and still more preferably 10 -12 from the viewpoint of easily reducing the volume resistivity of the nozzle efficiently. It is below. The lower limit of the value (Xn / Yn- 14 ) calculated from the above formula (4) is not particularly limited, but is usually 10-18 or more, preferably 10-16 or more. The above relationship can be achieved by manufacturing a molded body by a manufacturing method to be described later, or manufacturing a nozzle using composite resin particles preferable for effectively reducing the volume resistivity. The method for measuring the volume resistivity and the amount of carbon nanotubes in the nozzle is as described above.
 ノズル内を洗浄液、エッチング液またはレジスト液が通過する際、ノズルの内面と液との間で摩擦が生じ、静電気が発生することにより液が帯電しやすい。そのため、ノズルがフッ素樹脂およびカーボンナノチューブを含む複合樹脂材料を含む樹脂成形体であることにより、液の帯電を効率的に防止することができる。また、複合樹脂材料を含む樹脂成形体は、クリーン性に優れると共に、耐薬品性に優れるため、ノズル内面から液中に不純物が混入することを回避することができる。ノズルは、例えば製造装置の筐体と電気的に接続されており、ノズルの内面と液との摩擦により生じた静電気は、最終的に製造装置の筐体へと流れ込み、装置外部へと除去される。例えば、ノズルの外周部に金属製部分を設けることにより、ノズルと製造装置の筐体とを電気的に接続し、静電気を製造装置の筐体から装置外部へと除去することができる。 When a cleaning solution, an etching solution or a resist solution passes through the inside of the nozzle, friction occurs between the inner surface of the nozzle and the solution, and static electricity is generated, whereby the solution is likely to be charged. Therefore, electrification of the liquid can be efficiently prevented by the nozzle being a resin molded body containing a composite resin material containing a fluorocarbon resin and a carbon nanotube. Moreover, since the resin molded body containing a composite resin material is excellent in cleanness and excellent in chemical resistance, it is possible to avoid the mixing of impurities into the liquid from the inner surface of the nozzle. The nozzle is electrically connected, for example, to the housing of the manufacturing apparatus, and static electricity generated by friction between the inner surface of the nozzle and the liquid finally flows into the housing of the manufacturing apparatus and is removed to the outside of the apparatus. Ru. For example, by providing a metal portion on the outer peripheral portion of the nozzle, the nozzle and the housing of the manufacturing apparatus can be electrically connected, and static electricity can be removed from the housing of the manufacturing apparatus to the outside of the apparatus.
 本発明の装置を半導体ウエハの洗浄に用いる場合、ノズルは洗浄液を供給するために使用される。洗浄液としては、半導体ウエハの洗浄に通常用いられる洗浄液が挙げられ、具体的には、水、イソプロピルアルコール(IPA)、フッ酸(フッ化水素酸水溶液)等が挙げられる。
 本発明の装置を半導体ウエハをエッチングするために用いる場合、ノズルはエッチング液を供給するために使用される。エッチング液としては、半導体ウエハのエッチングにおいて通常用いられるエッチャントが挙げられ、具体的には、フッ酸、フッ硝酸(フッ化水素酸と硝酸との混合水溶液)等の強酸水溶液、ならびに、水酸化カリウム水溶液、水酸化テトラメチルアンモニウム水溶液等の強塩基水溶液等が挙げられる。
 本発明の装置を半導体ウエハをレジストするために用いる場合、ノズルはレジスト液を供給するために使用される。レジスト液としては、半導体ウエハをレジストするために通常用いられるレジスト液が挙げられ、具体的には、ポリマー、感光剤、溶剤(水酸化テトラメチルアンモニウム)の混合液が挙げられる。
When the apparatus of the present invention is used to clean semiconductor wafers, the nozzles are used to supply the cleaning solution. As the cleaning solution, a cleaning solution generally used for cleaning a semiconductor wafer can be mentioned, and specifically, water, isopropyl alcohol (IPA), hydrofluoric acid (hydrofluoric acid aqueous solution) and the like can be mentioned.
When the apparatus of the present invention is used to etch a semiconductor wafer, a nozzle is used to supply the etchant. Examples of the etchant include etchants commonly used in the etching of semiconductor wafers. Specifically, strong acid aqueous solutions such as hydrofluoric acid and hydrofluoric-nitric acid (mixed aqueous solution of hydrofluoric acid and nitric acid), and potassium hydroxide An aqueous solution, a strong base aqueous solution such as tetramethyl ammonium hydroxide aqueous solution, and the like can be mentioned.
When the apparatus of the present invention is used to resist a semiconductor wafer, a nozzle is used to supply a resist solution. Examples of the resist solution include resist solutions generally used for resisting semiconductor wafers, and specific examples include mixed solutions of a polymer, a photosensitizer, and a solvent (tetramethylammonium hydroxide).
(カップ体)
 本発明の製造装置にはさらに、例えばステージ上に保持された半導体ウエハを取り囲むように、カップ体が設けられていてもよい。カップ体は、半導体ウエハから洗浄液等の液を除去する際に飛散する液を受け止める目的で設けられる。カップ体としては、例えば外カップと内カップとを有する構造のものが挙げられる。カップ体の上方側は開口していてよい。例えば外カップは上部側が四角形状であり、下部側が円筒形状である。外カップの下部側に段部が設けられていてもよく、その場合、この段部に外カップを昇降させるための昇降部が接続されていてもよい。内カップは円筒形状であってよく、例えばその上部側は内側に傾斜している。内カップは、外カップの上昇時に、内カップの下端面が外カップの段部と当接することによって、上方へと押し上げられるように構成されていてもよい。この結果、半導体ウエハから洗浄液、エッチング液またはレジスト液等の液を除去する際に、カップ体(外カップおよび内カップ)を上昇させて、半導体ウエハから飛散する液を受け止めることができる。
(Cup body)
The manufacturing apparatus of the present invention may further be provided with a cup body, for example, so as to surround a semiconductor wafer held on a stage. The cup body is provided for the purpose of receiving a liquid that is scattered when removing the liquid such as the cleaning liquid from the semiconductor wafer. As a cup body, the thing of the structure which has an outer cup and an inner cup, for example is mentioned. The upper side of the cup body may be open. For example, the outer cup has a rectangular shape on the upper side and a cylindrical shape on the lower side. A step may be provided on the lower side of the outer cup, and in this case, an elevating part for raising and lowering the outer cup may be connected to the step. The inner cup may be cylindrical in shape, for example its upper side sloped inwards. The inner cup may be configured to be pushed upward by bringing the lower end surface of the inner cup into contact with the step of the outer cup when the outer cup is lifted. As a result, when the liquid such as the cleaning liquid, the etching liquid or the resist liquid is removed from the semiconductor wafer, the cup body (outer cup and inner cup) can be lifted to receive the liquid scattered from the semiconductor wafer.
 本発明の製造装置の好ましい一態様において、カップ体(例えば外カップおよび/または内カップ)は、少なくとも1種のフッ素樹脂およびカーボンナノチューブを含む複合樹脂材料を含む樹脂成形体である。この態様において、カップ体の体積抵抗率は、帯電防止性の観点から、JIS K6911に従い測定して、好ましくは1.0×10Ω・cm以下、より好ましくは1.0×10Ω・cm以下、さらにより好ましくは1.0×10Ω・cm以下である。体積抵抗率が上記の上限以下であると良好な帯電防止性が得られる。カップ体の体積抵抗率の下限値は特に限定されず、0以上であってよいが、通常10Ω・cm以上である。カップ体の体積抵抗率は、JIS K6911に従い、カップ体を測定試料として抵抗率計(例えば三菱化学アナリテック製「ロレスタ」または「ハイレスタ」)により測定される。カップ体を構成する樹脂成形体は、樹脂成形体の総量に基づいて好ましくは0.01~2.0質量%、より好ましくは0.02~0.5質量%、さらにより好ましくは0.025~0.2質量%のカーボンナノチューブを含有する。カーボンナノチューブの量が上記の下限以上であると、帯電防止性または導電性を高めるために体積抵抗率を低下させやすいため好ましい。カーボンナノチューブの量が上記の上限以下であると、体積抵抗率を効率的に低下させやすく、樹脂成形体のクリーン性を高めやすいため好ましい。カップ体を構成する樹脂成形体に含まれるカーボンナノチューブの量は、炭素成分分析法により測定される。 In a preferred embodiment of the production apparatus of the present invention, the cup body (for example, the outer cup and / or the inner cup) is a resin molded body containing a composite resin material containing at least one fluorocarbon resin and carbon nanotubes. In this aspect, the volume resistivity of the cup body is preferably 1.0 × 10 8 Ω · cm or less, more preferably 1.0 × 10 7 Ω · or less, as measured in accordance with JIS K 6911, from the viewpoint of antistaticity. It is at most cm, still more preferably at most 1.0 × 10 6 Ω · cm. Favorable antistatic property is acquired as a volume resistivity is below the said upper limit. The lower limit of the volume resistivity of the cup body is not particularly limited, and may be 0 or more, but is usually 10 Ω · cm or more. The volume resistivity of the cup body is measured according to JIS K6911 using a cup body as a measurement sample with a resistivity meter (for example, "Loresta" or "Hiresta" manufactured by Mitsubishi Chemical Analytech Co., Ltd.). The resin molded body constituting the cup body is preferably 0.01 to 2.0% by mass, more preferably 0.02 to 0.5% by mass, and still more preferably 0.025% by mass, based on the total amount of the resin molded body. It contains ̃0.2 mass% of carbon nanotubes. It is preferable for the amount of carbon nanotubes to be not less than the above lower limit, since it is easy to lower the volume resistivity in order to enhance the antistatic property or the conductivity. When the amount of carbon nanotubes is equal to or less than the above upper limit, the volume resistivity can be easily reduced efficiently, and the cleanness of the resin molded product can be easily improved. The amount of carbon nanotubes contained in the resin molding that constitutes the cup body is measured by carbon component analysis.
 本発明の製造装置において、カップ体の体積抵抗率をXcΩ・cmとし、カップ体を構成する樹脂成形体の総量に基づくカップ体に含まれるカーボンナノチューブの量をYc質量%とすると、XcおよびYcは次の式(5):
Xc/Yc-14≦4×10-10           (5)
を満たすことが好ましい。上記関係を満たす場合、カップ体の体積抵抗率を効率的に低下させることができる。また、少量のカーボンナノチューブで、体積抵抗率を十分に低下させることができるため、カップ体のクリーン性を高めやすい。上記式(5)より算出される値(Xc/Yc-14)は、カップ体の体積抵抗率を効率的に低下させやすい観点から、より好ましくは10-11以下であり、さらに好ましくは10-12以下である。なお、上記式(5)より算出される値(Xc/Yc-14)の下限値は特に限定されないが、通常10-18以上、好ましくは10-16以上である。上記関係は、後述する製造方法で成形体を製造することや、体積抵抗率を効率的に低下させるに好ましい複合樹脂粒子を用いてカップ体を製造することで、達成することができる。なお、カップ体における体積抵抗率およびカーボンナノチューブの量の測定方法は、上記に述べたとおりである。
In the production apparatus of the present invention, assuming that the volume resistivity of the cup body is Xc Ω · cm, and the amount of carbon nanotubes contained in the cup body based on the total amount of resin moldings forming the cup body is Yc mass%, Xc and Yc Is the following equation (5):
Xc / Yc -14 4 4 x 10 -10 (5)
It is preferable to satisfy When the above relationship is satisfied, the volume resistivity of the cup can be efficiently reduced. In addition, since the volume resistivity can be sufficiently reduced with a small amount of carbon nanotubes, it is easy to enhance the cleanness of the cup body. Value calculated from the above equation (5) (Xc / Yc -14 ) is the volume resistivity of the cup body from the viewpoint of easy effectively reduced, more preferably 10 -11 or less, more preferably 10 - It is 12 or less. The lower limit value of the value (Xc / Yc -14 ) calculated from the above formula (5) is not particularly limited, but is usually 10 -18 or more, preferably 10 -16 or more. The above relationship can be achieved by manufacturing a molded body by a manufacturing method to be described later, or manufacturing a cup body using composite resin particles preferable for effectively reducing the volume resistivity. The methods for measuring the volume resistivity and the amount of carbon nanotubes in the cup body are as described above.
 本発明の製造装置は、さらに、半導体ウエハから除去された洗浄液、エッチング液またはレジスト液等の液を装置から排出するための構成を備えていてもよい。例えば、液受け部を設け、その底面に廃液管を接続させ、最終的に液が廃液タンクへと流れるような構成を備えていてもよい。 The manufacturing apparatus of the present invention may further include a configuration for discharging a liquid such as a cleaning liquid, an etching liquid, or a resist liquid removed from the semiconductor wafer from the apparatus. For example, a liquid receiving unit may be provided, a waste liquid pipe may be connected to the bottom of the liquid receiving part, and the liquid may finally flow to the waste liquid tank.
<複合樹脂材料>
 本発明の製造装置において、チャックピン、ウエハピン及びステージから選択される少なくとも1、及び/又はノズルは、少なくとも1種のフッ素樹脂およびカーボンナノチューブを含む複合樹脂材料を含む樹脂成形体である。また、本発明の好ましい一態様においては、ステージも少なくとも1種のフッ素樹脂およびカーボンナノチューブを含む複合樹脂材料を含む樹脂成形体である。チャックピン、ウエハピン及びステージから選択される少なくとも1及び/又はノズルが該複合樹脂材料の樹脂成形体であることにより、理由は明らかではないが、少量のカーボンナノチューブで、所望の帯電防止性を達成することができる。そのため、本発明の製造装置は、効率的な静電気の除去が可能であると共に、クリーン性に優れ、半導体ウエハの製造過程における不純物の混入を抑制することができる。
<Composite resin material>
In the manufacturing apparatus of the present invention, at least one selected from the chuck pin, the wafer pin, and the stage, and / or the nozzle is a resin molded body including a composite resin material including at least one fluorocarbon resin and carbon nanotube. Moreover, in a preferred embodiment of the present invention, the resin molded article contains a composite resin material which also contains at least one fluorocarbon resin and carbon nanotube as the stage. Although at least one selected from chuck pins, wafer pins and stages and / or nozzles is a resin molding of the composite resin material, the desired antistatic property is achieved with a small amount of carbon nanotubes though the reason is not clear. can do. Therefore, the manufacturing apparatus of the present invention can efficiently remove static electricity, is excellent in cleanness, and can suppress the mixing of impurities in the process of manufacturing a semiconductor wafer.
 複合樹脂材料は、少なくとも1種のフッ素樹脂およびカーボンナノチューブを含む複合樹脂粒子の成形体である。複合樹脂粒子は、フッ素樹脂粒子とカーボンナノチューブとを複合化させた材料であり、フッ素樹脂粒子の少なくとも表面および/または表層にカーボンナノチューブが存在する。例えば、フッ素樹脂の粒子表面にカーボンナノチューブの少なくとも一部が担持または埋没されている。カーボンナノチューブは、フッ素樹脂の粒子表面に付着して担持されていてもよいし、一部が埋没して担持されていてもよいし、フッ素樹脂の粒子の表層に完全に埋没していてもよい。このような複合樹脂粒子の成形体である複合樹脂材料においては、複合樹脂粒子の少なくとも一部が粒子形状を維持して含まれていてもよいし、複合樹脂粒子が一体となり複合樹脂材料を形成していてもよい。 The composite resin material is a molded article of composite resin particles containing at least one fluorocarbon resin and carbon nanotubes. The composite resin particle is a material in which fluorocarbon resin particles and carbon nanotubes are complexed, and carbon nanotubes exist on at least the surface and / or surface layer of the fluorocarbon resin particles. For example, at least a part of the carbon nanotube is supported or buried on the particle surface of the fluorine resin. The carbon nanotubes may be attached to and supported on the particle surface of the fluorocarbon resin, or a part may be buried and supported, or may be completely embedded in the surface layer of the particles of the fluorocarbon resin . In a composite resin material which is a molded product of such composite resin particles, at least a part of the composite resin particles may be contained while maintaining the particle shape, and the composite resin particles are integrated to form a composite resin material. It may be done.
 複合樹脂粒子の平均粒子径は、好ましくは500μm以下、より好ましくは300μm以下、さらに好ましくは200μm以下、特に好ましくは100μm以下、極めて好ましくは50μm以下、最も好ましくは30μm以下である。平均粒子径が上記の上限以下である場合、カーボンナノチューブが均一に分散した樹脂成形体を得やすく、特に樹脂成形体の厚みが薄い場合であっても、樹脂成形体の体積抵抗率を十分に低減しやすい。複合樹脂粒子の平均粒子径の下限は特に限定されないが、通常5μm以上である。また、上記範囲の平均粒子径を有する複合樹脂粒子からチャックピン等の成形体を製造することにより、チャックピン等の成形体の体積抵抗率を効率的に低下させやすい。本発明の製造装置における、チャックピン、ウエハピン及びステージから選択される少なくとも1及び/又はノズル、好ましくはチャックピン及び/又はウエハピン、並びにノズルに含まれる複合樹脂材料を与える複合樹脂粒子の平均粒子径は、上記チャックピン等の製造に使用した複合樹脂粒子の平均粒子径であってよく、該平均粒子径は、レーザー回折・散乱法によって求めた粒度分布における積算値50%での粒子径を意味するメジアン径(D50)であり、レーザー回折散乱式粒度分布装置を用いて測定される。なお、本発明の製造装置においては、チャックピン等の成形体が、上記の平均粒子径を有する複合樹脂粒子の成形体である複合樹脂材料から構成されることが好ましく、チャックピン等の成形体中に含まれる状態での複合樹脂材料が、上記好ましい範囲の粒子径を有する複合樹脂粒子であってもよいし、複合樹脂粒子が一体となり複合樹脂材料を形成し粒子形状を維持していなくてもよい。 The average particle diameter of the composite resin particles is preferably 500 μm or less, more preferably 300 μm or less, still more preferably 200 μm or less, particularly preferably 100 μm or less, very preferably 50 μm or less, most preferably 30 μm or less. When the average particle size is less than the above upper limit, it is easy to obtain a resin molded product in which carbon nanotubes are uniformly dispersed, and in particular, even when the thickness of the resin molded product is thin, the volume resistivity of the resin molded product is sufficient. It is easy to reduce. The lower limit of the average particle size of the composite resin particles is not particularly limited, but is usually 5 μm or more. Moreover, it is easy to reduce the volume resistivity of molded objects, such as a chuck pin, efficiently by manufacturing molded objects, such as a chuck pin, from the composite resin particle which has the average particle diameter of the said range. In the production apparatus of the present invention, the average particle size of the composite resin particles giving the composite resin material contained in the chuck pin, the wafer pin and at least one selected from the wafer pin and the stage and / or the nozzle, preferably the chuck pin and / or the wafer pin May be the average particle size of the composite resin particles used for producing the above chuck pins etc., and the average particle size means the particle size at 50% of the integrated value in the particle size distribution determined by laser diffraction / scattering method Median diameter (D 50 ), which is measured using a laser diffraction scattering particle size distribution apparatus. In the production apparatus of the present invention, it is preferable that a molded article such as a chuck pin is made of a composite resin material which is a molded article of composite resin particles having the above average particle diameter. The composite resin material in the state of being contained therein may be a composite resin particle having a particle diameter in the above-mentioned preferable range, or the composite resin particles are integrated to form a composite resin material, and the particle shape is not maintained. It is also good.
 複合樹脂材料に含まれるフッ素樹脂の量は、複合樹脂材料の総量に基づいて好ましくは98.0質量%以上、より好ましくは99.5質量%以上、さらにより好ましくは99.0質量%以上、特に好ましくは99.8質量%以上である。フッ素樹脂の量が上記の下限以上である場合、複合樹脂材料の機械的特性および成形性を高めやすい。フッ素樹脂の量の上限は、特に限定されないが、99.99質量%程度以下である。複合樹脂材料に含まれるフッ素樹脂の量は、炭素成分分析法により測定される。本発明の製造装置において、上記フッ素樹脂の量に関する好ましい記載は、チャックピンおよび/またはウエハピンならびにノズル、場合によりステージに含まれるフッ素樹脂の量についても同様にあてはまる。 The amount of the fluorine resin contained in the composite resin material is preferably 98.0% by mass or more, more preferably 99.5% by mass or more, still more preferably 99.0% by mass or more, based on the total amount of the composite resin material. Particularly preferably, it is 99.8% by mass or more. When the amount of the fluorine resin is at least the above lower limit, mechanical properties and moldability of the composite resin material can be easily improved. The upper limit of the amount of the fluorine resin is not particularly limited, but is about 99.99% by mass or less. The amount of the fluorine resin contained in the composite resin material is measured by carbon component analysis. In the manufacturing apparatus of the present invention, the above-mentioned preferable statement about the amount of fluorine resin applies similarly to the amount of fluorine resin contained in the chuck pin and / or the wafer pin and the nozzle and optionally the stage.
 複合樹脂材料に含まれるカーボンナノチューブの量は、複合樹脂材料の総量に基づいて好ましくは0.01~2.0質量%、より好ましくは0.02~0.5質量%、さらにより好ましくは0.025~0.2質量%である。カーボンナノチューブの量が上記の下限以上であると、帯電防止性または導電性を高めるために体積抵抗率を低下させやすいため好ましい。カーボンナノチューブの量が上記の上限以下であると、体積抵抗率を効率的に低下させやすいため好ましい。複合樹脂材料に含まれるカーボンナノチューブの量は、炭素成分分析法により測定される。本発明の製造装置において、上記フッ素樹脂の量に関する好ましい記載は、チャックピン、ウエハピン及びステージから選択される少なくとも1及び/又はノズル、好ましくはチャックピン及び/又はウエハピン、並びにノズルに含まれるフッ素樹脂の量についても同様にあてはまる。 The amount of carbon nanotubes contained in the composite resin material is preferably 0.01 to 2.0% by mass, more preferably 0.02 to 0.5% by mass, still more preferably 0 based on the total amount of the composite resin material. It is .025 to 0.2% by mass. It is preferable for the amount of carbon nanotubes to be not less than the above lower limit, since it is easy to lower the volume resistivity in order to enhance the antistatic property or the conductivity. It is preferable for the amount of carbon nanotubes to be equal to or less than the above upper limit because the volume resistivity is easily reduced efficiently. The amount of carbon nanotubes contained in the composite resin material is measured by carbon component analysis. In the manufacturing apparatus of the present invention, the preferable description regarding the amount of the fluorocarbon resin is at least one selected from a chuck pin, a wafer pin and a stage and / or a nozzle, preferably a chuck pin and / or a wafer pin The same applies to the amount of
 複合樹脂材料は、複合樹脂粒子の成形体であり、複合樹脂粒子の比表面積は、JIS Z8830に準拠し測定して、好ましくは0.5~9.0m/g、より好ましくは0.8~4.0m/g、さらにより好ましくは1.0~3.0m/gである。比表面積が上記の下限以上であると、フッ素樹脂とカーボンナノチューブとの密着性を高めやすい観点から好ましく、上記の上限以下であると、複合樹脂材料の製造しやすさの観点から好ましい。また、上記範囲の比表面積を有する複合樹脂粒子からチャックピン等の成形体を製造することにより、チャックピン等の成形体の体積抵抗率を効率的に低下させやすい。本発明の製造装置における、チャックピン、ウエハピン及びステージから選択される少なくとも1及び/又はノズル、好ましくはチャックピン及び/又はウエハピン、並びにノズルに含まれる複合樹脂材料を与える複合樹脂粒子の比表面積は、上記チャックピン等の製造に使用した樹脂粒子の比表面積であってもよく、該比表面積は、具体的には、定容量式ガス吸着法である比表面積/細孔分布測定装置(例えば日本ベル製BELSORP-miniII)を用いて、一般的な比表面積の測定方法であるBET法により測定される。なお、本発明の製造装置においては、チャックピン等の成形体が、上記の比表面積を有する複合樹脂粒子の成形体である複合樹脂材料から構成されることが好ましく、チャックピン等の成形体中に含まれる状態での複合樹脂材料が、上記好ましい範囲の比表面積を有する複合樹脂粒子であってもよいし、複合樹脂粒子が一体となり複合樹脂材料を形成し、上記のような比表面積を維持していなくてもよい。 The composite resin material is a molded article of composite resin particles, and the specific surface area of the composite resin particles is preferably 0.5 to 9.0 m 2 / g, more preferably 0.8, as measured in accordance with JIS Z8830. It is -4.0 m 2 / g, still more preferably 1.0 to 3.0 m 2 / g. It is preferable from the viewpoint of easily improving the adhesion between the fluorine resin and the carbon nanotube that the specific surface area is the above lower limit or more, and it is preferable from the viewpoint of easiness of producing the composite resin material that it is the above upper limit. Moreover, it is easy to reduce the volume resistivity of molded objects, such as a chuck pin, efficiently by manufacturing molded objects, such as a chuck pin, from the composite resin particle which has the specific surface area of the said range. In the production apparatus of the present invention, the specific surface area of the composite resin particles giving the composite resin material contained in the chuck pin, the wafer pin and at least one selected from the wafer pin and the stage and / or the nozzle, preferably the chuck pin and / or the wafer pin The specific surface area of the resin particles used in the manufacture of the chuck pin or the like may be the specific surface area, which is specifically a specific surface area / pore distribution measuring apparatus which is a fixed capacity gas adsorption method (for example, Japan It is measured by BET method which is a general measurement method of specific surface area using Bell made BELSORP-miniII). In the production apparatus of the present invention, it is preferable that a molded body such as a chuck pin is made of a composite resin material which is a molded body of composite resin particles having the above specific surface area. The composite resin material in the state of being contained in may be a composite resin particle having a specific surface area in the above-mentioned preferable range, or the composite resin particles are integrated to form a composite resin material, and the above specific surface area is maintained. You do not have to.
 複合樹脂粒子の体積抵抗率は、帯電防止性の観点から、JIS K6911に従い測定して、好ましくは1.0×10Ω・cm以下、より好ましくは1.0×10Ω・cm以下、さらにより好ましくは1.0×10Ω・cm以下である。体積抵抗率が上記の上限以下であると良好な帯電防止性が得られる。複合樹脂材料の体積抵抗率の下限値は特に限定されず、0以上であってよいが、通常10Ω・cm以上である。複合樹脂材料の体積抵抗率は、JIS K6911に従い成形素材または切削加工した試験片を用いて、抵抗率計(例えば三菱化学アナリテック製「ロレスタ」または「ハイレスタ」)により測定される。例えば圧縮成形(コンプレッション成形)により作製したφ110×10mmの試験片を用いて測定した場合に、複合樹脂粒子が上記体積抵抗率を示すことが好ましい。 The volume resistivity of the composite resin particles is preferably 1.0 × 10 8 Ω · cm or less, more preferably 1.0 × 10 7 Ω · cm or less, as measured in accordance with JIS K 6911 from the viewpoint of antistatic properties. Still more preferably, it is 1.0 × 10 6 Ω · cm or less. Favorable antistatic property is acquired as a volume resistivity is below the said upper limit. The lower limit value of the volume resistivity of the composite resin material is not particularly limited, and may be 0 or more, but is usually 10 Ω · cm or more. The volume resistivity of the composite resin material is measured by a resistivity meter (for example, "Loresta" or "Hyresta" manufactured by Mitsubishi Chemical Analytech Co., Ltd.) using a molding material or a cut test piece according to JIS K6911. For example, it is preferable that the composite resin particles exhibit the above-mentioned volume resistivity when measured using a test piece of φ110 × 10 mm produced by compression molding (compression molding).
(フッ素樹脂)
 複合樹脂材料に含まれるフッ素樹脂は、特に限定されないが、例えばポリテトラフルオロエチレン(PTFE)、変性ポリテトラフルオロエチレン(変性PTFE)、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)、エチレン/テトラフルオロエチレン共重合体(ETFE)、エチレン/クロロトリフルオロエチレン共重合体(ECTFE)、ポリクロロトリフルオロエチレン(PCTFE)、ポリフッ化ビニリデン(PVDF)およびポリフッ化ビニル(PVF)等が挙げられる。フッ素樹脂は、機械強度特性、成形加工性の観点からは、好ましくはPTFE、変性PTFE、PFA、PCTFEおよびPVDFからなる群から選択され、導電性を効率的に高めやすい観点からは、好ましくはPTFE、変性PTFEおよびPCTFEからなる群から選択され、さらに、導電性を効率的に高めやすい観点ならびに機械強度特性、成形加工性の観点からは、より好ましくは変性PTFEまたはPCTFEである。本発明の製造装置において、チャックピン、ウエハピン及びステージから選択される少なくとも1及び/又はノズル、好ましくはチャックピン及び/又はウエハピン、並びにノズルは、同一の複合樹脂材料から製造したものであってもよいし、それぞれが互いに異なるフッ素樹脂またはカーボンナノチューブを含む異なる複合樹脂材料から製造したものであってもよい。
(Fluororesin)
The fluorine resin contained in the composite resin material is not particularly limited. For example, polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetratetra Fluoroethylene / hexafluoropropylene copolymer (FEP), ethylene / tetrafluoroethylene copolymer (ETFE), ethylene / chlorotrifluoroethylene copolymer (ECTFE), polychlorotrifluoroethylene (PCTFE), polyvinylidene fluoride (PVDF) and polyvinyl fluoride (PVF). The fluorine resin is preferably selected from the group consisting of PTFE, modified PTFE, PFA, PCTFE and PVDF from the viewpoints of mechanical strength properties and molding processability, and from the viewpoint of easily enhancing the conductivity, preferably PTFE. It is selected from the group consisting of modified PTFE and PCTFE, and is more preferably modified PTFE or PCTFE from the viewpoint of facilitating the improvement of the conductivity efficiently as well as mechanical strength properties and molding processability. In the manufacturing apparatus of the present invention, at least one of the chuck pin, the wafer pin and the stage and / or the nozzle selected from the stage, preferably the chuck pin and / or the wafer pin and the nozzle are manufactured from the same composite resin material It may be manufactured from different composite resin materials, each of which contains different fluorocarbon resin or carbon nanotube.
 ポリテトラフルオロエチレン(PTFE)は、テトラフルオロエチレンの単独重合体である。 Polytetrafluoroethylene (PTFE) is a homopolymer of tetrafluoroethylene.
 変性ポリテトラフルオロエチレン(変性PTFE)は、テトラフルオロエチレンに由来する式(I):
Figure JPOXMLDOC01-appb-C000001
で表されるテトラフルオロエチレン単位に加えて、例えば式(II):
Figure JPOXMLDOC01-appb-C000002
[式中、Xは、炭素数1~6のパーフルオロアルキル基又は炭素数4~9のパーフルオロアルコキシアルキル基を表す]
で表されるパーフルオロビニルエーテル単位を含有する化合物であり、式(II)で表されるパーフルオロビニルエーテル単位の量は、変性ポリテトラフルオロエチレンの全質量に基づいて0.01~1質量%である変性ポリテトラフルオロエチレンが挙げられる。
Modified polytetrafluoroethylene (modified PTFE) is a compound of formula (I) derived from tetrafluoroethylene:
Figure JPOXMLDOC01-appb-C000001
In addition to the tetrafluoroethylene units represented by
Figure JPOXMLDOC01-appb-C000002
[Wherein, X represents a C 1-6 perfluoroalkyl group or a C 4-9 perfluoroalkoxyalkyl group]
And the amount of the perfluorovinyl ether unit represented by the formula (II) is 0.01 to 1% by mass based on the total mass of the modified polytetrafluoroethylene Some modified polytetrafluoroethylenes can be mentioned.
 式(II)中のXとしては、炭素数1~6のパーフルオロアルキル基又は炭素数4~9のパーフルオロアルコキシアルキル基が挙げられる。炭素数1~6のパーフルオロアルキル基としては、パーフルオロメチル基、パーフルオロエチル基、パーフルオロブチル基、パーフルオロプロピル基、パーフルオロブチル基等が挙げられる。炭素数4~9のパーフルオロアルコキシアルキル基としては、パーフルオロ2-メトキシプロピル基、パーフルオロ2-プロポキシプロピル基等が挙げられる。変性PTFEの熱的安定性を高めやすい観点からは、Xは、好ましくはパーフルオロプロピル基、パーフルオロエチル基、パーフルオロメチル基であり、より好ましくはパーフルオロプロピル基である。変性PTFEは、1種類の式(II)で表されるパーフルオロビニルエーテル単位を有していてもよいし、2種以上の式(II)で表されるパーフルオロビニルエーテル単位を有していてもよい。 Examples of X in the formula (II) include a perfluoroalkyl group having 1 to 6 carbon atoms or a perfluoroalkoxyalkyl group having 4 to 9 carbon atoms. Examples of the perfluoroalkyl group having 1 to 6 carbon atoms include perfluoromethyl group, perfluoroethyl group, perfluorobutyl group, perfluoropropyl group, perfluorobutyl group and the like. Examples of the perfluoroalkoxyalkyl group having 4 to 9 carbon atoms include perfluoro 2-methoxypropyl group and perfluoro 2-propoxypropyl group. From the viewpoint of easily enhancing the thermal stability of the modified PTFE, X is preferably a perfluoropropyl group, a perfluoroethyl group, or a perfluoromethyl group, more preferably a perfluoropropyl group. The modified PTFE may have one type of perfluorovinylether unit represented by the formula (II) or may have two or more perfluorovinylether units represented by the formula (II) Good.
 変性PTFEに含まれる式(II)で表されるパーフルオロビニルエーテル単位の量は、変性PTFEに含まれる全構成単位の量に基づいて、1モル%未満であり、好ましくは0.001モル%以上1モル%未満である。式(II)で表されるパーフルオロビニルエーテル単位の量が高くなるにつれて、フッ素樹脂の融点が高くなり、溶接性や屈曲性が向上したり、フッ素樹脂の溶融流動性が高くなるために成形性が向上する傾向にある。一方で、上記単位の量が高くなりすぎると、溶接時の接着性が低下する場合もある。そのため、式(II)で表されるパーフルオロビニルエーテル単位の量が上記の下限以上であると、PTFEと比較して流動性がより高くなるため、成形性が良好になる。また、上記単位の量が上記の上限以下であると、溶接時の接着性を向上させやすい。上記パーフルオロビニルエーテル単位の量は、例えば特性吸収1040~890cm-1の範囲で赤外分光分析を行うことにより測定される。変性PTFEに含まれる式(II)で表されるパーフルオロビニルエーテル単位の量は、変性PTFEの全質量に基づいて、0.01~1質量%、好ましくは0.03~0.2質量%である。 The amount of the perfluorovinyl ether unit represented by the formula (II) contained in the modified PTFE is less than 1 mol%, preferably 0.001 mol% or more, based on the amount of all structural units contained in the modified PTFE It is less than 1 mol%. As the amount of the perfluorovinyl ether unit represented by the formula (II) is increased, the melting point of the fluorine resin is increased, the weldability and the flexibility are improved, and the melt flowability of the fluorine resin is increased, so that the formability Tend to improve. On the other hand, if the amount of units is too high, the adhesion at the time of welding may be reduced. Therefore, when the amount of the perfluorovinyl ether unit represented by the formula (II) is equal to or more than the above lower limit, the flowability becomes higher compared to PTFE, and the moldability becomes good. Moreover, it is easy to improve the adhesiveness at the time of welding as the quantity of the said unit is below the said upper limit. The amount of the perfluorovinyl ether unit is measured, for example, by performing infrared spectroscopy in the range of 1040 to 890 cm −1 characteristic absorption. The amount of perfluorovinyl ether unit represented by the formula (II) contained in the modified PTFE is 0.01 to 1% by mass, preferably 0.03 to 0.2% by mass, based on the total mass of the modified PTFE is there.
 テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(PFA)は、テトラフルオロエチレンに由来する式(I):
Figure JPOXMLDOC01-appb-C000003
で表されるテトラフルオロエチレン単位に加えて、例えば式(II):
Figure JPOXMLDOC01-appb-C000004
[式中、Xは、炭素数1~6のパーフルオロアルキル基又は炭素数4~9のパーフルオロアルコキシアルキル基を表す]
で表されるパーフルオロビニルエーテル単位を含有する化合物であり、式(II)で表されるパーフルオロビニルエーテル単位の量が、PFAの全質量に基づいて1質量%より多い化合物が挙げられる。
The tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA) is a compound of formula (I) derived from tetrafluoroethylene:
Figure JPOXMLDOC01-appb-C000003
In addition to the tetrafluoroethylene units represented by
Figure JPOXMLDOC01-appb-C000004
[Wherein, X represents a C 1-6 perfluoroalkyl group or a C 4-9 perfluoroalkoxyalkyl group]
And a compound having an amount of perfluorovinylether unit represented by the formula (II) is more than 1% by mass based on the total mass of PFA.
 式(II)中のXとしては、変性PTFEについて上記に述べた基が挙げられ、好ましい記載が同様にあてはまる。PFAは、1種類の式(II)で表されるパーフルオロビニルエーテル単位を有していてもよいし、2種以上の式(II)で表されるパーフルオロビニルエーテル単位を有していてもよい。 Examples of X in the formula (II) include the groups described above for the modified PTFE, and the same applies to the preferred descriptions. PFA may have one type of perfluorovinylether unit represented by formula (II), or may have two or more perfluorovinylether units represented by formula (II) .
 PFAに含まれる式(II)で表されるパーフルオロビニルエーテル単位の量は、PFAに含まれる全構成単位の量に基づいて、1モル%以上、好ましくは1~3モル%である。式(II)で表されるパーフルオロビニルエーテル単位の量が上記の範囲内である場合、複合樹脂材料から得た成形体の成形性を高めやすい。上記パーフルオロビニルエーテル単位の量は、例えば特性吸収1040~890cm-1の範囲で赤外分光分析を行うことにより測定される。 The amount of the perfluorovinyl ether unit represented by the formula (II) contained in PFA is 1 mol% or more, preferably 1 to 3 mol%, based on the amount of all the structural units contained in PFA. When the amount of the perfluorovinyl ether unit represented by the formula (II) is within the above range, the moldability of the molded body obtained from the composite resin material can be easily improved. The amount of the perfluorovinyl ether unit is measured, for example, by performing infrared spectroscopy in the range of 1040 to 890 cm −1 characteristic absorption.
ポリクロロトリフルオロエチレン(PCTFE)は、式(III):
Figure JPOXMLDOC01-appb-C000005
で示される化合物であり、3フッ化塩化エチレン(クロロトリフルオロエチレン)の重合体である。
Polychlorotrifluoroethylene (PCTFE) has the formula (III):
Figure JPOXMLDOC01-appb-C000005
And a polymer of trifluorochloroethylene (chlorotrifluoroethylene).
 フッ素樹脂の融点は、好ましくは130~380℃、より好ましくは150~380℃、さらに好ましくは180~350℃、特に好ましくは200~350℃である。融点が上記の下限以上であると、成形性を向しやすいため好ましく、上記の上限以下であると、熱分解が少ないため好ましい。フッ素樹脂の融点は、ASTM-D4591に準拠し、示差走査型熱量計(DSC)を用いて測定できる融解熱ピークの温度として求めた値である。 The melting point of the fluororesin is preferably 130 to 380 ° C., more preferably 150 to 380 ° C., still more preferably 180 to 350 ° C., and particularly preferably 200 to 350 ° C. When the melting point is above the above lower limit, it is preferable because the moldability can be easily obtained. When it is below the above upper limit, it is preferable because the thermal decomposition is small. The melting point of the fluorine resin is a value determined as the temperature of the heat of fusion peak which can be measured using a differential scanning calorimeter (DSC) in accordance with ASTM-D 4591.
 特にフッ素樹脂がPCTFEである場合は、その融点は、好ましくは130~290℃、より好ましくは160~270℃、さらにより好ましくは180~250℃の融点を有する。融点が上記の下限以上であると、成形性を向上しやすいため好ましく、上記の上限以下であると、樹脂の最適な機械特性を得やすいため好ましい。PCTFEの融点は、ASTM-D4591に準拠し、示差走査熱量計(DSC)を用いて測定される。 In particular, when the fluororesin is PCTFE, its melting point is preferably 130 to 290 ° C., more preferably 160 to 270 ° C., and still more preferably 180 to 250 ° C. When the melting point is the above lower limit or more, the formability is preferably improved, and the melting point is preferably the above upper limit or the like because the optimum mechanical properties of the resin are easily obtained. The melting point of PCTFE is measured using a differential scanning calorimeter (DSC) according to ASTM-D 4591.
 特にフッ素樹脂が変性PTFEである場合、その融点は、好ましくは300~380℃、より好ましくは320~380℃、さらにより好ましくは320~350℃である。融点が上記の下限以上であると、成形性を向上しやすいため好ましく、上記の上限以下であると、樹脂の最適な機械的特性を得やすいため好ましい。変性PTFEの融点は、ASTM-D4591に準拠し、示差走査型熱量計(DSC)を用いて測定できる融解熱ピークの温度として求めた値である。 In particular, when the fluororesin is a modified PTFE, its melting point is preferably 300 to 380 ° C., more preferably 320 to 380 ° C., and still more preferably 320 to 350 ° C. When the melting point is the above lower limit or more, the formability is preferably improved, and the melting point is preferably the above upper limit or the like because the optimum mechanical properties of the resin can be easily obtained. The melting point of the modified PTFE is a value determined as the temperature of the heat of fusion peak which can be measured using a differential scanning calorimeter (DSC) in accordance with ASTM-D 4591.
 特にフッ素樹脂が変性PTFEである場合、その結晶化熱は、好ましくは18.0~25.0J/gであり、より好ましくは18.0~23.5J/gである。上記結晶化熱は、示差走査型熱量計(例えば島津製作所製「DSC-50」)により測定される。具体的には、約3mgの試料を50℃/分の速度にて250℃まで昇温させ、一旦保持し、更に10℃/分の速度にて380℃まで昇温させることにより結晶を融解させた後、10℃/分の速度で降温させた際に測定される結晶化点のピークから熱量に換算して測定される。 In particular, when the fluorocarbon resin is modified PTFE, the heat of crystallization is preferably 18.0 to 25.0 J / g, more preferably 18.0 to 23.5 J / g. The heat of crystallization is measured by a differential scanning calorimeter (for example, "DSC-50" manufactured by Shimadzu Corporation). Specifically, the temperature is raised to 250 ° C. at a rate of 50 ° C./min, and temporarily held, and then the crystal is melted by raising the temperature to 380 ° C. at a rate of 10 ° C./min. After that, the peak of the crystallization point measured when the temperature is lowered at a rate of 10 ° C./min is measured in terms of heat.
(カーボンナノチューブ)
 複合樹脂材料に含まれるカーボンナノチューブ(以下において「CNT」とも称する)は、炭素原子の六員環で構成される1枚または複数枚のグラフェンシートが円筒状に巻かれた構造を有する。CNTは、1枚のグラフェンシートが同心円状に巻かれた単層CNT(シングルウォールカーボンナノチューブ)、または、2枚以上の複数のグラフェンシートが同心円状に巻かれた多層CNT(マルチウォールカーボンナノチューブ)である。上記のカーボンナノ材料を単独で用いてもよいし、これらを組み合わせて用いてもよい。変性PTFEの粒子と複合化させやすく、体積抵抗率を低くしやすい観点からは、カーボンナノチューブは多層カーボンナノチューブであることがより好ましい。
(carbon nanotube)
A carbon nanotube (hereinafter also referred to as “CNT”) contained in the composite resin material has a structure in which one or a plurality of graphene sheets composed of six-membered rings of carbon atoms are cylindrically wound. The CNT is a single-walled CNT (single-walled carbon nanotube) in which one graphene sheet is concentrically wound, or a multilayer CNT (multi-walled carbon nanotube) in which two or more graphene sheets are concentrically wound. It is. The above carbon nanomaterials may be used alone or in combination. It is more preferable that the carbon nanotube is a multi-walled carbon nanotube from the viewpoint of being easily complexed with the modified PTFE particles and easily lowering the volume resistivity.
<複合樹脂材料の製造方法>
 複合樹脂材料は、フッ素樹脂とカーボンナノチューブとを複合化させた材料である。複合樹脂材料を製造するための方法は、好ましくは上記のような物性を有する、フッ素樹脂とカーボンナノチューブとを複合化させた材料が得られる限り特に限定されない。好ましくは、複合樹脂材料は、フッ素樹脂とカーボンナノチューブとを複合化させた複合樹脂粒子から製造される。ここで、複合樹脂粒子の製造方法は、フッ素樹脂の少なくとも表面および/または表層にカーボンナノチューブが存在する複合樹脂粒子が得られる限り特に限定されない。例えば、特開2014-34591号に記載されるような方法で亜臨界または超臨界状態の二酸化炭素を用いて、または、特開2015-30821号に記載されるような方法でケトン系溶媒を用いて、フッ素樹脂の粒子とカーボンナノチューブとを複合化することにより、複合樹脂粒子を製造することができる。
<Method of manufacturing composite resin material>
The composite resin material is a material obtained by combining a fluorocarbon resin and a carbon nanotube. The method for producing the composite resin material is not particularly limited as long as a material having a physical property as described above and in which a fluorocarbon resin and a carbon nanotube are composited is obtained. Preferably, the composite resin material is manufactured from composite resin particles in which a fluorocarbon resin and a carbon nanotube are composited. Here, the method for producing composite resin particles is not particularly limited as long as composite resin particles in which carbon nanotubes exist on at least the surface and / or surface layer of the fluorocarbon resin can be obtained. For example, carbon dioxide in the subcritical or supercritical state is used as described in JP-A 2014-34591, or ketone solvent is used as described in JP-A 2015-30821. Thus, composite resin particles can be produced by combining the particles of the fluorocarbon resin and the carbon nanotube.
 亜臨界または超臨界状態の二酸化炭素を用いてフッ素樹脂の粒子とカーボンナノチューブとを複合化する複合樹脂粒子の製造方法について、以下に具体的に説明する。 The method for producing composite resin particles in which fluorocarbon resin particles and carbon nanotubes are complexed using carbon dioxide in a subcritical or supercritical state is specifically described below.
 まず第1工程において、カーボンナノチューブを溶媒に分散させて、カーボンナノチューブ分散液を調製する。溶媒としては、水、アルコール系溶媒(エタノール、n-ブチルアルコール、イソプロピルアルコール、エチレングリコール等)、エステル系溶媒(酢酸エチル等)、エーテル系溶媒(ジエチルエーテル、ジメチルエーテル等)、ケトン系溶媒(メチルエチルケトン、アセトン、ジエチルケトン、メチルプロピルケトン、シクロヘキサノン等)、脂肪族炭化水素系溶媒(ヘキサン、ヘプタン等)、芳香族炭化水素系溶媒(トルエン、ベンゼン等)、塩素化炭化水素系溶媒(ジクロロメタン、クロロホルム、クロロベンゼン等)が挙げられる。1種類の溶媒を使用してもよいし、2種以上の溶媒を組み合わせて使用してもよい。フッ素樹脂とカーボンナノチューブとを複合化させやすい観点からは、フッ素樹脂の粒子表面を膨潤させやすい溶媒を使用することが好ましく、具体的にはケトン系溶媒を使用することが好ましい。 First, in the first step, carbon nanotubes are dispersed in a solvent to prepare a carbon nanotube dispersion. As the solvent, water, alcohol solvents (ethanol, n-butyl alcohol, isopropyl alcohol, ethylene glycol etc.), ester solvents (ethyl acetate etc.), ether solvents (diethyl ether, dimethyl ether etc.), ketone solvents (methyl ethyl ketone) , Acetone, diethyl ketone, methyl propyl ketone, cyclohexanone etc., aliphatic hydrocarbon solvents (hexane, heptane etc), aromatic hydrocarbon solvents (toluene, benzene etc), chlorinated hydrocarbon solvents (dichloromethane, chloroform) , Chlorobenzene, etc.). One type of solvent may be used, or two or more types of solvents may be used in combination. From the viewpoint of easily forming a fluorocarbon resin and a carbon nanotube, it is preferable to use a solvent which easily swells the particle surface of the fluorocarbon resin. Specifically, it is preferable to use a ketone-based solvent.
 カーボンナノチューブ分散液に含まれる溶媒の量は、溶媒中にカーボンナノチューブを単一分散させやすい観点から、カーボンナノチューブ分散液に含まれるカーボンナノチューブ100質量部に対して、好ましくは20,000~1,000,000質量部、より好ましくは30,000~300,000質量部、さらにより好ましくは50,000~200,000質量部である。 The amount of the solvent contained in the carbon nanotube dispersion is preferably 20,000 to 1, relative to 100 parts by mass of the carbon nanotubes contained in the carbon nanotube dispersion, from the viewpoint of facilitating single dispersion of the carbon nanotubes in the solvent. 000, 000 parts by weight, more preferably 30,000 to 300,000 parts by weight, even more preferably 50,000 to 200,000 parts by weight.
 複合樹脂粒子の製造に使用するカーボンナノチューブは、好ましくは50~600μm、より好ましくは50~300μm、さらにより好ましくは100~200μmの平均長さを有する。カーボンナノチューブの平均長さは、走査型電子顕微鏡(SEM、FE-SEM)や透過型電子顕微鏡(TEM)により測定される。 The carbon nanotubes used for producing the composite resin particles preferably have an average length of 50 to 600 μm, more preferably 50 to 300 μm, and still more preferably 100 to 200 μm. The average length of the carbon nanotubes is measured by a scanning electron microscope (SEM, FE-SEM) or a transmission electron microscope (TEM).
 カーボンナノチューブは、従来の製造方法によって製造できる。具体的には、二酸化炭素の接触水素還元、アーク放電法、レーザー蒸発法、CVD法などの気相成長法、気相流動法、一酸化炭素を高温高圧化で鉄触媒と共に反応させて気相で成長させるHiPco法、オイルファーネス法等が挙げられる。市販のカーボンナノチューブ、例えばNanocyl製「NC7000」を使用してもよい。 Carbon nanotubes can be produced by conventional production methods. Specifically, catalytic hydrogen reduction of carbon dioxide, arc discharge method, laser evaporation method, vapor phase growth method such as CVD method, gas phase flow method, carbon monoxide is reacted with iron catalyst at high pressure and high pressure to be a gas phase Such as the HiPco method to grow by Commercially available carbon nanotubes such as "NC7000" from Nanocyl may be used.
 溶媒にカーボンナノチューブを分散させる際、カーボンナノチューブの分散性を高める目的で分散剤を使用してもよい。分散剤としては、例えばアクリル系分散剤、ポリビニルピロリドン、ポリアニリンスルホン酸等の合成ポリマー、DNA、ペプチド、有機アミン化合物等が挙げられる。1種類の分散剤を使用してもよいし、2種以上の分散剤を組み合わせて使用してもよい。最終的に得られる成形体中に残存する分散剤の量を低減しやすい観点からは、分散剤が、本発明に好ましい複合樹脂粒子の成形温度よりも低い温度の沸点を有することが好ましい。分散剤を使用する場合、カーボンナノチューブ分散液に含まれる分散剤の量は、カーボンナノチューブ、溶媒および分散剤の種類や量によって適宜選択してよい。例えば、使用する分散剤の量は、カーボンナノチューブ100質量部に対して好ましくは100~6,000質量部、より好ましくは200~3,000質量部、さらにより好ましくは300~1,000質量部である。 When dispersing carbon nanotubes in a solvent, a dispersant may be used for the purpose of enhancing the dispersibility of carbon nanotubes. Examples of the dispersant include acrylic dispersants, synthetic polymers such as polyvinyl pyrrolidone and polyaniline sulfonic acid, DNA, peptides, organic amine compounds and the like. One dispersant may be used, or two or more dispersants may be used in combination. From the viewpoint of easily reducing the amount of the dispersant remaining in the finally obtained molded article, the dispersant preferably has a boiling point at a temperature lower than the molding temperature of the composite resin particles preferred for the present invention. When a dispersant is used, the amount of the dispersant contained in the carbon nanotube dispersion may be appropriately selected according to the type and the amount of the carbon nanotube, the solvent and the dispersant. For example, the amount of dispersant used is preferably 100 to 6,000 parts by mass, more preferably 200 to 3,000 parts by mass, and still more preferably 300 to 1,000 parts by mass with respect to 100 parts by mass of carbon nanotubes. It is.
 上記第1工程において水を溶媒として用いる場合、後述する第2工程の前に、カーボンナノチューブ分散液をアルコール系溶媒等と混合する。これは、続く第2工程において添加するフッ素樹脂と水との親和性が低く、溶媒として水を用いるカーボンナノチューブ分散液中にフッ素樹脂の粒子を分散させることが難しいためである。そこで、アルコール系溶媒を混合することにより、フッ素樹脂の粒子とカーボンナノチューブ分散液との親和性を高めることができる。 When water is used as a solvent in the first step, the carbon nanotube dispersion is mixed with an alcohol solvent or the like before the second step described later. This is because the affinity between the fluororesin and water to be added in the subsequent second step is low, and it is difficult to disperse the particles of the fluororesin in the carbon nanotube dispersion using water as a solvent. Then, the affinity of the particles of the fluorocarbon resin and the carbon nanotube dispersion liquid can be enhanced by mixing the alcohol solvent.
 次に、第2工程において、カーボンナノチューブ分散液にフッ素樹脂の粒子を添加し撹拌して、カーボンナノチューブおよびフッ素樹脂の粒子が分散した混合スラリーを調製する。 Next, in the second step, particles of a fluorocarbon resin are added to the carbon nanotube dispersion and stirred to prepare a mixed slurry in which carbon nanotube and fluorocarbon resin particles are dispersed.
 カーボンナノチューブ分散液にフッ素樹脂の粒子を添加すると、分散液中のカーボンナノチューブがフッ素樹脂の粒子表面に緩やかに吸着する。ここで、溶媒の温度、カーボンナノチューブおよびフッ素樹脂の分散濃度、フッ素樹脂の添加速度等を適宜調整することにより、カーボンナノチューブおよびフッ素樹脂の高い分散状態を維持しつつ、カーボンナノチューブをフッ素樹脂の粒子表面に吸着させることができる。このような方法により、カーボンナノチューブを、低い添加濃度であっても、フッ素樹脂の粒子表面に均一に分散させることができる。また、長尺のカーボンナノチューブを用いる場合であっても、その性質を損なうことなく、フッ素樹脂の粒子表面に均一に分散させることができる。フッ素樹脂の添加は、フッ素樹脂の粒子をそのまま添加してもよいし、フッ素樹脂の粒子を溶媒にあらかじめ分散させた分散液の形態で添加してもよい。 When fluorocarbon resin particles are added to the carbon nanotube dispersion liquid, carbon nanotubes in the dispersion liquid are gently adsorbed on the fluorocarbon resin particle surfaces. Here, by appropriately adjusting the temperature of the solvent, the dispersion concentration of the carbon nanotubes and the fluorocarbon resin, the addition rate of the fluorocarbon resin, etc., the carbon nanotube and the fluorocarbon resin particles are maintained while maintaining a high dispersion state of the carbon nanotubes and fluorocarbon resin. It can be adsorbed on the surface. By such a method, carbon nanotubes can be uniformly dispersed on the particle surface of the fluorocarbon resin, even at a low concentration of addition. Further, even in the case of using a long carbon nanotube, it can be uniformly dispersed on the surface of the particle of the fluorine resin without impairing its properties. The addition of the fluorine resin may be performed by adding the particles of the fluorine resin as it is or in the form of a dispersion in which the particles of the fluorine resin are previously dispersed in a solvent.
 本発明の複合樹脂粒子の製造に使用するフッ素樹脂の粒子は、好ましくは5~500μm、より好ましくは10~250μm、さらにより好ましくは10~100μm、特に好ましくは10~50μm、極めて好ましくは15~30μmの平均粒子径を有する。フッ素樹脂の平均粒子径が上記の上限以下であることが、複合樹脂粒子から作製した成形体(複合樹脂材料)におけるカーボンナノチューブの分散性を高めやすく、帯電防止性を均一かつ効率的に高めやすいため好ましい。フッ素樹脂の平均粒子径が上記の下限以上であることが、複合樹脂粒子の製造しやすさの観点から好ましい。フッ素樹脂の平均粒子径は、レーザー回折・散乱法によって求めた粒度分布における積算値50%での粒子径を意味するメジアン径(D50)であり、レーザー回折散乱式粒度分布装置を用いて測定される。 The particles of the fluorocarbon resin used for producing the composite resin particles of the present invention are preferably 5 to 500 μm, more preferably 10 to 250 μm, still more preferably 10 to 100 μm, particularly preferably 10 to 50 μm, and most preferably 15 to It has an average particle size of 30 μm. It is easy to enhance the dispersibility of carbon nanotubes in a molded article (composite resin material) produced from composite resin particles and that the average particle diameter of the fluorine resin is not more than the above upper limit, and to enhance the antistatic properties uniformly and efficiently Because it is preferable. It is preferable from the viewpoint of easiness of production of the composite resin particles that the average particle diameter of the fluorine resin is not less than the above lower limit. The average particle diameter of the fluorine resin is a median diameter (D 50 ) which means the particle diameter at an integrated value of 50% in the particle size distribution determined by the laser diffraction / scattering method, and is measured using a laser diffraction scattering type particle size distribution device Be done.
 複合樹脂粒子の製造に使用するフッ素樹脂の粒子は、JIS Z8830に従い測定して好ましくは0.5~9.0m/g、より好ましくは0.8~4.0m/g、さらにより好ましくは1.0~3.0.m/gの比表面積を有する。比表面積が上記の上限以下であることが、フッ素樹脂の粒子とカーボンナノチューブとの密着性を高めやすい観点から好ましく、上記の下限以上であることが、複合樹脂粒子の製造しやすさの観点から好ましい。フッ素樹脂の粒子の比表面積は、具体的には、定容量式ガス吸着法である比表面積/細孔分布測定装置を用いて、一般的な比表面積の測定方法であるBET法により測定される。 The particles of the fluorocarbon resin used for producing the composite resin particles are preferably 0.5 to 9.0 m 2 / g, more preferably 0.8 to 4.0 m 2 / g, still more preferably, as measured according to JIS Z8830. Is from 1.0 to 3.0. It has a specific surface area of m 2 / g. The specific surface area is preferably not more than the above upper limit from the viewpoint of easily improving the adhesion between the particles of the fluorocarbon resin and the carbon nanotube, and it is preferably not less than the above lower limit from the viewpoint of easiness of producing the composite resin particles preferable. Specifically, the specific surface area of the fluorine resin particles is measured by the BET method, which is a general measurement method of the specific surface area, using a specific surface area / pore distribution measuring apparatus which is a fixed capacity gas adsorption method. .
 本発明の製造装置においてチャックピン等を構成する複合樹脂材料におけるフッ素樹脂について上記に述べた、フッ素樹脂の構造、融点に関する記載は、これらは複合化前後や、フッ素樹脂材料の製造前後で変化しない特性であるため、複合樹脂粒子の製造に使用するフッ素樹脂の粒子についても同様にあてはまる。 The description on the structure and melting point of the fluorine resin described above for the fluorine resin in the composite resin material constituting the chuck pin etc. in the manufacturing apparatus of the present invention does not change before and after compounding or before and after manufacturing the fluorine resin material Because of the characteristics, the same applies to the particles of the fluorocarbon resin used for producing the composite resin particles.
 上記好ましい範囲の平均粒子径や比表面積を有するフッ素樹脂の粒子の製造方法は特に限定されず、従来公知の重合方法、好ましくは懸濁重合によってフッ素樹脂を製造し、上記重合により得た反応性重合体を含む分散液を噴霧乾燥させる方法、得られるフッ素樹脂をハンマーミル、ターボミル、カッティングミル、ジェットミル等の粉砕機を使用して機械的に粉砕する方法、得られるフッ素樹脂を室温未満の温度で機械的に粉砕する凍結粉砕などが挙げられる。所望の平均粒子径および比表面積を有するフッ素樹脂の粒子を得やすい観点からは、ジェットミル等の粉砕機を使用してフッ素樹脂の粒子を製造することが好ましい。 The method for producing the particles of the fluorine resin having an average particle diameter and specific surface area in the above preferable range is not particularly limited, and the fluorine resin is produced by a conventionally known polymerization method, preferably suspension polymerization, Method of spray-drying a dispersion containing a polymer, method of mechanically pulverizing the obtained fluororesin using a grinder such as a hammer mill, turbo mill, cutting mill, jet mill or the like, the obtained fluororesin less than room temperature Examples of the method include freeze grinding which mechanically grinds at a temperature. From the viewpoint of easily obtaining particles of the fluorine resin having a desired average particle diameter and specific surface area, it is preferable to produce particles of the fluorine resin using a pulverizer such as a jet mill.
 上記好ましい範囲の平均粒子径を有するフッ素樹脂の粒子は、篩や気流を用いる分級工程により平均粒子径を調整して製造してもよい。 The particles of the fluorocarbon resin having an average particle diameter in the above preferable range may be manufactured by adjusting the average particle diameter by a classification step using a sieve or an air stream.
 次に第3工程において、第2工程で得た混合スラリーを耐圧容器に供給し、耐圧容器内で二酸化炭素が亜臨界または超臨界状態となる温度および圧力を維持しながら、二酸化炭素を特定の速度で供給し、耐圧容器内に二酸化炭素を充満させる。二酸化炭素としては、液化二酸化炭素、気液混合の二酸化炭素、気体の二酸化炭素のうちいずれを使用してもよい。ここで、二酸化炭素が超臨界状態とは、臨界点以上の温度および臨界点以上の圧力にある状態をいい、具体的には31.1℃以上の温度および72.8気圧以上の圧力にある状態をいう。また、亜臨界状態とは、臨界点以上の圧力および臨界点以下の温度にある状態をいう。 Next, in the third step, the mixed slurry obtained in the second step is supplied to the pressure container, and the carbon dioxide is specified while maintaining the temperature and pressure at which carbon dioxide becomes subcritical or supercritical in the pressure container. Supply at speed and fill the pressure vessel with carbon dioxide. As carbon dioxide, any of liquefied carbon dioxide, carbon dioxide in gas-liquid mixture, and gaseous carbon dioxide may be used. Here, carbon dioxide in the supercritical state refers to a temperature above the critical point and a pressure above the critical point, specifically, a temperature above 31.1 ° C. and a pressure above 72.8 atmospheres I say the state. Moreover, a subcritical state means the state which exists in the pressure below a critical point, and the temperature below a critical point.
 第3工程において、混合スラリーに含まれていた溶媒および分散剤が二酸化炭素中に溶け込み、混合スラリー中に分散していたカーボンナノチューブがフッ素樹脂の粒子に付着する。 In the third step, the solvent and dispersant contained in the mixed slurry dissolve in carbon dioxide, and carbon nanotubes dispersed in the mixed slurry adhere to the particles of the fluorocarbon resin.
 二酸化炭素の供給速度は、カーボンナノチューブ同士の凝集を抑制し、フッ素樹脂の粒子表面にカーボンナノチューブを均一に付着させやすい観点から、例えば混合スラリーに含まれる分散剤1mgに対して好ましくは0.25g/分以下、より好ましくは0.07g/分以下、さらにより好ましくは0.05g/分以下である。 The feed rate of carbon dioxide is preferably 0.25 g with respect to, for example, 1 mg of the dispersing agent contained in the mixed slurry, from the viewpoint of suppressing aggregation of carbon nanotubes and allowing carbon nanotubes to adhere uniformly to the particle surface of the fluorocarbon resin. / Min or less, more preferably 0.07 g / min or less, still more preferably 0.05 g / min or less.
 続く第4工程において、二酸化炭素が亜臨界または超臨界状態となる温度および圧力を所定時間保持しながら、二酸化炭素を、二酸化炭素中に溶け込んだ溶媒および分散剤と共に耐圧容器から排出する。 In the subsequent fourth step, carbon dioxide is discharged from the pressure container together with the solvent and dispersant dissolved in carbon dioxide while maintaining the temperature and pressure at which carbon dioxide is in the subcritical or supercritical state for a predetermined time.
 次に、第5工程において、第4工程の状態を維持しながら分散剤と親和性の高いエントレーナを耐圧容器中に添加する。これにより、残存する分散剤を効率的に除去することができる。エントレーナとしては、例えば、第1工程においてカーボンナノチューブ分散液を調製する際に使用した溶媒を使用してよい。具体的には、第1工程において有機溶媒を使用した場合にはエントレーナとして同様の有機溶媒を使用してよい。第1工程において溶媒として水を使用した場合には、エントレーナとしてアルコール系溶媒を使用することが好ましい。なお、第5工程は分散剤を効率的に除去するための任意の工程であり、必須の工程ではない。例えばエントレーナを添加せず、第4工程を維持することにより、分散剤を除去することも可能である。 Next, in the fifth step, entrainer having high affinity to the dispersant is added to the pressure container while maintaining the state of the fourth step. Thereby, the remaining dispersant can be efficiently removed. As the entrainer, for example, the solvent used in preparing the carbon nanotube dispersion in the first step may be used. Specifically, when an organic solvent is used in the first step, the same organic solvent may be used as an entrainer. When water is used as the solvent in the first step, it is preferable to use an alcohol solvent as the entrainer. The fifth step is an optional step for efficiently removing the dispersant, and is not an essential step. It is also possible to remove the dispersant, for example by maintaining the fourth step without adding an entrainer.
 次に、第6工程において、耐圧容器の圧力を下げることにより耐圧容器中の二酸化炭素を除去し、複合樹脂粒子を得ることができる。ここで、二酸化炭素の除去方法によっては、複合樹脂粒子に二酸化炭素や溶媒が残存する場合がある。そのため、得られる複合樹脂粒子を真空にさらしたり、加熱することにより、残存する二酸化炭素や溶媒を効率的に除去することができる。 Next, in the sixth step, the pressure of the pressure resistant container is lowered to remove carbon dioxide in the pressure resistant container to obtain composite resin particles. Here, depending on the carbon dioxide removal method, carbon dioxide and a solvent may remain in the composite resin particles. Therefore, residual carbon dioxide and a solvent can be efficiently removed by exposing the composite resin particles obtained to vacuum or heating.
<複合樹脂材料および樹脂成形体の製造方法>
 本発明の製造装置において、チャックピン、ウエハピン及びステージから選択される少なくとも1及び/又はノズルは、少なくとも1種のフッ素樹脂およびカーボンナノチューブを含む複合樹脂材料を含む樹脂成形体であり、複合樹脂材料は、好ましくは上記に述べた複合樹脂粒子の成形体である。例えば、複合樹脂粒子から複合樹脂材料を得て、該複合樹脂材料を含む樹脂成形体であるチャックピンを製造する場合を例として用い、その製造方法を以下に説明する。
<Production method of composite resin material and resin molded product>
In the manufacturing apparatus of the present invention, at least one of the chuck pin, the wafer pin, and the stage and / or the nozzle is a resin molded body including a composite resin material including at least one fluorocarbon resin and carbon nanotube. Is preferably a molded product of the composite resin particles described above. For example, a method of producing a composite resin material from composite resin particles and manufacturing a chuck pin, which is a resin molded body containing the composite resin material, will be described as an example.
 まず、チャックピンの形状を有する樹脂成形体は、例えば複合樹脂粒子を溶融しチャックピンの形状に成形することにより製造してもよいし、複合樹脂粒子を例えば圧縮成形(コンプレッション成形)によりチャックピンの形状に成形して製造してもよいし、該圧縮成形により得た複合樹脂材料から切削加工によりチャックピンの形状を切り出して製造してもよい。チャックピンの導電性を効率的に高めやすい観点からは、複合樹脂粒子を圧縮成形によりチャックピンの形状に成形してする製造すること、および、該圧縮成形により得た成形体を切削加工することによりチャックピンを製造することが好ましい。上記好ましい製造方法により、チャックピンの導電性を効率的に高めやすい理由は明らかではないが、以下のメカニズムによると考えられる。なお、本発明の製造装置は後述するメカニズムに何ら限定されるものではない。複合樹脂粒子においては、上記に述べたように、フッ素樹脂の少なくとも表面および/または表層にカーボンナノチューブが存在し、これらカーボンナノチューブは導電性ネットワークを形成していると考えられる。カーボンナノチューブの導電性ネットワークは、複合樹脂粒子にかかる外力によりカーボンナノチューブが切断されたり、カーボンナノチューブが凝集したりすることにより、切断されやすいと考えられる。そのため、複合樹脂粒子からチャックピン等を製造する際に、該ネットワークができる限り切断されないような方法を用いることにより、チャックピン等の導電性を効率的に高めやすいと考えられる。複合樹脂粒子を圧縮成形によりチャックピンの形状に成形してチャックピン等を製造する方法、および、該圧縮成形により得た複合樹脂材料を切削加工することによりチャックピン等を製造する方法は、複合樹脂粒子を溶融押出することにより得た複合樹脂材料からチャックピン等を製造する方法と比較して、カーボンナノチューブのネットワークの切断を抑制しやすく、その結果、チャックピン等の導電性を効率的に高めやすいと考えられる。樹脂成形体を製造する際に、複合樹脂粒子と他の樹脂粒子等とを混合して溶融または圧縮成形等することにより、フッ素樹脂およびカーボンナノチューブを含む複合樹脂材料を含む樹脂成形体を製造してもよい。 First, a resin molded body having the shape of a chuck pin may be manufactured, for example, by melting composite resin particles and forming the shape into a chuck pin shape, or the composite resin particles may be chuck pin by compression molding, for example. The shape may be formed into the shape of (1), or the shape of the chuck pin may be cut out from the composite resin material obtained by the compression molding. From the viewpoint of improving the conductivity of the chuck pin efficiently, the composite resin particles are molded into a shape of the chuck pin by compression molding, and the molded body obtained by the compression molding is cut. It is preferable to manufacture a chuck pin by this. The reason why the conductivity of the chuck pin can be efficiently enhanced by the above preferred manufacturing method is not clear, but is considered to be due to the following mechanism. The manufacturing apparatus of the present invention is not limited to the mechanism described later. In the composite resin particle, as described above, carbon nanotubes are present on at least the surface and / or surface layer of the fluorine resin, and these carbon nanotubes are considered to form a conductive network. The conductive network of the carbon nanotube is considered to be easily cut when the carbon nanotube is cut by the external force applied to the composite resin particles or the carbon nanotube is aggregated. Therefore, when manufacturing a chuck pin or the like from composite resin particles, it is considered that the conductivity of the chuck pin or the like can be efficiently enhanced by using a method in which the network is not cut as much as possible. A method of manufacturing a chuck pin or the like by forming composite resin particles into a shape of a chuck pin by compression molding, and a method of manufacturing a chuck pin or the like by cutting a composite resin material obtained by the compression molding are composites. Compared to the method of manufacturing chuck pins etc. from composite resin materials obtained by melt extrusion of resin particles, it is easy to suppress the cutting of the carbon nanotube network, and as a result, the conductivity of chuck pins etc. can be efficiently It is considered to be easy to raise. When manufacturing a resin molded body, a resin molded body containing a composite resin material containing a fluorocarbon resin and a carbon nanotube is manufactured by mixing the composite resin particles and other resin particles and melting or compression molding or the like. May be
 複合樹脂粒子を圧縮成形することを経てチャックピン等を製造しやすく、チャックピン等の導電性を効率的に高めやすい観点から、複合樹脂材料に含まれるフッ素樹脂として、ポリテトラフルオロエチレン(PTFE)、変性ポリテトラフルオロエチレン(変性PTFE)およびポリクロロテトラフルオロエチレン(PCTFE)からなる群から選択されるフッ素樹脂を用いることが好ましい。なお、複合樹脂粒子からチャックピンを製造する場合を例に上記製造方法を説明したが、ウエハピン、ノズル、ステージ等の成形体等を製造する際にも、複合樹脂粒子を溶融押出成形することにより所定の形状を有する複合樹脂材料を製造してもよいし、複合樹脂粒子を圧縮成形により所定の形状に成形して製造するが、該圧縮成形により得た複合樹脂材料から切削加工することにより製造してもよい。ここで、上記に述べたように、カーボンナノチューブのネットワークの切断を抑制しやすく、その結果、ウエハピン、ノズル、ステージ等の導電性を効率的に高めやすい観点から、複合樹脂粒子を圧縮成形により所定の形状に成形してこれら成形体を製造するか、該圧縮成形により得た複合樹脂材料から切削加工により、これら成形体を製造することが好ましい。 A polytetrafluoroethylene (PTFE) is included as a fluorine resin contained in a composite resin material from the viewpoint of facilitating production of a chuck pin or the like through compression molding of composite resin particles and facilitating efficient improvement of the conductivity of the chuck pin or the like. It is preferable to use a fluorocarbon resin selected from the group consisting of modified polytetrafluoroethylene (modified PTFE) and polychlorotetrafluoroethylene (PCTFE). Although the above manufacturing method has been described by way of example in which the chuck pin is manufactured from the composite resin particles, the composite resin particles are melt-extruded also when manufacturing molded articles such as wafer pins, nozzles, and stages. A composite resin material having a predetermined shape may be produced, or composite resin particles are produced by molding into a predetermined shape by compression molding, but they are produced by cutting from the composite resin material obtained by the compression molding. You may Here, as described above, it is easy to suppress the cutting of the carbon nanotube network, and as a result, from the viewpoint of efficiently improving the conductivity of the wafer pin, the nozzle, the stage, etc., the composite resin particles are prescribed by compression molding. It is preferable to produce these molded articles by molding in the shape of (1) or cutting these composite resin materials obtained by the compression molding to produce these molded articles.
 フッ素樹脂がPTFE樹脂及び変性PTFE樹脂の場合、複合樹脂粒子を圧縮成形して複合樹脂材料を製造する方法としては、複合樹脂粒子を圧縮して得た予備成形体に焼成処理を施す方法が挙げられる。焼成前の予備成形体は、複合樹脂粒子を、必要に応じて適切な前処理(例えば、予備乾燥、造粒等)を行った後、金型に入れて圧縮して製造する。焼成前の予備成形体を製造するために圧縮する際の加圧としては、好ましくは0.1~100MPa、より好ましくは1~80MPa、さらにより好ましくは5~50MPaである。 When the fluorine resin is a PTFE resin and a modified PTFE resin, a method of subjecting a preform obtained by compressing the composite resin particles to a firing treatment is mentioned as a method of producing the composite resin material by compression molding the composite resin particles. Be The preformed body before firing is produced by subjecting the composite resin particles to a suitable pretreatment (eg, preliminary drying, granulation, etc.) as necessary, and then placing the composite resin particles in a mold and compressing it. The pressure applied during compression to produce a preform before firing is preferably 0.1 to 100 MPa, more preferably 1 to 80 MPa, and still more preferably 5 to 50 MPa.
 上記のようにして得た予備成形体を例えば複合樹脂粒子に含まれる樹脂の融点以上の温度にて焼成し、成形体を製造する。焼成温度は焼成前の予備成形体の寸法や焼成時間等にもよるが、好ましくは345~400℃、より好ましくは360~390℃である。焼成前の予備成形体を焼成炉内に入れ、好ましくは上記焼成温度で焼成して、成形体を製造する。
 得られた成形体をそのままチャックピン、ノズル、ステージ等として用いてもよいし、該成形体から切削加工等を行いチャックピン、ノズル、ステージ等を製造してもよい。
The preformed body obtained as described above is fired, for example, at a temperature equal to or higher than the melting point of the resin contained in the composite resin particles to produce a molded body. The firing temperature is preferably 345 to 400 ° C., more preferably 360 to 390 ° C., although it depends on the size of the preform before firing and the firing time. The preform before firing is placed in a firing furnace, and preferably fired at the above-mentioned firing temperature to produce a formed product.
The obtained molded product may be used as it is as a chuck pin, a nozzle, a stage or the like, or may be cut from the molded product to manufacture a chuck pin, a nozzle, a stage or the like.
 フッ素樹脂がPCTFE樹脂、PFA樹脂、FEP樹脂、ETFE樹脂、ECTFE樹脂、PVDF樹脂及びPVF樹脂(PTFE樹脂及び変性PTFE樹脂以外)の場合、複合樹脂粒子を圧縮成形して複合樹脂材料を製造する方法としては、成形体寸法に応じて予備乾燥などの適切な前処理を行い、前処理実施後、金型を200℃以上、好ましくは200~400℃、より好ましくは210~380℃に設定した熱風循環式電気炉で2時間以上、好ましくは2~12時間、加熱させて樹脂を溶融させる。所定時間加熱後、電気炉から金型を取り出し、油圧プレスを用いて25kg/cm以上、好ましくは50kg/cm以上、の面圧で加圧圧縮しながら常温付近まで金型を冷却したのち、複合樹脂粒子の成形体(樹脂材料)を得た。
得られた成形体をそのままチャックピン、ノズル、ステージ等として用いてもよいし、該成形体から切削加工等を行いチャックピン、ノズル、ステージ等を製造してもよい。
When the fluorocarbon resin is PCTFE resin, PFA resin, FEP resin, ETFE resin, ECTFE resin, PVDF resin and PVF resin (other than PTFE resin and modified PTFE resin), a method of compression molding the composite resin particles to produce a composite resin material As the heat treatment, appropriate pre-treatment such as pre-drying is performed according to the size of the molding, and after pre-treatment, the mold is heated to 200 ° C. or higher, preferably 200 to 400 ° C., more preferably 210 to 380 ° C. The resin is melted by heating in a circulating electric furnace for 2 hours or more, preferably 2 to 12 hours. After heating for a predetermined time, the mold is taken out of the electric furnace, and the mold is cooled to around normal temperature while pressing and compressing with a hydraulic pressure and a surface pressure of 25 kg / cm 2 or more, preferably 50 kg / cm 2 or more. A molded article (resin material) of composite resin particles was obtained.
The obtained molded product may be used as it is as a chuck pin, a nozzle, a stage or the like, or may be cut from the molded product to manufacture a chuck pin, a nozzle, a stage or the like.
 従って、本明細書は、フッ素樹脂粒子とカーボンナノチューブを含む複合樹脂粒子(例えば、5μm以上500μm以下の平均粒子径を有するフッ素樹脂粒子)を、圧縮成形して得られる複合樹脂材料から得られる、チャックピン、ウエハピン及びステージから選択される少なくとも1つ及び/又はノズルを含む半導体素子製造装置を提供することができる。 Accordingly, the present specification can be obtained from a composite resin material obtained by compression molding composite resin particles (for example, fluororesin particles having an average particle diameter of 5 μm to 500 μm) including fluorocarbon resin particles and carbon nanotubes. A semiconductor device manufacturing apparatus can be provided that includes at least one selected from a chuck pin, a wafer pin, and a stage and / or a nozzle.
<半導体素子の製造方法>
 本発明はまた、上記に述べた本発明の製造装置を用いて、半導体ウエハの表面にノズルから洗浄液を供給して半導体ウエハを洗浄する工程、半導体ウエハの表面にノズルからエッチング液を供給して半導体ウエハをエッチングする工程、および、半導体ウエハの表面にノズルからレジスト液を供給して半導体ウエハをレジストする工程からなる群から選択される少なくとも1つの工程を含む半導体素子の製造方法も提供する。本発明の製造装置を用いて上記工程を行うことにより、効率的な静電気除去効果が奏され、半導体ウエハの静電気損傷を低減することができる。また、本発明の製造方法はクリーン性に優れ、耐薬品性に優れる。本発明の製造方法によれば、高い精度で半導体ウエハを製造することができ、損傷が低減され、汚染が抑制された半導体ウエハを得ることができる。
<Method of Manufacturing Semiconductor Device>
The present invention also provides a step of supplying a cleaning liquid from the nozzle to the surface of the semiconductor wafer using the manufacturing apparatus of the present invention described above to clean the semiconductor wafer, and supplying an etching solution from the nozzle to the surface of the semiconductor wafer There is also provided a method of manufacturing a semiconductor device, including at least one step selected from the group consisting of: etching a semiconductor wafer; and supplying a resist solution from a nozzle to the surface of the semiconductor wafer to resist the semiconductor wafer. By performing the above steps using the manufacturing apparatus of the present invention, an efficient static electricity removing effect can be exhibited, and electrostatic damage of the semiconductor wafer can be reduced. In addition, the production method of the present invention is excellent in cleanness and chemical resistance. According to the manufacturing method of the present invention, a semiconductor wafer can be manufactured with high accuracy, and a semiconductor wafer with reduced damage and reduced contamination can be obtained.
<実施形態>
 次に、本発明を以下の実施形態により詳細に説明する。なお、以下において、図面に表された構成を説明するうえで、「上」、「下」、「左」、「右」等の方向を示す用語、およびそれらを含む別の用語を使用するが、それらの用語を使用する目的は図面を通じて実施形態の理解を容易にすることである。したがって、それらの用語は本発明の実施形態が実際に使用されるときの方向を示すものとは限らないし、それらの用語によって特許請求の範囲に記載された発明の技術的範囲は何ら限定されない。
Embodiment
Next, the present invention will be described in detail by the following embodiments. In the following, in describing the configuration shown in the drawings, terms indicating directions such as “upper”, “lower”, “left”, “right” and the like, and other terms including those will be used. The purpose of using these terms is to facilitate the understanding of the embodiments through the drawings. Therefore, those terms are not limited to those indicating the direction in which the embodiment of the present invention is actually used, and the technical scope of the invention described in the claims is not limited by these terms.
(第1実施形態)
 本発明の第1実施形態の半導体素子の製造装置を、図1および図2を用いて説明する。図1は本実施形態の製造装置の縦断面図であり、図2は本実施形態の製造装置の上面図である。図1に示すように、本実施形態の製造装置は、ステージ2、チャックピン3、ノズル4およびカップ体10を備えている。図1および図2に示すように、半導体ウエハ1は、その外周を4個のチャックピン3で固定することにより、ステージ2に保持されている。ステージ2に取り付けられた回転駆動軸5を例えば図1中に矢印で示す方向に回転させることにより、ステージ2を、ステージ2に保持された半導体ウエハ1と共に図2中に矢印で示す方向に回転させることができる。
First Embodiment
An apparatus for manufacturing a semiconductor device according to a first embodiment of the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 is a longitudinal sectional view of the manufacturing apparatus of the present embodiment, and FIG. 2 is a top view of the manufacturing apparatus of the present embodiment. As shown in FIG. 1, the manufacturing apparatus of the present embodiment includes a stage 2, a chuck pin 3, a nozzle 4 and a cup body 10. As shown in FIGS. 1 and 2, the semiconductor wafer 1 is held on the stage 2 by fixing its outer periphery with four chuck pins 3. By rotating the rotation drive shaft 5 attached to the stage 2 in, for example, the direction indicated by the arrow in FIG. 1, the stage 2 is rotated together with the semiconductor wafer 1 held by the stage 2 in the direction indicated by the arrow in FIG. It can be done.
 本実施形態においては、少なくともノズル4およびチャックピン3が、少なくとも1種のフッ素樹脂およびカーボンナノチューブを含む複合樹脂材料を含む樹脂成形体である。また、図示されていないが、チャックピン3は例えば装置筐体7と電気的に接続されている。ノズル4が上記樹脂成形体であるために、ノズル4を通過して液供給口6から半導体ウエハ1の表面に供給される液の帯電が防止されると共に、液の汚染も回避される。チャックピン3が上記樹脂成形体であるために、半導体ウエハ1の表面、側面、裏面等に帯電する静電気はチャックピン3へと流れ込み、最終的に装置筐体7へと流れ、装置外部へ流れる。本実施形態において、ステージ2は少なくとも1種のフッ素樹脂およびカーボンナノチューブを含む複合樹脂材料を含む樹脂成形体であってもよいし、なくてもよい。例えばステージ2が上記樹脂成形体である場合には、チャックピン3へと流れ込んだ静電気を、ステージ2から回転駆動軸5へと流し、最終的に装置外部へ流れるように設計してもよい。なお、図1および図2に示す装置は、4個のチャックピンを備えているが、チャックピンの数および位置は適宜変更してよい。また、4個のチャックピンのうちの少なくと1つが上記樹脂成形体であればよい。本実施形態において、半導体ウエハ1を回転させることにより、洗浄液等の液体が半導体ウエハ1の外側へと飛散する。その際、図1中に点線で示される位置まで上昇させた外カップ10aと、外カップの段部により下端面が押し上げられ、図1中に点線で示す位置まで上昇された内カップ10bとが、半導体ウエハ1から飛散する液を受け止めることができる。また、外カップ10aおよび内カップ10bを図1に実線で示す位置に下げた状態で、半導体ウエハ1をステージ上に設置したり、ステージから取り出したりすることが可能である。本実施形態において、外カップ10aおよび内カップ10bはそれぞれ、少なくとも1種のフッ素樹脂およびカーボンナノチューブを含む複合樹脂材料を含む樹脂成形体であってもよいし、なくてもよい。本実施形態の変形例として、図1に示される装置がさらに上記樹脂成形体であるウエハピンを有してもよい。その場合、より効率的な静電気の除去が可能となる。 In the present embodiment, at least the nozzle 4 and the chuck pin 3 are a resin molded body including a composite resin material including at least one fluorocarbon resin and carbon nanotube. Further, although not shown, the chuck pin 3 is electrically connected to, for example, the apparatus housing 7. Since the nozzle 4 is the resin molded body, charging of the liquid supplied to the surface of the semiconductor wafer 1 from the liquid supply port 6 through the nozzle 4 is prevented, and contamination of the liquid is also avoided. Since the chuck pin 3 is the above resin molded body, static electricity charged on the front surface, side surface, back surface, etc. of the semiconductor wafer 1 flows into the chuck pin 3 and finally flows into the device housing 7 and flows out of the device. . In the present embodiment, the stage 2 may or may not be a resin molding containing a composite resin material containing at least one fluorocarbon resin and carbon nanotubes. For example, in the case where the stage 2 is the above-described resin molded body, static electricity flowing into the chuck pin 3 may be designed to flow from the stage 2 to the rotary drive shaft 5 and finally to flow out of the apparatus. Although the apparatus shown in FIGS. 1 and 2 includes four chuck pins, the number and position of the chuck pins may be changed as appropriate. In addition, at least one of the four chuck pins may be the resin molded body. In the present embodiment, by rotating the semiconductor wafer 1, a liquid such as a cleaning liquid is scattered to the outside of the semiconductor wafer 1. At that time, the outer cup 10a raised to the position shown by the dotted line in FIG. 1 and the inner cup 10b raised to the position shown by the dotted line in FIG. The liquid scattered from the semiconductor wafer 1 can be received. Further, with the outer cup 10a and the inner cup 10b lowered to the position shown by solid lines in FIG. 1, the semiconductor wafer 1 can be placed on the stage or taken out of the stage. In the present embodiment, the outer cup 10a and the inner cup 10b may or may not be resin moldings each including a composite resin material including at least one fluorocarbon resin and carbon nanotube. As a modification of this embodiment, the apparatus shown in FIG. 1 may further have a wafer pin which is the above-mentioned resin molded body. In that case, more efficient removal of static electricity is possible.
(第2実施形態)
 本発明の第2実施形態の半導体素子の製造装置を図3に示す。図3に示すように、本実施形態の製造装置は、ステージ2、チャックピン3、ウエハピン8およびノズル4を備えている。半導体ウエハ1は、その外周をチャックピン3で固定すると共に、裏側からウエハピン8で支持することにより、ステージ2に保持されている。ステージ2に取り付けられた回転駆動軸5を例えば図3中に矢印で示す方向に回転させることにより、ステージ2を、ステージ2に保持された半導体ウエハ1と共に回転させることができる。なお、チャックピンおよびウエハピンの数および位置は限定されず、適宜選択してよい。
Second Embodiment
An apparatus for manufacturing a semiconductor device according to a second embodiment of the present invention is shown in FIG. As shown in FIG. 3, the manufacturing apparatus of the present embodiment includes a stage 2, a chuck pin 3, a wafer pin 8 and a nozzle 4. The semiconductor wafer 1 is held on the stage 2 by fixing its outer periphery with the chuck pin 3 and supporting it from the back side with the wafer pin 8. The stage 2 can be rotated together with the semiconductor wafer 1 held by the stage 2 by rotating the rotational drive shaft 5 attached to the stage 2 in the direction indicated by the arrow in FIG. The numbers and positions of chuck pins and wafer pins are not limited and may be selected as appropriate.
 本実施形態においては、少なくともノズル4と、チャックピン3およびウエハピン8の少なくともいずれかが、少なくとも1種のフッ素樹脂およびカーボンナノチューブを含む複合樹脂材料を含む樹脂成形体である。なお、複数のチャックピン3およびウエハピン8のうちの少なくと1つのピンが上記樹脂成形体であればよい。ノズル4が上記樹脂成形体であるために、ノズル4を通過して液供給口6から半導体ウエハ1の表面に供給される液の帯電が防止されると共に、液の汚染も回避される。例えばチャックピン3が上記樹脂成形体である場合、図示されていないが、チャックピン3と装置筐体7と電気的に接続することにより、半導体ウエハ1に帯電する静電気はチャックピン3へと流れ込み、最終的に装置筐体7へと流れ、装置外部へ流れる。例えば、ウエハピン8が上記樹脂成形体である場合、図示されるように例えば金属製の回転駆動軸5とウエハピン8とを接続することにより、半導体ウエハ1に帯電する静電気を、半導体ウエハ1の裏面からウエハピン8へと流し、回転駆動軸5を通じて、最終的に装置筐体7へと流し、装置外部へと流すことができる。本実施形態において、ステージ2は少なくとも1種のフッ素樹脂およびカーボンナノチューブを含む複合樹脂材料を含む樹脂成形体であってもよいし、なくてもよい。例えばステージ2が上記樹脂成形体である場合には、チャックピン3および/またはウエハピン8へと流れ込んだ静電気を、ステージ2から回転駆動軸5へと流し、最終的に装置外部へ流れるように設計してもよい。 In the present embodiment, at least one of the nozzle 4, the chuck pin 3 and the wafer pin 8 is a resin molded body including a composite resin material including at least one fluorocarbon resin and carbon nanotube. In addition, at least one of the plurality of chuck pins 3 and wafer pins 8 may be the resin molded body. Since the nozzle 4 is the resin molded body, charging of the liquid supplied to the surface of the semiconductor wafer 1 from the liquid supply port 6 through the nozzle 4 is prevented, and contamination of the liquid is also avoided. For example, when the chuck pin 3 is the above-mentioned resin molded body, although not shown, by electrically connecting the chuck pin 3 and the device housing 7, static electricity charged on the semiconductor wafer 1 flows into the chuck pin 3. Finally, it flows to the device case 7 and flows to the outside of the device. For example, when the wafer pin 8 is the above-mentioned resin molded body, static electricity charged on the semiconductor wafer 1 can be obtained by connecting the rotary drive shaft 5 made of metal, for example, to the wafer pin 8 as illustrated. Can be flowed to the wafer pin 8 and finally to the device housing 7 through the rotation drive shaft 5 to flow out of the device. In the present embodiment, the stage 2 may or may not be a resin molding containing a composite resin material containing at least one fluorocarbon resin and carbon nanotubes. For example, in the case where the stage 2 is the above-mentioned resin molded body, static electricity which has flowed into the chuck pin 3 and / or the wafer pin 8 is flowed from the stage 2 to the rotary drive shaft 5 and finally designed to flow out of the apparatus. You may
(第3実施形態)
 本発明の第3実施形態の半導体素子の製造装置を図4に示す。図4に示すように、本実施形態の製造装置は、ステージ2、チャックピン3およびノズル4を備えている。半導体ウエハ1は、その外周をチャックピン3で固定することにより、ステージ2に保持されている。なお、本実施形態において、半導体ウエハ1はステージ2の載置面に接している。ステージ2に取り付けられた回転駆動軸5を例えば図4中に矢印で示す方向に回転させることにより、ステージ2を、ステージ2に保持された半導体ウエハ1と共に回転させることができる。なお、チャックピンの数および位置は限定されず、適宜選択してよい。
Third Embodiment
An apparatus for manufacturing a semiconductor device according to a third embodiment of the present invention is shown in FIG. As shown in FIG. 4, the manufacturing apparatus of the present embodiment includes a stage 2, a chuck pin 3 and a nozzle 4. The semiconductor wafer 1 is held on the stage 2 by fixing its outer periphery with chuck pins 3. In the present embodiment, the semiconductor wafer 1 is in contact with the mounting surface of the stage 2. The stage 2 can be rotated together with the semiconductor wafer 1 held by the stage 2 by rotating the rotational drive shaft 5 attached to the stage 2 in the direction indicated by the arrow in FIG. 4, for example. The number and position of the chuck pins are not limited and may be selected as appropriate.
 本実施形態においては、少なくともノズル4とチャックピン3とが、少なくとも1種のフッ素樹脂およびカーボンナノチューブを含む複合樹脂材料を含む樹脂成形体である。なお、複数のチャックピン3のうちの少なくと1つが上記樹脂成形体であればよい。ノズル4が上記樹脂成形体であるために、ノズル4を通過して液供給口6から半導体ウエハ1の表面に供給される液の帯電が防止されると共に、液の汚染も回避される。例えばチャックピン3が上記樹脂成形体である場合、図示されていないが、チャックピン3と装置筐体7と電気的に接続することにより、半導体ウエハ1に帯電する静電気はチャックピン3へと流れ込み、最終的に装置筐体7へと流れ、装置外部へ流れる。本実施形態において、ステージ2は少なくとも1種のフッ素樹脂およびカーボンナノチューブを含む複合樹脂材料を含む樹脂成形体であってもよいし、なくてもよい。例えばステージ2が上記樹脂成形体である場合には、半導体ウエハ1の裏面とステージ2の載置面とが接しているために、半導体ウエハ1の裏側全体からより効率的に静電気を除去することが可能となる。この場合、チャックピン3へと流れ込んだ静電気を、ステージ2から回転駆動軸5へと流し、最終的に装置外部へ流れるように設計してもよい。 In the present embodiment, at least the nozzle 4 and the chuck pin 3 are a resin molded body including a composite resin material containing at least one fluorocarbon resin and carbon nanotube. In addition, at least one of the plurality of chuck pins 3 may be the resin molded body. Since the nozzle 4 is the resin molded body, charging of the liquid supplied to the surface of the semiconductor wafer 1 from the liquid supply port 6 through the nozzle 4 is prevented, and contamination of the liquid is also avoided. For example, when the chuck pin 3 is the above-mentioned resin molded body, although not shown, by electrically connecting the chuck pin 3 and the device housing 7, static electricity charged on the semiconductor wafer 1 flows into the chuck pin 3. Finally, it flows to the device case 7 and flows to the outside of the device. In the present embodiment, the stage 2 may or may not be a resin molding containing a composite resin material containing at least one fluorocarbon resin and carbon nanotubes. For example, when the stage 2 is the above-described resin molded body, static electricity is removed more efficiently from the entire back side of the semiconductor wafer 1 because the back surface of the semiconductor wafer 1 and the mounting surface of the stage 2 are in contact. Is possible. In this case, the static electricity flowing into the chuck pin 3 may be designed to flow from the stage 2 to the rotary drive shaft 5 and finally to flow out of the apparatus.
 以下、実施例によって本発明を具体的に説明するが、これらは本発明の範囲を限定するものではない。 Hereinafter, the present invention will be specifically described by way of examples, but these do not limit the scope of the present invention.
〔平均粒子径D50の測定〕
 複合樹脂粒子の製造に使用したフッ素樹脂粒子および複合樹脂粒子の平均粒子径は、レーザー回折散乱式粒度分布装置(日機装製「MT3300II」)により粒度分布を測定し、平均粒子径D50を得た。
[Measurement of average particle diameter D 50 ]
The average particle diameter of the fluorine resin particles and composite resin particles used in the preparation of the composite resin particles, the particle size distribution measured by a laser diffraction scattering particle size distribution analyzer (manufactured by Nikkiso "MT3300II"), to obtain a mean particle diameter D 50 .
〔比表面積の測定〕
 複合樹脂粒子の製造に使用したフッ素樹脂粒子および複合樹脂粒子の比表面積の測定は、JIS Z8830に従い、比表面積/細孔分布測定装置(日本ベル製BELSORP-miniII)を用いて行った。
[Measurement of specific surface area]
The measurement of the specific surface area of the fluorocarbon resin particles and the composite resin particles used for the production of the composite resin particles was carried out using a specific surface area / pore distribution measuring apparatus (BELSORP-miniII manufactured by Nippon Bell) in accordance with JIS Z8830.
〔結晶化熱の測定〕
 複合樹脂粒子の製造に使用したフッ素樹脂粒子の結晶化熱は、示差走査型熱量計(島津製作所製「DSC-50」)を用いて測定した。3mgの測定試料を、50℃/分の速度にて250℃まで昇温させ、一旦保持し、さらに10℃/分の速度にて380℃まで昇温させることにより結晶を融解させた後、10℃/分の速度で降温させた際に測定される結晶化点のピークから熱量に換算して測定した。
[Measurement of heat of crystallization]
The heat of crystallization of the fluorine resin particles used for producing the composite resin particles was measured using a differential scanning calorimeter ("DSC-50" manufactured by Shimadzu Corporation). 10 mg of the measurement sample is heated to 250 ° C. at a rate of 50 ° C./min and temporarily held, and then the crystal is melted by raising the temperature to 380 ° C. at a rate of 10 ° C./min. The peak of the crystallization point measured when the temperature was lowered at a rate of ° C./min was measured in terms of heat.
〔融点の測定〕
 複合樹脂粒子の製造に使用したフッ素樹脂粒子の融点の測定は、ASTM-D4591に準拠し、示差走査熱量計(DSC)を用いて測定できる融解熱ピークの温度として求めた。
[Measurement of melting point]
The measurement of the melting point of the fluorocarbon resin particles used for producing the composite resin particles was determined as the temperature of the heat of fusion peak which can be measured using a differential scanning calorimeter (DSC) in accordance with ASTM-D4591.
〔複合樹脂材料の作製〕
 後述する製造例で得た複合樹脂粒子を、必要に応じて前処理(例えば、予備乾燥、造粒等)を行った後、成形用金型に一定量、均一に充填した。充填後の作製手順はフッ素樹脂の種類によって異なる。
 フッ素樹脂が、PTFE樹脂及び変性PTFE樹脂の場合は、15MPaで加圧し一定時間保持することにより複合樹脂粒子を圧縮し、予備成形体を得た。得られた予備成形体を成形金型から取り出して、345℃以上に設定した熱風循環式電気炉で2時間以上焼成し、徐冷を行ったのち電気炉から取り出し、複合樹脂粒子の成形体(樹脂材料)を得た。
 フッ素樹脂が、PCTFE樹脂、PFA樹脂、FEP樹脂、ETFE樹脂、ECTFE樹脂、PVDF樹脂及びPVF樹脂(PTFE樹脂及び変性PTFE樹脂以外)の場合は、成形体寸法に応じて予備乾燥などの適切な前処理を行い、前処理実施後、金型を200℃以上に設定した熱風循環式電気炉で2時間以上加熱させて樹脂を溶融させる。所定時間加熱後、電気炉から金型を取り出し、油圧プレスを用いて25kg/cm以上の面圧で加圧圧縮しながら常温付近まで金型を冷却したのち、複合樹脂粒子の成形体(樹脂材料)を得た。
[Preparation of composite resin material]
The composite resin particles obtained in the production example described later were subjected to pretreatment (eg, preliminary drying, granulation, etc.) as necessary, and then uniformly filled in a predetermined amount in a molding die. The preparation procedure after filling varies depending on the type of fluororesin.
When the fluorocarbon resin was a PTFE resin and a modified PTFE resin, the composite resin particles were compressed by pressing at 15 MPa and holding for a certain period of time to obtain a preformed body. The obtained preform is taken out of the molding die, fired in a hot air circulating electric furnace set at 345 ° C. or more for 2 hours or more, slowly cooled, taken out from the electric furnace, and a molded product of composite resin particles ( Resin material was obtained.
If the fluorocarbon resin is PCTFE resin, PFA resin, FEP resin, ETFE resin, ECTFE resin, PVDF resin, and PVF resin (other than PTFE resin and modified PTFE resin), appropriate pre-drying etc. depending on the size of the molded product After the treatment and pre-treatment, the resin is melted by heating for 2 hours or more in a hot air circulating electric furnace in which the mold is set to 200 ° C. or more. After heating for a predetermined time, the mold is taken out of the electric furnace, and the mold is cooled to around normal temperature while pressing and compressing with a hydraulic press at a surface pressure of 25 kg / cm 2 or more. The material was obtained.
〔成形体の体積抵抗率の測定〕
 複合樹脂粒子から上記のようにして得た樹脂材料(成形体)からφ110×10mmの試験片を作製し、測定試料とした。体積抵抗率の測定は、JIS K6911に従い、抵抗率計(三菱化学アナリテック製「ロレスタ」または「ハイレスタ」)を用いて行った。
[Measurement of Volume Resistivity of Molded Article]
A test piece of φ110 × 10 mm was produced from the resin material (molded body) obtained as described above from the composite resin particles, and used as a measurement sample. The measurement of volume resistivity was performed using a resistivity meter ("Loresta" or "Hiresta" manufactured by Mitsubishi Chemical Analytech Co., Ltd.) according to JIS K6911.
〔成形体の金属溶出量の測定〕
 成形体における金属汚染の程度を、ICP質量分析装置(パーキンエルマー製「ELAN DRCII」)を用いて金属系17元素の金属溶出量を測定することにより評価した。具体的には、上記のようにして得た樹脂材料から切削取得した10mm×20mm×50mmの試験片を、3.6%塩酸(関東化学製EL-UMグレード)0.5Lに1時間程度浸漬し、1時間浸漬後に取出して超純水(比抵抗値:≧18.0MΩ・cm)で掛け流し洗浄を行い、3.6%塩酸0.1Lに試験片全体を浸漬して室温環境下で24時間および168時間保存した。規定時間経過後に浸漬液を全量回収し、浸漬液の金属不純物濃度を分析した。
[Measurement of metal elution amount of molded body]
The degree of metal contamination in the molded body was evaluated by measuring the metal elution amount of the metal-based 17 element using an ICP mass spectrometer ("ELAN DRCII" manufactured by Perkin Elmer). Specifically, a 10 mm × 20 mm × 50 mm test piece obtained by cutting the resin material obtained as described above is immersed in 0.5 L of 3.6% hydrochloric acid (EL-UM grade made by Kanto Chemical) for about 1 hour. After immersion for 1 hour, take out and wash with super pure water (specific resistance value: ≧ 18.0 MΩ · cm), and immerse the entire test piece in 0.1 L of 3.6% hydrochloric acid under room temperature environment It was stored for 24 hours and 168 hours. After the specified time elapsed, the entire amount of the immersion liquid was recovered, and the metal impurity concentration of the immersion liquid was analyzed.
〔成形体の炭素脱落の測定〕
成形体からのカーボンナノチューブの脱離の程度を、全有機体炭素計(島津製作所製「TOCvwp」)を用いてTOCを測定することにより評価した。具体的には、上記のようにして得た樹脂材料から切削取得した10mm×20mm×50mmの試験片を、3.6%塩酸(関東化学製EL-UMグレード)0.5Lに1時間程度浸漬し、1時間浸漬後に取出して超純水(比抵抗値:≧18.0MΩ・cm)で掛け流し洗浄を行い、超純水に試験片全体を浸漬して室温環境下で24時間および168時間保存した。規定時間経過後に浸漬液を全量回収し、浸漬液について全有機体炭素分析をした。
[Measurement of carbon dropout of molded body]
The degree of detachment of carbon nanotubes from the molded body was evaluated by measuring TOC using a total organic carbon meter (“TOCvwp” manufactured by Shimadzu Corporation). Specifically, a 10 mm × 20 mm × 50 mm test piece obtained by cutting the resin material obtained as described above is immersed in 0.5 L of 3.6% hydrochloric acid (EL-UM grade made by Kanto Chemical) for about 1 hour. After immersion for 1 hour, take out and wash with ultra pure water (specific resistance: 118.0 MΩ · cm), and immerse the entire test piece in ultra pure water for 24 hours and 168 hours at room temperature. saved. After the specified time elapsed, the entire amount of the immersion liquid was recovered, and the total organic carbon analysis was performed on the immersion liquid.
〔成形体の耐薬品性の評価〕
(重量変化の測定)
 成形体から切削取得した10mm×20mm×50mmの試験片の重量を電子天秤(エイ・アンド・デイ製分析用電子天びん「BM-252」)を用いて測定した。次いで、該試験片を、SPM(HSO:H=1:2(質量比))、FPM(HF:H=1:2(質量比))、APM(SC-1)(NHOH:H:HO=1:1:5(質量比))、オゾン水(50ppm)の各溶液中に168時間浸漬し、乾燥させて、浸漬後の試験片の重量を浸漬前度同様に電子天秤を用いて測定した。浸漬前後の重量変化を、次の式にて算出し、耐薬品性の指標とした。
重量変化(%)=[(浸漬後の重量-浸漬前の重量)/浸漬前の重量]×100
[Evaluation of chemical resistance of molded body]
(Measurement of weight change)
The weight of a 10 mm × 20 mm × 50 mm test piece cut and obtained from the molded body was measured using an electronic balance (A & D electronic balance for analysis “BM-252”). Then, the test pieces were subjected to SPM (H 2 SO 4 : H 2 O 2 = 1: 2 (mass ratio)), FPM (HF: H 2 O 2 = 1: 2 (mass ratio)), APM (SC− 1) Immerse in each solution of (NH 4 OH: H 2 O 2 : H 2 O = 1: 1: 5 (mass ratio)), ozone water (50 ppm) for 168 hours, allow to dry, and test after immersion The weight of the piece was measured using an electronic balance in the same manner as before immersion. The weight change before and after immersion was calculated by the following equation and used as an index of chemical resistance.
Weight change (%) = [(weight after immersion-weight before immersion) / weight before immersion] x 100
(硫酸過水浸漬処理(SPM処理))
 ガラスビーカー中で98%硫酸と30%過酸化水素水を2:1の重量比で混合して硫酸過水を調製した。調製した硫酸過水の温度が反応熱によって最高温度に達した所に、上記方法により得た複合樹脂粒子から切削加工により作製したJIS K7137-2-Aに従うダンベル試験片を入れ、24時間浸漬させた。24時間浸漬後、硫酸過水の調製、24時間浸漬を繰り返して行い、累積で30日間浸漬した試験片について、JIS K6911に従い体積抵抗率の測定を行った。
(Sulfuric acid soaking treatment (SPM treatment))
A sulfuric acid / hydrogen peroxide solution was prepared by mixing 98% sulfuric acid and 30% hydrogen peroxide water at a weight ratio of 2: 1 in a glass beaker. A dumbbell test piece made according to JIS K7137-2-A prepared by cutting from the composite resin particles obtained by the above method is put in a place where the temperature of the prepared sulfuric acid / hydrogen peroxide reaches the maximum temperature by the reaction heat, and it is immersed for 24 hours The After immersion for 24 hours, preparation of sulfuric acid / hydrogen peroxide was repeated, immersion for 24 hours was repeated, and measurement of volume resistivity was performed according to JIS K6911 for test pieces immersed for 30 days by accumulation.
〔樹脂粒子の製造〕
 以下の複合樹脂粒子の製造例において、次の表1に示す変性PTFE粒子またはポリクロロテトラフルオロエチレン(PCTFE)粒子を使用した。なお、表1に示す変性PTFE粒子1および2は、上記式(I)で表されるテトラフルオロエチレン単位と、上記式(II)(式中のXはパーフルオロプロピル基である)で表されるパーフルオロビニルエーテル単位とを有し、パーフルオロビニルエーテル単位の量は、変性ポリテトラフルオロエチレンの全質量に基づいて、0.01~1質量%であることを確認した。
Figure JPOXMLDOC01-appb-T000006
[Production of resin particles]
In the following production example of composite resin particles, modified PTFE particles or polychlorotetrafluoroethylene (PCTFE) particles shown in the following Table 1 were used. Modified PTFE particles 1 and 2 shown in Table 1 are represented by the tetrafluoroethylene unit represented by the above formula (I) and the above formula (II) (wherein X is a perfluoropropyl group). It was confirmed that the amount of perfluorovinyl ether unit was 0.01 to 1% by mass based on the total mass of the modified polytetrafluoroethylene.
Figure JPOXMLDOC01-appb-T000006
(製造例1:CNT複合樹脂粒子1の製造)
 水を溶媒としたカーボンナノチューブ分散液(分散剤=0.15質量%、カーボンナノチューブ=0.025質量%)500gにエタノールを3,500g加えて希釈した。さらに、変性PTFE粒子1を1,000g添加して混合スラリーを作製した。
 次いで、作製した混合スラリーを耐圧容器に供給し、耐圧容器内の混合スラリーに含まれる分散剤1mgに対して0.03g/分の供給速度で液化二酸化炭素を供給し、耐圧容器内の圧力を20MPa、温度を50℃となるまで昇圧・昇温させた。上記圧力および温度を3時間保持しながら二酸化炭素を、二酸化炭素中に溶け込んだ溶媒(水、エタノール)および分散剤と共に耐圧容器から排出させた。
 次いで、耐圧容器内の圧力、温度を大気圧、常温まで下げることにより耐圧容器内の二酸化炭素を除去し、CNT複合樹脂粒子1を得た。
(Production Example 1: Production of CNT Composite Resin Particles 1)
To 500 g of a carbon nanotube dispersion liquid (dispersant = 0.15 mass%, carbon nanotube = 0.025 mass%) using water as a solvent, 3,500 g of ethanol was added for dilution. Furthermore, 1,000 g of modified PTFE particles 1 were added to prepare a mixed slurry.
Next, the prepared mixed slurry is supplied to the pressure container, liquefied carbon dioxide is supplied at a supply rate of 0.03 g / min to 1 mg of the dispersant contained in the mixed slurry in the pressure container, and the pressure in the pressure container is adjusted. The pressure was raised and raised to a temperature of 50 ° C. at 20 MPa. While maintaining the above pressure and temperature for 3 hours, carbon dioxide was discharged from the pressure vessel together with the solvent (water, ethanol) dissolved in carbon dioxide and the dispersant.
Subsequently, the pressure and temperature in the pressure resistant vessel were lowered to atmospheric pressure and normal temperature to remove carbon dioxide in the pressure resistant vessel, whereby CNT composite resin particles 1 were obtained.
(製造例2:CNT複合樹脂粒子2の製造)
 CNTの量を得られる複合樹脂粒子の総量に基づいて0.05質量%としたこと以外は製造例1と同様にしてCNT複合樹脂粒子2を得た。
(Production Example 2: Production of CNT Composite Resin Particles 2)
A CNT composite resin particle 2 was obtained in the same manner as in Production Example 1 except that the amount of CNT was set to 0.05% by mass based on the total amount of composite resin particles.
(製造例3:CNT複合樹脂粒子3の製造)
 CNTの量を得られる複合樹脂粒子の総量に基づいて0.1質量%としたこと以外は製造例1と同様にしてCNT複合樹脂粒子3を得た。
Production Example 3 Production of CNT Composite Resin Particles 3
A CNT composite resin particle 3 was obtained in the same manner as in Production Example 1 except that the amount of CNT was set to 0.1% by mass based on the total amount of the composite resin particle.
(製造例4:CNT複合樹脂粒子4の製造)
 変性PTFE粒子1に代えて変性PTFE粒子2を用いたこと以外は製造例1と同様にしてCNT複合樹脂粒子4を得た。
Production Example 4 Production of CNT Composite Resin Particles 4
A CNT composite resin particle 4 was obtained in the same manner as in Production Example 1 except that the modified PTFE particle 2 was used in place of the modified PTFE particle 1.
(製造例5:CNT複合樹脂粒子5の製造)
 CNTの量を得られる複合樹脂粒子の総量に基づいて0.05質量%としたこと以外は製造例4と同様にしてCNT複合樹脂粒子5を得た。
(Production Example 5: Production of CNT Composite Resin Particles 5)
A CNT composite resin particle 5 was obtained in the same manner as in Production Example 4 except that the amount of CNT was set to 0.05% by mass based on the total amount of the composite resin particle.
(製造例6:CNT複合樹脂粒子6の製造)
 変性PTFE1に代えてPCTFE粒子2を用いたこと以外は製造例1と同様にしてCNT複合樹脂粒子6を得た。
Production Example 6: Production of CNT Composite Resin Particles 6
A CNT composite resin particle 6 was obtained in the same manner as in Production Example 1 except that PCTFE particles 2 were used instead of the modified PTFE 1.
(製造例7:CNT複合樹脂粒子7の製造)
 変性PTFE1に代えてPCTFE粒子2を用いたこと以外は製造例2と同様にしてCNT複合樹脂粒子7を得た。
Production Example 7 Production of CNT Composite Resin Particles 7
A CNT composite resin particle 7 was obtained in the same manner as in Production Example 2 except that PCTFE particles 2 were used instead of the modified PTFE 1.
(製造例8:CNT複合樹脂粒子8の製造)
 CNTの量を得られる複合樹脂粒子の総量に基づいて0.1質量%としたこと以外は製造例7と同様にしてCNT複合樹脂粒子8を得た。
Production Example 8 Production of CNT Composite Resin Particles 8
The CNT composite resin particles 8 were obtained in the same manner as in Production Example 7 except that the amount of CNTs was 0.1% by mass based on the total amount of the composite resin particles.
(製造例9:CNT複合樹脂粒子9の製造)
 CNTの量を得られる複合樹脂粒子の総量に基づいて0.125質量%としたこと以外は製造例7と同様にしてCNT複合樹脂粒子9を得た。
Production Example 9 Production of CNT Composite Resin Particles 9
The CNT composite resin particles 9 were obtained in the same manner as in Production Example 7 except that the amount of CNTs was 0.125% by mass based on the total amount of the composite resin particles.
(製造例10:CNT複合樹脂粒子10の製造)
 CNTの量を得られる複合樹脂粒子の総量に基づいて0.15質量%としたこと以外は製造例7と同様にしてCNT複合樹脂粒子10を得た。
(Production Example 10: Production of CNT Composite Resin Particles 10)
A CNT composite resin particle 10 was obtained in the same manner as in Production Example 7 except that the amount of CNT was set to 0.15% by mass based on the total amount of the composite resin particle.
(製造例11:CNT複合樹脂粒子11の製造)
 PCTFE粒子2に代えてPCTFE粒子3を用いたこと以外は製造例8と同様にしてCNT複合樹脂粒子11を得た。
Production Example 11 Production of CNT Composite Resin Particles 11
CNT composite resin particles 11 were obtained in the same manner as in Production Example 8 except that PCTFE particles 3 were used instead of PCTFE particles 2.
(製造例12:CNT複合樹脂粒子12の製造)
 PCTFE粒子2に代えてPCTFE粒子1を用いたこと以外は製造例8と同様にしてCNT複合樹脂粒子12を得た。
Production Example 12 Production of CNT Composite Resin Particles 12
CNT composite resin particles 12 were obtained in the same manner as in Production Example 8 except that PCTFE particles 1 were used instead of PCTFE particles 2.
(比較用樹脂粒子13)
 CNTを複合化させていない変性PTFE1を比較用の樹脂粒子13とした。
(Comparative resin particles 13)
The modified PTFE 1 in which the CNTs were not complexed was used as the resin particle 13 for comparison.
(比較用樹脂粒子14)
 CNTを複合化させていない変性PTFE2を比較用の樹脂粒子14とした。
(Comparative resin particles 14)
The modified PTFE 2 in which the CNTs were not complexed was used as the resin particle 14 for comparison.
(比較用樹脂粒子15)
 CNTを複合化させていないPCTFE2を比較用の樹脂粒子15とした。
(Comparative resin particles 15)
PCTFE 2 in which CNTs were not complexed was used as the resin particle 15 for comparison.
 上記の製造例で得た複合樹脂粒子1~12ならびに比較用樹脂粒子13~15の平均粒子径および比表面積を上記測定方法に従い測定した。結果を表2に示す。また、上記の樹脂粒子を用いて上記の方法に従い作製した複合樹脂材料(成形体)および比較用樹脂材料(成形体)について測定した体積抵抗率も表2に示す。さらに、CNTの量と樹脂材料の体積抵抗率から、次の式:
A=X/Y-14
により得た値Aも表2に示す。上記式中のXは、樹脂材料の体積抵抗率[Ω・cm]であり、Yは樹脂材料に含まれるCNTの量[質量%](樹脂材料の製造に使用したCNTの量に等しい)である。なお、以下において、複合樹脂粒子1~12から上記方法に従い作成した複合樹脂材料を、それぞれ、複合樹脂材料1~12とも称し、比較用樹脂粒子13~15から上記方法に従い作成した複合樹脂材料を、それぞれ、複合樹脂材料13~15とも称する。また、複合樹脂粒子におけるCNTの量は、該複合樹脂粒子から得た樹脂材料におけるCNTの量、および、該樹脂材料から得たチャックピンにおけるCNTの量と等しい。
Figure JPOXMLDOC01-appb-T000007
The average particle size and specific surface area of composite resin particles 1 to 12 and comparative resin particles 13 to 15 obtained in the above production example were measured in accordance with the above measurement method. The results are shown in Table 2. Further, the volume resistivity measured for the composite resin material (molded product) and the resin material for comparison (molded product) manufactured according to the above method using the above-described resin particles is also shown in Table 2. Furthermore, from the amount of CNT and the volume resistivity of the resin material, the following equation:
A = X / Y -14
The value A obtained by the above is also shown in Table 2. In the above formula, X is the volume resistivity [Ω · cm] of the resin material, and Y is the amount of CNT contained in the resin material [mass%] (equal to the amount of CNT used for the production of the resin material) is there. In the following, composite resin materials prepared according to the above method from composite resin particles 1-12 are also referred to as composite resin materials 1-12, respectively, and composite resin materials prepared according to the above method from comparative resin particles 13-15 Also referred to as composite resin materials 13 to 15, respectively. Further, the amount of CNTs in the composite resin particles is equal to the amount of CNTs in the resin material obtained from the composite resin particles and the amount of CNTs in the chuck pins obtained from the resin material.
Figure JPOXMLDOC01-appb-T000007
 複合樹脂材料1、2、7および8、ならびに、比較用樹脂材料13および15について、金属溶出量および炭素脱落の評価を行った。得られた結果を表3に示す。なお、表3中の金属溶出量の欄に記載した元素以外の元素(Ag、Cd、Co、Cr、K、Li、Mn、Na、Ni、Pb、Ti、Zn)については、金属溶出量の測定を行ったが装置検出限界(ND)であったため、表3中には結果を記載していない。また、表3中の結果はいずれも24時間浸漬後の結果である。
Figure JPOXMLDOC01-appb-T000008
For the composite resin materials 1, 2, 7 and 8 and the comparative resin materials 13 and 15, the metal elution amount and the carbon dropout were evaluated. The obtained results are shown in Table 3. In addition, about elements (Ag, Cd, Co, Cr, K, Li, Mn, Na, Ni, Pb, Ti, Zn) other than the element described in the column of the metal elution amount in Table 3, the metal elution amount is The results are not shown in Table 3 as the measurements were taken but at the instrument detection limit (ND). Moreover, all the results in Table 3 are the results after immersion for 24 hours.
Figure JPOXMLDOC01-appb-T000008
 複合樹脂材料1、2、7および8、ならびに、比較用樹脂材料13および15について、耐薬品性の評価を行った。得られた結果を表4に示す。
Figure JPOXMLDOC01-appb-T000009
Chemical resistance of the composite resin materials 1, 2, 7 and 8 and the comparative resin materials 13 and 15 was evaluated. The obtained results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000009
 上記の実施例2、7、8で得た複合樹脂粒子を用いてそれぞれ上記の方法に従い作製した複合樹脂2、7、8について、上記の条件で硫酸過水浸漬処理(SPM処理)を行い、処理後の体積抵抗率を測定した。その結果、次の表5に示すように、本願発明の装置において使用する樹脂材料はSPM処理を行っても体積抵抗率が増加しないことが確認された。
Figure JPOXMLDOC01-appb-T000010
The composite resin particles 2, 7 and 8 prepared according to the above method using the composite resin particles obtained in the above Example 2, 7 and 8 are subjected to sulfuric acid / hydrogen peroxide immersion treatment (SPM treatment) under the above conditions, The volume resistivity after treatment was measured. As a result, as shown in Table 5 below, it was confirmed that the resin material used in the apparatus of the present invention does not increase in volume resistivity even when SPM treatment is performed.
Figure JPOXMLDOC01-appb-T000010
(薬液洗浄時のウェハ帯電の除電効果測定)
1.洗浄前の表面電位
 上記のようにして複合樹脂材料7から切削加工を行い、実施例3の簡易なチャックピン状の加工品を得た。該チャックピンの体積抵抗率を測定したところ、複合樹脂材料7について測定した結果と同じ数値であることを確認した。該チャックピンを用いて、図1および図2に示す構造を有する半導体素子の製造装置を組み立てた。具体的には、図1および2に示すように、アルミ製のステージ2上に4個のチャックピン3を取り付けて、該チャックピン3で半導体ウエハ1を固定した。そして、除電効果を測定するにあたり、図5に示すようにステージ2の下にアルミブロック9を設置し、ステージ2およびステージ2上にチャックピン3で保持されたシリコンウエハ1を水平面に対して10°傾けて固定した。なおステージ2は、アルミブロック9および装置筐体7を介して接地された状態にした。この状態で半導体ウエハ1の表面電位(洗浄前)を静電気測定器(SIMCO製「FMK-004」)で測定した。
(Measurement of charge removal effect of wafer charge at chemical cleaning)
1. Surface Potential Before Cleaning As described above, cutting was performed on the composite resin material 7 to obtain a simple chuck pin-shaped processed product of Example 3. When the volume resistivity of the chuck pin was measured, it was confirmed that the numerical value was the same as the result measured for the composite resin material 7. Using the chuck pins, an apparatus for manufacturing a semiconductor device having the structure shown in FIGS. 1 and 2 was assembled. Specifically, as shown in FIGS. 1 and 2, four chuck pins 3 were mounted on an aluminum stage 2, and the semiconductor wafer 1 was fixed by the chuck pins 3. Then, to measure the static elimination effect, the aluminum block 9 is placed under the stage 2 as shown in FIG. 5, and the silicon wafer 1 held by the chuck pins 3 on the stage 2 and the stage 2 ° Fixed by tilting. The stage 2 was grounded via the aluminum block 9 and the device casing 7. In this state, the surface potential (before cleaning) of the semiconductor wafer 1 was measured with an electrostatic measuring instrument (“FMK-004” manufactured by SIMCO).
2.DIW洗浄後の表面電位
 ノズル4を通じて液供給口6から超純水を吐出し、半導体ウエハ1の上面に超純水を供給し、半導体ウエハ1の洗浄を1分間行った。そして、半導体ウエハ1の表面電位(DIW洗浄後)を静電気測定器で測定した。なお、本実施例においてはPFA製のノズルを使用したが、ノズルも上記複合樹脂材料で構成させることにより、除電効果をさらに高めることができる。例えば上記のようにして得た複合樹脂材料の成形体から、CNC普通旋盤等の装置を用いて切削加工し、ノズルを製造することができる。
2. The surface potential after DIW cleaning The ultrapure water was discharged from the liquid supply port 6 through the nozzle 4, and the ultrapure water was supplied to the upper surface of the semiconductor wafer 1, and the semiconductor wafer 1 was cleaned for 1 minute. Then, the surface potential (after DIW cleaning) of the semiconductor wafer 1 was measured by an electrostatic measuring instrument. In addition, although the nozzle made from PFA was used in the present Example, the static elimination effect can be further heightened by making a nozzle also into the said composite resin material. For example, the nozzle can be manufactured by cutting using a device such as a CNC common lathe from the molded product of the composite resin material obtained as described above.
3.乾燥後の表面電位
 次いで、半導体ウエハ1にノズル4からNを吹き付けて、ウエハ1表面に残存する超純水をチャックピン3、ステージ2を介して装置筐体7に押し流して半導体ウエハ1を乾燥させた。そして、半導体ウエハ1の表面電位(N乾燥後)を静電気測定器で測定した。
3. Surface potential after drying Then, N 2 is sprayed from the nozzle 4 onto the semiconductor wafer 1 and the ultrapure water remaining on the surface of the wafer 1 is flushed through the chuck pin 3 and the stage 2 to the apparatus casing 7 to carry out the semiconductor wafer 1. It was allowed to dry. Then, the surface potential (after N 2 drying) of the semiconductor wafer 1 was measured by an electrostatic measuring instrument.
 次に、比較用樹脂材料15を切削加工することにより製造した比較例2で得たチャックピンを用いたこと以外は上記と同様にして、上記除電効果測定を行った。 Next, the static elimination effect measurement was performed in the same manner as described above except that the chuck pin obtained in Comparative Example 2 manufactured by cutting the comparative resin material 15 was used.
 上記の薬液洗浄時のウエハ帯電の除電効果測定で得られた結果を表6に示す。
Figure JPOXMLDOC01-appb-T000011
Table 6 shows the results obtained by measuring the charge removal effect of wafer charging during the above chemical solution cleaning.
Figure JPOXMLDOC01-appb-T000011
 複合樹脂粒子2および8から得た複合樹脂材料2および8から、10mm×10mm×厚さ2mmの試験片を得た。該試験片を表7に示す種々の薬液に浸漬させ、浸漬前と約1週間(1W)および約1ヶ月(1M)浸漬後の重量変化を測定した。得られた結果を表7に示す。なお、表7中のAPMへの浸漬試験は80℃の温度条件下で行い、その他の薬液への浸漬試験は室温条件下で行った。また、表7中の各薬液の詳細は表8に示すとおりである。 From composite resin materials 2 and 8 obtained from composite resin particles 2 and 8, test pieces of 10 mm × 10 mm × thickness 2 mm were obtained. The test pieces were immersed in various chemical solutions shown in Table 7, and weight changes before and after immersion for about 1 week (1 W) and about 1 month (1 M) were measured. The obtained results are shown in Table 7. In addition, the immersion test to APM in Table 7 was performed on temperature conditions of 80 degreeC, and the immersion test to another chemical | medical solution was performed on room temperature conditions. The details of each chemical solution in Table 7 are as shown in Table 8.
〔比較用樹脂材料16~18〕
 PTFEにグラファイトを15重量%添加した市販成形体を比較用樹脂材料16とし、PTFEにカーボンファイバーを15重量%添加した市販成形体を比較用樹脂材料17とした。また、市販の複合材料(PFA樹脂と炭素繊維の複合材料)を比較用樹脂材料18とした。これらの材料の上記サイズを有する試験片についても同様に、表7に示す種々の薬液への浸漬試験を行った。得られた結果を表7に示す。
[Comparative resin materials 16 to 18]
A commercially available molded article in which 15% by weight of graphite is added to PTFE is used as the resin material 16 for comparison, and a commercially available molded article in which 15% by weight of carbon fiber is added to PTFE is used as the resin material 17 for comparison. Further, a commercially available composite material (composite material of PFA resin and carbon fiber) was used as the resin material 18 for comparison. The immersion test to the various chemical | medical solutions shown in Table 7 was similarly done about the test piece which has the said size of these materials. The obtained results are shown in Table 7.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
  1 半導体ウエハ
  2 ステージ
  3 チャックピン
  4 ノズル
  5 回転駆動軸
  6 液供給口
  7 装置筐体
  8 ウエハピン
  9 アルミブロック
  10 カップ体
  10a 外カップ
  10b 内カップ
  11 昇降部
Reference Signs List 1 semiconductor wafer 2 stage 3 chuck pin 4 nozzle 5 rotation drive shaft 6 liquid supply port 7 apparatus housing 8 wafer pin 9 aluminum block 10 cup body 10 a outer cup 10 b inner cup 11 lift portion

Claims (11)

  1.  チャックピン及び/又はウエハピンを備え、半導体ウエハを保持するためのステージ;及び
     洗浄液、エッチング液又はレジスト液を供給するためのノズル
    を、少なくとも有する半導体素子の製造装置であって、
     ノズルは、少なくとも1種のフッ素樹脂およびカーボンナノチューブを含む複合樹脂材料を含む樹脂成形体であり、;及び/又は
     チャックピン、ウエハピン及びステージから選択される少なくとも1は、少なくとも1種のフッ素樹脂およびカーボンナノチューブを含む複合樹脂材料を含む樹脂成形体である、半導体素子の製造装置。
    An apparatus for manufacturing a semiconductor device, comprising at least a stage for holding a semiconductor wafer, comprising a chuck pin and / or a wafer pin; and a nozzle for supplying a cleaning solution, an etching solution or a resist solution,
    The nozzle is a resin molded body comprising a composite resin material containing at least one fluorocarbon resin and carbon nanotube; and / or at least one selected from a chuck pin, a wafer pin and a stage is at least one fluorocarbon resin and The manufacturing apparatus of the semiconductor element which is a resin molding which contains the composite resin material containing a carbon nanotube.
  2.  チャックピン及び/又はウエハピンは、少なくとも1種のフッ素樹脂およびカーボンナノチューブを含む複合樹脂材料を含む樹脂成形体であり、及び
     ノズルは、少なくとも1種のフッ素樹脂およびカーボンナノチューブを含む複合樹脂材料を含む樹脂成形体である、請求項1に記載の半導体素子の製造装置。
    The chuck pin and / or the wafer pin is a resin molded body including a composite resin material including at least one fluorocarbon resin and carbon nanotube, and the nozzle includes a composite resin material including at least one fluorocarbon resin and carbon nanotube The manufacturing apparatus of the semiconductor element of Claim 1 which is a resin molding.
  3.  フッ素樹脂は、ポリテトラフルオロエチレン(PTFE)、変性ポリテトラフルオロエチレン(変性PTFE)、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)、エチレン/テトラフルオロエチレン共重合体(ETFE)、エチレン/クロロトリフルオロエチレン共重合体(ECTFE)、ポリクロロトリフルオロエチレン(PCTFE)、ポリフッ化ビニリデン(PVDF)およびポリフッ化ビニル(PVF)からなる群から選択される、請求項1又は2に記載の製造装置。 Fluororesins include polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP) , Ethylene / tetrafluoroethylene copolymer (ETFE), ethylene / chlorotrifluoroethylene copolymer (ECTFE), polychlorotrifluoroethylene (PCTFE), polyvinylidene fluoride (PVDF) and polyvinyl fluoride (PVF) The manufacturing apparatus according to claim 1 or 2, selected from the group.
  4.  ステージは、少なくとも1種のフッ素樹脂およびカーボンナノチューブを含む複合樹脂材料を含む樹脂成形体である、請求項1~3のいずれかに記載の製造装置。 The production apparatus according to any one of claims 1 to 3, wherein the stage is a resin molding containing a composite resin material containing at least one fluorocarbon resin and carbon nanotubes.
  5.  チャックピンおよび/またはウエハピンを構成する樹脂成形体は、樹脂成形体の総量に基づいて0.01~2.0質量%のカーボンナノチューブを含有する、請求項1~4のいずれかに記載の製造装置。 The production according to any one of claims 1 to 4, wherein the resin molded body constituting the chuck pin and / or the wafer pin contains 0.01 to 2.0% by mass of carbon nanotubes based on the total amount of the resin molded body. apparatus.
  6.  ノズルを構成する樹脂成形体は、樹脂成形体の総量に基づいて0.01~2.0質量%のカーボンナノチューブを含有する、請求項1~5のいずれかに記載の製造装置。 The manufacturing apparatus according to any one of claims 1 to 5, wherein the resin molded body constituting the nozzle contains 0.01 to 2.0% by mass of carbon nanotubes based on the total amount of the resin molded body.
  7.  ステージを構成する樹脂成形体は、樹脂成形体の総量に基づいて0.01~2.0質量%のカーボンナノチューブを含有する、請求項1~6のいずれかに記載の製造装置。 The production apparatus according to any one of claims 1 to 6, wherein the resin molded body constituting the stage contains 0.01 to 2.0% by mass of carbon nanotubes based on the total amount of the resin molded body.
  8.  チャックピンおよび/またはウエハピンを構成する樹脂成形体は1.0×10Ω・cm以下の体積抵抗率を有する、請求項1~7のいずれかに記載の製造装置。 The manufacturing apparatus according to any one of claims 1 to 7, wherein a resin molded body forming the chuck pin and / or the wafer pin has a volume resistivity of 1.0 × 10 8 Ω · cm or less.
  9.  ノズルを構成する樹脂成形体は1.0×10Ω・cm以下の体積抵抗率を有する、請求項1~8のいずれかに記載の製造装置。 The manufacturing apparatus according to any one of claims 1 to 8, wherein the resin molded body constituting the nozzle has a volume resistivity of 1.0 × 10 8 Ω · cm or less.
  10.  ステージを構成する樹脂成形体は1.0×10Ω・cm以下の体積抵抗率を有する、請求項1~9のいずれかに記載の製造装置。 The production apparatus according to any one of claims 1 to 9, wherein the resin molded product constituting the stage has a volume resistivity of 1.0 × 10 8 Ω · cm or less.
  11.  請求項1~10のいずれかに記載の製造装置を用いて、半導体ウエハの表面にノズルから洗浄液を供給して半導体ウエハを洗浄する工程、半導体ウエハの表面にノズルからエッチング液を供給して半導体ウエハをエッチングする工程、および、半導体ウエハの表面にノズルからレジスト液を供給して半導体ウエハをレジストする工程からなる群から選択される少なくとも1つの工程を含む半導体素子の製造方法。 A process of supplying a cleaning liquid to a surface of a semiconductor wafer from a nozzle and cleaning the semiconductor wafer using the manufacturing apparatus according to any one of claims 1 to 10, and supplying an etching liquid to the surface of a semiconductor wafer from a nozzle A method of manufacturing a semiconductor device comprising at least one step selected from the group consisting of a step of etching a wafer and a step of supplying a resist solution from a nozzle to the surface of a semiconductor wafer to resist the semiconductor wafer.
PCT/JP2018/027360 2017-07-21 2018-07-20 Semiconductor element manufacturing device and semiconductor element manufacturing method WO2019017489A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019530624A JPWO2019017489A1 (en) 2017-07-21 2018-07-20 Semiconductor device manufacturing apparatus and semiconductor device manufacturing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017142266 2017-07-21
JP2017-142266 2017-07-21
JP2018021651 2018-02-09
JP2018-021651 2018-02-09

Publications (1)

Publication Number Publication Date
WO2019017489A1 true WO2019017489A1 (en) 2019-01-24

Family

ID=65016646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027360 WO2019017489A1 (en) 2017-07-21 2018-07-20 Semiconductor element manufacturing device and semiconductor element manufacturing method

Country Status (3)

Country Link
JP (1) JPWO2019017489A1 (en)
TW (1) TW201919102A (en)
WO (1) WO2019017489A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020130144A1 (en) * 2018-12-21 2020-06-25 ダイキン工業株式会社 Fluoropolymer composition, molded article, and injection molded article
JP2020184590A (en) * 2019-05-09 2020-11-12 株式会社Screenホールディングス Substrate processing apparatus and chuck member
CN112201589A (en) * 2019-07-08 2021-01-08 细美事有限公司 Substrate processing apparatus and substrate processing method
JP2022036902A (en) * 2020-08-24 2022-03-08 セメス カンパニー,リミテッド Substrate processing device, ion implantation processing device, and ion implantation processing method
KR20230129409A (en) 2021-01-06 2023-09-08 미쯔비시 케미컬 주식회사 Composition for organic electroluminescent devices, organic electroluminescent devices, display devices and lighting devices
JP7403362B2 (en) 2020-03-26 2023-12-22 株式会社Screenホールディングス Substrate processing method and substrate processing apparatus

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004304138A (en) * 2003-06-13 2004-10-28 Tokyo Electron Ltd Substrate treatment equipment
JP2006286947A (en) * 2005-03-31 2006-10-19 Toshiba Corp Method and apparatus for cleaning electronic device
JP2008004762A (en) * 2006-06-22 2008-01-10 Nippon Valqua Ind Ltd Spin cup of wafer cleaning/drying device
JP2008159789A (en) * 2006-12-22 2008-07-10 Renesas Technology Corp Semiconductor device manufacturing method
JP2009295751A (en) * 2008-06-04 2009-12-17 Ebara Corp Substrate holding mechanism, and substrate holding method
JP2013093407A (en) * 2011-10-25 2013-05-16 Micro Engineering Inc Substrate processing apparatus and substrate processing method
JP2014241390A (en) * 2013-05-13 2014-12-25 株式会社Screenホールディングス Substrate processing apparatus
JP2017075674A (en) * 2015-10-16 2017-04-20 サーパス工業株式会社 Fluidic device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006083297A (en) * 2004-09-16 2006-03-30 Nichias Corp Molded product of fluororesin and method for producing the same
JP5732079B2 (en) * 2011-02-07 2015-06-10 大陽日酸株式会社 Method for producing composite resin material particles

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004304138A (en) * 2003-06-13 2004-10-28 Tokyo Electron Ltd Substrate treatment equipment
JP2006286947A (en) * 2005-03-31 2006-10-19 Toshiba Corp Method and apparatus for cleaning electronic device
JP2008004762A (en) * 2006-06-22 2008-01-10 Nippon Valqua Ind Ltd Spin cup of wafer cleaning/drying device
JP2008159789A (en) * 2006-12-22 2008-07-10 Renesas Technology Corp Semiconductor device manufacturing method
JP2009295751A (en) * 2008-06-04 2009-12-17 Ebara Corp Substrate holding mechanism, and substrate holding method
JP2013093407A (en) * 2011-10-25 2013-05-16 Micro Engineering Inc Substrate processing apparatus and substrate processing method
JP2014241390A (en) * 2013-05-13 2014-12-25 株式会社Screenホールディングス Substrate processing apparatus
JP2017075674A (en) * 2015-10-16 2017-04-20 サーパス工業株式会社 Fluidic device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020130144A1 (en) * 2018-12-21 2020-06-25 ダイキン工業株式会社 Fluoropolymer composition, molded article, and injection molded article
JP2020100823A (en) * 2018-12-21 2020-07-02 ダイキン工業株式会社 Fluoropolymer composition, molded article, and injection molded article
JP2020184590A (en) * 2019-05-09 2020-11-12 株式会社Screenホールディングス Substrate processing apparatus and chuck member
JP7324043B2 (en) 2019-05-09 2023-08-09 株式会社Screenホールディングス Substrate processing equipment
JP7263292B2 (en) 2019-07-08 2023-04-24 サムス カンパニー リミテッド SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD
JP2021013019A (en) * 2019-07-08 2021-02-04 サムス カンパニー リミテッド Substrate processing apparatus and substrate processing method
CN112201589A (en) * 2019-07-08 2021-01-08 细美事有限公司 Substrate processing apparatus and substrate processing method
US11804371B2 (en) 2019-07-08 2023-10-31 Semes Co., Ltd. Substrate treatment apparatus and method of performing treatment process on substrate
CN112201589B (en) * 2019-07-08 2024-04-05 细美事有限公司 Substrate processing apparatus and substrate processing method
JP7403362B2 (en) 2020-03-26 2023-12-22 株式会社Screenホールディングス Substrate processing method and substrate processing apparatus
JP2022036902A (en) * 2020-08-24 2022-03-08 セメス カンパニー,リミテッド Substrate processing device, ion implantation processing device, and ion implantation processing method
JP7379419B2 (en) 2020-08-24 2023-11-14 セメス カンパニー,リミテッド Substrate processing equipment, ion implantation processing equipment, and ion implantation processing method
US11961695B2 (en) 2020-08-24 2024-04-16 Semes Co., Ltd. Substrate treating apparatus, ion implantation apparatus, and ion implantation method
KR20230129409A (en) 2021-01-06 2023-09-08 미쯔비시 케미컬 주식회사 Composition for organic electroluminescent devices, organic electroluminescent devices, display devices and lighting devices

Also Published As

Publication number Publication date
TW201919102A (en) 2019-05-16
JPWO2019017489A1 (en) 2020-07-16

Similar Documents

Publication Publication Date Title
WO2019017489A1 (en) Semiconductor element manufacturing device and semiconductor element manufacturing method
EP1751333B1 (en) Spin-coatable liquid for formation of high purity nanotube films
EP1751778B1 (en) Applicator liquid for use in electronic fabrication processes
TWI300046B (en) High purity nanotube fabrics and films
US7658869B2 (en) Applicator liquid containing ethyl lactate for preparation of nanotube films
US7556746B2 (en) Method of making an applicator liquid for electronics fabrication process
WO2020130144A1 (en) Fluoropolymer composition, molded article, and injection molded article
JP6571304B2 (en) Tank and chemical supply system
WO2019155975A1 (en) Static elimination tube and method for producing same
TWI770219B (en) Liquid medicine, liquid medicine accommodation body
JP5716885B2 (en) Composition, method for producing the same, and carbon nanotube-containing film
TWI699397B (en) Composite resin material and molded article
US20220227958A1 (en) Filter housing and filter comprising same
KR100880280B1 (en) Applicator liquid for use in electronic fabrication processes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18835531

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019530624

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18835531

Country of ref document: EP

Kind code of ref document: A1