WO2020137309A1 - レジスト組成物 - Google Patents

レジスト組成物 Download PDF

Info

Publication number
WO2020137309A1
WO2020137309A1 PCT/JP2019/046091 JP2019046091W WO2020137309A1 WO 2020137309 A1 WO2020137309 A1 WO 2020137309A1 JP 2019046091 W JP2019046091 W JP 2019046091W WO 2020137309 A1 WO2020137309 A1 WO 2020137309A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resist composition
resin
atom
groups
Prior art date
Application number
PCT/JP2019/046091
Other languages
English (en)
French (fr)
Inventor
今田 知之
裕仁 長田
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2020551451A priority Critical patent/JP6814421B2/ja
Priority to CN201980086276.7A priority patent/CN113227181B/zh
Priority to KR1020217017545A priority patent/KR102467637B1/ko
Publication of WO2020137309A1 publication Critical patent/WO2020137309A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/023Macromolecular quinonediazides; Macromolecular additives, e.g. binders
    • G03F7/0233Macromolecular quinonediazides; Macromolecular additives, e.g. binders characterised by the polymeric binders or the macromolecular additives other than the macromolecular quinonediazides
    • G03F7/0236Condensation products of carbonyl compounds and phenolic compounds, e.g. novolak resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
    • C08G8/18Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ with phenols substituted by carboxylic or sulfonic acid groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
    • C08G8/20Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ with polyhydric phenols
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/023Macromolecular quinonediazides; Macromolecular additives, e.g. binders
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2004Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light

Definitions

  • the present invention relates to a resist composition.
  • a positive photoresist composition using a mixture of m-cresol novolac resin and p-cresol novolac resin as the alkali-soluble resin has been proposed (see, for example, Patent Document 1).
  • the positive photoresist composition described in Patent Document 1 was developed for the purpose of improving developability such as sensitivity, but in recent years, the degree of integration of semiconductors has increased, and the pattern tends to be thin, Greater sensitivity is required. However, the positive photoresist composition described in Patent Document 1 has a problem that sufficient sensitivity for thinning cannot be obtained. Further, since various heat treatments are performed in the manufacturing process of semiconductors and the like, high heat resistance is also required, but the positive photoresist composition described in Patent Document 1 does not have sufficient heat resistance. There was a problem.
  • the problem to be solved by the present invention is to provide a resist composition which has high heat resistance and can be used for lithography using electron beams and extreme ultraviolet rays.
  • the metal of the novolak-type phenol resin obtained by making a carboxylic acid containing phenol trinuclear compound which has a specific structure react with an aliphatic aldehyde.
  • the present invention has been completed by finding that a resist composition containing a salt structure has high heat resistance and can be used for lithography using electron beams and extreme ultraviolet rays.
  • the present invention provides a resist composition containing a metal salt of a novolac type phenol resin (C), which contains an aromatic compound (A) represented by the following formula (1) and an aliphatic aldehyde (B) as essential reaction raw materials. It is about things.
  • R 1 and R 2 each independently represent a hydrogen atom, an aliphatic hydrocarbon group having 1 to 9 carbon atoms, an alkoxy group, an aryl group, an aralkyl group or a halogen atom.
  • m and n each independently represent an integer of 0 to 4.
  • R 1 is a plurality, the plurality of R 1 may be the same or different.
  • R 2 are a plurality, the plurality of R 2 may be the same or different.
  • R 3 represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 9 carbon atoms, or a structural moiety having at least one substituent selected from an alkoxy group, a halogen group and a hydroxyl group on the hydrocarbon group.
  • the present invention can provide a resist composition which has high heat resistance and can be used for lithography using electron beams and extreme ultraviolet rays.
  • FIG. 3 is a 13 C-NMR chart diagram of the precursor compound obtained in Synthesis Example 1. It is a GPC chart figure of the precursor compound obtained by the synthesis example 2.
  • FIG. 9 is a 13 C-NMR chart diagram of the precursor compound obtained in Synthesis Example 2. It is a GPC chart figure of the novolak-type phenol resin obtained in manufacture example 1. It is a GPC chart figure of the novolac-type phenol resin obtained in manufacture example 2.
  • FIG. 6 is a GPC chart diagram of a novolac resin obtained in Production Example 3. It is a GPC chart figure of the novolak resin obtained in manufacture example 4.
  • the resist composition of the present invention contains a metal salt of a novolac-type phenol resin (C) containing an aromatic compound (A) represented by the following formula (1) and an aliphatic aldehyde (B) as essential reaction raw materials. ..
  • R 1 and R 2 each independently represent a hydrogen atom, an aliphatic hydrocarbon group having 1 to 9 carbon atoms, an alkoxy group, an aryl group, an aralkyl group or a halogen atom.
  • m and n each independently represent an integer of 0 to 4.
  • R 1 is a plurality, the plurality of R 1 may be the same or different.
  • R 2 are a plurality, the plurality of R 2 may be the same or different.
  • R 3 represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 9 carbon atoms, or a structural moiety having at least one substituent selected from an alkoxy group, a halogen group and a hydroxyl group on the hydrocarbon group.
  • the resist composition usually contains a resin that decomposes due to the action of an acid to change its polarity (acid-decomposable resin), and a compound that generates an acid when irradiated with light (a photo-acid generator).
  • the photo-acid generator generates an acid upon exposure, and the action of the generated acid changes the polarity of the resin to form a desired pattern.
  • the resolution of the formed pattern may be insufficient due to the mechanism of unevenness of acid diffusion.
  • a desired pattern is formed by the decomposition of the metal salt structure by the exposure to the desorption of metal ions and the change in polarity of the novolac type phenolic resin (C).
  • the resist composition of the present invention which does not have the mechanism of unevenness of acid diffusion, a high resolution can be obtained.
  • the resist composition of the present invention can solve this problem.
  • the metal salt of the novolac type phenol resin (C) may have a metal salt structure in part or all of the functional groups of the novolac type phenol resin (C).
  • the metal salt of the novolac type phenol resin (C) is preferably a carboxylic acid metal salt of the novolac type phenol resin (C).
  • the carboxylic acid metal salt of the novolac type phenol resin (C) preferably has a structure represented by the following formula (X).
  • R 1, R 2, R 3 , m and n are the same as R 1, R 2, R 3 , m and n in the formula (1). * Is a point of attachment to any of the three aromatic rings of the above formula (1), and two * may be attached to the same aromatic ring or different aromatic rings. Met represents a metal atom. n represents an integer of 1 or more. )
  • the novolac type phenolic resin (C) contains a metal salt structure, and the content of the metal salt structure is, for example, in all repeating units of the novolac type phenolic resin (C). It is 1 to 80 mol %, preferably 10 to 65 mol %, and more preferably 20 to 50 mol %.
  • the novolac type phenol resin (C) is a resin in which an aromatic compound (A) represented by the following formula (1) and an aliphatic aldehyde (B) are essential reaction raw materials.
  • R 1 and R 2 each independently represent a hydrogen atom, an aliphatic hydrocarbon group having 1 to 9 carbon atoms, an alkoxy group, an aryl group, an aralkyl group or a halogen atom.
  • m and n each independently represent an integer of 0 to 4.
  • R 1 is a plurality, the plurality of R 1 may be the same or different.
  • R 2 are a plurality, the plurality of R 2 may be the same or different.
  • R 3 represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 9 carbon atoms, or a structural moiety having at least one substituent selected from an alkoxy group, a halogen group and a hydroxyl group on the hydrocarbon group.
  • the aliphatic hydrocarbon group having 1 to 9 carbon atoms represented by R 1 , R 2 and R 3 is a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group or a t-butyl group. And hexyl group, cyclohexyl group, heptyl group, octyl group, nonyl group and the like, and alkyl groups having 1 to 9 carbon atoms and cycloalkyl groups having 3 to 9 carbon atoms.
  • examples of the alkoxy group for R 1 and R 2 include a methoxy group, an ethoxy group, a propyloxy group, a butoxy group, a pentyloxy group, a hexyloxy group, and a cyclohexyloxy group.
  • examples of the aryl group represented by R 1 and R 2 include a phenyl group, a tolyl group, a xylyl group, a naphthyl group, and an anthryl group.
  • examples of the aralkyl group represented by R 1 and R 2 include a benzyl group, a phenylethyl group, a phenylpropyl group, and a naphthylmethyl group.
  • examples of the halogen atom represented by R 1 and R 2 include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • a structural moiety having at least one substituent selected from an alkoxy group, a halogen group and a hydroxyl group on the hydrocarbon group is a halogenated alkyl group, a halogenated aryl group, 2 Examples thereof include an alkoxyalkoxy group such as a -methoxyethoxy group and a 2-ethoxyethoxy group, and an alkylalkoxy group substituted with a hydroxy group.
  • n and m are each preferably an integer of 2 or 3.
  • n and m are each 2, it is preferable that two R 1 and two R 2 are each independently an alkyl group having 1 to 3 carbon atoms. At this time, two R 1 and two R 2 are preferably bonded to the 2,5-position of the phenolic hydroxyl group.
  • aromatic compound (A) represented by the formula (1) those having the same structure may be used alone, or a plurality of compounds having different molecular structures may be used.
  • the aromatic compound (A) represented by the formula (1) can be prepared, for example, by a condensation reaction of an alkyl-substituted phenol (a1) and an aromatic aldehyde (a2) having a carboxyl group.
  • the aromatic compound (A) represented by the formula (1) can be prepared, for example, by a condensation reaction of an alkyl-substituted phenol (a1) and an aromatic ketone (a3) having a carboxyl group.
  • the alkyl-substituted phenol (a1) is a phenol having an alkyl group substituted, and examples of the alkyl group include an alkyl group having 1 to 8 carbon atoms, and a methyl group is preferable.
  • alkyl-substituted phenol (a1) examples include o-cresol, m-cresol, p-cresol, o-ethylphenol, m-ethylphenol, p-ethylphenol, p-octylphenol, pt-butylphenol, o.
  • -Monoalkylphenols such as cyclohexylphenol, m-cyclohexylphenol and p-cyclohexylphenol; dialkyl such as 2,5-xylenol, 3,5-xylenol, 3,4-xylenol, 2,4-xylenol and 2,6-xylenol Alkylphenol; trialkylphenols such as 2,3,5-trimethylphenol, 2,3,6-trimethylphenol and the like can be mentioned.
  • dialkylphenol is preferable, and 2,5-xylenol and 2,6-xylenol are more preferable.
  • the alkyl-substituted phenol (a1) may be used alone or in combination of two or more.
  • the aromatic aldehyde (a2) having a carboxyl group is a compound having a formyl group on the aromatic nucleus such as benzene, naphthalene, phenol, resorcin, naphthol, and dihydroxynaphthalene, and an alkyl group, an alkoxy group, a halogen atom in addition to the formyl group. And the like.
  • aromatic aldehyde (a2) having a carboxyl group examples include 4-formylbenzoic acid, 2-formylbenzoic acid, 3-formylbenzoic acid, methyl 4-formylbenzoate, ethyl 4-formylbenzoate, 4- Propyl formyl benzoate, isopropyl 4-formyl benzoate, butyl 4-formyl benzoate, isobutyl 4-formyl benzoate, tertiary butyl 4-formyl benzoate, cyclohexyl 4-formyl benzoate, tertiary octyl benzoyl benzoate Etc. Of these, 4-formylbenzoic acid is preferable.
  • the aromatic aldehyde (a2) having a carboxyl group may be used alone or in combination of two or more.
  • the aromatic ketone (a3) having a carboxyl group is a compound having at least one carboxyl group or its ester derivative and a carbonyl group in the aromatic ring.
  • aromatic ketone (a3) having a carboxyl group examples include, for example, 2-acetylbenzoic acid, 3-acetylbenzoic acid, 4-acetylbenzoic acid, methyl 2-acetylbenzoate and ethyl 2-acetylbenzoate. , Propyl 2-acetylbenzoate, Isopropyl 2-acetylbenzoate, Butyl 2-acetylbenzoate, Isobutyl 2-acetylbenzoate, Tertiarybutyl 2-acetylbenzoate, Cyclohexyl 2-acetylbenzoate, 2-Acetylbenzoic acid Examples include tertiary octyl. Of these, 2-acetylbenzoic acid and 4-acetylbenzoic acid are preferable.
  • the aromatic ketone (a3) may be used alone or in combination of two or more.
  • aliphatic aldehyde (B) examples include formaldehyde, paraformaldehyde, 1,3,5-trioxane, acetaldehyde, propionaldehyde, tetraoxymethylene, polyoxymethylene, chloral, hexamethylenetetramine, furfural, glyoxal, n-. Butyraldehyde, caproaldehyde, allyl aldehyde, crotonaldehyde, acrolein, etc. are mentioned. As the aliphatic aldehyde compound (B), one type may be used alone, or two or more types may be used in combination.
  • Formaldehyde is preferable as the aliphatic aldehyde (B).
  • the amount of the aliphatic aldehyde other than formaldehyde used is in the range of 0.05 to 1 mol with respect to 1 mol of formaldehyde. It is preferable.
  • the method for producing the novolac type phenolic resin (C) preferably includes the following three steps 1 to 3.
  • Process 1 By subjecting the alkyl-substituted phenol (a1) and the aromatic aldehyde (a2) having a carboxyl group to the presence of an acid catalyst and optionally a solvent in the range of 60 to 140° C. for polycondensation, An aromatic compound (A) is obtained.
  • Process 2) The aromatic compound (A) obtained in step 1 is isolated from the reaction solution.
  • (Process 3) Aromatic compound (A) and aliphatic aldehyde (B) isolated in step 2 are heated in the range of 60 to 140° C. in the presence of an acid catalyst and, if necessary, a solvent to be polycondensed. Thus, a novolac type phenol resin (C) is obtained.
  • Examples of the acid catalyst used in the above step 1 and step 3 include acetic acid, oxalic acid, sulfuric acid, hydrochloric acid, phenolsulfonic acid, paratoluenesulfonic acid, zinc acetate, manganese acetate and the like. These acid catalysts may be used alone or in combination of two or more. Among these acid catalysts, sulfuric acid and p-toluenesulfonic acid are preferable in Step 1, and sulfuric acid, oxalic acid and zinc acetate are preferable in Step 3 because of their excellent activity.
  • the acid catalyst may be added before the reaction or during the reaction.
  • Examples of the solvent used as necessary in Step 1 and Step 3 include monoalcohols such as methanol, ethanol, propanol; ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butane.
  • Polyols such as diol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, trimethylene glycol, diethylene glycol, polyethylene glycol and glycerin 2-ethoxyethanol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monopentyl ether, ethylene glycol dimethyl ether, ethylene glycol ethyl methyl ether, ethylene glycol monophenyl ether, etc.
  • Glycol ethers such as 1,3-dioxane and 1,4-dioxane; glycol esters such as ethylene glycol acetate; ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone; aromatic hydrocarbons such as toluene and xylene.
  • These solvents may be used alone or in combination of two or more. Among these solvents, 2-ethoxyethanol is preferable from the viewpoint of excellent solubility of the resulting compound.
  • the charge ratio [(a1)/(a2)] of the alkyl-substituted phenol (a1) to the aromatic aldehyde (a2) having a carboxyl group in the step 1 is such that the unreacted alkyl-substituted phenol (a1) can be removed and the product can be removed.
  • the molar ratio is preferably in the range of 1/0.2 to 1/0.5, and more preferably in the range of 1/0.25 to 1/0.45, because the yield and the purity of the reaction product are excellent.
  • the charging ratio [(A)/(B)] of the aromatic compound (A) and the aliphatic aldehyde (B) in step 3 can suppress excessive high molecular weight (gelation) and is suitable as a phenol resin for resist.
  • the molar ratio is preferably in the range of 1/0.5 to 1/1.2, and more preferably in the range of 1/0.6 to 1/0.9, since a polymer having a high molecular weight is obtained.
  • a precipitate obtained by adding the reaction solution to a poor solvent (S1) in which the reaction product is insoluble or sparingly soluble After filtering off, the reaction product is dissolved and dissolved in a solvent (S2) which is also miscible with the poor solvent (S1), and the resulting precipitate is added to the poor solvent (S1) and the precipitate formed is filtered off.
  • Examples of the poor solvent (S1) used in this case include water; monoalcohols such as methanol, ethanol and propanol; aliphatic hydrocarbons such as n-hexane, n-heptane, n-octane and cyclohexane; toluene and xylene. And other aromatic hydrocarbons.
  • water and methanol are preferable because they can efficiently remove the acid catalyst at the same time.
  • examples of the solvent (S2) include monoalcohols such as methanol, ethanol, propanol; ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,5- Pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, trimethylene glycol, diethylene glycol, polyethylene glycol, polyols such as glycerin; 2-ethoxyethanol, Glycol ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monopentyl ether, ethylene glycol dimethyl ether, ethylene glycol ethyl methyl ether, ethylene glycol monopheny
  • aromatic hydrocarbons such as toluene and xylene are used as the solvent in the above step 1 and step 3
  • the aromatic compound (A) produced by the reaction is dissolved in the solvent when heated at 80° C. or higher. By cooling as it is, crystals of the aromatic compound (A) are precipitated, so that the aromatic compound (A) can be isolated by filtering this. In this case, the poor solvent (S1) and the solvent (S2) may not be used.
  • the aromatic compound (A) represented by the above formula (1) can be obtained by the isolation method in the above step 2.
  • the purity of the aromatic compound (A) is preferably 90% or more, more preferably 94% or more, and more preferably 98% or more, as calculated from the gel permeation chromatography (GPC) chart. Is particularly preferable.
  • the purity of the aromatic compound (A) can be determined from the area ratio of the GPC chart and is measured under the measurement conditions described later.
  • the weight average molecular weight (Mw) of the novolac type phenol resin (C) is preferably in the range of 2,000 to 35,000, more preferably in the range of 2,000 to 25,000.
  • the weight average molecular weight (Mw) of the novolak type phenol resin (C) is measured by gel permeation chromatography (hereinafter abbreviated as “GPC”) under the following measurement conditions.
  • Metal atom forming metal salt examples include calcium, zinc, copper, iron, aluminum, zirconium, hafnium, titanium, indium and tin. Among these, calcium, zinc, copper, iron, zirconium, hafnium and tin are preferable.
  • the said metal atom may be used individually by 1 type, and may use 2 or more types together.
  • the metal salt of the novolac type phenolic resin (C) is added with a metal salt such as hydrochloride, nitrate or sulfate of a metal atom and/or a metal oxide while heating a composition containing the novolac type phenolic resin (C). It can be formed by Of these, nitrates and/or metal oxides are preferred.
  • the amount of the metal salt and/or metal oxide added is, for example, 1 to 100 parts by mass, preferably 10 to 50 parts by mass, relative to 100 parts by mass of the novolac type phenol resin (C).
  • the novolac type phenol resin (C) is an alkali-soluble resin, but it may contain an alkali-soluble resin (D) other than the novolac type phenol resin (C).
  • the alkali-soluble resin (D) may be any resin that is soluble in an alkaline aqueous solution, and cresol novolac resin is preferable.
  • the cresol novolac resin is a novolac type phenol resin obtained by condensing a phenolic compound and an aldehyde compound as reaction raw materials, and is preferably selected from the group consisting of o-cresol, m-cresol and p-cresol. It is a resin using the above-mentioned phenolic compound as an essential reaction raw material.
  • phenol-based compound that is the reaction raw material of the cresol novolac resin phenol or a phenol derivative other than cresol may be used together.
  • phenol compounds other than cresol include phenol; 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, 3,4-xylenol, 3,5-xylenol, and the like.
  • Xylenol ethylphenol such as o-ethylphenol, m-ethylphenol, p-ethylphenol; butylphenol such as isopropylphenol, butylphenol, pt-butylphenol; p-pentylphenol, p-octylphenol, p-nonylphenol, p- Alkylphenols such as cumylphenol; halogenated phenols such as fluorophenol, chlorophenol, bromophenol, iodophenol; mono-substituted phenols such as p-phenylphenol, aminophenol, nitrophenol, dinitrophenol, trinitrophenol; 1-naphthol Condensed polycyclic phenols such as 2-naphthol; resorcin, alkylresorcin, pyrogallol, catechol, alkylcatechol, hydroquinone, alkylhydroquinone, phloro
  • the amount of the phenolic compound other than cresol used is 0.05 to 1. It is preferably in the range of 0 mol.
  • aldehyde compound as a raw material of the cresol novolac resin examples include formaldehyde, paraformaldehyde, trioxane, acetaldehyde, propionaldehyde, polyoxymethylene, chloral, hexamethylenetetramine, furfural, glyoxal, n-butyraldehyde, caproaldehyde, Examples include allyl aldehyde, benzaldehyde, crotonaldehyde, acrolein, tetraoxymethylene, phenylacetaldehyde, o-tolualdehyde, salicylaldehyde and the like. Of these, formaldehyde is preferred.
  • the aldehyde compounds may be used alone or in combination of two or more.
  • an aldehyde compound other than formaldehyde may be used.
  • the amount of the aldehyde compound other than formaldehyde used is 0.05 to 1.0 mol per 1.0 mol of the formaldehyde. A range is preferred.
  • the condensation reaction of the phenolic compound and the aldehyde compound is preferably carried out in the presence of an acid catalyst.
  • the acid catalyst include oxalic acid, sulfuric acid, hydrochloric acid, phenolsulfonic acid, paratoluenesulfonic acid, zinc acetate, manganese acetate and the like. Among these, oxalic acid is preferable because it has excellent catalytic activity.
  • the acid catalyst may be used alone or in combination of two or more. The acid catalyst may be charged before the reaction or added during the reaction.
  • the preparation ratio (molar ratio) of the phenolic compound and the aldehyde compound when preparing the cresol novolac resin is preferably in the range of 0.3 to 1.6 of aldehyde compound/phenolic compound, and 0.5 to 1. A range of 3 is more preferable.
  • the phenolic compound and the aldehyde compound are heated to 60 to 140° C. in the presence of an acid catalyst to promote the polycondensation reaction, Then, a method of performing dehydration and demonomer under reduced pressure conditions can be mentioned.
  • the resist composition of the present invention may or may not contain the photosensitizer (E).
  • the photosensitizer (E) a compound having a quinonediazide group can be used.
  • the compound having a quinonediazide group include 2,3,4-trihydroxybenzophenone, 2,4,4'-trihydroxybenzophenone, 2,4,6-trihydroxybenzophenone and 2,3,6-trihydroxy.
  • Benzophenone 2,3,4-trihydroxy-2'-methylbenzophenone, 2,3,4,4'-tetrahydroxybenzophenone, 2,2',4,4'-tetrahydroxybenzophenone, 2,3',4 ,4',6-pentahydroxybenzophenone, 2,2',3,4,4'-pentahydroxybenzophenone, 2,2',3,4,5-pentahydroxybenzophenone, 2,3',4,4' ,5',6-hexahydroxybenzophenone, 2,3,3',4,4',5'-hexahydroxybenzophenone and other polyhydroxybenzophenone compounds; bis(2,4-dihydroxyphenyl)methane, bis(2 ,3,4-Trihydroxyphenyl)methane, 2-(4-hydroxyphenyl)-2-(4'-hydroxyphenyl)propane, 2-(2,4-dihydroxyphenyl)-2-(2',4' -Dihydroxyphenyl)propane, 2-(2,
  • the content of the photosensitizer (E) in the resist composition of the present invention is 100 because the good sensitivity is obtained and a desired pattern is obtained, and the total content of the novolac type phenol resin (C) and the alkali-soluble resin (D) is 100.
  • the range of 3 to 50 parts by mass is preferable, and the range of 5 to 30 parts by mass is more preferable, with respect to parts by mass.
  • the resist composition of the present invention preferably contains a solvent (F).
  • the solvent (F) include ethylene glycol alkyl ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether; diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dipropyl ether, Diethylene glycol dialkyl ethers such as diethylene glycol dibutyl ether; Ethylene glycol alkyl ether acetates such as methyl cellosolve acetate and ethyl cellosolve acetate; Propylene glycol alkyl ether acetates such as propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether acetate Ketones such as acetone, methyl ethyl ketone, cycl
  • the content of the solvent (F) in the resist composition of the present invention is such that the solid content in the resist composition of the present invention can be obtained because a uniform coating film can be obtained by applying a fluidity of the composition by a coating method such as a spin coating method. It is preferable that the concentration is 15 to 65% by mass.
  • the resist composition of the present invention may contain a metal salt of a novolac type phenolic resin (C), and optionally an alkali soluble resin (D), a photosensitizer (E) and a solvent (F).
  • Metal salts and optionally alkali-soluble resin (D), photosensitizer (E), solvent (F) and components other than components (C) to (F) for example, surface activity of fillers, pigments, leveling agents, etc. Agent, an adhesion improver, and a dissolution accelerator), and may contain inevitable impurities as long as the effects of the present invention are not impaired.
  • the resist composition of the present invention for example, 80% by mass or more, 90% by mass or more, 95% by mass or more, 98% by mass or more or 100% by mass of the solid content excluding the solvent (F) is a novolac type phenol resin. It may comprise a metal salt of (C), and optionally an alkali-soluble resin (D), a photosensitizer (E) and components other than components (C) to (F).
  • the resist composition of the present invention was added with a novolac type phenolic resin (C), a metal salt, another alkali-soluble resin (D) optionally blended, a photosensitizer (E) and a solvent (F), and if necessary. It can be prepared by mixing various additives with stirring by a usual method to form a uniform liquid.
  • the resist composition of the present invention When a solid material such as a filler and a pigment is added to the resist composition of the present invention, it is preferable to disperse and mix it using a dispersing device such as a dissolver, a homogenizer, or a three roll mill. Further, in order to remove coarse particles and impurities, the composition can be filtered using a mesh filter, a membrane filter or the like.
  • a dispersing device such as a dissolver, a homogenizer, or a three roll mill.
  • the composition can be filtered using a mesh filter, a membrane filter or the like.
  • the resist composition of the present invention can be used as a negative photoresist composition or a positive photoresist.
  • the method for producing a pattern using the resist composition of the present invention comprises a step of forming a resist film using the resist composition of the present invention, a step of exposing the resist film, and a step of developing the exposed resist film. Developing with a liquid to form a pattern.
  • Formation of the resist film, exposure of the resist film, and development of the exposed resist film can be carried out by known methods.
  • the light source for exposing the resist composition of the present invention include infrared light, visible light, ultraviolet light, far ultraviolet light, X-ray, electron beam and the like.
  • ultraviolet light is preferable, and g-line (wavelength 436 nm), i-line (wavelength 365 nm) and EUV laser (wavelength 13.5 nm) of a high pressure mercury lamp are preferable.
  • alkaline developer used for the development after exposure examples include inorganic alkaline substances such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, and ammonia water; 1 such as ethylamine and n-propylamine.
  • Secondary amines such as diethylamine and di-n-butylamine; tertiary amines such as triethylamine and methyldiethylamine; alcohol amines such as dimethylethanolamine and triethanolamine; tetramethylammonium hydroxide, tetraethylammonium hydroxy
  • Aqueous alkaline solutions such as quaternary ammonium salts such as deuterium; cyclic amines such as pyrrole and pyrelidine can be used. If necessary, alcohol, a surfactant and the like can be appropriately added to these alkaline developers for use.
  • the alkali concentration of the alkali developer is usually preferably in the range of 2 to 5% by mass, and a 2.38% by mass tetramethylammonium hydroxide aqueous solution is generally used.
  • the pattern forming method of the present invention is preferably used in the manufacturing process of electronic devices.
  • the electronic device include household electrical equipment, office automation equipment, media-related equipment, optical equipment, communication equipment, and the like.
  • the crude product was redissolved in acetone and further reprecipitated with water, and then the precipitate was filtered off and vacuum dried to obtain 182 g of an orange powder novolac type phenol resin (C-1).
  • the obtained novolak type phenol resin (C-1) had a number average molecular weight (Mn) of 3946, a weight average molecular weight (Mw) of 8504, and a polydispersity (Mw/Mn) of 2.16.
  • Mn number average molecular weight
  • Mw weight average molecular weight
  • Mw/Mn polydispersity
  • Production Example 2 Synthesis of carboxylic acid-containing novolac-type phenol resin Instead of the precursor compound (A-1), 9.4 g (0.025 mol) of the precursor compound (A-1) and the precursor compound (A′-2) In the same manner as in Production Example 1 except that 8.7 g (0.025 mol) was used, 16.8 g of a novolac-type phenol resin (C-2) as a pale red powder was obtained.
  • the obtained novolak type phenol resin (C-2) had a number average molecular weight (Mn) of 3331, a weight average molecular weight (Mw) of 6738, and a polydispersity (Mw/Mn) of 2.02.
  • a GPC chart of the novolac type phenol resin (C-2) is shown in FIG.
  • the number average molecular weight (Mn) of the novolak resin (C′-3) was 1016
  • the weight average molecular weight (Mw) was 2782
  • the polydispersity (Mw/Mn) was 2.74.
  • a GPC chart of the novolac resin (C′-3) is shown in FIG.
  • the GPC of the novolak resin (C′-4) had a number average molecular weight (Mn) of 1450, a weight average molecular weight (Mw) of 10316, and a polydispersity (Mw/Mn) of 7.116.
  • Mn number average molecular weight
  • Mw weight average molecular weight
  • Mw/Mn polydispersity
  • Example 1 [Preparation of resin solution]
  • a PGMEA solution of the type phenolic resin (C-1) was prepared, and this solution was subjected to microfiltration with a 0.1 ⁇ m polytetrafluoroethylene disk filter to prepare a resin solution.
  • the novolac-type phenol resin (C-1) of Production Example 1 was prepared by adding a metal nitrate hydrate to form an immobile gel or a viscous liquid, and further adding an aqueous hydrochloric acid solution to form a low-viscosity liquid. It was confirmed that the metal salt structure was formed by the addition of metal nitrate hydrate.
  • Immobilized gelation or viscous liquid formation by addition of metal nitrate hydrate, and low viscosity liquid formation by addition of hydrochloric acid aqueous solution are due to formation of a crosslinked structure due to coordination bond between metal and novolak, and This behavior indicates that the decomposition of the crosslinked structure due to dissociation is reversible, and thus indicates that a metal salt of a carboxylic acid is formed.
  • the prepared resin solution was separately evaluated as follows. The results are shown in Table 1.
  • the obtained resin solution was applied onto a 5-inch silicon wafer by a spin coater so as to have a thickness of about 1 ⁇ m, and dried on a hot plate at 110° C. for 60 seconds to form a resin film on the silicon wafer.
  • the obtained wafer was immersed in a developing solution (2.38% tetramethylammonium hydroxide aqueous solution) for 60 seconds, and then dried on a hot plate at 110° C. for 60 seconds.
  • the film thickness before and after the immersion in the developing solution was measured, and the value obtained by dividing the difference by 60 was taken as the alkali developability (ADR1 ( ⁇ /s)).
  • Tg glass transition temperature
  • Example 2 and Comparative Example 1-2 A resin solution was prepared and evaluated in the same manner as in Example 1 except that the resin shown in Table 1 was used instead of the novolac type phenol resin (C-1). The results are shown in Table 1.
  • the novolac resin (C′-3) and the novolac resin (C′-4) resin solutions no sol-formation was evaluated when there was no change in viscosity in gelation evaluation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Phenolic Resins Or Amino Resins (AREA)
  • Materials For Photolithography (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

高い耐熱性を有し、電子線及び極端紫外線を用いたリソグラフィに利用可能なレジスト組成物を提供することを目的とする。具体的には、下記式(1)で表される芳香族化合物(A)と脂肪族アルデヒド(B)とを必須の反応原料とするノボラック型フェノール樹脂(C)の金属塩を含むレジスト組成物を用いる。 (前記式(1)中、R1及びR2は、それぞれ独立に、水素原子、炭素原子数1~9の脂肪族炭化水素基、アルコキシ基、アリール基、アラルキル基又はハロゲン原子を表す。 m及びnは、それぞれ独立に、0~4の整数を表す。R1が複数ある場合、複数のR1は互いに同じでも異なってもよい。R2が複数ある場合、複数のR2は互いに同じでも異なってもよい。R3は、水素原子、炭素原子数1~9の脂肪族炭化水素基、又は炭化水素基上にアルコキシ基、ハロゲン基及び水酸基から選択される置換基を1以上有する構造部位を表す。)

Description

レジスト組成物
 本発明は、レジスト組成物に関する。
 IC、LSI等の半導体の製造、LCD等の表示装置の製造、印刷原版の製造などに用いられるレジストとして、アルカリ可溶性樹脂及び1,2-ナフトキノンジアジド化合物等の感光剤を用いたポジ型フォトレジストが知られている。前記アルカリ可溶性樹脂として、m-クレゾールノボラック樹脂及びp-クレゾールノボラック樹脂からなる混合物をアルカリ可溶性樹脂として用いたポジ型フォトレジスト組成物が提案されている(例えば、特許文献1参照。)
 特許文献1記載のポジ型フォトレジスト組成物は、感度等の現像性の向上を目的に開発されたものであるが、近年、半導体の高集積化が高まり、パターンが細線化する傾向にあり、より優れた感度が求められてきている。しかしながら、特許文献1記載のポジ型フォトレジスト組成物では、細線化に対応する十分な感度は得られない問題があった。さらに、半導体等の製造工程において様々な熱処理が施されることから、高い耐熱性も求められているが、特許文献1記載のポジ型フォトレジスト組成物は、十分な耐熱性を有していない問題があった。
 また、特にIC、LSI等の半導体製造の現場では、より微細加工することが求められており、電子線や極端紫外線(EUV)を利用したリソグラフィが検討されている。露光源の短波長化に伴い、これに対応するレジスト組成物の一層の特性向上が求められていた。
特開平2-55359号公報
 本発明が解決しようとする課題は、高い耐熱性を有し、電子線及び極端紫外線を用いたリソグラフィに利用可能なレジスト組成物を提供することである。
 本発明者らは、上記課題を解決するため鋭意検討を行った結果、特定の構造を有するカルボン酸含有フェノール系3核体化合物と脂肪族アルデヒドとを反応させて得られるノボラック型フェノール樹脂の金属塩構造を含むレジスト組成物が、高い耐熱性を有し、電子線及び極端紫外線を用いたリソグラフィに利用可能であることを見出し、本発明を完成させた。
 すなわち、本発明は、下記式(1)で表される芳香族化合物(A)と脂肪族アルデヒド(B)とを必須の反応原料とするノボラック型フェノール樹脂(C)の金属塩を含むレジスト組成物に関するものである。
Figure JPOXMLDOC01-appb-C000002
(前記式(1)中、R及びRは、それぞれ独立に、水素原子、炭素原子数1~9の脂肪族炭化水素基、アルコキシ基、アリール基、アラルキル基又はハロゲン原子を表す。
 m及びnは、それぞれ独立に、0~4の整数を表す。
 Rが複数ある場合、複数のRは互いに同じでも異なってもよい。
 Rが複数ある場合、複数のRは互いに同じでも異なってもよい。
 Rは、水素原子、炭素原子数1~9の脂肪族炭化水素基、又は炭化水素基上にアルコキシ基、ハロゲン基及び水酸基から選択される置換基を1以上有する構造部位を表す。)
 本発明により、高い耐熱性を有し、電子線及び極端紫外線を用いたリソグラフィに利用可能なレジスト組成物が提供できる。
合成例1で得られた前駆体化合物のGPCチャート図である。 合成例1で得られた前駆体化合物の13C-NMRチャート図である。 合成例2で得られた前駆体化合物のGPCチャート図である。 合成例2で得られた前駆体化合物の13C-NMRチャート図である。 製造例1で得られたノボラック型フェノール樹脂のGPCチャート図である。 製造例2で得られたノボラック型フェノール樹脂のGPCチャート図である。 製造例3で得られたノボラック樹脂のGPCチャート図である。 製造例4で得られたノボラック樹脂のGPCチャート図である。
 以下、本発明の一実施形態について説明する。本発明は、以下の実施形態に限定されるものではなく、本発明の効果を損なわない範囲で適宜変更を加えて実施することができる。
[レジスト組成物]
 本発明のレジスト組成物は、下記式(1)で表される芳香族化合物(A)と脂肪族アルデヒド(B)とを必須の反応原料とするノボラック型フェノール樹脂(C)の金属塩を含む。
Figure JPOXMLDOC01-appb-C000003
(前記式(1)中、R及びRは、それぞれ独立に、水素原子、炭素原子数1~9の脂肪族炭化水素基、アルコキシ基、アリール基、アラルキル基又はハロゲン原子を表す。
 m及びnは、それぞれ独立に、0~4の整数を表す。
 Rが複数ある場合、複数のRは互いに同じでも異なってもよい。
 Rが複数ある場合、複数のRは互いに同じでも異なってもよい。
 Rは、水素原子、炭素原子数1~9の脂肪族炭化水素基、又は炭化水素基上にアルコキシ基、ハロゲン基及び水酸基から選択される置換基を1以上有する構造部位を表す。)
 レジスト組成物は、通常、酸の作用により分解して極性が変化する樹脂(酸分解性樹脂)、及び光の照射により酸を発生する化合物(光酸発生剤)を含有する。このようなレジスト組成物では、露光することにより光酸発生剤が酸を発生し、発生した酸の作用によって樹脂の極性が変化して、所望のパターンが形成される。しかしながら、酸の拡散というムラの出やすい機構を伴うため、形成されるパターンの解像度が不十分となる場合がある。
 本発明のレジスト組成物は、露光によって金属塩構造が分解して金属イオンが脱離し、ノボラック型フェノール樹脂(C)の極性が変化することで所望のパターンが形成される。酸の拡散というムラの出やすい機構を伴わない本発明のレジスト組成物では、高い解像度が得られる。特に電子線、極端紫外線等の短波長の光を用いた露光では、解像度やパターン形状の凹凸が問題となり易いが、本発明のレジスト組成物はこの問題を解消することが可能である。
 ノボラック型フェノール樹脂(C)の金属塩は、ノボラック型フェノール樹脂(C)が有する官能基の一部又は全部が金属塩構造となっていればよい。
 ノボラック型フェノール樹脂(C)の金属塩は、好ましくはノボラック型フェノール樹脂(C)のカルボン酸金属塩である。前記ノボラック型フェノール樹脂(C)のカルボン酸金属塩は、好ましくは下記式(X)で表される構造である。
Figure JPOXMLDOC01-appb-C000004
(前記式(X)中、
 R、R、R、m及びnは、前記式(1)のR、R、R、m及びnと同じである。
 *は、前記式(1)の3つの芳香環のいずれかとの結合点であり、2つの*は同一の芳香環に結合してもよいし、それぞれ異なる芳香環に結合してもよい。
 Metは、金属原子を表す。
 nは1以上の整数を表す。)
 前記式(X)で表される構造について、例えば前記金属原子の価数が1、2、3又は4の場合、それぞれ下記式(X1)、(X2)、(X3)又は(X4)で表される構造となる。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 本発明のレジスト組成物においては、ノボラック型フェノール樹脂(C)中に金属塩構造が含まれればよく、当該金属塩構造の含有率は、ノボラック型フェノール樹脂(C)の全繰り返し単位中、例えば1~80モル%であり、好ましくは10~65モル%であり、より好ましくは20~50モル%である。
 本発明のレジスト組成物において、ノボラック型フェノール樹脂(C)の金属塩構造が形成されているかどうかは、実施例に記載の方法により確認する。
 以下、本発明のレジスト組成物が含む成分について説明する。
 [ノボラック型フェノール樹脂]
 ノボラック型フェノール樹脂(C)は、下記式(1)で表される芳香族化合物(A)と、脂肪族アルデヒド(B)とを必須の反応原料とする樹脂である。
Figure JPOXMLDOC01-appb-C000007
(前記式(1)中、R及びRは、それぞれ独立に、水素原子、炭素原子数1~9の脂肪族炭化水素基、アルコキシ基、アリール基、アラルキル基又はハロゲン原子を表す。
 m及びnは、それぞれ独立に、0~4の整数を表す。
 Rが複数ある場合、複数のRは互いに同じでも異なってもよい。
 Rが複数ある場合、複数のRは互いに同じでも異なってもよい。
 Rは、水素原子、炭素原子数1~9の脂肪族炭化水素基、又は炭化水素基上にアルコキシ基、ハロゲン基及び水酸基から選択される置換基を1以上有する構造部位を表す。)
 前記式(1)において、R、R及びRの炭素原子数1~9の脂肪族炭化水素基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基等の、炭素原子数1~9のアルキル基及び炭素原子数3~9のシクロアルキル基等が挙げられる。
 前記式(1)において、R及びRのアルコキシ基としては、メトキシ基、エトキシ基、プロピルオキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基等が挙げられる。
 前記式(1)において、R及びRのアリール基としては、フェニル基、トリル基、キシリル基、ナフチル基、アントリル基等が挙げられる。
 前記式(1)において、R及びRのアラルキル基としては、ベンジル基、フェニルエチル基、フェニルプロピル基、ナフチルメチル基等が挙げられる。
 前記式(1)において、R及びRのハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 前記式(1)において、Rの「炭化水素基上にアルコキシ基、ハロゲン基及び水酸基から選択される置換基を1以上有する構造部位」としては、ハロゲン化アルキル基、ハロゲン化アリール基、2-メトキシエトキシ基、2-エトキシエトキシ基等のアルコキシアルコキシ基、ヒドロキシ基で置換されたアルキルアルコキシ基等が挙げられる。
 前記式(1)において、n及びmは、それぞれ好ましくは2又は3の整数である。
 n及びmがそれぞれ2である場合、2つR及び2つRが、それぞれ独立に、炭素原子数1~3のアルキル基であると好ましい。この時、2つのR及び2つのRは、それぞれフェノール性水酸基の2,5-位に結合していることが好ましい。
 前記式(1)で表される芳香族化合物(A)は、同一構造のものを単独で用いてもよいし、異なる分子構造を有する複数の化合物を用いてもよい。
 前記式(1)で表される芳香族化合物(A)は、例えば、アルキル置換フェノール(a1)とカルボキシル基を有する芳香族アルデヒド(a2)との縮合反応により調製することができる。
 前記式(1)で表される芳香族化合物(A)は、例えば、アルキル置換フェノール(a1)とカルボキシル基を有する芳香族ケトン(a3)との縮合反応により調製することができる。
 アルキル置換フェノール(a1)は、アルキル基が置換しているフェノールであり、当該アルキル基としては炭素原子数1~8のアルキル基が挙げられ、メチル基が好ましい。
 アルキル置換フェノール(a1)の具体例としては、o-クレゾール、m-クレゾール、p-クレゾール、o-エチルフェノール、m-エチルフェノール、p-エチルフェノール、p-オクチルフェノール、p-t-ブチルフェノール、o-シクロヘキシルフェノール、m-シクロヘキシルフェノール、p-シクロヘキシルフェノール等のモノアルキルフェノール;2,5-キシレノール、3,5-キシレノール、3,4-キシレノール、2,4-キシレノール、2,6-キシレノール等のジアルキルフェノール;2,3,5-トリメチルフェノール、2,3,6-トリメチルフェノール等のトリアルキルフェノールなどが挙げられる。これらのなかでも、ジアルキルフェノールが好ましく、2,5-キシレノール、2,6-キシレノールがより好ましい。アルキル置換フェノール(a1)は、1種類単独で用いてもよいし、2種以上を併用してもよい。
 カルボキシル基を有する芳香族アルデヒド(a2)は、ベンゼン、ナフタレン、フェノール、レゾルシン、ナフトール、ジヒドロキシナフタレン等の芳香核上にホルミル基を有する化合物、ホルミル基の他にさらにアルキル基、アルコキシ基、ハロゲン原子等を有する化合物が挙げられる。
 カルボキシル基を有する芳香族アルデヒド(a2)の具体例としては、4-ホルミル安息香酸、2-ホルミル安息香酸、3-ホルミル安息香酸、4-ホルミル安息香酸メチル、4-ホルミル安息香酸エチル、4-ホルミル安息香酸プロピル、4-ホルミル安息香酸イソプロピル、4-ホルミル安息香酸ブチル、4-ホルミル安息香酸イソブチル、4-ホルミル安息香酸ターシャリーブチル、4-ホルミル安息香酸シクロヘキシル、4-ホルミル安息香酸ターシャリーオクチル等が挙げられる。これらのなかでも4-ホルミル安息香酸が好ましい。カルボキシル基を有する芳香族アルデヒド(a2)は、1種類単独で用いてもよいし、2種以上を併用してもよい。
 カルボキシル基を有する芳香族ケトン(a3)は芳香環に少なくとも1つのカルボキシル基又はそのエステル誘導体とカルボニル基とを有する化合物である。
 カルボキシル基を有する芳香族ケトン(a3)の具体例としては、例えば、2-アセチル安息香酸、3-アセチル安息香酸、4-アセチル安息香酸、及び2-アセチル安息香酸メチル、2-アセチル安息香酸エチル、2-アセチル安息香酸プロピル、2-アセチル安息香酸イソプロピル、2-アセチル安息香酸ブチル、2-アセチル安息香酸イソブチル、2-アセチル安息香酸ターシャリーブチル、2-アセチル安息香酸シクロヘキシル、2-アセチル安息香酸ターシャリーオクチル等が挙げられる。これらのうち、2-アセチル安息香酸及び4-アセチル安息香酸が好ましい。
 芳香族ケトン(a3)は、1種類単独で用いてもよいし、2種以上を併用してもよい。
 脂肪族アルデヒド(B)の具体例としては、ホルムアルデヒド、パラホルムアルデヒド、1,3,5-トリオキサン、アセトアルデヒド、プロピオンアルデヒド、テトラオキシメチレン、ポリオキシメチレン、クロラール、ヘキサメチレンテトラミン、フルフラール、グリオキザール、n-ブチルアルデヒド、カプロアルデヒド、アリルアルデヒド、クロトンアルデヒド、アクロレイン等が挙げられる。脂肪族アルデヒド化合物(B)は、1種類を単独で用いることも2種以上を併用することもできる。
 脂肪族アルデヒド(B)は、ホルムアルデヒドが好ましい。
 脂肪族アルデヒド(B)として、ホルムアルデヒドとホルムアルデヒド以外の脂肪族アルデヒドを使用する場合、前記ホルムアルデヒド以外の脂肪族アルデヒドの使用量は、ホルムアルデヒド1モルに対して、0.05~1モルの範囲とすることが好ましい。
 ノボラック型フェノール樹脂(C)の製造方法は、好ましくは下記3つの工程1~3を含む。
(工程1)
 アルキル置換フェノール(a1)とカルボキシル基を有する芳香族アルデヒド(a2)とを酸触媒存在下で、必要に応じて溶媒を用いて、60~140℃の範囲で加熱し、重縮合することにより、芳香族化合物(A)を得る。
(工程2)
 工程1で得られた芳香族化合物(A)を反応溶液中から単離する。
(工程3)
 工程2で単離した芳香族化合物(A)と脂肪族アルデヒド(B)とを酸触媒存在下で、必要に応じて溶媒を用いて、60~140℃の範囲で加熱し、重縮合することにより、ノボラック型フェノール樹脂(C)を得る。
 上記工程1及び工程3で用いる酸触媒としては、例えば、酢酸、シュウ酸、硫酸、塩酸、フェノールスルホン酸、パラトルエンスルホン酸、酢酸亜鉛、酢酸マンガン等が挙げられる。これらの酸触媒は、1種類のみで用いることも2種以上併用することもできる。また、これらの酸触媒の中でも、活性に優れる点から、工程1では硫酸、パラトルエンスルホン酸が好ましく、工程3では硫酸、シュウ酸、酢酸亜鉛が好ましい。なお、酸触媒は、反応前に加えても、反応途中で加えても構わない。
 上記工程1及び工程3において必要に応じて用いる溶媒としては、例えば、メタノール、エタノール、プロパノール等のモノアルコール;エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、トリメチレングリコール、ジエチレングリコール、ポリエチレングリコール、グリセリン等のポリオール;2-エトキシエタノール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノペンチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールエチルメチルエーテル、エチレングリコールモノフェニルエーテル等のグリコールエーテル;1,3-ジオキサン、1,4-ジオキサン等の環状エーテル;エチレングリコールアセテート等のグリコールエステル;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン;トルエン、キシレン等の芳香族炭化水素などが挙げられる。これらの溶媒は、1種類のみで用いることも2種以上併用することもできる。また、これらの溶媒の中でも、得られる化合物の溶解性に優れる点から、2-エトキシエタノールが好ましい。
 工程1におけるアルキル置換フェノール(a1)とカルボキシル基を有する芳香族アルデヒド(a2)との仕込み比率[(a1)/(a2)]は、未反応のアルキル置換フェノール(a1)の除去性、生成物の収率及び反応生成物の純度に優れることから、モル比で1/0.2~1/0.5の範囲が好ましく、1/0.25~1/0.45の範囲がより好ましい。
 工程3における芳香族化合物(A)と脂肪族アルデヒド(B)との仕込み比率[(A)/(B)]は、過剰な高分子量化(ゲル化)を抑制でき、レジスト用フェノール樹脂として適正な分子量のものが得られることから、モル比で1/0.5~1/1.2の範囲が好ましく、1/0.6~1/0.9の範囲がより好ましい。
 工程2における芳香族化合物(A)の反応溶液中からの単離方法としては、例えば、反応溶液を反応生成物が不溶又は難溶である貧溶媒(S1)に投入して得られた沈殿物を濾別した後、反応生成物を溶解し貧溶媒(S1)にも混和する溶媒(S2)に溶解し、再度貧溶媒(S1)に投入して生じた沈殿物を濾別する方法が挙げられる。
 この際に用いる前記貧溶媒(S1)としては、例えば、水;メタノール、エタノール、プロパノール等のモノアルコール;n-ヘキサン、n-ヘプタン、n-オクタン、シクロヒキサン等の脂肪族炭化水素;トルエン、キシレン等の芳香族炭化水素が挙げられる。これらの貧溶媒(S1)の中でも、効率よく酸触媒の除去も同時に行えることから、水、メタノールが好ましい。一方、前記溶媒(S2)としては、例えば、メタノール、エタノール、プロパノール等のモノアルコール;エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、トリメチレングリコール、ジエチレングリコール、ポリエチレングリコール、グリセリン等のポリオール;2-エトキシエタノール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノペンチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールエチルメチルエーテル、エチレングリコールモノフェニルエーテル等のグリコールエーテル;1,3-ジオキサン、1,4-ジオキサン等の環状エーテル;エチレングリコールアセテート等のグリコールエステル;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトンなどが挙げられる。また、前記貧溶媒(S1)として水を用いた場合には、前記(S2)としては、アセトンが好ましい。なお、前記貧溶媒(S1)及び溶媒(S2)は、それぞれ1種類のみで用いることも2種以上併用することもできる。
 上記工程1及び工程3において溶媒として、トルエン、キシレン等の芳香族炭化水素を用いた場合、80℃以上で加熱すれば、反応により生成した前記芳香族化合物(A)は溶媒中に溶解するので、そのまま冷却することで、前記芳香族化合物(A)の結晶が析出するため、これを濾別することで前記芳香族化合物(A)を単離することができる。この場合は、前記貧溶媒(S1)及び溶媒(S2)を使用しなくてもよい。
 上記の工程2の単離方法により、前記式(1)で表される芳香族化合物(A)を得ることができる。芳香族化合物(A)の純度は、ゲルパーミエーションクロマトグラフィー(GPC)チャート図から算出される純度で90%以上であることが好ましく、94%以上であることがより好ましく、98%以上であることが特に好ましい。芳香族化合物(A)の純度はGPCのチャート図の面積比から求めることができ、後述する測定条件で測定したものである。
 ノボラック型フェノール樹脂(C)の重量平均分子量(Mw)は、2,000~35,000の範囲が好ましく、2,000~25,000の範囲がより好ましい。ノボラック型フェノール樹脂(C)の重量平均分子量(Mw)は、ゲル浸透クロマトグラフィー(以下、「GPC」と略記する。)を用いて、下記の測定条件で測定したものである。
 (GPCの測定条件)
測定装置:東ソー株式会社製「HLC-8220 GPC」
カラム:昭和電工株式会社製「Shodex KF802」(8.0mmФ×300mm)
+昭和電工株式会社製「Shodex KF802」(8.0mmФ×300mm)
+昭和電工株式会社製「Shodex KF803」(8.0mmФ×300mm)
+昭和電工株式会社製「Shodex KF804」(8.0mmФ×300mm)
カラム温度:40℃
検出器:RI(示差屈折計)
データ処理:東ソー株式会社製「GPC-8020モデルIIバージョン4.30」
展開溶媒:テトラヒドロフラン
流速:1.0mL/分
試料:樹脂固形分換算で0.5質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(100μl)
標準試料:下記単分散ポリスチレン
(標準試料:単分散ポリスチレン)
東ソー株式会社製「A-500」
東ソー株式会社製「A-2500」
東ソー株式会社製「A-5000」
東ソー株式会社製「F-1」
東ソー株式会社製「F-2」
東ソー株式会社製「F-4」
東ソー株式会社製「F-10」
東ソー株式会社製「F-20」
 [金属塩を形成する金属原子]
 ノボラック型フェノール樹脂(C)と金属塩を形成する金属原子としては、カルシウム、亜鉛、銅、鉄、アルミニウム、ジルコニウム、ハフニウム、チタニウム、インジウム、スズ等が挙げられる。これらの中でも、カルシウム、亜鉛、銅、鉄、ジルコニウム、ハフニウム及びスズが好ましい。前記金属原子は、1種単独で用いてもよく、2種以上を併用してもよい。
 ノボラック型フェノール樹脂(C)の金属塩は、ノボラック型フェノール樹脂(C)を含む組成物を加熱しながら、金属原子の塩酸塩、硝酸塩、硫酸塩等の金属塩、及び又は金属酸化物を添加することにより形成することができる。これらのうち、硝酸塩及び又は金属酸化物が好ましい。
 前記金属塩及び又は金属酸化物の添加量は、ノボラック型フェノール樹脂(C)100質量部に対して例えば1~100質量部であり、好ましくは10~50質量部である。
 [アルカリ可溶性樹脂]
 本発明のレジスト組成物では、ノボラック型フェノール樹脂(C)がアルカリ可溶性樹脂であるが、ノボラック型フェノール樹脂(C)以外のアルカリ可溶性樹脂(D)を含んでもよい。
 アルカリ可溶性樹脂(D)は、アルカリ水溶液に可溶な樹脂であればよく、クレゾールノボラック樹脂が好ましい。前記クレゾールノボラック樹脂は、フェノール系化合物及びアルデヒド化合物を反応原料とし、これらを縮合させたノボラック型フェノール樹脂であり、好ましくはo-クレゾール、m-クレゾール及びp-クレゾールからなる群から選択される1以上のフェノール系化合物を必須の反応原料とする樹脂である。
 前記クレゾールノボラック樹脂の反応原料となるフェノール系化合物としては、クレゾール以外のフェノール又はフェノール誘導体を併用してもよい。クレゾール以外のフェノール系化合物としては、例えば、フェノール;2,3-キシレノール、2,4-キシレノール、2,5-キシレノール、2,6-キシレノール、3,4-キシレノール、3,5-キシレノール等のキシレノール;o-エチルフェノール、m-エチルフェノール、p-エチルフェノール等のエチルフェノール;イソプロピルフェノール、ブチルフェノール、p-t-ブチルフェノール等のブチルフェノール;p-ペンチルフェノール、p-オクチルフェノール、p-ノニルフェノール、p-クミルフェノール等のアルキルフェノール;フルオロフェノール、クロロフェノール、ブロモフェノール、ヨードフェノール等のハロゲン化フェノール;p-フェニルフェノール、アミノフェノール、ニトロフェノール、ジニトロフェノール、トリニトロフェノール等の1置換フェノール;1-ナフトール、2-ナフトール等の縮合多環式フェノール;レゾルシン、アルキルレゾルシン、ピロガロール、カテコール、アルキルカテコール、ハイドロキノン、アルキルハイドロキノン、フロログルシン、ビスフェノールA、ビスフェノールF、ビスフェノールS、ジヒドロキシナフタリン等の多価フェノール等が挙げられる。前記クレゾール以外のフェノール系化合物は、1種単独で用いてもよく、2種以上を併用してもよい。
 アルカリ可溶性樹脂(D)の調製にクレゾールとクレゾール以外のフェノール系化合物を反応原料とする場合、前記クレゾール以外のフェノール系化合物の使用量は、クレゾール1.0モルに対して0.05~1.0モルの範囲とすると好ましい。
 前記クレゾールノボラック樹脂の原料となるアルデヒド化合物としては、例えば、ホルムアルデヒド、パラホルムアルデヒド、トリオキサン、アセトアルデヒド、プロピオンアルデヒド、ポリオキシメチレン、クロラール、ヘキサメチレンテトラミン、フルフラール、グリオキザール、n-ブチルアルデヒド、カプロアルデヒド、アリルアルデヒド、ベンズアルデヒド、クロトンアルデヒド、アクロレイン、テトラオキシメチレン、フェニルアセトアルデヒド、o-トルアルデヒド、サリチルアルデヒド等が挙げられる。これらのうちホルムアルデヒドが好ましい。前記アルデヒド化合物は、1種単独で用いてもよく、2種以上を併用してもよい。
 前記クレゾールノボラック樹脂の原料となるアルデヒド化合物としてホルムアルデヒドを用いる場合、ホルムアルデヒド以外のアルデヒド化合物を用いてもよい。前記クレゾールノボラック樹脂の調製にホルムアルデヒドとホルムアルデヒド以外のアルデヒド化合物を反応原料とする場合、前記ホルムアルデヒド以外のアルデヒド化合物の使用量は、前記ホルムアルデヒド1.0モルに対して0.05~1.0モルの範囲とすると好ましい。
 前記フェノール系化合物及びアルデヒド化合物の縮合反応は、酸触媒存在下で行うことが好ましい。前記酸触媒としては、例えば、シュウ酸、硫酸、塩酸、フェノールスルホン酸、パラトルエンスルホン酸、酢酸亜鉛、酢酸マンガン等が挙げられる。これらのなかでも触媒活性に優れることから、シュウ酸が好ましい。前記酸触媒は、1種単独で用いてもよく、2種以上を併用してもよい。酸触媒は、反応前に仕込んでおいても、反応途中で加えてもどちらでもよい。
 前記クレゾールノボラック樹脂を調製する際におけるフェノール系化合物とアルデヒド化合物の仕込み比(モル比)は、アルデヒド化合物/フェノール系化合物が0.3~1.6の範囲とすると好ましく、0.5~1.3の範囲とするとより好ましい。
 前記クレゾールノボラック樹脂を調製する際におけるフェノール系化合物とアルデヒド化合物の反応の具体例としては、フェノール系化合物とアルデヒド化合物を酸触媒存在下60~140℃に加熱して、重縮合反応を進行させ、次いで減圧条件下で脱水、脱モノマーを行う方法が挙げられる。
 本発明のレジスト組成物は、感光剤(E)を含んでもよく、含まなくてもよい。感光剤(E)としては、キノンジアジド基を有する化合物を用いることができる。このキノンジアジド基を有する化合物としては、例えば、2,3,4-トリヒドロキシベンゾフェノン、2,4,4’-トリヒドロキシベンゾフェノン、2,4,6-トリヒドロキシベンゾフェノン、2,3,6-トリヒドロキシベンゾフェノン、2,3,4-トリヒドロキシ-2’-メチルベンゾフェノン、2,3,4,4’-テトラヒドロキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、2,3’,4,4’,6-ペンタヒドロキシベンゾフェノン、2,2’,3,4,4’-ペンタヒドロキシベンゾフェノン、2,2’,3,4,5-ペンタヒドロキシベンゾフェノン、2,3’,4,4’,5’,6-ヘキサヒドロキシベンゾフェノン、2,3,3’,4,4’,5’-ヘキサヒドロキシベンゾフェノン等のポリヒドロキシベンゾフェノン系化合物;ビス(2,4-ジヒドロキシフェニル)メタン、ビス(2,3,4-トリヒドロキシフェニル)メタン、2-(4-ヒドロキシフェニル)-2-(4’-ヒドロキシフェニル)プロパン、2-(2,4-ジヒドロキシフェニル)-2-(2’,4’-ジヒドロキシフェニル)プロパン、2-(2,3,4-トリヒドロキシフェニル)-2-(2’,3’,4’-トリヒドロキシフェニル)プロパン、4,4’-{1-[4-〔2-(4-ヒドロキシフェニル)-2-プロピル〕フェニル]エチリデン}ビスフェノール,3,3’-ジメチル-{1-[4-〔2-(3-メチル-4-ヒドロキシフェニル)-2-プロピル〕フェニル]エチリデン}ビスフェノール等のビス[(ポリ)ヒドロキシフェニル]アルカン系化合物;トリス(4-ヒドロキシフェニル)メタン、ビス(4-ヒドロキシ-3、5-ジメチルフェニル)-4-ヒドロキシフェニルメタン、ビス(4-ヒドロキシ-2,5-ジメチルフェニル)-4-ヒドロキシフェニルメタン、ビス(4-ヒドロキシ-3,5-ジメチルフェニル)-2-ヒドロキシフェニルメタン、ビス(4-ヒドロキシ-2,5-ジメチルフェニル)-2-ヒドロキシフェニルメタン、ビス(4-ヒドロキシ-2,5-ジメチルフェニル)-3,4-ジヒドロキシフェニルメタン、ビス(4-ヒドロキシ-3,5-ジメチルフェニル)-3,4-ジヒドロキシフェニルメタン等のトリス(ヒドロキシフェニル)メタン類又はそのメチル置換体;ビス(3-シクロヘキシル-4-ヒドロキシフェニル)-3-ヒドロキシフェニルメタン,ビス(3-シクロヘキシル-4-ヒドロキシフェニル)-2-ヒドロキシフェニルメタン,ビス(3-シクロヘキシル-4-ヒドロキシフェニル)-4-ヒドロキシフェニルメタン,ビス(5-シクロヘキシル-4-ヒドロキシ-2-メチルフェニル)-2-ヒドロキシフェニルメタン,ビス(5-シクロヘキシル-4-ヒドロキシ-2-メチルフェニル)-3-ヒドロキシフェニルメタン、ビス(5-シクロヘキシル-4-ヒドロキシ-2-メチルフェニル)-4-ヒドロキシフェニルメタン、ビス(3-シクロヘキシル-2-ヒドロキシフェニル)-3-ヒドロキシフェニルメタン、ビス(5-シクロヘキシル-4-ヒドロキシ-3-メチルフェニル)-4-ヒドロキシフェニルメタン、ビス(5-シクロヘキシル-4-ヒドロキシ-3-メチルフェニル)-3-ヒドロキシフェニルメタン、ビス(5-シクロヘキシル-4-ヒドロキシ-3-メチルフェニル)-2-ヒドロキシフェニルメタン、ビス(3-シクロヘキシル-2-ヒドロキシフェニル)-4-ヒドロキシフェニルメタン、ビス(3-シクロヘキシル-2-ヒドロキシフェニル)-2-ヒドロキシフェニルメタン、ビス(5-シクロヘキシル-2-ヒドロキシ-4-メチルフェニル)-2-ヒドロキシフェニルメタン、ビス(5-シクロヘキシル-2-ヒドロキシ-4-メチルフェニル)-4-ヒドロキシフェニルメタンなどの、ビス(シクロヘキシルヒドロキシフェニル)(ヒドロキシフェニル)メタン類又はそのメチル置換体などとナフトキノン-1,2-ジアジド-5-スルホン酸又はナフトキノン-1,2-ジアジド-4-スルホン酸、オルトアントラキノンジアジドスルホン酸等のキノンジアジド基を有するスルホン酸との完全エステル化合物、部分エステル化合物、アミド化物又は部分アミド化物などが挙げられる。これらの感光剤(E)は1種類のみで用いることも2種以上併用することもできる。
 本発明のレジスト組成物の感光剤(E)の含有量は、良好な感度が得られ、所望のパターンが得られることから、ノボラック型フェノール樹脂(C)及びアルカリ可溶性樹脂(D)の合計100質量部に対して、3~50質量部の範囲が好ましく、5~30質量部の範囲がより好ましい。
 本発明のレジスト組成物は、好ましくは溶剤(F)を含む。前記溶剤(F)としては、例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル等のエチレングリコールアルキルエーテル;ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジプロピルエーテル、ジエチレングリコールジブチルエーテル等のジエチレングリコールジアルキルエーテル;メチルセロソルブアセテート、エチルセロソルブアセテート等のエチレングリコールアルキルエーテルアセテート;プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート等のプロピレングリコールアルキルエーテルアセテート;アセトン、メチルエチルケトン、シクロヘキサノン、メチルアミルケトン等のケトン;ジオキサン等の環式エーテル;2-ヒドロキシプロピオン酸メチル、2-ヒドロキシプロピオン酸エチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、エトキシ酢酸エチル、オキシ酢酸エチル、2-ヒドロキシ-3-メチルブタン酸メチル、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、蟻酸エチル、酢酸エチル、酢酸ブチル、アセト酢酸メチル、アセト酢酸エチル等のエステルなどが挙げられる。これらの溶剤(F)は1種類のみで用いることも2種以上併用することもできる。
 本発明のレジスト組成物における溶剤(F)の含有量は、組成物の流動性をスピンコート法等の塗布法により均一な塗膜を得られることから、本発明のレジスト組成物中の固形分濃度が15~65質量%となる量とすることが好ましい。
 本発明のレジスト組成物は、ノボラック型フェノール樹脂(C)の金属塩、並びに任意にアルカリ可溶性樹脂(D)、感光剤(E)及び溶剤(F)を含めばよく、ノボラック型フェノール樹脂(C)の金属塩、並びに任意にアルカリ可溶性樹脂(D)、感光剤(E)、溶剤(F)及び成分(C)~(F)以外の成分(例えば充填材、顔料、レベリング剤等の界面活性剤、密着性向上剤、溶解促進剤から選択される1以上)を含んでもよく、本発明の効果を損なわない範囲で不可避不純物を含んでもよい。
 本発明のレジスト組成物は、例えば、溶媒(F)を除いた固形分の、80質量%以上、90質量%以上、95質量%以上、98質量%以上又は100質量%が、ノボラック型フェノール樹脂(C)の金属塩、並びに任意にアルカリ可溶性樹脂(D)、感光剤(E)及び成分(C)~(F)以外の成分からなっていてもよい。
 本発明のレジスト組成物は、ノボラック型フェノール樹脂(C)、金属塩、任意に配合する他のアルカリ可溶性樹脂(D)、感光剤(E)及び溶剤(F)、さらに必要に応じて加えた各種添加剤を通常の方法で、撹拌混合して均一な液とすることで調製できる。
 本発明のレジスト組成物に充填材、顔料等の固形のものを配合する際には、ディゾルバー、ホモジナイザー、3本ロールミル等の分散装置を用いて分散、混合させることが好ましい。また、粗粒や不純物を除去するため、メッシュフィルター、メンブレンフィルター等を用いて該組成物をろ過することもできる。
 [パターン形成方法]
 本発明のレジスト組成物は、ネガ型フォトレジスト組成物としてもポジ型フォトレジストとしても使用することができる。本発明のレジスト組成物を用いたパターンの製造方法は、本発明のレジスト組成物を用いてレジスト膜を形成する工程と、前記レジスト膜を露光する工程と、前記露光されたレジスト膜を、現像液を用いて現像してパターンを形成する工程とを含む。
 レジスト膜の形成、レジスト膜の露光、及び露光したレジスト膜の現像は公知の方法により実施できる。本発明のレジスト組成物を露光する光源としては、例えば、赤外光、可視光、紫外光、遠紫外光、X線、電子線等が挙げられる。これらの光源の中でも紫外光が好ましく、高圧水銀灯のg線(波長436nm)、i線(波長365nm)、EUVレーザー(波長13.5nm)が好適である。
 露光後の現像に用いるアルカリ現像液としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム、アンモニア水等の無機アルカリ性物質;エチルアミン、n-プロピルアミン等の1級アミン類;ジエチルアミン、ジ-n-ブチルアミン等の2級アミン類;トリエチルアミン、メチルジエチルアミン等の3級アミン類;ジメチルエタノールアミン、トリエタノールアミン等のアルコールアミン;テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド等の4級アンモニウム塩;ピロール、ピヘリジン等の環状アミンなどのアルカリ性水溶液を使用することができる。これらのアルカリ現像液には、必要に応じてアルコール、界面活性剤等を適宜添加して用いることもできる。アルカリ現像液のアルカリ濃度は、通常2~5質量%の範囲が好ましく、2.38質量%テトラメチルアンモニウムヒドロキシド水溶液が一般的に用いられる。
 本発明のパターン形成方法は、電子デバイスの製造工程で好適に用いられる。上記電子デバイスとしては、家庭用電気機器、オフィスオートメーション機器、メディア関連機器、光学用機器、通信機器等が挙げられる。
 以下、実施例と比較例とにより、本発明を具体的に説明する。
 合成例1 カルボン酸含有フェノール性3核体化合物の合成
 冷却管を設置した2000mlの4口フラスコに2,5-キシレノール293.2g(2.4mol)、4-ホルミル安息香酸150g(1mol)を仕込み、酢酸500mlに溶解させた。氷浴中で冷却しながら硫酸5mlを添加した後、マントルヒーターで100℃まで加熱し、2時間攪拌しながら反応させた。反応終了後、得られた溶液に水を加えて粗生成物を再沈殿させた。粗生成物をアセトンに再溶解し、さらに水で再沈殿させた後、沈殿物を濾別して真空乾燥を行い、淡桃色結晶の前駆体化合物(A-1)283gを得た。
 得られた前駆体化合物(A-1)について、13C-NMR測定を行った結果、下記構造式で表される化合物であることを確認した。また、GPCチャート図から算出される純度(GPC純度)は95.3%であった。前駆体化合物(A-1)のGPCチャートを図1に、13C-NMRチャートを図2に示す。
Figure JPOXMLDOC01-appb-C000008
 合成例2 フェノール性3核体化合物の合成
 冷却管を設置した2000mlの4口フラスコに2,5-キシレノール293.2g(2.4mol)、2-ヒドロキシベンズアルデヒド122g(1mol)を仕込み、2-エトキシエタノール500mlに溶解させた。氷浴中で冷却しながら硫酸10mlを添加した後、マントルヒーターで100℃まで加熱し、2時間攪拌しながら反応させた。反応終了後、得られた溶液に水を加えて粗生成物を再沈殿させた。粗生成物をアセトンに再溶解し、さらに水で再沈殿させた後、沈殿物を濾別して真空乾燥を行い、白色結晶の前駆体化合物(A’-2)283gを得た。
 得られた前駆体化合物(A’-2)について、13C-NMR測定を行った結果、下記構造式で表される化合物であることを確認した。また、GPCチャート図から算出される純度(GPC純度)は98.2%であった。前駆体化合物(A’-2)のGPCチャートを図3に、13C-NMRチャートを図4に示す。
Figure JPOXMLDOC01-appb-C000009
 製造例1 カルボン酸含有ノボラック型フェノール樹脂の合成
 冷却管を設置した1000mlの4口フラスコに前駆体化合物(A-1)188g、92%パラホルムアルデヒド16gを仕込んだ後、酢酸500mlに溶解させた。氷浴中で冷却しながら硫酸10mlを添加した後、オイルバスで80℃まで加熱し、4時間攪拌しながら反応させた。反応終了後、得られた溶液に水を加えて粗生成物を再沈殿させた。粗生成物をアセトンに再溶解し、さらに水で再沈殿させた後、沈殿物を濾別して、真空乾燥を行い橙色粉末のノボラック型フェノール樹脂(C-1)182gを得た。得られたノボラック型フェノール樹脂(C-1)の数平均分子量(Mn)は3946、重量平均分子量(Mw)は8504、多分散度(Mw/Mn)は2.16であった。ノボラック型フェノール樹脂(C-1)のGPCチャートを図5に示す。
 製造例2 カルボン酸含有ノボラック型フェノール樹脂の合成
 前駆体化合物(A-1)の代わりに、前駆体化合物(A-1)9.4g(0.025mol)及び前駆体化合物(A’-2)8.7g(0.025mol)を使用したほかは製造例1と同様にして、淡赤色粉末のノボラック型フェノール樹脂(C-2)16.8gを得た。得られたノボラック型フェノール樹脂(C-2)の数平均分子量(Mn)は3331、重量平均分子量(Mw)は6738、多分散度(Mw/Mn)は2.02であった。ノボラック型フェノール樹脂(C-2)のGPCチャートを図6に示す。
 製造例3 ノボラック樹脂の合成
 攪拌機、温度計を備えた2Lの4つ口フラスコに、2-ヒドロキシ安息香酸552g(4mol)、1,4-ビス(メトキシメチル)ベンゼン498g(3mol)、p-トルエンスルホン酸2.5g、トルエン500gを仕込み、120℃まで昇温し、脱メタノール反応を行った。減圧下で昇温、蒸留し、230℃、6時間減圧留去を行い、淡黄色固形のノボラック樹脂(C’-3)882gを得た。ノボラック樹脂(C’-3)の数平均分子量(Mn)は1016、重量平均分子量(Mw)は2782、多分散度(Mw/Mn)は2.74であった。ノボラック樹脂(C’-3)のGPCチャートを図7に示す。
 製造例4 ノボラック樹脂の合成
 攪拌機、温度計を備えた2Lの4つ口フラスコに、m-クレゾール648g(6mol)、p-クレゾール432g(4mol)、シュウ酸2.5g(0.2mol)、42%ホルムアルデヒド492gを仕込み、100℃まで昇温、反応させた。常圧で200℃まで脱水、蒸留し、230℃、6時間減圧蒸留を行い、淡黄色固形のノボラック樹脂(C’-4)736gを得た。
 ノボラック樹脂(C’-4)のGPCは数平均分子量(Mn)は1450、重量平均分子量(Mw)は10316、多分散度(Mw/Mn)は7.116であった。ノボラック樹脂(C’-4)のGPCチャートを図8に示す。
 実施例1
 [樹脂溶液の調製]
 製造例1で調製したノボラック型フェノール樹脂(C-1)とプロピレングリコールモノメチルエーテルアセテート(PGMEA)を、ノボラック型フェノール樹脂(C-1):PGMEA=20:80の質量比で混合して、ノボラック型フェノール樹脂(C-1)のPGMEA溶液とし、この溶液を、0.1μmのポリテトラフルオロエチレン製ディスクフィルタで精密濾過を行い、樹脂溶液を調製した。
 [複合化評価]
 30mlの耐熱チューブに得られた樹脂溶液5gと金属硝酸塩水和物であるCa(NO・4HO、Zn(NO・6HO、Cu(NO・3HO及びFe(NO・9HOをそれぞれ0.2g加え、振盪処理しながら100℃まで加熱した。加熱後の樹脂溶液と金属硝酸塩水和物の混合物の状態を下記基準で評価した。ゲル化評価の結果を表1に示す。
   ○:不動ゲル化
   △:粘調液体化
   ×:粘度変化なし
 上記評価により、不動ゲル化又は粘調液体化が確認されたので、さらに塩酸水溶液1gを加えた後、室温で3時間振盪処理を行った。振盪処理後の金属硝酸塩水和物含有樹脂溶液の状態を下記基準で評価し、金属塩構造の形成の有無を確認した。ゾル化評価の結果を表1に示す。
   ○:低粘度液体化
   △:粘調液体化
   ×:状態変化なし
 表1の結果から、金属硝酸塩水和物を添加することで不動ゲル化又は粘調液体化し、さらに塩酸水溶液を加えることで低粘度液体化した製造例1のノボラック型フェノール樹脂(C-1)は、金属硝酸塩水和物の添加によって金属塩構造を形成していることが確認できた。
 金属硝酸塩水和物を添加することで不動ゲル化又は粘調液体化し、さらに塩酸水溶液を加えることで低粘度液体化することは、金属-ノボラック間の配位結合による架橋構造の形成と、その解離による架橋構造の分解が可逆的であることを示す挙動であることから、カルボン酸の金属塩を形成していることを示す。
 調製した樹脂溶液については、別途下記評価を行った。結果を表1に示す。
 [アルカリ現像性評価]
 得られた樹脂溶液を5インチシリコンウェハー上に約1μmの厚さになるようにスピンコーターで塗布し、110℃のホットプレート上で60秒乾燥させ、シリコンウェハー上に樹脂膜を形成した。得られたウェハーを現像液(2.38%水酸化テトラメチルアンモニウム水溶液)に60秒間浸漬後、110℃のホットプレート上で60秒乾燥させた。現像液浸漬前後の膜厚を測定し、その差分を60で除した値をアルカリ現像性(ADR1(Å/s))とした。
 得られた樹脂溶液にノボラック型フェノール樹脂/P-200/PGMEA=20/5/75(質量比)となるように感光剤P-200(東洋合成工業株式会社製;4,4’-[1-[4-[1-(4-ヒドロキシフェニル)-1メチルエチル]フェニル]エチリデン]ビスフェノール1モルと1,2-ナフトキノン-2-ジアジド-5-スルホニルクロリド2モルとの縮合物)を加え、この樹脂組成物を5インチシリコンウェハー上に約1μmの厚さになるようにスピンコーターで塗布し、110℃のホットプレート上で60秒乾燥させ、シリコンウェハー上に樹脂膜を形成した。得られたウェハーを現像液(2.38%水酸化テトラメチルアンモニウム水溶液)に60秒間浸漬後、110℃のホットプレート上で60秒乾燥させた。現像液浸漬前後の膜厚を測定し、その差分を60で除した値をアルカリ現像性(ADR2(Å/s))とした。
 [耐熱性評価]
 得られた樹脂溶液を5インチシリコンウェハー上に約1μmの厚さになるようにスピンコーターで塗布し、110℃のホットプレート上で60秒乾燥させ、シリコンウェハー上に樹脂膜を形成した。この樹脂膜をかき取り、ガラス転移点温度(以下、「Tg」と略記する。)を測定し、下記基準で評価した。
   ○:Tgが150℃以上
   ×:Tgが150℃以下
 尚、Tgの測定は、示差熱走査熱量計(株式会社ティー・エイ・インスツルメント製「示差熱走査熱量計(DSC)Q100」)を用いて、窒素雰囲気下、温度範囲-100~200℃、昇温速度10℃/分の条件で行った。
 実施例2及び比較例1-2
 ノボラック型フェノール樹脂(C-1)の代わりに、表1に示す樹脂を用いた他は実施例1と同様にして樹脂溶液を調製し、評価した。結果を表1に示す。尚、ノボラック樹脂(C’-3)及びノボラック樹脂(C’-4)の樹脂溶液については、ゲル化評価で粘度変化がなかった場合は、ゾル化の評価は行わなかった。
Figure JPOXMLDOC01-appb-T000010

Claims (9)

  1.  下記式(1)で表される芳香族化合物(A)と脂肪族アルデヒド(B)とを必須の反応原料とするノボラック型フェノール樹脂(C)の金属塩を含むレジスト組成物。
    Figure JPOXMLDOC01-appb-C000001
    (前記式(1)中、R及びRは、それぞれ独立に、水素原子、炭素原子数1~9の脂肪族炭化水素基、アルコキシ基、アリール基、アラルキル基又はハロゲン原子を表す。
     m及びnは、それぞれ独立に、0~4の整数を表す。
     Rが複数ある場合、複数のRは互いに同じでも異なってもよい。
     Rが複数ある場合、複数のRは互いに同じでも異なってもよい。
     Rは、水素原子、炭素原子数1~9の脂肪族炭化水素基、又は炭化水素基上にアルコキシ基、ハロゲン基及び水酸基から選択される置換基を1以上有する構造部位を表す。)
  2.  前記金属塩が、カルボン酸金属塩である請求項1に記載のレジスト組成物。
  3.  前記金属塩の金属原子が、カルシウム原子、亜鉛原子、銅原子及び鉄原子から選択される1以上である請求項1又は2に記載のレジスト組成物。
  4.  前記芳香族化合物(A)が、フェノール化合物と、カルボキシル基もしくはカルボキシエステル基を有する芳香族アルデヒド、及び/又は、カルボキシル基もしくはカルボキシエステル基を有する芳香族ケトンと、の重縮合物である、請求項1~3のいずれかに記載のレジスト組成物。
  5.  前記カルボキシル基を有する芳香族アルデヒドが、ホルミル安息香酸である、請求項4に記載のレジスト組成物。
  6.  前記脂肪族アルデヒド(B)が、ホルムアルデヒド及び/又はパラホルムアルデヒドである、請求項1~5のいずれかに記載のレジスト組成物。
  7.  請求項1~6のいずれかに記載のレジスト組成物を用いてレジスト膜を形成する工程と、
     前記レジスト膜を露光する工程と、
     前記露光されたレジスト膜を、現像液を用いて現像してパターンを形成する工程と、を含むパターン形成方法。
  8.  前記露光が、電子線又は極端紫外線による露光である請求項7に記載のパターン形成方法。
  9.  請求項7又は8に記載のパターン形成方法を含む、電子デバイスの製造方法。
PCT/JP2019/046091 2018-12-26 2019-11-26 レジスト組成物 WO2020137309A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020551451A JP6814421B2 (ja) 2018-12-26 2019-11-26 レジスト組成物
CN201980086276.7A CN113227181B (zh) 2018-12-26 2019-11-26 抗蚀剂组合物
KR1020217017545A KR102467637B1 (ko) 2018-12-26 2019-11-26 레지스트 조성물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-242834 2018-12-26
JP2018242834 2018-12-26

Publications (1)

Publication Number Publication Date
WO2020137309A1 true WO2020137309A1 (ja) 2020-07-02

Family

ID=71129719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046091 WO2020137309A1 (ja) 2018-12-26 2019-11-26 レジスト組成物

Country Status (5)

Country Link
JP (1) JP6814421B2 (ja)
KR (1) KR102467637B1 (ja)
CN (1) CN113227181B (ja)
TW (1) TWI825250B (ja)
WO (1) WO2020137309A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024024925A1 (ja) * 2022-07-29 2024-02-01 東京エレクトロン株式会社 基板処理方法及び基板処理システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073583A1 (ja) * 2008-12-24 2010-07-01 住友ベークライト株式会社 接着フィルム、多層回路基板、半導体用部品および半導体装置
JP2016004209A (ja) * 2014-06-18 2016-01-12 信越化学工業株式会社 ポジ型感光性樹脂組成物、光硬化性ドライフィルム並びにその製造方法、積層体、パターン形成方法、及び基板
WO2016056355A1 (ja) * 2014-10-10 2016-04-14 Dic株式会社 ナフトール型カリックスアレーン化合物及びその製造方法、感光性組成物、レジスト材料、並びに塗膜
JP2017037326A (ja) * 2014-12-02 2017-02-16 Dic株式会社 レジスト下層膜形成用感光性組成物及びレジスト下層膜

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2734545B2 (ja) 1988-08-22 1998-03-30 大日本インキ化学工業株式会社 ポジ型フォトレジスト組成物
JPH075696B2 (ja) * 1990-03-26 1995-01-25 帝人株式会社 ヒドロキシカルボン酸誘導体の製造法
JP2007099727A (ja) * 2005-10-07 2007-04-19 Tokyo Ohka Kogyo Co Ltd 化合物およびその製造方法
WO2007013471A1 (ja) * 2005-07-25 2007-02-01 Tokyo Ohka Kogyo Co., Ltd. 化合物およびその製造方法、低分子化合物、ポジ型レジスト組成物およびレジストパターン形成方法
JP5396738B2 (ja) * 2007-05-09 2014-01-22 三菱瓦斯化学株式会社 感放射線性組成物、化合物、化合物の製造方法およびレジストパターン形成方法
KR20150129676A (ko) * 2013-03-14 2015-11-20 디아이씨 가부시끼가이샤 변성 노볼락형 페놀 수지, 레지스트 재료, 도막 및 레지스트 영구막
JP5876450B2 (ja) * 2013-08-26 2016-03-02 信越化学工業株式会社 高分子化合物、化学増幅型ネガ型レジスト材料、光硬化性ドライフィルム及びその製造方法、積層体、及びパターン形成方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073583A1 (ja) * 2008-12-24 2010-07-01 住友ベークライト株式会社 接着フィルム、多層回路基板、半導体用部品および半導体装置
JP2016004209A (ja) * 2014-06-18 2016-01-12 信越化学工業株式会社 ポジ型感光性樹脂組成物、光硬化性ドライフィルム並びにその製造方法、積層体、パターン形成方法、及び基板
WO2016056355A1 (ja) * 2014-10-10 2016-04-14 Dic株式会社 ナフトール型カリックスアレーン化合物及びその製造方法、感光性組成物、レジスト材料、並びに塗膜
JP2017037326A (ja) * 2014-12-02 2017-02-16 Dic株式会社 レジスト下層膜形成用感光性組成物及びレジスト下層膜

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024024925A1 (ja) * 2022-07-29 2024-02-01 東京エレクトロン株式会社 基板処理方法及び基板処理システム

Also Published As

Publication number Publication date
JPWO2020137309A1 (ja) 2021-02-18
CN113227181B (zh) 2023-07-18
JP6814421B2 (ja) 2021-01-20
TW202031764A (zh) 2020-09-01
KR102467637B1 (ko) 2022-11-16
TWI825250B (zh) 2023-12-11
CN113227181A (zh) 2021-08-06
KR20210088669A (ko) 2021-07-14

Similar Documents

Publication Publication Date Title
JP5035492B2 (ja) ポジ型フォトレジスト組成物
JP5152447B2 (ja) ポジ型フォトレジスト組成物、その塗膜及びノボラック型フェノール樹脂
KR101860805B1 (ko) 포지티브형 포토 레지스트 조성물
WO2019239784A1 (ja) ノボラック型フェノール樹脂、その製造方法、感光性組成物、レジスト材及びレジスト膜
JP5953811B2 (ja) ポジ型フォトレジスト組成物
JP6814421B2 (ja) レジスト組成物
JP7318820B2 (ja) レジストパターンの製造方法、及びレジストパターン、並びに透明積層部材製造用ポジ型感光性樹脂組成物
JP2013195497A (ja) フォトレジスト用樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19904183

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020551451

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217017545

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19904183

Country of ref document: EP

Kind code of ref document: A1