WO2020136982A1 - Sterilizing water, sterilizing water production method and sterilized object production method - Google Patents

Sterilizing water, sterilizing water production method and sterilized object production method Download PDF

Info

Publication number
WO2020136982A1
WO2020136982A1 PCT/JP2019/031665 JP2019031665W WO2020136982A1 WO 2020136982 A1 WO2020136982 A1 WO 2020136982A1 JP 2019031665 W JP2019031665 W JP 2019031665W WO 2020136982 A1 WO2020136982 A1 WO 2020136982A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
ozone
hydrogen peroxide
sterilizing
sterilized
Prior art date
Application number
PCT/JP2019/031665
Other languages
French (fr)
Japanese (ja)
Inventor
横山 貴士
哲 猪原
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2020562337A priority Critical patent/JPWO2020136982A1/en
Publication of WO2020136982A1 publication Critical patent/WO2020136982A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/02Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing liquids as carriers, diluents or solvents
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F21/00Dissolving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone

Definitions

  • the present invention relates to sterilized water, a method for producing sterilized water, and a method for producing a sterilized object.
  • ozone is harmful to the human body by invading the mucous membrane, ozone water does not have high safety.
  • ozone has a strong ozone odor and has a low solubility in water, ozone water produces a strong ozone odor. Therefore, there is a demand for sterilizing water that can be used in place of ozone water, has high sterilizing power, has high safety, and does not generate a strong ozone odor.
  • the present invention has been made in view of the need for sterilizing water that can be used in place of ozone water, has high sterilizing power, has high safety, and does not generate a strong ozone odor.
  • the problem to be solved by the present invention is to provide sterilizing water that has high sterilizing power, high safety, and does not generate a strong ozone odor.
  • the present invention is directed to sterilizing water having a sterilizing power to sterilize an object that has come into contact with it.
  • Sterilized water contains water, ozone, hydrogen peroxide, hydroxy radicals and hydroperoxide radicals. Ozone, hydrogen peroxide, hydroxy radicals and hydroperoxide radicals are dissolved in water.
  • the present invention is also directed to a method for producing sterilizing water having a sterilizing power to sterilize an object that has come into contact with it.
  • a solution containing water, ozone and hydrogen peroxide, in which ozone and hydrogen peroxide are dissolved in water is prepared. Further, ozone and hydrogen peroxide are reacted with each other in the solution to generate a hydroxy radical and a hydroperoxide radical. As a result, the solution is changed to sterile water containing water, hydroxy radicals and hydroperoxide radicals, and the hydroxy radicals and hydroperoxide radicals being dissolved in water.
  • the present invention is also directed to a method of manufacturing a sterilized object.
  • Sterilized water is manufactured by the above-described sterilized water manufacturing method. Also, sterile water is brought into contact with the object. This changes the object to a sterilized object.
  • hydroxy radicals and hydroperoxide radicals having a short life are produced from ozone and hydrogen peroxide having a long life. For this reason, germicidal water has a high concentration of hydroxy radicals and a high concentration of hydroperoxide radicals, despite the fact that the hydroxy radicals and hydroperoxide radicals have a short lifetime. Further, the hydroxy radical and the hydroperoxide radical serve as a germicidal factor that imparts germicidal power to germicidal water to the germicidal water. With these, sterilizing water having high sterilizing power can be provided.
  • the hydroxy radical and the hydroperoxide radical serve as a bactericidal factor that imparts a bactericidal power for sterilizing the contacted object to the sterilizing water. Therefore, the sterilized water does not have to have a high ozone concentration. Also, according to the present invention, ozone is consumed to produce hydroxy radicals and hydroperoxide radicals. Therefore, sterilized water does not have a high ozone concentration. As a result, it is possible to provide sterilizing water that has high safety and does not generate a strong ozone odor.
  • FIG. 1 is a figure explaining the manufacturing method of sterilizing water of 1st Embodiment.
  • ozone water 10 containing water (H 2 O) and ozone (O 3 ) and having ozone dissolved in water is produced. It Further, hydrogen peroxide solution 11 containing water and hydrogen peroxide (H 2 O 2 ) and having hydrogen peroxide dissolved in water is prepared.
  • ozone water 10 and the hydrogen peroxide solution 11 thus prepared are mixed with each other.
  • a solution 12 containing water, ozone, and hydrogen peroxide, in which ozone and hydrogen peroxide are dissolved in water is prepared.
  • the solution 12 may be prepared without passing through the ozone water 10 and the hydrogen peroxide solution 11.
  • ozone and hydrogen peroxide are reacted with each other in the solution 12 to generate a hydroxy radical (OH * ) and a hydroperoxide radical (HO 2 * ).
  • the solution 12 is changed to sterilizing water 13 containing water, hydroxy radicals and hydroperoxide radicals, and the hydroxy radicals and hydroperoxide radicals being dissolved in water.
  • the hydroxy radical and the hydroperoxide radical serve as a bactericidal factor that imparts a bactericidal power to the sterilized water 13 to sterilize the contacted object. Therefore, the sterilizing water 13 has a sterilizing power to sterilize the contacted object.
  • the sterilizing water 13 contains ozone and hydrogen peroxide, which are precursors 15 of the bactericidal factor 14, in addition to hydroxy radicals and hydroperoxide radicals, which are the bactericidal factor 14. Therefore, in the sterilizing water 13, ozone and hydrogen peroxide, which are the precursors 15 of the bactericidal factor 14, react with each other to generate hydroxy radicals and hydroperoxide radicals, which become the bactericidal factor 14.
  • the ratio of the molar concentration of hydrogen peroxide in the solution 12 to the molar concentration of ozone in the solution 12 is preferably 0.5 or more and 10 or less.
  • FIG. 2 shows each component in the solution when sterilized water is produced by the method for producing sterilized water according to the first embodiment. It is a graph which shows the outline of the time change of concentration.
  • the sterilizing water 13 is manufactured by the method for manufacturing the sterilizing water 13 according to the first embodiment, ozone and hydrogen peroxide react with each other to generate hydroxy radicals and hydroperoxides. Therefore, as shown in FIG. 2, the ozone concentration and the hydrogen peroxide concentration in the solution 12 decrease as time passes from the timing T1 when the solution 12 is produced, and the ozone concentration and the hydrogen peroxide concentration in the solution 12 at the timing T2 decrease. At least one of the hydrogen peroxide concentrations becomes zero. Note that FIG. 2 shows an example in which only the ozone concentration in the solution 12 becomes 0 at the timing T2.
  • the hydroxy radical concentration and the hydroperoxide radical concentration in the solution 12 gradually decrease in the period from the timing T1 to the timing T2, but the hydroxy radical concentration and the hydroperoxide radical concentration in the solution 12 decrease in the period after the timing T2.
  • the concentration of hydroperoxide radical decreases sharply.
  • FIG. 3 is a flowchart showing a method for manufacturing a sterilized object using the sterilized water manufactured by the method for manufacturing sterilized water according to the first embodiment.
  • step S101 the sterilized water 13 of the first embodiment is used.
  • Sterilized water 13 is manufactured by the manufacturing method of.
  • step S102 the sterilized water 13 produced is brought into contact with the object to be sterilized.
  • the hydroxy radicals and hydroperoxide radicals contained in the sterilizing water 13 act on the object to be sterilized, and the object to be sterilized is sterilized and changed to a sterilized object.
  • Step S102 is executed during the period from timing T1 to timing T2 shown in FIG. Thereby, step S102 is executed during the progress of the reaction in which ozone and hydrogen peroxide react with each other to generate a hydroxy radical and a hydroperoxide radical.
  • the solution 12 and the sterilized water 13 desirably have a hydrogen ion concentration index (pH) of more than 5, and more desirably have a pH of more than 7. Thereby, the sterilizing power of the sterilizing water 13 can be improved.
  • the solution 12 and the sterile water 13 desirably have a pH less than 9.
  • the solution 12 and the sterilized water 13 preferably have a pH of more than 5 and less than 9, and more preferably a pH of more than 7 and less than 9.
  • the pH may be adjusted by using the solution 12 and the sterilized water 13 as a buffer solution, or by dissolving citric acid, sodium hydroxide or the like in water, or by using an ion exchange membrane. It may be carried out by electrolyzing water through. When pH is adjusted by electrolyzing water through the ion exchange membrane, a reagent for adjusting the pH becomes unnecessary.
  • Sterilized water 13 was manufactured by the method for manufacturing sterilized water 13 of the first embodiment.
  • the ozone water 10 was produced by diluting the ozone water generated from the generator with tap water.
  • the hydrogen peroxide solution 11 was prepared by diluting a commercially available hydrogen peroxide solution reagent with tap water.
  • the ozone concentration in the solution 12 was 8.3 ⁇ 10 ⁇ 4 mmol/liter.
  • the hydrogen peroxide concentration in the solution 12 was in the range of 4 times to 10000 times the ozone concentration in the solution 12, which is 8.3 ⁇ 10 ⁇ 4 mmol/liter.
  • the pH of the solution 12 and the sterile water 13 was set to 7.
  • the number of E. coli in the bacterial solution before sterilization was measured. Further, the sterilized water 13 produced was mixed with the bacterium solution to sterilize the bacterium solution for 30 seconds, and the number of E. coli in the bacterium solution after sterilization was measured.
  • the sterilization digit number was obtained by taking the absolute value of the common logarithm of the ratio of the number of E. coli after sterilization to the number of E. coli before sterilization.
  • the ozone concentration in the solution 12 immediately after preparation was measured. Further, the ozone concentration in the solution 12 was measured at the time when 5 minutes had passed after the preparation.
  • the ozone reduction rate was obtained by taking the ratio of the difference between the former ozone concentration and the latter ozone concentration with respect to the former ozone concentration.
  • the graph of FIG. 4 shows the results of measuring changes in the number of sterilization digits and the ozone reduction rate depending on the ratio of the hydrogen peroxide concentration in the solution 12 to the ozone concentration in the solution 12.
  • the sterilization digit number is approximately 2 or more and 3 or less when the ratio is approximately 4 times or more and approximately 1000 times or less, but when the ratio is approximately 1000 times or more, It is almost 0.
  • the ozone reduction rate is approximately 20% or less when the ratio is approximately 4 times or more and 500 times or less, but is approximately 90% or more when the ratio is approximately 500 times or more and 10000 times or less. Become.
  • the ratio is approximately 500 times or more and 1000 times or less, it is possible to obtain the sterilizing water 13 that has high sterilizing power, high safety, and does not generate a strong ozone odor.
  • the range of the ratio at which the sterilizing water 13 can be obtained changes when the above-mentioned "30 seconds" and "5 minutes” are extended or shortened.
  • the ozone water 10 was produced by bubbling ozone generated by an ozonizer into deionized water.
  • the hydrogen peroxide solution 11 was prepared by diluting a commercially available hydrogen peroxide solution reagent with deionized water.
  • the ozone concentration in the solution 12 was 8.3 ⁇ 10 ⁇ 4 mmol/liter.
  • the hydrogen peroxide concentration in the solution 12 was in the range of 0.49 times to 204 times the ozone concentration in the solution 12, which is 8.3 ⁇ 10 ⁇ 4 mmol/liter.
  • the pH of the solution 12 and the sterile water 13 was set to 7.
  • the change in the number of sterilization digits depending on the ratio of the concentration of hydrogen peroxide in the solution 12 to the concentration of ozone in the solution 12 was measured, as in the first experimental example.
  • the graph of FIG. 5 shows the measurement results of the change in the number of sterilization digits depending on the ratio of the concentration of hydrogen peroxide in the solution 12 to the concentration of ozone in the solution 12.
  • the sterilization digit number is approximately 6 which reaches the detection limit when the ratio is approximately 0.5 or more and 10 or less, but the ratio is generally less than 0.5 or 10 or less. When it is large, it is approximately 2 or more and 5 or less.
  • the sterilizing water 13 having a high sterilizing power can be obtained.
  • the sterilization digit number measured in the second experimental example is significantly larger than the sterilization digit number measured in the first experimental example because tap water containing chlorine was used in the first experimental example. This is because ozone was not lost due to chlorine because deionized water containing no chlorine was used in the experimental example.
  • hydroxy radicals and hydroperoxide radicals having a short life of about several microseconds to several milliseconds are generated from ozone and hydrogen peroxide having a long life.
  • the germicidal water 13 has a high hydroxy radical concentration and a high hydroperoxide radical concentration, even though the hydroxy radical and the hydroperoxide radical have a short life.
  • the hydroxy radical and the hydroperoxide radical serve as a bactericidal factor 14 that imparts a bactericidal power to the sterilized water 13 to sterilize the contacted object. With these, the sterilizing water 13 having a high sterilizing power can be provided.
  • the hydroxy radical and the hydroperoxide radical serve as the sterilization factor 14 that imparts the sterilizing power for sterilizing the contacted object to the sterilizing water. Therefore, the sterilizing water 13 does not have to have a high ozone concentration. Also, according to the first embodiment, ozone is consumed to generate hydroxy radicals and hydroperoxide radicals. Therefore, the sterilizing water 13 does not have a high ozone concentration. With these, it is possible to provide the sterilizing water 13 having high safety and not generating a strong ozone odor.
  • the manufacturing method of the sterilizing water 13 of 2nd Embodiment is mainly the following points, and the manufacturing method of the sterilizing water 13 of 1st Embodiment. Is different from.
  • the ozone water 10 and the hydrogen peroxide solution 11 are mixed with each other to contain water, ozone and hydrogen peroxide, and the ozone and hydrogen peroxide are dissolved in the water.
  • a solution 12 is prepared.
  • water, ozone, and hydrogen peroxide are generated by generating cavitation bubbles in water and generating discharge plasma in the space where the cavitation bubbles are generated.
  • a solution 12 is prepared in which the contained ozone and hydrogen peroxide are dissolved in water.
  • FIG. 6 is a diagram schematically showing a sterilized water production apparatus used when sterilized water is produced by the sterilized water production method of the second embodiment.
  • the sterilizing water 13 manufacturing apparatus 100 shown in FIG. 6 includes an annular pipe 110, a reactor 112, a cooler 114, and a pump 116.
  • the sterilizing water manufacturing apparatus 100 may include elements other than these elements.
  • the annular pipe 110 has an annular water channel. Water circulates in the annular water channel in the annular pipe 110.
  • the annular tube 110 may be replaced by a member that is not a tube.
  • the annular tube 110 may be replaced with an annular hose.
  • a reactor 112, a cooler 114, and a pump 116 are inserted in the annular pipe 110. Therefore, the water circulating in the annular water passage in the annular pipe 110 sequentially passes through the reactor 112, the cooler 114, and the pump 116.
  • the reactor 112 processes water passing through the reactor 112.
  • the cooler 114 cools the water passing through the cooler 114.
  • Pump 116 provides a flow of water passing through pump 116. Thereby, the water cooled by the cooler 114 is repeatedly processed by the reactor 112, ozone and hydrogen peroxide are generated in the processed water, and water, ozone and hydrogen peroxide are contained, and ozone and hydrogen peroxide are converted into water.
  • a dissolved solution 12 is created.
  • the produced solution 12 is changed to sterilized water 13 as in the first embodiment.
  • the sterilized water 13 produced can be used similarly to the sterilized water 13 produced by the method for producing the sterilized water 13 of the first embodiment.
  • the manufacturing apparatus 100 further includes a branch pipe 118 and a valve 120.
  • the branch pipe 118 has a branch water channel.
  • the branch water passage in the branch pipe 118 extends from the annular water passage in the annular pipe 110 to the outside of the sterilizing water 13 production apparatus 100.
  • the manufactured sterilizing water 13 is taken out of the manufacturing apparatus 100 via the branch water channel in the branch pipe 118.
  • the branch pipe 118 may be replaced with a member that is not a pipe.
  • the branch pipe 118 may be replaced with a branch hose.
  • the branch pipe 118 may be omitted, and the sterilizing water 13 may be taken out of the manufacturing apparatus 100 via the hole formed in the annular pipe 110.
  • a valve 120 is inserted in the branch pipe 118. While the valve 120 is closed, the water in the annular water channel in the annular tube 110 circulates in the annular water channel in the annular tube 110 without being taken out of the manufacturing apparatus 100. While the valve 120 is open, the sterilizing water 13 can be taken out of the manufacturing apparatus 100 via the branch water passage in the branch pipe 118.
  • the manufacturing apparatus 100 further includes a pulse voltage application circuit 122.
  • the pulse voltage application circuit 122 applies a pulse voltage to the reactor 112.
  • the reactor 112 processes the water passing through the reactor 112 using the applied pulse voltage.
  • the pulse voltage application circuit 122 includes a pulse power supply 130, a first wiring 132, and a second wiring 134.
  • the pulse power supply 130 includes a negative electrode 140 and a positive electrode 142.
  • the pulse power supply 130 generates a pulse voltage between the negative electrode 140 and the positive electrode 142.
  • the first wiring 132 and the second wiring 134 transmit the generated pulse voltage from the pulse power supply 130 to the reactor 112.
  • the pulse voltage application circuit 122 that includes the pulse power supply 130 and applies the pulse voltage to the reactor 112 may be replaced with another type of voltage application circuit.
  • the pulse voltage application circuit 122 may be a DC voltage application circuit that includes a direct current (DC) power source and applies a DC voltage to the reactor 112, or an AC voltage application circuit that includes an alternating current (AC) power source and applies an AC voltage to the reactor 112. It may be replaced.
  • FIG. 7 is a cross-sectional view schematically showing a cross section of a reactor provided in a sterilizing water production apparatus used when sterilizing water is produced by the sterilizing water producing method of the second embodiment. ..
  • the reactor 112 includes a tubular structure 150, as shown in FIG. 7.
  • the tubular structure 150 has a reactor water channel 160.
  • the in-reactor water channel 160 is connected to the annular water channel in the annular pipe 110. As a result, the water W passing through the reactor 112 flows through the in-reactor water channel 160.
  • the tubular structure 150 includes a nozzle 170.
  • the nozzle 170 has an orifice shape. Therefore, when the water W passing through the reactor 112 passes through the nozzle 170, the flow velocity of the water W becomes faster and the pressure of the water W becomes lower. Moreover, after the water W passing through the reactor 112 has passed through the nozzle 170, the flow velocity of the water W becomes slow and the pressure of the water W becomes high. As a result, cavitation occurs near the nozzle 170. That is, when the water W passes through the nozzle 170, the pressure of the water W becomes low, so that the water W boils and cavitation bubbles 180 are generated in the water W. Further, after the water W has passed through the nozzle 170, the pressure of the water W increases, so that the generated cavitation bubble 180 disappears.
  • the nozzle 170 generates the cavitation bubble 180 in the water W. Further, the reactor 112 has a space in which the cavitation bubble 180 is generated. The space is near the nozzle 170. The nozzle 170 that generates the cavitation bubble 180 may be replaced with another type of obstacle that generates the cavitation bubble 180.
  • the reactor 112 includes a first electrode 190 and a second electrode 192.
  • the first electrode 190 is electrically grounded via the first wiring 132 and electrically connected to the negative electrode 140 of the pulse power supply 130 via the first wiring 132. It The second electrode 192 is electrically connected to the positive electrode 142 of the pulse power supply 130 via the second wiring 134.
  • the first electrode 190 becomes a ground electrode
  • the second electrode 192 becomes a high-voltage electrode
  • a pulse voltage is applied between the first electrode 190 and the second electrode 192
  • the first electrode 190 becomes Discharge plasma is generated between the second electrode 192 and the second electrode 192.
  • the first wiring 132 may be omitted, and the first electrode 190 may be directly connected to the negative electrode 140.
  • the second wiring 134 may be omitted, and the second electrode 192 may be directly connected to the positive electrode 142.
  • the first electrode 190 and the second electrode 192 are arranged near the nozzle 170. As a result, the first electrode 190 and the second electrode 192 are arranged in the space where the cavitation bubble 180 is generated, and discharge plasma is generated in the space where the cavitation bubble 180 is generated. Therefore, the first electrode 190, the second electrode 192, and the pulse voltage application circuit 122 configure a discharge plasma generation mechanism 200 that generates discharge plasma in the space.
  • the first electrode 190 and the second electrode 192 are arranged on the downstream side of the nozzle 170.
  • the first electrode 190 and the second electrode 192 may be arranged in the nozzle 170.
  • the discharge plasma generated in the space where the cavitation bubble 180 is generated produces ozone and hydrogen peroxide in the cavitation bubble 180.
  • Ozone and hydrogen peroxide are produced from water W without using reagents.
  • the generated ozone and hydrogen peroxide are dissolved in water W and react with each other to generate hydroxy radicals and hydroperoxide radicals.
  • sterilizing water 13 containing water, hydroxy radicals and hydroperoxide radicals, in which the hydroxy radicals and hydroperoxide radicals are dissolved in water is produced.
  • Cavitation bubble 180 is mainly composed of water vapor and contains almost no nitrogen derived from air. Therefore, even when discharge plasma is generated in the space where the cavitation bubbles 180 are generated, a compound containing nitrogen such as nitrogen oxide is hardly generated. Therefore, the sterilized water 13 produced has high safety.
  • the first electrode 190 and the second electrode 192 are made of a conductor, for example, a metal or an alloy.
  • the first electrode 190 and the second electrode 192 may be electrodes including a conductor and a ceramic that covers a part of the surface of the conductor.
  • the first electrode 190 and the second electrode 192 have a rod shape and extend in the radial direction of the tubular structure 150.
  • the front ends of the first electrode 190 and the second electrode 192 are arranged in the reactor water channel 160.
  • the rear ends of the first electrode 190 and the second electrode 192 are arranged outside the tubular structure 150.
  • the front ends of the first electrode 190 and the second electrode 192 are separated from each other in the axial direction of the tubular structure 150, that is, in the direction in which the water W flows.
  • the distance between the first electrode 190 and the second electrode 192 is preferably 4 mm or more and 32 mm or less.
  • the distance between the first electrode 190 and the second electrode 192 can be lengthened by applying the pulse voltage between the first electrode 190 and the second electrode 192.
  • the pulse voltage can be applied between the first electrode 190 and the second electrode 192.
  • the pulse voltage is applied between the first electrode 190 and the second electrode 192, the distance between the first electrode 190 and the second electrode 192 should be 16 mm or more. Is easy.
  • the peak voltage of the pulse voltage, the pulse width of the pulse voltage, the discharge pressure of the pump 116, etc. are determined so that ozone and hydrogen peroxide are efficiently generated.
  • the water W is filled in the annular water channel in the annular pipe 110.
  • the water W to be filled may be pure water or water containing some impurities such as tap water.
  • valve 120 is closed.
  • the discharge pressure of the pump 116 is desirably 0.1 MPa or more and 1.5 MPa or less.
  • the cooler 114 is operated. Thereby, the circulating water W is desirably cooled to about 4°C.
  • the pulse power supply 130 is operated. Accordingly, the pulse voltage is applied between the first electrode 190 and the second electrode 192, and discharge plasma is generated in the space where the cavitation bubble 180 is generated.
  • the frequency of the pulse voltage is preferably 10 kHz or less.
  • the peak voltage of the pulse voltage is preferably 15 kV or less.
  • the pulse width of the pulse voltage is preferably 1 ⁇ sec or less in full width at half maximum.
  • the generated discharge plasma produces ozone and hydrogen peroxide. Ozone and hydrogen peroxide react with each other to produce hydroxy radicals and hydroperoxide radicals. Thereby, the sterilized water 13 is manufactured.
  • valve 120 is opened.
  • the manufactured sterilizing water 13 is taken out of the manufacturing apparatus 100 via the branch water channel in the branch pipe 118.
  • the process of generating the cavitation bubble 180 in the water W and generating the discharge plasma in the space where the cavitation bubble 180 is generated is repeatedly performed on the water W.
  • the sterilizing water 13 having a high hydroxy radical concentration and a high hydroperoxide radical concentration can be produced.
  • the manufacturing apparatus 100 by cooling the water W, the solubility of ozone, hydrogen peroxide, hydroxy radicals and hydroperoxide radicals in the water W is increased, and the life of the hydroxy radicals and hydroperoxide radicals is lengthened. can do.
  • the amount of water W was 0.8 liters.
  • the distance between the first electrode 190 and the second electrode 192 was 32 mm.
  • the frequency of the pulse voltage was 5 kHz.
  • the full width at half maximum of the pulse width of the pulse voltage was set to 1 ⁇ sec or less.
  • the energy density of the water W was 42000 J/liter.
  • the pH of the solution 12 and the sterile water 13 was set to 7.
  • the number of digits of sterilization was measured for the sterilized water 13 produced.
  • the number of E. coli in the bacterial solution before sterilization was measured.
  • the produced sterilizing water 13 was mixed with the bacterium solution to sterilize the bacterium solution over 20 minutes, and the number of E. coli in the bacterium solution after sterilization was measured.
  • the sterilization digit number was obtained by taking the absolute value of the common logarithm of the ratio of the number of E. coli after sterilization to the number of E. coli before sterilization.
  • the number of sterilization digits measured was 2.5.
  • the ozone concentration and hydrogen peroxide concentration in the manufactured sterilized water 13 were measured.
  • the ozone concentration in the sterilized water was below the measurement limit.
  • the hydrogen peroxide concentration in the sterilized water 13 was 200 ppm.
  • sterilizing water 13 having sterilizing power is obtained and hydrogen peroxide is present, also in the method for producing sterilizing water 13 according to the second embodiment, ozone and hydrogen peroxide are used to produce hydroxy radicals and hydro gens. It is presumed that peroxide radicals are generated.
  • the sterilizing water 13 may be manufactured by a manufacturing apparatus other than the manufacturing apparatus 100. For example, by releasing air into water to generate bubbles in the water and generating discharge plasma in the space where the bubbles are generated, water, ozone and hydrogen peroxide are contained, and ozone and hydrogen peroxide are dissolved in water.
  • the sterilizing water 13 may be manufactured by a manufacturing apparatus that manufactures the solution.
  • a hydroxy radical and a hydroperoxide radical having a short life of about several microseconds to several milliseconds have a long life. It is generated from ozone and hydrogen peroxide. Therefore, the germicidal water 13 has a high concentration of hydroxy radicals and hydroperoxide radicals, despite the short life of the hydroxy radicals and hydroperoxide radicals. Further, the hydroxy radical and the hydroperoxide radical serve as a bactericidal factor that imparts a bactericidal power to the sterilized water 13 to sterilize the contacted object. With these, it is possible to provide the sterilizing water 13 having a high sterilizing power.
  • the hydroxy radical and the hydroperoxide radical serve as a sterilizing factor that imparts the sterilizing power for sterilizing the contacted object to the sterilizing water 13. Therefore, the sterilizing water 13 does not have to have a high ozone concentration. Further, according to the second embodiment, ozone is consumed to generate hydroxy radicals and hydroperoxide radicals. Therefore, the sterilizing water 13 does not have a high ozone concentration. With these, it is possible to provide the sterilizing water 13 having high safety and not generating a strong ozone odor.
  • a method for manufacturing the sterilized water 13 according to the third embodiment mainly includes the following points in the method for manufacturing the sterilized water 13 according to the second embodiment. Is different from.
  • cavitation bubbles are generated in water, and discharge plasma is generated in a space where the cavitation bubbles are generated, so that water, ozone, and hydrogen peroxide are contained in the ozone and peroxide.
  • a solution 12 is prepared in which hydrogen is dissolved in water.
  • water, ozone and hydrogen peroxide are generated by generating cavitation bubbles in water and generating discharge plasma in the space where the cavitation bubbles are generated.
  • a pre-mixed solution is prepared in which the contained ozone and hydrogen peroxide are dissolved in water. Further, by mixing ozone water with the prepared solution before mixing, a solution 12 containing water, ozone, and hydrogen peroxide, in which ozone and hydrogen peroxide are dissolved in water, is prepared.
  • FIG. 8 is a diagram schematically illustrating a sterilized water production apparatus used when sterilized water is produced by the sterilized water production method of the third embodiment.
  • the manufacturing apparatus 201 of the sterilizing water 13 shown in FIG. 8 is the same as the manufacturing apparatus 100 of the sterilizing water 13 shown in FIG. 6, and is an annular pipe 110, a reactor 112, a cooler 114, a pump 116, a branch pipe 118 and a valve. It comprises 120.
  • the manufacturing apparatus 201 unlike the manufacturing apparatus 100 for the sterilized water 13 shown in FIG. 6, further includes an ozonizer 210.
  • the ozonizer 210 generates ozone water and supplies the generated ozone water to the branch water channel in the branch pipe 118.
  • the water cooled by the cooler 114 is repeatedly treated by the reactor 112, ozone and hydrogen peroxide are generated in the treated water, and water, ozone and hydrogen peroxide are contained, and ozone and hydrogen peroxide are transformed into water.
  • a dissolved premix solution is made.
  • ozone water containing ozone having a long life and producing a bactericidal factor is mixed with the prepared solution before mixing. Thereby, the sterilizing water 13 having a high sterilizing power can be manufactured.
  • the ozonizer 210 may be replaced with another type of ozone water supply unit.
  • the ozone water generated by the ozonizer 210 is supplied to the branch water passage in the branch pipe 118 extending from the ring water passage in the ring pipe 110 to the outside of the sterilizing water 13 production apparatus 201.
  • the supplied ozone water does not pass through the reactor 112, and it is possible to prevent the ozone contained in the ozone water from coming out of the ozone water due to the impact of the cavitation applied to the supplied ozone water.
  • the manufacturing method of the sterilizing water 13 of 4th Embodiment is mainly the following points, and the manufacturing method of the sterilizing water 13 of 2nd Embodiment. Is different from.
  • water, ozone, and hydrogen peroxide are circulated by circulating water, generating cavitation bubbles in the water, and generating discharge plasma in the space where the cavitation bubbles are generated.
  • a solution 12 is prepared in which the contained ozone and hydrogen peroxide are dissolved in water.
  • water is not circulated, and cavitation bubbles are generated in the water to generate discharge plasma in the space where the cavitation bubbles are generated.
  • a pre-mixed solution containing ozone and hydrogen peroxide is prepared in which ozone and hydrogen peroxide are dissolved in water.
  • a solution 12 containing water, ozone, and hydrogen peroxide, in which ozone and hydrogen peroxide are dissolved in water is prepared.
  • the produced solution 12 is changed to sterilized water 13 as in the first embodiment.
  • the produced sterilizing water 13 can be used similarly to the sterilizing water 13 produced by the method for producing the sterilizing water 13 of the first embodiment.
  • FIG. 9 is a diagram schematically illustrating a sterilized water production apparatus used when sterilized water is produced by the sterilized water production method of the fourth embodiment.
  • the apparatus 300 for producing sterilized water 13 shown in FIG. 9 includes a reactor 112, a cooler 114, a pump 116 and a valve 120, like the apparatus 100 for producing sterilized water 13 shown in FIG.
  • the manufacturing apparatus 300 differs from the manufacturing apparatus 100 for the sterilizing water 13 shown in FIG. 6 in that it includes a pipe 220 instead of the annular pipe 110 and the branch pipe 118, and further includes an ozonizer 210.
  • the reactor 112, the cooler 114, and the pump 116 are inserted into the pipe 220. Therefore, the water flowing through the water channel in the pipe 220 sequentially passes through the reactor 112, the cooler 114, and the pump 116.
  • the reactor 112 processes water passing through the reactor 112.
  • the cooler 114 cools the water passing through the cooler 114.
  • Pump 116 provides a flow of water passing through pump 116. Thereby, the water cooled by the cooler 114 is processed by the reactor 112, ozone and hydrogen peroxide are generated in the processed water, and water, ozone and hydrogen peroxide are contained, and ozone and hydrogen peroxide are dissolved in water.
  • a pre-mixed solution is being prepared.
  • the ozonizer 210 generates ozone water and supplies the generated ozone water to the downstream side of the reactor 112 in the water channel in the pipe 220.
  • the prepared pre-mixed solution is mixed with ozone water containing ozone that produces a germicidal factor and has a long life.
  • the ozonizer 210 may be replaced with another type of ozone water supply unit.
  • the ozone water generated by the ozonizer 210 is supplied to the downstream side of the space in the pipe 220 where the cavitation bubble 180 is generated. As a result, the supplied ozone water does not pass through the reactor 112, and it is possible to prevent the ozone contained in the ozone water from coming out of the ozone water due to the impact of the cavitation applied to the supplied ozone water.
  • the ozone concentration in the solution 12 was 8.3 ⁇ 10 ⁇ 4 mmol/liter.
  • the hydrogen peroxide concentration in the solution 12 was in the range of 0.4 to 149 times the ozone concentration in the solution 12, which is 8.3 ⁇ 10 ⁇ 4 mmol/liter.
  • the pH of the solution 12 and the sterile water 13 was set to 7.
  • the graph of FIG. 10 shows the measurement results of the change in the number of sterilization digits depending on the ratio of the concentration of hydrogen peroxide in the solution 12 to the concentration of ozone in the solution 12.
  • the sterilization digit number is 6 which almost reaches the detection limit when the ratio is approximately 0.5 or more and 10 or less, but the ratio is generally less than 0.5 or 10 When it is large, it is approximately 2 or more and 5 or less.
  • the sterilizing water 13 having high sterilizing power can be obtained.
  • the sterilization digit number measured in the experimental example of the fourth embodiment is significantly larger than the sterilization digit number measured in the first experimental example of the first embodiment in the first experimental example of the first embodiment. This is because tap water containing chlorine was used, but since deionized water containing no chlorine was used in the experimental example of the fourth embodiment, ozone was not lost due to the influence of chlorine.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Dentistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Plant Pathology (AREA)
  • Environmental Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

Provided is sterilizing water that has high sterilizing power and high safety and does not generate a strong ozone odor. The sterilizing water contains water, ozone, hydrogen peroxide, a hydroxyl radical and a hydroperoxide radical. The ozone, the hydrogen peroxide, the hydroxyl radical and the hydroperoxide radical are dissolved in water. The sterilizing water has sterilizing power to sterilize an object in contact with the sterilizing water.

Description

殺菌水、殺菌水の製造方法及び殺菌済物体の製造方法Sterilized water, sterilized water manufacturing method and sterilized object manufacturing method
 本発明は、殺菌水、殺菌水の製造方法及び殺菌済物体の製造方法に関する。 The present invention relates to sterilized water, a method for producing sterilized water, and a method for producing a sterilized object.
 水及びオゾンを含みオゾンが水に溶解しているオゾン水は、接触した物体を殺菌する殺菌力を有する。しかし、オゾンは粘膜を侵す等人体に対して有害であるため、オゾン水は高い安全性を有しない。また、オゾンは強いオゾン臭を有し水に対して低い溶解度しか有しないため、オゾン水は強いオゾン臭を発生する。そこで、オゾン水に代えて用いることができる、高い殺菌力を有し高い安全性を有し強いオゾン臭を発生しない殺菌水が求められている。 O Ozone water that contains water and ozone, and ozone is dissolved in water, has a sterilizing power to sterilize a contacted object. However, since ozone is harmful to the human body by invading the mucous membrane, ozone water does not have high safety. Further, since ozone has a strong ozone odor and has a low solubility in water, ozone water produces a strong ozone odor. Therefore, there is a demand for sterilizing water that can be used in place of ozone water, has high sterilizing power, has high safety, and does not generate a strong ozone odor.
 特許文献1に記載された技術においては、酸素が還元され過酸化水素が発生する(段落0032)。また、水が酸化されオゾンが発生する(段落0032)。発生した過酸化水素及びオゾンは、純水に溶解させられる(段落0032)。過酸化水素水及びオゾン水が混合され、促進酸化処理水が取り出される(段落0032)。促進酸化処理水は、強力な酸化作用を有する(段落0033)。特許文献1によれば、促進酸化処理水が強力な酸化作用を有するのは、オゾンの酸化分解能力が強く、過酸化水素を加えることでより酸化力を強めることができるためである(段落0003)。 In the technique described in Patent Document 1, oxygen is reduced and hydrogen peroxide is generated (paragraph 0032). Further, water is oxidized to generate ozone (paragraph 0032). The generated hydrogen peroxide and ozone are dissolved in pure water (paragraph 0032). Hydrogen peroxide water and ozone water are mixed, and accelerated oxidation treated water is taken out (paragraph 0032). The accelerated oxidation treated water has a strong oxidizing action (paragraph 0033). According to Patent Document 1, the reason why the accelerated oxidation treated water has a strong oxidizing action is that ozone has a strong oxidative decomposition ability, and the oxidizing power can be further enhanced by adding hydrogen peroxide (paragraph 0003). ).
特開2009-248059号公報JP, 2009-248059, A
 本発明は、オゾン水に代えて用いることができる、高い殺菌力を有し高い安全性を有し強いオゾン臭を発生しない殺菌水が求められていることに鑑みてなされた。本発明が解決しようとする課題は、高い殺菌力を有し高い安全性を有し強いオゾン臭を発生しない殺菌水を提供することである。 The present invention has been made in view of the need for sterilizing water that can be used in place of ozone water, has high sterilizing power, has high safety, and does not generate a strong ozone odor. The problem to be solved by the present invention is to provide sterilizing water that has high sterilizing power, high safety, and does not generate a strong ozone odor.
 本発明は、接触した物体を殺菌する殺菌力を有する殺菌水に向けられる。 The present invention is directed to sterilizing water having a sterilizing power to sterilize an object that has come into contact with it.
 殺菌水は、水、オゾン、過酸化水素、ヒドロキシラジカル及びヒドロペルオキシドラジカルを含む。オゾン、過酸化水素、ヒドロキシラジカル及びヒドロペルオキシドラジカルは、水に溶解している。 Sterilized water contains water, ozone, hydrogen peroxide, hydroxy radicals and hydroperoxide radicals. Ozone, hydrogen peroxide, hydroxy radicals and hydroperoxide radicals are dissolved in water.
 また、本発明は、接触した物体を殺菌する殺菌力を有する殺菌水の製造方法にも向けられる。 The present invention is also directed to a method for producing sterilizing water having a sterilizing power to sterilize an object that has come into contact with it.
 殺菌水の製造方法においては、水、オゾン及び過酸化水素を含みオゾン及び過酸化水素が水に溶解している溶液が作製される。また、溶液中でオゾン及び過酸化水素が互いに反応させられてヒドロキシラジカル及びヒドロペルオキシドラジカルが生成する。これにより、溶液が、水、ヒドロキシラジカル及びヒドロペルオキシドラジカルを含みヒドロキシラジカル及びヒドロペルオキシドラジカルが水に溶解している殺菌水に変化する。 In the method of manufacturing sterilized water, a solution containing water, ozone and hydrogen peroxide, in which ozone and hydrogen peroxide are dissolved in water, is prepared. Further, ozone and hydrogen peroxide are reacted with each other in the solution to generate a hydroxy radical and a hydroperoxide radical. As a result, the solution is changed to sterile water containing water, hydroxy radicals and hydroperoxide radicals, and the hydroxy radicals and hydroperoxide radicals being dissolved in water.
 また、本発明は、殺菌済物体の製造方法にも向けられる。 The present invention is also directed to a method of manufacturing a sterilized object.
 殺菌済物体の製造方法においては、上述した殺菌水の製造方法により殺菌水が製造される。また、殺菌水が物体に接触させられる。これにより、物体が殺菌済物体に変化する。 Sterilized water is manufactured by the above-described sterilized water manufacturing method. Also, sterile water is brought into contact with the object. This changes the object to a sterilized object.
 本発明によれば、短い寿命しか有しないヒドロキシラジカル及びヒドロペルオキシドラジカルが、長い寿命を有するオゾン及び過酸化水素から生成する。このため、殺菌水は、ヒドロキシラジカル及びヒドロペルオキシドラジカルが短い寿命しか有しないにもかかわらず、高いヒドロキシラジカル濃度及び高いヒドロペルオキシドラジカル濃度を有する。また、ヒドロキシラジカル及びヒドロペルオキシドラジカルは、接触した物体を殺菌する殺菌力を殺菌水に付与する殺菌因子となる。これらにより、高い殺菌力を有する殺菌水を提供することができる。 According to the present invention, hydroxy radicals and hydroperoxide radicals having a short life are produced from ozone and hydrogen peroxide having a long life. For this reason, germicidal water has a high concentration of hydroxy radicals and a high concentration of hydroperoxide radicals, despite the fact that the hydroxy radicals and hydroperoxide radicals have a short lifetime. Further, the hydroxy radical and the hydroperoxide radical serve as a germicidal factor that imparts germicidal power to germicidal water to the germicidal water. With these, sterilizing water having high sterilizing power can be provided.
 また、本発明によれば、ヒドロキシラジカル及びヒドロペルオキシドラジカルが、接触した物体を殺菌する殺菌力を殺菌水に付与する殺菌因子となる。このため、殺菌水は、高いオゾン濃度を有しなくてもよい。また、本発明によれば、オゾンがヒドロキシラジカル及びヒドロペルオキシドラジカルを生成するために消費される。このため、殺菌水は、高いオゾン濃度を有しない。これらにより、高い安全性を有し強いオゾン臭を発生しない殺菌水を提供することができる。 Further, according to the present invention, the hydroxy radical and the hydroperoxide radical serve as a bactericidal factor that imparts a bactericidal power for sterilizing the contacted object to the sterilizing water. Therefore, the sterilized water does not have to have a high ozone concentration. Also, according to the present invention, ozone is consumed to produce hydroxy radicals and hydroperoxide radicals. Therefore, sterilized water does not have a high ozone concentration. As a result, it is possible to provide sterilizing water that has high safety and does not generate a strong ozone odor.
 この発明の目的、特徴、局面及び利点は、以下の詳細な説明と添付図面とによって、より明白となる。 The objects, features, aspects and advantages of the present invention will become more apparent by the following detailed description and the accompanying drawings.
第1実施形態の殺菌水の製造方法を説明する図である。It is a figure explaining the manufacturing method of the sterilization water of 1st Embodiment. 第1実施形態の殺菌水の製造方法により殺菌水が製造される際の溶液中の各成分の濃度の時間変化の概略を示すグラフである。It is a graph which shows the outline of the time change of the density|concentration of each component in a solution when sterilizing water is manufactured by the manufacturing method of sterilizing water of 1st Embodiment. 第1実施形態の殺菌水の製造方法により製造される殺菌水を利用する殺菌済物体の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the sterilized object which uses the sterilizing water manufactured by the manufacturing method of the sterilizing water of 1st Embodiment. 第1実施形態の殺菌水の製造方法により殺菌水が製造された場合の、殺菌桁数及びオゾン減少率の測定の結果を示すグラフである。It is a graph which shows the result of measurement of the sterilization digit number and the ozone reduction rate when sterilizing water is manufactured by the manufacturing method of sterilizing water of 1st Embodiment. 第1実施形態の殺菌水の製造方法により殺菌水が製造された場合の、殺菌桁数の測定の結果を示すグラフである。It is a graph which shows the result of measurement of the sterilization digit number when sterilization water is manufactured by the manufacturing method of sterilization water of 1st Embodiment. 第2実施形態の殺菌水の製造方法により殺菌水を製造する際に使用される殺菌水の製造装置を模式的に図示する図である。It is a figure which illustrates typically the sterilizing water manufacturing apparatus used when manufacturing sterilizing water by the manufacturing method of sterilizing water of 2nd Embodiment. 第2実施形態の殺菌水の製造方法により殺菌水を製造する際に使用される殺菌水の製造装置に備えられるリアクタの断面を模式的に図示する断面図である。It is sectional drawing which illustrates typically the cross section of the reactor with which the sterilizing water manufacturing apparatus used when manufacturing sterilizing water by the manufacturing method of sterilizing water of 2nd Embodiment is equipped. 第3実施形態の殺菌水の製造方法により殺菌水を製造する際に使用される殺菌水の製造装置を模式的に図示する図である。It is a figure which illustrates typically the sterilizing water manufacturing apparatus used when manufacturing sterilizing water by the manufacturing method of sterilizing water of 3rd Embodiment. 第4実施形態の殺菌水の製造方法により殺菌水を製造する際に使用される殺菌水の製造装置を模式的に図示する図である。It is a figure which illustrates typically the sterilizing water manufacturing apparatus used when manufacturing sterilizing water with the manufacturing method of sterilizing water of 4th Embodiment. 第4実施形態の殺菌水の製造方法により殺菌水が製造された場合の、殺菌桁数の測定の結果を示すグラフである。It is a graph which shows the result of measurement of the number of digits of sterilization when sterilizing water is manufactured by the manufacturing method of sterilizing water of 4th Embodiment.
 1 第1実施形態
 1.1 殺菌水の製造方法
 図1は、第1実施形態の殺菌水の製造方法を説明する図である。
1 1st Embodiment 1.1 The manufacturing method of sterilizing water FIG. 1: is a figure explaining the manufacturing method of sterilizing water of 1st Embodiment.
 第1実施形態の殺菌水の製造方法においては、図1に図示されるように、水(HO)及びオゾン(O)を含みオゾンが水に溶解しているオゾン水10が作製される。また、水及び過酸化水素(H)を含み過酸化水素が水に溶解している過酸化水素水11が作製される。 In the method for producing sterilizing water according to the first embodiment, as shown in FIG. 1, ozone water 10 containing water (H 2 O) and ozone (O 3 ) and having ozone dissolved in water is produced. It Further, hydrogen peroxide solution 11 containing water and hydrogen peroxide (H 2 O 2 ) and having hydrogen peroxide dissolved in water is prepared.
 続いて、作製されたオゾン水10及び過酸化水素水11が互いに混合される。これにより、水、オゾン及び過酸化水素を含みオゾン及び過酸化水素が水に溶解している溶液12が作製される。オゾン水10及び過酸化水素水11を経由せずに溶液12が作製されてもよい。 Next, the ozone water 10 and the hydrogen peroxide solution 11 thus prepared are mixed with each other. As a result, a solution 12 containing water, ozone, and hydrogen peroxide, in which ozone and hydrogen peroxide are dissolved in water, is prepared. The solution 12 may be prepared without passing through the ozone water 10 and the hydrogen peroxide solution 11.
 続いて、溶液12中でオゾン及び過酸化水素を互いに反応させてヒドロキシラジカル(OH)及びヒドロペルオキシドラジカル(HO )を生成する。これにより、溶液12は、水、ヒドロキシラジカル及びヒドロペルオキシドラジカルを含みヒドロキシラジカル及びヒドロペルオキシドラジカルが水に溶解している殺菌水13に変化する。ヒドロキシラジカル及びヒドロペルオキシドラジカルは、接触した物体を殺菌する殺菌力を殺菌水13に付与する殺菌因子となる。このため、殺菌水13は、接触した物体を殺菌する殺菌力を有する。 Subsequently, ozone and hydrogen peroxide are reacted with each other in the solution 12 to generate a hydroxy radical (OH * ) and a hydroperoxide radical (HO 2 * ). As a result, the solution 12 is changed to sterilizing water 13 containing water, hydroxy radicals and hydroperoxide radicals, and the hydroxy radicals and hydroperoxide radicals being dissolved in water. The hydroxy radical and the hydroperoxide radical serve as a bactericidal factor that imparts a bactericidal power to the sterilized water 13 to sterilize the contacted object. Therefore, the sterilizing water 13 has a sterilizing power to sterilize the contacted object.
 殺菌水13は、殺菌因子14となるヒドロキシラジカル及びヒドロペルオキシドラジカルに加えて、殺菌因子14の前駆体15となるオゾン及び過酸化水素を含む。このため、殺菌水13中では、殺菌因子14の前駆体15となるオゾン及び過酸化水素が互いに反応して殺菌因子14となるヒドロキシラジカル及びヒドロペルオキシドラジカルが生成する反応が進行している。 The sterilizing water 13 contains ozone and hydrogen peroxide, which are precursors 15 of the bactericidal factor 14, in addition to hydroxy radicals and hydroperoxide radicals, which are the bactericidal factor 14. Therefore, in the sterilizing water 13, ozone and hydrogen peroxide, which are the precursors 15 of the bactericidal factor 14, react with each other to generate hydroxy radicals and hydroperoxide radicals, which become the bactericidal factor 14.
 溶液12中のオゾンのモル濃度に対する溶液12中の過酸化水素のモル濃度の比は、望ましくは、0.5以上10以下である。これにより、溶液12中のオゾンのモル濃度が、強いオゾン臭を発生しない低い濃度である場合においても、高い殺菌力を有する殺菌水13を得ることができる。 The ratio of the molar concentration of hydrogen peroxide in the solution 12 to the molar concentration of ozone in the solution 12 is preferably 0.5 or more and 10 or less. Thereby, even when the molar concentration of ozone in the solution 12 is a low concentration that does not generate a strong ozone odor, the sterilizing water 13 having high sterilizing power can be obtained.
 1.2 殺菌水が製造される際の溶液中の各成分の濃度の時間変化
 図2は、第1実施形態の殺菌水の製造方法により殺菌水が製造される際の溶液中の各成分の濃度の時間変化の概略を示すグラフである。
1.2 Time Change of Concentration of Each Component in Solution when Sterilized Water is Produced FIG. 2 shows each component in the solution when sterilized water is produced by the method for producing sterilized water according to the first embodiment. It is a graph which shows the outline of the time change of concentration.
 第1実施形態の殺菌水13の製造方法により殺菌水13が製造される際には、オゾン及び過酸化水素が互いに反応しヒドロキシラジカル及びヒドロペルオキシドが生成する。このため、図2に示されるように、溶液12が作製されたタイミングT1から時間が経過するにつれて溶液12中のオゾン濃度及び過酸化水素濃度が低下し、タイミングT2に溶液12中のオゾン濃度及び過酸化水素濃度の少なくとも一方が0になる。なお、図2には、タイミングT2に溶液12中のオゾン濃度のみが0になる例が示されている。このため、タイミングT1からタイミングT2までの期間においては、溶液12中のヒドロキシラジカル濃度及びヒドロペルオキシドラジカル濃度が緩やかに減少するが、タイミングT2より後の期間においては、溶液12中のヒドロキシラジカル濃度及びヒドロペルオキシドラジカル濃度が急に減少する。なお、オゾン水10が過酸化水素水11と混合されずに放置された場合は、オゾン水10中のオゾン濃度は、少なくとも30分程度はそのまま維持される。 When the sterilizing water 13 is manufactured by the method for manufacturing the sterilizing water 13 according to the first embodiment, ozone and hydrogen peroxide react with each other to generate hydroxy radicals and hydroperoxides. Therefore, as shown in FIG. 2, the ozone concentration and the hydrogen peroxide concentration in the solution 12 decrease as time passes from the timing T1 when the solution 12 is produced, and the ozone concentration and the hydrogen peroxide concentration in the solution 12 at the timing T2 decrease. At least one of the hydrogen peroxide concentrations becomes zero. Note that FIG. 2 shows an example in which only the ozone concentration in the solution 12 becomes 0 at the timing T2. Therefore, the hydroxy radical concentration and the hydroperoxide radical concentration in the solution 12 gradually decrease in the period from the timing T1 to the timing T2, but the hydroxy radical concentration and the hydroperoxide radical concentration in the solution 12 decrease in the period after the timing T2. The concentration of hydroperoxide radical decreases sharply. When the ozone water 10 is left without being mixed with the hydrogen peroxide solution 11, the ozone concentration in the ozone water 10 is maintained as it is for at least about 30 minutes.
 1.3 殺菌済物体の製造方法
 図3は、第1実施形態の殺菌水の製造方法により製造される殺菌水を利用する殺菌済物体の製造方法を示すフローチャートである。
1.3 Method for Manufacturing Sterilized Object FIG. 3 is a flowchart showing a method for manufacturing a sterilized object using the sterilized water manufactured by the method for manufacturing sterilized water according to the first embodiment.
 第1実施形態の殺菌水13の製造方法により製造される殺菌水13を利用する殺菌済物体の製造方法においては、図3に示されるように、ステップS101において、第1実施形態の殺菌水13の製造方法により殺菌水13が製造される。 In the method of manufacturing a sterilized object using the sterilized water 13 manufactured by the method of manufacturing the sterilized water 13 of the first embodiment, as shown in FIG. 3, in step S101, the sterilized water 13 of the first embodiment is used. Sterilized water 13 is manufactured by the manufacturing method of.
 続くステップS102においては、製造された殺菌水13が殺菌される物体に接触させられる。これにより、殺菌水13に含まれるヒドロキシラジカル及びヒドロペルオキシドラジカルが殺菌される物体に作用し、殺菌される物体が殺菌され殺菌済物体に変化する。 In subsequent step S102, the sterilized water 13 produced is brought into contact with the object to be sterilized. As a result, the hydroxy radicals and hydroperoxide radicals contained in the sterilizing water 13 act on the object to be sterilized, and the object to be sterilized is sterilized and changed to a sterilized object.
 ステップS102は、図2に示されるタイミングT1からタイミングT2までの期間に実行される。これにより、ステップS102が、オゾン及び過酸化水素が互いに反応しヒドロキシラジカル及びヒドロペルオキシドラジカルが生成する反応の進行中に実行される。 Step S102 is executed during the period from timing T1 to timing T2 shown in FIG. Thereby, step S102 is executed during the progress of the reaction in which ozone and hydrogen peroxide react with each other to generate a hydroxy radical and a hydroperoxide radical.
 1.4 溶液及び殺菌水の液性
 溶液12及び殺菌水13は、望ましくは5より大きい水素イオン濃度指数(pH)を有し、さらに望ましくは7より大きいpHを有する。これにより、殺菌水13の殺菌力を向上することができる。また、溶液12及び殺菌水13は、望ましくは9より小さいpHを有する。溶液12及び殺菌水13が9以上のpHを有する場合は、オゾンと過酸化水素との反応が速く進み、得られる液体を間接処理のための殺菌水13として使用することが困難になる傾向が現れるためである。このため、溶液12及び殺菌水13は、望ましくは5より大きく9より小さいpHを有し、さらに望ましくは7より大きく9より小さいpHを有する。
1.4 Liquidity of Solution and Sterilized Water The solution 12 and the sterilized water 13 desirably have a hydrogen ion concentration index (pH) of more than 5, and more desirably have a pH of more than 7. Thereby, the sterilizing power of the sterilizing water 13 can be improved. Also, the solution 12 and the sterile water 13 desirably have a pH less than 9. When the solution 12 and the sterilizing water 13 have a pH of 9 or more, the reaction between ozone and hydrogen peroxide proceeds rapidly, and it tends to be difficult to use the obtained liquid as the sterilizing water 13 for indirect treatment. Because it appears. Therefore, the solution 12 and the sterilized water 13 preferably have a pH of more than 5 and less than 9, and more preferably a pH of more than 7 and less than 9.
 pHの調整は、溶液12及び殺菌水13を緩衝液とすることにより行われてもよいし、クエン酸、水酸化ナトリウム等を水に溶解させることにより行われてもよいし、イオン交換膜を介して水を電気分解することにより行われてもよい。イオン交換膜を介して水を電気分解することにおりpHの調整が行われる場合は、pHの調整のための試薬が不要になる。 The pH may be adjusted by using the solution 12 and the sterilized water 13 as a buffer solution, or by dissolving citric acid, sodium hydroxide or the like in water, or by using an ion exchange membrane. It may be carried out by electrolyzing water through. When pH is adjusted by electrolyzing water through the ion exchange membrane, a reagent for adjusting the pH becomes unnecessary.
 1.5 第1実験例
 第1実施形態の殺菌水13の製造方法により殺菌水13を製造した。
1.5 First Experimental Example Sterilized water 13 was manufactured by the method for manufacturing sterilized water 13 of the first embodiment.
 オゾン水10は、生成装置から生成したオゾン水を水道水で希釈することにより作製した。過酸化水素水11は、市販の過酸化水素水の試薬を水道水で希釈することにより作製した。溶液12中のオゾン濃度は、8.3×10-4mmol/リットルとした。溶液12中の過酸化水素濃度は、溶液12中のオゾン濃度である8.3×10-4mmol/リットルの4倍から10000倍までの範囲とした。溶液12及び殺菌水13のpHは、7とした。 The ozone water 10 was produced by diluting the ozone water generated from the generator with tap water. The hydrogen peroxide solution 11 was prepared by diluting a commercially available hydrogen peroxide solution reagent with tap water. The ozone concentration in the solution 12 was 8.3×10 −4 mmol/liter. The hydrogen peroxide concentration in the solution 12 was in the range of 4 times to 10000 times the ozone concentration in the solution 12, which is 8.3×10 −4 mmol/liter. The pH of the solution 12 and the sterile water 13 was set to 7.
 製造した殺菌水13について、溶液12中のオゾン濃度に対する溶液12中の過酸化水素濃度の比による殺菌桁数及びオゾン減少率の変化を測定した。 With respect to the sterilized water 13 produced, changes in the sterilization digit number and the ozone reduction rate depending on the ratio of the hydrogen peroxide concentration in the solution 12 to the ozone concentration in the solution 12 were measured.
 殺菌桁数の測定においては、殺菌前の菌液中の大腸菌数を測定した。また、製造した殺菌水13を菌液に混合して30秒かけて菌液の殺菌を行い、殺菌後の菌液中の大腸菌数を測定した。また、殺菌桁数は、殺菌前の大腸菌数に対する殺菌後の大腸菌数の比の常用対数の絶対値をとることにより得た。 When measuring the number of digits of sterilization, the number of E. coli in the bacterial solution before sterilization was measured. Further, the sterilized water 13 produced was mixed with the bacterium solution to sterilize the bacterium solution for 30 seconds, and the number of E. coli in the bacterium solution after sterilization was measured. The sterilization digit number was obtained by taking the absolute value of the common logarithm of the ratio of the number of E. coli after sterilization to the number of E. coli before sterilization.
 オゾン減少率の測定においては、作製された直後の溶液12中のオゾン濃度を測定した。また、作製されてから5分が経過した時点の溶液12中のオゾン濃度を測定した。オゾン減少率は、前者のオゾン濃度に対する、前者のオゾン濃度と後者のオゾン濃度との差の比をとることにより得た。 In the measurement of the ozone reduction rate, the ozone concentration in the solution 12 immediately after preparation was measured. Further, the ozone concentration in the solution 12 was measured at the time when 5 minutes had passed after the preparation. The ozone reduction rate was obtained by taking the ratio of the difference between the former ozone concentration and the latter ozone concentration with respect to the former ozone concentration.
 溶液12中のオゾン濃度に対する溶液12中の過酸化水素濃度の比による殺菌桁数及びオゾン減少率の変化の測定の結果を図4のグラフに示す。 The graph of FIG. 4 shows the results of measuring changes in the number of sterilization digits and the ozone reduction rate depending on the ratio of the hydrogen peroxide concentration in the solution 12 to the ozone concentration in the solution 12.
 図4に示されるように、殺菌桁数は、当該比が概ね4倍以上約1000倍以下である場合は、概ね2以上3以下となるが、当該比が概ね1000倍以上である場合は、概ね0となる。 As shown in FIG. 4, the sterilization digit number is approximately 2 or more and 3 or less when the ratio is approximately 4 times or more and approximately 1000 times or less, but when the ratio is approximately 1000 times or more, It is almost 0.
 一方、オゾン減少率は、当該比が概ね4倍以上500倍以下である場合は、概ね20%以下となるが、当該比が概ね500倍以上10000倍以下である場合は、概ね90%以上となる。 On the other hand, the ozone reduction rate is approximately 20% or less when the ratio is approximately 4 times or more and 500 times or less, but is approximately 90% or more when the ratio is approximately 500 times or more and 10000 times or less. Become.
 したがって、当該比が概ね500倍以上1000倍以下である場合は、高い殺菌力を有し高い安全性を有し強いオゾン臭を発生しない殺菌水13を得ることができる。ただし、当該殺菌水13を得ることができる比の範囲は、上述した「30秒」及び「5分」という時間が延長又は短縮された場合は変化する。 Therefore, when the ratio is approximately 500 times or more and 1000 times or less, it is possible to obtain the sterilizing water 13 that has high sterilizing power, high safety, and does not generate a strong ozone odor. However, the range of the ratio at which the sterilizing water 13 can be obtained changes when the above-mentioned "30 seconds" and "5 minutes" are extended or shortened.
 なお、溶液12及び殺菌水13のpHを8とした場合は、殺菌桁数を定量的に測定することができないほど殺菌水13の殺菌力が著しく上昇した。 Note that when the pH of the solution 12 and the sterilizing water 13 was set to 8, the sterilizing power of the sterilizing water 13 was significantly increased so that the number of digits of sterilizing could not be quantitatively measured.
 1.6 第2実験例
 第1実施形態の殺菌水13の製造方法により殺菌水13を製造した。
1.6 Second Experimental Example Sterilized water 13 was manufactured by the method for manufacturing sterilized water 13 of the first embodiment.
 オゾン水10は、オゾナイザーで生成したオゾンを脱イオン水にバブリングすることにより作製した。過酸化水素水11は、市販の過酸化水素水の試薬を脱イオン水で希釈することにより作製した。溶液12中のオゾン濃度は、8.3×10-4mmol/リットルとした。溶液12中の過酸化水素濃度は、溶液12中のオゾン濃度である8.3×10-4mmol/リットルの0.49倍から204倍までの範囲とした。溶液12及び殺菌水13のpHは、7とした。 The ozone water 10 was produced by bubbling ozone generated by an ozonizer into deionized water. The hydrogen peroxide solution 11 was prepared by diluting a commercially available hydrogen peroxide solution reagent with deionized water. The ozone concentration in the solution 12 was 8.3×10 −4 mmol/liter. The hydrogen peroxide concentration in the solution 12 was in the range of 0.49 times to 204 times the ozone concentration in the solution 12, which is 8.3×10 −4 mmol/liter. The pH of the solution 12 and the sterile water 13 was set to 7.
 製造した殺菌水13について、第1実験例と同様に、溶液12中のオゾン濃度に対する溶液12中の過酸化水素濃度の比による殺菌桁数の変化を測定した。 For the manufactured sterilized water 13, the change in the number of sterilization digits depending on the ratio of the concentration of hydrogen peroxide in the solution 12 to the concentration of ozone in the solution 12 was measured, as in the first experimental example.
 溶液12中のオゾン濃度に対する溶液12中の過酸化水素濃度の比による殺菌桁数の変化の測定の結果を図5のグラフに示す。 The graph of FIG. 5 shows the measurement results of the change in the number of sterilization digits depending on the ratio of the concentration of hydrogen peroxide in the solution 12 to the concentration of ozone in the solution 12.
 図5に示されるように、殺菌桁数は、当該比が概ね0.5以上10以下である場合は、概ね検出限界に達する6となるが、当該比が概ね0.5より小さい又は10より大きい場合は、概ね2以上5以下となる。 As shown in FIG. 5, the sterilization digit number is approximately 6 which reaches the detection limit when the ratio is approximately 0.5 or more and 10 or less, but the ratio is generally less than 0.5 or 10 or less. When it is large, it is approximately 2 or more and 5 or less.
 したがって、当該比が概ね0.5以上10以下である場合は、高い殺菌力を有する殺菌水13を得ることができる。なお、第2実験例において測定された殺菌桁数が第1実験例において測定された殺菌桁数より著しく大きいのは、第1実験例においては塩素を含む水道水を用いていたが、第2実験例においては塩素を含まない脱イオン水を用いたため、塩素の影響でオゾンが失われることがなくなったためである。 Therefore, when the ratio is approximately 0.5 or more and 10 or less, the sterilizing water 13 having a high sterilizing power can be obtained. The sterilization digit number measured in the second experimental example is significantly larger than the sterilization digit number measured in the first experimental example because tap water containing chlorine was used in the first experimental example. This is because ozone was not lost due to chlorine because deionized water containing no chlorine was used in the experimental example.
 1.7 第1実施形態の効果
 第1実施形態によれば、数μ秒から数m秒程度の短い寿命しか有しないヒドロキシラジカル及びヒドロペルオキシドラジカルが、長い寿命を有するオゾン及び過酸化水素から生成する。このため、殺菌水13は、ヒドロキシラジカル及びヒドロペルオキシドラジカルが短い寿命しか有しないにもかかわらず、高いヒドロキシラジカル濃度及び高いヒドロペルオキシドラジカル濃度を有する。また、ヒドロキシラジカル及びヒドロペルオキシドラジカルは、接触した物体を殺菌する殺菌力を殺菌水13に付与する殺菌因子14となる。これらにより、高い殺菌力を有する殺菌水13を提供することができる。
1.7 Effects of First Embodiment According to the first embodiment, hydroxy radicals and hydroperoxide radicals having a short life of about several microseconds to several milliseconds are generated from ozone and hydrogen peroxide having a long life. To do. Therefore, the germicidal water 13 has a high hydroxy radical concentration and a high hydroperoxide radical concentration, even though the hydroxy radical and the hydroperoxide radical have a short life. Further, the hydroxy radical and the hydroperoxide radical serve as a bactericidal factor 14 that imparts a bactericidal power to the sterilized water 13 to sterilize the contacted object. With these, the sterilizing water 13 having a high sterilizing power can be provided.
 また、第1実施形態によれば、ヒドロキシラジカル及びヒドロペルオキシドラジカルが、接触した物体を殺菌する殺菌力を殺菌水に付与する殺菌因子14となる。このため、殺菌水13は、高いオゾン濃度を有しなくてもよい。また、第1実施形態によれば、オゾンがヒドロキシラジカル及びヒドロペルオキシドラジカルを生成するために消費される。このため、殺菌水13は、高いオゾン濃度を有しない。これらにより、高い安全性を有し強いオゾン臭を発生しない殺菌水13を提供することができる。 Further, according to the first embodiment, the hydroxy radical and the hydroperoxide radical serve as the sterilization factor 14 that imparts the sterilizing power for sterilizing the contacted object to the sterilizing water. Therefore, the sterilizing water 13 does not have to have a high ozone concentration. Also, according to the first embodiment, ozone is consumed to generate hydroxy radicals and hydroperoxide radicals. Therefore, the sterilizing water 13 does not have a high ozone concentration. With these, it is possible to provide the sterilizing water 13 having high safety and not generating a strong ozone odor.
 2 第2実施形態
 2.1 第1実施形態と第2実施形態との相違
 第2実施形態の殺菌水13の製造方法は、主に下記の点で第1実施形態の殺菌水13の製造方法と相違する。
2 2nd Embodiment 2.1 Difference between 1st Embodiment and 2nd Embodiment The manufacturing method of the sterilizing water 13 of 2nd Embodiment is mainly the following points, and the manufacturing method of the sterilizing water 13 of 1st Embodiment. Is different from.
 第1実施形態の殺菌水13の製造方法においては、オゾン水10及び過酸化水素水11を互いに混合することにより、水、オゾン及び過酸化水素を含みオゾン及び過酸化水素が水に溶解している溶液12が作製される。これに対して、第2実施形態の殺菌水13の製造方法においては、水中にキャビテーションバブルを発生させキャビテーションバブルが発生させられる空間に放電プラズマを発生させることにより、水、オゾン及び過酸化水素を含みオゾン及び過酸化水素が水に溶解している溶液12が作製される。これにより、第2実施形態の殺菌水13の製造方法においては、試薬を用いることなく、水から殺菌水13を製造することができる。 In the method for producing the sterilized water 13 of the first embodiment, the ozone water 10 and the hydrogen peroxide solution 11 are mixed with each other to contain water, ozone and hydrogen peroxide, and the ozone and hydrogen peroxide are dissolved in the water. A solution 12 is prepared. On the other hand, in the method for producing sterilized water 13 of the second embodiment, water, ozone, and hydrogen peroxide are generated by generating cavitation bubbles in water and generating discharge plasma in the space where the cavitation bubbles are generated. A solution 12 is prepared in which the contained ozone and hydrogen peroxide are dissolved in water. Thereby, in the method for producing the sterilized water 13 of the second embodiment, the sterilized water 13 can be produced from water without using a reagent.
 2.2 殺菌水の製造装置
 図6は、第2実施形態の殺菌水の製造方法により殺菌水を製造する際に使用される殺菌水の製造装置を模式的に図示する図である。
2.2 Sterilized Water Production Apparatus FIG. 6 is a diagram schematically showing a sterilized water production apparatus used when sterilized water is produced by the sterilized water production method of the second embodiment.
 図6に図示される殺菌水13の製造装置100は、環状管110、リアクタ112、冷却器114及びポンプ116を備える。殺菌水の製造装置100がこれらの要素以外の要素を備えてもよい。 The sterilizing water 13 manufacturing apparatus 100 shown in FIG. 6 includes an annular pipe 110, a reactor 112, a cooler 114, and a pump 116. The sterilizing water manufacturing apparatus 100 may include elements other than these elements.
 環状管110は、環状水路を有する。環状管110内の環状水路には、水が循環する。環状管110が管ではない部材に置き換えられてもよい。例えば、環状管110が環状ホースに置き換えられてもよい。 The annular pipe 110 has an annular water channel. Water circulates in the annular water channel in the annular pipe 110. The annular tube 110 may be replaced by a member that is not a tube. For example, the annular tube 110 may be replaced with an annular hose.
 環状管110には、リアクタ112、冷却器114及びポンプ116が挿入される。このため、環状管110内の環状水路を循環する水は、リアクタ112、冷却器114及びポンプ116を順次に通過する。リアクタ112は、リアクタ112を通過する水を処理する。冷却器114は、冷却器114を通過する水を冷却する。ポンプ116は、ポンプ116を通過する水に流れを与える。これにより、冷却器114により冷却された水がリアクタ112により繰り返し処理され、処理された水中にオゾン及び過酸化水素が生成し、水、オゾン及び過酸化水素を含みオゾン及び過酸化水素が水に溶解している溶液12が作製される。作製された溶液12は、第1実施形態と同様に、殺菌水13に変化する。製造された殺菌水13は、第1実施形態の殺菌水13の製造方法により製造される殺菌水13と同様に使用することができる。 A reactor 112, a cooler 114, and a pump 116 are inserted in the annular pipe 110. Therefore, the water circulating in the annular water passage in the annular pipe 110 sequentially passes through the reactor 112, the cooler 114, and the pump 116. The reactor 112 processes water passing through the reactor 112. The cooler 114 cools the water passing through the cooler 114. Pump 116 provides a flow of water passing through pump 116. Thereby, the water cooled by the cooler 114 is repeatedly processed by the reactor 112, ozone and hydrogen peroxide are generated in the processed water, and water, ozone and hydrogen peroxide are contained, and ozone and hydrogen peroxide are converted into water. A dissolved solution 12 is created. The produced solution 12 is changed to sterilized water 13 as in the first embodiment. The sterilized water 13 produced can be used similarly to the sterilized water 13 produced by the method for producing the sterilized water 13 of the first embodiment.
 製造装置100は、分岐管118及びバルブ120をさらに備える。 The manufacturing apparatus 100 further includes a branch pipe 118 and a valve 120.
 分岐管118は、分岐水路を有する。分岐管118内の分岐水路は、環状管110内の環状水路から殺菌水13の製造装置100の外部に至る。製造された殺菌水13は、分岐管118内の分岐水路を経由して製造装置100の外部に取り出される。分岐管118が管ではない部材に置き換えられてもよい。例えば、分岐管118が分岐ホースに置き換えられてもよい。分岐管118が省略され、殺菌水13が環状管110に形成された孔を経由して製造装置100の外部に取り出されてもよい。 The branch pipe 118 has a branch water channel. The branch water passage in the branch pipe 118 extends from the annular water passage in the annular pipe 110 to the outside of the sterilizing water 13 production apparatus 100. The manufactured sterilizing water 13 is taken out of the manufacturing apparatus 100 via the branch water channel in the branch pipe 118. The branch pipe 118 may be replaced with a member that is not a pipe. For example, the branch pipe 118 may be replaced with a branch hose. The branch pipe 118 may be omitted, and the sterilizing water 13 may be taken out of the manufacturing apparatus 100 via the hole formed in the annular pipe 110.
 分岐管118には、バルブ120が挿入される。バルブ120が閉じられている間は、環状管110内の環状水路内の水が製造装置100の外部に取り出されることなく環状管110内の環状水路を循環する。バルブ120が開かれている間は、殺菌水13を分岐管118内の分岐水路を経由して製造装置100の外部に取り出すことができる。 A valve 120 is inserted in the branch pipe 118. While the valve 120 is closed, the water in the annular water channel in the annular tube 110 circulates in the annular water channel in the annular tube 110 without being taken out of the manufacturing apparatus 100. While the valve 120 is open, the sterilizing water 13 can be taken out of the manufacturing apparatus 100 via the branch water passage in the branch pipe 118.
 製造装置100は、パルス電圧印加回路122をさらに備える。 The manufacturing apparatus 100 further includes a pulse voltage application circuit 122.
 パルス電圧印加回路122は、リアクタ112にパルス電圧を印加する。リアクタ112は、印加されたパルス電圧を用いてリアクタ112を通過する水を処理する。 The pulse voltage application circuit 122 applies a pulse voltage to the reactor 112. The reactor 112 processes the water passing through the reactor 112 using the applied pulse voltage.
 パルス電圧印加回路122は、パルス電源130、第1の配線132及び第2の配線134を備える。 The pulse voltage application circuit 122 includes a pulse power supply 130, a first wiring 132, and a second wiring 134.
 パルス電源130は、負極140及び正極142を備える。パルス電源130は、負極140と正極142との間にパルス電圧を発生させる。 The pulse power supply 130 includes a negative electrode 140 and a positive electrode 142. The pulse power supply 130 generates a pulse voltage between the negative electrode 140 and the positive electrode 142.
 第1の配線132及び第2の配線134は、発生したパルス電圧をパルス電源130からリアクタ112に伝送する。これにより、リアクタ112には、伝送されてきたパルス電圧が印加される。パルス電源130を備えリアクタ112にパルス電圧を印加するパルス電圧印加回路122が、他の種類の電圧印加回路に置き換えられてもよい。例えば、パルス電圧印加回路122が、直流(DC)電源を備えリアクタ112にDC電圧を印加するDC電圧印加回路、交流(AC)電源を備えリアクタ112にAC電圧を印加するAC電圧印加回路等に置き換えられてもよい。 The first wiring 132 and the second wiring 134 transmit the generated pulse voltage from the pulse power supply 130 to the reactor 112. As a result, the transmitted pulse voltage is applied to the reactor 112. The pulse voltage application circuit 122 that includes the pulse power supply 130 and applies the pulse voltage to the reactor 112 may be replaced with another type of voltage application circuit. For example, the pulse voltage application circuit 122 may be a DC voltage application circuit that includes a direct current (DC) power source and applies a DC voltage to the reactor 112, or an AC voltage application circuit that includes an alternating current (AC) power source and applies an AC voltage to the reactor 112. It may be replaced.
 2.3 リアクタ
 図7は、第2実施形態の殺菌水の製造方法により殺菌水を製造する際に使用される殺菌水の製造装置に備えられるリアクタの断面を模式的に図示する断面図である。
2.3 Reactor FIG. 7 is a cross-sectional view schematically showing a cross section of a reactor provided in a sterilizing water production apparatus used when sterilizing water is produced by the sterilizing water producing method of the second embodiment. ..
 リアクタ112は、図7に図示されるように、筒状構造体150を備える。筒状構造体150は、リアクタ内水路160を有する。リアクタ内水路160は、環状管110内の環状水路に接続される。これにより、リアクタ112を通過する水Wは、リアクタ内水路160を流れる。 The reactor 112 includes a tubular structure 150, as shown in FIG. 7. The tubular structure 150 has a reactor water channel 160. The in-reactor water channel 160 is connected to the annular water channel in the annular pipe 110. As a result, the water W passing through the reactor 112 flows through the in-reactor water channel 160.
 筒状構造体150は、ノズル170を備える。 The tubular structure 150 includes a nozzle 170.
 ノズル170は、オリフィス形状を有する。このため、リアクタ112を通過する水Wがノズル170を通過する際には、水Wの流速が速くなり、水Wの圧力が低くなる。また、リアクタ112を通過する水Wがノズル170を通過した後には、水Wの流速が遅くなり、水Wの圧力が高くなる。これにより、ノズル170の付近においては、キャビテーションが発生する。すなわち、水Wがノズル170を通過する際には、水Wの圧力が低くなることにより、水Wが沸騰し、水W中にキャビテーションバブル180が発生する。また、水Wがノズル170を通過した後には、水Wの圧力が高くなることにより、発生したキャビテーションバブル180が消滅する。したがって、ノズル170は、水W中にキャビテーションバブル180を発生させる。また、リアクタ112は、キャビテーションバブル180が発生させられる空間を有する。当該空間は、ノズル170の付近にある。キャビテーションバブル180を発生させるノズル170が、キャビテーションバブル180を発生させる他の種類の障害物に置き換えられてもよい。 The nozzle 170 has an orifice shape. Therefore, when the water W passing through the reactor 112 passes through the nozzle 170, the flow velocity of the water W becomes faster and the pressure of the water W becomes lower. Moreover, after the water W passing through the reactor 112 has passed through the nozzle 170, the flow velocity of the water W becomes slow and the pressure of the water W becomes high. As a result, cavitation occurs near the nozzle 170. That is, when the water W passes through the nozzle 170, the pressure of the water W becomes low, so that the water W boils and cavitation bubbles 180 are generated in the water W. Further, after the water W has passed through the nozzle 170, the pressure of the water W increases, so that the generated cavitation bubble 180 disappears. Therefore, the nozzle 170 generates the cavitation bubble 180 in the water W. Further, the reactor 112 has a space in which the cavitation bubble 180 is generated. The space is near the nozzle 170. The nozzle 170 that generates the cavitation bubble 180 may be replaced with another type of obstacle that generates the cavitation bubble 180.
 リアクタ112は、第1の電極190及び第2の電極192を備える。 The reactor 112 includes a first electrode 190 and a second electrode 192.
 第1の電極190は、図6に図示されるように、第1の配線132を介して電気的に接地され、第1の配線132を介してパルス電源130の負極140に電気的に接続される。第2の電極192は、第2の配線134を介してパルス電源130の正極142に電気的に接続される。これにより、第1の電極190が接地電極となり、第2の電極192が高圧電極となり、第1の電極190と第2の電極192との間にパルス電圧が印加され、第1の電極190と第2の電極192との間に放電プラズマが発生する。第1の配線132が省略され、第1の電極190が負極140に直結されてもよい。第2の配線134が省略され、第2の電極192が正極142に直結されてもよい。 As shown in FIG. 6, the first electrode 190 is electrically grounded via the first wiring 132 and electrically connected to the negative electrode 140 of the pulse power supply 130 via the first wiring 132. It The second electrode 192 is electrically connected to the positive electrode 142 of the pulse power supply 130 via the second wiring 134. As a result, the first electrode 190 becomes a ground electrode, the second electrode 192 becomes a high-voltage electrode, a pulse voltage is applied between the first electrode 190 and the second electrode 192, and the first electrode 190 becomes Discharge plasma is generated between the second electrode 192 and the second electrode 192. The first wiring 132 may be omitted, and the first electrode 190 may be directly connected to the negative electrode 140. The second wiring 134 may be omitted, and the second electrode 192 may be directly connected to the positive electrode 142.
 第1の電極190及び第2の電極192は、ノズル170の付近に配置される。これにより、キャビテーションバブル180が発生させられる空間に第1の電極190及び第2の電極192が配置され、キャビテーションバブル180が発生させられる空間に放電プラズマが発生する。したがって、第1の電極190、第2の電極192及びパルス電圧印加回路122は、当該空間に放電プラズマを発生させる放電プラズマ発生機構200を構成する。第2実施形態においては、第1の電極190及び第2の電極192は、ノズル170より下流側に配置される。第1の電極190及び第2の電極192がノズル170内に配置されてもよい。 The first electrode 190 and the second electrode 192 are arranged near the nozzle 170. As a result, the first electrode 190 and the second electrode 192 are arranged in the space where the cavitation bubble 180 is generated, and discharge plasma is generated in the space where the cavitation bubble 180 is generated. Therefore, the first electrode 190, the second electrode 192, and the pulse voltage application circuit 122 configure a discharge plasma generation mechanism 200 that generates discharge plasma in the space. In the second embodiment, the first electrode 190 and the second electrode 192 are arranged on the downstream side of the nozzle 170. The first electrode 190 and the second electrode 192 may be arranged in the nozzle 170.
 キャビテーションバブル180が発生させられる空間に発生した放電プラズマは、キャビテーションバブル180内にオゾン及び過酸化水素を生成する。オゾン及び過酸化水素は、試薬を用いることなく、水Wから生成される。生成したオゾン及び過酸化水素は、水Wに溶解し、互いに反応してヒドロキシラジカル及びヒドロペルオキシドラジカルを生成する。これにより、水、ヒドロキシラジカル及びヒドロペルオキシドラジカルを含みヒドロキシラジカル及びヒドロペルオキシドラジカルが水に溶解している殺菌水13が製造される。 The discharge plasma generated in the space where the cavitation bubble 180 is generated produces ozone and hydrogen peroxide in the cavitation bubble 180. Ozone and hydrogen peroxide are produced from water W without using reagents. The generated ozone and hydrogen peroxide are dissolved in water W and react with each other to generate hydroxy radicals and hydroperoxide radicals. As a result, sterilizing water 13 containing water, hydroxy radicals and hydroperoxide radicals, in which the hydroxy radicals and hydroperoxide radicals are dissolved in water, is produced.
 キャビテーションバブル180は、主に水蒸気からなり、空気に由来する窒素をほとんど含まない。このため、キャビテーションバブル180が発生させられる空間に放電プラズマが発生した場合においても、窒素酸化物等の窒素を含む化合物はほとんど生成しない。このため、製造される殺菌水13は、高い安全性を有する。 Cavitation bubble 180 is mainly composed of water vapor and contains almost no nitrogen derived from air. Therefore, even when discharge plasma is generated in the space where the cavitation bubbles 180 are generated, a compound containing nitrogen such as nitrogen oxide is hardly generated. Therefore, the sterilized water 13 produced has high safety.
 第1の電極190及び第2の電極192は、導電体からなり、例えば金属又は合金からなる。第1の電極190及び第2の電極192が、導電体、及び導電体の表面の一部を被覆するセラミックスを備える電極であってもよい。 The first electrode 190 and the second electrode 192 are made of a conductor, for example, a metal or an alloy. The first electrode 190 and the second electrode 192 may be electrodes including a conductor and a ceramic that covers a part of the surface of the conductor.
 第1の電極190及び第2の電極192は、棒状の形状を有し、筒状構造体150の径方向に延びる。第1の電極190及び第2の電極192の前端部は、リアクタ内水路160内に配置される。第1の電極190及び第2の電極192の後端部は、筒状構造体150の外部に配置される。第1の電極190及び第2の電極192の前端部は、筒状構造体150の軸方向すなわち水Wが流れる方向に互いに離される。 The first electrode 190 and the second electrode 192 have a rod shape and extend in the radial direction of the tubular structure 150. The front ends of the first electrode 190 and the second electrode 192 are arranged in the reactor water channel 160. The rear ends of the first electrode 190 and the second electrode 192 are arranged outside the tubular structure 150. The front ends of the first electrode 190 and the second electrode 192 are separated from each other in the axial direction of the tubular structure 150, that is, in the direction in which the water W flows.
 第1の電極190と第2の電極192との間の距離は、望ましくは4mm以上32mm以下である。 The distance between the first electrode 190 and the second electrode 192 is preferably 4 mm or more and 32 mm or less.
 第1の電極190と第2の電極192との間にパルス電圧が印加されることにより、第1の電極190と第2の電極192との間の距離を長くすることができる。例えば、第1の電極190と第2の電極192との間に交流電圧が印加される場合は、第1の電極190と第2の電極192との間の距離を16mm以上にすることが困難であるが、第1の電極190と第2の電極192との間にパルス電圧が印加される場合は、第1の電極190と第2の電極192との間の距離を16mm以上にすることが容易である。 The distance between the first electrode 190 and the second electrode 192 can be lengthened by applying the pulse voltage between the first electrode 190 and the second electrode 192. For example, when an AC voltage is applied between the first electrode 190 and the second electrode 192, it is difficult to set the distance between the first electrode 190 and the second electrode 192 to 16 mm or more. However, when the pulse voltage is applied between the first electrode 190 and the second electrode 192, the distance between the first electrode 190 and the second electrode 192 should be 16 mm or more. Is easy.
 パルス電圧のピーク電圧、パルス電圧のパルス幅、ポンプ116の吐出圧等は、オゾン及び過酸化水素が効率的に生成するように決められる。 The peak voltage of the pulse voltage, the pulse width of the pulse voltage, the discharge pressure of the pump 116, etc. are determined so that ozone and hydrogen peroxide are efficiently generated.
 2.4 殺菌水の製造
 製造装置100により殺菌水が製造される際は、環状管110内の環状水路に水Wが満たされる。満たされる水Wは、純水であってもよいし、水道水等の若干の不純物を含む水であってもよい。
2.4 Manufacture of Sterilized Water When the manufacturing apparatus 100 manufactures sterilized water, the water W is filled in the annular water channel in the annular pipe 110. The water W to be filled may be pure water or water containing some impurities such as tap water.
 続いて、バルブ120が閉じられる。 Next, the valve 120 is closed.
 続いて、ポンプ116が動作させられる。これにより、水Wが環状管110内の環状水路を循環し、キャビテーションバブル180が発生する。ポンプ116の吐出圧は、望ましくは0.1MPa以上1.5MPa以下である。 Next, the pump 116 is operated. As a result, the water W circulates in the annular water channel in the annular pipe 110, and the cavitation bubble 180 is generated. The discharge pressure of the pump 116 is desirably 0.1 MPa or more and 1.5 MPa or less.
 続いて、冷却器114が動作させられる。これにより、循環する水Wが望ましくは約4℃まで冷却される。 Subsequently, the cooler 114 is operated. Thereby, the circulating water W is desirably cooled to about 4°C.
 続いて、パルス電源130が動作させられる。これにより、パルス電圧が第1の電極190と第2の電極192との間に印加され、キャビテーションバブル180が発生させられる空間に放電プラズマが発生する。パルス電圧の周波数は、望ましくは10kHz以下である。パルス電圧のピーク電圧は、望ましくは15kV以下である。パルス電圧のパルス幅は、望ましくは半値全幅で1μ秒以下である。 Next, the pulse power supply 130 is operated. Accordingly, the pulse voltage is applied between the first electrode 190 and the second electrode 192, and discharge plasma is generated in the space where the cavitation bubble 180 is generated. The frequency of the pulse voltage is preferably 10 kHz or less. The peak voltage of the pulse voltage is preferably 15 kV or less. The pulse width of the pulse voltage is preferably 1 μsec or less in full width at half maximum.
 発生した放電プラズマは、オゾン及び過酸化水素を生成する。オゾン及び過酸化水素は、互いに反応してヒドロキシラジカル及びヒドロペルオキシドラジカルを生成する。これにより、殺菌水13が製造される。 The generated discharge plasma produces ozone and hydrogen peroxide. Ozone and hydrogen peroxide react with each other to produce hydroxy radicals and hydroperoxide radicals. Thereby, the sterilized water 13 is manufactured.
 続いて、バルブ120が開けられる。 Next, the valve 120 is opened.
 続いて、製造された殺菌水13が分岐管118内の分岐水路を経由して製造装置100の外部に取り出される。 Subsequently, the manufactured sterilizing water 13 is taken out of the manufacturing apparatus 100 via the branch water channel in the branch pipe 118.
 製造装置100によれば、水W中にキャビテーションバブル180を発生させキャビテーションバブル180が発生させられる空間に放電プラズマを発生させる処理が水Wに対して繰り返し行われる。これにより、高いヒドロキシラジカル濃度及び高いヒドロペルオキシドラジカル濃度を有する殺菌水13を製造することができる。 According to the manufacturing apparatus 100, the process of generating the cavitation bubble 180 in the water W and generating the discharge plasma in the space where the cavitation bubble 180 is generated is repeatedly performed on the water W. Thereby, the sterilizing water 13 having a high hydroxy radical concentration and a high hydroperoxide radical concentration can be produced.
 また、製造装置100によれば、水Wが冷却されることにより、オゾン、過酸化水素、ヒドロキシラジカル及びヒドロペルオキシドラジカルの水Wへの溶解度を高くし、ヒドロキシラジカル及びヒドロペルオキシドラジカルの寿命を長くすることができる。 Further, according to the manufacturing apparatus 100, by cooling the water W, the solubility of ozone, hydrogen peroxide, hydroxy radicals and hydroperoxide radicals in the water W is increased, and the life of the hydroxy radicals and hydroperoxide radicals is lengthened. can do.
 2.5 実験例
 製造装置100を使用して殺菌水13を製造した。
2.5 Experimental Example Sterilizing water 13 was manufactured using the manufacturing apparatus 100.
 水Wの量は、0.8リットルとした。第1の電極190と第2の電極192との間の距離は、32mmとした。パルス電圧の周波数は、5kHzとした。パルス電圧のパルス幅は、半値全幅で1μ秒以下とした。水Wに投入されたエネルギー密度は、42000J/リットルとした。溶液12及び殺菌水13のpHは、7とした。 The amount of water W was 0.8 liters. The distance between the first electrode 190 and the second electrode 192 was 32 mm. The frequency of the pulse voltage was 5 kHz. The full width at half maximum of the pulse width of the pulse voltage was set to 1 μsec or less. The energy density of the water W was 42000 J/liter. The pH of the solution 12 and the sterile water 13 was set to 7.
 製造された殺菌水13について、殺菌桁数を測定した。 The number of digits of sterilization was measured for the sterilized water 13 produced.
 殺菌桁数の測定においては、殺菌前の菌液中の大腸菌数を測定した。また、製造した殺菌水13を菌液に混合して20分かけて菌液の殺菌を行い、殺菌後の菌液中の大腸菌数を測定した。また、殺菌桁数は、殺菌前の大腸菌数に対する殺菌後の大腸菌数の比の常用対数の絶対値をとることにより得た。 When measuring the number of digits of sterilization, the number of E. coli in the bacterial solution before sterilization was measured. In addition, the produced sterilizing water 13 was mixed with the bacterium solution to sterilize the bacterium solution over 20 minutes, and the number of E. coli in the bacterium solution after sterilization was measured. The sterilization digit number was obtained by taking the absolute value of the common logarithm of the ratio of the number of E. coli after sterilization to the number of E. coli before sterilization.
 測定された殺菌桁数は、2.5桁であった。 The number of sterilization digits measured was 2.5.
 また、製造された殺菌水13中のオゾン濃度及び過酸化水素濃度を測定した。殺菌水中のオゾン濃度は、測定限界以下であった。殺菌水13中の過酸化水素濃度は、200ppmであった。 Also, the ozone concentration and hydrogen peroxide concentration in the manufactured sterilized water 13 were measured. The ozone concentration in the sterilized water was below the measurement limit. The hydrogen peroxide concentration in the sterilized water 13 was 200 ppm.
 殺菌力を有する殺菌水13が得られていること、及び過酸化水素が存在していることから、実施の形態2の殺菌水13の製造方法においても、オゾン及び過酸化水素からヒドロキシラジカル及びヒドロペルオキシドラジカルが生成していると推定される。 Since sterilizing water 13 having sterilizing power is obtained and hydrogen peroxide is present, also in the method for producing sterilizing water 13 according to the second embodiment, ozone and hydrogen peroxide are used to produce hydroxy radicals and hydro gens. It is presumed that peroxide radicals are generated.
 2.6 変形例
 製造装置100以外の製造装置により殺菌水13が製造されてもよい。例えば、空気を水中に放出することにより水中にバブルを発生させバブルが発生させられる空間に放電プラズマを発生させることにより、水、オゾン及び過酸化水素を含みオゾン及び過酸化水素が水に溶解している溶液を作製する製造装置により殺菌水13が製造されてもよい。
2.6 Modification The sterilizing water 13 may be manufactured by a manufacturing apparatus other than the manufacturing apparatus 100. For example, by releasing air into water to generate bubbles in the water and generating discharge plasma in the space where the bubbles are generated, water, ozone and hydrogen peroxide are contained, and ozone and hydrogen peroxide are dissolved in water. The sterilizing water 13 may be manufactured by a manufacturing apparatus that manufactures the solution.
 2.7 第2実施形態の効果
 第2実施形態によれば、第1実施形態と同様に、数μ秒から数m秒程度の短い寿命しか有しないヒドロキシラジカル及びヒドロペルオキシドラジカルが、長い寿命を有するオゾン及び過酸化水素から生成する。このため、殺菌水13は、ヒドロキシラジカル及びヒドロペルオキシドラジカルが短い寿命しか有しないにもかかわらず、高いヒドロキシラジカル濃度及びヒドロペルオキシドラジカル濃度を有する。また、ヒドロキシラジカル及びヒドロペルオキシドラジカルは、接触した物体を殺菌する殺菌力を殺菌水13に付与する殺菌因子となる。これらにより、高い殺菌力を有する殺菌水13を提供することができる。
2.7 Effect of Second Embodiment According to the second embodiment, as in the first embodiment, a hydroxy radical and a hydroperoxide radical having a short life of about several microseconds to several milliseconds have a long life. It is generated from ozone and hydrogen peroxide. Therefore, the germicidal water 13 has a high concentration of hydroxy radicals and hydroperoxide radicals, despite the short life of the hydroxy radicals and hydroperoxide radicals. Further, the hydroxy radical and the hydroperoxide radical serve as a bactericidal factor that imparts a bactericidal power to the sterilized water 13 to sterilize the contacted object. With these, it is possible to provide the sterilizing water 13 having a high sterilizing power.
 また、第2実施形態によれば、第1実施形態と同様に、ヒドロキシラジカル及びヒドロペルオキシドラジカルが、接触した物体を殺菌する殺菌力を殺菌水13に付与する殺菌因子となる。このため、殺菌水13は、高いオゾン濃度を有しなくてもよい。また、第2実施形態によれば、オゾンがヒドロキシラジカル及びヒドロペルオキシドラジカルを生成するために消費される。このため、殺菌水13は、高いオゾン濃度を有しない。これらにより、高い安全性を有し強いオゾン臭を発生しない殺菌水13を提供することができる。 Further, according to the second embodiment, as in the first embodiment, the hydroxy radical and the hydroperoxide radical serve as a sterilizing factor that imparts the sterilizing power for sterilizing the contacted object to the sterilizing water 13. Therefore, the sterilizing water 13 does not have to have a high ozone concentration. Further, according to the second embodiment, ozone is consumed to generate hydroxy radicals and hydroperoxide radicals. Therefore, the sterilizing water 13 does not have a high ozone concentration. With these, it is possible to provide the sterilizing water 13 having high safety and not generating a strong ozone odor.
 3 第3実施形態
 3.1 第2実施形態と第3実施形態との相違
 第3実施形態の殺菌水13の製造方法は、主に下記の点で第2実施形態の殺菌水13の製造方法と相違する。
3 Third Embodiment 3.1 Differences between Second Embodiment and Third Embodiment A method for manufacturing the sterilized water 13 according to the third embodiment mainly includes the following points in the method for manufacturing the sterilized water 13 according to the second embodiment. Is different from.
 第2実施形態の殺菌水13の製造方法においては、水中にキャビテーションバブルを発生させキャビテーションバブルが発生させられる空間に放電プラズマを発生させることにより、水、オゾン及び過酸化水素を含みオゾン及び過酸化水素が水に溶解している溶液12が作製される。これに対して、第3実施形態の殺菌水13の製造方法においては、水中にキャビテーションバブルを発生させキャビテーションバブルが発生させられる空間に放電プラズマを発生させることにより、水、オゾン及び過酸化水素を含みオゾン及び過酸化水素が水に溶解している混合前溶液が作製される。また、作製された混合前溶液にオゾン水を混合することにより、水、オゾン及び過酸化水素を含みオゾン及び過酸化水素が水に溶解している溶液12が作製される。 In the method for producing the sterilized water 13 according to the second embodiment, cavitation bubbles are generated in water, and discharge plasma is generated in a space where the cavitation bubbles are generated, so that water, ozone, and hydrogen peroxide are contained in the ozone and peroxide. A solution 12 is prepared in which hydrogen is dissolved in water. On the other hand, in the method for producing the sterilized water 13 of the third embodiment, water, ozone and hydrogen peroxide are generated by generating cavitation bubbles in water and generating discharge plasma in the space where the cavitation bubbles are generated. A pre-mixed solution is prepared in which the contained ozone and hydrogen peroxide are dissolved in water. Further, by mixing ozone water with the prepared solution before mixing, a solution 12 containing water, ozone, and hydrogen peroxide, in which ozone and hydrogen peroxide are dissolved in water, is prepared.
 3.2 殺菌水の製造装置
 図8は、第3実施形態の殺菌水の製造方法により殺菌水を製造する際に使用される殺菌水の製造装置を模式的に図示する図である。
3.2 Sterile Water Production Apparatus FIG. 8 is a diagram schematically illustrating a sterilized water production apparatus used when sterilized water is produced by the sterilized water production method of the third embodiment.
 図8に図示される殺菌水13の製造装置201は、図6に図示される殺菌水13の製造装置100と同じく、環状管110、リアクタ112、冷却器114、ポンプ116、分岐管118及びバルブ120を備える。 The manufacturing apparatus 201 of the sterilizing water 13 shown in FIG. 8 is the same as the manufacturing apparatus 100 of the sterilizing water 13 shown in FIG. 6, and is an annular pipe 110, a reactor 112, a cooler 114, a pump 116, a branch pipe 118 and a valve. It comprises 120.
 また、製造装置201は、図6に図示される殺菌水13の製造装置100と異なり、オゾナイザー210をさらに備える。 Further, the manufacturing apparatus 201, unlike the manufacturing apparatus 100 for the sterilized water 13 shown in FIG. 6, further includes an ozonizer 210.
 オゾナイザー210は、オゾン水を生成し、生成したオゾン水を分岐管118内の分岐水路に供給する。これにより、冷却器114により冷却された水がリアクタ112により繰り返し処理され、処理された水中にオゾン及び過酸化水素が生成し、水、オゾン及び過酸化水素を含みオゾン及び過酸化水素が水に溶解している混合前溶液が作製される。また、作製された混合前溶液に、殺菌因子を生成し長い寿命を有するオゾンを含むオゾン水が混合される。これにより、高い殺菌力を有する殺菌水13を製造することができる。オゾナイザー210が、他の種類のオゾン水供給部に置き換えられてもよい。 The ozonizer 210 generates ozone water and supplies the generated ozone water to the branch water channel in the branch pipe 118. Thereby, the water cooled by the cooler 114 is repeatedly treated by the reactor 112, ozone and hydrogen peroxide are generated in the treated water, and water, ozone and hydrogen peroxide are contained, and ozone and hydrogen peroxide are transformed into water. A dissolved premix solution is made. Further, ozone water containing ozone having a long life and producing a bactericidal factor is mixed with the prepared solution before mixing. Thereby, the sterilizing water 13 having a high sterilizing power can be manufactured. The ozonizer 210 may be replaced with another type of ozone water supply unit.
 オゾナイザー210により生成されるオゾン水は、環状管110内の環状水路から殺菌水13の製造装置201の外部に至る分岐管118内の分岐水路に供給される。これにより、供給されたオゾン水がリアクタ112を通過せず、供給されたオゾン水にキャビテーションに伴う衝撃が加わってオゾン水に含まれるオゾンがオゾン水から出ることを抑制することができる。 The ozone water generated by the ozonizer 210 is supplied to the branch water passage in the branch pipe 118 extending from the ring water passage in the ring pipe 110 to the outside of the sterilizing water 13 production apparatus 201. As a result, the supplied ozone water does not pass through the reactor 112, and it is possible to prevent the ozone contained in the ozone water from coming out of the ozone water due to the impact of the cavitation applied to the supplied ozone water.
 4 第4実施形態
 4.1 第2実施形態と第4実施形態との相違
 第4実施形態の殺菌水13の製造方法は、主に下記の点で第2実施形態の殺菌水13の製造方法と相違する。
4 4th Embodiment 4.1 Difference between 2nd Embodiment and 4th Embodiment The manufacturing method of the sterilizing water 13 of 4th Embodiment is mainly the following points, and the manufacturing method of the sterilizing water 13 of 2nd Embodiment. Is different from.
 第2実施形態の殺菌水13の製造方法においては、水を循環させ、水中にキャビテーションバブルを発生させキャビテーションバブルが発生させられる空間に放電プラズマを発生させることにより、水、オゾン及び過酸化水素を含みオゾン及び過酸化水素が水に溶解している溶液12が作製される。これに対して、第4実施形態の殺菌水13の製造方法においては、水を循環させず、水中にキャビテーションバブルを発生させキャビテーションバブルが発生させられる空間に放電プラズマを発生させることにより、水、オゾン及び過酸化水素を含みオゾン及び過酸化水素が水に溶解している混合前溶液が作製される。また、作製された混合前溶液にオゾン水を混合することにより、水、オゾン及び過酸化水素を含みオゾン及び過酸化水素が水に溶解している溶液12が作製される。作製された溶液12は、第1実施形態と同様に、殺菌水13に変化する。製造された殺菌水13は、第1実施形態の殺菌水13の製造方法により製造される殺菌水13と同様に使用することができる。 In the method for producing the sterilized water 13 of the second embodiment, water, ozone, and hydrogen peroxide are circulated by circulating water, generating cavitation bubbles in the water, and generating discharge plasma in the space where the cavitation bubbles are generated. A solution 12 is prepared in which the contained ozone and hydrogen peroxide are dissolved in water. On the other hand, in the method for producing the sterilized water 13 according to the fourth embodiment, water is not circulated, and cavitation bubbles are generated in the water to generate discharge plasma in the space where the cavitation bubbles are generated. A pre-mixed solution containing ozone and hydrogen peroxide is prepared in which ozone and hydrogen peroxide are dissolved in water. Further, by mixing ozone water with the prepared solution before mixing, a solution 12 containing water, ozone, and hydrogen peroxide, in which ozone and hydrogen peroxide are dissolved in water, is prepared. The produced solution 12 is changed to sterilized water 13 as in the first embodiment. The produced sterilizing water 13 can be used similarly to the sterilizing water 13 produced by the method for producing the sterilizing water 13 of the first embodiment.
 4.2 殺菌水の製造装置
 図9は、第4実施形態の殺菌水の製造方法により殺菌水を製造する際に使用される殺菌水の製造装置を模式的に図示する図である。
4.2 Sterilized Water Production Apparatus FIG. 9 is a diagram schematically illustrating a sterilized water production apparatus used when sterilized water is produced by the sterilized water production method of the fourth embodiment.
 図9に図示される殺菌水13の製造装置300は、図6に図示される殺菌水13の製造装置100と同じく、リアクタ112、冷却器114、ポンプ116及びバルブ120を備える。 The apparatus 300 for producing sterilized water 13 shown in FIG. 9 includes a reactor 112, a cooler 114, a pump 116 and a valve 120, like the apparatus 100 for producing sterilized water 13 shown in FIG.
 また、製造装置300は、図6に図示される殺菌水13の製造装置100と異なり、環状管110及び分岐管118に代えて管220を備え、オゾナイザー210をさらに備える。 Further, the manufacturing apparatus 300 differs from the manufacturing apparatus 100 for the sterilizing water 13 shown in FIG. 6 in that it includes a pipe 220 instead of the annular pipe 110 and the branch pipe 118, and further includes an ozonizer 210.
 管220には、リアクタ112、冷却器114及びポンプ116が挿入される。このため、管220内の水路を流れる水は、リアクタ112、冷却器114及びポンプ116を順次に通過する。リアクタ112は、リアクタ112を通過する水を処理する。冷却器114は、冷却器114を通過する水を冷却する。ポンプ116は、ポンプ116を通過する水に流れを与える。これにより、冷却器114により冷却された水がリアクタ112により処理され、処理された水中にオゾン及び過酸化水素が生成し、水、オゾン及び過酸化水素を含みオゾン及び過酸化水素が水に溶解している混合前溶液が作製される。 The reactor 112, the cooler 114, and the pump 116 are inserted into the pipe 220. Therefore, the water flowing through the water channel in the pipe 220 sequentially passes through the reactor 112, the cooler 114, and the pump 116. The reactor 112 processes water passing through the reactor 112. The cooler 114 cools the water passing through the cooler 114. Pump 116 provides a flow of water passing through pump 116. Thereby, the water cooled by the cooler 114 is processed by the reactor 112, ozone and hydrogen peroxide are generated in the processed water, and water, ozone and hydrogen peroxide are contained, and ozone and hydrogen peroxide are dissolved in water. A pre-mixed solution is being prepared.
 オゾナイザー210は、オゾン水を生成し、生成したオゾン水を管220内の水路のリアクタ112より下流側に供給する。これにより、作製された混合前溶液に、殺菌因子を生成し長い寿命を有するオゾンを含むオゾン水が混合される。これにより、高い殺菌力を有する殺菌水13を製造することができる。オゾナイザー210が、他の種類のオゾン水供給部に置き換えられてもよい。 The ozonizer 210 generates ozone water and supplies the generated ozone water to the downstream side of the reactor 112 in the water channel in the pipe 220. As a result, the prepared pre-mixed solution is mixed with ozone water containing ozone that produces a germicidal factor and has a long life. Thereby, the sterilizing water 13 having a high sterilizing power can be manufactured. The ozonizer 210 may be replaced with another type of ozone water supply unit.
 オゾナイザー210により生成されるオゾン水は、管220内の水路のキャビテーションバブル180が発生させられる空間より下流側に供給される。これにより、供給されたオゾン水がリアクタ112を通過せず、供給されたオゾン水にキャビテーションに伴う衝撃が加わってオゾン水に含まれるオゾンがオゾン水から出ることを抑制することができる。 The ozone water generated by the ozonizer 210 is supplied to the downstream side of the space in the pipe 220 where the cavitation bubble 180 is generated. As a result, the supplied ozone water does not pass through the reactor 112, and it is possible to prevent the ozone contained in the ozone water from coming out of the ozone water due to the impact of the cavitation applied to the supplied ozone water.
 4.3 実験例
 第4実施形態の殺菌水13の製造方法により殺菌水13を製造した。
4.3 Experimental Example Sterilized water 13 was manufactured by the method for manufacturing sterilized water 13 of the fourth embodiment.
 溶液12中のオゾン濃度は、8.3×10-4mmol/リットルとした。溶液12中の過酸化水素濃度は、溶液12中のオゾン濃度である8.3×10-4mmol/リットルの0.4倍から149倍までの範囲とした。溶液12及び殺菌水13のpHは、7とした。 The ozone concentration in the solution 12 was 8.3×10 −4 mmol/liter. The hydrogen peroxide concentration in the solution 12 was in the range of 0.4 to 149 times the ozone concentration in the solution 12, which is 8.3×10 −4 mmol/liter. The pH of the solution 12 and the sterile water 13 was set to 7.
 溶液12中のオゾン濃度に対する溶液12中の過酸化水素濃度の比による殺菌桁数の変化の測定の結果を図10のグラフに示す。 The graph of FIG. 10 shows the measurement results of the change in the number of sterilization digits depending on the ratio of the concentration of hydrogen peroxide in the solution 12 to the concentration of ozone in the solution 12.
 図10に示されるように、殺菌桁数は、当該比が概ね0.5以上10以下である場合は、概ね検出限界に達する6となるが、当該比が概ね0.5より小さい又は10より大きい場合は、概ね2以上5以下となる。 As shown in FIG. 10, the sterilization digit number is 6 which almost reaches the detection limit when the ratio is approximately 0.5 or more and 10 or less, but the ratio is generally less than 0.5 or 10 When it is large, it is approximately 2 or more and 5 or less.
 したがって、当該比が概ね0.5以上10以下である場合は、高い殺菌力を有する殺菌水13を得ることができる。なお、第4実施形態の実験例において測定された殺菌桁数が第1実施形態の第1実験例において測定された殺菌桁数より著しく大きいのは、第1実施形態の第1実験例においては塩素を含む水道水を用いていたが、第4実施形態の実験例においては塩素を含まない脱イオン水を用いたため、塩素の影響でオゾンが失われることがなくなったためである。 Therefore, when the ratio is approximately 0.5 or more and 10 or less, the sterilizing water 13 having high sterilizing power can be obtained. The sterilization digit number measured in the experimental example of the fourth embodiment is significantly larger than the sterilization digit number measured in the first experimental example of the first embodiment in the first experimental example of the first embodiment. This is because tap water containing chlorine was used, but since deionized water containing no chlorine was used in the experimental example of the fourth embodiment, ozone was not lost due to the influence of chlorine.
 この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。 Although the present invention has been described in detail, the above description is an example in all aspects, and the present invention is not limited thereto. It is understood that innumerable variants not illustrated can be envisaged without departing from the scope of the invention.
 10 オゾン水
 11 過酸化水素水
 12 溶液
 13 殺菌水
 14 殺菌因子
 15 前駆体
 100,201,300 製造装置
 112 リアクタ
 122 パルス電圧印加回路
 170 ノズル
 180 キャビテーションバブル
 210 オゾナイザー
 W 水
10 Ozone Water 11 Hydrogen Peroxide Water 12 Solution 13 Sterilizing Water 14 Sterilizing Factor 15 Precursor 100, 201, 300 Manufacturing Equipment 112 Reactor 122 Pulse Voltage Application Circuit 170 Nozzle 180 Cavitation Bubble 210 Ozonizer W Water

Claims (13)

  1.  水、オゾン、過酸化水素、ヒドロキシラジカル及びヒドロペルオキシドラジカルを含み、
     オゾン、過酸化水素、ヒドロキシラジカル及びヒドロペルオキシドラジカルが水に溶解しており、
     接触した物体を殺菌する殺菌力を有する
    殺菌水。
    Contains water, ozone, hydrogen peroxide, hydroxy radicals and hydroperoxide radicals,
    Ozone, hydrogen peroxide, hydroxy radicals and hydroperoxide radicals are dissolved in water,
    Sterilizing water having a sterilizing power to sterilize a contacted object.
  2.  オゾン及び過酸化水素が互いに反応してヒドロキシラジカル及びヒドロペルオキシドラジカルが生成する反応が殺菌水中で進行している
    請求項1の殺菌水。
    The sterilized water according to claim 1, wherein a reaction in which ozone and hydrogen peroxide react with each other to generate a hydroxy radical and a hydroperoxide radical is proceeding in the sterilized water.
  3.  前記反応の進行が開始する時点において、オゾンのモル濃度に対する過酸化水素のモル濃度の比が0.5以上10以下である
    請求項2の殺菌水。
    The sterilized water according to claim 2, wherein the ratio of the molar concentration of hydrogen peroxide to the molar concentration of ozone is 0.5 or more and 10 or less at the time when the progress of the reaction starts.
  4.  5より大きいpHを有する
    請求項1から3までのいずれかの殺菌水。
    Sterilized water according to any one of claims 1 to 3 having a pH greater than 5.
  5.  a) 水、オゾン及び過酸化水素を含みオゾン及び過酸化水素が水に溶解している溶液を作製する工程と、
     b) 前記溶液中でオゾン及び過酸化水素を互いに反応させてヒドロキシラジカル及びヒドロペルオキシドラジカルを生成させ、前記溶液を、水、ヒドロキシラジカル及びヒドロペルオキシドラジカルを含みヒドロキシラジカル及びヒドロペルオキシドラジカルが水に溶解しており接触した物体を殺菌する殺菌力を有する殺菌水に変化させる工程と、
    を備える殺菌水の製造方法。
    a) producing a solution containing water, ozone and hydrogen peroxide, wherein ozone and hydrogen peroxide are dissolved in water,
    b) reacting ozone and hydrogen peroxide with each other in the solution to generate a hydroxy radical and a hydroperoxide radical, and dissolving the solution in water, the hydroxy radical and the hydroperoxide radical being dissolved in water. And changing the sterilizing water having sterilizing power to sterilize the contacted object,
    A method for producing sterilized water comprising:
  6.  前記溶液及び前記殺菌水は、5より大きいpHを有する
    請求項5の殺菌水の製造方法。
    The method for producing sterilized water according to claim 5, wherein the solution and the sterilized water have a pH higher than 5.
  7.  前記溶液中のオゾンのモル濃度に対する前記溶液中の過酸化水素のモル濃度の比が、0.5以上10以下である
    請求項5又は6の殺菌水の製造方法。
    The method for producing sterile water according to claim 5 or 6, wherein the ratio of the molar concentration of hydrogen peroxide in the solution to the molar concentration of ozone in the solution is 0.5 or more and 10 or less.
  8.  前記殺菌水は、水に溶解しているオゾン及び過酸化水素をさらに含む
    請求項5から7までのいずれかの殺菌水の製造方法。
    The method for producing sterilized water according to claim 5, wherein the sterilized water further contains ozone and hydrogen peroxide dissolved in water.
  9.  工程a)は、
     a-1) 水からオゾン及び過酸化水素を生成する工程
    を備える
    請求項5から8までのいずれかの殺菌水の製造方法。
    Step a) is
    a-1) The method for producing sterilized water according to any one of claims 5 to 8, comprising a step of generating ozone and hydrogen peroxide from water.
  10.  工程a-1)は、
     a-1-1) 水中にキャビテーションバブルを発生させる工程と、
     a-1-2) 前記キャビテーションバブルが発生させられる空間に放電プラズマを発生させる工程と、
    を備える
    請求項9の殺菌水の製造方法。
    Step a-1) is
    a-1-1) A step of generating cavitation bubbles in water,
    a-1-2) a step of generating discharge plasma in the space where the cavitation bubbles are generated,
    The method for producing sterilized water according to claim 9, further comprising:
  11.  前記工程a-1)は、水、オゾン及び過酸化水素を含みオゾン及び過酸化水素が水に溶解している混合前溶液を作製し、
     工程a)は、
     a-2) 前記工程a-1)の後に前記混合前溶液にオゾン水を混合する工程
    をさらに備える
    請求項9又は10の殺菌水の製造方法。
    The step a-1) is to prepare a pre-mixed solution containing water, ozone and hydrogen peroxide, wherein ozone and hydrogen peroxide are dissolved in water,
    Step a) is
    a-2) The method for producing sterilized water according to claim 9 or 10, further comprising a step of mixing ozone water with the pre-mixing solution after the step a-1).
  12.  d) 請求項5から11までのいずれかの殺菌水の製造方法により殺菌水を製造する工程と、
     e) 前記殺菌水を物体に接触させ、前記物体を殺菌済物体に変化させる工程と、
    を備える殺菌済物体の製造方法。
    d) a step of producing sterilized water by the method for producing sterilized water according to any one of claims 5 to 11,
    e) contacting the sterilized water with an object to transform the object into a sterilized object,
    A method of manufacturing a sterilized object comprising:.
  13.  工程e)は、オゾン及び過酸化水素が互いに反応しヒドロキシラジカル及びヒドロペルオキシドラジカルが生成する反応の進行中に実行される
    請求項12の殺菌済物体の製造方法。
    The method for producing a sterilized object according to claim 12, wherein step e) is performed during the progress of the reaction in which ozone and hydrogen peroxide react with each other to generate a hydroxy radical and a hydroperoxide radical.
PCT/JP2019/031665 2018-12-28 2019-08-09 Sterilizing water, sterilizing water production method and sterilized object production method WO2020136982A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020562337A JPWO2020136982A1 (en) 2018-12-28 2019-08-09 Sterilized water, sterilized water manufacturing method and sterilized object manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2018/048500 2018-12-28
JP2018048500 2018-12-28

Publications (1)

Publication Number Publication Date
WO2020136982A1 true WO2020136982A1 (en) 2020-07-02

Family

ID=71127004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031665 WO2020136982A1 (en) 2018-12-28 2019-08-09 Sterilizing water, sterilizing water production method and sterilized object production method

Country Status (2)

Country Link
JP (1) JPWO2020136982A1 (en)
WO (1) WO2020136982A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003516216A (en) * 1999-10-14 2003-05-13 ジェ ドゥッ ムーン High concentration electrolyzed water production equipment
JP2004130185A (en) * 2002-10-09 2004-04-30 Mitsubishi Heavy Ind Ltd Wastewater treatment method and apparatus therefor
JP2005118642A (en) * 2003-10-15 2005-05-12 Sumitomo Precision Prod Co Ltd Water treatment method and apparatus, and ejector for water treatment
WO2007138773A1 (en) * 2006-05-31 2007-12-06 Kabushiki Kaisha Yaskawa Denki Water treatment apparatus
WO2010140581A1 (en) * 2009-06-03 2010-12-09 倉敷紡績株式会社 Method for supplying hydroxyl radical-containing water and apparatus for supplying hydroxyl radical-containing water
JP2012024711A (en) * 2010-07-26 2012-02-09 Toyo Valve Co Ltd Electrochemical accelerated oxidation treatment apparatus for generating oh radical and ozone, treatment method of the same, and liquid purification apparatus using the same
JP2015097975A (en) * 2013-11-18 2015-05-28 株式会社セイデン Water treatment apparatus using liquid surface plasma discharge
JP2016525923A (en) * 2013-05-01 2016-09-01 エヌシーエイチ コーポレイションNch Corporation Treatment system and method for water system with high voltage discharge and ozone
JP2018069212A (en) * 2016-11-04 2018-05-10 株式会社東芝 Water treatment apparatus, water treatment system and water treatment method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003516216A (en) * 1999-10-14 2003-05-13 ジェ ドゥッ ムーン High concentration electrolyzed water production equipment
JP2004130185A (en) * 2002-10-09 2004-04-30 Mitsubishi Heavy Ind Ltd Wastewater treatment method and apparatus therefor
JP2005118642A (en) * 2003-10-15 2005-05-12 Sumitomo Precision Prod Co Ltd Water treatment method and apparatus, and ejector for water treatment
WO2007138773A1 (en) * 2006-05-31 2007-12-06 Kabushiki Kaisha Yaskawa Denki Water treatment apparatus
WO2010140581A1 (en) * 2009-06-03 2010-12-09 倉敷紡績株式会社 Method for supplying hydroxyl radical-containing water and apparatus for supplying hydroxyl radical-containing water
JP2012024711A (en) * 2010-07-26 2012-02-09 Toyo Valve Co Ltd Electrochemical accelerated oxidation treatment apparatus for generating oh radical and ozone, treatment method of the same, and liquid purification apparatus using the same
JP2016525923A (en) * 2013-05-01 2016-09-01 エヌシーエイチ コーポレイションNch Corporation Treatment system and method for water system with high voltage discharge and ozone
JP2015097975A (en) * 2013-11-18 2015-05-28 株式会社セイデン Water treatment apparatus using liquid surface plasma discharge
JP2018069212A (en) * 2016-11-04 2018-05-10 株式会社東芝 Water treatment apparatus, water treatment system and water treatment method

Also Published As

Publication number Publication date
JPWO2020136982A1 (en) 2021-11-04

Similar Documents

Publication Publication Date Title
JP3995654B2 (en) Ozone water generator using underwater discharge in insulator discharge system
JP5084734B2 (en) Activated peroxide solutions and methods for their preparation
WO2007048806A1 (en) Method for the preparation of biocidal activated water solutions
JP6678338B2 (en) Liquid treatment equipment
WO2018083900A1 (en) Water treatment apparatus, water treatment system and water treatment method
JP2012228644A (en) Liquid treating apparatus
JP6544623B2 (en) Treatment liquid generating apparatus and processing liquid generation method
JP2005058886A (en) Waste water treatment apparatus using high-voltage pulse and method therefor, and power supply circuit for the apparatus
JP2011200778A (en) Method and apparatus for producing ozone water
WO2020136982A1 (en) Sterilizing water, sterilizing water production method and sterilized object production method
KR102002501B1 (en) Method of manufacturing chlorine dioxide using hydrogen peroxide and method of sterilization and removal of bad ordor using chlorine dioxide
JP2006198499A (en) Method for sterilizing water and sterilization apparatus
JP2014159008A (en) Water treatment apparatus
KR20160042093A (en) Cleaning solution and manufacturing method therefor
JP6124378B2 (en) Washing water production method
WO2018021528A1 (en) Device for generating sterile water, method for sterilizing an object to be treated, and method for generating sterile water
WO2004076363A1 (en) Method for producing mixed electrolyzed water
JP2006513849A (en) Water as a free radical solution
JP2006281129A (en) Water treatment method and apparatus
JP2021107040A (en) Manufacturing apparatus of sterilization water, manufacturing method of sterilization water, and manufacturing method of sterilized article
WO2020065814A1 (en) Sterilizing water producing device, sterilizing water producing method, and method for manufacturing sterilized object
JP6817594B2 (en) Liquid processing equipment
JP6304701B2 (en) Washing water containing hypochlorous acid and hypochlorite ion and method for producing the same
KR101070866B1 (en) Apparatus for producing naocl using electrolysis and plasma discharge
El Shaer et al. Low-Cost Dielectric Barrier Discharge Plasma Hand Sanitizer Using Air and Tap Water Enriched by Hydrogen Peroxide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19904475

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020562337

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19904475

Country of ref document: EP

Kind code of ref document: A1