JP2012228644A - Liquid treating apparatus - Google Patents

Liquid treating apparatus Download PDF

Info

Publication number
JP2012228644A
JP2012228644A JP2011097825A JP2011097825A JP2012228644A JP 2012228644 A JP2012228644 A JP 2012228644A JP 2011097825 A JP2011097825 A JP 2011097825A JP 2011097825 A JP2011097825 A JP 2011097825A JP 2012228644 A JP2012228644 A JP 2012228644A
Authority
JP
Japan
Prior art keywords
gas
liquid
discharge
processing apparatus
liquid processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011097825A
Other languages
Japanese (ja)
Other versions
JP5099612B2 (en
Inventor
Hiroyuki Yoshiki
宏之 吉木
Shuichi Ishikawa
修一 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of National Colleges of Technologies Japan
Original Assignee
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of National Colleges of Technologies Japan filed Critical Institute of National Colleges of Technologies Japan
Priority to JP2011097825A priority Critical patent/JP5099612B2/en
Publication of JP2012228644A publication Critical patent/JP2012228644A/en
Application granted granted Critical
Publication of JP5099612B2 publication Critical patent/JP5099612B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a liquid treating apparatus which can efficiently and inexpensively treat and clarify liquid to be treated including various kinds of contaminants or the like and which has compact, simple and convenient structure.SOLUTION: The liquid treating apparatus includes: a gas discharge part having a voltage application electrode and an earthed electrode; a microbubble generating part integrally joined to the gas discharge part; and a gas supply means for introducing mixed gas obtained by mixing specific gas or a plurality of kinds of gas to the gas discharge part. The gas discharge part generates activated gas by plasmizing gas using gas discharge between both electrodes under atmospheric pressure and the microbubble generating part is caused to self-prime the generated activated gas at once so as not to be deactivated. The activated gas is formed into microbubbles and is supplied to the liquid to be treated and thereby plasma or the like in the activated gas and substances to be treated in the liquid to be treated are made to efficiently react with each other and the substances to be treated can be efficiently removed.

Description

本発明は、各種の原料気体中で気体放電を発生させて得た活性化ガスを微細気泡化して液体中に拡散させることにより、該液体中の有機物、無機物、微生物、細菌、ウイルス等を効率良く分解処理することを目的とする液体処理装置に関する。   The present invention makes the activated gas obtained by generating a gas discharge in various raw gases into microbubbles and diffusing it in the liquid, so that organic substances, inorganic substances, microorganisms, bacteria, viruses, etc. in the liquid can be efficiently used. The present invention relates to a liquid processing apparatus intended to be well decomposed.

上水、下水、産業排水などの液体中の有機物の酸化分解、殺菌、減菌、脱臭等の液体処理を行うために、オゾンが広く用いられている。この際、オゾンと被処理液体の接触面積を増加させて処理効率を高めるために、オゾン発生装置から得たオゾン含有ガスを微細気泡化して被処理液体中に拡散する方法、所謂マイクロバブルを用いた水処理装置が提案されている。   Ozone is widely used to perform liquid treatments such as oxidative decomposition, sterilization, sterilization, and deodorization of organic substances in liquids such as clean water, sewage, and industrial wastewater. At this time, in order to increase the contact area between the ozone and the liquid to be processed and increase the processing efficiency, a method of soaking the ozone-containing gas obtained from the ozone generator into the liquid to be processed and so-called microbubbles is used. A water treatment device has been proposed.

例えば特許文献1では、オゾン発生装置とマイクロバブル発生機をガス供給管等で接続して水処理を行っている。しかしながら、オゾン自体は酸化力が弱く、しかも空気あるいは酸素を含む気体中での放電によって生成したオゾン含有ガスを微細気泡化する途上で、ガス供給管内を移動する途中での失活や、ガス供給管等の内部での吸着によるオゾン密度の減少により、水処理効率が極端に低下するという問題がある。 For example, in Patent Document 1, water treatment is performed by connecting an ozone generator and a microbubble generator with a gas supply pipe or the like. However, ozone itself has weak oxidizing power, and in the process of making the ozone-containing gas generated by discharge in a gas containing air or oxygen into microbubbles, deactivation or gas supply while moving in the gas supply pipe There is a problem that the water treatment efficiency is extremely lowered due to a decrease in ozone density due to adsorption inside a pipe or the like.

そこで、オゾンよりも酸化作用が強い原子状酸素ラジカル(Oラジカル)やヒドロキシルラジカル(OHラジカル)を被処理水中に直接生成して、有機物の酸化分解、殺菌、減菌、脱臭等を実現するために、被処理液体中に高電圧電極を設置し、高周波又はパルス電圧を印加して水中放電を起こす方法も提案されている(特許文献2)。しかしながら、放電電極が被処理液体中に浸漬されているため、放電を起こすためには数十KVを超える電圧を印加できる電源が必要となるだけでなく、安定した水中放電の生成及び維持には制御回路の最適化が不可欠である。そのため、水中放電方式は経済面、技術面における困難性が高いという問題を有する。   Therefore, atomic oxygen radicals (O radicals) and hydroxyl radicals (OH radicals), which have a stronger oxidizing action than ozone, are directly generated in the water to be treated to realize oxidative decomposition, sterilization, sterilization, deodorization, etc. of organic substances. In addition, a method has been proposed in which a high-voltage electrode is installed in a liquid to be treated and a high-frequency or pulse voltage is applied to cause an underwater discharge (Patent Document 2). However, since the discharge electrode is immersed in the liquid to be treated, not only a power source capable of applying a voltage exceeding several tens of KV is necessary to cause discharge, but also for stable generation and maintenance of underwater discharge. Optimization of the control circuit is essential. For this reason, the underwater discharge method has a problem of high economic and technical difficulties.

一方、被処理水を水滴化手段によって水滴化してストリーマ放電場に供給することにより、ストリーマ放電で発生するオゾンやOラジカル、OHラジカルで水滴中の処理対象物質を分解する水処理装置も提案されている(特許文献3)。この場合、被処理水を水滴状にして放電場に供給するため、小さな印加電圧でも放電を発生させることができるので、放電電極が被処理水中に浸漬される場合と比較して経済的である。また。本水処理装置はその前工程でストリーマ放電場中の気体を気泡状態にして被処理水中に供給する手段も兼ね備えているので、気体中に含まれる使用されずに残っていたオゾンの再利用も図っている。   On the other hand, a water treatment device has also been proposed in which water to be treated is made into water droplets by means of water droplets and supplied to a streamer discharge field, whereby ozone, O radicals and OH radicals generated by streamer discharge decompose the target substance in the water droplets. (Patent Document 3). In this case, since the water to be treated is supplied in the form of water droplets to the discharge field, a discharge can be generated even with a small applied voltage, which is more economical than the case where the discharge electrode is immersed in the water to be treated. . Also. Since this water treatment device also has means for supplying the gas in the streamer discharge field into a bubble state in the previous process and supplying it to the water to be treated, it is possible to reuse the ozone remaining in the gas that has not been used. I am trying.

しかしながら、ストリーマ放電で発生するオゾンやOラジカル、OHラジカルと被処理水とは気液界面において反応するので、反応を生じる表面積を増加させるために水滴を微小化して供給する必要があるが、たとえ水滴を微小化してもストリーマ放電場の容量あるいは寸法を十分に大きく設定して、水滴がストリーマ放電場に滞在する時間を長くしない限り、オゾンや各種ラジカルと水滴を十分に反応させることはできない。   However, ozone, O radicals, and OH radicals generated in streamer discharges react with the water to be treated at the gas-liquid interface, so that it is necessary to supply water with fine droplets in order to increase the surface area where the reaction occurs. Even if the water droplets are miniaturized, ozone and various radicals cannot be sufficiently reacted with the water droplets unless the capacity or size of the streamer discharge field is set sufficiently large and the time during which the water droplets stay in the streamer discharge field is lengthened.

かかる欠点を補うために、ストリーマ放電場中の残留オゾンをマイクロバブル化し、前工程で被処理水に供給する方法が取られているが、オゾンや各種ラジカルの供給路中での失活に伴う処理能力の低下の問題は解決されていない。
特開2010−69387号公報 特開2005−58995号公報 特開2010−194527号公報
In order to make up for such drawbacks, a method has been adopted in which residual ozone in the streamer discharge field is microbubbled and supplied to the water to be treated in the previous process, but this is accompanied by deactivation in the supply path of ozone and various radicals. The problem of reduced processing capacity has not been solved.
JP 2010-69387 A Japanese Patent Laid-Open No. 2005-58995 JP 2010-194527 A

本発明は、上記の事情を鑑みてなされたものであり、被処理液体を効率良く、かつ、低コストで処理できる小型で簡便な構造を有する液体処理装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a liquid processing apparatus having a small and simple structure capable of processing a liquid to be processed efficiently and at low cost.

上記目的を達成するために、請求項1に記載の液体処理装置は、大気圧下での気体放電により気体をプラズマ化させて得た活性化ガスを微細気泡化して被処理液体中に供給することを特徴とする。   In order to achieve the above object, the liquid processing apparatus according to claim 1 makes the activated gas obtained by converting the gas into plasma by gas discharge under atmospheric pressure into fine bubbles and supplies it into the liquid to be processed. It is characterized by that.

ここで、前記気体とは、空気をはじめ、酸素、窒素、アルゴン、ヘリウムなどのあらゆる気体のいずれか、あるいはそれらの混合気体である。また、前記気体放電とは、コロナ放電、火花放電、ストリーマ放電、誘電体バリア放電、沿面放電、ホロー放電等、気体中での各種の放電のいずれかである。 Here, the gas is any gas such as oxygen, nitrogen, argon, helium, or a mixture thereof, including air. The gas discharge is any one of various discharges in gas such as corona discharge, spark discharge, streamer discharge, dielectric barrier discharge, creeping discharge, hollow discharge, and the like.

ここで、コロナ放電は、大気中に設けられた針状電極と平板上電極との間に電圧を加えると、針状電極の尖端部分の空気が絶縁破壊を起こし、針尖端で微弱な光を発する放電である。必要とされる印加電圧は比較的高く数kV以上が必要であるが、除電器(イオナイザー)等に応用されている。 Here, in the corona discharge, when a voltage is applied between the needle-like electrode provided in the atmosphere and the electrode on the flat plate, the air at the tip of the needle-like electrode causes dielectric breakdown, and weak light is emitted at the tip of the needle. This is a discharge. The required applied voltage is relatively high and needs to be several kV or more, but it is applied to a static eliminator (ionizer) or the like.

コロナ放電の電圧をさらに上げていくと、針状電極と平板状電極との間の空気が広範に絶縁破壊を起こして放電路を形成するが、これが火花放電である。 When the voltage of the corona discharge is further increased, the air between the needle-like electrode and the plate-like electrode causes a wide breakdown and forms a discharge path, which is a spark discharge.

一方、針状電極が陰極の場合、陰極から発した「電子なだれ」の後に高密度の正イオンが残り、この正イオンがさらに「電子なだれ」を作って、最終的に針状電極と平板状電極との間にプラズマ状の放電路が形成されるストリーマ放電となる。 On the other hand, when the acicular electrode is a cathode, high-density positive ions remain after the “electron avalanche” emitted from the cathode, and these positive ions further form an “electron avalanche”. A streamer discharge is formed in which a plasma-like discharge path is formed between the electrodes.

誘電体バリア放電は、金属電極の表面をガラスやセラミックス等の誘電体で覆うことにより、放電によって発生した電子が誘電体表面に蓄積して、印加電界の極性が逆転したときに蓄積された電子が対向電極側に加速されて電離・放電を維持するメカニズムによるもので、オゾン発生装置等に用いられる。誘電体を用いない電極による放電に比べ、オゾン等のラジカル密度が高い反面、ガス温度は低いのが特徴であり、大気圧プラズマ発生手段として一般的に用いられる放電である。 In dielectric barrier discharge, the surface of a metal electrode is covered with a dielectric such as glass or ceramics, so that electrons generated by the discharge accumulate on the dielectric surface, and the electrons accumulated when the polarity of the applied electric field is reversed. Is accelerated by the counter electrode side to maintain the ionization / discharge, and is used for an ozone generator or the like. Compared with discharge using electrodes that do not use a dielectric, the density of radicals such as ozone is high, but the gas temperature is low, and this discharge is generally used as an atmospheric pressure plasma generating means.

沿面放電は、コロナ放電が誘電体などの表面を通して対向電極へ進展したものであり、誘電体表面に放電路が形成される。 The creeping discharge is a corona discharge that progresses to the counter electrode through the surface of a dielectric or the like, and a discharge path is formed on the surface of the dielectric.

ホロー放電は、ホロー(穴又は窪み形状)の陰極内での放電である。電子エネルギーが大きく、高電離、高励起状態が実現するため、紫外線光源などに用いられる。 The hollow discharge is a discharge in a hollow (hole or hollow shape) cathode. Since it has a large electron energy and realizes a high ionization and high excitation state, it is used for an ultraviolet light source or the like.

一方、活性化ガスとは、前記気体の種類に応じて気体放電により生じる各種のプラズマ、酸化又は還元作用を有する各種ラジカル(イオンを含む)、オゾンのいずれか、あるいはそれらの組み合わせ(以下「プラズマ等」と記す。)を含有するガスである。 On the other hand, the activated gas is any one of various plasmas generated by gas discharge depending on the kind of gas, various radicals (including ions) having an oxidizing or reducing action, ozone, or a combination thereof (hereinafter “plasma”). Etc.))).

さらに、前記プラズマ化とは、前記気体中で前記気体放電を生じさせることによって前記気体の分子の一部を電離させ、前記プラズマ等を生成することをいう。 Furthermore, the term “plasmaization” refers to generating the plasma or the like by ionizing a part of the molecules of the gas by causing the gas discharge in the gas.

次に、請求項2に記載の液体処理装置は、気体放電部とこれに一体的に直結した微細気泡発生部とを備え、前記気体放電部は気体を大気圧下での気体放電によりプラズマ化させて活性化ガスを発生させ、前記微細気泡発生部は前記活性ガスを微細気泡化して液体中に供給することを特徴とする。   Next, the liquid processing apparatus according to claim 2 includes a gas discharge unit and a fine bubble generation unit integrally connected directly to the gas discharge unit, and the gas discharge unit converts the gas into plasma by gas discharge under atmospheric pressure. Then, the activated gas is generated, and the fine bubble generating unit makes the activated gas into fine bubbles and supplies them into the liquid.

また、請求項3に記載の液体処理装置は、前記気体放電部が電圧印加電極と接地電極とを有し、大気圧下で両電極間に気体放電を発生させることを特徴とする。   The liquid treatment apparatus according to claim 3 is characterized in that the gas discharge section has a voltage application electrode and a ground electrode, and generates a gas discharge between the electrodes under atmospheric pressure.

前記電圧印加電極並びに設置電極の構成は特に限定されないが、例えば電圧印加電極として注射針に代表される金属パイプを、接地電極として金属板を用いてもよい。この場合、電圧印加電極と接地電極間には、コロナ放電、火花放電、ストリーマ放電のいずれかが発生するようにする。 The configuration of the voltage application electrode and the installation electrode is not particularly limited. For example, a metal pipe represented by an injection needle may be used as the voltage application electrode, and a metal plate may be used as the ground electrode. In this case, any one of corona discharge, spark discharge, and streamer discharge is generated between the voltage application electrode and the ground electrode.

さらに、電圧印加電極として、金属針、金属細棒、金属ワイヤー、又はそれらの集合体で構成してもよい。あるいは、電圧印加電極と接地電極の一方又はその両方の表面を誘電体で覆ってもよく、この場合は誘電体バリア放電を生じて、放電域を拡散させることが可能である。さらに、前記気体放電部は、沿面放電やホロー放電など様々な放電を大気圧下で発生させる電極構造としてもよい。 Furthermore, you may comprise as a voltage application electrode with a metal needle, a metal thin rod, a metal wire, or those aggregates. Alternatively, the surface of one or both of the voltage application electrode and the ground electrode may be covered with a dielectric, and in this case, a dielectric barrier discharge can be generated to diffuse the discharge region. Furthermore, the gas discharge section may have an electrode structure that generates various discharges such as creeping discharge and hollow discharge under atmospheric pressure.

また、前記電圧印加電極に供給する電流の電圧波形としては、数十Hzから数百kHzの交流(AC)波、数MHzから数百MHzのラジオ(RF)波などの正弦波形、パルス波形、インパルス波形などが挙げられる。   In addition, the voltage waveform of the current supplied to the voltage application electrode includes a sinusoidal waveform such as an alternating current (AC) wave of several tens of Hz to several hundred kHz, a radio (RF) wave of several MHz to several hundred MHz, a pulse waveform, Examples include impulse waveforms.

また、請求項4に記載の液体処理装置は、前記気体放電部が、特定の気体又は複数種類の気体を混合して成る混合気体を導入する気体供給手段を備えたことを特徴とする。   According to a fourth aspect of the present invention, in the liquid processing apparatus, the gas discharge unit includes a gas supply unit that introduces a specific gas or a mixed gas formed by mixing a plurality of types of gases.

導入する気体の種類により前記気体放電部において生成される前記活性化ガスが含有するプラズマ等が異なるため、前記気体供給手段を備えることにより、前記気体放電部は導入する気体を変更可能とし、所望のプラズマ等を含有する活性化ガスを生成することができる。 Since the plasma contained in the activated gas generated in the gas discharge unit differs depending on the type of gas to be introduced, the gas discharge unit can change the gas to be introduced by providing the gas supply means, and the desired An activated gas containing plasma or the like can be generated.

また、請求項5に記載の液体処理装置は、前記微細気泡発生部が、前記活性化ガスを直径100μm以下の微細気泡として液体中に供給することを特徴とする。   The liquid processing apparatus according to claim 5 is characterized in that the fine bubble generating unit supplies the activated gas into the liquid as fine bubbles having a diameter of 100 μm or less.

ここで前記微細気泡発生部の構成は特に限定されないが、前記気体放電部と直結して、大気圧下で発生した活性化ガスを失活させぬよう直ちに導入して微細気泡化できるものであればよく、例えば、旋回式気液せん断方式の微細気泡発生装置が好適である。これは、液体中に渦流を発生させて、導入した気体により該渦流の軸線上に負圧空洞部を形成し、該負圧空洞部の先端における液体との旋回速度差により気体を強制的かつ連続的に切断して粉砕することにより微細気泡化するものである。かかる方式の微細気泡発生装置であれば、前記負圧空洞部の負圧の効果により、前記気体放電部内において大気圧下で生成された活性化ガスを自吸するため、活性化ガスを加圧して強制的に送出することなく導入でき、比較的簡易かつ小規模な構造により大量の微細気泡を安定的に生成可能である。 Here, the configuration of the fine bubble generating part is not particularly limited, but it can be directly connected to the gas discharge part and immediately introduced so as not to deactivate the activated gas generated under the atmospheric pressure so that the fine bubble can be formed. For example, a swirl type gas-liquid shearing type fine bubble generator is suitable. This is because a vortex flow is generated in the liquid, a negative pressure cavity is formed on the axis of the vortex by the introduced gas, and the gas is forced and swung by the difference in swirling speed with the liquid at the tip of the negative pressure cavity. Microbubbles are produced by continuous cutting and pulverization. In the case of this type of fine bubble generator, the activated gas generated under atmospheric pressure in the gas discharge part is self-sucked due to the negative pressure effect of the negative pressure cavity, so the activated gas is pressurized. Therefore, a large amount of fine bubbles can be stably generated with a relatively simple and small-scale structure.

また、請求項6に記載の液体処理装置は、前記気体放電部と前記微細気泡発生部とが脱着可能な構造を有することを特徴とする。 Moreover, the liquid processing apparatus of Claim 6 has a structure where the said gas discharge part and the said microbubble generation | occurrence | production part are detachable.

本発明に係る液体処理装置は、大気圧下での気体放電により気体をプラズマ化させて得たプラズマ等を含有する活性化ガスを微細気泡化して被処理液体中に供給することで、活性化ガスを直接被処理液体中に放出する場合に比べてプラズマ等と被処理液体との接触面積が格段に増加し、しかも、寿命の短いプラズマ等が失活する前に被処理液体中の処理対象物質と反応させることができるので、被処理液体を効率よく、かつ低コストで処理することができる。特に、水と反応することで酸化力の強い過酸化水素(H2О2)を生成するOラジカルを含む活性化ガスを被処理液体中に供給した場合は、被処理物質を特に効率よく酸化分解することができる。   The liquid processing apparatus according to the present invention is activated by making the activated gas containing plasma obtained by gasifying the gas by gas discharge under atmospheric pressure into fine bubbles and supplying it into the liquid to be processed. Compared with the case where gas is directly discharged into the liquid to be processed, the contact area between the plasma and the liquid to be processed increases dramatically, and the processing target in the liquid to be processed before the short-lived plasma or the like is deactivated. Since it can be made to react with a substance, the liquid to be treated can be treated efficiently and at low cost. In particular, when an activated gas containing O radicals that generate hydrogen peroxide (H2O2), which has strong oxidizing power by reacting with water, is supplied into the liquid to be treated, the substance to be treated is oxidized and decomposed particularly efficiently. Can do.

また、本発明に係る液体処理装置は、気体放電により活性化ガスを発生させるため、水中放電に要するほどの高電圧を必要とせず、比較的低コストで実現できる。   Moreover, since the liquid processing apparatus according to the present invention generates activated gas by gas discharge, it does not require a high voltage required for underwater discharge and can be realized at a relatively low cost.

また、前記気体放電部と前記微細気泡発生部とを一体的に直結した状態とすることで、活性化ガスを微細気泡発生部に導入するためのパイプやホースを必要とせず、寿命の短いプラズマ等が失活する前に活性化ガスを微細気泡化でき、被処理液体を効率よく処理することができる。   In addition, since the gas discharge part and the fine bubble generating part are integrally connected directly, a pipe or hose for introducing the activation gas into the fine bubble generating part is not required, and the plasma has a short life. The activated gas can be made into fine bubbles before the deactivation of the liquid, and the liquid to be treated can be processed efficiently.

また、前記気体放電部の電圧印加電極と接地電極の構造や形状を変更することにより、両電極間にはコロナ放電、火花放電、ストリーマ放電、誘電体バリア放電、沿面放電、ホロー放電等の様々な形態の放電を発生させることができるため、発生させるプラズマ等の有するエネルギーの制御が可能となり、被処理液体の条件に応じた処理が可能となる。   In addition, by changing the structure and shape of the voltage application electrode and the ground electrode of the gas discharge part, there are various corona discharge, spark discharge, streamer discharge, dielectric barrier discharge, creeping discharge, hollow discharge, etc. between the two electrodes. Therefore, it is possible to control the energy of the generated plasma and the like, and it is possible to perform processing according to the conditions of the liquid to be processed.

また、前記気体放電部は、特定の気体又は複数種類の気体を混合して成る混合気体を導入する気体供給手段を備えるため、供給する気体の種類や混合比の変更が可能である。そのため、オゾン、Oラジカル、OHラジカル等のみでなく、比較的寿命の長い準安定励起状態のアルゴンラジカルやヘリウムラジカル、窒素ラジカル等を含有する活性化ガスを被処理液体中に微細気泡化して供給することができるので、該微細気泡の気液界面で液体中の水分子を解離してOHラジカルを効率よく生成するほか、液体中に溶解している各種化学物質の分解や化学反応を促進することができる。   Moreover, since the said gas discharge part is provided with the gas supply means which introduces the mixed gas formed by mixing a specific gas or multiple types of gas, the kind and mixing ratio of the gas to supply can be changed. Therefore, not only ozone, O radicals, OH radicals, etc., but also activated gas containing relatively long-lived metastable excited argon radicals, helium radicals, nitrogen radicals, etc. are made into fine bubbles in the liquid to be treated. In addition to efficiently generating OH radicals by dissociating water molecules in the liquid at the gas-liquid interface of the fine bubbles, it promotes the decomposition and chemical reaction of various chemical substances dissolved in the liquid. be able to.

また、前記微細気泡発生部が、前記活性化ガスを直径100μm以下の微細気泡として液体中に供給するため、プラズマ等が被処理液体と接触する気液界面の表面積を格段に増加することができるとともに、微細気泡はその性質上、通常の気泡に比べて被処理液体中を長時間浮遊するため、プラズマ等と被処理物質の反応時間を長く保つことができ、処理の効率を更に高めることができる。   In addition, since the fine bubble generating unit supplies the activation gas into the liquid as fine bubbles having a diameter of 100 μm or less, the surface area of the gas-liquid interface where plasma or the like contacts the liquid to be processed can be significantly increased. At the same time, fine bubbles float in the liquid to be treated for a long time compared to normal bubbles due to their nature, so that the reaction time between the plasma and the substance to be treated can be kept longer, and the processing efficiency can be further improved. it can.

さらに、前記気体放電部と前記微細気泡発生部とが脱着可能な構造を有するため、該液体処理装置の用途や使用条件に応じて、前記微細気泡発生部を異なる方式や能力のものに任意に交換可能となるので液体処理装置の適用範囲を拡大でき、また、微細気泡発生部が故障した際にはそれだけを交換すればよいため経済的である。 Furthermore, since the gas discharge part and the fine bubble generation part have a detachable structure, the fine bubble generation part can be arbitrarily selected to have a different method and ability depending on the use and use conditions of the liquid processing apparatus. Since it can be exchanged, the application range of the liquid processing apparatus can be expanded, and it is economical because it is sufficient to replace only the fine bubble generating part when it breaks down.

以下では、本発明に係る液体処理装置の実施の形態について、図1乃至図8に基づいて詳細に説明する。なお、以下の実施形態は、液体処理装置本体の構成のみが異なるため、図2乃至図7は液体処理装置本体のみを示しており、液体処理装置本体以外の本発明の構成はいずれも図1と共通である。 Hereinafter, an embodiment of a liquid processing apparatus according to the present invention will be described in detail with reference to FIGS. 1 to 8. Since the following embodiments differ only in the configuration of the liquid processing apparatus main body, FIGS. 2 to 7 show only the liquid processing apparatus main body, and all the configurations of the present invention other than the liquid processing apparatus main body are shown in FIG. And in common.

(第1実施形態)
図1は、本発明に係る液体処理装置の第1の実施の形態を示す図であって、本発明を適用した液体処理装置Aとその作動状態を示すものである。
(First embodiment)
FIG. 1 is a diagram showing a first embodiment of a liquid processing apparatus according to the present invention, and shows a liquid processing apparatus A to which the present invention is applied and its operating state.

図1に示すように、液体処理装置本体Aは、気体放電部1と微細気泡発生部2を一体的に直結して成り、液槽Tを満たした被処理液体Wの液中に浸漬されている。気体放電部1は気体GSを供給する気体供給部3と気体供給管7により接続されており、一方、微細気泡発生部2は、やはり液中に浸漬された循環ポンプ5と液体供給管8により接続されている。 As shown in FIG. 1, the liquid processing apparatus main body A is formed by directly connecting the gas discharge unit 1 and the fine bubble generating unit 2, and is immersed in the liquid W to be processed that fills the liquid tank T. Yes. The gas discharge unit 1 is connected by a gas supply unit 3 for supplying a gas GS and a gas supply tube 7, while the fine bubble generating unit 2 is also connected by a circulation pump 5 and a liquid supply tube 8 that are immersed in the liquid. It is connected.

気体放電部1は、例えばアクリル樹脂等の絶縁材料で形成され、気体導入口10と気体導出口11が設けられており、気体導入口10に気体供給管7が接続されている。 The gas discharge part 1 is formed of an insulating material such as acrylic resin, for example, and is provided with a gas inlet 10 and a gas outlet 11, and a gas supply pipe 7 is connected to the gas inlet 10.

気体放電部1の内部には、金属管から成る電圧印加電極12が気体導入口10に取り付けられ、気体供給管7から供給された気体GSが電圧印加電極12の内部を通過してその先端から気体放電部1内に導入されるよう構成されている。また、電圧印加電極12の先端から適宜の間隔を空けてその軸線に対し垂直に銅板等の金属板から成る接地電極13が支持されている。なお、電圧印加電極12としては、例えば外径0.7mm、内径0.5mm以下の注射針様の金属管が好適である。 Inside the gas discharge part 1, a voltage application electrode 12 made of a metal tube is attached to the gas introduction port 10, and the gas GS supplied from the gas supply tube 7 passes through the inside of the voltage application electrode 12 from its tip. It is configured to be introduced into the gas discharge unit 1. A ground electrode 13 made of a metal plate such as a copper plate is supported perpendicularly to the axis of the voltage application electrode 12 at an appropriate interval. As the voltage application electrode 12, for example, an injection needle-like metal tube having an outer diameter of 0.7 mm and an inner diameter of 0.5 mm or less is suitable.

前記電圧印加電極12と接地電極13は給電線9によりそれぞれ高圧電源4に接続されており、高圧電源4からパルス電圧やAC電圧、ラジオ波電圧が印加されると、印加された電圧に応じて、電圧印加電極12と接地電極13の間でコロナ放電、火花放電、ストリーマ放電のいずれかの放電Sが発生する。 The voltage application electrode 12 and the ground electrode 13 are connected to the high-voltage power supply 4 by a feeder 9, respectively. When a pulse voltage, an AC voltage, or a radio wave voltage is applied from the high-voltage power supply 4, the voltage application electrode 12 and the ground electrode 13 correspond to the applied voltage. Any one of corona discharge, spark discharge, and streamer discharge S is generated between the voltage application electrode 12 and the ground electrode 13.

かかる構成により、気体供給部3から気体導入管7を通じて電圧印加電極12の先端から気体放電部1内に導入された気体GSは、前記放電Sによりその一部がプラズマ等化され、気体放電部1の内部は該プラズマ等を含有する活性化ガスPGで満たされる。 With this configuration, the gas GS introduced into the gas discharge unit 1 from the tip of the voltage application electrode 12 from the gas supply unit 3 through the gas introduction tube 7 is partially plasma-equalized by the discharge S, and the gas discharge unit The interior of 1 is filled with an activated gas PG containing the plasma or the like.

一方、微細気泡発生部2は、本実施形態では旋回式気液せん断方式を採用している。微細気泡発生部2の内壁は円筒形に形成されており、気体放電部1との接続面の中心には気体放電部1の前記気体導出口11と直結する自吸口20と、自吸した活性化ガスPGを微細気泡発生部2の内部に導入するノズル21とを備え、反対面の中心には発生した微細気泡MBを含む被処理液体Wを液槽T内に放出する微細気泡放出口22を備えている。 On the other hand, the fine bubble generating unit 2 adopts a swirl type gas-liquid shearing method in the present embodiment. The inner wall of the fine bubble generating part 2 is formed in a cylindrical shape, and a self-suction port 20 directly connected to the gas outlet 11 of the gas discharge part 1 at the center of the connection surface with the gas discharge part 1 and the self-sucked activity And a nozzle 21 for introducing the chemical gas PG into the inside of the fine bubble generating unit 2. A fine bubble discharge port 22 for discharging the liquid W to be processed including the generated fine bubbles MB into the liquid tank T at the center of the opposite surface. It has.

循環ポンプ5から液体供給管8を通じて圧送供給された被処理液体Wは、微細気泡発生部2の内部で前記内壁に沿って渦流Rを形成する。ノズル21から導入された活性化ガスPGは、渦流による遠心分離作用により渦流の旋回軸線上に負圧の旋回空洞部Vを形成する。かかる負圧により、活性化ガスPGは微細気泡発生部2の内部に連続的に自給されるとともに、前記負圧空洞部Vの先端に生じる微細気泡発生点Pにおいて、被処理液体Wとの旋回速度差により強制的かつ連続的に切断・粉砕されて微細気泡MB化するのである。 The liquid W to be processed, which is pressure-fed and supplied from the circulation pump 5 through the liquid supply pipe 8, forms a vortex R along the inner wall inside the fine bubble generating unit 2. The activated gas PG introduced from the nozzle 21 forms a swirling cavity V having a negative pressure on the swirling axis of the swirl due to the centrifugal separation action by the swirl. Due to such a negative pressure, the activated gas PG is continuously supplied to the inside of the fine bubble generating part 2 and swirls with the liquid W to be processed at the fine bubble generating point P generated at the tip of the negative pressure cavity V. It is forcibly and continuously cut and pulverized due to the speed difference to form microbubbles MB.

次に、気体供給部3は、気体供給管7の接続口以外に少なくとも4つの開口部を有する中空容器から成る。気体供給管7に接続した開口部には圧力調整弁30を設けている。気体放電部1へ供給する気体GSの量及び圧力を調節することができる。また、前記複数の開口部には、気体放電部1で発生させたいプラズマ等の種類に応じた気体GSを蓄えたガスボンベGB1及び空気又は窒素を蓄えたガスボンベGB2を接続することができる。 Next, the gas supply unit 3 includes a hollow container having at least four openings in addition to the connection port of the gas supply pipe 7. A pressure regulating valve 30 is provided at the opening connected to the gas supply pipe 7. The amount and pressure of the gas GS supplied to the gas discharge unit 1 can be adjusted. Further, a gas cylinder GB1 storing a gas GS corresponding to a type of plasma or the like desired to be generated in the gas discharge section 1 and a gas cylinder GB2 storing air or nitrogen can be connected to the plurality of openings.

なお、前述の通り微細気泡発生部2がその内部に生じる負圧により活性化ガスPGを自吸するため、これと接続する気体放電部1内への気体GSの供給も大気圧との差圧により自動的に達成される。そのため、気体供給部3を特段に加圧する必要はなく、気体GSの供給圧力が大気圧と同等となるように圧力調整弁30を調整した場合、原則として気体放電部1内の圧力は大気圧の状態が維持される。 Note that, as described above, since the fine bubble generating unit 2 self-sucks the activated gas PG due to the negative pressure generated therein, the supply of the gas GS into the gas discharge unit 1 connected thereto is also a differential pressure from the atmospheric pressure. Achieved automatically. Therefore, it is not necessary to pressurize the gas supply unit 3 in particular, and when the pressure regulating valve 30 is adjusted so that the supply pressure of the gas GS is equal to the atmospheric pressure, the pressure in the gas discharge unit 1 is basically the atmospheric pressure. The state of is maintained.

ここで、活性化ガス化したい気体GSが空気の場合は、気体供給部3を大気開放し、圧力調整弁30も開放することで、気体供給管7に大気をそのまま導入させればよい。一方、活性化ガス化したい気体GSが空気以外の例えば酸素、窒素、アルゴン、ヘリウム等の気体あるいはそれらの混合気体である場合は、気体供給部3の開口部の一つに接続したガスボンベB1から前記所望の気体GSを導入するとともに、他の開口部を大気開放して気体供給部3の内部を前記所望の気体GSで置換すればよい。 Here, when the gas GS to be activated gas is air, the atmosphere may be introduced into the gas supply pipe 7 as it is by opening the gas supply unit 3 to the atmosphere and also opening the pressure regulating valve 30. On the other hand, when the gas GS to be activated gas is a gas other than air, such as oxygen, nitrogen, argon, helium, or a mixed gas thereof, from the gas cylinder B1 connected to one of the openings of the gas supply unit 3 The desired gas GS may be introduced, and the other opening may be opened to the atmosphere to replace the inside of the gas supply unit 3 with the desired gas GS.

さらに、前記圧力調整弁30を調整して気体放電部1に流入する気体GSの量を調整することにより、微細気泡発生部2内で発生する微細気泡MBの粒径を制御することも可能である。本実施形態の試作機による試験では、圧力調整弁30の開度を絞ることにより微細気泡MBの粒径が連続的に小さくなることが確認できた。前記微細気泡発生部2内部の被処理液体Wに生ずる渦流Rの旋回速度は循環ポンプ5の出力やホース等の長さや内径により決定されるが、該旋回速度が一定の場合、単位時間内に微細気泡発生部2内に送りこまれる活性化ガスPGの量が少ないほど、前記負圧空洞部Vを形成する気体量も少なくなる。そのため、単位時間当たりに前記微細気泡発生点Pにおいて微細気泡MB化される活性化ガスPGの量も小さくなるため、微細気泡MBの粒径が小さくなるものと考えられる。 Further, the particle size of the fine bubbles MB generated in the fine bubble generating unit 2 can be controlled by adjusting the pressure regulating valve 30 to adjust the amount of the gas GS flowing into the gas discharge unit 1. is there. In the test using the prototype of this embodiment, it was confirmed that the particle diameter of the fine bubbles MB was continuously reduced by reducing the opening of the pressure regulating valve 30. The swirling speed of the vortex flow R generated in the liquid W to be processed inside the fine bubble generating unit 2 is determined by the output of the circulation pump 5, the length and the inner diameter of the hose, etc. The smaller the amount of the activated gas PG fed into the fine bubble generating portion 2, the smaller the amount of gas that forms the negative pressure cavity portion V. Therefore, since the amount of the activated gas PG that is converted into the microbubbles MB at the microbubble generation point P per unit time becomes small, the particle size of the microbubbles MB is considered to be small.

ところで、循環ポンプ5の作動を停止した場合には、微細気泡発生部2の内部の負圧が消失するため、被処理液体Wがノズル21から気体放電部1内に逆流することになる。これを防ぐためには、気体供給部3の気体導入管7を接続した開口部以外の開口部に電磁弁31乃至34を設け、循環ポンプ5の作動とこれら電磁弁の開閉を連動して制御可能な制御装置6を設けておく。電磁弁31には各種の気体GSを蓄積したガスボンベGB1を、電磁弁32には大気よりもやや加圧した空気あるいは窒素を蓄積したガスボンベGB2を接続し、電磁弁33及び電磁弁34は大気開放口とする。 By the way, when the operation of the circulation pump 5 is stopped, the negative pressure inside the fine bubble generating unit 2 disappears, so that the liquid W to be processed flows backward from the nozzle 21 into the gas discharge unit 1. In order to prevent this, the solenoid valves 31 to 34 are provided in openings other than the opening connected to the gas introduction pipe 7 of the gas supply section 3, and the operation of the circulation pump 5 and the opening and closing of these solenoid valves can be controlled in conjunction with each other. A control device 6 is provided. A gas cylinder GB1 storing various gases GS is connected to the solenoid valve 31, a gas cylinder GB2 storing air or nitrogen slightly pressurized from the atmosphere is connected to the solenoid valve 32, and the solenoid valves 33 and 34 are opened to the atmosphere. Mouth.

制御装置6により、循環ポンプ5の動作が停止すると同時に電磁弁31、33、34を閉じ、電磁弁32を開くようにすれば、ガスボンベGB2内の空気あるいは窒素により気体供給部3及び気体放電部1内の気圧が増加し、微細気泡発生部2から被処理液体Wが逆流してくることを防止できる。これにより本液体処理装置は、液体処理を断続して行うことが可能となる。 If the control device 6 stops the operation of the circulation pump 5 and simultaneously closes the solenoid valves 31, 33, and 34 and opens the solenoid valve 32, the gas supply unit 3 and the gas discharge unit with air or nitrogen in the gas cylinder GB2. It is possible to prevent the liquid W to be processed from flowing back from the fine bubble generating unit 2 due to an increase in the atmospheric pressure in the air. As a result, the liquid processing apparatus can perform liquid processing intermittently.

次に、本実施形態に係る液体処理装置Aを用いて特定の気体GSから生成した活性化ガスPGを微細気泡化して被処理液体Wを処理する液体処理方法について説明する。 Next, a liquid processing method for processing the liquid W to be processed by making the activated gas PG generated from the specific gas GS into fine bubbles using the liquid processing apparatus A according to the present embodiment will be described.

まず、あらかじめ電磁弁31、33、34を閉じ、電磁弁32を開くことにより気体放電部1内に空気又は窒素を導入した状態の液体処理装置Aと循環ポンプ5を液槽T内の被処理液体Wに浸漬する。 First, the electromagnetic valves 31, 33, and 34 are closed in advance and the electromagnetic valve 32 is opened, so that the liquid processing apparatus A and the circulation pump 5 in a state where air or nitrogen is introduced into the gas discharge unit 1 are processed in the liquid tank T. Immerse in liquid W.

次に、循環ポンプ5を作動させると、液体供給管8を通じて微細気泡発生部2内に圧送された被処理液体Wが高速旋回する渦流Rを生じる。渦流Rの旋回軸線上には負圧の旋回空洞部Vが形成されるため、かかる負圧の効果によりノズル21を通じて気体放電部1内の空気又は窒素が微細気泡発生部2内に吸引され、微細気泡化して微細気泡放出口22から被処理液体W中へ放出される。 Next, when the circulation pump 5 is operated, a vortex flow R is generated in which the liquid W to be processed, which is pumped into the fine bubble generating unit 2 through the liquid supply pipe 8, rotates at a high speed. Since the swirling cavity V of negative pressure is formed on the swirling axis of the vortex R, air or nitrogen in the gas discharge unit 1 is sucked into the fine bubble generating unit 2 through the nozzle 21 due to the negative pressure effect. The fine bubbles are formed and discharged from the fine bubble discharge port 22 into the liquid W to be processed.

続いて、電磁弁32を閉じると同時に電磁弁31、34を開くと、ガスボンベGB2からの空気又は窒素の供給は停止し、代わりにガスボンベGB1から特定の気体GSが気体供給部3を経由して気体放電部1内に導入され、そのまま微細気泡発生部2内へと吸引されて微細気泡化され始める。 Subsequently, when the solenoid valve 32 is closed and the solenoid valves 31 and 34 are opened at the same time, the supply of air or nitrogen from the gas cylinder GB2 is stopped, and a specific gas GS from the gas cylinder GB1 passes through the gas supply unit 3 instead. It is introduced into the gas discharge part 1 and is sucked into the fine bubble generating part 2 as it is to be made into fine bubbles.

この状態で、高圧電源4を作動させると、気体放電部1内に設置した注射針様の金属管から成る電圧印加電極12と金属板から成る接地電極13との間ではコロナ放電が生じ、気体放電部1内の気体GSの一部がプラズマ等化することで活性化ガスPGを発生させる。活性化ガスPGは、ただちに微細気泡発生部2内へと吸引され、微細気泡化されて被処理液体W中に放出され、被処理液体W中の被処理物質と反応するのである。 When the high-voltage power supply 4 is operated in this state, corona discharge occurs between the voltage application electrode 12 made of an injection needle-like metal tube installed in the gas discharge unit 1 and the ground electrode 13 made of a metal plate. An activated gas PG is generated when a part of the gas GS in the discharge unit 1 is plasma-equalized. The activated gas PG is immediately sucked into the fine bubble generating unit 2, is made into fine bubbles, is released into the liquid W to be processed, and reacts with the substance to be processed in the liquid W to be processed.

以上の図1に示す第1実施形態に係る液体処理装置の試作機を用い、純水32L(リットル)に25mg/Lの濃度で溶解させたインジゴカルミン溶液を被処理液体Wとして放電を行う脱色処理を行い、放電を行わない場合と対比させる、本発明の効果を実証する試験を行った。試験の条件は以下の通りであり、図8は、処理開始から17日後の溶液の放電有り・なしの場合の紫外可視分光スペクトルの計測値を対比させてグラフにしたものである。
被処理液体の循環流量:13L/分
放電電力:70W
印加電圧:4〜5kV
パルス間隔:1ms
処理時間:2時間/日
Decolorization in which discharge is performed using the indigo carmine solution dissolved in pure water 32L (liter) at a concentration of 25 mg / L as the liquid W to be processed using the prototype of the liquid processing apparatus according to the first embodiment shown in FIG. A test was performed to verify the effect of the present invention in comparison with the case where the treatment was performed and no discharge was performed. The test conditions are as follows, and FIG. 8 is a graph comparing the measured values of the UV-visible spectrum with and without discharge of the solution 17 days after the start of the treatment.
Circulating flow rate of liquid to be treated: 13 L / min Discharge power: 70 W
Applied voltage: 4-5kV
Pulse interval: 1 ms
Processing time: 2 hours / day

図8によると、放電なしの比較例(点線)では600nm付近にピークを有する幅の広い吸収ピークが見られる。このため、インジゴカルミン溶液は青色(吸収されずに残った400〜500nmの可視光領域)を呈していることが分かる。一方、放電有りの実施例(実線)では、可視光領域の吸収がなくなり、溶液は光透過性を示すようになっている。このように、放電有りの場合はなしの場合に比べて顕著な脱色効果を奏したことから、本発明の有効性が確認された。   According to FIG. 8, in the comparative example without a discharge (dotted line), a broad absorption peak having a peak near 600 nm is seen. For this reason, it can be seen that the indigo carmine solution exhibits a blue color (visible light region of 400 to 500 nm remaining without being absorbed). On the other hand, in the example with a discharge (solid line), the absorption in the visible light region is lost, and the solution shows light transmittance. Thus, the effectiveness of the present invention was confirmed from the fact that there was a remarkable decoloring effect in the case with discharge compared to the case without discharge.

(第2実施形態)
図2は、本発明に係る液体処理装置の第2の実施の形態を示す図であって、本発明を適用した液体処理装置本体Bの内部構造を示すものである。
(Second Embodiment)
FIG. 2 is a diagram showing a second embodiment of the liquid processing apparatus according to the present invention, and shows the internal structure of a liquid processing apparatus main body B to which the present invention is applied.

液体処理装置本体Bは、気体放電部1内に設置する金属管から成る電圧印加電極40を、ガラス又はセラミックス等の誘電体から成る円筒状の誘電体管42内に挿入して設置し、前記電圧印加電極40の先端あるいは先端からやや離れた位置における誘電体管41の外側面に円環状の接地電極41を密着して設けている。また、前記誘電体管42の両端のうち、電圧印加電極40を挿入した側の一端は気体放電部1内の中空に支持し、他端は前記気体導出口11に接続している。なお、残余の構成は前記液体処理装置本体Aと同様である。 The liquid processing apparatus main body B is installed by inserting a voltage applying electrode 40 made of a metal tube installed in the gas discharge unit 1 into a cylindrical dielectric tube 42 made of a dielectric such as glass or ceramics, An annular ground electrode 41 is provided in close contact with the outer surface of the dielectric tube 41 at the tip of the voltage application electrode 40 or at a position slightly away from the tip. One end of the dielectric tube 42 on the side where the voltage application electrode 40 is inserted is supported in a hollow space in the gas discharge unit 1 and the other end is connected to the gas outlet 11. The remaining configuration is the same as that of the liquid processing apparatus main body A.

本液体処理装置本体Bによれば、前記両電極間での放電は誘電体管42の内部で生じ、プラズマ等も誘電体管42内のみで発生するから、活性化ガスPGは拡散することなく高濃度のプラズマ等を含有したまま、ただちに気体導出口11から微細気泡発生部2へと吸引される。そのため、寿命の短い各種ラジカル等の失活を最小限に抑えながら活性化ガスPG効率よく微細気泡化でき、処理能力の向上を図ることができる。 According to the main body B of the liquid processing apparatus, the discharge between the electrodes is generated inside the dielectric tube 42, and plasma or the like is generated only in the dielectric tube 42. Therefore, the activated gas PG does not diffuse. While containing a high concentration of plasma or the like, the gas is immediately sucked from the gas outlet 11 to the fine bubble generator 2. Therefore, the activated gas PG can be efficiently made into fine bubbles while minimizing the inactivation of various radicals having a short lifetime, and the processing capacity can be improved.

(第3実施形態)
図3並びに図4は、本発明に係る液体処理装置の第3の実施の形態を示す図であって、本発明を適用した液体処理装置本体C及び液体処理装置本体Dの内部構造を示すものである。
(Third embodiment)
3 and 4 are diagrams showing a third embodiment of the liquid processing apparatus according to the present invention, and showing the internal structure of the liquid processing apparatus main body C and the liquid processing apparatus main body D to which the present invention is applied. It is.

図3に示す液体処理装置本体Cは、気体放電部1内に設置する電圧印加電極50を中空ではない針状又は円錐体状に構成している以外は、前記液体処理装置本体Aと同様である。 The liquid processing apparatus main body C shown in FIG. 3 is the same as the liquid processing apparatus main body A except that the voltage application electrode 50 installed in the gas discharge unit 1 is configured in a needle shape or a cone shape that is not hollow. is there.

本液体処理装置本体Cによると、電圧印加電極50と接地電極51の間にはコロナ放電、火花放電、ストリーマ放電のいずれかの放電Sを生じるが、電圧印加電極50の形状を簡易な針状とできるため耐久性が高く、構造を簡便化できる。 According to the liquid processing apparatus main body C, a discharge S of any one of corona discharge, spark discharge, and streamer discharge is generated between the voltage application electrode 50 and the ground electrode 51. The shape of the voltage application electrode 50 is a simple needle shape. Therefore, the durability is high and the structure can be simplified.

また、図4に示す液体処理装置本体Dは、前記液体処理装置本体Cの改良例であり、電圧印加電極60は前記針状又は円錐体状の電圧印加電極50を多数集積して構成しているため、放電Sを生ずる領域を拡張することができ、プラズマ等の生成量を増大することが可能である。これにより、被処理液体Wの処理能力の向上を図ることができる。 Also, the liquid processing apparatus main body D shown in FIG. 4 is an improved example of the liquid processing apparatus main body C, and the voltage application electrode 60 is configured by integrating a large number of the needle-like or conical voltage application electrodes 50. Therefore, the region where the discharge S is generated can be expanded, and the generation amount of plasma or the like can be increased. Thereby, the processing capability of the liquid W to be processed can be improved.

(第4実施形態)
図5は、本発明に係る液体処理装置の第4の実施の形態を示す図であって、本発明を適用した液体処理装置本体Eの内部構造を示すものである。
(Fourth embodiment)
FIG. 5 is a diagram showing a fourth embodiment of a liquid processing apparatus according to the present invention, and shows an internal structure of a liquid processing apparatus main body E to which the present invention is applied.

本液体処理装置本体Eは、気体放電部1内に設置する電圧印加電極70を、金属管を複数本集積して構成している以外は、前記液体処理装置本体Aと同様である。 The main body E of the liquid processing apparatus is the same as the main body A of the liquid processing apparatus except that the voltage applying electrode 70 installed in the gas discharge unit 1 is configured by integrating a plurality of metal tubes.

いずれの金属管にも気体GSが供給され、かつ、すべての金属管の先端部と板状の設置電極71との間で放電Sを生じるため、放電Sを生ずる領域を拡張することができ、液体処理装置本体Aに比べてプラズマ等の生成量を増大することが可能である。これにより、被処理液体Wの処理能力の向上を図ることができる。 Gas GS is supplied to any of the metal tubes, and discharge S is generated between the tips of all the metal tubes and the plate-like installation electrodes 71, so that the region where the discharge S is generated can be expanded. Compared with the liquid processing apparatus main body A, it is possible to increase the generation amount of plasma or the like. Thereby, the processing capability of the liquid W to be processed can be improved.

(第5実施形態)
図6並びに図7は、本発明に係る液体処理装置の第5の実施の形態を示す図であって、本発明を適用した液体処理装置本体F及び液体処理装置本体Gの内部構造を示すものである。
(Fifth embodiment)
6 and 7 are views showing a fifth embodiment of the liquid processing apparatus according to the present invention and showing the internal structure of the liquid processing apparatus main body F and the liquid processing apparatus main body G to which the present invention is applied. It is.

液体処理装置本体Fは、気体放電部1の気体導入口10と気体導出口11とを、内径数mm以下、厚さ1mm前後のガラス又はセラミックス等の誘電体から成る円筒状の誘電体管82で接続し、該誘電体管82の外側面にはいずれも金属板から成る電圧印加電極80と接地電極81とを誘電体管82を挟み互いに対向させた状態で密着して設けており、残余の構成は前記液体処理装置本体Aと同様である。 In the liquid processing apparatus main body F, a cylindrical dielectric tube 82 made of a dielectric material such as glass or ceramic having an inner diameter of several mm or less and a thickness of about 1 mm is provided for the gas inlet 10 and the gas outlet 11 of the gas discharge unit 1. The voltage application electrode 80 and the ground electrode 81 made of a metal plate are provided in close contact with each other across the dielectric tube 82 on the outer surface of the dielectric tube 82, and the rest The configuration is the same as that of the liquid processing apparatus main body A.

本液体処理装置本体Fによれば、前記両電極間での放電は誘電体管82の内部で生じ、プラズマ等も誘電体管82内のみで発生するから、活性化ガスPGは拡散することなく高濃度のプラズマ等を含有したまま、ただちに気体導出口11から微細気泡発生部2へと吸引される。そのため、寿命の短い各種ラジカル等の失活を最小限に抑えながら活性化ガスPG効率よく微細気泡化でき、処理能力の向上を図ることができる。 According to the main body F of the liquid processing apparatus, the discharge between the electrodes is generated inside the dielectric tube 82, and plasma or the like is generated only in the dielectric tube 82. Therefore, the activated gas PG does not diffuse. While containing a high concentration of plasma or the like, the gas is immediately sucked from the gas outlet 11 to the fine bubble generator 2. Therefore, the activated gas PG can be efficiently made into fine bubbles while minimizing the inactivation of various radicals having a short lifetime, and the processing capacity can be improved.

また、図7に示す液体処理装置本体Gは、前記液体処理装置本体Fの改良例であり、電圧印加電極90と接地電極91はいずれも前記誘電体管82の外側面全周に金属板を環状に巻き付けた構成としたものである。この場合、両電極の位置関係は特に限定されない。 Further, the liquid processing apparatus main body G shown in FIG. 7 is an improved example of the liquid processing apparatus main body F, and the voltage applying electrode 90 and the ground electrode 91 are both metal plates on the entire outer surface of the dielectric tube 82. It is set as the structure wound by the annular | circular shape. In this case, the positional relationship between both electrodes is not particularly limited.

本液体処理装置本体Gによれば、気体放電を引き起こす高電界は、電圧印加電極90と接地電極91の間に発生するので、電子は誘電体管82の内壁面に沿って加速される。この場合、液体処理装置本体Fのように電極間のギャップ(距離)が短い場合と比較して、電子は電界によって十分に加速されるので、電子の得るエネルギーが増大する。このため、発生するプラズマ等のエネルギーが高く、しかも電子が長い距離を進む間に気体GS内の多くの原子・分子と電離・励起過程を生じるので、プラズマ密度やラジカル密度も液体処理装置本体Fに比べて増加するという有利な効果を奏するのである。 According to this liquid processing apparatus main body G, a high electric field that causes gas discharge is generated between the voltage application electrode 90 and the ground electrode 91, so that electrons are accelerated along the inner wall surface of the dielectric tube 82. In this case, compared to the case where the gap (distance) between the electrodes is short as in the liquid processing apparatus main body F, the electrons are sufficiently accelerated by the electric field, so that the energy obtained by the electrons increases. For this reason, since energy such as generated plasma is high and electrons are traveling a long distance, ionization / excitation processes occur with many atoms / molecules in the gas GS. There is an advantageous effect of increasing compared to the above.

以上、本発明に係る液体処理装置の実施の形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の技術的思想の範囲内において改良又は変更が可能であり、それらは本発明の技術的範囲に属するものとする。   As mentioned above, although embodiment of the liquid processing apparatus which concerns on this invention was described, this invention is not limited to the said embodiment, In the range of the technical idea of this invention, improvement or a change is possible, They shall belong to the technical scope of the present invention.

本発明に係る液体処理装置の適用対象は特に限定されず、液体中の有機物、無機物、微生物、細菌、ウイルス等の有害物質の分解除去全般に適用可能であるが、特に、有機物や微生物、細菌等を含む排水の浄化、医療廃棄物を含む汚染水の殺菌処理等に有用である。 The application target of the liquid processing apparatus according to the present invention is not particularly limited, and can be applied to the general decomposition and removal of harmful substances such as organic substances, inorganic substances, microorganisms, bacteria, and viruses in liquids. It is useful for the purification of wastewater containing etc. and the sterilization treatment of contaminated water containing medical waste.

本発明の第1実施形態に係る液体処理装置の全体構成図である。1 is an overall configuration diagram of a liquid processing apparatus according to a first embodiment of the present invention. 本発明の第2の実施の形態に係る液体処理装置における液体処理装置本体Bの内部構造図である。It is an internal structure figure of the liquid processing apparatus main body B in the liquid processing apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る液体処理装置における液体処理装置本体Cの内部構造図である。It is an internal structure figure of the liquid processing apparatus main body C in the liquid processing apparatus which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施の形態に係る液体処理装置の改良例における液体処理装置本体Dの内部構造図である。It is an internal structure figure of the liquid processing apparatus main body D in the modified example of the liquid processing apparatus which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施の形態に係る液体処理装置における液体処理装置本体Eの内部構造図である。It is an internal structure figure of the liquid processing apparatus main body E in the liquid processing apparatus which concerns on the 4th Embodiment of this invention. 本発明の第5の実施の形態に係る液体処理装置における液体処理装置本体Fの内部構造図である。It is an internal structure figure of the liquid processing apparatus main body F in the liquid processing apparatus which concerns on the 5th Embodiment of this invention. 本発明の第5の実施の形態に係る液体処理装置の改良例における液体処理装置本体Gの内部構造図である。It is an internal structure figure of the liquid processing apparatus main body G in the modified example of the liquid processing apparatus which concerns on the 5th Embodiment of this invention. 本発明の第1の実施形態に係る液体処理装置で行った脱色処理試験の測定結果を示すグラフである。It is a graph which shows the measurement result of the decoloring process test done with the liquid processing apparatus which concerns on the 1st Embodiment of this invention.

A〜G 液体処理装置本体
T 液槽
W 被処理液体
GS 気体
S 放電
PG 活性化ガス
R 渦流
V 負圧空洞部
P 微細気泡発生点
MB 微細気泡
GB1 ガスボンベ1
GB2 ガスボンベ2
1 気体放電部
2 微細気泡発生部
3 気体供給部
4 高圧電源
5 循環ポンプ
6 制御装置
7 気体供給管
8 液体供給管
9 給電線
10 気体導入口
11 気体導出口
12 電圧印加電極(液体処理装置本体A)
13 接地電極(液体処理装置本体A)
20 自吸口
21 ノズル
22 微細気泡放出口
30 圧力調整弁
31〜34 電磁弁
40 電圧印加電極(液体処理装置本体B)
41 接地電極(液体処理装置本体B)
42 誘電体管(液体処理装置本体B)
50 電圧印加電極(液体処理装置本体C)
51 接地電極(液体処理装置本体C)
60 電圧印加電極(液体処理装置本体D)
61 接地電極(液体処理装置本体D)
70 電圧印加電極(液体処理装置本体E)
71 接地電極(液体処理装置本体E)
80 電圧印加電極(液体処理装置本体F)
81 接地電極(液体処理装置本体F)
82 誘電体管(液体処理装置本体F、G)
90 電圧印加電極(液体処理装置本体G)
91 接地電極(液体処理装置本体G)
A to G Liquid processing apparatus main body T Liquid tank W Liquid to be processed GS Gas S Discharge PG Activation gas R Eddy current V Negative pressure cavity P Fine bubble generation point MB Fine bubble GB1 Gas cylinder 1
GB2 Gas cylinder 2
DESCRIPTION OF SYMBOLS 1 Gas discharge part 2 Fine bubble generation part 3 Gas supply part 4 High pressure power supply 5 Circulation pump 6 Control apparatus 7 Gas supply pipe 8 Liquid supply pipe 9 Feed line 10 Gas inlet 11 Gas outlet 12 Voltage application electrode (liquid processing apparatus main body A)
13 Ground electrode (Liquid treatment device body A)
20 Self-priming port 21 Nozzle 22 Fine bubble outlet 30 Pressure regulating valve 31-34 Solenoid valve 40 Voltage application electrode (liquid processing apparatus main body B)
41 Ground electrode (Liquid treatment device body B)
42 Dielectric tube (Liquid treatment device body B)
50 Voltage application electrode (Liquid treatment device body C)
51 Ground electrode (Liquid treatment device body C)
60 Voltage application electrode (liquid processing apparatus main body D)
61 Ground electrode (Liquid treatment device body D)
70 Voltage application electrode (liquid processing equipment body E)
71 Ground electrode (liquid processing equipment body E)
80 Voltage application electrode (liquid processing equipment main body F)
81 Ground electrode (Liquid treatment device body F)
82 Dielectric tube (Liquid treatment equipment body F, G)
90 Voltage application electrode (liquid processing device main body G)
91 Ground electrode (liquid processing equipment body G)

本発明は、各種の原料気体中で気体放電を発生させて得た活性化ガスをマイクロバブル化して液体中に拡散させることにより、該液体中の有機物、無機物、微生物、細菌、ウイルス等を効率良く分解処理することを目的とする液体処理装置に関する。 The present invention efficiently converts organic substances, inorganic substances, microorganisms, bacteria, viruses, etc. in the liquid by microbubbleing the activated gas obtained by generating gas discharge in various raw material gases and diffusing it in the liquid. The present invention relates to a liquid processing apparatus intended to be well decomposed.

上水、下水、産業排水などの液体中の有機物の酸化分解、殺菌、減菌、脱臭等の液体処理を行うために、オゾンが広く用いられている。この際、オゾンと被処理液体の接触面積を増加させて処理効率を高めるために、オゾン発生装置から得たオゾン含有ガスをマイクロバブル化して被処理液体中に拡散する方法、所謂マイクロバブルを用いた水処理装置が提案されている。「マイクロバブル」は「微細気泡」又は「微小気泡」とも呼ばれ、気泡のサイズについての定義は明確には確立していないが、その発生時において概ね直径1μmから100μmの気泡を指し、ミリ単位、センチ単位の通常の気泡とは異なる物性を有するため、当業者においてこれらと区別することが技術常識となっている。すなわち、通常の気泡が液中を急速に上昇して液面で破裂するのに対して、マイクロバブル、特に直径50μm以下の気泡は、体積が微細であるため上昇速度が遅く長時間液体中に滞在し続けること、また、液相と気相の界面における界面張力による加圧(自己加圧効果)が気泡の大きさに反比例することから、通常の気泡に比べ液体中への気体の溶解が促進されるという特性を有し、前記の液体処理に好適であることが知られている。なお、直径1μm以下の気泡は発生したマイクロバブルが液体中で収縮して形成され、計測法の確立や特性の解明は途上であるものの、当業者においては「ナノバブル」の用語により「マイクロバブル」と区分されていることも技術常識である。 Ozone is widely used to perform liquid treatments such as oxidative decomposition, sterilization, sterilization, and deodorization of organic substances in liquids such as clean water, sewage, and industrial wastewater. At this time, in order to increase the contact area between ozone and the liquid to be processed and to improve the processing efficiency, a method of soaking the ozone-containing gas obtained from the ozone generator into microbubbles and diffusing it into the liquid to be processed, so-called microbubbles are used. A water treatment device has been proposed. “Microbubbles” are also called “microbubbles” or “microbubbles”, and the definition of the size of the bubbles is not clearly established, but at the time of their occurrence, they generally refer to bubbles having a diameter of 1 μm to 100 μm, Since it has physical properties different from those of normal bubbles in centimeters, it is common technical knowledge for those skilled in the art to distinguish them from these. In other words, normal bubbles rapidly rise in the liquid and burst at the liquid level, whereas microbubbles, especially bubbles having a diameter of 50 μm or less, have a small volume, so the rising speed is slow and they remain in the liquid for a long time. Since the pressure due to the interfacial tension at the interface between the liquid phase and the gas phase (self-pressurization effect) is inversely proportional to the size of the bubble, the gas dissolves in the liquid compared to the normal bubble. It is known that it has the property of being promoted and is suitable for the liquid treatment. Bubbles having a diameter of 1 μm or less are formed by contraction of the generated microbubbles in the liquid, and although the establishment of measurement methods and elucidation of characteristics are still in progress, those skilled in the art use the term “nanobubble” as “microbubbles”. It is also common technical knowledge to be classified as

例えば特許文献1では、オゾン発生装置とマイクロバブル発生機をガス供給管等で接続して水処理を行っている。しかしながら、オゾン自体は酸化力が弱く、しかも空気あるいは酸素を含む気体中での放電によって生成したオゾン含有ガスをマイクロバブル化する途上で、ガス供給管内を移動する途中での失活や、ガス供給管等の内部での吸着によるオゾン密度の減少により、水処理効率が極端に低下するという問題がある。 For example, in Patent Document 1, water treatment is performed by connecting an ozone generator and a microbubble generator with a gas supply pipe or the like. However, ozone itself has a weak oxidizing power, and in addition, the ozone-containing gas generated by the discharge in the gas containing air or oxygen is converted into microbubbles, deactivation during the movement in the gas supply pipe, gas supply There is a problem that the water treatment efficiency is extremely lowered due to a decrease in ozone density due to adsorption inside a pipe or the like.

そこで、オゾンよりも酸化作用が強い原子状酸素ラジカル(Oラジカル)やヒドロキシルラジカル(OHラジカル)を被処理水中に直接生成して、有機物の酸化分解、殺菌、減菌、脱臭等を実現するために、被処理液体中に高電圧電極を設置し、高周波又はパルス電圧を印加して水中放電を起こす方法も提案されている(特許文献2)。しかしながら、放電電極が被処理液体中に浸漬されているため、放電を起こすためには数十KVを超える電圧を印加できる電源が必要となるだけでなく、安定した水中放電の生成及び維持には制御回路の最適化が不可欠である。そのため、水中放電方式は経済面、技術面における困難性が高いという問題を有する。   Therefore, atomic oxygen radicals (O radicals) and hydroxyl radicals (OH radicals), which have a stronger oxidizing action than ozone, are directly generated in the water to be treated to realize oxidative decomposition, sterilization, sterilization, deodorization, etc. of organic substances. In addition, a method has been proposed in which a high-voltage electrode is installed in a liquid to be treated and a high-frequency or pulse voltage is applied to cause an underwater discharge (Patent Document 2). However, since the discharge electrode is immersed in the liquid to be treated, not only a power source capable of applying a voltage exceeding several tens of KV is necessary to cause discharge, but also for stable generation and maintenance of underwater discharge. Optimization of the control circuit is essential. For this reason, the underwater discharge method has a problem of high economic and technical difficulties.

一方、被処理水を水滴化手段によって水滴化してストリーマ放電場に供給することにより、ストリーマ放電で発生するオゾンやOラジカル、OHラジカルで水滴中の処理対象物質を分解する水処理装置も提案されている(特許文献3)。この場合、被処理水を水滴状にして放電場に供給するため、小さな印加電圧でも放電を発生させることができるので、放電電極が被処理水中に浸漬される場合と比較して経済的である。また。本水処理装置はその前工程でストリーマ放電場中の気体を気泡状態にして被処理水中に供給する手段も兼ね備えているので、気体中に含まれる使用されずに残っていたオゾンの再利用も図っている。   On the other hand, a water treatment device has also been proposed in which water to be treated is made into water droplets by means of water droplets and supplied to a streamer discharge field, whereby ozone, O radicals, and OH radicals generated by streamer discharge decompose the target substance in the water droplets. (Patent Document 3). In this case, since the water to be treated is supplied in the form of water droplets to the discharge field, a discharge can be generated even with a small applied voltage, which is more economical than the case where the discharge electrode is immersed in the water to be treated. . Also. Since this water treatment device also has means for supplying the gas in the streamer discharge field into a bubble state in the previous process and supplying it to the water to be treated, it is possible to reuse the ozone remaining in the gas that has not been used. I am trying.

しかしながら、ストリーマ放電で発生するオゾンやOラジカル、OHラジカルと被処理水とは気液界面において反応するので、反応を生じる表面積を増加させるために水滴を微小化して供給する必要があるが、たとえ水滴を微小化してもストリーマ放電場の容量あるいは寸法を十分に大きく設定して、水滴がストリーマ放電場に滞在する時間を長くしない限り、オゾンや各種ラジカルと水滴を十分に反応させることはできない。   However, ozone, O radicals, and OH radicals generated in streamer discharges react with the water to be treated at the gas-liquid interface, so that it is necessary to supply water with fine droplets in order to increase the surface area where the reaction occurs. Even if the water droplets are miniaturized, ozone and various radicals cannot be sufficiently reacted with the water droplets unless the capacity or size of the streamer discharge field is set sufficiently large and the time during which the water droplets stay in the streamer discharge field is lengthened.

かかる欠点を補うために、ストリーマ放電場中の残留オゾンをマイクロバブル化し、前工程で被処理水に供給する方法が取られているが、オゾンや各種ラジカルの供給路中での失活に伴う処理能力の低下の問題は解決されていない。
特開2010−69387号公報 特開2005−58995号公報 特開2010−194527号公報
In order to make up for such drawbacks, a method has been adopted in which residual ozone in the streamer discharge field is microbubbled and supplied to the water to be treated in the previous process, but this is accompanied by deactivation in the supply path of ozone and various radicals. The problem of reduced processing capacity has not been solved.
JP 2010-69387 A Japanese Patent Laid-Open No. 2005-58995 JP 2010-194527 A

本発明は、上記の事情を鑑みてなされたものであり、被処理液体を効率良く、かつ、低コストで処理できる小型で簡便な構造を有する液体処理装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a liquid processing apparatus having a small and simple structure capable of processing a liquid to be processed efficiently and at low cost.

上記目的を達成するために、請求項1に記載の液体処理装置は、大気圧下での気体放電により気体をプラズマ化させて得た活性化ガスを被処理液体中でマイクロバブル化して生成した気液混合流体を改めて被処理液体中に供給するを特徴とする。 In order to achieve the above object, the liquid processing apparatus according to claim 1 is generated by microbubbleing an activated gas obtained by converting a gas into a plasma by gas discharge under atmospheric pressure in a liquid to be processed. The gas-liquid mixed fluid is supplied again into the liquid to be processed.

ここで、前記気体とは、空気をはじめ、酸素、窒素、アルゴン、ヘリウムなどのあらゆる気体のいずれか、あるいはそれらの混合気体である。また、前記気体放電とは、コロナ放電、火花放電、ストリーマ放電、誘電体バリア放電、沿面放電、ホロー放電等、気体中での各種の放電のいずれかである。 Here, the gas is any gas such as oxygen, nitrogen, argon, helium, or a mixture thereof, including air. The gas discharge is any one of various discharges in gas such as corona discharge, spark discharge, streamer discharge, dielectric barrier discharge, creeping discharge, hollow discharge, and the like.

ここで、コロナ放電は、大気中に設けられた針状電極と平板上電極との間に電圧を加えると、針状電極の尖端部分の空気が絶縁破壊を起こし、針尖端で微弱な光を発する放電である。必要とされる印加電圧は比較的高く数kV以上が必要であるが、除電器(イオナイザー)等に応用されている。 Here, in the corona discharge, when a voltage is applied between the needle-like electrode provided in the atmosphere and the electrode on the flat plate, the air at the tip of the needle-like electrode causes dielectric breakdown, and weak light is emitted at the tip of the needle. This is a discharge. The required applied voltage is relatively high and needs to be several kV or more, but it is applied to a static eliminator (ionizer) or the like.

コロナ放電の電圧をさらに上げていくと、針状電極と平板状電極との間の空気が広範に絶縁破壊を起こして放電路を形成するが、これが火花放電である。 When the voltage of the corona discharge is further increased, the air between the needle-like electrode and the plate-like electrode causes a wide breakdown and forms a discharge path, which is a spark discharge.

一方、針状電極が陰極の場合、陰極から発した「電子なだれ」の後に高密度の正イオンが残り、この正イオンがさらに「電子なだれ」を作って、最終的に針状電極と平板状電極との間にプラズマ状の放電路が形成されるストリーマ放電となる。 On the other hand, when the acicular electrode is a cathode, high-density positive ions remain after the “electron avalanche” emitted from the cathode, and these positive ions further form an “electron avalanche”. A streamer discharge is formed in which a plasma-like discharge path is formed between the electrodes.

誘電体バリア放電は、金属電極の表面をガラスやセラミックス等の誘電体で覆うことにより、放電によって発生した電子が誘電体表面に蓄積して、印加電界の極性が逆転したときに蓄積された電子が対向電極側に加速されて電離・放電を維持するメカニズムによるもので、オゾン発生装置等に用いられる。誘電体を用いない電極による放電に比べ、オゾン等のラジカル密度が高い反面、ガス温度は低いのが特徴であり、大気圧プラズマ発生手段として一般的に用いられる放電である。 In dielectric barrier discharge, the surface of a metal electrode is covered with a dielectric such as glass or ceramics, so that electrons generated by the discharge accumulate on the dielectric surface, and the electrons accumulated when the polarity of the applied electric field is reversed. Is accelerated by the counter electrode side to maintain the ionization / discharge, and is used for an ozone generator or the like. Compared with discharge using electrodes that do not use a dielectric, the density of radicals such as ozone is high, but the gas temperature is low, and this discharge is generally used as an atmospheric pressure plasma generating means.

沿面放電は、コロナ放電が誘電体などの表面を通して対向電極へ進展したものであり、誘電体表面に放電路が形成される。 The creeping discharge is a corona discharge that progresses to the counter electrode through the surface of a dielectric or the like, and a discharge path is formed on the surface of the dielectric.

ホロー放電は、ホロー(穴又は窪み形状)の陰極内での放電である。電子エネルギーが大きく、高電離、高励起状態が実現するため、紫外線光源などに用いられる。 The hollow discharge is a discharge in a hollow (hole or hollow shape) cathode. Since it has a large electron energy and realizes a high ionization and high excitation state, it is used for an ultraviolet light source or the like.

一方、活性化ガスとは、前記気体の種類に応じて気体放電により生じる各種のプラズマ、酸化又は還元作用を有する各種ラジカル(イオンを含む)、オゾンのいずれか、あるいはそれらの組み合わせ(以下「プラズマ等」と記す。)を含有するガスである。 On the other hand, the activated gas is any one of various plasmas generated by gas discharge depending on the kind of gas, various radicals (including ions) having an oxidizing or reducing action, ozone, or a combination thereof (hereinafter “plasma”). Etc.))).

さらに、前記プラズマ化とは、前記気体中で前記気体放電を生じさせることによって前記気体の分子の一部を電離させ、前記プラズマ等を生成することをいう。 Furthermore, the term “plasmaization” refers to generating the plasma or the like by ionizing a part of the molecules of the gas by causing the gas discharge in the gas.

次に、請求項2に記載の液体処理装置は、気体放電部とこれに一体的に直結したマイクロバブル発生部とを備え、前記気体放電部は気体を大気圧下での気体放電によりプラズマ化させて活性化ガスを発生させ、前記マイクロバブル発生部は前記活性ガスを被処理液体中でマイクロバブル化して気液混合流体を生成し、改めて被処理液体中に供給することを特徴とする。 Next, the liquid processing apparatus according to claim 2 includes a gas discharge unit and a microbubble generating unit directly and integrally connected thereto, and the gas discharge unit converts the gas into plasma by gas discharge under atmospheric pressure. Then, the activated gas is generated, and the micro-bubble generating unit generates the gas-liquid mixed fluid by making the activated gas into micro-bubbles in the liquid to be processed, and supplies the gas into the liquid to be processed again .

また、請求項3に記載の液体処理装置は、前記気体放電部が電圧印加電極と接地電極とを有し、大気圧下で両電極間に気体放電を発生させることを特徴とする。   The liquid treatment apparatus according to claim 3 is characterized in that the gas discharge section has a voltage application electrode and a ground electrode, and generates a gas discharge between the electrodes under atmospheric pressure.

前記電圧印加電極並びに設置電極の構成は特に限定されないが、例えば電圧印加電極として注射針に代表される金属パイプを、接地電極として金属板を用いてもよい。この場合、電圧印加電極と接地電極間には、コロナ放電、火花放電、ストリーマ放電のいずれかが発生するようにする。 The configuration of the voltage application electrode and the installation electrode is not particularly limited. For example, a metal pipe represented by an injection needle may be used as the voltage application electrode, and a metal plate may be used as the ground electrode. In this case, any one of corona discharge, spark discharge, and streamer discharge is generated between the voltage application electrode and the ground electrode.

さらに、電圧印加電極として、金属針、金属細棒、金属ワイヤー、又はそれらの集合体で構成してもよい。あるいは、電圧印加電極と接地電極の一方又はその両方の表面を誘電体で覆ってもよく、この場合は誘電体バリア放電を生じて、放電域を拡散させることが可能である。さらに、前記気体放電部は、沿面放電やホロー放電など様々な放電を大気圧下で発生させる電極構造としてもよい。 Furthermore, you may comprise as a voltage application electrode with a metal needle, a metal thin rod, a metal wire, or those aggregates. Alternatively, the surface of one or both of the voltage application electrode and the ground electrode may be covered with a dielectric, and in this case, a dielectric barrier discharge can be generated to diffuse the discharge region. Furthermore, the gas discharge section may have an electrode structure that generates various discharges such as creeping discharge and hollow discharge under atmospheric pressure.

また、前記電圧印加電極に供給する電流の電圧波形としては、数十Hzから数百kHzの交流(AC)波、数MHzから数百MHzのラジオ(RF)波などの正弦波形、パルス波形、インパルス波形などが挙げられる。   In addition, the voltage waveform of the current supplied to the voltage application electrode includes a sinusoidal waveform such as an alternating current (AC) wave of several tens of Hz to several hundred kHz, a radio (RF) wave of several MHz to several hundred MHz, a pulse waveform, Examples include impulse waveforms.

また、請求項4に記載の液体処理装置は、前記気体放電部が、特定の気体又は複数種類の気体を混合して成る混合気体を導入する気体供給手段を備えたことを特徴とする。   According to a fourth aspect of the present invention, in the liquid processing apparatus, the gas discharge unit includes a gas supply unit that introduces a specific gas or a mixed gas formed by mixing a plurality of types of gases.

導入する気体の種類により前記気体放電部において生成される前記活性化ガスが含有するプラズマ等が異なるため、前記気体供給手段を備えることにより、前記気体放電部は導入する気体を変更可能とし、所望のプラズマ等を含有する活性化ガスを生成することができる。 Since the plasma contained in the activated gas generated in the gas discharge unit differs depending on the type of gas to be introduced, the gas discharge unit can change the gas to be introduced by providing the gas supply means, and the desired An activated gas containing plasma or the like can be generated.

また、請求項5に記載の液体処理装置は、前記マイクロバブル発生部は、前記活性化ガスを直径1〜100μmのマイクロバブルとした気液混合流体を生成して被処理液体中に供給することを特徴とする。 Further, in the liquid processing apparatus according to claim 5, the microbubble generating unit generates a gas-liquid mixed fluid in which the activated gas is microbubbles having a diameter of 1 to 100 μm and supplies the gas-liquid mixed fluid into the liquid to be processed. It is characterized by.

ここで前記マイクロバブル発生部の構成は特に限定されないが、前記気体放電部と直結して、大気圧下で発生した活性化ガスを失活させぬよう直ちに導入してマイクロバブル化できるものであればよく、例えば、旋回式気液せん断方式のマイクロバブル発生装置が好適である。これは、液体中に渦流を発生させて、導入した気体により該渦流の軸線上に負圧空洞部を形成し、該負圧空洞部の先端における液体との旋回速度差により気体を強制的かつ連続的に切断して粉砕することによりマイクロバブル化するものである。かかる方式のマイクロバブル発生装置であれば、前記負圧空洞部の負圧の効果により、前記気体放電部内において大気圧下で生成された活性化ガスを自吸するため、活性化ガスを加圧して強制的に送出することなく導入でき、比較的簡易かつ小規模な構造により大量のマイクロバブルを安定的に生成可能である。 Here, the configuration of the microbubble generating part is not particularly limited, but it can be directly connected to the gas discharge part and immediately introduced so as not to deactivate the activated gas generated under atmospheric pressure so as to be microbubbled . For example, a swirl type gas-liquid shearing type microbubble generator is suitable. This is because a vortex flow is generated in the liquid, a negative pressure cavity is formed on the axis of the vortex by the introduced gas, and the gas is forced and swung by the difference in swirling speed with the liquid at the tip of the negative pressure cavity. Microbubbles are produced by continuous cutting and pulverization. If the microbubble generator of this type is used, the activated gas is pressurized in order to self-suck the activated gas generated under atmospheric pressure in the gas discharge part due to the negative pressure effect of the negative pressure cavity. Therefore, it is possible to introduce a large amount of microbubbles stably with a relatively simple and small-scale structure.

また、請求項6に記載の液体処理装置は、前記気体放電部と前記マイクロバブル発生部とが脱着可能な構造を有することを特徴とする。 Moreover, the liquid processing apparatus of Claim 6 has a structure which the said gas discharge part and the said microbubble generation | occurrence | production part can attach or detach.

本発明に係る液体処理装置は、大気圧下での気体放電により気体をプラズマ化させて得たプラズマ等を含有する活性化ガスを被処理液体中でマイクロバブル化して生成した気液混合流体を改めて被処理液体中に供給するものである。該気液混合流体に含まれる活性化ガスはマイクロバブル化されているため、該マイクロバブルと、これを供給された被処理液体との気液界面において、プラズマ等と液体分子の反応による液体処理を実現する。この際、イ)マイクロバブルの表面積/体積比率が通常の微細気泡に比べて大きいために気液界面の反応面積が増大すること、ロ)マイクロバブルの被処理液体中での滞在時間、すなわち気液界面での反応時間が長いこと、ハ)マイクロバブルの自己加圧効果により活性化ガスが強制的に被処理液体中に溶解させられることで反応が増進されること、等の効果により、活性化ガスを通常の気泡として直接被処理液体中に放出する場合に比べてプラズマ等と被処理液体との反応効率が格段に増加し、しかも、寿命の短いプラズマ等が失活する前に被処理液体中の処理対象物質と反応させることができるので、被処理液体を効率よく、かつ低コストで処理することができる。特に、水と反応することで酸化力の強い過酸化水素(H2О2)を生成するOラジカルを含む活性化ガスを被処理液体中に供給した場合は、被処理物質を特に効率よく酸化分解することができる。また、活性化ガスを被処理液体中に直接気泡として放出した場合、そもそも放出時の気泡の初速は小さい上に、軽量で慣性の小さな気泡は被処理液体との摩擦抵抗により放出後ただちに減速して浮上を開始してしまうため、活性化ガスは放出点から広範囲には拡散しにくい。そのため、被処理液体の量が多い場合には、液体処理効率を高めるために別途被処理液体の攪拌や循環が必要となる場合がある。一方、本発明に係る液体処理装置は、活性化ガスを被処理液体との気液混合流体として噴出するため、噴出された気液混合流体はマイクロバブル発生部に被処理液体を圧送するポンプの出力に応じて比較的大きな初速と指向性を有する。しかも、単なる気泡よりも重く慣性の大きな気液混合流体は、被処理液体中をより遠くまで進んで被処理液体を攪拌・循環させる。そのため、含有される活性化ガスのマイクロバブルもより広範囲に拡散されるから、液体処理の効率を高めるという効果も奏するのである。 The liquid processing apparatus according to the present invention comprises a gas-liquid mixed fluid generated by microbubbles an activated gas containing plasma or the like obtained by converting gas into plasma by gas discharge under atmospheric pressure in the liquid to be processed. It is supplied again into the liquid to be treated . Since the activated gas contained in the gas-liquid mixed fluid is made into microbubbles, liquid processing by reaction of plasma or the like with liquid molecules at the gas-liquid interface between the microbubbles and the liquid to be processed supplied thereto. Is realized. In this case, a) the surface area / volume ratio of the microbubbles is larger than that of the normal fine bubbles, so that the reaction area at the gas-liquid interface increases, and b) the residence time of the microbubbles in the liquid to be treated, that is, the gas Active due to the effects such as long reaction time at the liquid interface, c) the reaction is enhanced by the active gas being forced to dissolve in the liquid to be treated by the self-pressurization effect of the microbubbles The reaction efficiency between plasma and other liquids is significantly increased compared to the case where the chemical gas is directly discharged into the liquid to be treated as normal bubbles , and the treatment is performed before the short-lived plasma or the like is deactivated. Since it can be made to react with the substance to be processed in the liquid, the liquid to be processed can be processed efficiently and at low cost. In particular, when an activated gas containing O radicals that generate hydrogen peroxide (H2O2), which has strong oxidizing power by reacting with water, is supplied into the liquid to be treated, the substance to be treated is oxidized and decomposed particularly efficiently. Can do. In addition, when the activated gas is released directly into the liquid to be treated as bubbles, the initial velocity of the bubbles is small in the first place, and the light and small inertia bubbles are immediately decelerated after being released due to frictional resistance with the liquid to be treated. Therefore, the activated gas is difficult to diffuse over a wide range from the discharge point. Therefore, when the amount of the liquid to be processed is large, it may be necessary to separately stir and circulate the liquid to be processed in order to increase the liquid processing efficiency. On the other hand, since the liquid processing apparatus according to the present invention ejects the activated gas as a gas-liquid mixed fluid with the liquid to be processed, the jetted gas-liquid mixed fluid is a pump of the pump that pumps the liquid to be processed to the microbubble generating unit. It has a relatively large initial speed and directivity according to the output. In addition, the gas-liquid mixed fluid that is heavier than mere bubbles and has a large inertia proceeds further in the liquid to be processed, and stirs and circulates the liquid to be processed. For this reason, the microbubbles of the activated gas contained therein are also diffused over a wider range, so that the effect of increasing the efficiency of the liquid treatment is also achieved.

また、本発明に係る液体処理装置は、気体放電により活性化ガスを発生させるため、水中放電に要するほどの高電圧を必要とせず、比較的低コストで実現できる。   Moreover, since the liquid processing apparatus according to the present invention generates activated gas by gas discharge, it does not require a high voltage required for underwater discharge and can be realized at a relatively low cost.

また、前記気体放電部と前記マイクロバブル発生部とを一体的に直結した状態とすることで、活性化ガスをマイクロバブル発生部に導入するためのパイプやホースを必要とせず、寿命の短いプラズマ等が失活する前に活性化ガスをマイクロバブル化でき、被処理液体を効率よく処理することができる。 In addition, since the gas discharge unit and the microbubble generation unit are integrally connected directly, a pipe or a hose for introducing the activation gas into the microbubble generation unit is not required, and the plasma has a short life. The activated gas can be made into microbubbles before the liquid is deactivated, and the liquid to be treated can be processed efficiently.

また、前記気体放電部の電圧印加電極と接地電極の構造や形状を変更することにより、両電極間にはコロナ放電、火花放電、ストリーマ放電、誘電体バリア放電、沿面放電、ホロー放電等の様々な形態の放電を発生させることができるため、発生させるプラズマ等の有するエネルギーの制御が可能となり、被処理液体の条件に応じた処理が可能となる。   In addition, by changing the structure and shape of the voltage application electrode and the ground electrode of the gas discharge part, there are various corona discharge, spark discharge, streamer discharge, dielectric barrier discharge, creeping discharge, hollow discharge, etc. between the two electrodes. Therefore, it is possible to control the energy of the generated plasma and the like, and it is possible to perform processing according to the conditions of the liquid to be processed.

また、前記気体放電部は、特定の気体又は複数種類の気体を混合して成る混合気体を導入する気体供給手段を備えるため、供給する気体の種類や混合比の変更が可能である。そのため、オゾン、Oラジカル、OHラジカル等のみでなく、比較的寿命の長い準安定励起状態のアルゴンラジカルやヘリウムラジカル、窒素ラジカル等を含有する活性化ガスを被処理液体中にマイクロバブル化して供給することができるので、該マイクロバブルの気液界面で液体中の水分子を解離してOHラジカルを効率よく生成するほか、液体中に溶解している各種化学物質の分解や化学反応を促進することができる。 Moreover, since the said gas discharge part is provided with the gas supply means which introduces the mixed gas formed by mixing a specific gas or multiple types of gas, the kind and mixing ratio of the gas to supply can be changed. Therefore, not only ozone, O radical, OH radical, etc., but also activated gas containing relatively long-lived metastable excited argon radical, helium radical, nitrogen radical, etc., is microbubbled into the liquid to be treated. In addition to efficiently generating OH radicals by dissociating water molecules in the liquid at the gas-liquid interface of the microbubbles , it promotes the decomposition and chemical reaction of various chemical substances dissolved in the liquid. be able to.

また、前記マイクロバブル発生部が、前記活性化ガスを直径1〜100μmのマイクロバブルとして液体中に供給するため、プラズマ等が被処理液体と接触する気液界面の表面積を格段に増加することができるとともに、マイクロバブルはその性質上、通常の気泡に比べて被処理液体中を長時間浮遊するため、プラズマ等と被処理物質の反応時間を長く保つことができ、処理の効率を更に高めることができる。 In addition, since the microbubble generator supplies the activated gas as microbubbles having a diameter of 1 to 100 μm into the liquid, the surface area of the gas-liquid interface where the plasma or the like comes into contact with the liquid to be treated may be significantly increased. In addition, since microbubbles float in the liquid to be treated for a long time compared to normal bubbles due to their nature, the reaction time of plasma and other substances to be treated can be kept longer, further improving the efficiency of treatment. Can do.

さらに、前記気体放電部と前記マイクロバブル発生部とが脱着可能な構造を有するため、該液体処理装置の用途や使用条件に応じて、前記マイクロバブル発生部を異なる方式や能力のものに任意に交換可能となるので液体処理装置の適用範囲を拡大でき、また、マイクロバブル発生部が故障した際にはそれだけを交換すればよいため経済的である。 Furthermore, since the gas discharge part and the microbubble generator have a detachable structure, the microbubble generator can be arbitrarily selected to have a different system and ability depending on the use and use conditions of the liquid processing apparatus. Since the exchange is possible, the application range of the liquid processing apparatus can be expanded, and it is economical because only the microbubble generation unit needs to be replaced when it breaks down.

以下では、本発明に係る液体処理装置の実施の形態について、図1乃至図8に基づいて詳細に説明する。なお、以下の実施形態は、液体処理装置本体の構成のみが異なるため、図2乃至図7は液体処理装置本体のみを示しており、液体処理装置本体以外の本発明の構成はいずれも図1と共通である。 Hereinafter, an embodiment of a liquid processing apparatus according to the present invention will be described in detail with reference to FIGS. 1 to 8. Since the following embodiments differ only in the configuration of the liquid processing apparatus main body, FIGS. 2 to 7 show only the liquid processing apparatus main body, and all the configurations of the present invention other than the liquid processing apparatus main body are shown in FIG. And in common.

(第1実施形態)
図1は、本発明に係る液体処理装置の第1の実施の形態を示す図であって、本発明を適用した液体処理装置Aとその作動状態を示すものである。
(First embodiment)
FIG. 1 is a diagram showing a first embodiment of a liquid processing apparatus according to the present invention, and shows a liquid processing apparatus A to which the present invention is applied and its operating state.

図1に示すように、液体処理装置本体Aは、気体放電部1とマイクロバブル発生部2を一体的に直結して成り、液槽Tを満たした被処理液体Wの液中に浸漬されている。気体放電部1は気体GSを供給する気体供給部3と気体供給管7により接続されており、一方、マイクロバブル発生部2は、やはり液中に浸漬された循環ポンプ5と液体供給管8により接続されている。 As shown in FIG. 1, the liquid processing apparatus main body A is formed by directly connecting the gas discharge unit 1 and the microbubble generation unit 2 integrally, and is immersed in the liquid to be processed W filling the liquid tank T. Yes. The gas discharge part 1 is connected by a gas supply part 3 for supplying a gas GS and a gas supply pipe 7, while the microbubble generation part 2 is also connected by a circulation pump 5 and a liquid supply pipe 8 which are also immersed in the liquid. It is connected.

気体放電部1は、例えばアクリル樹脂等の絶縁材料で形成され、気体導入口10と気体導出口11が設けられており、気体導入口10に気体供給管7が接続されている。 The gas discharge part 1 is formed of an insulating material such as acrylic resin, for example, and is provided with a gas inlet 10 and a gas outlet 11, and a gas supply pipe 7 is connected to the gas inlet 10.

気体放電部1の内部には、金属管から成る電圧印加電極12が気体導入口10に取り付けられ、気体供給管7から供給された気体GSが電圧印加電極12の内部を通過してその先端から気体放電部1内に導入されるよう構成されている。また、電圧印加電極12の先端から適宜の間隔を空けてその軸線に対し垂直に銅板等の金属板から成る接地電極13が支持されている。なお、電圧印加電極12としては、例えば外径0.7mm、内径0.5mm以下の注射針様の金属管が好適である。 Inside the gas discharge part 1, a voltage application electrode 12 made of a metal tube is attached to the gas introduction port 10, and the gas GS supplied from the gas supply tube 7 passes through the inside of the voltage application electrode 12 from its tip. It is configured to be introduced into the gas discharge unit 1. A ground electrode 13 made of a metal plate such as a copper plate is supported perpendicularly to the axis of the voltage application electrode 12 at an appropriate interval. As the voltage application electrode 12, for example, an injection needle-like metal tube having an outer diameter of 0.7 mm and an inner diameter of 0.5 mm or less is suitable.

前記電圧印加電極12と接地電極13は給電線9によりそれぞれ高圧電源4に接続されており、高圧電源4からパルス電圧やAC電圧、ラジオ波電圧が印加されると、印加された電圧に応じて、電圧印加電極12と接地電極13の間でコロナ放電、火花放電、ストリーマ放電のいずれかの放電Sが発生する。 The voltage application electrode 12 and the ground electrode 13 are connected to the high-voltage power supply 4 by a feeder 9, respectively. When a pulse voltage, an AC voltage, or a radio wave voltage is applied from the high-voltage power supply 4, the voltage application electrode 12 and the ground electrode 13 correspond to the applied voltage. Any one of corona discharge, spark discharge, and streamer discharge S is generated between the voltage application electrode 12 and the ground electrode 13.

かかる構成により、気体供給部3から気体導入管7を通じて電圧印加電極12の先端から気体放電部1内に導入された気体GSは、前記放電Sによりその一部がプラズマ等化され、気体放電部1の内部は該プラズマ等を含有する活性化ガスPGで満たされる。 With this configuration, the gas GS introduced into the gas discharge unit 1 from the tip of the voltage application electrode 12 from the gas supply unit 3 through the gas introduction tube 7 is partially plasma-equalized by the discharge S, and the gas discharge unit The interior of 1 is filled with an activated gas PG containing the plasma or the like.

一方、マイクロバブル発生部2は、本実施形態では旋回式気液せん断方式を採用している。マイクロバブル発生部2の内壁は円筒形に形成されており、気体放電部1との接続面の中心には気体放電部1の前記気体導出口11と直結する自吸口20と、自吸した活性化ガスPGをマイクロバブル発生部2の内部に導入するノズル21とを備え、反対面の中心には発生したマイクロバブルを含む気液混合流体MBを液槽T内に放出する気液混合流体放出口22を備えている。 On the other hand, the microbubble generator 2 employs a swirl type gas-liquid shearing method in the present embodiment. The inner wall of the microbubble generating part 2 is formed in a cylindrical shape, and a self-sucking port 20 directly connected to the gas outlet 11 of the gas discharge part 1 at the center of the connection surface with the gas discharge part 1 and the self-sucking activity the gas PG and a nozzle 21 for introducing inside the microbubble generation section 2, release the gas-liquid mixed fluid at the center of the opposite surface to release the gas-liquid mixed fluid MB containing microbubbles generated in the liquid bath T An outlet 22 is provided.

循環ポンプ5から液体供給管8を通じて圧送供給された被処理液体Wは、マイクロバブル発生部2の内部で前記内壁に沿って渦流Rを形成する。ノズル21から導入された活性化ガスPGは、渦流による遠心分離作用により渦流の旋回軸線上に負圧の旋回空洞部Vを形成する。かかる負圧により、活性化ガスPGはマイクロバブル発生部2の内部に連続的に自給されるとともに、前記負圧空洞部Vの先端に生じるマイクロバブル発生点Pにおいて、被処理液体Wとの旋回速度差により強制的かつ連続的に切断・粉砕されてマイクロバブル化するのである。 The liquid W to be processed which is pressure-fed and supplied from the circulation pump 5 through the liquid supply pipe 8 forms a vortex R along the inner wall inside the microbubble generator 2. The activated gas PG introduced from the nozzle 21 forms a swirling cavity V having a negative pressure on the swirling axis of the swirl due to the centrifugal separation action by the swirl. Due to the negative pressure, the activated gas PG is continuously supplied to the inside of the microbubble generator 2 and swirls with the liquid W at the microbubble generation point P generated at the tip of the negative pressure cavity V. It is forcibly and continuously cut and pulverized by the speed difference to form microbubbles .

次に、気体供給部3は、気体供給管7の接続口以外に少なくとも4つの開口部を有する中空容器から成る。気体供給管7に接続した開口部には圧力調整弁30を設けている。気体放電部1へ供給する気体GSの量及び圧力を調節することができる。また、前記複数の開口部には、気体放電部1で発生させたいプラズマ等の種類に応じた気体GSを蓄えたガスボンベGB1及び空気又は窒素を蓄えたガスボンベGB2を接続することができる。 Next, the gas supply unit 3 includes a hollow container having at least four openings in addition to the connection port of the gas supply pipe 7. A pressure regulating valve 30 is provided at the opening connected to the gas supply pipe 7. The amount and pressure of the gas GS supplied to the gas discharge unit 1 can be adjusted. Further, a gas cylinder GB1 storing a gas GS corresponding to a type of plasma or the like desired to be generated in the gas discharge section 1 and a gas cylinder GB2 storing air or nitrogen can be connected to the plurality of openings.

なお、前述の通りマイクロバブル発生部2がその内部に生じる負圧により活性化ガスPGを自吸するため、これと接続する気体放電部1内への気体GSの供給も大気圧との差圧により自動的に達成される。そのため、気体供給部3を特段に加圧する必要はなく、気体GSの供給圧力が大気圧と同等となるように圧力調整弁30を調整した場合、原則として気体放電部1内の圧力は大気圧の状態が維持される。 As described above, since the microbubble generating unit 2 self-sucks the activated gas PG due to the negative pressure generated in the microbubble generating unit 2, the supply of the gas GS into the gas discharging unit 1 connected thereto is also a differential pressure from the atmospheric pressure. Achieved automatically. Therefore, it is not necessary to pressurize the gas supply unit 3 in particular, and when the pressure regulating valve 30 is adjusted so that the supply pressure of the gas GS is equal to the atmospheric pressure, the pressure in the gas discharge unit 1 is basically the atmospheric pressure. The state of is maintained.

ここで、活性化ガス化したい気体GSが空気の場合は、気体供給部3を大気開放し、圧力調整弁30も開放することで、気体供給管7に大気をそのまま導入させればよい。一方、活性化ガス化したい気体GSが空気以外の例えば酸素、窒素、アルゴン、ヘリウム等の気体あるいはそれらの混合気体である場合は、気体供給部3の開口部の一つに接続したガスボンベB1から前記所望の気体GSを導入するとともに、他の開口部を大気開放して気体供給部3の内部を前記所望の気体GSで置換すればよい。 Here, when the gas GS to be activated gas is air, the atmosphere may be introduced into the gas supply pipe 7 as it is by opening the gas supply unit 3 to the atmosphere and also opening the pressure regulating valve 30. On the other hand, when the gas GS to be activated gas is a gas other than air, such as oxygen, nitrogen, argon, helium, or a mixed gas thereof, from the gas cylinder B1 connected to one of the openings of the gas supply unit 3 The desired gas GS may be introduced, and the other opening may be opened to the atmosphere to replace the inside of the gas supply unit 3 with the desired gas GS.

さらに、前記圧力調整弁30を調整して気体放電部1に流入する気体GSの量を調整することにより、マイクロバブル発生部2内で発生するマイクロバブルの粒径を制御することも可能である。本実施形態の試作機による試験では、圧力調整弁30の開度を絞ることによりマイクロバブルの粒径が連続的に小さくなることが確認できた。前記マイクロバブル発生部2内部の被処理液体Wに生ずる渦流Rの旋回速度は循環ポンプ5の出力やホース等の長さや内径により決定されるが、該旋回速度が一定の場合、単位時間内にマイクロバブル発生部2内に送りこまれる活性化ガスPGの量が少ないほど、前記負圧空洞部Vを形成する気体量も少なくなる。そのため、単位時間当たりに前記マイクロバブル発生点Pにおいてマイクロバブル化される活性化ガスPGの量も小さくなるため、マイクロバブルの粒径が小さくなるものと考えられる。 Furthermore, it is also possible to control the particle size of the microbubbles generated in the microbubble generating unit 2 by adjusting the pressure adjusting valve 30 and adjusting the amount of the gas GS flowing into the gas discharging unit 1. . In the test using the prototype of the present embodiment, it was confirmed that the microbubble particle size was continuously reduced by reducing the opening of the pressure regulating valve 30. The swirling speed of the vortex R generated in the liquid W to be treated inside the microbubble generator 2 is determined by the output of the circulation pump 5 and the length and inner diameter of the hose, etc., but within a unit time when the swirling speed is constant. The smaller the amount of the activated gas PG fed into the microbubble generator 2, the smaller the amount of gas that forms the negative pressure cavity V. Therefore, since the amount of the activated gas PG that is microbubbled at the microbubble generation point P per unit time is also small, the particle size of the microbubbles is considered to be small.

ところで、循環ポンプ5の作動を停止した場合には、マイクロバブル発生部2の内部の負圧が消失するため、被処理液体Wがノズル21から気体放電部1内に逆流することになる。これを防ぐためには、気体供給部3の気体導入管7を接続した開口部以外の開口部に電磁弁31乃至34を設け、循環ポンプ5の作動とこれら電磁弁の開閉を連動して制御可能な制御装置6を設けておく。電磁弁31には各種の気体GSを蓄積したガスボンベGB1を、電磁弁32には大気よりもやや加圧した空気あるいは窒素を蓄積したガスボンベGB2を接続し、電磁弁33及び電磁弁34は大気開放口とする。 By the way, when the operation of the circulation pump 5 is stopped, the negative pressure inside the microbubble generator 2 disappears, so that the liquid W to be processed flows backward from the nozzle 21 into the gas discharge unit 1. In order to prevent this, the solenoid valves 31 to 34 are provided in openings other than the opening connected to the gas introduction pipe 7 of the gas supply section 3, and the operation of the circulation pump 5 and the opening and closing of these solenoid valves can be controlled in conjunction with each other. A control device 6 is provided. A gas cylinder GB1 storing various gases GS is connected to the solenoid valve 31, a gas cylinder GB2 storing air or nitrogen slightly pressurized from the atmosphere is connected to the solenoid valve 32, and the solenoid valves 33 and 34 are opened to the atmosphere. Mouth.

制御装置6により、循環ポンプ5の動作が停止すると同時に電磁弁31、33、34を閉じ、電磁弁32を開くようにすれば、ガスボンベGB2内の空気あるいは窒素により気体供給部3及び気体放電部1内の気圧が増加し、マイクロバブル発生部2から被処理液体Wが逆流してくることを防止できる。これにより本液体処理装置は、液体処理を断続して行うことが可能となる。 If the control device 6 stops the operation of the circulation pump 5 and simultaneously closes the solenoid valves 31, 33, and 34 and opens the solenoid valve 32, the gas supply unit 3 and the gas discharge unit with air or nitrogen in the gas cylinder GB2. It can prevent that the to-be-processed liquid W flows backward from the microbubble generation | occurrence | production part 2 because the atmospheric | air pressure in 1 increases. As a result, the liquid processing apparatus can perform liquid processing intermittently.

次に、本実施形態に係る液体処理装置Aを用いて特定の気体GSから生成した活性化ガスPGをマイクロバブル化して被処理液体Wを処理する液体処理方法について説明する。 Next, a liquid processing method for processing the liquid W to be processed by microbubbles the activated gas PG generated from the specific gas GS using the liquid processing apparatus A according to the present embodiment will be described.

まず、あらかじめ電磁弁31、33、34を閉じ、電磁弁32を開くことにより気体放電部1内に空気又は窒素を導入した状態の液体処理装置Aと循環ポンプ5を液槽T内の被処理液体Wに浸漬する。 First, the electromagnetic valves 31, 33, and 34 are closed in advance and the electromagnetic valve 32 is opened, so that the liquid processing apparatus A and the circulation pump 5 in a state where air or nitrogen is introduced into the gas discharge unit 1 are processed in the liquid tank T. Immerse in liquid W.

次に、循環ポンプ5を作動させると、液体供給管8を通じてマイクロバブル発生部2内に圧送された被処理液体Wが高速旋回する渦流Rを生じる。渦流Rの旋回軸線上には負圧の旋回空洞部Vが形成されるため、かかる負圧の効果によりノズル21を通じて気体放電部1内の空気又は窒素がマイクロバブル発生部2内に吸引され、マイクロバブル化して気液混合流体放出口22から被処理液体W中へ放出される。 Next, when the circulation pump 5 is operated, the eddy current R in which the liquid W to be processed, which is pumped into the microbubble generator 2 through the liquid supply pipe 8, swirls at high speed is generated. Since a negative pressure swirl cavity V is formed on the swirl axis of the vortex R, air or nitrogen in the gas discharge unit 1 is sucked into the microbubble generator 2 through the nozzle 21 due to the negative pressure effect. Microbubbles are generated and discharged from the gas-liquid mixed fluid discharge port 22 into the liquid W to be processed.

続いて、電磁弁32を閉じると同時に電磁弁31、34を開くと、ガスボンベGB2からの空気又は窒素の供給は停止し、代わりにガスボンベGB1から特定の気体GSが気体供給部3を経由して気体放電部1内に導入され、そのままマイクロバブル発生部2内へと吸引されてマイクロバブル化され始める。 Subsequently, when the solenoid valve 32 is closed and the solenoid valves 31 and 34 are opened at the same time, the supply of air or nitrogen from the gas cylinder GB2 is stopped, and a specific gas GS from the gas cylinder GB1 passes through the gas supply unit 3 instead. It is introduced into the gas discharge part 1 and is sucked into the microbubble generating part 2 as it is to start microbubbles .

この状態で、高圧電源4を作動させると、気体放電部1内に設置した注射針様の金属管から成る電圧印加電極12と金属板から成る接地電極13との間ではコロナ放電が生じ、気体放電部1内の気体GSの一部がプラズマ等化することで活性化ガスPGを発生させる。活性化ガスPGは、ただちにマイクロバブル発生部2内へと吸引され、被処理液体W中でマイクロバブル化されて液槽T中に放出され、被処理液体W中の被処理物質と反応するのである。 When the high-voltage power supply 4 is operated in this state, corona discharge occurs between the voltage application electrode 12 made of an injection needle-like metal tube installed in the gas discharge unit 1 and the ground electrode 13 made of a metal plate. An activated gas PG is generated when a part of the gas GS in the discharge unit 1 is plasma-equalized. Since the activated gas PG is immediately sucked into the microbubble generator 2, is microbubbled in the liquid W to be processed , is released into the liquid tank T, and reacts with the substance to be processed in the liquid W to be processed. is there.

以上の図1に示す第1実施形態に係る液体処理装置の試作機を用い、純水32L(リットル)に25mg/Lの濃度で溶解させたインジゴカルミン溶液を被処理液体Wとして放電を行う脱色処理を行い、放電を行わない場合と対比させる、本発明の効果を実証する試験を行った。試験の条件は以下の通りであり、図8は、処理開始から17日後の溶液の放電有り・なしの場合の紫外可視分光スペクトルの計測値を対比させてグラフにしたものである。
被処理液体の循環流量:13L/分
放電電力:70W
印加電圧:4〜5kV
パルス間隔:1ms
処理時間:2時間/日
Decolorization in which discharge is performed using the indigo carmine solution dissolved in pure water 32L (liter) at a concentration of 25 mg / L as the liquid W to be processed using the prototype of the liquid processing apparatus according to the first embodiment shown in FIG. A test was performed to verify the effect of the present invention in comparison with the case where the treatment was performed and no discharge was performed. The test conditions are as follows, and FIG. 8 is a graph comparing the measured values of the UV-visible spectrum with and without discharge of the solution 17 days after the start of the treatment.
Circulating flow rate of liquid to be treated: 13 L / min Discharge power: 70 W
Applied voltage: 4-5kV
Pulse interval: 1 ms
Processing time: 2 hours / day

図8によると、放電なしの比較例(点線)では600nm付近にピークを有する幅の広い吸収ピークが見られる。このため、インジゴカルミン溶液は青色(吸収されずに残った400〜500nmの可視光領域)を呈していることが分かる。一方、放電有りの実施例(実線)では、可視光領域の吸収がなくなり、溶液は光透過性を示すようになっている。このように、放電有りの場合はなしの場合に比べて顕著な脱色効果を奏したことから、本発明の有効性が確認された。   According to FIG. 8, in the comparative example without a discharge (dotted line), a broad absorption peak having a peak near 600 nm is seen. For this reason, it can be seen that the indigo carmine solution exhibits a blue color (visible light region of 400 to 500 nm remaining without being absorbed). On the other hand, in the example with a discharge (solid line), the absorption in the visible light region is lost, and the solution shows light transmittance. Thus, the effectiveness of the present invention was confirmed from the fact that there was a remarkable decoloring effect in the case with discharge compared to the case without discharge.

(第2実施形態)
図2は、本発明に係る液体処理装置の第2の実施の形態を示す図であって、本発明を適用した液体処理装置本体Bの内部構造を示すものである。
(Second Embodiment)
FIG. 2 is a diagram showing a second embodiment of the liquid processing apparatus according to the present invention, and shows the internal structure of a liquid processing apparatus main body B to which the present invention is applied.

液体処理装置本体Bは、気体放電部1内に設置する金属管から成る電圧印加電極40を、ガラス又はセラミックス等の誘電体から成る円筒状の誘電体管42内に挿入して設置し、前記電圧印加電極40の先端あるいは先端からやや離れた位置における誘電体管41の外側面に円環状の接地電極41を密着して設けている。また、前記誘電体管42の両端のうち、電圧印加電極40を挿入した側の一端は気体放電部1内の中空に支持し、他端は前記気体導出口11に接続している。なお、残余の構成は前記液体処理装置本体Aと同様である。 The liquid processing apparatus main body B is installed by inserting a voltage applying electrode 40 made of a metal tube installed in the gas discharge unit 1 into a cylindrical dielectric tube 42 made of a dielectric such as glass or ceramics, An annular ground electrode 41 is provided in close contact with the outer surface of the dielectric tube 41 at the tip of the voltage application electrode 40 or at a position slightly away from the tip. One end of the dielectric tube 42 on the side where the voltage application electrode 40 is inserted is supported in a hollow space in the gas discharge unit 1 and the other end is connected to the gas outlet 11. The remaining configuration is the same as that of the liquid processing apparatus main body A.

本液体処理装置本体Bによれば、前記両電極間での放電は誘電体管42の内部で生じ、プラズマ等も誘電体管42内のみで発生するから、活性化ガスPGは拡散することなく高濃度のプラズマ等を含有したまま、ただちに気体導出口11からマイクロバブル発生部2へと吸引される。そのため、寿命の短い各種ラジカル等の失活を最小限に抑えながら活性化ガスPG効率よくマイクロバブル化でき、処理能力の向上を図ることができる。 According to the main body B of the liquid processing apparatus, the discharge between the electrodes is generated inside the dielectric tube 42, and plasma or the like is generated only in the dielectric tube 42. Therefore, the activated gas PG does not diffuse. While containing high concentration plasma or the like, the gas is immediately sucked from the gas outlet 11 to the microbubble generator 2. Therefore, the activation gas PG can be efficiently microbubbled while minimizing the inactivation of various radicals having a short lifetime, and the processing capacity can be improved.

(第3実施形態)
図3並びに図4は、本発明に係る液体処理装置の第3の実施の形態を示す図であって、本発明を適用した液体処理装置本体C及び液体処理装置本体Dの内部構造を示すものである。
(Third embodiment)
3 and 4 are diagrams showing a third embodiment of the liquid processing apparatus according to the present invention, and showing the internal structure of the liquid processing apparatus main body C and the liquid processing apparatus main body D to which the present invention is applied. It is.

図3に示す液体処理装置本体Cは、気体放電部1内に設置する電圧印加電極50を中空ではない針状又は円錐体状に構成している以外は、前記液体処理装置本体Aと同様である。 The liquid processing apparatus main body C shown in FIG. 3 is the same as the liquid processing apparatus main body A except that the voltage application electrode 50 installed in the gas discharge unit 1 is configured in a needle shape or a cone shape that is not hollow. is there.

本液体処理装置本体Cによると、電圧印加電極50と接地電極51の間にはコロナ放電、火花放電、ストリーマ放電のいずれかの放電Sを生じるが、電圧印加電極50の形状を簡易な針状とできるため耐久性が高く、構造を簡便化できる。 According to the liquid processing apparatus main body C, a discharge S of any one of corona discharge, spark discharge, and streamer discharge is generated between the voltage application electrode 50 and the ground electrode 51. The shape of the voltage application electrode 50 is a simple needle shape. Therefore, the durability is high and the structure can be simplified.

また、図4に示す液体処理装置本体Dは、前記液体処理装置本体Cの改良例であり、電圧印加電極60は前記針状又は円錐体状の電圧印加電極50を多数集積して構成しているため、放電Sを生ずる領域を拡張することができ、プラズマ等の生成量を増大することが可能である。これにより、被処理液体Wの処理能力の向上を図ることができる。 Also, the liquid processing apparatus main body D shown in FIG. 4 is an improved example of the liquid processing apparatus main body C, and the voltage application electrode 60 is configured by integrating a large number of the needle-like or conical voltage application electrodes 50. Therefore, the region where the discharge S is generated can be expanded, and the generation amount of plasma or the like can be increased. Thereby, the processing capability of the liquid W to be processed can be improved.

(第4実施形態)
図5は、本発明に係る液体処理装置の第4の実施の形態を示す図であって、本発明を適用した液体処理装置本体Eの内部構造を示すものである。
(Fourth embodiment)
FIG. 5 is a diagram showing a fourth embodiment of a liquid processing apparatus according to the present invention, and shows an internal structure of a liquid processing apparatus main body E to which the present invention is applied.

本液体処理装置本体Eは、気体放電部1内に設置する電圧印加電極70を、金属管を複数本集積して構成している以外は、前記液体処理装置本体Aと同様である。 The main body E of the liquid processing apparatus is the same as the main body A of the liquid processing apparatus except that the voltage applying electrode 70 installed in the gas discharge unit 1 is configured by integrating a plurality of metal tubes.

いずれの金属管にも気体GSが供給され、かつ、すべての金属管の先端部と板状の設置電極71との間で放電Sを生じるため、放電Sを生ずる領域を拡張することができ、液体処理装置本体Aに比べてプラズマ等の生成量を増大することが可能である。これにより、被処理液体Wの処理能力の向上を図ることができる。 Gas GS is supplied to any of the metal tubes, and discharge S is generated between the tips of all the metal tubes and the plate-like installation electrodes 71, so that the region where the discharge S is generated can be expanded. Compared with the liquid processing apparatus main body A, it is possible to increase the generation amount of plasma or the like. Thereby, the processing capability of the liquid W to be processed can be improved.

(第5実施形態)
図6並びに図7は、本発明に係る液体処理装置の第5の実施の形態を示す図であって、本発明を適用した液体処理装置本体F及び液体処理装置本体Gの内部構造を示すものである。
(Fifth embodiment)
6 and 7 are views showing a fifth embodiment of the liquid processing apparatus according to the present invention and showing the internal structure of the liquid processing apparatus main body F and the liquid processing apparatus main body G to which the present invention is applied. It is.

液体処理装置本体Fは、気体放電部1の気体導入口10と気体導出口11とを、内径数mm以下、厚さ1mm前後のガラス又はセラミックス等の誘電体から成る円筒状の誘電体管82で接続し、該誘電体管82の外側面にはいずれも金属板から成る電圧印加電極80と接地電極81とを誘電体管82を挟み互いに対向させた状態で密着して設けており、残余の構成は前記液体処理装置本体Aと同様である。 In the liquid processing apparatus main body F, a cylindrical dielectric tube 82 made of a dielectric material such as glass or ceramic having an inner diameter of several mm or less and a thickness of about 1 mm is provided for the gas inlet 10 and the gas outlet 11 of the gas discharge unit 1. The voltage application electrode 80 and the ground electrode 81 made of a metal plate are provided in close contact with each other across the dielectric tube 82 on the outer surface of the dielectric tube 82, and the rest The configuration is the same as that of the liquid processing apparatus main body A.

本液体処理装置本体Fによれば、前記両電極間での放電は誘電体管82の内部で生じ、プラズマ等も誘電体管82内のみで発生するから、活性化ガスPGは拡散することなく高濃度のプラズマ等を含有したまま、ただちに気体導出口11からマイクロバブル発生部2へと吸引される。そのため、寿命の短い各種ラジカル等の失活を最小限に抑えながら活性化ガスPG効率よくマイクロバブル化でき、処理能力の向上を図ることができる。 According to the main body F of the liquid processing apparatus, the discharge between the electrodes is generated inside the dielectric tube 82, and plasma or the like is generated only in the dielectric tube 82. Therefore, the activated gas PG does not diffuse. While containing high concentration plasma or the like, the gas is immediately sucked from the gas outlet 11 to the microbubble generator 2. Therefore, the activation gas PG can be efficiently microbubbled while minimizing the inactivation of various radicals having a short lifetime, and the processing capacity can be improved.

また、図7に示す液体処理装置本体Gは、前記液体処理装置本体Fの改良例であり、電圧印加電極90と接地電極91はいずれも前記誘電体管82の外側面全周に金属板を環状に巻き付けた構成としたものである。この場合、両電極の位置関係は特に限定されない。 Further, the liquid processing apparatus main body G shown in FIG. 7 is an improved example of the liquid processing apparatus main body F, and the voltage applying electrode 90 and the ground electrode 91 are both metal plates on the entire outer surface of the dielectric tube 82. It is set as the structure wound by the annular | circular shape. In this case, the positional relationship between both electrodes is not particularly limited.

本液体処理装置本体Gによれば、気体放電を引き起こす高電界は、電圧印加電極90と接地電極91の間に発生するので、電子は誘電体管82の内壁面に沿って加速される。この場合、液体処理装置本体Fのように電極間のギャップ(距離)が短い場合と比較して、電子は電界によって十分に加速されるので、電子の得るエネルギーが増大する。このため、発生するプラズマ等のエネルギーが高く、しかも電子が長い距離を進む間に気体GS内の多くの原子・分子と電離・励起過程を生じるので、プラズマ密度やラジカル密度も液体処理装置本体Fに比べて増加するという有利な効果を奏するのである。 According to this liquid processing apparatus main body G, a high electric field that causes gas discharge is generated between the voltage application electrode 90 and the ground electrode 91, so that electrons are accelerated along the inner wall surface of the dielectric tube 82. In this case, compared to the case where the gap (distance) between the electrodes is short as in the liquid processing apparatus main body F, the electrons are sufficiently accelerated by the electric field, so that the energy obtained by the electrons increases. For this reason, since energy such as generated plasma is high and electrons are traveling a long distance, ionization / excitation processes occur with many atoms / molecules in the gas GS. There is an advantageous effect of increasing compared to the above.

以上、本発明に係る液体処理装置の実施の形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の技術的思想の範囲内において改良又は変更が可能であり、それらは本発明の技術的範囲に属するものとする。   As mentioned above, although embodiment of the liquid processing apparatus which concerns on this invention was described, this invention is not limited to the said embodiment, In the range of the technical idea of this invention, improvement or a change is possible, They shall belong to the technical scope of the present invention.

本発明に係る液体処理装置の適用対象は特に限定されず、液体中の有機物、無機物、微生物、細菌、ウイルス等の有害物質の分解除去全般に適用可能であるが、特に、有機物や微生物、細菌等を含む排水の浄化、医療廃棄物を含む汚染水の殺菌処理等に有用である。 The application target of the liquid processing apparatus according to the present invention is not particularly limited, and can be applied to the general decomposition and removal of harmful substances such as organic substances, inorganic substances, microorganisms, bacteria, and viruses in liquids. It is useful for the purification of wastewater containing etc. and the sterilization treatment of contaminated water containing medical waste.

本発明の第1実施形態に係る液体処理装置の全体構成図である。1 is an overall configuration diagram of a liquid processing apparatus according to a first embodiment of the present invention. 本発明の第2の実施の形態に係る液体処理装置における液体処理装置本体Bの内部構造図である。It is an internal structure figure of the liquid processing apparatus main body B in the liquid processing apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る液体処理装置における液体処理装置本体Cの内部構造図である。It is an internal structure figure of the liquid processing apparatus main body C in the liquid processing apparatus which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施の形態に係る液体処理装置の改良例における液体処理装置本体Dの内部構造図である。It is an internal structure figure of the liquid processing apparatus main body D in the modified example of the liquid processing apparatus which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施の形態に係る液体処理装置における液体処理装置本体Eの内部構造図である。It is an internal structure figure of the liquid processing apparatus main body E in the liquid processing apparatus which concerns on the 4th Embodiment of this invention. 本発明の第5の実施の形態に係る液体処理装置における液体処理装置本体Fの内部構造図である。It is an internal structure figure of the liquid processing apparatus main body F in the liquid processing apparatus which concerns on the 5th Embodiment of this invention. 本発明の第5の実施の形態に係る液体処理装置の改良例における液体処理装置本体Gの内部構造図である。It is an internal structure figure of the liquid processing apparatus main body G in the modified example of the liquid processing apparatus which concerns on the 5th Embodiment of this invention. 本発明の第1の実施形態に係る液体処理装置で行った脱色処理試験の測定結果を示すグラフである。It is a graph which shows the measurement result of the decoloring process test done with the liquid processing apparatus which concerns on the 1st Embodiment of this invention.

A〜G 液体処理装置本体
T 液槽
W 被処理液体
GS 気体
S 放電
PG 活性化ガス
R 渦流
V 負圧空洞部
マイクロバブル発生点
MB マイクロバブルを含む気液混合流体
GB1 ガスボンベ1
GB2 ガスボンベ2
1 気体放電部
マイクロバブル発生部
3 気体供給部
4 高圧電源
5 循環ポンプ
6 制御装置
7 気体供給管
8 液体供給管
9 給電線
10 気体導入口
11 気体導出口
12 電圧印加電極(液体処理装置本体A)
13 接地電極(液体処理装置本体A)
20 自吸口
21 ノズル
22 気液混合流体放出口
30 圧力調整弁
31〜34 電磁弁
40 電圧印加電極(液体処理装置本体B)
41 接地電極(液体処理装置本体B)
42 誘電体管(液体処理装置本体B)
50 電圧印加電極(液体処理装置本体C)
51 接地電極(液体処理装置本体C)
60 電圧印加電極(液体処理装置本体D)
61 接地電極(液体処理装置本体D)
70 電圧印加電極(液体処理装置本体E)
71 接地電極(液体処理装置本体E)
80 電圧印加電極(液体処理装置本体F)
81 接地電極(液体処理装置本体F)
82 誘電体管(液体処理装置本体F、G)
90 電圧印加電極(液体処理装置本体G)
91 接地電極(液体処理装置本体G)
A to G Liquid processing device main body T Liquid tank W Liquid to be processed GS Gas S Discharge PG Activation gas R Eddy current V Negative pressure cavity P Micro bubble generation point Gas-liquid mixed fluid GB1 containing MB microbubbles Gas cylinder 1
GB2 Gas cylinder 2
DESCRIPTION OF SYMBOLS 1 Gas discharge part 2 Micro bubble generation part 3 Gas supply part 4 High voltage power supply 5 Circulation pump 6 Control apparatus 7 Gas supply pipe 8 Liquid supply pipe 9 Feed line 10 Gas inlet 11 Gas outlet 12 Voltage application electrode (liquid processing apparatus main body A)
13 Ground electrode (Liquid treatment device body A)
20 Self-priming port 21 Nozzle 22 Gas-liquid mixed fluid discharge port 30 Pressure regulating valve 31-34 Solenoid valve 40 Voltage application electrode (liquid processing apparatus main body B)
41 Ground electrode (Liquid treatment device body B)
42 Dielectric tube (Liquid treatment device body B)
50 Voltage application electrode (Liquid treatment device body C)
51 Ground electrode (Liquid treatment device body C)
60 Voltage application electrode (liquid processing apparatus main body D)
61 Ground electrode (Liquid treatment device body D)
70 Voltage application electrode (liquid processing equipment body E)
71 Ground electrode (liquid processing equipment body E)
80 Voltage application electrode (liquid processing equipment main body F)
81 Ground electrode (Liquid treatment device body F)
82 Dielectric tube (Liquid treatment equipment body F, G)
90 Voltage application electrode (liquid processing device main body G)
91 Ground electrode (liquid processing equipment body G)

本発明は、各種の原料気体中で気体放電を発生させて得た活性化ガスをマイクロバブル化して液体中に拡散させることにより、該液体中の有機物、無機物、微生物、細菌、ウイルス等を効率良く分解処理することを目的とする液体処理装置に関する。   The present invention efficiently converts organic substances, inorganic substances, microorganisms, bacteria, viruses, etc. in the liquid by microbubbleing the activated gas obtained by generating gas discharge in various raw material gases and diffusing it in the liquid. The present invention relates to a liquid processing apparatus intended to be well decomposed.

上水、下水、産業排水などの液体中の有機物の酸化分解、殺菌、減菌、脱臭等の液体処理を行うために、オゾンが広く用いられている。この際、オゾンと被処理液体の接触面積を増加させて処理効率を高めるために、オゾン発生装置から得たオゾン含有ガスをマイクロバブル化して被処理液体中に拡散する方法、所謂マイクロバブルを用いた水処理装置が提案されている。「マイクロバブル」は「微細気泡」又は「微小気泡」とも呼ばれ、気泡のサイズについての定義は明確には確立していないが、その発生時において概ね直径1μmから100μmの気泡を指し、ミリ単位、センチ単位の通常の気泡とは異なる物性を有するため、当業者においてこれらと区別することが技術常識となっている。すなわち、通常の気泡が液中を急速に上昇して液面で破裂するのに対して、マイクロバブル、特に直径50μm以下の気泡は、体積が微細であるため上昇速度が遅く長時間液体中に滞在し続けること、また、液相と気相の界面における界面張力による加圧(自己加圧効果)が気泡の大きさに反比例することから、通常の気泡に比べ液体中への気体の溶解が促進されるという特性を有し、前記の液体処理に好適であることが知られている。なお、直径1μm以下の気泡は発生したマイクロバブルが液体中で収縮して形成され、計測法の確立や特性の解明は途上であるものの、当業者においては「ナノバブル」の用語により「マイクロバブル」と区分されていることも技術常識である。   Ozone is widely used to perform liquid treatments such as oxidative decomposition, sterilization, sterilization, and deodorization of organic substances in liquids such as clean water, sewage, and industrial wastewater. At this time, in order to increase the contact area between ozone and the liquid to be processed and to improve the processing efficiency, a method of soaking the ozone-containing gas obtained from the ozone generator into microbubbles and diffusing it into the liquid to be processed, so-called microbubbles are used. A water treatment device has been proposed. “Microbubbles” are also called “microbubbles” or “microbubbles”, and the definition of the size of the bubbles is not clearly established, but at the time of their occurrence, they generally refer to bubbles having a diameter of 1 μm to 100 μm, Since it has physical properties different from those of normal bubbles in centimeters, it is common technical knowledge for those skilled in the art to distinguish them from these. In other words, normal bubbles rapidly rise in the liquid and burst at the liquid level, whereas microbubbles, especially bubbles having a diameter of 50 μm or less, have a small volume, so the rising speed is slow and they remain in the liquid for a long time. Since the pressure due to the interfacial tension at the interface between the liquid phase and the gas phase (self-pressurization effect) is inversely proportional to the size of the bubble, the gas dissolves in the liquid compared to the normal bubble. It is known that it has the property of being promoted and is suitable for the liquid treatment. Bubbles having a diameter of 1 μm or less are formed by contraction of the generated microbubbles in the liquid, and although the establishment of measurement methods and elucidation of characteristics are still in progress, those skilled in the art use the term “nanobubble” as “microbubbles”. It is also common technical knowledge to be classified as

例えば特許文献1では、オゾン発生装置とマイクロバブル発生機をガス供給管等で接続して水処理を行っている。しかしながら、オゾン自体は酸化力が弱く、しかも空気あるいは酸素を含む気体中での放電によって生成したオゾン含有ガスをマイクロバブル化する途上で、ガス供給管内を移動する途中での失活や、ガス供給管等の内部での吸着によるオゾン密度の減少により、水処理効率が極端に低下するという問題がある。 For example, in Patent Document 1, water treatment is performed by connecting an ozone generator and a microbubble generator with a gas supply pipe or the like. However, ozone itself has a weak oxidizing power, and in addition, the ozone-containing gas generated by the discharge in the gas containing air or oxygen is converted into microbubbles, deactivation during the movement in the gas supply pipe, gas supply There is a problem that the water treatment efficiency is extremely lowered due to a decrease in ozone density due to adsorption inside a pipe or the like.

そこで、オゾンよりも酸化作用が強い原子状酸素ラジカル(Oラジカル)やヒドロキシルラジカル(OHラジカル)を被処理水中に直接生成して、有機物の酸化分解、殺菌、減菌、脱臭等を実現するために、被処理液体中に高電圧電極を設置し、高周波又はパルス電圧を印加して水中放電を起こす方法も提案されている(特許文献2)。しかしながら、放電電極が被処理液体中に浸漬されているため、放電を起こすためには数十KVを超える電圧を印加できる電源が必要となるだけでなく、安定した水中放電の生成及び維持には制御回路の最適化が不可欠である。そのため、水中放電方式は経済面、技術面における困難性が高いという問題を有する。   Therefore, atomic oxygen radicals (O radicals) and hydroxyl radicals (OH radicals), which have a stronger oxidizing action than ozone, are directly generated in the water to be treated to realize oxidative decomposition, sterilization, sterilization, deodorization, etc. of organic substances. In addition, a method has been proposed in which a high-voltage electrode is installed in a liquid to be treated and a high-frequency or pulse voltage is applied to cause an underwater discharge (Patent Document 2). However, since the discharge electrode is immersed in the liquid to be treated, not only a power source capable of applying a voltage exceeding several tens of KV is necessary to cause discharge, but also for stable generation and maintenance of underwater discharge. Optimization of the control circuit is essential. For this reason, the underwater discharge method has a problem of high economic and technical difficulties.

一方、被処理水を水滴化手段によって水滴化してストリーマ放電場に供給することにより、ストリーマ放電で発生するオゾンやOラジカル、OHラジカルで水滴中の処理対象物質を分解する水処理装置も提案されている(特許文献3)。この場合、被処理水を水滴状にして放電場に供給するため、小さな印加電圧でも放電を発生させることができるので、放電電極が被処理水中に浸漬される場合と比較して経済的である。また。本水処理装置はその前工程でストリーマ放電場中の気体を気泡状態にして被処理水中に供給する手段も兼ね備えているので、気体中に含まれる使用されずに残っていたオゾンの再利用も図っている。   On the other hand, a water treatment device has also been proposed in which water to be treated is made into water droplets by means of water droplets and supplied to a streamer discharge field, whereby ozone, O radicals, and OH radicals generated by streamer discharge decompose the target substance in the water droplets. (Patent Document 3). In this case, since the water to be treated is supplied in the form of water droplets to the discharge field, a discharge can be generated even with a small applied voltage, which is more economical than the case where the discharge electrode is immersed in the water to be treated. . Also. Since this water treatment device also has means for supplying the gas in the streamer discharge field into a bubble state in the previous process and supplying it to the water to be treated, it is possible to reuse the ozone remaining in the gas that has not been used. I am trying.

しかしながら、ストリーマ放電で発生するオゾンやOラジカル、OHラジカルと被処理水とは気液界面において反応するので、反応を生じる表面積を増加させるために水滴を微小化して供給する必要があるが、たとえ水滴を微小化してもストリーマ放電場の容量あるいは寸法を十分に大きく設定して、水滴がストリーマ放電場に滞在する時間を長くしない限り、オゾンや各種ラジカルと水滴を十分に反応させることはできない。   However, ozone, O radicals, and OH radicals generated in streamer discharges react with the water to be treated at the gas-liquid interface, so that it is necessary to supply water with fine droplets in order to increase the surface area where the reaction occurs. Even if the water droplets are miniaturized, ozone and various radicals cannot be sufficiently reacted with the water droplets unless the capacity or size of the streamer discharge field is set sufficiently large and the time during which the water droplets stay in the streamer discharge field is lengthened.

かかる欠点を補うために、ストリーマ放電場中の残留オゾンをマイクロバブル化し、前工程で被処理水に供給する方法が取られているが、オゾンや各種ラジカルの供給路中での失活に伴う処理能力の低下の問題は解決されていない。
特開2010−69387号公報 特開2005−58995号公報 特開2010−194527号公報
In order to make up for such drawbacks, a method has been adopted in which residual ozone in the streamer discharge field is microbubbled and supplied to the water to be treated in the previous process, but this is accompanied by deactivation in the supply path of ozone and various radicals. The problem of reduced processing capacity has not been solved.
JP 2010-69387 A Japanese Patent Laid-Open No. 2005-58995 JP 2010-194527 A

本発明は、上記の事情を鑑みてなされたものであり、被処理液体を効率良く、かつ、低コストで処理できる小型で簡便な構造を有する液体処理装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a liquid processing apparatus having a small and simple structure capable of processing a liquid to be processed efficiently and at low cost.

上記目的を達成するために、請求項1に記載の液体処理装置は、電圧印加電極と接地電極とを有する気体放電部と、これに一体的に直結した旋回式気液せん断方式のマイクロバブル発生部とを備え、前記気体放電部は、大気圧下での前記両電極間の気体放電により気体をプラズマ化させて活性化ガスを発生させ、前記マイクロバブル発生部は、前記気体放電部から導入した前記活性化ガスを被処理液体中で直径1〜100μmの気泡へとマイクロバブル化して気液混合流体を生成し、改めて被処理液体中に供給すること、を特徴とするIn order to achieve the above object, a liquid processing apparatus according to claim 1 includes a gas discharge unit having a voltage application electrode and a ground electrode, and generation of a swirl-type gas-liquid shearing type microbubble directly connected integrally therewith. The gas discharge unit generates an activated gas by converting the gas into plasma by gas discharge between the electrodes under atmospheric pressure, and the microbubble generation unit is introduced from the gas discharge unit. The activated gas is microbubbled into bubbles having a diameter of 1 to 100 μm in the liquid to be processed to generate a gas-liquid mixed fluid, and is supplied again into the liquid to be processed .

ここで、前記電圧印加電極並びに設置電極の構成は特に限定されないが、例えば電圧印加電極として注射針に代表される金属パイプを、接地電極として金属板を用いてもよい。この場合、電圧印加電極と接地電極間には、コロナ放電、火花放電、ストリーマ放電のいずれかが発生するようにする。Here, the configuration of the voltage application electrode and the installation electrode is not particularly limited. For example, a metal pipe represented by an injection needle may be used as the voltage application electrode, and a metal plate may be used as the ground electrode. In this case, any one of corona discharge, spark discharge, and streamer discharge is generated between the voltage application electrode and the ground electrode.

さらに、電圧印加電極として、金属針、金属細棒、金属ワイヤー、又はそれらの集合体で構成してもよい。あるいは、電圧印加電極と接地電極の一方又はその両方の表面を誘電体で覆ってもよく、この場合は誘電体バリア放電を生じて、放電域を拡散させることが可能である。さらに、前記気体放電部は、沿面放電やホロー放電など様々な放電を大気圧下で発生させる電極構造としてもよい。Furthermore, you may comprise as a voltage application electrode with a metal needle, a metal thin rod, a metal wire, or those aggregates. Alternatively, the surface of one or both of the voltage application electrode and the ground electrode may be covered with a dielectric, and in this case, a dielectric barrier discharge can be generated to diffuse the discharge region. Furthermore, the gas discharge section may have an electrode structure that generates various discharges such as creeping discharge and hollow discharge under atmospheric pressure.

また、前記電圧印加電極に供給する電流の電圧波形としては、数十Hzから数百kHzの交流(AC)波、数MHzから数百MHzのラジオ(RF)波などの正弦波形、パルス波形、インパルス波形などが挙げられる。In addition, the voltage waveform of the current supplied to the voltage application electrode includes a sinusoidal waveform such as an alternating current (AC) wave of several tens of Hz to several hundred kHz, a radio (RF) wave of several MHz to several hundred MHz, a pulse waveform, Examples include impulse waveforms.

一方、前記気体とは、空気をはじめ、酸素、窒素、アルゴン、ヘリウムなどのあらゆる気体のいずれか、あるいはそれらの混合気体である。また、前記気体放電とは、コロナ放電、火花放電、ストリーマ放電、誘電体バリア放電、沿面放電、ホロー放電等、気体中での各種の放電のいずれかである。On the other hand, the gas is any gas such as oxygen, nitrogen, argon, helium, or a mixture thereof, including air. The gas discharge is any one of various discharges in gas such as corona discharge, spark discharge, streamer discharge, dielectric barrier discharge, creeping discharge, hollow discharge, and the like.

ここで、コロナ放電は、大気中に設けられた針状電極と平板上電極との間に電圧を加えると、針状電極の尖端部分の空気が絶縁破壊を起こし、針尖端で微弱な光を発する放電である。必要とされる印加電圧は比較的高く数kV以上が必要であるが、除電器(イオナイザー)等に応用されている。Here, in the corona discharge, when a voltage is applied between the needle-like electrode provided in the atmosphere and the electrode on the flat plate, the air at the tip of the needle-like electrode causes dielectric breakdown, and weak light is emitted at the tip of the needle. This is a discharge. The required applied voltage is relatively high and needs to be several kV or more, but it is applied to a static eliminator (ionizer) or the like.

コロナ放電の電圧をさらに上げていくと、針状電極と平板状電極との間の空気が広範に絶縁破壊を起こして放電路を形成するが、これが火花放電である。When the voltage of the corona discharge is further increased, the air between the needle-like electrode and the plate-like electrode causes a wide breakdown and forms a discharge path, which is a spark discharge.

一方、針状電極が陰極の場合、陰極から発した「電子なだれ」の後に高密度の正イオンが残り、この正イオンがさらに「電子なだれ」を作って、最終的に針状電極と平板状電極との間にプラズマ状の放電路が形成されるストリーマ放電となる。On the other hand, when the acicular electrode is a cathode, high-density positive ions remain after the “electron avalanche” emitted from the cathode, and these positive ions further form an “electron avalanche”. A streamer discharge is formed in which a plasma-like discharge path is formed between the electrodes.

誘電体バリア放電は、金属電極の表面をガラスやセラミックス等の誘電体で覆うことにより、放電によって発生した電子が誘電体表面に蓄積して、印加電界の極性が逆転したときに蓄積された電子が対向電極側に加速されて電離・放電を維持するメカニズムによるもので、オゾン発生装置等に用いられる。誘電体を用いない電極による放電に比べ、オゾン等のラジカル密度が高い反面、ガス温度は低いのが特徴であり、大気圧プラズマ発生手段として一般的に用いられる放電である。In dielectric barrier discharge, the surface of a metal electrode is covered with a dielectric such as glass or ceramics, so that electrons generated by the discharge accumulate on the dielectric surface, and the electrons accumulated when the polarity of the applied electric field is reversed. Is accelerated by the counter electrode side to maintain the ionization / discharge, and is used for an ozone generator or the like. Compared with discharge using electrodes that do not use a dielectric, the density of radicals such as ozone is high, but the gas temperature is low, and this discharge is generally used as an atmospheric pressure plasma generating means.

沿面放電は、コロナ放電が誘電体などの表面を通して対向電極へ進展したものであり、誘電体表面に放電路が形成される。The creeping discharge is a corona discharge that progresses to the counter electrode through the surface of a dielectric or the like, and a discharge path is formed on the surface of the dielectric.

ホロー放電は、ホロー(穴又は窪み形状)の陰極内での放電である。電子エネルギーが大きく、高電離、高励起状態が実現するため、紫外線光源などに用いられる。The hollow discharge is a discharge in a hollow (hole or hollow shape) cathode. Since it has a large electron energy and realizes a high ionization and high excitation state, it is used for an ultraviolet light source or the like.

一方、活性化ガスとは、前記気体の種類に応じて気体放電により生じる各種のプラズマ、酸化又は還元作用を有する各種ラジカル(イオンを含む)、オゾンのいずれか、あるいはそれらの組み合わせ(以下「プラズマ等」と記す。)を含有するガスである。On the other hand, the activated gas is any one of various plasmas generated by gas discharge depending on the kind of gas, various radicals (including ions) having an oxidizing or reducing action, ozone, or a combination thereof (hereinafter “plasma”). Etc.))).

さらに、前記プラズマ化とは、前記気体中で前記気体放電を生じさせることによって前記気体の分子の一部を電離させ、前記プラズマ等を生成することをいう。Furthermore, the term “plasmaization” refers to generating the plasma or the like by ionizing a part of the molecules of the gas by causing the gas discharge in the gas.

また、前記旋回式気液せん断方式のマイクロバブル発生部とは、液体中に渦流を発生させて、導入した気体により該渦流の軸線上に負圧空洞部を形成し、該負圧空洞部の先端における液体との旋回速度差により気体を強制的かつ連続的に切断して粉砕することによりマイクロバブル化するものである。かかる旋回式気液せん断方式のマイクロバブル発生装置を前記気体放電部に一体的に直結すれば、前記負圧空洞部の負圧の効果により、前記気体放電部内において大気圧下で生成された活性化ガスを直ちに自吸するため、活性化ガスを加圧して強制的に送出することなく導入でき、しかも生成した活性化ガスを可能な限り固体表面と接することがないように保ちながら導入できるので、比較的簡易かつ小規模な構造により活性化ガスを大量に含むマイクロバブルを安定的に生成可能である。Further, the swirl type gas-liquid shearing type microbubble generating part generates a vortex in the liquid, forms a negative pressure cavity on the axis of the vortex by the introduced gas, The gas is forcibly and continuously cut and pulverized by the difference in swirling speed with the liquid at the tip to form microbubbles. If the swirl type gas-liquid shearing microbubble generator is directly connected to the gas discharge part, the activity generated under atmospheric pressure in the gas discharge part due to the negative pressure effect of the negative pressure cavity part. Since the activated gas is immediately self-absorbed, it can be introduced without pressurizing and forcibly sending the activated gas, and it can be introduced while keeping the generated activated gas in contact with the solid surface as much as possible. The microbubbles containing a large amount of the activated gas can be stably generated with a relatively simple and small-scale structure.

次に、請求項2に記載の液体処理装置は、請求項1に記載の液体処理装置であって、前記気体放電部は、特定の気体又は複数種類の気体を混合して成る混合気体を導入する気体供給手段を備えたことを特徴とする。Next, the liquid processing apparatus according to claim 2 is the liquid processing apparatus according to claim 1, wherein the gas discharge unit introduces a specific gas or a mixed gas formed by mixing a plurality of types of gases. It is characterized by comprising a gas supply means.

導入する気体の種類により前記気体放電部において生成される前記活性化ガスが含有するプラズマ等が異なるため、前記気体供給手段を備えることにより、前記気体放電部は導入する気体を変更可能とし、所望のプラズマ等を含有する活性化ガスを生成することができる。   Since the plasma contained in the activated gas generated in the gas discharge unit differs depending on the type of gas to be introduced, the gas discharge unit can change the gas to be introduced by providing the gas supply means, and the desired An activated gas containing plasma or the like can be generated.

また、請求項3に記載の液体処理装置は、前記気体放電部と前記マイクロバブル発生部とが脱着可能な構造を有することを特徴とする。 The liquid processing apparatus according to claim 3 has a structure in which the gas discharge part and the microbubble generating part are detachable.

本発明に係る液体処理装置は、大気圧下での気体放電により気体をプラズマ化させて得たプラズマ等を含有する活性化ガスを被処理液体中でマイクロバブル化して生成した気液混合流体を改めて被処理液体中に供給するものである。該気液混合流体に含まれる活性化ガスはマイクロバブル化されているため、該マイクロバブルと、これを供給された被処理液体との気液界面において、プラズマ等と液体分子の反応による液体処理を実現する。   The liquid processing apparatus according to the present invention comprises a gas-liquid mixed fluid generated by microbubbles an activated gas containing plasma or the like obtained by converting gas into plasma by gas discharge under atmospheric pressure in the liquid to be processed. It is supplied again into the liquid to be treated. Since the activated gas contained in the gas-liquid mixed fluid is made into microbubbles, liquid processing by reaction of plasma or the like with liquid molecules at the gas-liquid interface between the microbubbles and the liquid to be processed supplied thereto. To realize.

この際、(1)マイクロバブルの表面積/体積比率が通常の微細気泡に比べて大きいために気液界面の反応面積が増大すること、(2)マイクロバブルの被処理液体中での滞在時間、すなわち気液界面での反応時間が長いこと、(3)マイクロバブルの自己加圧効果により活性化ガスが強制的に被処理液体中に溶解させられることで反応が増進されること、等の効果により、活性化ガスを通常の気泡として直接被処理液体中に放出する場合に比べてプラズマ等と被処理液体との反応効率が格段に増加し、しかも、寿命の短いプラズマ等が失活する前に被処理液体中の処理対象物質と反応させることができるので、被処理液体を効率よく、かつ低コストで処理することができる。特に、水と反応することで酸化力の強い過酸化水素(H2О2)を生成するOラジカルを含む活性化ガスを被処理液体中に供給した場合は、被処理物質を特に効率よく酸化分解することができる。 At this time, (1) the reaction area at the gas-liquid interface increases because the surface area / volume ratio of the microbubbles is larger than that of normal fine bubbles, (2) the residence time of the microbubbles in the liquid to be treated, That is, the reaction time at the gas-liquid interface is long, and (3) the reaction is enhanced by forcibly dissolving the activated gas in the liquid to be treated by the self-pressurization effect of the microbubbles. As a result, the reaction efficiency between the plasma and the liquid to be processed is significantly increased as compared with the case where the activated gas is directly discharged into the liquid to be processed as normal bubbles, and before the plasma or the like having a short lifetime is deactivated. Therefore, the liquid to be treated can be processed efficiently and at low cost. In particular, when an activated gas containing O radicals that generate hydrogen peroxide (H2O2), which has strong oxidizing power by reacting with water, is supplied into the liquid to be treated, the substance to be treated is oxidized and decomposed particularly efficiently. Can do.

また、活性化ガスを被処理液体中に直接気泡として放出した場合、そもそも放出時の気泡の初速は小さい上に、軽量で慣性の小さな気泡は被処理液体との摩擦抵抗により放出後ただちに減速して浮上を開始してしまうため、活性化ガスは放出点から広範囲には拡散しにくい。そのため、被処理液体の量が多い場合には、液体処理効率を高めるために別途被処理液体の攪拌や循環が必要となる場合がある。 In addition, when the activated gas is released directly into the liquid to be treated as bubbles, the initial velocity of the bubbles is small in the first place, and the light and small inertia bubbles are immediately decelerated after being released due to frictional resistance with the liquid to be treated. Therefore, the activated gas is difficult to diffuse over a wide range from the discharge point. Therefore, when the amount of the liquid to be processed is large, it may be necessary to separately stir and circulate the liquid to be processed in order to increase the liquid processing efficiency.

一方、本発明に係る液体処理装置は、活性化ガスを被処理液体との気液混合流体として噴出するため、噴出された気液混合流体はマイクロバブル発生部に被処理液体を圧送するポンプの出力に応じて比較的大きな初速と指向性を有する。しかも、単なる気泡よりも重く慣性の大きな気液混合流体は、被処理液体中をより遠くまで進んで被処理液体を攪拌・循環させる。そのため、含有される活性化ガスのマイクロバブルもより広範囲に拡散されるから、液体処理の効率を高めるという効果も奏するのである。 On the other hand, since the liquid processing apparatus according to the present invention ejects the activated gas as a gas-liquid mixed fluid with the liquid to be processed, the jetted gas-liquid mixed fluid is a pump of the pump that pumps the liquid to be processed to the microbubble generating unit. It has a relatively large initial speed and directivity according to the output. In addition, the gas-liquid mixed fluid that is heavier than mere bubbles and has a large inertia proceeds further in the liquid to be processed, and stirs and circulates the liquid to be processed. For this reason, the microbubbles of the activated gas contained therein are also diffused over a wider range, so that the effect of increasing the efficiency of the liquid treatment is also achieved.

また、本発明に係る液体処理装置は、気体放電により活性化ガスを発生させるため、水中放電に要するほどの高電圧を必要とせず、比較的低コストで実現できる。   Moreover, since the liquid processing apparatus according to the present invention generates activated gas by gas discharge, it does not require a high voltage required for underwater discharge and can be realized at a relatively low cost.

また、前記気体放電部と前記マイクロバブル発生部とを一体的に直結した状態とすることで、活性化ガスをマイクロバブル発生部に導入するためのパイプやホースを必要とせず、寿命の短いプラズマ等が失活する前に活性化ガスをマイクロバブル化でき、被処理液体を効率よく処理することができる。   In addition, since the gas discharge unit and the microbubble generation unit are integrally connected directly, a pipe or a hose for introducing the activation gas into the microbubble generation unit is not required, and the plasma has a short life. The activated gas can be made into microbubbles before the liquid is deactivated, and the liquid to be treated can be processed efficiently.

また、前記気体放電部の電圧印加電極と接地電極の構造や形状を変更することにより、両電極間にはコロナ放電、火花放電、ストリーマ放電、誘電体バリア放電、沿面放電、ホロー放電等の様々な形態の放電を発生させることができるため、発生させるプラズマ等の有するエネルギーの制御が可能となり、被処理液体の条件に応じた処理が可能となる。   In addition, by changing the structure and shape of the voltage application electrode and the ground electrode of the gas discharge part, there are various corona discharge, spark discharge, streamer discharge, dielectric barrier discharge, creeping discharge, hollow discharge, etc. between the two electrodes. Therefore, it is possible to control the energy of the generated plasma and the like, and it is possible to perform processing according to the conditions of the liquid to be processed.

また、前記気体放電部は、特定の気体又は複数種類の気体を混合して成る混合気体を導入する気体供給手段を備えるため、供給する気体の種類や混合比の変更が可能である。そのため、オゾン、Oラジカル、OHラジカル等のみでなく、比較的寿命の長い準安定励起状態のアルゴンラジカルやヘリウムラジカル、窒素ラジカル等を含有する活性化ガスを被処理液体中にマイクロバブル化して供給することができるので、該マイクロバブルの気液界面で液体中の水分子を解離してOHラジカルを効率よく生成するほか、液体中に溶解している各種化学物質の分解や化学反応を促進することができる。   Moreover, since the said gas discharge part is provided with the gas supply means which introduces the mixed gas formed by mixing a specific gas or multiple types of gas, the kind and mixing ratio of the gas to supply can be changed. Therefore, not only ozone, O radical, OH radical, etc., but also activated gas containing relatively long-lived metastable excited argon radical, helium radical, nitrogen radical, etc., is microbubbled into the liquid to be treated. In addition to efficiently generating OH radicals by dissociating water molecules in the liquid at the gas-liquid interface of the microbubbles, it promotes the decomposition and chemical reaction of various chemical substances dissolved in the liquid. be able to.

また、前記マイクロバブル発生部が、前記活性化ガスを直径1〜100μmのマイクロバブルとして液体中に供給するため、プラズマ等が被処理液体と接触する気液界面の表面積を格段に増加することができるとともに、マイクロバブルはその性質上、通常の気泡に比べて被処理液体中を長時間浮遊するため、プラズマ等と被処理物質の反応時間を長く保つことができ、処理の効率を更に高めることができる。   In addition, since the microbubble generator supplies the activated gas as microbubbles having a diameter of 1 to 100 μm into the liquid, the surface area of the gas-liquid interface where the plasma or the like comes into contact with the liquid to be treated may be significantly increased. In addition, since microbubbles float in the liquid to be treated for a long time compared to normal bubbles due to their nature, the reaction time of plasma and other substances to be treated can be kept longer, further improving the efficiency of treatment. Can do.

さらに、前記気体放電部と前記マイクロバブル発生部とが脱着可能な構造を有するため、該液体処理装置の用途や使用条件に応じて、気体放電部のタイプを任意に交換可能となるので液体処理装置の適用範囲を拡大でき、また、気体放電部あるいはマイクロバブル発生部のいずれかが故障した際にはそれだけを交換すればよいため経済的である。 Furthermore, since the gas discharge part and the microbubble generator have a detachable structure, the type of the gas discharge part can be arbitrarily replaced according to the use and use conditions of the liquid processing apparatus, so that the liquid processing It is economical because the applicable range of the apparatus can be expanded, and when either the gas discharge part or the microbubble generation part fails, only that part needs to be replaced.

以下では、本発明に係る液体処理装置の実施の形態について、図1乃至図8に基づいて詳細に説明する。なお、以下の実施形態は、液体処理装置本体の構成のみが異なるため、図2乃至図7は液体処理装置本体のみを示しており、液体処理装置本体以外の本発明の構成はいずれも図1と共通である。 Hereinafter, an embodiment of a liquid processing apparatus according to the present invention will be described in detail with reference to FIGS. 1 to 8. Since the following embodiments differ only in the configuration of the liquid processing apparatus main body, FIGS. 2 to 7 show only the liquid processing apparatus main body, and all the configurations of the present invention other than the liquid processing apparatus main body are shown in FIG. And in common.

(第1実施形態)
図1は、本発明に係る液体処理装置の第1の実施の形態を示す図であって、本発明を適用した液体処理装置Aとその作動状態を示すものである。
(First embodiment)
FIG. 1 is a diagram showing a first embodiment of a liquid processing apparatus according to the present invention, and shows a liquid processing apparatus A to which the present invention is applied and its operating state.

図1に示すように、液体処理装置本体Aは、気体放電部1とマイクロバブル発生部2を一体的に直結して成り、液槽Tを満たした被処理液体Wの液中に浸漬されている。気体放電部1は気体GSを供給する気体供給部3と気体供給管7により接続されており、一方、マイクロバブル発生部2は、やはり液中に浸漬された循環ポンプ5と液体供給管8により接続されている。 As shown in FIG. 1, the liquid processing apparatus main body A is formed by directly connecting the gas discharge unit 1 and the microbubble generation unit 2 integrally, and is immersed in the liquid to be processed W filling the liquid tank T. Yes. The gas discharge part 1 is connected by a gas supply part 3 for supplying a gas GS and a gas supply pipe 7, while the microbubble generation part 2 is also connected by a circulation pump 5 and a liquid supply pipe 8 which are also immersed in the liquid. It is connected.

気体放電部1は、例えばアクリル樹脂等の絶縁材料で形成され、気体導入口10と気体導出口11が設けられており、気体導入口10に気体供給管7が接続されている。 The gas discharge part 1 is formed of an insulating material such as acrylic resin, for example, and is provided with a gas inlet 10 and a gas outlet 11, and a gas supply pipe 7 is connected to the gas inlet 10.

気体放電部1の内部には、金属管から成る電圧印加電極12が気体導入口10に取り付けられ、気体供給管7から供給された気体GSが電圧印加電極12の内部を通過してその先端から気体放電部1内に導入されるよう構成されている。また、電圧印加電極12の先端から適宜の間隔を空けてその軸線に対し垂直に銅板等の金属板から成る接地電極13が支持されている。なお、電圧印加電極12としては、例えば外径0.7mm、内径0.5mm以下の注射針様の金属管が好適である。 Inside the gas discharge part 1, a voltage application electrode 12 made of a metal tube is attached to the gas introduction port 10, and the gas GS supplied from the gas supply tube 7 passes through the inside of the voltage application electrode 12 from its tip. It is configured to be introduced into the gas discharge unit 1. A ground electrode 13 made of a metal plate such as a copper plate is supported perpendicularly to the axis of the voltage application electrode 12 at an appropriate interval. As the voltage application electrode 12, for example, an injection needle-like metal tube having an outer diameter of 0.7 mm and an inner diameter of 0.5 mm or less is suitable.

前記電圧印加電極12と接地電極13は給電線9によりそれぞれ高圧電源4に接続されており、高圧電源4からパルス電圧やAC電圧、ラジオ波電圧が印加されると、印加された電圧に応じて、電圧印加電極12と接地電極13の間でコロナ放電、火花放電、ストリーマ放電のいずれかの放電Sが発生する。 The voltage application electrode 12 and the ground electrode 13 are connected to the high-voltage power supply 4 by a feeder 9, respectively, and when a pulse voltage, an AC voltage, or a radio wave voltage is applied from the high-voltage power supply 4, the voltage application electrode 12 and the ground electrode 13 correspond to the applied voltage. Any one of corona discharge, spark discharge, and streamer discharge S is generated between the voltage application electrode 12 and the ground electrode 13.

かかる構成により、気体供給部3から気体導入管7を通じて電圧印加電極12の先端から気体放電部1内に導入された気体GSは、前記放電Sによりその一部がプラズマ等化され、気体放電部1の内部は該プラズマ等を含有する活性化ガスPGで満たされる。 With this configuration, the gas GS introduced into the gas discharge unit 1 from the tip of the voltage application electrode 12 from the gas supply unit 3 through the gas introduction tube 7 is partially plasma-equalized by the discharge S, and the gas discharge unit The interior of 1 is filled with an activated gas PG containing the plasma or the like.

一方、マイクロバブル発生部2は、本実施形態では旋回式気液せん断方式を採用している。マイクロバブル発生部2の内壁は円筒形に形成されており、気体放電部1との接続面の中心には気体放電部1の前記気体導出口11と直結する自吸口20と、自吸した活性化ガスPGをマイクロバブル発生部2の内部に導入するノズル21とを備え、反対面の中心には発生したマイクロバブルを含む気液混合流体MBを液槽T内に放出する気液混合流体放出口22を備えている。 On the other hand, the microbubble generator 2 employs a swirl type gas-liquid shearing method in the present embodiment. The inner wall of the microbubble generating part 2 is formed in a cylindrical shape, and a self-sucking port 20 directly connected to the gas outlet 11 of the gas discharge part 1 at the center of the connection surface with the gas discharge part 1 and the self-sucking activity A gas-liquid mixed fluid discharge that discharges the gas-liquid mixed fluid MB containing the generated microbubbles into the liquid tank T at the center of the opposite surface. An outlet 22 is provided.

循環ポンプ5から液体供給管8を通じて圧送供給された被処理液体Wは、マイクロバブル発生部2の内部で前記内壁に沿って渦流Rを形成する。ノズル21から導入された活性化ガスPGは、渦流による遠心分離作用により渦流の旋回軸線上に負圧の旋回空洞部Vを形成する。かかる負圧により、活性化ガスPGはマイクロバブル発生部2の内部に連続的に自給されるとともに、前記負圧空洞部Vの先端に生じるマイクロバブル発生点Pにおいて、被処理液体Wとの旋回速度差により強制的かつ連続的に切断・粉砕されてマイクロバブル化するのである。 The liquid W to be processed which is pressure-fed and supplied from the circulation pump 5 through the liquid supply pipe 8 forms a vortex R along the inner wall inside the microbubble generator 2. The activated gas PG introduced from the nozzle 21 forms a swirling cavity V having a negative pressure on the swirling axis of the swirl due to the centrifugal separation action by the swirl. Due to the negative pressure, the activated gas PG is continuously supplied to the inside of the microbubble generator 2 and swirls with the liquid W at the microbubble generation point P generated at the tip of the negative pressure cavity V. It is forcibly and continuously cut and pulverized by the speed difference to form microbubbles.

次に、気体供給部3は、気体供給管7の接続口以外に少なくとも4つの開口部を有する中空容器から成る。気体供給管7に接続した開口部には圧力調整弁30を設けている。気体放電部1へ供給する気体GSの量及び圧力を調節することができる。また、前記複数の開口部には、気体放電部1で発生させたいプラズマ等の種類に応じた気体GSを蓄えたガスボンベGB1及び空気又は窒素を蓄えたガスボンベGB2を接続することができる。 Next, the gas supply unit 3 includes a hollow container having at least four openings in addition to the connection port of the gas supply pipe 7. A pressure regulating valve 30 is provided at the opening connected to the gas supply pipe 7. The amount and pressure of the gas GS supplied to the gas discharge unit 1 can be adjusted. Further, a gas cylinder GB1 storing a gas GS corresponding to a type of plasma or the like desired to be generated in the gas discharge section 1 and a gas cylinder GB2 storing air or nitrogen can be connected to the plurality of openings.

なお、前述の通りマイクロバブル発生部2がその内部に生じる負圧により活性化ガスPGを自吸するため、これと接続する気体放電部1内への気体GSの供給も大気圧との差圧により自動的に達成される。そのため、気体供給部3を特段に加圧する必要はなく、気体GSの供給圧力が大気圧と同等となるように圧力調整弁30を調整した場合、原則として気体放電部1内の圧力は大気圧の状態が維持される。 As described above, since the microbubble generating unit 2 self-sucks the activated gas PG due to the negative pressure generated in the microbubble generating unit 2, the supply of the gas GS into the gas discharging unit 1 connected thereto is also a differential pressure from the atmospheric pressure. Achieved automatically. Therefore, it is not necessary to pressurize the gas supply unit 3 in particular, and when the pressure regulating valve 30 is adjusted so that the supply pressure of the gas GS is equal to the atmospheric pressure, the pressure in the gas discharge unit 1 is basically the atmospheric pressure. The state of is maintained.

ここで、活性化ガス化したい気体GSが空気の場合は、気体供給部3を大気開放し、圧力調整弁30も開放することで、気体供給管7に大気をそのまま導入させればよい。一方、活性化ガス化したい気体GSが空気以外の例えば酸素、窒素、アルゴン、ヘリウム等の気体あるいはそれらの混合気体である場合は、気体供給部3の開口部の一つに接続したガスボンベB1から前記所望の気体GSを導入するとともに、他の開口部を大気開放して気体供給部3の内部を前記所望の気体GSで置換すればよい。 Here, when the gas GS to be activated gas is air, the atmosphere may be introduced into the gas supply pipe 7 as it is by opening the gas supply unit 3 to the atmosphere and also opening the pressure regulating valve 30. On the other hand, when the gas GS to be activated gas is a gas other than air, such as oxygen, nitrogen, argon, helium, or a mixed gas thereof, from the gas cylinder B1 connected to one of the openings of the gas supply unit 3 The desired gas GS may be introduced, and the other opening may be opened to the atmosphere to replace the inside of the gas supply unit 3 with the desired gas GS.

さらに、前記圧力調整弁30を調整して気体放電部1に流入する気体GSの量を調整することにより、マイクロバブル発生部2内で発生するマイクロバブルの粒径を制御することも可能である。本実施形態の試作機による試験では、圧力調整弁30の開度を絞ることによりマイクロバブルの粒径が連続的に小さくなることが確認できた。前記マイクロバブル発生部2内部の被処理液体Wに生ずる渦流Rの旋回速度は循環ポンプ5の出力やホース等の長さや内径により決定されるが、該旋回速度が一定の場合、単位時間内にマイクロバブル発生部2内に送りこまれる活性化ガスPGの量が少ないほど、前記負圧空洞部Vを形成する気体量も少なくなる。そのため、単位時間当たりに前記マイクロバブル発生点Pにおいてマイクロバブル化される活性化ガスPGの量も小さくなるため、マイクロバブルの粒径が小さくなるものと考えられる。 Furthermore, it is also possible to control the particle size of the microbubbles generated in the microbubble generating unit 2 by adjusting the pressure adjusting valve 30 and adjusting the amount of the gas GS flowing into the gas discharging unit 1. . In the test using the prototype of the present embodiment, it was confirmed that the microbubble particle size was continuously reduced by reducing the opening of the pressure regulating valve 30. The swirling speed of the vortex R generated in the liquid W to be treated inside the microbubble generator 2 is determined by the output of the circulation pump 5 and the length and inner diameter of the hose, etc., but within a unit time when the swirling speed is constant. The smaller the amount of the activated gas PG fed into the microbubble generator 2, the smaller the amount of gas that forms the negative pressure cavity V. Therefore, since the amount of the activated gas PG that is microbubbled at the microbubble generation point P per unit time is also small, the particle size of the microbubbles is considered to be small.

ところで、循環ポンプ5の作動を停止した場合には、マイクロバブル発生部2の内部の負圧が消失するため、被処理液体Wがノズル21から気体放電部1内に逆流することになる。これを防ぐためには、気体供給部3の気体導入管7を接続した開口部以外の開口部に電磁弁31乃至34を設け、循環ポンプ5の作動とこれら電磁弁の開閉を連動して制御可能な制御装置6を設けておく。電磁弁31には各種の気体GSを蓄積したガスボンベGB1を、電磁弁32には大気よりもやや加圧した空気あるいは窒素を蓄積したガスボンベGB2を接続し、電磁弁33及び電磁弁34は大気開放口とする。 By the way, when the operation of the circulation pump 5 is stopped, the negative pressure inside the microbubble generator 2 disappears, so that the liquid W to be processed flows backward from the nozzle 21 into the gas discharge unit 1. In order to prevent this, the solenoid valves 31 to 34 are provided in openings other than the opening connected to the gas introduction pipe 7 of the gas supply section 3, and the operation of the circulation pump 5 and the opening and closing of these solenoid valves can be controlled in conjunction with each other. A control device 6 is provided. A gas cylinder GB1 storing various gases GS is connected to the solenoid valve 31, a gas cylinder GB2 storing air or nitrogen slightly pressurized from the atmosphere is connected to the solenoid valve 32, and the solenoid valves 33 and 34 are opened to the atmosphere. Mouth.

制御装置6により、循環ポンプ5の動作が停止すると同時に電磁弁31、33、34を閉じ、電磁弁32を開くようにすれば、ガスボンベGB2内の空気あるいは窒素により気体供給部3及び気体放電部1内の気圧が増加し、マイクロバブル発生部2から被処理液体Wが逆流してくることを防止できる。これにより本液体処理装置は、液体処理を断続して行うことが可能となる。 If the control device 6 stops the operation of the circulation pump 5 and simultaneously closes the solenoid valves 31, 33, and 34 and opens the solenoid valve 32, the gas supply unit 3 and the gas discharge unit with air or nitrogen in the gas cylinder GB2. It can prevent that the to-be-processed liquid W flows backward from the microbubble generation | occurrence | production part 2 because the atmospheric | air pressure in 1 increases. As a result, the liquid processing apparatus can perform liquid processing intermittently.

次に、本実施形態に係る液体処理装置Aを用いて特定の気体GSから生成した活性化ガスPGをマイクロバブル化して被処理液体Wを処理する液体処理方法について説明する。 Next, a liquid processing method for processing the liquid W to be processed by microbubbles the activated gas PG generated from the specific gas GS using the liquid processing apparatus A according to the present embodiment will be described.

まず、あらかじめ電磁弁31、33、34を閉じ、電磁弁32を開くことにより気体放電部1内に空気又は窒素を導入した状態の液体処理装置Aと循環ポンプ5を液槽T内の被処理液体Wに浸漬する。 First, the electromagnetic valves 31, 33, and 34 are closed in advance and the electromagnetic valve 32 is opened, so that the liquid processing apparatus A and the circulation pump 5 in a state where air or nitrogen is introduced into the gas discharge unit 1 are processed in the liquid tank T. Immerse in liquid W.

次に、循環ポンプ5を作動させると、液体供給管8を通じてマイクロバブル発生部2内に圧送された被処理液体Wが高速旋回する渦流Rを生じる。渦流Rの旋回軸線上には負圧の旋回空洞部Vが形成されるため、かかる負圧の効果によりノズル21を通じて気体放電部1内の空気又は窒素がマイクロバブル発生部2内に吸引され、マイクロバブル化して気液混合流体放出口22から被処理液体W中へ放出される。 Next, when the circulation pump 5 is operated, the eddy current R in which the liquid W to be processed, which is pumped into the microbubble generator 2 through the liquid supply pipe 8, swirls at high speed is generated. Since a negative pressure swirl cavity V is formed on the swirl axis of the vortex R, air or nitrogen in the gas discharge unit 1 is sucked into the microbubble generator 2 through the nozzle 21 due to the negative pressure effect. Microbubbles are generated and discharged from the gas-liquid mixed fluid discharge port 22 into the liquid W to be processed.

続いて、電磁弁32を閉じると同時に電磁弁31、34を開くと、ガスボンベGB2からの空気又は窒素の供給は停止し、代わりにガスボンベGB1から特定の気体GSが気体供給部3を経由して気体放電部1内に導入され、そのままマイクロバブル発生部2内へと吸引されてマイクロバブル化され始める。 Subsequently, when the solenoid valve 32 is closed and the solenoid valves 31 and 34 are opened at the same time, the supply of air or nitrogen from the gas cylinder GB2 is stopped, and a specific gas GS from the gas cylinder GB1 passes through the gas supply unit 3 instead. It is introduced into the gas discharge part 1 and is sucked into the microbubble generating part 2 as it is to start microbubbles.

この状態で、高圧電源4を作動させると、気体放電部1内に設置した注射針様の金属管から成る電圧印加電極12と金属板から成る接地電極13との間ではコロナ放電が生じ、気体放電部1内の気体GSの一部がプラズマ等化することで活性化ガスPGを発生させる。活性化ガスPGは、ただちにマイクロバブル発生部2内へと吸引され、被処理液体W中でマイクロバブル化されて液槽T中に放出され、被処理液体W中の被処理物質と反応するのである。 When the high-voltage power supply 4 is operated in this state, corona discharge occurs between the voltage application electrode 12 made of an injection needle-like metal tube installed in the gas discharge unit 1 and the ground electrode 13 made of a metal plate. An activated gas PG is generated when a part of the gas GS in the discharge unit 1 is plasma-equalized. Since the activated gas PG is immediately sucked into the microbubble generator 2, is microbubbled in the liquid W to be processed, is released into the liquid tank T, and reacts with the substance to be processed in the liquid W to be processed. is there.

以上の図1に示す第1実施形態に係る液体処理装置の試作機を用い、純水32L(リットル)に25mg/Lの濃度で溶解させたインジゴカルミン溶液を被処理液体Wとして放電を行う脱色処理を行い、放電を行わない場合と対比させる、本発明の効果を実証する試験を行った。試験の条件は以下の通りであり、図8は、処理開始から17日後の溶液の放電有り・なしの場合の紫外可視分光スペクトルの計測値を対比させてグラフにしたものである。
被処理液体の循環流量:13L/分
放電電力:70W
印加電圧:4〜5kV
パルス間隔:1ms
処理時間:2時間/日
Decolorization in which discharge is performed using the indigo carmine solution dissolved in pure water 32L (liter) at a concentration of 25 mg / L as the liquid W to be processed using the prototype of the liquid processing apparatus according to the first embodiment shown in FIG. A test was performed to verify the effect of the present invention in comparison with the case where the treatment was performed and no discharge was performed. The test conditions are as follows, and FIG. 8 is a graph comparing the measured values of the UV-visible spectrum with and without discharge of the solution 17 days after the start of the treatment.
Circulating flow rate of liquid to be treated: 13 L / min Discharge power: 70 W
Applied voltage: 4-5kV
Pulse interval: 1 ms
Processing time: 2 hours / day

図8によると、放電なしの比較例(点線)では600nm付近にピークを有する幅の広い吸収ピークが見られる。このため、インジゴカルミン溶液は青色(吸収されずに残った400〜500nmの可視光領域)を呈していることが分かる。一方、放電有りの実施例(実線)では、可視光領域の吸収がなくなり、溶液は光透過性を示すようになっている。このように、放電有りの場合はなしの場合に比べて顕著な脱色効果を奏したことから、本発明の有効性が確認された。   According to FIG. 8, in the comparative example without a discharge (dotted line), a broad absorption peak having a peak near 600 nm is seen. For this reason, it can be seen that the indigo carmine solution exhibits a blue color (visible light region of 400 to 500 nm remaining without being absorbed). On the other hand, in the example with a discharge (solid line), the absorption in the visible light region is lost, and the solution shows light transmittance. Thus, the effectiveness of the present invention was confirmed from the fact that there was a remarkable decoloring effect in the case with discharge compared to the case without discharge.

(第2実施形態)
図2は、本発明に係る液体処理装置の第2の実施の形態を示す図であって、本発明を適用した液体処理装置本体Bの内部構造を示すものである。
(Second Embodiment)
FIG. 2 is a diagram showing a second embodiment of the liquid processing apparatus according to the present invention, and shows the internal structure of a liquid processing apparatus main body B to which the present invention is applied.

液体処理装置本体Bは、気体放電部1内に設置する金属管から成る電圧印加電極40を、ガラス又はセラミックス等の誘電体から成る円筒状の誘電体管42内に挿入して設置し、前記電圧印加電極40の先端あるいは先端からやや離れた位置における誘電体管41の外側面に円環状の接地電極41を密着して設けている。また、前記誘電体管42の両端のうち、電圧印加電極40を挿入した側の一端は気体放電部1内の中空に支持し、他端は前記気体導出口11に接続している。なお、残余の構成は前記液体処理装置本体Aと同様である。 The liquid processing apparatus main body B is installed by inserting a voltage applying electrode 40 made of a metal tube installed in the gas discharge unit 1 into a cylindrical dielectric tube 42 made of a dielectric such as glass or ceramics, An annular ground electrode 41 is provided in close contact with the outer surface of the dielectric tube 41 at the tip of the voltage application electrode 40 or at a position slightly away from the tip. One end of the dielectric tube 42 on the side where the voltage application electrode 40 is inserted is supported in a hollow space in the gas discharge unit 1 and the other end is connected to the gas outlet 11. The remaining configuration is the same as that of the liquid processing apparatus main body A.

本液体処理装置本体Bによれば、前記両電極間での放電は誘電体管42の内部で生じ、プラズマ等も誘電体管42内のみで発生するから、活性化ガスPGは拡散することなく高濃度のプラズマ等を含有したまま、ただちに気体導出口11からマイクロバブル発生部2へと吸引される。そのため、寿命の短い各種ラジカル等の失活を最小限に抑えながら活性化ガスPG効率よくマイクロバブル化でき、処理能力の向上を図ることができる。 According to the main body B of the liquid processing apparatus, the discharge between the electrodes is generated inside the dielectric tube 42, and plasma or the like is generated only in the dielectric tube 42. Therefore, the activated gas PG does not diffuse. While containing high concentration plasma or the like, the gas is immediately sucked from the gas outlet 11 to the microbubble generator 2. Therefore, the activation gas PG can be efficiently microbubbled while minimizing the inactivation of various radicals having a short lifetime, and the processing capacity can be improved.

(第3実施形態)
図3並びに図4は、本発明に係る液体処理装置の第3の実施の形態を示す図であって、本発明を適用した液体処理装置本体C及び液体処理装置本体Dの内部構造を示すものである。
(Third embodiment)
3 and 4 are diagrams showing a third embodiment of the liquid processing apparatus according to the present invention, and showing the internal structure of the liquid processing apparatus main body C and the liquid processing apparatus main body D to which the present invention is applied. It is.

図3に示す液体処理装置本体Cは、気体放電部1内に設置する電圧印加電極50を中空ではない針状又は円錐体状に構成している以外は、前記液体処理装置本体Aと同様である。 The liquid processing apparatus main body C shown in FIG. 3 is the same as the liquid processing apparatus main body A except that the voltage application electrode 50 installed in the gas discharge unit 1 is configured in a needle shape or a cone shape that is not hollow. is there.

本液体処理装置本体Cによると、電圧印加電極50と接地電極51の間にはコロナ放電、火花放電、ストリーマ放電のいずれかの放電Sを生じるが、電圧印加電極50の形状を簡易な針状とできるため耐久性が高く、構造を簡便化できる。 According to the liquid processing apparatus main body C, a discharge S of any one of corona discharge, spark discharge, and streamer discharge is generated between the voltage application electrode 50 and the ground electrode 51. The shape of the voltage application electrode 50 is a simple needle shape. Therefore, the durability is high and the structure can be simplified.

また、図4に示す液体処理装置本体Dは、前記液体処理装置本体Cの改良例であり、電圧印加電極60は前記針状又は円錐体状の電圧印加電極50を多数集積して構成しているため、放電Sを生ずる領域を拡張することができ、プラズマ等の生成量を増大することが可能である。これにより、被処理液体Wの処理能力の向上を図ることができる。 Also, the liquid processing apparatus main body D shown in FIG. 4 is an improved example of the liquid processing apparatus main body C, and the voltage application electrode 60 is configured by integrating a large number of the needle-like or conical voltage application electrodes 50. Therefore, the region where the discharge S is generated can be expanded, and the generation amount of plasma or the like can be increased. Thereby, the processing capability of the liquid W to be processed can be improved.

(第4実施形態)
図5は、本発明に係る液体処理装置の第4の実施の形態を示す図であって、本発明を適用した液体処理装置本体Eの内部構造を示すものである。
(Fourth embodiment)
FIG. 5 is a diagram showing a fourth embodiment of a liquid processing apparatus according to the present invention, and shows an internal structure of a liquid processing apparatus main body E to which the present invention is applied.

本液体処理装置本体Eは、気体放電部1内に設置する電圧印加電極70を、金属管を複数本集積して構成している以外は、前記液体処理装置本体Aと同様である。 The main body E of the liquid processing apparatus is the same as the main body A of the liquid processing apparatus except that the voltage applying electrode 70 installed in the gas discharge unit 1 is configured by integrating a plurality of metal tubes.

いずれの金属管にも気体GSが供給され、かつ、すべての金属管の先端部と板状の設置電極71との間で放電Sを生じるため、放電Sを生ずる領域を拡張することができ、液体処理装置本体Aに比べてプラズマ等の生成量を増大することが可能である。これにより、被処理液体Wの処理能力の向上を図ることができる。 Gas GS is supplied to any of the metal tubes, and discharge S is generated between the tips of all the metal tubes and the plate-like installation electrodes 71, so that the region where the discharge S is generated can be expanded. Compared with the liquid processing apparatus main body A, it is possible to increase the generation amount of plasma or the like. Thereby, the processing capability of the liquid W to be processed can be improved.

(第5実施形態)
図6並びに図7は、本発明に係る液体処理装置の第5の実施の形態を示す図であって、本発明を適用した液体処理装置本体F及び液体処理装置本体Gの内部構造を示すものである。
(Fifth embodiment)
6 and 7 are views showing a fifth embodiment of the liquid processing apparatus according to the present invention and showing the internal structure of the liquid processing apparatus main body F and the liquid processing apparatus main body G to which the present invention is applied. It is.

液体処理装置本体Fは、気体放電部1の気体導入口10と気体導出口11とを、内径数mm以下、厚さ1mm前後のガラス又はセラミックス等の誘電体から成る円筒状の誘電体管82で接続し、該誘電体管82の外側面にはいずれも金属板から成る電圧印加電極80と接地電極81とを誘電体管82を挟み互いに対向させた状態で密着して設けており、残余の構成は前記液体処理装置本体Aと同様である。 In the liquid processing apparatus main body F, a cylindrical dielectric tube 82 made of a dielectric material such as glass or ceramic having an inner diameter of several mm or less and a thickness of about 1 mm is provided for the gas inlet 10 and the gas outlet 11 of the gas discharge unit 1. The voltage application electrode 80 and the ground electrode 81 made of a metal plate are provided in close contact with each other across the dielectric tube 82 on the outer surface of the dielectric tube 82, and the rest The configuration is the same as that of the liquid processing apparatus main body A.

本液体処理装置本体Fによれば、前記両電極間での放電は誘電体管82の内部で生じ、プラズマ等も誘電体管82内のみで発生するから、活性化ガスPGは拡散することなく高濃度のプラズマ等を含有したまま、ただちに気体導出口11からマイクロバブル発生部2へと吸引される。そのため、寿命の短い各種ラジカル等の失活を最小限に抑えながら活性化ガスPG効率よくマイクロバブル化でき、処理能力の向上を図ることができる。 According to the main body F of the liquid processing apparatus, the discharge between the electrodes is generated inside the dielectric tube 82, and plasma or the like is generated only in the dielectric tube 82. Therefore, the activated gas PG does not diffuse. While containing high concentration plasma or the like, the gas is immediately sucked from the gas outlet 11 to the microbubble generator 2. Therefore, the activation gas PG can be efficiently microbubbled while minimizing the inactivation of various radicals having a short lifetime, and the processing capacity can be improved.

また、図7に示す液体処理装置本体Gは、前記液体処理装置本体Fの改良例であり、電圧印加電極90と接地電極91はいずれも前記誘電体管82の外側面全周に金属板を環状に巻き付けた構成としたものである。この場合、両電極の位置関係は特に限定されない。 Further, the liquid processing apparatus main body G shown in FIG. 7 is an improved example of the liquid processing apparatus main body F, and the voltage applying electrode 90 and the ground electrode 91 are both metal plates on the entire outer surface of the dielectric tube 82. It is set as the structure wound by the annular | circular shape. In this case, the positional relationship between both electrodes is not particularly limited.

本液体処理装置本体Gによれば、気体放電を引き起こす高電界は、電圧印加電極90と接地電極91の間に発生するので、電子は誘電体管82の内壁面に沿って加速される。この場合、液体処理装置本体Fのように電極間のギャップ(距離)が短い場合と比較して、電子は電界によって十分に加速されるので、電子の得るエネルギーが増大する。このため、発生するプラズマ等のエネルギーが高く、しかも電子が長い距離を進む間に気体GS内の多くの原子・分子と電離・励起過程を生じるので、プラズマ密度やラジカル密度も液体処理装置本体Fに比べて増加するという有利な効果を奏するのである。 According to this liquid processing apparatus main body G, a high electric field that causes gas discharge is generated between the voltage application electrode 90 and the ground electrode 91, so that electrons are accelerated along the inner wall surface of the dielectric tube 82. In this case, compared to the case where the gap (distance) between the electrodes is short as in the liquid processing apparatus main body F, the electrons are sufficiently accelerated by the electric field, so that the energy obtained by the electrons increases. For this reason, since energy such as generated plasma is high and electrons are traveling a long distance, ionization / excitation processes occur with many atoms / molecules in the gas GS. There is an advantageous effect of increasing compared to the above.

以上、本発明に係る液体処理装置の実施の形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の技術的思想の範囲内において改良又は変更が可能であり、それらは本発明の技術的範囲に属するものとする。   As mentioned above, although embodiment of the liquid processing apparatus which concerns on this invention was described, this invention is not limited to the said embodiment, In the range of the technical idea of this invention, improvement or a change is possible, They shall belong to the technical scope of the present invention.

本発明に係る液体処理装置の適用対象は特に限定されず、液体中の有機物、無機物、微生物、細菌、ウイルス等の有害物質の分解除去全般に適用可能であるが、特に、有機物や微生物、細菌等を含む排水の浄化、医療廃棄物を含む汚染水の殺菌処理等に有用である。 The application target of the liquid processing apparatus according to the present invention is not particularly limited, and can be applied to the general decomposition and removal of harmful substances such as organic substances, inorganic substances, microorganisms, bacteria, and viruses in liquids. It is useful for the purification of wastewater containing etc. and the sterilization treatment of contaminated water containing medical waste.

本発明の第1実施形態に係る液体処理装置の全体構成図である。1 is an overall configuration diagram of a liquid processing apparatus according to a first embodiment of the present invention. 本発明の第2の実施の形態に係る液体処理装置における液体処理装置本体Bの内部構造図である。It is an internal structure figure of the liquid processing apparatus main body B in the liquid processing apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る液体処理装置における液体処理装置本体Cの内部構造図である。It is an internal structure figure of the liquid processing apparatus main body C in the liquid processing apparatus which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施の形態に係る液体処理装置の改良例における液体処理装置本体Dの内部構造図である。It is an internal structure figure of the liquid processing apparatus main body D in the modified example of the liquid processing apparatus which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施の形態に係る液体処理装置における液体処理装置本体Eの内部構造図である。It is an internal structure figure of the liquid processing apparatus main body E in the liquid processing apparatus which concerns on the 4th Embodiment of this invention. 本発明の第5の実施の形態に係る液体処理装置における液体処理装置本体Fの内部構造図である。It is an internal structure figure of the liquid processing apparatus main body F in the liquid processing apparatus which concerns on the 5th Embodiment of this invention. 本発明の第5の実施の形態に係る液体処理装置の改良例における液体処理装置本体Gの内部構造図である。It is an internal structure figure of the liquid processing apparatus main body G in the modified example of the liquid processing apparatus which concerns on the 5th Embodiment of this invention. 本発明の第1の実施形態に係る液体処理装置で行った脱色処理試験の測定結果を示すグラフである。It is a graph which shows the measurement result of the decoloring process test done with the liquid processing apparatus which concerns on the 1st Embodiment of this invention.

A〜G 液体処理装置本体
T 液槽
W 被処理液体
GS 気体
S 放電
PG 活性化ガス
R 渦流
V 負圧空洞部
P マイクロバブル発生点
MB マイクロバブルを含む気液混合流体
GB1 ガスボンベ1
GB2 ガスボンベ2
1 気体放電部
2 マイクロバブル発生部
3 気体供給部
4 高圧電源
5 循環ポンプ
6 制御装置
7 気体供給管
8 液体供給管
9 給電線
10 気体導入口
11 気体導出口
12 電圧印加電極(液体処理装置本体A)
13 接地電極(液体処理装置本体A)
20 自吸口
21 ノズル
22 気液混合流体放出口
30 圧力調整弁
31〜34 電磁弁
40 電圧印加電極(液体処理装置本体B)
41 接地電極(液体処理装置本体B)
42 誘電体管(液体処理装置本体B)
50 電圧印加電極(液体処理装置本体C)
51 接地電極(液体処理装置本体C)
60 電圧印加電極(液体処理装置本体D)
61 接地電極(液体処理装置本体D)
70 電圧印加電極(液体処理装置本体E)
71 接地電極(液体処理装置本体E)
80 電圧印加電極(液体処理装置本体F)
81 接地電極(液体処理装置本体F)
82 誘電体管(液体処理装置本体F、G)
90 電圧印加電極(液体処理装置本体G)
91 接地電極(液体処理装置本体G)
A to G Liquid processing apparatus main body T Liquid tank W Liquid to be processed GS Gas S Discharge PG Activation gas R Eddy current V Negative pressure cavity P Micro bubble generation point MB Gas-liquid mixed fluid containing micro bubbles GB1 Gas cylinder 1
GB2 Gas cylinder 2
DESCRIPTION OF SYMBOLS 1 Gas discharge part 2 Micro bubble generation part 3 Gas supply part 4 High voltage power supply 5 Circulation pump 6 Control apparatus 7 Gas supply pipe 8 Liquid supply pipe 9 Feed line 10 Gas inlet 11 Gas outlet 12 Voltage application electrode (liquid processing apparatus main body A)
13 Ground electrode (Liquid treatment device body A)
20 Self-priming port 21 Nozzle 22 Gas-liquid mixed fluid discharge port 30 Pressure adjusting valve 31-34 Solenoid valve 40 Voltage application electrode (liquid processing apparatus main body B)
41 Ground electrode (Liquid treatment device body B)
42 Dielectric tube (Liquid treatment device body B)
50 Voltage application electrode (Liquid treatment device body C)
51 Ground electrode (Liquid treatment device body C)
60 Voltage application electrode (liquid processing apparatus main body D)
61 Ground electrode (Liquid treatment device body D)
70 Voltage application electrode (liquid processing equipment body E)
71 Ground electrode (liquid processing equipment body E)
80 Voltage application electrode (liquid processing equipment main body F)
81 Ground electrode (Liquid treatment device body F)
82 Dielectric tube (Liquid treatment equipment body F, G)
90 Voltage application electrode (liquid processing device main body G)
91 Ground electrode (liquid processing equipment body G)

本発明は、各種の原料気体中で気体放電を発生させて得た活性化ガスをマイクロバブル化して液体中に拡散させることにより、該液体中の有機物、無機物、微生物、細菌、ウイルス等を効率良く分解処理することを目的とする液体処理装置に関する。   The present invention efficiently converts organic substances, inorganic substances, microorganisms, bacteria, viruses, etc. in the liquid by microbubbleing the activated gas obtained by generating gas discharge in various raw material gases and diffusing it in the liquid. The present invention relates to a liquid processing apparatus intended to be well decomposed.

上水、下水、産業排水などの液体中の有機物の酸化分解、殺菌、減菌、脱臭等の液体処理を行うために、オゾンが広く用いられている。この際、オゾンと被処理液体の接触面積を増加させて処理効率を高めるために、オゾン発生装置から得たオゾン含有ガスをマイクロバブル化して被処理液体中に拡散する方法、所謂マイクロバブルを用いた水処理装置が提案されている。「マイクロバブル」は「微細気泡」又は「微小気泡」とも呼ばれ、気泡のサイズについての定義は明確には確立していないが、その発生時において概ね直径1μmから100μmの気泡を指し、ミリ単位、センチ単位の通常の気泡とは異なる物性を有するため、当業者においてこれらと区別することが技術常識となっている。すなわち、通常の気泡が液中を急速に上昇して液面で破裂するのに対して、マイクロバブル、特に直径50μm以下の気泡は、体積が微細であるため上昇速度が遅く長時間液体中に滞在し続けること、また、液相と気相の界面における界面張力による加圧(自己加圧効果)が気泡の大きさに反比例することから、通常の気泡に比べ液体中への気体の溶解が促進されるという特性を有し、前記の液体処理に好適であることが知られている。なお、直径1μm以下の気泡は発生したマイクロバブルが液体中で収縮して形成され、計測法の確立や特性の解明は途上であるものの、当業者においては「ナノバブル」の用語により「マイクロバブル」と区分されていることも技術常識である。   Ozone is widely used to perform liquid treatments such as oxidative decomposition, sterilization, sterilization, and deodorization of organic substances in liquids such as clean water, sewage, and industrial wastewater. At this time, in order to increase the contact area between ozone and the liquid to be processed and to improve the processing efficiency, a method of soaking the ozone-containing gas obtained from the ozone generator into microbubbles and diffusing it into the liquid to be processed, so-called microbubbles are used. A water treatment device has been proposed. “Microbubbles” are also called “microbubbles” or “microbubbles”, and the definition of the size of the bubbles is not clearly established, but at the time of their occurrence, they generally refer to bubbles having a diameter of 1 μm to 100 μm, Since it has physical properties different from those of normal bubbles in centimeters, it is common technical knowledge for those skilled in the art to distinguish them from these. In other words, normal bubbles rapidly rise in the liquid and burst at the liquid level, whereas microbubbles, especially bubbles having a diameter of 50 μm or less, have a small volume, so the rising speed is slow and they remain in the liquid for a long time. Since the pressure due to the interfacial tension at the interface between the liquid phase and the gas phase (self-pressurization effect) is inversely proportional to the size of the bubble, the gas dissolves in the liquid compared to the normal bubble. It is known that it has the property of being promoted and is suitable for the liquid treatment. Bubbles having a diameter of 1 μm or less are formed by contraction of the generated microbubbles in the liquid, and although the establishment of measurement methods and elucidation of characteristics are still in progress, those skilled in the art use the term “nanobubble” as “microbubbles”. It is also common technical knowledge to be classified as

例えば特許文献1では、オゾン発生装置とマイクロバブル発生機をガス供給管等で接続して水処理を行っている。しかしながら、オゾン自体は酸化力が弱く、しかも空気あるいは酸素を含む気体中での放電によって生成したオゾン含有ガスをマイクロバブル化する途上で、ガス供給管内を移動する途中での失活や、ガス供給管等の内部での吸着によるオゾン密度の減少により、水処理効率が極端に低下するという問題がある。 For example, in Patent Document 1, water treatment is performed by connecting an ozone generator and a microbubble generator with a gas supply pipe or the like. However, ozone itself has a weak oxidizing power, and in addition, the ozone-containing gas generated by the discharge in the gas containing air or oxygen is converted into microbubbles, deactivation during the movement in the gas supply pipe, gas supply There is a problem that the water treatment efficiency is extremely lowered due to a decrease in ozone density due to adsorption inside a pipe or the like.

そこで、オゾンよりも酸化作用が強い原子状酸素ラジカル(Oラジカル)やヒドロキシルラジカル(OHラジカル)を被処理水中に直接生成して、有機物の酸化分解、殺菌、減菌、脱臭等を実現するために、被処理液体中に高電圧電極を設置し、高周波又はパルス電圧を印加して水中放電を起こす方法も提案されている(特許文献2)。しかしながら、放電電極が被処理液体中に浸漬されているため、放電を起こすためには数十KVを超える電圧を印加できる電源が必要となるだけでなく、安定した水中放電の生成及び維持には制御回路の最適化が不可欠である。そのため、水中放電方式は経済面、技術面における困難性が高いという問題を有する。   Therefore, atomic oxygen radicals (O radicals) and hydroxyl radicals (OH radicals), which have a stronger oxidizing action than ozone, are directly generated in the water to be treated to realize oxidative decomposition, sterilization, sterilization, deodorization, etc. of organic substances. In addition, a method has been proposed in which a high-voltage electrode is installed in a liquid to be treated and a high-frequency or pulse voltage is applied to cause an underwater discharge (Patent Document 2). However, since the discharge electrode is immersed in the liquid to be treated, not only a power source capable of applying a voltage exceeding several tens of KV is necessary to cause discharge, but also for stable generation and maintenance of underwater discharge. Optimization of the control circuit is essential. For this reason, the underwater discharge method has a problem of high economic and technical difficulties.

一方、被処理水を水滴化手段によって水滴化してストリーマ放電場に供給することにより、ストリーマ放電で発生するオゾンやOラジカル、OHラジカルで水滴中の処理対象物質を分解する水処理装置も提案されている(特許文献3)。この場合、被処理水を水滴状にして放電場に供給するため、小さな印加電圧でも放電を発生させることができるので、放電電極が被処理水中に浸漬される場合と比較して経済的である。また。本水処理装置はその前工程でストリーマ放電場中の気体を気泡状態にして被処理水中に供給する手段も兼ね備えているので、気体中に含まれる使用されずに残っていたオゾンの再利用も図っている。   On the other hand, a water treatment device has also been proposed in which water to be treated is made into water droplets by means of water droplets and supplied to a streamer discharge field, whereby ozone, O radicals, and OH radicals generated by streamer discharge decompose the target substance in the water droplets. (Patent Document 3). In this case, since the water to be treated is supplied in the form of water droplets to the discharge field, a discharge can be generated even with a small applied voltage, which is more economical than the case where the discharge electrode is immersed in the water to be treated. . Also. Since this water treatment device also has means for supplying the gas in the streamer discharge field into a bubble state in the previous process and supplying it to the water to be treated, it is possible to reuse the ozone remaining in the gas that has not been used. I am trying.

しかしながら、ストリーマ放電で発生するオゾンやOラジカル、OHラジカルと被処理水とは気液界面において反応するので、反応を生じる表面積を増加させるために水滴を微小化して供給する必要があるが、たとえ水滴を微小化してもストリーマ放電場の容量あるいは寸法を十分に大きく設定して、水滴がストリーマ放電場に滞在する時間を長くしない限り、オゾンや各種ラジカルと水滴を十分に反応させることはできない。   However, ozone, O radicals, and OH radicals generated in streamer discharges react with the water to be treated at the gas-liquid interface, so that it is necessary to supply water with fine droplets in order to increase the surface area where the reaction occurs. Even if the water droplets are miniaturized, ozone and various radicals cannot be sufficiently reacted with the water droplets unless the capacity or size of the streamer discharge field is set sufficiently large and the time during which the water droplets stay in the streamer discharge field is lengthened.

かかる欠点を補うために、ストリーマ放電場中の残留オゾンをマイクロバブル化し、前工程で被処理水に供給する方法が取られているが、オゾンや各種ラジカルの供給路中での失活に伴う処理能力の低下の問題は解決されていない。
特開2010−69387号公報 特開2005−58995号公報 特開2010−194527号公報
In order to make up for such drawbacks, a method has been adopted in which residual ozone in the streamer discharge field is microbubbled and supplied to the water to be treated in the previous process, but this is accompanied by deactivation in the supply path of ozone and various radicals. The problem of reduced processing capacity has not been solved.
JP 2010-69387 A Japanese Patent Laid-Open No. 2005-58995 JP 2010-194527 A

本発明は、上記の事情を鑑みてなされたものであり、被処理液体を効率良く、かつ、低コストで処理できる小型で簡便な構造を有する液体処理装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a liquid processing apparatus having a small and simple structure capable of processing a liquid to be processed efficiently and at low cost.

上記目的を達成するために、請求項1に記載の液体処理装置は、電圧印加電極と接地電極とを有する気体放電部と、これに一体的に直結した旋回式気液せん断方式のマイクロバブル発生部とを備え、前記気体放電部は、大気圧下での前記両電極間の気体放電により気体をプラズマ化させて活性化ガスを発生させ、前記マイクロバブル発生部は、前記気体放電部から導入した前記活性化ガスを被処理液体中で直径1〜100μmの気泡へとマイクロバブル化して気液混合流体を生成し、改めて前記気液混合流体を被処理液体中に供給すること、を特徴とする。 In order to achieve the above object, a liquid processing apparatus according to claim 1 includes a gas discharge unit having a voltage application electrode and a ground electrode, and generation of a swirl-type gas-liquid shearing type microbubble directly connected integrally therewith. The gas discharge unit generates an activated gas by converting the gas into plasma by gas discharge between the electrodes under atmospheric pressure, and the microbubble generation unit is introduced from the gas discharge unit. The activated gas is microbubbled into bubbles having a diameter of 1 to 100 μm in the liquid to be processed to generate a gas-liquid mixed fluid, and the gas-liquid mixed fluid is supplied to the liquid to be processed again. To do.

ここで、前記電圧印加電極並びに設置電極の構成は特に限定されないが、例えば電圧印加電極として注射針に代表される金属パイプを、接地電極として金属板を用いてもよい。この場合、電圧印加電極と接地電極間には、コロナ放電、火花放電、ストリーマ放電のいずれかが発生するようにする。 Here, the configuration of the voltage application electrode and the installation electrode is not particularly limited. For example, a metal pipe represented by an injection needle may be used as the voltage application electrode, and a metal plate may be used as the ground electrode. In this case, any one of corona discharge, spark discharge, and streamer discharge is generated between the voltage application electrode and the ground electrode.

さらに、電圧印加電極として、金属針、金属細棒、金属ワイヤー、又はそれらの集合体で構成してもよい。あるいは、電圧印加電極と接地電極の一方又はその両方の表面を誘電体で覆ってもよく、この場合は誘電体バリア放電を生じて、放電域を拡散させることが可能である。さらに、前記気体放電部は、沿面放電やホロー放電など様々な放電を大気圧下で発生させる電極構造としてもよい。 Furthermore, you may comprise as a voltage application electrode with a metal needle, a metal thin rod, a metal wire, or those aggregates. Alternatively, the surface of one or both of the voltage application electrode and the ground electrode may be covered with a dielectric, and in this case, a dielectric barrier discharge can be generated to diffuse the discharge region. Furthermore, the gas discharge section may have an electrode structure that generates various discharges such as creeping discharge and hollow discharge under atmospheric pressure.

また、前記電圧印加電極に供給する電流の電圧波形としては、数十Hzから数百kHzの交流(AC)波、数MHzから数百MHzのラジオ(RF)波などの正弦波形、パルス波形、インパルス波形などが挙げられる。   In addition, the voltage waveform of the current supplied to the voltage application electrode includes a sinusoidal waveform such as an alternating current (AC) wave of several tens of Hz to several hundred kHz, a radio (RF) wave of several MHz to several hundred MHz, a pulse waveform, Examples include impulse waveforms.

一方、前記気体とは、空気をはじめ、酸素、窒素、アルゴン、ヘリウムなどのあらゆる気体のいずれか、あるいはそれらの混合気体である。また、前記気体放電とは、コロナ放電、火花放電、ストリーマ放電、誘電体バリア放電、沿面放電、ホロー放電等、気体中での各種の放電のいずれかである。 On the other hand, the gas is any gas such as oxygen, nitrogen, argon, helium, or a mixture thereof, including air. The gas discharge is any one of various discharges in gas such as corona discharge, spark discharge, streamer discharge, dielectric barrier discharge, creeping discharge, hollow discharge, and the like.

ここで、コロナ放電は、大気中に設けられた針状電極と平板上電極との間に電圧を加えると、針状電極の尖端部分の空気が絶縁破壊を起こし、針尖端で微弱な光を発する放電である。必要とされる印加電圧は比較的高く数kV以上が必要であるが、除電器(イオナイザー)等に応用されている。 Here, in the corona discharge, when a voltage is applied between the needle-like electrode provided in the atmosphere and the electrode on the flat plate, the air at the tip of the needle-like electrode causes dielectric breakdown, and weak light is emitted at the tip of the needle. This is a discharge. The required applied voltage is relatively high and needs to be several kV or more, but it is applied to a static eliminator (ionizer) or the like.

コロナ放電の電圧をさらに上げていくと、針状電極と平板状電極との間の空気が広範に絶縁破壊を起こして放電路を形成するが、これが火花放電である。 When the voltage of the corona discharge is further increased, the air between the needle-like electrode and the plate-like electrode causes a wide breakdown and forms a discharge path, which is a spark discharge.

一方、針状電極が陰極の場合、陰極から発した「電子なだれ」の後に高密度の正イオンが残り、この正イオンがさらに「電子なだれ」を作って、最終的に針状電極と平板状電極との間にプラズマ状の放電路が形成されるストリーマ放電となる。 On the other hand, when the acicular electrode is a cathode, high-density positive ions remain after the “electron avalanche” emitted from the cathode, and these positive ions further form an “electron avalanche”. A streamer discharge is formed in which a plasma-like discharge path is formed between the electrodes.

誘電体バリア放電は、金属電極の表面をガラスやセラミックス等の誘電体で覆うことにより、放電によって発生した電子が誘電体表面に蓄積して、印加電界の極性が逆転したときに蓄積された電子が対向電極側に加速されて電離・放電を維持するメカニズムによるもので、オゾン発生装置等に用いられる。誘電体を用いない電極による放電に比べ、オゾン等のラジカル密度が高い反面、ガス温度は低いのが特徴であり、大気圧プラズマ発生手段として一般的に用いられる放電である。 In dielectric barrier discharge, the surface of a metal electrode is covered with a dielectric such as glass or ceramics, so that electrons generated by the discharge accumulate on the dielectric surface, and the electrons accumulated when the polarity of the applied electric field is reversed. Is accelerated by the counter electrode side to maintain the ionization / discharge, and is used for an ozone generator or the like. Compared with discharge using electrodes that do not use a dielectric, the density of radicals such as ozone is high, but the gas temperature is low, and this discharge is generally used as an atmospheric pressure plasma generating means.

沿面放電は、コロナ放電が誘電体などの表面を通して対向電極へ進展したものであり、誘電体表面に放電路が形成される。 The creeping discharge is a corona discharge that progresses to the counter electrode through the surface of a dielectric or the like, and a discharge path is formed on the surface of the dielectric.

ホロー放電は、ホロー(穴又は窪み形状)の陰極内での放電である。電子エネルギーが大きく、高電離、高励起状態が実現するため、紫外線光源などに用いられる。 The hollow discharge is a discharge in a hollow (hole or hollow shape) cathode. Since it has a large electron energy and realizes a high ionization and high excitation state, it is used for an ultraviolet light source or the like.

一方、活性化ガスとは、前記気体の種類に応じて気体放電により生じる各種のプラズマ、酸化又は還元作用を有する各種ラジカル(イオンを含む)、オゾンのいずれか、あるいはそれらの組み合わせ(以下「プラズマ等」と記す。)を含有するガスである。 On the other hand, the activated gas is any one of various plasmas generated by gas discharge depending on the kind of gas, various radicals (including ions) having an oxidizing or reducing action, ozone, or a combination thereof (hereinafter “plasma”). Etc.))).

さらに、前記プラズマ化とは、前記気体中で前記気体放電を生じさせることによって前記気体の分子の一部を電離させ、前記プラズマ等を生成することをいう。 Furthermore, the term “plasmaization” refers to generating the plasma or the like by ionizing a part of the molecules of the gas by causing the gas discharge in the gas.

また、前記旋回式気液せん断方式のマイクロバブル発生部とは、液体中に渦流を発生させて、導入した気体により該渦流の軸線上に負圧空洞部を形成し、該負圧空洞部の先端における液体との旋回速度差により気体を強制的かつ連続的に切断して粉砕することによりマイクロバブル化するものである。かかる旋回式気液せん断方式のマイクロバブル発生装置を前記気体放電部に一体的に直結すれば、前記負圧空洞部の負圧の効果により、前記気体放電部内において大気圧下で生成された活性化ガスを直ちに自吸するため、活性化ガスを加圧して強制的に送出することなく導入でき、しかも生成した活性化ガスを可能な限り固体表面と接することがないように保ちながら導入できるので、比較的簡易かつ小規模な構造により活性化ガスを大量に含むマイクロバブルを安定的に生成可能である。 Further, the swirl type gas-liquid shearing type microbubble generating part generates a vortex in the liquid, forms a negative pressure cavity on the axis of the vortex by the introduced gas, The gas is forcibly and continuously cut and pulverized by the difference in swirling speed with the liquid at the tip to form microbubbles. If the swirl type gas-liquid shearing microbubble generator is directly connected to the gas discharge part, the activity generated under atmospheric pressure in the gas discharge part due to the negative pressure effect of the negative pressure cavity part. Since the activated gas is immediately self-absorbed, it can be introduced without pressurizing and forcibly sending the activated gas, and it can be introduced while keeping the generated activated gas in contact with the solid surface as much as possible. The microbubbles containing a large amount of the activated gas can be stably generated with a relatively simple and small-scale structure.

次に、請求項2に記載の液体処理装置は、請求項1に記載の液体処理装置であって、前記気体放電部は、特定の気体又は複数種類の気体を混合して成る混合気体を導入する気体供給手段を備えたことを特徴とする。   Next, the liquid processing apparatus according to claim 2 is the liquid processing apparatus according to claim 1, wherein the gas discharge unit introduces a specific gas or a mixed gas formed by mixing a plurality of types of gases. It is characterized by comprising a gas supply means.

導入する気体の種類により前記気体放電部において生成される前記活性化ガスが含有するプラズマ等が異なるため、前記気体供給手段を備えることにより、前記気体放電部は導入する気体を変更可能とし、所望のプラズマ等を含有する活性化ガスを生成することができる。   Since the plasma contained in the activated gas generated in the gas discharge unit differs depending on the type of gas to be introduced, the gas discharge unit can change the gas to be introduced by providing the gas supply means, and the desired An activated gas containing plasma or the like can be generated.

また、請求項3に記載の液体処理装置は、前記気体放電部と前記マイクロバブル発生部とが脱着可能な構造を有することを特徴とする。 The liquid processing apparatus according to claim 3 has a structure in which the gas discharge part and the microbubble generating part are detachable.

本発明に係る液体処理装置は、大気圧下での気体放電により気体をプラズマ化させて得たプラズマ等を含有する活性化ガスを被処理液体中でマイクロバブル化して生成した気液混合流体を改めて被処理液体中に供給するものである。該気液混合流体に含まれる活性化ガスはマイクロバブル化されているため、該マイクロバブルと、これを供給された被処理液体との気液界面において、プラズマ等と液体分子の反応による液体処理を実現する。   The liquid processing apparatus according to the present invention comprises a gas-liquid mixed fluid generated by microbubbles an activated gas containing plasma or the like obtained by converting gas into plasma by gas discharge under atmospheric pressure in the liquid to be processed. It is supplied again into the liquid to be treated. Since the activated gas contained in the gas-liquid mixed fluid is made into microbubbles, liquid processing by reaction of plasma or the like with liquid molecules at the gas-liquid interface between the microbubbles and the liquid to be processed supplied thereto. To realize.

この際、(1)マイクロバブルの表面積/体積比率が通常の微細気泡に比べて大きいために気液界面の反応面積が増大すること、(2)マイクロバブルの被処理液体中での滞在時間、すなわち気液界面での反応時間が長いこと、(3)マイクロバブルの自己加圧効果により活性化ガスが強制的に被処理液体中に溶解させられることで反応が増進されること、等の効果により、活性化ガスを通常の気泡として直接被処理液体中に放出する場合に比べてプラズマ等と被処理液体との反応効率が格段に増加し、しかも、寿命の短いプラズマ等が失活する前に被処理液体中の処理対象物質と反応させることができるので、被処理液体を効率よく、かつ低コストで処理することができる。特に、水と反応することで酸化力の強い過酸化水素(H2О2)を生成するOラジカルを含む活性化ガスを被処理液体中に供給した場合は、被処理物質を特に効率よく酸化分解することができる。 At this time, (1) the reaction area at the gas-liquid interface increases because the surface area / volume ratio of the microbubbles is larger than that of normal fine bubbles, (2) the residence time of the microbubbles in the liquid to be treated, That is, the reaction time at the gas-liquid interface is long, and (3) the reaction is enhanced by forcibly dissolving the activated gas in the liquid to be treated by the self-pressurization effect of the microbubbles. As a result, the reaction efficiency between the plasma and the liquid to be processed is significantly increased as compared with the case where the activated gas is directly discharged into the liquid to be processed as normal bubbles, and before the plasma or the like having a short lifetime is deactivated. Therefore, the liquid to be treated can be processed efficiently and at low cost. In particular, when an activated gas containing O radicals that generate hydrogen peroxide (H2O2), which has strong oxidizing power by reacting with water, is supplied into the liquid to be treated, the substance to be treated is oxidized and decomposed particularly efficiently. Can do.

また、活性化ガスを被処理液体中に直接気泡として放出した場合、そもそも放出時の気泡の初速は小さい上に、軽量で慣性の小さな気泡は被処理液体との摩擦抵抗により放出後ただちに減速して浮上を開始してしまうため、活性化ガスは放出点から広範囲には拡散しにくい。そのため、被処理液体の量が多い場合には、液体処理効率を高めるために別途被処理液体の攪拌や循環が必要となる場合がある。 In addition, when the activated gas is released directly into the liquid to be treated as bubbles, the initial velocity of the bubbles is small in the first place, and the light and small inertia bubbles are immediately decelerated after being released due to frictional resistance with the liquid to be treated. Therefore, the activated gas is difficult to diffuse over a wide range from the discharge point. Therefore, when the amount of the liquid to be processed is large, it may be necessary to separately stir and circulate the liquid to be processed in order to increase the liquid processing efficiency.

一方、本発明に係る液体処理装置は、活性化ガスを被処理液体との気液混合流体として噴出するため、噴出された気液混合流体はマイクロバブル発生部に被処理液体を圧送するポンプの出力に応じて比較的大きな初速と指向性を有する。しかも、単なる気泡よりも重く慣性の大きな気液混合流体は、被処理液体中をより遠くまで進んで被処理液体を攪拌・循環させる。そのため、含有される活性化ガスのマイクロバブルもより広範囲に拡散されるから、液体処理の効率を高めるという効果も奏するのである。 On the other hand, since the liquid processing apparatus according to the present invention ejects the activated gas as a gas-liquid mixed fluid with the liquid to be processed, the jetted gas-liquid mixed fluid is a pump of the pump that pumps the liquid to be processed to the microbubble generating unit. It has a relatively large initial speed and directivity according to the output. In addition, the gas-liquid mixed fluid that is heavier than mere bubbles and has a large inertia proceeds further in the liquid to be processed, and stirs and circulates the liquid to be processed. For this reason, the microbubbles of the activated gas contained therein are also diffused over a wider range, so that the effect of increasing the efficiency of the liquid treatment is also achieved.

また、本発明に係る液体処理装置は、気体放電により活性化ガスを発生させるため、水中放電に要するほどの高電圧を必要とせず、比較的低コストで実現できる。   Moreover, since the liquid processing apparatus according to the present invention generates activated gas by gas discharge, it does not require a high voltage required for underwater discharge and can be realized at a relatively low cost.

また、前記気体放電部と前記マイクロバブル発生部とを一体的に直結した状態とすることで、活性化ガスをマイクロバブル発生部に導入するためのパイプやホースを必要とせず、寿命の短いプラズマ等が失活する前に活性化ガスをマイクロバブル化でき、被処理液体を効率よく処理することができる。   In addition, since the gas discharge unit and the microbubble generation unit are integrally connected directly, a pipe or a hose for introducing the activation gas into the microbubble generation unit is not required, and the plasma has a short life. The activated gas can be made into microbubbles before the liquid is deactivated, and the liquid to be treated can be processed efficiently.

また、前記気体放電部の電圧印加電極と接地電極の構造や形状を変更することにより、両電極間にはコロナ放電、火花放電、ストリーマ放電、誘電体バリア放電、沿面放電、ホロー放電等の様々な形態の放電を発生させることができるため、発生させるプラズマ等の有するエネルギーの制御が可能となり、被処理液体の条件に応じた処理が可能となる。   In addition, by changing the structure and shape of the voltage application electrode and the ground electrode of the gas discharge part, there are various corona discharge, spark discharge, streamer discharge, dielectric barrier discharge, creeping discharge, hollow discharge, etc. between the two electrodes. Therefore, it is possible to control the energy of the generated plasma and the like, and it is possible to perform processing according to the conditions of the liquid to be processed.

また、前記気体放電部は、特定の気体又は複数種類の気体を混合して成る混合気体を導入する気体供給手段を備えるため、供給する気体の種類や混合比の変更が可能である。そのため、オゾン、Oラジカル、OHラジカル等のみでなく、比較的寿命の長い準安定励起状態のアルゴンラジカルやヘリウムラジカル、窒素ラジカル等を含有する活性化ガスを被処理液体中にマイクロバブル化して供給することができるので、該マイクロバブルの気液界面で液体中の水分子を解離してOHラジカルを効率よく生成するほか、液体中に溶解している各種化学物質の分解や化学反応を促進することができる。   Moreover, since the said gas discharge part is provided with the gas supply means which introduces the mixed gas formed by mixing a specific gas or multiple types of gas, the kind and mixing ratio of the gas to supply can be changed. Therefore, not only ozone, O radical, OH radical, etc., but also activated gas containing relatively long-lived metastable excited argon radical, helium radical, nitrogen radical, etc., is microbubbled into the liquid to be treated. In addition to efficiently generating OH radicals by dissociating water molecules in the liquid at the gas-liquid interface of the microbubbles, it promotes the decomposition and chemical reaction of various chemical substances dissolved in the liquid. be able to.

また、前記マイクロバブル発生部が、前記活性化ガスを直径1〜100μmのマイクロバブルとして液体中に供給するため、プラズマ等が被処理液体と接触する気液界面の表面積を格段に増加することができるとともに、マイクロバブルはその性質上、通常の気泡に比べて被処理液体中を長時間浮遊するため、プラズマ等と被処理物質の反応時間を長く保つことができ、処理の効率を更に高めることができる。   In addition, since the microbubble generator supplies the activated gas as microbubbles having a diameter of 1 to 100 μm into the liquid, the surface area of the gas-liquid interface where the plasma or the like comes into contact with the liquid to be treated may be significantly increased. In addition, since microbubbles float in the liquid to be treated for a long time compared to normal bubbles due to their nature, the reaction time of plasma and other substances to be treated can be kept longer, further improving the efficiency of treatment. Can do.

さらに、前記気体放電部と前記マイクロバブル発生部とが脱着可能な構造を有するため、該液体処理装置の用途や使用条件に応じて、気体放電部のタイプを任意に交換可能となるので液体処理装置の適用範囲を拡大でき、また、気体放電部あるいはマイクロバブル発生部のいずれかが故障した際にはそれだけを交換すればよいため経済的である。 Furthermore, since the gas discharge part and the microbubble generator have a detachable structure, the type of the gas discharge part can be arbitrarily replaced according to the use and use conditions of the liquid processing apparatus, so that the liquid processing It is economical because the applicable range of the apparatus can be expanded, and when either the gas discharge part or the microbubble generation part fails, only that part needs to be replaced.

以下では、本発明に係る液体処理装置の実施の形態について、図1乃至図8に基づいて詳細に説明する。なお、以下の実施形態は、液体処理装置本体の構成のみが異なるため、図2乃至図7は液体処理装置本体のみを示しており、液体処理装置本体以外の本発明の構成はいずれも図1と共通である。 Hereinafter, an embodiment of a liquid processing apparatus according to the present invention will be described in detail with reference to FIGS. 1 to 8. Since the following embodiments differ only in the configuration of the liquid processing apparatus main body, FIGS. 2 to 7 show only the liquid processing apparatus main body, and all the configurations of the present invention other than the liquid processing apparatus main body are shown in FIG. And in common.

(第1実施形態)
図1は、本発明に係る液体処理装置の第1の実施の形態を示す図であって、本発明を適用した液体処理装置Aとその作動状態を示すものである。
(First embodiment)
FIG. 1 is a diagram showing a first embodiment of a liquid processing apparatus according to the present invention, and shows a liquid processing apparatus A to which the present invention is applied and its operating state.

図1に示すように、液体処理装置本体Aは、気体放電部1とマイクロバブル発生部2を一体的に直結して成り、液槽Tを満たした被処理液体Wの液中に浸漬されている。気体放電部1は気体GSを供給する気体供給部3と気体供給管7により接続されており、一方、マイクロバブル発生部2は、やはり液中に浸漬された循環ポンプ5と液体供給管8により接続されている。 As shown in FIG. 1, the liquid processing apparatus main body A is formed by directly connecting the gas discharge unit 1 and the microbubble generation unit 2 integrally, and is immersed in the liquid to be processed W filling the liquid tank T. Yes. The gas discharge part 1 is connected by a gas supply part 3 for supplying a gas GS and a gas supply pipe 7, while the microbubble generation part 2 is also connected by a circulation pump 5 and a liquid supply pipe 8 which are also immersed in the liquid. It is connected.

気体放電部1は、例えばアクリル樹脂等の絶縁材料で形成され、気体導入口10と気体導出口11が設けられており、気体導入口10に気体供給管7が接続されている。 The gas discharge part 1 is formed of an insulating material such as acrylic resin, for example, and is provided with a gas inlet 10 and a gas outlet 11, and a gas supply pipe 7 is connected to the gas inlet 10.

気体放電部1の内部には、金属管から成る電圧印加電極12が気体導入口10に取り付けられ、気体供給管7から供給された気体GSが電圧印加電極12の内部を通過してその先端から気体放電部1内に導入されるよう構成されている。また、電圧印加電極12の先端から適宜の間隔を空けてその軸線に対し垂直に銅板等の金属板から成る接地電極13が支持されている。なお、電圧印加電極12としては、例えば外径0.7mm、内径0.5mm以下の注射針様の金属管が好適である。 Inside the gas discharge part 1, a voltage application electrode 12 made of a metal tube is attached to the gas introduction port 10, and the gas GS supplied from the gas supply tube 7 passes through the inside of the voltage application electrode 12 from its tip. It is configured to be introduced into the gas discharge unit 1. A ground electrode 13 made of a metal plate such as a copper plate is supported perpendicularly to the axis of the voltage application electrode 12 at an appropriate interval. As the voltage application electrode 12, for example, an injection needle-like metal tube having an outer diameter of 0.7 mm and an inner diameter of 0.5 mm or less is suitable.

前記電圧印加電極12と接地電極13は給電線9によりそれぞれ高圧電源4に接続されており、高圧電源4からパルス電圧やAC電圧、ラジオ波電圧が印加されると、印加された電圧に応じて、電圧印加電極12と接地電極13の間でコロナ放電、火花放電、ストリーマ放電のいずれかの放電Sが発生する。 The voltage application electrode 12 and the ground electrode 13 are connected to the high-voltage power supply 4 by a feeder 9, respectively. When a pulse voltage, an AC voltage, or a radio wave voltage is applied from the high-voltage power supply 4, the voltage application electrode 12 and the ground electrode 13 correspond to the applied voltage. Any one of corona discharge, spark discharge, and streamer discharge S is generated between the voltage application electrode 12 and the ground electrode 13.

かかる構成により、気体供給部3から気体導入管7を通じて電圧印加電極12の先端から気体放電部1内に導入された気体GSは、前記放電Sによりその一部がプラズマ等化され、気体放電部1の内部は該プラズマ等を含有する活性化ガスPGで満たされる。 With this configuration, the gas GS introduced into the gas discharge unit 1 from the tip of the voltage application electrode 12 from the gas supply unit 3 through the gas introduction tube 7 is partially plasma-equalized by the discharge S, and the gas discharge unit The interior of 1 is filled with an activated gas PG containing the plasma or the like.

一方、マイクロバブル発生部2は、本実施形態では旋回式気液せん断方式を採用している。マイクロバブル発生部2の内壁は円筒形に形成されており、気体放電部1との接続面の中心には気体放電部1の前記気体導出口11と直結する自吸口20と、自吸した活性化ガスPGをマイクロバブル発生部2の内部に導入するノズル21とを備え、反対面の中心には発生したマイクロバブルを含む気液混合流体MBを液槽T内に放出する気液混合流体放出口22を備えている。 On the other hand, the microbubble generator 2 employs a swirl type gas-liquid shearing method in the present embodiment. The inner wall of the microbubble generating part 2 is formed in a cylindrical shape, and a self-sucking port 20 directly connected to the gas outlet 11 of the gas discharge part 1 at the center of the connection surface with the gas discharge part 1 and the self-sucking activity A gas-liquid mixed fluid discharge that discharges the gas-liquid mixed fluid MB containing the generated microbubbles into the liquid tank T at the center of the opposite surface. An outlet 22 is provided.

循環ポンプ5から液体供給管8を通じて圧送供給された被処理液体Wは、マイクロバブル発生部2の内部で前記内壁に沿って渦流Rを形成する。ノズル21から導入された活性化ガスPGは、渦流による遠心分離作用により渦流の旋回軸線上に負圧の旋回空洞部Vを形成する。かかる負圧により、活性化ガスPGはマイクロバブル発生部2の内部に連続的に自給されるとともに、前記負圧空洞部Vの先端に生じるマイクロバブル発生点Pにおいて、被処理液体Wとの旋回速度差により強制的かつ連続的に切断・粉砕されてマイクロバブル化するのである。 The liquid W to be processed which is pressure-fed and supplied from the circulation pump 5 through the liquid supply pipe 8 forms a vortex R along the inner wall inside the microbubble generator 2. The activated gas PG introduced from the nozzle 21 forms a swirling cavity V having a negative pressure on the swirling axis of the swirl due to the centrifugal separation action by the swirl. Due to the negative pressure, the activated gas PG is continuously supplied to the inside of the microbubble generator 2 and swirls with the liquid W at the microbubble generation point P generated at the tip of the negative pressure cavity V. It is forcibly and continuously cut and pulverized by the speed difference to form microbubbles.

次に、気体供給部3は、気体供給管7の接続口以外に少なくとも4つの開口部を有する中空容器から成る。気体供給管7に接続した開口部には圧力調整弁30を設けている。気体放電部1へ供給する気体GSの量及び圧力を調節することができる。また、前記複数の開口部には、気体放電部1で発生させたいプラズマ等の種類に応じた気体GSを蓄えたガスボンベGB1及び空気又は窒素を蓄えたガスボンベGB2を接続することができる。 Next, the gas supply unit 3 includes a hollow container having at least four openings in addition to the connection port of the gas supply pipe 7. A pressure regulating valve 30 is provided at the opening connected to the gas supply pipe 7. The amount and pressure of the gas GS supplied to the gas discharge unit 1 can be adjusted. Further, a gas cylinder GB1 storing a gas GS corresponding to a type of plasma or the like desired to be generated in the gas discharge section 1 and a gas cylinder GB2 storing air or nitrogen can be connected to the plurality of openings.

なお、前述の通りマイクロバブル発生部2がその内部に生じる負圧により活性化ガスPGを自吸するため、これと接続する気体放電部1内への気体GSの供給も大気圧との差圧により自動的に達成される。そのため、気体供給部3を特段に加圧する必要はなく、気体GSの供給圧力が大気圧と同等となるように圧力調整弁30を調整した場合、原則として気体放電部1内の圧力は大気圧の状態が維持される。 As described above, since the microbubble generating unit 2 self-sucks the activated gas PG due to the negative pressure generated in the microbubble generating unit 2, the supply of the gas GS into the gas discharging unit 1 connected thereto is also a differential pressure from the atmospheric pressure. Achieved automatically. Therefore, it is not necessary to pressurize the gas supply unit 3 in particular, and when the pressure regulating valve 30 is adjusted so that the supply pressure of the gas GS is equal to the atmospheric pressure, the pressure in the gas discharge unit 1 is basically the atmospheric pressure. The state of is maintained.

ここで、活性化ガス化したい気体GSが空気の場合は、気体供給部3を大気開放し、圧力調整弁30も開放することで、気体供給管7に大気をそのまま導入させればよい。一方、活性化ガス化したい気体GSが空気以外の例えば酸素、窒素、アルゴン、ヘリウム等の気体あるいはそれらの混合気体である場合は、気体供給部3の開口部の一つに接続したガスボンベB1から前記所望の気体GSを導入するとともに、他の開口部を大気開放して気体供給部3の内部を前記所望の気体GSで置換すればよい。 Here, when the gas GS to be activated gas is air, the atmosphere may be introduced into the gas supply pipe 7 as it is by opening the gas supply unit 3 to the atmosphere and also opening the pressure regulating valve 30. On the other hand, when the gas GS to be activated gas is a gas other than air, such as oxygen, nitrogen, argon, helium, or a mixed gas thereof, from the gas cylinder B1 connected to one of the openings of the gas supply unit 3 The desired gas GS may be introduced, and the other opening may be opened to the atmosphere to replace the inside of the gas supply unit 3 with the desired gas GS.

さらに、前記圧力調整弁30を調整して気体放電部1に流入する気体GSの量を調整することにより、マイクロバブル発生部2内で発生するマイクロバブルの粒径を制御することも可能である。本実施形態の試作機による試験では、圧力調整弁30の開度を絞ることによりマイクロバブルの粒径が連続的に小さくなることが確認できた。前記マイクロバブル発生部2内部の被処理液体Wに生ずる渦流Rの旋回速度は循環ポンプ5の出力やホース等の長さや内径により決定されるが、該旋回速度が一定の場合、単位時間内にマイクロバブル発生部2内に送りこまれる活性化ガスPGの量が少ないほど、前記負圧空洞部Vを形成する気体量も少なくなる。そのため、単位時間当たりに前記マイクロバブル発生点Pにおいてマイクロバブル化される活性化ガスPGの量も小さくなるため、マイクロバブルの粒径が小さくなるものと考えられる。 Furthermore, it is also possible to control the particle size of the microbubbles generated in the microbubble generating unit 2 by adjusting the pressure adjusting valve 30 and adjusting the amount of the gas GS flowing into the gas discharging unit 1. . In the test using the prototype of the present embodiment, it was confirmed that the microbubble particle size was continuously reduced by reducing the opening of the pressure regulating valve 30. The swirling speed of the vortex R generated in the liquid W to be treated inside the microbubble generator 2 is determined by the output of the circulation pump 5 and the length and inner diameter of the hose, etc., but within a unit time when the swirling speed is constant. The smaller the amount of the activated gas PG fed into the microbubble generator 2, the smaller the amount of gas that forms the negative pressure cavity V. Therefore, since the amount of the activated gas PG that is microbubbled at the microbubble generation point P per unit time is also small, the particle size of the microbubbles is considered to be small.

ところで、循環ポンプ5の作動を停止した場合には、マイクロバブル発生部2の内部の負圧が消失するため、被処理液体Wがノズル21から気体放電部1内に逆流することになる。これを防ぐためには、気体供給部3の気体導入管7を接続した開口部以外の開口部に電磁弁31乃至34を設け、循環ポンプ5の作動とこれら電磁弁の開閉を連動して制御可能な制御装置6を設けておく。電磁弁31には各種の気体GSを蓄積したガスボンベGB1を、電磁弁32には大気よりもやや加圧した空気あるいは窒素を蓄積したガスボンベGB2を接続し、電磁弁33及び電磁弁34は大気開放口とする。 By the way, when the operation of the circulation pump 5 is stopped, the negative pressure inside the microbubble generator 2 disappears, so that the liquid W to be processed flows backward from the nozzle 21 into the gas discharge unit 1. In order to prevent this, the solenoid valves 31 to 34 are provided in openings other than the opening connected to the gas introduction pipe 7 of the gas supply section 3, and the operation of the circulation pump 5 and the opening and closing of these solenoid valves can be controlled in conjunction with each other. A control device 6 is provided. A gas cylinder GB1 storing various gases GS is connected to the solenoid valve 31, a gas cylinder GB2 storing air or nitrogen slightly pressurized from the atmosphere is connected to the solenoid valve 32, and the solenoid valves 33 and 34 are opened to the atmosphere. Mouth.

制御装置6により、循環ポンプ5の動作が停止すると同時に電磁弁31、33、34を閉じ、電磁弁32を開くようにすれば、ガスボンベGB2内の空気あるいは窒素により気体供給部3及び気体放電部1内の気圧が増加し、マイクロバブル発生部2から被処理液体Wが逆流してくることを防止できる。これにより本液体処理装置は、液体処理を断続して行うことが可能となる。 If the control device 6 stops the operation of the circulation pump 5 and simultaneously closes the solenoid valves 31, 33, and 34 and opens the solenoid valve 32, the gas supply unit 3 and the gas discharge unit with air or nitrogen in the gas cylinder GB2. It can prevent that the to-be-processed liquid W flows backward from the microbubble generation | occurrence | production part 2 because the atmospheric | air pressure in 1 increases. As a result, the liquid processing apparatus can perform liquid processing intermittently.

次に、本実施形態に係る液体処理装置Aを用いて特定の気体GSから生成した活性化ガスPGをマイクロバブル化して被処理液体Wを処理する液体処理方法について説明する。 Next, a liquid processing method for processing the liquid W to be processed by microbubbles the activated gas PG generated from the specific gas GS using the liquid processing apparatus A according to the present embodiment will be described.

まず、あらかじめ電磁弁31、33、34を閉じ、電磁弁32を開くことにより気体放電部1内に空気又は窒素を導入した状態の液体処理装置Aと循環ポンプ5を液槽T内の被処理液体Wに浸漬する。 First, the electromagnetic valves 31, 33, and 34 are closed in advance and the electromagnetic valve 32 is opened, so that the liquid processing apparatus A and the circulation pump 5 in a state where air or nitrogen is introduced into the gas discharge unit 1 are processed in the liquid tank T. Immerse in liquid W.

次に、循環ポンプ5を作動させると、液体供給管8を通じてマイクロバブル発生部2内に圧送された被処理液体Wが高速旋回する渦流Rを生じる。渦流Rの旋回軸線上には負圧の旋回空洞部Vが形成されるため、かかる負圧の効果によりノズル21を通じて気体放電部1内の空気又は窒素がマイクロバブル発生部2内に吸引され、マイクロバブル化して気液混合流体放出口22から被処理液体W中へ放出される。 Next, when the circulation pump 5 is operated, the eddy current R in which the liquid W to be processed, which is pumped into the microbubble generator 2 through the liquid supply pipe 8, swirls at high speed is generated. Since a negative pressure swirl cavity V is formed on the swirl axis of the vortex R, air or nitrogen in the gas discharge unit 1 is sucked into the microbubble generator 2 through the nozzle 21 due to the negative pressure effect. Microbubbles are generated and discharged from the gas-liquid mixed fluid discharge port 22 into the liquid W to be processed.

続いて、電磁弁32を閉じると同時に電磁弁31、34を開くと、ガスボンベGB2からの空気又は窒素の供給は停止し、代わりにガスボンベGB1から特定の気体GSが気体供給部3を経由して気体放電部1内に導入され、そのままマイクロバブル発生部2内へと吸引されてマイクロバブル化され始める。 Subsequently, when the solenoid valve 32 is closed and the solenoid valves 31 and 34 are opened at the same time, the supply of air or nitrogen from the gas cylinder GB2 is stopped, and a specific gas GS from the gas cylinder GB1 passes through the gas supply unit 3 instead. It is introduced into the gas discharge part 1 and is sucked into the microbubble generating part 2 as it is to start microbubbles.

この状態で、高圧電源4を作動させると、気体放電部1内に設置した注射針様の金属管から成る電圧印加電極12と金属板から成る接地電極13との間ではコロナ放電が生じ、気体放電部1内の気体GSの一部がプラズマ等化することで活性化ガスPGを発生させる。活性化ガスPGは、ただちにマイクロバブル発生部2内へと吸引され、被処理液体W中でマイクロバブル化されて液槽T中に放出され、被処理液体W中の被処理物質と反応するのである。 When the high-voltage power supply 4 is operated in this state, corona discharge occurs between the voltage application electrode 12 made of an injection needle-like metal tube installed in the gas discharge unit 1 and the ground electrode 13 made of a metal plate. An activated gas PG is generated when a part of the gas GS in the discharge unit 1 is plasma-equalized. Since the activated gas PG is immediately sucked into the microbubble generator 2, is microbubbled in the liquid W to be processed, is released into the liquid tank T, and reacts with the substance to be processed in the liquid W to be processed. is there.

以上の図1に示す第1実施形態に係る液体処理装置の試作機を用い、純水32L(リットル)に25mg/Lの濃度で溶解させたインジゴカルミン溶液を被処理液体Wとして放電を行う脱色処理を行い、放電を行わない場合と対比させる、本発明の効果を実証する試験を行った。試験の条件は以下の通りであり、図8は、処理開始から17日後の溶液の放電有り・なしの場合の紫外可視分光スペクトルの計測値を対比させてグラフにしたものである。
被処理液体の循環流量:13L/分
放電電力:70W
印加電圧:4〜5kV
パルス間隔:1ms
処理時間:2時間/日
Decolorization in which discharge is performed using the indigo carmine solution dissolved in pure water 32L (liter) at a concentration of 25 mg / L as the liquid W to be processed using the prototype of the liquid processing apparatus according to the first embodiment shown in FIG. A test was performed to verify the effect of the present invention in comparison with the case where the treatment was performed and no discharge was performed. The test conditions are as follows, and FIG. 8 is a graph comparing the measured values of the UV-visible spectrum with and without discharge of the solution 17 days after the start of the treatment.
Circulating flow rate of liquid to be treated: 13 L / min Discharge power: 70 W
Applied voltage: 4-5kV
Pulse interval: 1 ms
Processing time: 2 hours / day

図8によると、放電なしの比較例(点線)では600nm付近にピークを有する幅の広い吸収ピークが見られる。このため、インジゴカルミン溶液は青色(吸収されずに残った400〜500nmの可視光領域)を呈していることが分かる。一方、放電有りの実施例(実線)では、可視光領域の吸収がなくなり、溶液は光透過性を示すようになっている。このように、放電有りの場合はなしの場合に比べて顕著な脱色効果を奏したことから、本発明の有効性が確認された。   According to FIG. 8, in the comparative example without a discharge (dotted line), a broad absorption peak having a peak near 600 nm is seen. For this reason, it can be seen that the indigo carmine solution exhibits a blue color (visible light region of 400 to 500 nm remaining without being absorbed). On the other hand, in the example with a discharge (solid line), the absorption in the visible light region is lost, and the solution shows light transmittance. Thus, the effectiveness of the present invention was confirmed from the fact that there was a remarkable decoloring effect in the case with discharge compared to the case without discharge.

(第2実施形態)
図2は、本発明に係る液体処理装置の第2の実施の形態を示す図であって、本発明を適用した液体処理装置本体Bの内部構造を示すものである。
(Second Embodiment)
FIG. 2 is a diagram showing a second embodiment of the liquid processing apparatus according to the present invention, and shows the internal structure of a liquid processing apparatus main body B to which the present invention is applied.

液体処理装置本体Bは、気体放電部1内に設置する金属管から成る電圧印加電極40を、ガラス又はセラミックス等の誘電体から成る円筒状の誘電体管42内に挿入して設置し、前記電圧印加電極40の先端あるいは先端からやや離れた位置における誘電体管41の外側面に円環状の接地電極41を密着して設けている。また、前記誘電体管42の両端のうち、電圧印加電極40を挿入した側の一端は気体放電部1内の中空に支持し、他端は前記気体導出口11に接続している。なお、残余の構成は前記液体処理装置本体Aと同様である。 The liquid processing apparatus main body B is installed by inserting a voltage applying electrode 40 made of a metal tube installed in the gas discharge unit 1 into a cylindrical dielectric tube 42 made of a dielectric such as glass or ceramics, An annular ground electrode 41 is provided in close contact with the outer surface of the dielectric tube 41 at the tip of the voltage application electrode 40 or at a position slightly away from the tip. One end of the dielectric tube 42 on the side where the voltage application electrode 40 is inserted is supported in a hollow space in the gas discharge unit 1 and the other end is connected to the gas outlet 11. The remaining configuration is the same as that of the liquid processing apparatus main body A.

本液体処理装置本体Bによれば、前記両電極間での放電は誘電体管42の内部で生じ、プラズマ等も誘電体管42内のみで発生するから、活性化ガスPGは拡散することなく高濃度のプラズマ等を含有したまま、ただちに気体導出口11からマイクロバブル発生部2へと吸引される。そのため、寿命の短い各種ラジカル等の失活を最小限に抑えながら活性化ガスPG効率よくマイクロバブル化でき、処理能力の向上を図ることができる。 According to the main body B of the liquid processing apparatus, the discharge between the electrodes is generated inside the dielectric tube 42, and plasma or the like is generated only in the dielectric tube 42. Therefore, the activated gas PG does not diffuse. While containing high concentration plasma or the like, the gas is immediately sucked from the gas outlet 11 to the microbubble generator 2. Therefore, the activation gas PG can be efficiently microbubbled while minimizing the inactivation of various radicals having a short lifetime, and the processing capacity can be improved.

(第3実施形態)
図3並びに図4は、本発明に係る液体処理装置の第3の実施の形態を示す図であって、本発明を適用した液体処理装置本体C及び液体処理装置本体Dの内部構造を示すものである。
(Third embodiment)
3 and 4 are diagrams showing a third embodiment of the liquid processing apparatus according to the present invention, and showing the internal structure of the liquid processing apparatus main body C and the liquid processing apparatus main body D to which the present invention is applied. It is.

図3に示す液体処理装置本体Cは、気体放電部1内に設置する電圧印加電極50を中空ではない針状又は円錐体状に構成している以外は、前記液体処理装置本体Aと同様である。 The liquid processing apparatus main body C shown in FIG. 3 is the same as the liquid processing apparatus main body A except that the voltage application electrode 50 installed in the gas discharge unit 1 is configured in a needle shape or a cone shape that is not hollow. is there.

本液体処理装置本体Cによると、電圧印加電極50と接地電極51の間にはコロナ放電、火花放電、ストリーマ放電のいずれかの放電Sを生じるが、電圧印加電極50の形状を簡易な針状とできるため耐久性が高く、構造を簡便化できる。 According to the liquid processing apparatus main body C, a discharge S of any one of corona discharge, spark discharge, and streamer discharge is generated between the voltage application electrode 50 and the ground electrode 51. The shape of the voltage application electrode 50 is a simple needle shape. Therefore, the durability is high and the structure can be simplified.

また、図4に示す液体処理装置本体Dは、前記液体処理装置本体Cの改良例であり、電圧印加電極60は前記針状又は円錐体状の電圧印加電極50を多数集積して構成しているため、放電Sを生ずる領域を拡張することができ、プラズマ等の生成量を増大することが可能である。これにより、被処理液体Wの処理能力の向上を図ることができる。 Also, the liquid processing apparatus main body D shown in FIG. 4 is an improved example of the liquid processing apparatus main body C, and the voltage application electrode 60 is configured by integrating a large number of the needle-like or conical voltage application electrodes 50. Therefore, the region where the discharge S is generated can be expanded, and the generation amount of plasma or the like can be increased. Thereby, the processing capability of the liquid W to be processed can be improved.

(第4実施形態)
図5は、本発明に係る液体処理装置の第4の実施の形態を示す図であって、本発明を適用した液体処理装置本体Eの内部構造を示すものである。
(Fourth embodiment)
FIG. 5 is a diagram showing a fourth embodiment of a liquid processing apparatus according to the present invention, and shows an internal structure of a liquid processing apparatus main body E to which the present invention is applied.

本液体処理装置本体Eは、気体放電部1内に設置する電圧印加電極70を、金属管を複数本集積して構成している以外は、前記液体処理装置本体Aと同様である。 The main body E of the liquid processing apparatus is the same as the main body A of the liquid processing apparatus except that the voltage applying electrode 70 installed in the gas discharge unit 1 is configured by integrating a plurality of metal tubes.

いずれの金属管にも気体GSが供給され、かつ、すべての金属管の先端部と板状の設置電極71との間で放電Sを生じるため、放電Sを生ずる領域を拡張することができ、液体処理装置本体Aに比べてプラズマ等の生成量を増大することが可能である。これにより、被処理液体Wの処理能力の向上を図ることができる。 Gas GS is supplied to any of the metal tubes, and discharge S is generated between the tips of all the metal tubes and the plate-like installation electrodes 71, so that the region where the discharge S is generated can be expanded. Compared with the liquid processing apparatus main body A, it is possible to increase the generation amount of plasma or the like. Thereby, the processing capability of the liquid W to be processed can be improved.

(第5実施形態)
図6並びに図7は、本発明に係る液体処理装置の第5の実施の形態を示す図であって、本発明を適用した液体処理装置本体F及び液体処理装置本体Gの内部構造を示すものである。
(Fifth embodiment)
6 and 7 are views showing a fifth embodiment of the liquid processing apparatus according to the present invention and showing the internal structure of the liquid processing apparatus main body F and the liquid processing apparatus main body G to which the present invention is applied. It is.

液体処理装置本体Fは、気体放電部1の気体導入口10と気体導出口11とを、内径数mm以下、厚さ1mm前後のガラス又はセラミックス等の誘電体から成る円筒状の誘電体管82で接続し、該誘電体管82の外側面にはいずれも金属板から成る電圧印加電極80と接地電極81とを誘電体管82を挟み互いに対向させた状態で密着して設けており、残余の構成は前記液体処理装置本体Aと同様である。 In the liquid processing apparatus main body F, a cylindrical dielectric tube 82 made of a dielectric material such as glass or ceramic having an inner diameter of several mm or less and a thickness of about 1 mm is provided for the gas inlet 10 and the gas outlet 11 of the gas discharge unit 1. The voltage application electrode 80 and the ground electrode 81 made of a metal plate are provided in close contact with each other across the dielectric tube 82 on the outer surface of the dielectric tube 82, and the rest The configuration is the same as that of the liquid processing apparatus main body A.

本液体処理装置本体Fによれば、前記両電極間での放電は誘電体管82の内部で生じ、プラズマ等も誘電体管82内のみで発生するから、活性化ガスPGは拡散することなく高濃度のプラズマ等を含有したまま、ただちに気体導出口11からマイクロバブル発生部2へと吸引される。そのため、寿命の短い各種ラジカル等の失活を最小限に抑えながら活性化ガスPG効率よくマイクロバブル化でき、処理能力の向上を図ることができる。 According to the main body F of the liquid processing apparatus, the discharge between the electrodes is generated inside the dielectric tube 82, and plasma or the like is generated only in the dielectric tube 82. Therefore, the activated gas PG does not diffuse. While containing high concentration plasma or the like, the gas is immediately sucked from the gas outlet 11 to the microbubble generator 2. Therefore, the activation gas PG can be efficiently microbubbled while minimizing the inactivation of various radicals having a short lifetime, and the processing capacity can be improved.

また、図7に示す液体処理装置本体Gは、前記液体処理装置本体Fの改良例であり、電圧印加電極90と接地電極91はいずれも前記誘電体管82の外側面全周に金属板を環状に巻き付けた構成としたものである。この場合、両電極の位置関係は特に限定されない。 Further, the liquid processing apparatus main body G shown in FIG. 7 is an improved example of the liquid processing apparatus main body F, and the voltage applying electrode 90 and the ground electrode 91 are both metal plates on the entire outer surface of the dielectric tube 82. It is set as the structure wound by the annular | circular shape. In this case, the positional relationship between both electrodes is not particularly limited.

本液体処理装置本体Gによれば、気体放電を引き起こす高電界は、電圧印加電極90と接地電極91の間に発生するので、電子は誘電体管82の内壁面に沿って加速される。この場合、液体処理装置本体Fのように電極間のギャップ(距離)が短い場合と比較して、電子は電界によって十分に加速されるので、電子の得るエネルギーが増大する。このため、発生するプラズマ等のエネルギーが高く、しかも電子が長い距離を進む間に気体GS内の多くの原子・分子と電離・励起過程を生じるので、プラズマ密度やラジカル密度も液体処理装置本体Fに比べて増加するという有利な効果を奏するのである。 According to this liquid processing apparatus main body G, a high electric field that causes gas discharge is generated between the voltage application electrode 90 and the ground electrode 91, so that electrons are accelerated along the inner wall surface of the dielectric tube 82. In this case, compared to the case where the gap (distance) between the electrodes is short as in the liquid processing apparatus main body F, the electrons are sufficiently accelerated by the electric field, so that the energy obtained by the electrons increases. For this reason, since energy such as generated plasma is high and electrons are traveling a long distance, ionization / excitation processes occur with many atoms / molecules in the gas GS. There is an advantageous effect of increasing compared to the above.

以上、本発明に係る液体処理装置の実施の形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の技術的思想の範囲内において改良又は変更が可能であり、それらは本発明の技術的範囲に属するものとする。   As mentioned above, although embodiment of the liquid processing apparatus which concerns on this invention was described, this invention is not limited to the said embodiment, In the range of the technical idea of this invention, improvement or a change is possible, They shall belong to the technical scope of the present invention.

本発明に係る液体処理装置の適用対象は特に限定されず、液体中の有機物、無機物、微生物、細菌、ウイルス等の有害物質の分解除去全般に適用可能であるが、特に、有機物や微生物、細菌等を含む排水の浄化、医療廃棄物を含む汚染水の殺菌処理等に有用である。 The application target of the liquid processing apparatus according to the present invention is not particularly limited, and can be applied to the general decomposition and removal of harmful substances such as organic substances, inorganic substances, microorganisms, bacteria, and viruses in liquids. It is useful for the purification of wastewater containing etc. and the sterilization treatment of contaminated water containing medical waste.

本発明の第1実施形態に係る液体処理装置の全体構成図である。1 is an overall configuration diagram of a liquid processing apparatus according to a first embodiment of the present invention. 本発明の第2の実施の形態に係る液体処理装置における液体処理装置本体Bの内部構造図である。It is an internal structure figure of the liquid processing apparatus main body B in the liquid processing apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る液体処理装置における液体処理装置本体Cの内部構造図である。It is an internal structure figure of the liquid processing apparatus main body C in the liquid processing apparatus which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施の形態に係る液体処理装置の改良例における液体処理装置本体Dの内部構造図である。It is an internal structure figure of the liquid processing apparatus main body D in the modified example of the liquid processing apparatus which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施の形態に係る液体処理装置における液体処理装置本体Eの内部構造図である。It is an internal structure figure of the liquid processing apparatus main body E in the liquid processing apparatus which concerns on the 4th Embodiment of this invention. 本発明の第5の実施の形態に係る液体処理装置における液体処理装置本体Fの内部構造図である。It is an internal structure figure of the liquid processing apparatus main body F in the liquid processing apparatus which concerns on the 5th Embodiment of this invention. 本発明の第5の実施の形態に係る液体処理装置の改良例における液体処理装置本体Gの内部構造図である。It is an internal structure figure of the liquid processing apparatus main body G in the modified example of the liquid processing apparatus which concerns on the 5th Embodiment of this invention. 本発明の第1の実施形態に係る液体処理装置で行った脱色処理試験の測定結果を示すグラフである。It is a graph which shows the measurement result of the decoloring process test done with the liquid processing apparatus which concerns on the 1st Embodiment of this invention.

A〜G 液体処理装置本体
T 液槽
W 被処理液体
GS 気体
S 放電
PG 活性化ガス
R 渦流
V 負圧空洞部
P マイクロバブル発生点
MB マイクロバブルを含む気液混合流体
GB1 ガスボンベ1
GB2 ガスボンベ2
1 気体放電部
2 マイクロバブル発生部
3 気体供給部
4 高圧電源
5 循環ポンプ
6 制御装置
7 気体供給管
8 液体供給管
9 給電線
10 気体導入口
11 気体導出口
12 電圧印加電極(液体処理装置本体A)
13 接地電極(液体処理装置本体A)
20 自吸口
21 ノズル
22 気液混合流体放出口
30 圧力調整弁
31〜34 電磁弁
40 電圧印加電極(液体処理装置本体B)
41 接地電極(液体処理装置本体B)
42 誘電体管(液体処理装置本体B)
50 電圧印加電極(液体処理装置本体C)
51 接地電極(液体処理装置本体C)
60 電圧印加電極(液体処理装置本体D)
61 接地電極(液体処理装置本体D)
70 電圧印加電極(液体処理装置本体E)
71 接地電極(液体処理装置本体E)
80 電圧印加電極(液体処理装置本体F)
81 接地電極(液体処理装置本体F)
82 誘電体管(液体処理装置本体F、G)
90 電圧印加電極(液体処理装置本体G)
91 接地電極(液体処理装置本体G)
A to G Liquid processing apparatus main body T Liquid tank W Liquid to be processed GS Gas S Discharge PG Activation gas R Eddy current V Negative pressure cavity P Micro bubble generation point MB Gas-liquid mixed fluid containing micro bubbles GB1 Gas cylinder 1
GB2 Gas cylinder 2
DESCRIPTION OF SYMBOLS 1 Gas discharge part 2 Micro bubble generation part 3 Gas supply part 4 High voltage power supply 5 Circulation pump 6 Control apparatus 7 Gas supply pipe 8 Liquid supply pipe 9 Feed line 10 Gas inlet 11 Gas outlet 12 Voltage application electrode (liquid processing apparatus main body A)
13 Ground electrode (Liquid treatment device body A)
20 Self-priming port 21 Nozzle 22 Gas-liquid mixed fluid discharge port 30 Pressure adjusting valve 31-34 Solenoid valve 40 Voltage application electrode (liquid processing apparatus main body B)
41 Ground electrode (Liquid treatment device body B)
42 Dielectric tube (Liquid treatment device body B)
50 Voltage application electrode (Liquid treatment device body C)
51 Ground electrode (Liquid treatment device body C)
60 Voltage application electrode (liquid processing apparatus main body D)
61 Ground electrode (Liquid treatment device body D)
70 Voltage application electrode (liquid processing equipment body E)
71 Ground electrode (liquid processing equipment body E)
80 Voltage application electrode (liquid processing equipment main body F)
81 Ground electrode (Liquid treatment device body F)
82 Dielectric tube (Liquid treatment equipment body F, G)
90 Voltage application electrode (liquid processing device main body G)
91 Ground electrode (liquid processing equipment body G)

Claims (6)

大気圧下での気体放電により気体をプラズマ化させて得た活性化ガスを微細気泡化して被処理液体中に供給することを特徴とする液体処理装置。   A liquid processing apparatus characterized in that an activated gas obtained by converting a gas into plasma by gas discharge under atmospheric pressure is made into fine bubbles and supplied into a liquid to be processed. 気体放電部とこれに一体的に直結した微細気泡発生部とを備え、前記気体放電部は気体を大気圧下での気体放電によりプラズマ化させて活性化ガスを発生させ、前記微細気泡発生部は前記活性ガスを微細気泡化して液体中に供給することを特徴とする請求項1に記載の液体処理装置。   A gas discharge unit and a micro-bubble generating unit directly and integrally connected to the gas discharge unit, wherein the gas discharge unit generates an activated gas by generating a plasma by gas discharge under atmospheric pressure, and the micro-bubble generating unit The liquid processing apparatus according to claim 1, wherein the active gas is made into fine bubbles and supplied into the liquid. 前記気体放電部は電圧印加電極と接地電極とを有し、大気圧下で両電極間に気体放電を発生させることを特徴とする、請求項2に記載の液体処理装置。 The liquid processing apparatus according to claim 2, wherein the gas discharge unit includes a voltage application electrode and a ground electrode, and generates a gas discharge between the electrodes under atmospheric pressure. 前記気体放電部は、特定の気体又は複数種類の気体を混合して成る混合気体を導入する気体供給手段を備えたことを特徴とする、請求項2又は請求項3のいずれかに記載の液体処理装置。 4. The liquid according to claim 2, wherein the gas discharge unit includes a gas supply unit that introduces a specific gas or a mixed gas formed by mixing a plurality of types of gases. 5. Processing equipment. 前記微細気泡発生部は、前記活性化ガスを直径100μm以下の微細気泡として液体中に供給することを特徴とする、請求項2乃至請求項4のいずれかに記載の液体処理装置。 The liquid processing apparatus according to claim 2, wherein the fine bubble generating unit supplies the activation gas into the liquid as fine bubbles having a diameter of 100 μm or less. 前記気体放電部と前記微細気泡発生部とは脱着可能な構造を有することを特徴とする、請求項2乃至請求項5のいずれかに記載の液体処理装置。
The liquid processing apparatus according to claim 2, wherein the gas discharge unit and the fine bubble generation unit have a detachable structure.
JP2011097825A 2011-04-26 2011-04-26 Liquid processing equipment Active JP5099612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011097825A JP5099612B2 (en) 2011-04-26 2011-04-26 Liquid processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011097825A JP5099612B2 (en) 2011-04-26 2011-04-26 Liquid processing equipment

Publications (2)

Publication Number Publication Date
JP2012228644A true JP2012228644A (en) 2012-11-22
JP5099612B2 JP5099612B2 (en) 2012-12-19

Family

ID=47430668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011097825A Active JP5099612B2 (en) 2011-04-26 2011-04-26 Liquid processing equipment

Country Status (1)

Country Link
JP (1) JP5099612B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013103193A (en) * 2011-11-15 2013-05-30 Sharp Corp Water purification device
WO2015072461A1 (en) * 2013-11-18 2015-05-21 沖野 晃俊 Microbicidal liquid-generating device
WO2017081818A1 (en) * 2015-11-13 2017-05-18 国立大学法人東京工業大学 Fluid processing device and fluid processing method
US10723637B2 (en) 2017-03-21 2020-07-28 Panasonic Intellectual Property Management Co., Ltd. Liquid treatment apparatus
US10843942B2 (en) 2017-06-26 2020-11-24 Panasonic Intellectual Property Management Co., Ltd. Liquid treatment apparatus
US10875790B2 (en) 2016-06-15 2020-12-29 Panasonic Intellectual Property Management Co., Ltd. Apparatus for producing reforming liquid and method for producing reforming liquid
US10934183B2 (en) 2018-03-22 2021-03-02 Panasonic Intellectual Property Management Co., Ltd. Liquid processing apparatus
US11059729B2 (en) 2017-12-08 2021-07-13 Panasonic Intellectual Property Management Co., Ltd. Liquid treatment device
WO2021172654A1 (en) * 2020-02-28 2021-09-02 케이퓨전테크놀로지 주식회사 Apparatus for producing functional water using underwater plasma
WO2024096328A1 (en) * 2022-11-01 2024-05-10 케이퓨전테크놀로지 주식회사 Fluid treatment device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104591355A (en) * 2015-01-29 2015-05-06 广东佳德环保科技有限公司 Method for disinfecting and sterilizing water by virtue of streamer discharge plasmas
KR102154766B1 (en) * 2019-03-19 2020-09-10 썬더에코 주식회사 System for disinfection and cultivation of agricultural products using Thunderbolt discharge of electricity and micro bubble water

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007149590A (en) * 2005-11-30 2007-06-14 Toshiba Corp Radical processor
JP2008178870A (en) * 2006-12-28 2008-08-07 Sharp Corp Plasma generator, method for producing radical, and washing and cleaning apparatus
JP2012115777A (en) * 2010-12-01 2012-06-21 Sharp Corp Sterilization method for underwater, apparatus for sterilizing underwater, and refrigerator using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007149590A (en) * 2005-11-30 2007-06-14 Toshiba Corp Radical processor
JP2008178870A (en) * 2006-12-28 2008-08-07 Sharp Corp Plasma generator, method for producing radical, and washing and cleaning apparatus
JP2012115777A (en) * 2010-12-01 2012-06-21 Sharp Corp Sterilization method for underwater, apparatus for sterilizing underwater, and refrigerator using the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013103193A (en) * 2011-11-15 2013-05-30 Sharp Corp Water purification device
WO2015072461A1 (en) * 2013-11-18 2015-05-21 沖野 晃俊 Microbicidal liquid-generating device
WO2017081818A1 (en) * 2015-11-13 2017-05-18 国立大学法人東京工業大学 Fluid processing device and fluid processing method
US10875790B2 (en) 2016-06-15 2020-12-29 Panasonic Intellectual Property Management Co., Ltd. Apparatus for producing reforming liquid and method for producing reforming liquid
US10723637B2 (en) 2017-03-21 2020-07-28 Panasonic Intellectual Property Management Co., Ltd. Liquid treatment apparatus
US10843942B2 (en) 2017-06-26 2020-11-24 Panasonic Intellectual Property Management Co., Ltd. Liquid treatment apparatus
US11059729B2 (en) 2017-12-08 2021-07-13 Panasonic Intellectual Property Management Co., Ltd. Liquid treatment device
US10934183B2 (en) 2018-03-22 2021-03-02 Panasonic Intellectual Property Management Co., Ltd. Liquid processing apparatus
WO2021172654A1 (en) * 2020-02-28 2021-09-02 케이퓨전테크놀로지 주식회사 Apparatus for producing functional water using underwater plasma
WO2024096328A1 (en) * 2022-11-01 2024-05-10 케이퓨전테크놀로지 주식회사 Fluid treatment device

Also Published As

Publication number Publication date
JP5099612B2 (en) 2012-12-19

Similar Documents

Publication Publication Date Title
JP5099612B2 (en) Liquid processing equipment
US10941062B2 (en) Microbubble generator for enhanced plasma treatment of liquid
JP4453052B2 (en) Water treatment equipment
KR100491833B1 (en) Water discharge in a dielectric barrier discharge system to generate an ozonated water
US9409800B2 (en) Electric arc for aqueous fluid treatment
US20070287917A1 (en) Method for Collapsing Microbubbles
JP2005058887A (en) Waste water treatment apparatus using high-voltage pulse
JP2008178870A (en) Plasma generator, method for producing radical, and washing and cleaning apparatus
JP6678338B2 (en) Liquid treatment equipment
US8945353B1 (en) Electrolytic cell with advanced oxidation process
JP2006130410A (en) Liquid treatment method and liquid treatment apparatus
JPWO2016117259A1 (en) Water treatment apparatus and water treatment method
JP2013049015A (en) Water treatment apparatus
KR101639337B1 (en) water purification method using plasma in microbubble environment and it's apparatus
US20220081326A1 (en) Water Treatment Apparatus And Method For Treatment Of Water
JP2014159008A (en) Water treatment apparatus
EP0431190B1 (en) Fluid treater and method of stopping the same
CN103979668A (en) Device for reacting discharge plasma positioned on gas-liquid interface of swirl gas column
CN112154126A (en) Ballast water treatment equipment and ballast water treatment system
KR20140104360A (en) Water treatment apparatus
US20080233003A1 (en) System and method for treating liquid using a corona discharge process in a low pressure environment
JPWO2018021528A1 (en) Device for producing sterilizing water, method for sterilizing an object to be treated and method for producing sterilizing water
RU2152359C1 (en) Device for cleaning and decontamination of water by high-voltage electrical discharges
Luvita et al. Characterization of dielectric barrier discharge reactor with nanobubble application for industrial water treatment and depollution
RU2478580C1 (en) Device for decontamination of effluents by electric discharges

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120905

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5099612

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250