WO2020065814A1 - Sterilizing water producing device, sterilizing water producing method, and method for manufacturing sterilized object - Google Patents

Sterilizing water producing device, sterilizing water producing method, and method for manufacturing sterilized object Download PDF

Info

Publication number
WO2020065814A1
WO2020065814A1 PCT/JP2018/035880 JP2018035880W WO2020065814A1 WO 2020065814 A1 WO2020065814 A1 WO 2020065814A1 JP 2018035880 W JP2018035880 W JP 2018035880W WO 2020065814 A1 WO2020065814 A1 WO 2020065814A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
electrode
producing
sterilized water
discharge plasma
Prior art date
Application number
PCT/JP2018/035880
Other languages
French (fr)
Japanese (ja)
Inventor
横山 貴士
哲 猪原
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to PCT/JP2018/035880 priority Critical patent/WO2020065814A1/en
Publication of WO2020065814A1 publication Critical patent/WO2020065814A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields

Definitions

  • the present invention relates to an apparatus for producing sterilized water, a method for producing sterilized water, and a method for producing a sterilized object.
  • the present invention has been made in view of this problem.
  • the problem to be solved by the present invention is to produce sterile water which has a high bactericidal factor concentration and can sterilize other objects.
  • the present invention is directed to an apparatus for producing sterilized water.
  • the apparatus for producing sterilized water includes a member, a nozzle, and a discharge plasma generating mechanism.
  • the member has an annular waterway. Water circulates in the annular channel.
  • Nozzles generate cavitation bubbles in water.
  • the discharge plasma generation mechanism generates discharge plasma in a space where cavitation bubbles are generated.
  • the present invention is also directed to a method for producing sterilized water and a method for producing a sterilized object.
  • the process of generating cavitation bubbles in water and generating discharge plasma in a space where cavitation bubbles are generated is repeatedly performed on water. Also, chemicals that produce bactericidal factors and have a long life are generated in water. This makes it possible to produce sterilized water having a high concentration of a bactericidal factor and capable of sterilizing other objects.
  • FIG. 1 is a diagram schematically illustrating an apparatus for producing sterilized water according to the first embodiment.
  • the apparatus 100 for producing sterilized water shown in FIG. 1 includes an annular pipe 110, a reactor 112, a cooler 114, and a pump 116.
  • the manufacturing apparatus 100 may include elements other than these elements.
  • the annular pipe 110 has an annular water passage. Water circulates through the annular water passage in the annular pipe 110.
  • the annular tube 110 may be replaced by a member other than a tube.
  • the annular tube 110 may be replaced with an annular hose.
  • a reactor 112, a cooler 114, and a pump 116 are inserted into the annular pipe 110. Therefore, the water circulating in the annular water passage in the annular pipe 110 sequentially passes through the reactor 112, the cooler 114, and the pump 116.
  • the reactor 112 treats water passing through the reactor 112.
  • the cooler 114 cools water passing through the cooler 114.
  • Pump 116 provides flow to the water passing through pump 116. Thereby, the water cooled by the cooler 114 is repeatedly treated by the reactor 112, a bactericidal factor is generated in the treated water, and germicidal water containing the generated bactericidal factor is produced.
  • the manufacturing apparatus 100 further includes a branch pipe 118 and a valve 120.
  • the branch pipe 118 has a branch waterway.
  • the branch waterway in the branch pipe 118 extends from the annular waterway in the annular pipe 110 to the outside of the manufacturing apparatus 100.
  • the manufactured sterilized water is taken out of the manufacturing apparatus 100 via the branch water channel in the branch pipe 118.
  • the branch pipe 118 may be replaced with a member other than a pipe.
  • the branch pipe 118 may be replaced with a branch hose.
  • the branch pipe 118 may be omitted, and the sterilizing water may be taken out of the manufacturing apparatus 100 via a hole formed in the annular pipe 110.
  • a valve 120 is inserted into the branch pipe 118. While the valve 120 is closed, the water in the annular channel in the annular tube 110 circulates through the annular channel in the annular tube 110 without being taken out of the manufacturing apparatus 100. While the valve 120 is open, the sterilizing water can be taken out of the manufacturing apparatus 100 via the branch water passage in the branch pipe 118.
  • the manufacturing apparatus 100 further includes a pulse voltage application circuit 122.
  • the pulse voltage application circuit 122 applies a pulse voltage to the reactor 112.
  • the reactor 112 treats water passing through the reactor 112 using the applied pulse voltage.
  • the pulse voltage application circuit 122 includes a pulse power supply 130, a first wiring 132, and a second wiring 134.
  • the pulse power supply 130 includes a negative electrode 140 and a positive electrode 142.
  • the pulse power supply 130 generates a pulse voltage between the negative electrode 140 and the positive electrode 142.
  • the first wiring 132 and the second wiring 134 transmit the generated pulse voltage from the pulse power supply 130 to the reactor 112. Thereby, the transmitted pulse voltage is applied to the reactor 112.
  • FIG. 2 is a cross-sectional view schematically illustrating a cross section of the reactor provided in the apparatus for producing sterilized water according to the first embodiment.
  • the reactor 112 includes a tubular structure 150 as shown in FIG.
  • the tubular structure 150 has a water passage 160 in the reactor.
  • the in-reactor water channel 160 is connected to an annular water channel in the annular pipe 110. Thereby, the water W passing through the reactor 112 flows through the in-reactor water channel 160.
  • the tubular structure 150 includes the nozzle 170.
  • the nozzle 170 has an orifice shape. Therefore, when the water W passing through the reactor 112 passes through the nozzle 170, the flow velocity of the water W increases, and the pressure of the water W decreases. Further, after the water W passing through the reactor 112 passes through the nozzle 170, the flow velocity of the water W decreases, and the pressure of the water W increases. As a result, cavitation occurs near the nozzle 170. That is, when the water W passes through the nozzle 170, the pressure of the water W decreases, so that the water W boils and cavitation bubbles 180 are generated in the water W. After the water W has passed through the nozzle 170, the generated cavitation bubbles 180 disappear due to the increase in the pressure of the water W. Therefore, the nozzle 170 generates a cavitation bubble 180 in the water W.
  • the reactor 112 has a space in which the cavitation bubble 180 is generated. The space is near the nozzle 170.
  • the reactor 112 includes a first electrode 190 and a second electrode 192.
  • the first electrode 190 is electrically grounded via a first wiring 132, and is electrically connected to the negative electrode 140 of the pulse power supply 130 via the first wiring 132.
  • the second electrode 192 is electrically connected to the positive electrode 142 of the pulse power supply 130 via the second wiring 134.
  • the first electrode 190 becomes a ground electrode
  • the second electrode 192 becomes a high-voltage electrode
  • a pulse voltage is applied between the first electrode 190 and the second electrode 192.
  • Discharge plasma is generated between the second electrode 192 and the second electrode 192.
  • the first wiring 132 may be omitted, and the first electrode 190 may be directly connected to the negative electrode 140.
  • the second wiring 134 may be omitted, and the second electrode 192 may be directly connected to the positive electrode 142.
  • the first electrode 190 and the second electrode 192 are arranged near the nozzle 170. Accordingly, the first electrode 190 and the second electrode 192 are arranged in the space where the cavitation bubble 180 is generated, and discharge plasma is generated in the space where the cavitation bubble 180 is generated. Therefore, the first electrode 190, the second electrode 192, and the pulse voltage application circuit 122 constitute a discharge plasma generation mechanism 200 that generates discharge plasma in the space. In the first embodiment, the first electrode 190 and the second electrode 192 are arranged downstream of the nozzle 170. A first electrode 190 and a second electrode 192 may be disposed in the nozzle 170.
  • the discharge plasma generated in the space where the cavitation bubble 180 is generated generates a chemical substance in the cavitation bubble 180.
  • the produced chemical reacts to produce a bactericidal factor. Thereby, sterilized water containing the generated sterilizing factor is produced.
  • the cavitation bubble 180 is mainly composed of water vapor, and hardly contains nitrogen derived from air. Therefore, even when discharge plasma is generated in the space where the cavitation bubbles 180 are generated, compounds containing nitrogen such as nitrogen oxides are hardly generated. Therefore, the sterilized water produced has high safety.
  • the first electrode 190 and the second electrode 192 are made of a conductor, for example, a metal or an alloy.
  • the first electrode 190 and the second electrode 192 may be electrodes including a conductor and ceramics covering a part of the surface of the conductor.
  • the first electrode 190 and the second electrode 192 have a rod shape and extend in the radial direction of the tubular structure 150.
  • the front ends of the first electrode 190 and the second electrode 192 are arranged in the reactor internal water channel 160.
  • the rear ends of the first electrode 190 and the second electrode 192 are arranged outside the tubular structure 150.
  • the front ends of the first electrode 190 and the second electrode 192 are separated from each other in the axial direction of the tubular structure 150, that is, the direction in which the water W flows.
  • the distance between the first electrode 190 and the second electrode 192 is desirably 4 mm or more and 32 mm or less.
  • the distance between the first electrode 190 and the second electrode 192 can be increased.
  • an AC voltage is applied between the first electrode 190 and the second electrode 192
  • the distance between the first electrode 190 and the second electrode 192 must be 16 mm or more. Is easy.
  • the water W is filled in the annular channel in the annular pipe 110.
  • the filled water W may be pure water or water containing some impurities such as tap water.
  • valve 120 is closed.
  • the pump 116 is operated. Thereby, the water W circulates through the annular water passage in the annular pipe 110, and cavitation bubbles 180 are generated.
  • the discharge pressure of the pump 116 is desirably 0.1 MPa or more and 1.5 MPa or less.
  • the cooler 114 is operated. Thereby, the circulating water W is desirably cooled to about 4 ° C.
  • the pulse power supply 130 is operated. Accordingly, a pulse voltage is applied between the first electrode 190 and the second electrode 192, and a discharge plasma is generated in a space where the cavitation bubble 180 is generated.
  • the frequency of the pulse voltage is desirably 10 kHz or less.
  • the peak voltage of the pulse voltage is desirably 15 kV or less.
  • the pulse width of the pulse voltage is desirably 1 ⁇ sec or less in full width at half maximum.
  • the generated discharge plasma generates a germicidal factor and produces a chemical substance having a longer lifetime than the lifetime of the radical.
  • This and the circulation of the water W through the annular water passage in the annular pipe 110 make it possible to produce sterilized water having a high bactericidal factor concentration.
  • a chemical substance that produces a bactericidal factor is hydrogen peroxide (H 2 O 2 ) or the like.
  • the bactericidal factor includes at least one radical selected from the group consisting of a hydroxyl radical (OH * ) and a hydroperoxide radical (HO 2 * ).
  • valve 120 is opened.
  • the manufactured sterilizing water is taken out of the manufacturing apparatus 100 via the branch water channel in the branch pipe 118.
  • the process of generating the cavitation bubbles 180 in the water and generating the discharge plasma in the space where the cavitation bubbles 180 are generated is repeatedly performed on the water W. This makes it possible to produce sterilized water having a high bactericidal factor concentration.
  • the water W is cooled to increase the solubility of the precursor of the bactericidal factor and the bactericidal factor in the water W. Life can be extended.
  • sterilization water is manufactured by the sterilization water manufacturing apparatus 100, and the manufactured sterilization water is brought into contact with the object. This joint processing changes the object into a sterilized object.
  • Experimental Example Sterilized water was manufactured by the sterilized water manufacturing apparatus 100.
  • the distance between the first electrode 190 and the second electrode 192 was 32 mm.
  • the frequency of the pulse voltage was 2 kHz.
  • the peak voltage of the pulse voltage was 15 kV.
  • the pulse width of the pulse voltage was 500 ns at full width at half maximum.
  • the energy density was obtained by dividing the product of the input electric power, the time when the electric power was input, and the efficiency by the volume of the water W.
  • the number of sterilization digits was obtained by taking the absolute value of the common logarithm of the ratio of the number of bacteria after sterilization to the number of bacteria before sterilization. From the graph of FIG. 3, it can be understood that the higher the energy density of the water W, the larger the number of sterilization digits.
  • Reference Signs List 100 sterilization water production apparatus 110 annular pipe 112 reactor 114 cooler 116 pump 130 pulse power supply 170 nozzle 180 cavitation bubble 190 first electrode 192 second electrode 200 discharge plasma generation mechanism W water

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Physical Water Treatments (AREA)

Abstract

The present invention produces sterilizing water that has a high sterilization factor concentration and that can sterilize other objects. This sterilizing water producing device is provided with a member, a nozzle, and a discharge plasma generating mechanism. The member has an annular water channel. The annular water channel allows water to circulate therein. The nozzle generates cavitation bubbles in water. The discharge plasma generating mechanism generates discharge plasma in a space in which the cavitation bubbles are generated.

Description

殺菌水の製造装置、殺菌水の製造方法及び殺菌済物体の製造方法Apparatus for producing sterilized water, method for producing sterilized water, and method for producing sterilized object
 本発明は、殺菌水の製造装置、殺菌水の製造方法及び殺菌済物体の製造方法に関する。 The present invention relates to an apparatus for producing sterilized water, a method for producing sterilized water, and a method for producing a sterilized object.
 特許文献1に記載された水処理装置においては、被処理水中にキャビテーションバブルが発生させられ、キャビテーションバブルが発生する空間に放電プラズマが形成される(請求項1)。これにより、被処理水の殺菌処理を行うことができる(段落0013)。 In the water treatment apparatus described in Patent Document 1, cavitation bubbles are generated in the water to be treated, and discharge plasma is formed in a space where the cavitation bubbles are generated (claim 1). Thereby, sterilization treatment of the water to be treated can be performed (paragraph 0013).
特許第4453052号公報Japanese Patent No. 4453052
 特許文献1に記載された水処理装置においては、水及び電気エネルギーのみにより被処理水の殺菌処理を行うことができる。しかし、当該水処理装置においては、殺菌に寄与する殺菌因子の濃度を高くすることが難しいため、他の物体を殺菌することができる殺菌水を製造することが難しい。 水 In the water treatment device described in Patent Literature 1, sterilization treatment of the water to be treated can be performed only with water and electric energy. However, in the water treatment apparatus, it is difficult to increase the concentration of a bactericidal factor contributing to sterilization, so that it is difficult to produce sterilized water capable of sterilizing other objects.
 本発明は、この問題に鑑みてなされた。本発明が解決しようとする課題は、高い殺菌因子の濃度を有し他の物体を殺菌することができる殺菌水を製造することである。 The present invention has been made in view of this problem. The problem to be solved by the present invention is to produce sterile water which has a high bactericidal factor concentration and can sterilize other objects.
 本発明は、殺菌水の製造装置に向けられる。 The present invention is directed to an apparatus for producing sterilized water.
 殺菌水の製造装置は、部材、ノズル及び放電プラズマ発生機構を備える。 (4) The apparatus for producing sterilized water includes a member, a nozzle, and a discharge plasma generating mechanism.
 部材は、環状水路を有する。環状水路には、水が循環する。 The member has an annular waterway. Water circulates in the annular channel.
 ノズルは、水中にキャビテーションバブルを発生させる。 Nozzles generate cavitation bubbles in water.
 放電プラズマ発生機構は、キャビテーションバブルが発生させられる空間に放電プラズマを発生させる。 The discharge plasma generation mechanism generates discharge plasma in a space where cavitation bubbles are generated.
 本発明は、殺菌水の製造方法及び殺菌済物体の製造方法にも向けられる。 The present invention is also directed to a method for producing sterilized water and a method for producing a sterilized object.
 本発明によれば、水中にキャビテーションバブルを発生させキャビテーションバブルが発生させられる空間に放電プラズマを発生させる処理が水に対して繰り返し行われる。また、殺菌因子を生成し長い寿命を有する化学物質が水中に生成する。これにより、高い殺菌因子の濃度を有し他の物体を殺菌することができる殺菌水を製造することができる。 According to the present invention, the process of generating cavitation bubbles in water and generating discharge plasma in a space where cavitation bubbles are generated is repeatedly performed on water. Also, chemicals that produce bactericidal factors and have a long life are generated in water. This makes it possible to produce sterilized water having a high concentration of a bactericidal factor and capable of sterilizing other objects.
 この発明の目的、特徴、局面及び利点は、以下の詳細な説明と添付図面とによって、より明白となる。 The objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description and the accompanying drawings.
第1実施形態の殺菌水の製造装置を模式的に図示する図である。It is a figure which illustrates typically the manufacturing apparatus of the sterilization water of 1st Embodiment. 第1実施形態の殺菌水の製造装置に備えられるリアクタの断面を模式的に図示する断面図である。It is sectional drawing which illustrates typically the cross section of the reactor with which the manufacturing apparatus of sterilized water of 1st Embodiment is provided. 第1実施形態の殺菌水の製造装置における、水に投入されたエネルギー密度による殺菌桁数の変化を示すグラフである。It is a graph which shows the change of the number of digits of sterilization according to energy density put into water in the manufacturing device of sterilization water of a 1st embodiment. 第1実施形態の殺菌水の製造装置における、水に投入されたエネルギー密度による殺菌水中のHの濃度の変化を示すグラフである。In sterilizing water producing device of the first embodiment, it is a graph showing changes in the H 2 O 2 concentrations of the sterilizing water by the energy density which is poured into water.
 1 殺菌水の製造装置
 図1は、第1実施形態の殺菌水の製造装置を模式的に図示する図である。
1. Apparatus for producing sterilized water FIG. 1 is a diagram schematically illustrating an apparatus for producing sterilized water according to the first embodiment.
 図1に図示される殺菌水の製造装置100は、環状管110、リアクタ112、冷却器114及びポンプ116を備える。製造装置100がこれらの要素以外の要素を備えてもよい。 殺菌 The apparatus 100 for producing sterilized water shown in FIG. 1 includes an annular pipe 110, a reactor 112, a cooler 114, and a pump 116. The manufacturing apparatus 100 may include elements other than these elements.
 環状管110は、環状水路を有する。環状管110内の環状水路には、水が循環する。環状管110が管ではない部材に置き換えられてもよい。例えば、環状管110が環状ホースに置き換えられてもよい。 The annular pipe 110 has an annular water passage. Water circulates through the annular water passage in the annular pipe 110. The annular tube 110 may be replaced by a member other than a tube. For example, the annular tube 110 may be replaced with an annular hose.
 環状管110には、リアクタ112、冷却器114及びポンプ116が挿入される。このため、環状管110内の環状水路を循環する水は、リアクタ112、冷却器114及びポンプ116を順次に通過する。リアクタ112は、リアクタ112を通過する水を処理する。冷却器114は、冷却器114を通過する水を冷却する。ポンプ116は、ポンプ116を通過する水に流れを与える。これにより、冷却器114により冷却された水がリアクタ112により繰り返し処理され、処理された水中に殺菌因子が生成され、生成された殺菌因子を含む殺菌水が製造される。 A reactor 112, a cooler 114, and a pump 116 are inserted into the annular pipe 110. Therefore, the water circulating in the annular water passage in the annular pipe 110 sequentially passes through the reactor 112, the cooler 114, and the pump 116. The reactor 112 treats water passing through the reactor 112. The cooler 114 cools water passing through the cooler 114. Pump 116 provides flow to the water passing through pump 116. Thereby, the water cooled by the cooler 114 is repeatedly treated by the reactor 112, a bactericidal factor is generated in the treated water, and germicidal water containing the generated bactericidal factor is produced.
 製造装置100は、分岐管118及びバルブ120をさらに備える。 The manufacturing apparatus 100 further includes a branch pipe 118 and a valve 120.
 分岐管118は、分岐水路を有する。分岐管118内の分岐水路は、環状管110内の環状水路から製造装置100の外部に至る。製造された殺菌水は、分岐管118内の分岐水路を経由して製造装置100の外部に取り出される。分岐管118が管ではない部材に置き換えられてもよい。例えば、分岐管118が分岐ホースに置き換えられてもよい。分岐管118が省略され、殺菌水が環状管110に形成された孔を経由して製造装置100の外部に取り出されてもよい。 The branch pipe 118 has a branch waterway. The branch waterway in the branch pipe 118 extends from the annular waterway in the annular pipe 110 to the outside of the manufacturing apparatus 100. The manufactured sterilized water is taken out of the manufacturing apparatus 100 via the branch water channel in the branch pipe 118. The branch pipe 118 may be replaced with a member other than a pipe. For example, the branch pipe 118 may be replaced with a branch hose. The branch pipe 118 may be omitted, and the sterilizing water may be taken out of the manufacturing apparatus 100 via a hole formed in the annular pipe 110.
 分岐管118には、バルブ120が挿入される。バルブ120が閉じられている間は、環状管110内の環状水路内の水が製造装置100の外部に取り出されることなく環状管110内の環状水路を循環する。バルブ120が開かれている間は、殺菌水を分岐管118内の分岐水路を経由して製造装置100の外部に取り出すことができる。 バ ル ブ A valve 120 is inserted into the branch pipe 118. While the valve 120 is closed, the water in the annular channel in the annular tube 110 circulates through the annular channel in the annular tube 110 without being taken out of the manufacturing apparatus 100. While the valve 120 is open, the sterilizing water can be taken out of the manufacturing apparatus 100 via the branch water passage in the branch pipe 118.
 製造装置100は、パルス電圧印加回路122をさらに備える。 The manufacturing apparatus 100 further includes a pulse voltage application circuit 122.
 パルス電圧印加回路122は、リアクタ112にパルス電圧を印加する。リアクタ112は、印加されたパルス電圧を用いてリアクタ112を通過する水を処理する。 The pulse voltage application circuit 122 applies a pulse voltage to the reactor 112. The reactor 112 treats water passing through the reactor 112 using the applied pulse voltage.
 パルス電圧印加回路122は、パルス電源130、第1の配線132及び第2の配線134を備える。 The pulse voltage application circuit 122 includes a pulse power supply 130, a first wiring 132, and a second wiring 134.
 パルス電源130は、負極140及び正極142を備える。パルス電源130は、負極140と正極142との間にパルス電圧を発生させる。 The pulse power supply 130 includes a negative electrode 140 and a positive electrode 142. The pulse power supply 130 generates a pulse voltage between the negative electrode 140 and the positive electrode 142.
 第1の配線132及び第2の配線134は、発生したパルス電圧をパルス電源130からリアクタ112に伝送する。これにより、リアクタ112には、伝送されてきたパルス電圧が印加される。 (1) The first wiring 132 and the second wiring 134 transmit the generated pulse voltage from the pulse power supply 130 to the reactor 112. Thereby, the transmitted pulse voltage is applied to the reactor 112.
 2 リアクタ
 図2は、第1実施形態の殺菌水の製造装置に備えられるリアクタの断面を模式的に図示する断面図である。
2 Reactor FIG. 2 is a cross-sectional view schematically illustrating a cross section of the reactor provided in the apparatus for producing sterilized water according to the first embodiment.
 リアクタ112は、図2に図示されるように、筒状構造体150を備える。筒状構造体150は、リアクタ内水路160を有する。リアクタ内水路160は、環状管110内の環状水路に接続される。これにより、リアクタ112を通過する水Wは、リアクタ内水路160を流れる。 The reactor 112 includes a tubular structure 150 as shown in FIG. The tubular structure 150 has a water passage 160 in the reactor. The in-reactor water channel 160 is connected to an annular water channel in the annular pipe 110. Thereby, the water W passing through the reactor 112 flows through the in-reactor water channel 160.
 筒状構造体150は、ノズル170を備える。 The tubular structure 150 includes the nozzle 170.
 ノズル170は、オリフィス形状を有する。このため、リアクタ112を通過する水Wがノズル170を通過する際には、水Wの流速が速くなり、水Wの圧力が低くなる。また、リアクタ112を通過する水Wがノズル170を通過した後には、水Wの流速が遅くなり、水Wの圧力が高くなる。これにより、ノズル170の付近においては、キャビテーションが発生する。すなわち、水Wがノズル170を通過する際には、水Wの圧力が低くなることにより、水Wが沸騰し、水W中にキャビテーションバブル180が発生する。また、水Wがノズル170を通過した後には、水Wの圧力が高くなることにより、発生したキャビテーションバブル180が消滅する。したがって、ノズル170は、水W中にキャビテーションバブル180を発生させる。また、リアクタ112は、キャビテーションバブル180が発生させられる空間を有する。当該空間は、ノズル170の付近にある。 The nozzle 170 has an orifice shape. Therefore, when the water W passing through the reactor 112 passes through the nozzle 170, the flow velocity of the water W increases, and the pressure of the water W decreases. Further, after the water W passing through the reactor 112 passes through the nozzle 170, the flow velocity of the water W decreases, and the pressure of the water W increases. As a result, cavitation occurs near the nozzle 170. That is, when the water W passes through the nozzle 170, the pressure of the water W decreases, so that the water W boils and cavitation bubbles 180 are generated in the water W. After the water W has passed through the nozzle 170, the generated cavitation bubbles 180 disappear due to the increase in the pressure of the water W. Therefore, the nozzle 170 generates a cavitation bubble 180 in the water W. The reactor 112 has a space in which the cavitation bubble 180 is generated. The space is near the nozzle 170.
 リアクタ112は、第1の電極190及び第2の電極192を備える。 The reactor 112 includes a first electrode 190 and a second electrode 192.
 第1の電極190は、図1に図示されるように、第1の配線132を介して電気的に接地され、第1の配線132を介してパルス電源130の負極140に電気的に接続される。第2の電極192は、第2の配線134を介してパルス電源130の正極142に電気的に接続される。これにより、第1の電極190が接地電極となり、第2の電極192が高圧電極となり、第1の電極190と第2の電極192との間にパルス電圧が印加され、第1の電極190と第2の電極192との間に放電プラズマが発生する。第1の配線132が省略され、第1の電極190が負極140に直結されてもよい。第2の配線134が省略され、第2の電極192が正極142に直結されてもよい。 As shown in FIG. 1, the first electrode 190 is electrically grounded via a first wiring 132, and is electrically connected to the negative electrode 140 of the pulse power supply 130 via the first wiring 132. You. The second electrode 192 is electrically connected to the positive electrode 142 of the pulse power supply 130 via the second wiring 134. As a result, the first electrode 190 becomes a ground electrode, the second electrode 192 becomes a high-voltage electrode, and a pulse voltage is applied between the first electrode 190 and the second electrode 192. Discharge plasma is generated between the second electrode 192 and the second electrode 192. The first wiring 132 may be omitted, and the first electrode 190 may be directly connected to the negative electrode 140. The second wiring 134 may be omitted, and the second electrode 192 may be directly connected to the positive electrode 142.
 第1の電極190及び第2の電極192は、ノズル170の付近に配置される。これにより、キャビテーションバブル180が発生させられる空間に第1の電極190及び第2の電極192が配置され、キャビテーションバブル180が発生させられる空間に放電プラズマが発生する。したがって、第1の電極190、第2の電極192及びパルス電圧印加回路122は、当該空間に放電プラズマを発生させる放電プラズマ発生機構200を構成する。第1実施形態においては、第1の電極190及び第2の電極192は、ノズル170より下流側に配置される。第1の電極190及び第2の電極192がノズル170内に配置されてもよい。 The first electrode 190 and the second electrode 192 are arranged near the nozzle 170. Accordingly, the first electrode 190 and the second electrode 192 are arranged in the space where the cavitation bubble 180 is generated, and discharge plasma is generated in the space where the cavitation bubble 180 is generated. Therefore, the first electrode 190, the second electrode 192, and the pulse voltage application circuit 122 constitute a discharge plasma generation mechanism 200 that generates discharge plasma in the space. In the first embodiment, the first electrode 190 and the second electrode 192 are arranged downstream of the nozzle 170. A first electrode 190 and a second electrode 192 may be disposed in the nozzle 170.
 キャビテーションバブル180が発生させられる空間に発生した放電プラズマは、キャビテーションバブル180内に化学物質を生成する。生成した化学物質は、反応して殺菌因子を生成する。これにより、生成された殺菌因子を含む殺菌水が製造される。 The discharge plasma generated in the space where the cavitation bubble 180 is generated generates a chemical substance in the cavitation bubble 180. The produced chemical reacts to produce a bactericidal factor. Thereby, sterilized water containing the generated sterilizing factor is produced.
 キャビテーションバブル180は、主に水蒸気からなり、空気に由来する窒素をほとんど含まない。このため、キャビテーションバブル180が発生させられる空間に放電プラズマが発生した場合においても、窒素酸化物等の窒素を含む化合物はほとんど生成しない。このため、製造される殺菌水は、高い安全性を有する。 The cavitation bubble 180 is mainly composed of water vapor, and hardly contains nitrogen derived from air. Therefore, even when discharge plasma is generated in the space where the cavitation bubbles 180 are generated, compounds containing nitrogen such as nitrogen oxides are hardly generated. Therefore, the sterilized water produced has high safety.
 第1の電極190及び第2の電極192は、導電体からなり、例えば金属又は合金からなる。第1の電極190及び第2の電極192が、導電体、及び導電体の表面の一部を被覆するセラミックスを備える電極であってもよい。 The first electrode 190 and the second electrode 192 are made of a conductor, for example, a metal or an alloy. The first electrode 190 and the second electrode 192 may be electrodes including a conductor and ceramics covering a part of the surface of the conductor.
 第1の電極190及び第2の電極192は、棒状の形状を有し、筒状構造体150の径方向に延びる。第1の電極190及び第2の電極192の前端部は、リアクタ内水路160内に配置される。第1の電極190及び第2の電極192の後端部は、筒状構造体150の外部に配置される。第1の電極190及び第2の電極192の前端部は、筒状構造体150の軸方向すなわち水Wが流れる方向に互いに離される。 The first electrode 190 and the second electrode 192 have a rod shape and extend in the radial direction of the tubular structure 150. The front ends of the first electrode 190 and the second electrode 192 are arranged in the reactor internal water channel 160. The rear ends of the first electrode 190 and the second electrode 192 are arranged outside the tubular structure 150. The front ends of the first electrode 190 and the second electrode 192 are separated from each other in the axial direction of the tubular structure 150, that is, the direction in which the water W flows.
 第1の電極190と第2の電極192との間の距離は、望ましくは4mm以上32mm以下である。 距離 The distance between the first electrode 190 and the second electrode 192 is desirably 4 mm or more and 32 mm or less.
 第1の電極190と第2の電極192との間にパルス電圧が印加されることにより、第1の電極190と第2の電極192との間の距離を長くすることができる。例えば、第1の電極190と第2の電極192との間に交流電圧が印加される場合は、第1の電極190と第2の電極192との間の距離を16mm以上にすることが困難であるが、第1の電極190と第2の電極192との間にパルス電圧が印加される場合は、第1の電極190と第2の電極192との間の距離を16mm以上にすることが容易である。 パ ル ス By applying a pulse voltage between the first electrode 190 and the second electrode 192, the distance between the first electrode 190 and the second electrode 192 can be increased. For example, when an AC voltage is applied between the first electrode 190 and the second electrode 192, it is difficult to set the distance between the first electrode 190 and the second electrode 192 to 16 mm or more. However, when a pulse voltage is applied between the first electrode 190 and the second electrode 192, the distance between the first electrode 190 and the second electrode 192 must be 16 mm or more. Is easy.
 3 殺菌水の製造
 殺菌水の製造装置100により殺菌水が製造される際は、環状管110内の環状水路に水Wが満たされる。満たされる水Wは、純水であってもよいし、水道水等の若干の不純物を含む水であってもよい。
3 Production of sterilization water When sterilization water is produced by the sterilization water production apparatus 100, the water W is filled in the annular channel in the annular pipe 110. The filled water W may be pure water or water containing some impurities such as tap water.
 続いて、バルブ120が閉じられる。 Next, the valve 120 is closed.
 続いて、ポンプ116が動作させられる。これにより、水Wが環状管110内の環状水路を循環し、キャビテーションバブル180が発生する。ポンプ116の吐出圧は、望ましくは0.1MPa以上1.5MPa以下である。 Next, the pump 116 is operated. Thereby, the water W circulates through the annular water passage in the annular pipe 110, and cavitation bubbles 180 are generated. The discharge pressure of the pump 116 is desirably 0.1 MPa or more and 1.5 MPa or less.
 続いて、冷却器114が動作させられる。これにより、循環する水Wが望ましくは約4℃まで冷却される。 Subsequently, the cooler 114 is operated. Thereby, the circulating water W is desirably cooled to about 4 ° C.
 続いて、パルス電源130が動作させられる。これにより、パルス電圧が第1の電極190と第2の電極192との間に印加され、キャビテーションバブル180が発生させられる空間に放電プラズマが発生する。パルス電圧の周波数は、望ましくは10kHz以下である。パルス電圧のピーク電圧は、望ましくは15kV以下である。パルス電圧のパルス幅は、望ましくは半値全幅で1μ秒以下である。 Next, the pulse power supply 130 is operated. Accordingly, a pulse voltage is applied between the first electrode 190 and the second electrode 192, and a discharge plasma is generated in a space where the cavitation bubble 180 is generated. The frequency of the pulse voltage is desirably 10 kHz or less. The peak voltage of the pulse voltage is desirably 15 kV or less. The pulse width of the pulse voltage is desirably 1 μsec or less in full width at half maximum.
 発生した放電プラズマは、殺菌因子を生成しラジカルの寿命より長い寿命を有する化学物質を生成する。このこと、及び水Wが環状管110内の環状水路を循環することにより、高い殺菌因子の濃度を有する殺菌水を製造することができる。殺菌因子を生成する化学物質は、過酸化水素(H)等である。殺菌因子は、ヒドロキシラジカル(OH)及びヒドロペルオキシドラジカル(HO )からなる群より選択される少なくとも1種のラジカルを含む。 The generated discharge plasma generates a germicidal factor and produces a chemical substance having a longer lifetime than the lifetime of the radical. This and the circulation of the water W through the annular water passage in the annular pipe 110 make it possible to produce sterilized water having a high bactericidal factor concentration. A chemical substance that produces a bactericidal factor is hydrogen peroxide (H 2 O 2 ) or the like. The bactericidal factor includes at least one radical selected from the group consisting of a hydroxyl radical (OH * ) and a hydroperoxide radical (HO 2 * ).
 続いて、バルブ120が開けられる。 Next, the valve 120 is opened.
 続いて、製造された殺菌水が分岐管118内の分岐水路を経由して製造装置100の外部に取り出される。 Subsequently, the manufactured sterilizing water is taken out of the manufacturing apparatus 100 via the branch water channel in the branch pipe 118.
 殺菌水の製造装置100によれば、水中にキャビテーションバブル180を発生させキャビテーションバブル180が発生させられる空間に放電プラズマを発生させる処理が水Wに対して繰り返し行われる。これにより、高い殺菌因子の濃度を有する殺菌水を製造することができる。 According to the sterilizing water producing apparatus 100, the process of generating the cavitation bubbles 180 in the water and generating the discharge plasma in the space where the cavitation bubbles 180 are generated is repeatedly performed on the water W. This makes it possible to produce sterilized water having a high bactericidal factor concentration.
 また、殺菌水の製造装置100によれば、水Wが冷却されることにより、殺菌因子の前駆体及び殺菌因子の水Wへの溶解度を高くし、殺菌因子を生成する化学物質、及び殺菌因子の寿命を長くすることができる。 Further, according to the sterilizing water producing apparatus 100, the water W is cooled to increase the solubility of the precursor of the bactericidal factor and the bactericidal factor in the water W. Life can be extended.
 4 殺菌方法
 物体が殺菌される際には、殺菌水の製造装置100により殺菌水が製造され、製造された殺菌水が物体に接触させられる。この関節処理により、物体が殺菌済物体に変化する。
4. Sterilization Method When an object is sterilized, sterilization water is manufactured by the sterilization water manufacturing apparatus 100, and the manufactured sterilization water is brought into contact with the object. This joint processing changes the object into a sterilized object.
 5 実験例
 殺菌水の製造装置100により殺菌水を製造した。第1の電極190と第2の電極192との間の距離は、32mmとした。パルス電圧の周波数は、2kHzとした。パルス電圧のピーク電圧は、15kVとした。パルス電圧のパルス幅は、半値全幅で500n秒とした。
5 Experimental Example Sterilized water was manufactured by the sterilized water manufacturing apparatus 100. The distance between the first electrode 190 and the second electrode 192 was 32 mm. The frequency of the pulse voltage was 2 kHz. The peak voltage of the pulse voltage was 15 kV. The pulse width of the pulse voltage was 500 ns at full width at half maximum.
 続いて、製造された殺菌水について、水Wに投入されたエネルギー密度による殺菌桁数の変化を調べた。その結果を図3のグラフに示す。エネルギー密度は、投入された電力と電力が投入された時間と効率との積を水Wの体積で除することにより得た。殺菌桁数は、殺菌前の菌数に対する殺菌後の菌数の比の常用対数の絶対値をとることにより得た。図3のグラフからは、水Wに投入されたエネルギー密度が大きくなるほど殺菌桁数が大きくなることを理解することができる。 Next, regarding the produced sterilizing water, the change in the number of sterilizing digits due to the energy density charged into the water W was examined. The results are shown in the graph of FIG. The energy density was obtained by dividing the product of the input electric power, the time when the electric power was input, and the efficiency by the volume of the water W. The number of sterilization digits was obtained by taking the absolute value of the common logarithm of the ratio of the number of bacteria after sterilization to the number of bacteria before sterilization. From the graph of FIG. 3, it can be understood that the higher the energy density of the water W, the larger the number of sterilization digits.
 また、製造された殺菌水について、水Wに投入されたエネルギー密度による殺菌水中のHの濃度の変化を調べた。その結果を図4のグラフに示す。図4からは、水Wに投入されたエネルギー密度が大きくなるほどHの濃度が高くなることを理解することができる。 Further, for the manufactured sterilized water, the change in the concentration of H 2 O 2 in the sterilized water according to the energy density charged into the water W was examined. The results are shown in the graph of FIG. It can be understood from FIG. 4 that the higher the energy density of the water W, the higher the concentration of H 2 O 2 .
 この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。 Although the present invention has been described in detail, the above description is illustrative in all aspects, and the present invention is not limited thereto. It is understood that innumerable modifications that are not illustrated can be assumed without departing from the scope of the present invention.
 100 殺菌水の製造装置
 110 環状管
 112 リアクタ
 114 冷却器
 116 ポンプ
 130 パルス電源
 170 ノズル
 180 キャビテーションバブル
 190 第1の電極
 192 第2の電極
 200 放電プラズマ発生機構
 W 水
Reference Signs List 100 sterilization water production apparatus 110 annular pipe 112 reactor 114 cooler 116 pump 130 pulse power supply 170 nozzle 180 cavitation bubble 190 first electrode 192 second electrode 200 discharge plasma generation mechanism W water

Claims (10)

  1.  水が循環する環状水路を有する部材と、
     前記水中にキャビテーションバブルを発生させるノズルと、
     前記キャビテーションバブルが発生させられる空間に放電プラズマを発生させる放電プラズマ発生機構と、
    を備える殺菌水の製造装置。
    A member having an annular water passage through which water circulates,
    A nozzle for generating cavitation bubbles in the water,
    A discharge plasma generation mechanism that generates discharge plasma in a space where the cavitation bubble is generated,
    An apparatus for producing sterilized water, comprising:
  2.  前記放電プラズマ発生機構は、
     前記空間に配置される第1の電極と、
     前記空間に配置される第2の電極と、
     前記第1の電極と前記第2の電極との間にパルス電圧を印加するパルス電源と、
    を備える請求項1の殺菌水の製造装置。
    The discharge plasma generation mechanism,
    A first electrode disposed in the space;
    A second electrode disposed in the space;
    A pulse power supply for applying a pulse voltage between the first electrode and the second electrode;
    The apparatus for producing sterilized water according to claim 1, further comprising:
  3.  前記第1の電極と前記第2の電極との間の距離が4mm以上32mm以下である
    請求項2の殺菌水の製造装置。
    3. The apparatus for producing sterilized water according to claim 2, wherein a distance between the first electrode and the second electrode is 4 mm or more and 32 mm or less.
  4.  前記パルス電圧の周波数が10kHz以下であり、
     前記パルス電圧のピーク電圧が15kV以下であり、
     前記パルス電圧のパルス幅が半値全幅で1μ秒以下である
    請求項2又は3の殺菌水の製造装置。
    The frequency of the pulse voltage is 10 kHz or less,
    A peak voltage of the pulse voltage is 15 kV or less;
    The apparatus for producing sterilized water according to claim 2 or 3, wherein the pulse voltage has a pulse width of 1 µsec or less in full width at half maximum.
  5.  前記水を冷却する冷却器
    をさらに備える請求項1から4までのいずれかの殺菌水の製造装置。
    The apparatus for producing sterilized water according to any one of claims 1 to 4, further comprising a cooler for cooling the water.
  6.  前記水に流れを与えるポンプ
    をさらに備える請求項1から5までのいずれかの殺菌水の製造装置。
    The apparatus for producing sterilized water according to any one of claims 1 to 5, further comprising a pump that gives a flow to the water.
  7.  前記ポンプの吐出圧が0.1MPa以上1.5MPa以下である
    請求項6の殺菌水の製造装置。
    7. The apparatus for producing sterilized water according to claim 6, wherein the discharge pressure of the pump is 0.1 MPa or more and 1.5 MPa or less.
  8.  前記殺菌水は、ヒドロキシラジカル及びヒドロペルオキシドラジカルからなる群より選択される少なくとも1種のラジカルを含む
    請求項1から7までのいずれかの殺菌水の製造装置。
    The apparatus for producing sterilizing water according to any one of claims 1 to 7, wherein the sterilizing water includes at least one radical selected from the group consisting of a hydroxyl radical and a hydroperoxide radical.
  9.  水に環状水路を循環させる工程と、
     前記水中にキャビテーションバブルを発生させる工程と、
     前記キャビテーションバブルが発生させられる空間に放電プラズマを発生させる工程と、
    を備える殺菌水の製造方法。
    Circulating an annular channel in the water;
    Generating cavitation bubbles in the water,
    Generating a discharge plasma in a space where the cavitation bubble is generated,
    A method for producing sterilized water comprising:
  10.  請求項9の殺菌水の製造方法により殺菌水を製造する工程と、
     前記殺菌水を物体に接触させ前記物体を殺菌済物体に変化させる工程と、
    を備える殺菌済物体の製造方法。
    Producing sterilized water by the method for producing sterilized water according to claim 9;
    Changing the object to a sterilized object by contacting the sterilized water with the object,
    A method for producing a sterilized object comprising:
PCT/JP2018/035880 2018-09-27 2018-09-27 Sterilizing water producing device, sterilizing water producing method, and method for manufacturing sterilized object WO2020065814A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/035880 WO2020065814A1 (en) 2018-09-27 2018-09-27 Sterilizing water producing device, sterilizing water producing method, and method for manufacturing sterilized object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/035880 WO2020065814A1 (en) 2018-09-27 2018-09-27 Sterilizing water producing device, sterilizing water producing method, and method for manufacturing sterilized object

Publications (1)

Publication Number Publication Date
WO2020065814A1 true WO2020065814A1 (en) 2020-04-02

Family

ID=69951270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035880 WO2020065814A1 (en) 2018-09-27 2018-09-27 Sterilizing water producing device, sterilizing water producing method, and method for manufacturing sterilized object

Country Status (1)

Country Link
WO (1) WO2020065814A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001010808A (en) * 1999-06-24 2001-01-16 Kobe Steel Ltd Formation of highly oxidative water and apparatus therefor
JP2005046715A (en) * 2003-07-28 2005-02-24 Nec Corp Radical-containing liquid and its manufacturing method, control method, and manufacturing device, and method of compound reaction using the liquid
WO2009041049A1 (en) * 2007-09-27 2009-04-02 Satoshi Ikawa Method and apparatus for pasteurization
JP4453052B2 (en) * 2006-05-31 2010-04-21 株式会社安川電機 Water treatment equipment
JP2014079743A (en) * 2012-09-26 2014-05-08 Shibaura Mechatronics Corp Liquid treatment apparatus and liquid treatment method
JP2016081676A (en) * 2014-10-15 2016-05-16 株式会社栗田製作所 In-fluid plasma generation method and in-fluid plasma generation device
JP2016525923A (en) * 2013-05-01 2016-09-01 エヌシーエイチ コーポレイションNch Corporation Treatment system and method for water system with high voltage discharge and ozone
JP2017176201A (en) * 2016-03-28 2017-10-05 日本スピンドル製造株式会社 Sterilization method and device of liquid material
WO2018021528A1 (en) * 2016-07-28 2018-02-01 日本碍子株式会社 Device for generating sterile water, method for sterilizing an object to be treated, and method for generating sterile water

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001010808A (en) * 1999-06-24 2001-01-16 Kobe Steel Ltd Formation of highly oxidative water and apparatus therefor
JP2005046715A (en) * 2003-07-28 2005-02-24 Nec Corp Radical-containing liquid and its manufacturing method, control method, and manufacturing device, and method of compound reaction using the liquid
JP4453052B2 (en) * 2006-05-31 2010-04-21 株式会社安川電機 Water treatment equipment
WO2009041049A1 (en) * 2007-09-27 2009-04-02 Satoshi Ikawa Method and apparatus for pasteurization
JP2014079743A (en) * 2012-09-26 2014-05-08 Shibaura Mechatronics Corp Liquid treatment apparatus and liquid treatment method
JP2016525923A (en) * 2013-05-01 2016-09-01 エヌシーエイチ コーポレイションNch Corporation Treatment system and method for water system with high voltage discharge and ozone
JP2016081676A (en) * 2014-10-15 2016-05-16 株式会社栗田製作所 In-fluid plasma generation method and in-fluid plasma generation device
JP2017176201A (en) * 2016-03-28 2017-10-05 日本スピンドル製造株式会社 Sterilization method and device of liquid material
WO2018021528A1 (en) * 2016-07-28 2018-02-01 日本碍子株式会社 Device for generating sterile water, method for sterilizing an object to be treated, and method for generating sterile water

Similar Documents

Publication Publication Date Title
JP5099612B2 (en) Liquid processing equipment
CN105858814B (en) Dielectric barrier discharge wastewater treatment equipment in a kind of array high density water
US20050189278A1 (en) Apparatus for decomposing organic matter with radical treatment method using electric discharge
US10793447B2 (en) System and method for plasma discharge in liquid
WO2007138773A1 (en) Water treatment apparatus
CN101534869A (en) Diffusive plasma treatment and material procession
KR101265489B1 (en) Advanced water treatment apparatus using plasma
JP4923364B2 (en) Reactive gas generator
JP2014159008A (en) Water treatment apparatus
JP4930912B2 (en) Plasma sterilizer
KR101286816B1 (en) Advanced water treatment apparatus using plasma
WO2019003484A1 (en) Liquid treatment device
WO2020065814A1 (en) Sterilizing water producing device, sterilizing water producing method, and method for manufacturing sterilized object
JP6917597B2 (en) A device for generating sterilizing water that sterilizes the object to be treated and a method for generating sterilizing water that sterilizes the object to be contacted.
JP4904650B2 (en) Material processing equipment
US20080233003A1 (en) System and method for treating liquid using a corona discharge process in a low pressure environment
KR101479261B1 (en) Water Feeder and Plasma Water Treatment Apparatus using the Same
Ahmed et al. Underwater capillary discharge with air and oxygen addition
JP2021107040A (en) Manufacturing apparatus of sterilization water, manufacturing method of sterilization water, and manufacturing method of sterilized article
Al-Jobouri et al. Design an ozone generator by using dielectric barrier discharge
JP2005218890A (en) Radical processing system
EP3134350A1 (en) Device for the photochemical treatment or cleaning of a liquid medium
KR20180098435A (en) Plasma generating device and water purification system equipped therewith
KR20140002783A (en) Device for removing organic and chemical microbic pollutants from water
CN107265553A (en) The water treatment facilities and method for treating water of a kind of dielectric barrier discharge

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18935186

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18935186

Country of ref document: EP

Kind code of ref document: A1