WO2018021528A1 - Device for generating sterile water, method for sterilizing an object to be treated, and method for generating sterile water - Google Patents

Device for generating sterile water, method for sterilizing an object to be treated, and method for generating sterile water Download PDF

Info

Publication number
WO2018021528A1
WO2018021528A1 PCT/JP2017/027438 JP2017027438W WO2018021528A1 WO 2018021528 A1 WO2018021528 A1 WO 2018021528A1 JP 2017027438 W JP2017027438 W JP 2017027438W WO 2018021528 A1 WO2018021528 A1 WO 2018021528A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
gas
bubble
water according
water
Prior art date
Application number
PCT/JP2017/027438
Other languages
French (fr)
Japanese (ja)
Inventor
正次 丹下
横山 貴士
弘史 栗田
水野 彰
和則 高島
雄大 武田
Original Assignee
日本碍子株式会社
国立大学法人豊橋技術科学大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社, 国立大学法人豊橋技術科学大学 filed Critical 日本碍子株式会社
Priority to JP2018530419A priority Critical patent/JP6917597B2/en
Publication of WO2018021528A1 publication Critical patent/WO2018021528A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields

Definitions

  • the present invention relates to an apparatus for generating sterilizing water, a method for sterilizing an object to be processed, and a method for generating sterilizing water.
  • Patent Document 1 relates to a radical functional liquid production apparatus (paragraph 0029).
  • argon gas, nitrogen gas, oxygen gas, carbon dioxide gas or air is discharged to generate plasma gas, and the generated plasma gas is passed through the gas introduction part.
  • Bubble-shaped plasma gas is brought into contact with ion-exchanged water introduced into the reservoir and stored in the reservoir, and radicals resulting from the plasma gas are dissolved in ion-exchanged water to produce a radical functional liquid (paragraph 0049).
  • the produced radical functional liquid is used for cleaning, sterilization / disinfection, deodorization, surface modification, hydrophilization / water repellency treatment, etc. of an object (paragraph 0028).
  • the duration of the effect of the radical functional liquid is controlled by dissolving a pH adjuster, a radical stabilizer or a radical inhibitor (paragraph 0046).
  • the ability of plasma treated water is measured by the decolorizing ability for indigo carmine. Since the decolorizing ability with respect to indigo carmine indicates oxidizing power, in the techniques described in Patent Documents 2 and 3, the ability of plasma treated water is measured by oxidizing power. However, since the relationship between the oxidizing power and the sterilizing power is unclear, it is unclear whether the plasma treated water in the techniques described in Patent Documents 2 and 3 has the sterilizing power. Moreover, in the technique described in patent document 2 and 3, the difference in the decoloring capability with respect to indigo carmine by the kind of gas supplied is unknown.
  • the present invention aims to solve these problems.
  • the problem to be solved by the present invention is to generate sterilizing water having high sterilizing power without wasting energy consumed for generating plasma.
  • An apparatus for generating sterilizing water includes a container, a supply mechanism, a generation mechanism, an electrode group, and an application mechanism.
  • Liquid composed of water or aqueous solution is placed in the space formed in the container.
  • the supply mechanism supplies a gas containing at least one of nitrogen gas and oxygen gas.
  • Gas is supplied from the supply mechanism to the generation mechanism.
  • the generation mechanism generates gas bubbles in the liquid.
  • the electrode group includes a first electrode and a second electrode.
  • the first electrode and the second electrode are immersed in the liquid.
  • the second electrode faces the first electrode with a gap in between.
  • the electrode group is arranged such that bubbles are introduced into the gap.
  • the application mechanism applies a pulse voltage between the first electrode and the second electrode.
  • the present invention is also directed to a method of sterilizing an object to be processed and a method of generating sterilized water.
  • the sterilizing water having high sterilizing power is generated without wasting energy consumed for the generation of plasma.
  • 1 1st Embodiment 1.1 Introduction 1st Embodiment is related with the apparatus which produces
  • FIG. 1 is a schematic diagram illustrating an apparatus for generating sterilized water according to the first embodiment.
  • the schematic diagram of FIG. 2 is an enlarged sectional view illustrating the vicinity of an electrode group provided in the apparatus for generating sterilizing water according to the first embodiment.
  • the apparatus 1000 includes a reactor 1020, a supply mechanism 1022, and an application mechanism 1024.
  • the apparatus 1000 may include components other than these components.
  • water 1040 is put into a reactor 1020, a supply mechanism 1022 supplies a mixed gas composed of nitrogen gas and oxygen gas to the reactor 1020, and an application mechanism 1024 supplies a high-pressure pulse voltage to the reactor 1020. Apply.
  • the reactor 1020 generates a mixed gas bubble 1050 in the water 1040 and generates a discharge in the bubble 1050. Due to the generated discharge, plasma is generated in the bubble 1050, and the generated plasma comes into contact with the water 1040. Radicals contained in the generated plasma and radicals generated by the generated plasma coming into contact with the water 1040 are dissolved in the water 1040 to generate sterilized water.
  • the produced sterilizing water is used for food washing, hygiene management, cleaning, hand washing and the like. When sterilization is performed with the generated sterilized water, radicals dissolved in the generated sterilized water act on the bacteria.
  • the reactor 1020 includes a container 1060, a generation mechanism 1062, a discharge mechanism 1064, an electrode group 1066, and a support 1068.
  • the reactor 1020 may include components other than these components.
  • the container 1060 includes a glass tube 1080, a silicone stopper 1082, and a silicone stopper 1084. Silicone plug 1082 is inserted into one open end of glass tube 1080. Silicone plug 1084 is inserted into the other open end of glass tube 1080. As a result, a space 1100 surrounded by the glass tube 1080, the silicone stopper 1082, and the silicone stopper 1084 is formed in the container 1060. Water 1040 is placed in the space 1100 to be formed. The structure of the container 1060 may be changed.
  • the generation mechanism 1062 includes a tube 1120 and a bubbler 1122.
  • Tube 1120 passes through silicone plug 1082.
  • One end of the tube 1120 is outside the space 1100.
  • the other end of the tube 1120 is inside the space 1100.
  • the bubbler 1122 is inside the space 1100, immersed in water 1040 and coupled to the other end of the tube 1120.
  • the mixed gas is supplied from the supply mechanism 1022 to the generation mechanism 1062.
  • the generation mechanism 1062 generates a mixed gas bubble 1050 in the water 1040.
  • the mixed gas is supplied to the generation mechanism 1062, the mixed gas is supplied to one end of the pipe 1120.
  • the pipe 1120 guides the mixed gas supplied to one end of the pipe 1120 to the other end of the pipe 1120 and supplies the guided mixed gas to the bubbler 1122.
  • the bubbler 1122 discharges the supplied mixed gas into the water 1040, and generates a bubble 1050 of the mixed gas when the mixed gas is discharged into the water 1040.
  • Generation of the mixed gas bubble 1050 is performed by passing the porous ceramic body through the mixed gas.
  • the ceramic porous body may be replaced with another type of porous body.
  • the ceramic porous body may be replaced with a resin porous body.
  • the structure of the generation mechanism 1062 may be changed.
  • the discharge mechanism 1064 includes a tube 1130.
  • the tube 1130 passes through the silicone plug 1084.
  • One end of the tube 1130 is inside the space 1100 but is not immersed in the water 1040.
  • the other end of the tube 1130 is outside the space 1100.
  • the pipe 1130 guides the mixed gas discharged from the water surface of the water 1040 and discharged from the reactor 1020 from one end of the pipe 1130 to the other end of the pipe 1130.
  • the structure of the discharge mechanism 1064 may be changed.
  • a mechanism for compressing the mixed gas discharged from the upper surface of the water 1040 and accumulating the compressed mixed gas may be disposed in the space 1100. When the mechanism is disposed in the space 1100, the discharge mechanism 1064 is It may be omitted.
  • the electrode group 1066 includes electrodes 1140 and 1142, as shown in FIG. Each of the electrodes 1140 and 1142 is inside the space 1100 and is immersed in water 1040.
  • the electrode 1142 faces the electrode 1140 with the gap 1160 interposed therebetween.
  • the electrode group 1066 is disposed above the bubbler 1122 in the vertical direction. This causes bubble 1050 to rise through gap 1160, and bubble 1050 contacts electrodes 1140 and 1142 simultaneously when bubble 1050 passes through gap 1160.
  • a pulse voltage is applied between the electrode 1140 and the electrode 1142 while the bubble 1050 is in contact with the electrodes 1140 and 1142, a discharge is generated between the electrode 1140 and the electrode 1142, and the inside of the bubble 1050 Discharge occurs. The generated discharge generates plasma in the bubble 1050.
  • the bubble 1050 Since the bubble 1050 is surrounded by the interface between the mixed gas and the water 1040, the plasma and radicals contained in the bubble 1050 come into contact with the water 1040 with almost no inactivation. This contributes to producing sterilizing water having high sterilizing power without wasting energy used for generating plasma.
  • the electrode 1142 is separated from the electrode 1140 in the horizontal direction. Accordingly, a component that prevents the passage of the bubble 1050 is not disposed below the gap 1160 in the vertical direction, and the bubble 1050 easily enters the gap 1160. This contributes to increasing the amount of plasma generated and producing sterilizing water having high sterilizing power.
  • the electrode 1140 is a needle electrode.
  • the electrode 1142 is a flat electrode. Electrode 1140 extends in the horizontal direction and extends in the normal direction of main surface 1220 of electrode 1142. The pointed tip 1200 of the electrode 1140 is directed toward the major surface 1220 of the electrode 1142. When bubble 1050 passes through gap 1160, bubble 1050 simultaneously contacts sharp tip 1200 of electrode 1140 and major surface 1220 of electrode 1142.
  • the structure of the electrode group 1066 may be changed.
  • the support 1068 supports the electrode group 1066.
  • the support body 1068 may be omitted, and the electrode group 1066 may be directly supported by the container 1060.
  • the ratio of the partial pressure of nitrogen gas to the sum of the partial pressure of nitrogen gas and the partial pressure of oxygen gas in the mixed gas is desirably 0.5 or more, more desirably 0.7 or more, and particularly desirably 0. 8 or more.
  • the ratio is desirably 0.95 or less. Therefore, the ratio is desirably 0.5 or more and 0.95 or less, more desirably 0.7 or more and 0.95 or less, and particularly desirably 0.8 or more and 0.95 or less.
  • the mixed gas may contain a gas other than nitrogen gas and oxygen gas.
  • the mixed gas may include carbon dioxide gas, argon gas, water vapor and the like. Therefore, the mixed gas may be air.
  • the mixed gas may be a gas containing more nitrogen gas than air obtained by passing air through a nitrogen-rich film. Even when the mixed gas contains a gas other than nitrogen gas and oxygen gas, one of the nitrogen gas and oxygen gas is the main component, and the other of the nitrogen gas and oxygen gas is the most frequently contained subcomponent. Desirably, nitrogen gas is the main component, and oxygen gas is the most abundant subcomponent.
  • the application mechanism 1024 includes a pulse power source 1240, an electrical wiring 1242, and an electrical wiring 1244.
  • the electrical wiring 1242 electrically connects the positive electrode of the pulse power source 1240 to the electrode 1140.
  • the electrical wiring 1244 electrically connects the negative electrode of the pulse power source 1240 to the electrode 1142, and grounds the electrode 1142 and the negative electrode of the pulse power source 1240.
  • a pulse voltage generated by the pulse power source 1240 is applied between the electrode 1140 and the electrode 1142, and the electrode 1140 becomes an anode and the electrode 1142 becomes a cathode. It is permissible for electrode 1140 to be the cathode and electrode 1142 to be the anode.
  • Water 1040 is pure water. Water 1040 may contain slight impurities. For example, the water 1040 may be tap water. When the water 1040 is pure water or tap water, it is not necessary to perform a post-treatment of the sterilizing water after the radicals dissolved in the sterilizing water are deactivated.
  • Water 1040 does not contain impurities that significantly increase electrical conductivity. Accordingly, when a pulse voltage is applied between the electrode 1140 and the electrode 1142, it becomes difficult for a current to flow through the water 1040, and a discharge can be easily generated in the bubble 1050.
  • Radicals contained in sterilized water are deactivated after the sterilized water is used. For this reason, after sterilizing water is used, a residue hardly remains in sterilizing water, and it is suppressed that rust etc. generate
  • sterilized water such as hypochlorous acid, electrolyzed water, and ozone water widely used for sterilization
  • residues such as chlorine remain in the sterilized water. Rust etc. occur in the contact.
  • 2 2nd Embodiment 2nd Embodiment is related with the electrode group which replaces the electrode group with which the apparatus which produces
  • FIG 3 is an enlarged cross-sectional view illustrating the vicinity of the electrode group of the second embodiment.
  • Electrode 2140 and 2142 includes an electrode 2140 and 2142.
  • Each of electrodes 2140 and 2142 is inside space 1100 and is immersed in water 1040.
  • the electrode 2142 faces the electrode 2140 with the gap 2160 interposed therebetween.
  • the electrode group 2066 is disposed above the bubbler 1122 in the vertical direction. Thereby, the bubble 1050 rises through the gap 2160, and when the bubble 1050 passes through the gap 2160, the bubble 1050 contacts the electrodes 2140 and 2142 simultaneously.
  • a pulse voltage is applied between the electrode 2140 and the electrode 2142 while the bubble 1050 is in contact with the electrodes 2140 and 2142, a discharge is generated between the electrode 2140 and the electrode 2142, Discharge occurs. The generated discharge generates plasma in the bubble 1050.
  • the bubble 1050 Since the bubble 1050 is surrounded by the interface between the mixed gas and the water 1040, the plasma or radicals contained in the bubble 1050 come into contact with the water 1040 with almost no deactivation. This contributes to producing sterilizing water having high sterilizing power without wasting energy used for generating plasma.
  • the electrode 2142 is separated from the electrode 2140 in the horizontal direction.
  • Each of the electrodes 2140 and 2142 is a flat electrode.
  • the main surface 2220 of the electrode 2142 is parallel to the main surface 2200 of the electrode 2140.
  • Each of the normal direction of main surface 2200 of electrode 2140 and the normal direction of main surface 2220 of electrode 2142 is a horizontal direction.
  • the electrode 2140 is electrically connected to the positive electrode of the pulse power source 1240 through the electric wiring 1242.
  • the electrode 2142 is electrically connected to the negative electrode of the pulse power source 1240 through an electric wiring 1244.
  • a pulse voltage generated by the pulse power source 1240 is applied between the electrode 2140 and the electrode 2142, the electrode 2140 becomes an anode, and the electrode 2142 becomes a cathode.
  • the third embodiment relates to an apparatus for generating sterilized water and a method for generating sterilized water.
  • FIG. 4 is a schematic diagram illustrating an apparatus for generating sterilized water according to the third embodiment.
  • the schematic diagram of FIG. 5 is an enlarged cross-sectional view illustrating the vicinity of an electrode group provided in the apparatus for generating sterilizing water according to the third embodiment.
  • the apparatus 3000 may include components other than these components.
  • water 3040 is placed in the reactor 3020, the supply mechanism 3022 supplies the reactor 3020 with a mixed gas composed of nitrogen gas and oxygen gas, and the application mechanism 3024 supplies the reactor 3020 with a high-pressure pulse voltage. Apply.
  • the reactor 3020 generates a mixed gas bubble 3050 in the water 3040 and generates a discharge in the bubble 3050. Due to the discharge, plasma is generated in the bubbles 3050, and the generated plasma comes into contact with the water 3040. Radicals contained in the generated plasma and radicals generated by the generated plasma coming into contact with the water 3040 are dissolved in the water 3040 to generate sterilized water.
  • the reactor 3020 includes a container 3060, a generation mechanism 3062, a discharge mechanism 3064, and an electrode group 3066.
  • the reactor 3020 may include components other than these components.
  • the container 3060 includes a glass tube 3080, a silicone stopper 3082, and a silicone stopper 3084. Silicone plug 3082 is inserted into one open end of glass tube 3080. Silicone plug 3084 is inserted into the other open end of glass tube 3080. As a result, a space 3100 surrounded by the glass tube 3080, the silicone plug 3082, and the silicone plug 3084 is formed in the container 3060. Water 3040 is placed in the space 3100 to be formed. The structure of the container 3060 may be changed.
  • the generation mechanism 3062 includes a tube 3120.
  • Tube 3120 passes through silicone plug 3082.
  • One end of the tube 3120 is outside the space 3100.
  • the other end of the tube 3120 is inside the space 3100 and is immersed in water 3040.
  • the mixed gas is supplied from the supply mechanism 3022 to the generation mechanism 3062.
  • the generation mechanism 3062 generates a mixed gas bubble 3050 in the water 3040.
  • the mixed gas is supplied to the generation mechanism 3062, the mixed gas is supplied to one end of the pipe 3120.
  • the pipe 3120 guides the mixed gas supplied to one end of the pipe 3120 to the other end of the pipe 3120, discharges the supplied mixed gas from the other end of the pipe 3120 into the water 3040, and discharges the mixed gas into the water 3040.
  • a mixed gas bubble 3050 is generated.
  • the structure of the generation mechanism 3062 may be changed.
  • the discharge mechanism 3064 is the same as the discharge mechanism 1064 provided in the apparatus 1000 for generating sterilized water according to the first embodiment.
  • the electrode group 3066 includes electrodes 3140 and 3142 as shown in FIG. Each of electrodes 3140 and 3142 is inside space 3100 and is immersed in water 3040.
  • the electrode 3142 faces the electrode 3140 with the gap 3160 interposed therebetween.
  • Bubble 3050 is introduced into gap 3160, floats through gap 3160, and simultaneously contacts electrodes 3140 and 3142 as it passes through gap 3160.
  • a pulse voltage is applied between the electrode 3140 and the electrode 3142 while the bubble 3050 is in contact with the electrodes 3140 and 3142, a discharge is generated between the electrode 3140 and the electrode 3142, and the inside of the bubble 3050 Discharge occurs.
  • the generated discharge generates plasma in the bubble 3050.
  • the bubble 3050 Since the bubble 3050 is surrounded by the interface between the mixed gas and the water 3040, the plasma or radicals contained in the bubble 3050 come into contact with the water 3040 with almost no deactivation. This contributes to producing sterilizing water having high sterilizing power without wasting energy used for generating plasma.
  • the electrode 3142 is separated from the electrode 3140 in the vertical direction and is disposed above the electrode 3140 in the vertical direction.
  • the electrode 3140 is a needle electrode.
  • the electrode 3142 is a flat electrode. Electrode 3140 extends in the vertical direction and extends in the normal direction of main surface 3220 of electrode 3142.
  • the pointed tip 3200 of the electrode 3140 is directed to the major surface 3220 of the electrode 3142. Accordingly, an electrode 3140 that hardly interferes with the passage of the bubble 3050 is arranged below the gap 3160 in the vertical direction, an electrode 3142 that prevents the passage of the bubble 3050 is arranged above the gap 3160 in the vertical direction, and the bubble 3050 enters the gap 3160. This makes it easier for the bubbles 3050 to stay in the gap 3160.
  • bubble 3050 passes through gap 3160, bubble 3050 simultaneously contacts sharp tip 3200 of electrode 3140 and main surface 3220 of electrode 3142.
  • the structure of the electrode group 3066 may be changed.
  • the mixed gas is the same as the mixed gas supplied by the supply mechanism 1022 provided in the apparatus 1000 for generating sterilized water according to the first embodiment.
  • the application mechanism 3024 includes a pulse power source 3240, an electrical wiring 3242, and an electrical wiring 3244.
  • the electrical wiring 3242 electrically connects the positive electrode of the pulse power source 3240 to the electrode 3140.
  • the electrical wiring 3244 electrically connects the negative electrode of the pulse power source 3240 to the electrode 3142 and grounds the electrode 3142 and the negative electrode of the pulse power source 3240. Accordingly, a pulse voltage generated by the pulse power source 3240 is applied between the electrode 3140 and the electrode 3142, and the electrode 3140 becomes an anode and the electrode 3142 becomes a cathode. It is permissible for electrode 3140 to be the cathode and electrode 3142 to be the anode.
  • the water 3040 is the same as the water that is put into the space 1100 of the container 1060 provided in the apparatus 1000 that generates the sterilizing water of the water according to the first embodiment.
  • a device 1000 for producing sterilized water according to the first embodiment was made as a prototype, and treated water as sterilized water was produced using the prototyped device 1000.
  • the mixed gas include a mixture of 20 parts by volume of nitrogen gas and 80 parts by volume of oxygen gas, a mixture of 30 parts by volume of nitrogen gas and 70 parts by volume of oxygen gas, 50 parts by volume of nitrogen gas and 50 parts by volume of nitrogen gas.
  • a mixture with oxygen gas, a mixture of 80 parts by volume of nitrogen gas and 20 parts by volume of oxygen gas, and a mixture of 90 parts by volume of nitrogen gas and 10 parts by volume of nitrogen gas were used. Further, treated water was generated using nitrogen gas instead of the mixed gas. As a result, the ratio of nitrogen gas partial pressure to the total of nitrogen gas partial pressure and oxygen gas partial pressure is 20%, 30%, 50%, 80%, 90%, and 100%, respectively. In some cases treated water was generated.
  • the produced treated water was sterilized by mixing with E. coli to obtain a mixed solution.
  • the number of bacteria after sterilization treatment was measured using a sample for evaluation of the number of bacteria, and the cell viability, which was the ratio of the number of bacteria after sterilization treatment to the number of bacteria before sterilization treatment, was determined.
  • the cell viability which was the ratio of the number of bacteria after sterilization treatment to the number of bacteria before sterilization treatment.
  • Bacterial survival rate Number of bacteria after sterilization / Number of bacteria before sterilization (Equation 1)
  • the bacteria survival rate is an index indicating the sterilizing power of the treated water, and the sterilizing power of the treated water increases as the bacteria survival rate decreases.
  • FIG. 6 is a graph illustrating the change in the survival rate of bacteria due to the nitrogen ratio.
  • the survival rate of bacteria is the smallest when the nitrogen ratio is 90%.
  • the bacteria survival rate decreases as the nitrogen ratio increases.
  • the nitrogen ratio is 50% or more
  • the bacteria survival rate decreases and the nitrogen ratio is 70%.
  • the percentage is greater than or equal to%
  • the bacteria survival rate is further reduced, and when the nitrogen ratio is greater than or equal to 80%, the bacteria survival rate is particularly reduced.
  • a device 1000 for producing sterilized water according to the first embodiment was made as a prototype, and treated water as sterilized water was produced using the prototyped device 1000.
  • treated water 60 ml of pure water was put into the space 1100 and a mixed gas having a flow rate of 2 liters / minute was supplied from the supply mechanism 1022 to the reactor 1020.
  • a mixed gas a mixture of 90 parts by volume of nitrogen gas and 10 parts by volume of nitrogen gas was used.
  • a sterilization treatment was performed by mixing the treatment solution immediately after the production with E. coli to obtain a mixture solution. Moreover, the processing liquid which 24 hours passed after producing
  • the number of bacteria after sterilization treatment was measured using a sample for evaluation of the number of bacteria, and the cell viability, which was the ratio of the number of bacteria after sterilization treatment to the number of bacteria before sterilization treatment, was determined.
  • FIG. 7 is a graph illustrating the change in the survival rate of bacteria due to the elapsed time since the treated water was generated.
  • the survival rate of the bacteria is less than 10 ⁇ 7 , but the treatment solution after 24 hours has been mixed with Escherichia coli. If this is done, the survival rate of bacteria will approach 1. This indicates that the radicals dissolved in the treatment liquid are almost inactivated when 24 hours have passed since the treatment liquid was generated.
  • FIG. 8 is a schematic diagram illustrating an apparatus for generating sterilized water according to the fourth embodiment.
  • the schematic diagram of FIG. 9 is an enlarged cross-sectional view illustrating the vicinity of the electrode structure provided in the apparatus for generating sterilizing water according to the fourth embodiment.
  • the apparatus 4000 for generating sterilized water illustrated in FIG. 8 includes a reactor 4022, a supply mechanism 4024, and an application mechanism 4026.
  • the device 4000 may include components other than these components.
  • a liquid 4042 made of water or an aqueous solution is placed in a reactor 4022, a supply mechanism 4024 supplies a gas 4062 to the reactor 4022, and an application mechanism 4026 applies a pulse voltage to the reactor 4022.
  • the reactor 4022 generates bubbles 4082 of the gas 4062 in the liquid 4042 and generates streamer discharge in the bubbles 4082. Due to the generated streamer discharge, plasma is generated in the bubble 4082, and the generated plasma comes into contact with the liquid 4042. Radicals and other active species contained in the generated plasma are dissolved in the liquid 4042, and active species generated when the generated plasma comes into contact with the liquid 4042 are dissolved in the liquid 4042, so that sterilizing water is generated.
  • the produced sterilizing water is used for food washing, hygiene management, cleaning, hand washing and the like. When sterilization is performed with the generated sterilized water, active species dissolved in the generated sterilized water act on the bacteria.
  • the reactor 4022 includes a container 4102, a generation mechanism 4104, a discharge mechanism 4106, an electrode structure 4108, and a support 4110.
  • the reactor 4022 may include components other than these components.
  • the container 4102 includes a glass tube 4122, a silicone stopper 4124, and a silicone stopper 4126.
  • the inner diameter of the glass tube 4122 is, for example, several mm to several tens mm, and is typically about 30 mm.
  • the silicone stopper 4124 is inserted into one open end of the glass tube 4122.
  • the silicone stopper 4126 is inserted into the other open end of the glass tube 4122.
  • a liquid 4042 is placed in the space 4142.
  • the structure of the container 4102 may be changed.
  • the generation mechanism 4104 includes a tube 4162 and an air stone 4164.
  • Tube 4162 passes through silicone plug 4124.
  • One end of the tube 4162 is outside the space 4142.
  • the other end of the tube 4162 is inside the space 4142.
  • the air stone 4164 is inside the space 4142, immersed in the liquid 4042 and coupled to the other end of the tube 4162.
  • Gas 4062 is supplied from the supply mechanism 4024 to the generation mechanism 4104.
  • the generation mechanism 4104 generates bubbles 4082 of the gas 4062 in the liquid 4042. When the gas 4062 is supplied to the generation mechanism 4104, the gas 4062 is supplied to one end of the pipe 4162.
  • the pipe 4162 guides the gas 4062 supplied to one end of the pipe 4162 to the other end of the pipe 4162 and supplies the guided gas 4062 to the air stone 4164.
  • the air stone 4164 discharges the supplied gas 4062 into the liquid 4042, and generates bubbles 4082 of the supplied gas 4062 when the supplied gas 4062 is discharged into the liquid 4042.
  • the generation of the bubbles 4082 of the gas 4062 is performed by passing the ceramic porous body through the gas 4062.
  • the ceramic porous body may be replaced with another type of porous body.
  • the ceramic porous body may be replaced with a resin porous body.
  • the structure of the generation mechanism 4104 may be changed.
  • the generating mechanism 4104 may be provided with a material made of a metal, a resin, or the like, instead of the air stone 4164.
  • the generation mechanism 4104 and the electrode structure 4108 may be integrated.
  • the discharge mechanism 4106 includes a tube 4182.
  • Tube 4182 passes through silicone plug 4126.
  • One end of the tube 4182 is inside the space 4142 but is not immersed in the liquid 4042.
  • the other end of the tube 4182 is outside the space 4142.
  • the pipe 4182 guides the gas 4062 released from the upper surface of the liquid 4042 from one end of the pipe 4182 to the other end of the pipe 4182, and discharges the led gas 4062 from the reactor 4022.
  • the structure of the discharge mechanism 4106 may be changed.
  • a mechanism for compressing the gas 4062 released from the upper surface of the liquid 4042 and accumulating the compressed gas 4062 may be disposed in the space 4142. When the mechanism is disposed in the space 4142, the discharge mechanism 4106 is provided. It may be omitted.
  • the electrode structure 4108 includes an electrode and necessary accessories, and includes an electrode 4202, an electrode 4204, a resin plate 4206, a resin plate 4208, and a resin plate 4210 as shown in FIG.
  • the electrode structure 4108 may include components other than these components. It is also permissible for the electrode structure 4108 to consist only of electrodes and no appendages.
  • the electrode 4202 is inside the space 4142 and is immersed in the liquid 4042.
  • the electrode 4204 is inside the space 4142, is immersed in the liquid 4042, and faces the electrode 4202 with the gap 4222 interposed therebetween.
  • the electrode structure 4108 is disposed above the air stone 4164 in the vertical direction. Thereby, when the bubble 4082 rises, the bubble 4082 reaches the electrode structure 4108, and the bubble 4082 is introduced into the gap 4222. The introduced bubble 4082 contacts the electrodes 4202 and 4204 simultaneously when passing through the gap 4222. When a pulse voltage is applied between the electrodes 4202 and 4204 while the bubble 4082 is in contact with the electrodes 4202 and 4204, a streamer discharge is generated between the electrodes 4202 and 4204, and the streamer discharge is generated in the bubble 4082. Will occur. The generated streamer discharge generates plasma in the bubble 4082.
  • the bubble 4082 Since the bubble 4082 is surrounded by the interface 4242 between the liquid 4042 and the gas 4062, the plasma and the active species contained therein are in contact with the liquid 4042 with almost no inactivation. This contributes to producing sterilizing water having high sterilizing power without wasting energy used for generating plasma. Even when the bubble 4082 does not contact at least one of the electrodes 4202 and 4204, a streamer discharge that generates sterilizing water may occur. The sterilizing water may be generated by a discharge different from the streamer discharge.
  • the opposing object 4262 provided in the electrode structure 4108 includes an electrode 4202 and a resin plate 4206.
  • a counter object 4264 provided in the electrode structure 4108 includes an electrode 4204 and a resin plate 4208.
  • the facing surface 4284 of the facing object 4264 faces the facing surface 4282 of the facing object 4262 with the passage 4302 interposed therebetween. This causes electrode structure 4108 to have a surface 4322 that includes opposing surfaces 4282 and 4284 and that defines a passage 4302.
  • the electrode 4202 has a needle shape, penetrates the resin plate 4206 in the thickness direction, and protrudes from the facing surface 4282 toward the facing surface 4284.
  • the electrode 4204 has a plate shape or a sheet shape, and is attached to the main surface 4342 of the resin plate 4208 and has a main surface 4362 included in the facing surface 4284. Accordingly, the passage 4302 includes the gap 4222, and the bubble 4082 passes through the gap 4222 while the bubble 4082 passes through the passage 4302. The bubble 4082 simultaneously contacts the tip 4382 of the electrode 4202 and the main surface 4362 of the electrode 4204 when passing through the gap 4222.
  • the diameter of the electrode 4202 is, for example, several hundred ⁇ m to several mm, and is typically about 2 mm.
  • the electrode structure 4108 is arranged such that the bubble 4082 passes through the passage 4302.
  • the normal direction of the facing surface 4282 is parallel to the horizontal direction
  • the normal direction of the facing surface 4284 is parallel to the horizontal direction and the normal direction of the facing surface 4282.
  • the passage 4302 guides the bubble 4082 in the vertical direction 4402, and the surface 4322 restricts the bubble 4082 from expanding in the horizontal direction 4404 perpendicular to the vertical direction 4402.
  • the bubble 4082 may be guided in a guide direction different from the vertical direction 4402, and the expansion of the bubble 4082 in a restriction direction perpendicular to the guide direction may be restricted.
  • the electrode structure 4108 is configured such that the size of the bubble 4082 in the horizontal direction 4404 immediately before the bubble 4082 enters the passage 4302 is greater than one time and less than two times the size of the passage 4302 in the horizontal direction 4404.
  • the friction between 4082 and surface 4322 increases, the speed at which bubble 4082 travels through passage 4302 is reduced, and the time required for bubble 4082 to pass through gap 4222 is increased.
  • the size of the bubble 4082 in the horizontal direction 4404 is less than or equal to twice the size of the passage 4302 in the horizontal direction 4404, it is suppressed that the bubble 4082 is difficult to enter the passage 4302. These contribute to increasing the amount of plasma generated and producing sterilizing water having high sterilizing power.
  • the size of the passage 4302 in the horizontal direction 4404 that is, the distance from the facing surface 4282 to the facing surface 4284 is desirably 0.5 mm or more and 10 mm or less.
  • the electrodes 4202 and 4204 are arranged such that when the electrode 4204 is separated from the electrode 4202 in the horizontal direction 4404 and the bubble 4082 enters the gap 4222, the bubble 4082 advances in a vertical direction 4402 different from the horizontal direction 4404. This prevents the electrodes 4202 and 4204 from preventing the bubble 4082 from entering the gap 4222. This contributes to increasing the amount of plasma generated and producing sterilizing water having high sterilizing power.
  • the electrode 4204 may be separated from the electrode 4202 in a separation direction different from the horizontal direction 4404, and the bubble 4082 may advance in a traveling direction different from the separation direction.
  • the resin plate 4210 is disposed so as to close the upper end of the passage 4302.
  • the electrode 4202 is made of copper.
  • the electrode 4202 may be made of a conductor other than copper.
  • the electrode 4202 may be made of a metal other than an alloy or copper.
  • the electrode 4204 is made of aluminum.
  • the electrode 4204 may be made of a conductor other than aluminum.
  • the electrode 4204 may be made of an alloy or a metal other than aluminum.
  • Each resin plate which is each of the resin plates 4206, 4208 and 4210 is made of resin.
  • Each resin plate may be replaced with a plate made of an insulator other than resin.
  • each resin plate may be replaced with a ceramic plate.
  • Support body 4110 supports electrode structure 4108.
  • the support 4110 may be omitted, and the electrode structure 4108 may be directly supported by the container 4102.
  • the gas 4062 contains at least one of nitrogen gas and oxygen gas.
  • the gas 4062 may include a gas other than nitrogen gas and oxygen gas.
  • the gas 4062 may include carbon dioxide gas, argon gas, water vapor, and the like. Therefore, the gas 4062 may be air.
  • the gas 4062 may be a gas that is obtained by passing air through a nitrogen-enriched film and contains more nitrogen gas than air. Even in the case where the gas 4062 includes a gas other than nitrogen gas and oxygen gas, one of the nitrogen gas and the oxygen gas is a main component.
  • the gas 4062 contains nitrogen gas, and preferably further contains oxygen gas.
  • the ratio of the partial pressure of the nitrogen gas to the sum of the partial pressure of the nitrogen gas and the partial pressure of the oxygen gas in the gas 4062 is desirably 0.75 or more and 0.85 or less. is there. These things contribute to producing sterilized water having high sterilizing power. Since the ratio of the partial pressure of nitrogen gas to the total of the partial pressure of nitrogen gas and the partial pressure of oxygen gas in air is approximately 0.79, which is included in the range of 0.75 to 0.85, In some cases, sterilized water having high sterilizing power is produced.
  • the gas 4062 is preferably made of oxygen gas. This contributes to producing sterilized water having high sterilizing power.
  • the application mechanism 4026 includes a pulse power source 4422, an electrical wiring 4424, and an electrical wiring 4426.
  • the electrical wiring 4424 electrically connects the positive electrode of the pulse power source 4422 to the electrode 4202.
  • the electrical wiring 4426 electrically connects the negative electrode of the pulse power source 4422 to the electrode 4204 and grounds the electrode 4204 and the negative electrode of the pulse power source 4422. Accordingly, a pulse voltage generated by the pulse power source 4422 is applied between the electrodes 4202 and 4204, and the electrode 4202 becomes an anode and the electrode 4204 becomes a cathode. It is permissible for electrode 4202 to be the cathode and electrode 4204 to be the anode.
  • the electrical wiring 4424 may be omitted, and the positive electrode of the pulse power source 4422 may be directly connected to the electrode 4202.
  • the electric wiring 4426 may be omitted, and the negative electrode of the pulse power source 4422 may be directly connected to the electrode 4204.
  • the pulse power source 4422 is an inductive energy storage type.
  • An inductive energy storage type pulse power source 4422 releases energy stored in the form of a magnetic field in the inductive element in a short time.
  • the pulse power source 4422 which is an inductive energy storage type, is supplied with significantly higher energy at a higher repetition frequency than the pulse power source, which is a capacitive energy storage type, which releases the energy stored in the capacitive element in the form of an electric field in a short time. can do. This contributes to producing sterilized water having high sterilizing power.
  • the sterilizing water having such a high sterilizing power is suitable for indirect processing for sterilizing the object to be processed by bringing it into contact with the object to be processed, and is an alternative to electrolytic water, ozone water and the like. Indirect processing eliminates the need to directly irradiate the workpiece with plasma.
  • the pulse power source 4422 When the pulse power source 4422 is an inductive energy storage type, a streamer discharge is generated in the bubble 4082 when a pulse voltage generated by the pulse power source 4422 is applied between the electrodes 4202 and 4204. The generated streamer discharge spreads in the bubble 4082 and contacts the interface 4242.
  • the pulse power source 4422 may be such a pulse power source.
  • the pulse width of the generated pulse voltage is preferably 0.1 ⁇ sec or more and 10 ⁇ sec or less when expressed by the full width at half maximum.
  • the frequency of the generated pulse voltage is desirably 0.1 kHz or more and 10 kHz or less.
  • the peak voltage of the generated pulse voltage is desirably 3 kV to 20 kV, and more desirably 3 kV to 10 kV.
  • the liquid 4042 is water or an aqueous solution, preferably water, and more preferably pure water.
  • the liquid 4042 eventually becomes sterilized water.
  • Water may contain slight impurities.
  • the water may be tap water.
  • FIGS. 10 to 13 illustrates the state of bubbles in the device for producing sterilized water of the fourth embodiment.
  • the bubble 4082 reaches just below the inlet 4442 at the lower end of the passage 4302 as shown in FIG.
  • the size of the bubble 4082 in the horizontal direction 4404 is greater than one time and less than twice the size of the passage 4302 in the horizontal direction 4404.
  • the bubble 4082 that has reached just below the inlet 4442 further floats and enters the passage 4302 via the inlet 4442.
  • the bubble 4082 enters the passage 4302
  • the bubble 4082 is crushed in the horizontal direction 4404, and the size of the bubble 4082 in the horizontal direction 4404 is the same as the size of the passage 4302 in the horizontal direction 4404.
  • the bubble 4082 entering the passage 4302 further floats, reaches the gap 4222, and simultaneously contacts the tip 4382 of the electrode 4202 and the main surface 4362 of the electrode 4204, as shown in FIG.
  • a streamer discharge 4462 is generated between the tip 4382 and the main surface 4362 of the electrode 4204.
  • the streamer discharge 4462 extends into the bubble 4082 and reaches the interface 4242 between the liquid 4042 and the gas 4062.
  • Streamer discharge 4462 generates plasma in bubble 4082.
  • the generated plasma generates active species in the bubble 4082. Since the streamer discharge 4462 reaches the interface 4242, the generated plasma and active species come into direct contact with the liquid 4042 with almost no deactivation and generate active species in the liquid 4042. Therefore, in the device 4000 that generates sterilizing water, it is possible to suppress the power consumed by the discharge from being wasted due to the deactivation of the plasma and the active species, thereby improving the power efficiency.
  • the pulse power source 4422 When the gas 4062 contains nitrogen gas, the pulse power source 4422 generates a pulse voltage so that the pH of the liquid 4042 is 4.0 or less. The operation is performed, and the operation after generating the pulse voltage so that the liquid 4042 becomes sterilizing water is performed.
  • At least one chemical species generated by generating streamer discharge 4462 is dissolved in liquid 4042.
  • nitric acid is generated, and the pH of the liquid 4042 becomes 4.0 or less due to the generated nitric acid.
  • Each of the at least one chemical species is a chemical species containing a nitrogen atom.
  • the at least one chemical species typically includes active species such as NO radicals and NO 2 .
  • the at least one chemical species is also allowed to contain a chemical species other than NO radicals and NO 2.
  • the at least one chemical species is also allowed without the NO radical or NO 2.
  • the subsequent operation is performed in a state where the pH of the liquid 4042 is 4.0 or less.
  • at least one chemical species generated by generating streamer discharge 4462 is dissolved in liquid 4042.
  • the at least one chemical species typically includes an active species.
  • the liquid 4042 becomes sterilizing water.
  • the sterilizing water contains at least one active species.
  • the at least one active species typically includes HO 2 * and ONOO ⁇ .
  • the at least one active species HO 2 * and ONOO - is also allowed to contain other active species. It is also permissible that the at least one active species does not contain HO 2 * or ONOO ⁇ .
  • Active species such as HO 2 * and ONOO ⁇ that contribute to making the liquid 4042 sterilizing water are generated in a state where the pH of the liquid 4042 is 4.0 or less. For this reason, performing the subsequent operation in a state where the pH of the liquid 4042 is 4.0 or less contributes to increasing the sterilizing power of the sterilizing water by increasing the number of active species contained in the sterilizing water. It contributes to extending the duration of the bactericidal power by increasing the time required for the active species contained in the water to be deactivated. Further, performing the subsequent operation in a state where the pH of the liquid 4042 is 4.0 or less contributes to improving power efficiency.
  • the previous operation is performed so that the pH of the liquid 4042 is 2.5 or more and 4.0 or less
  • the subsequent operation is performed in a state where the pH of the liquid 4042 is 2.5 or more and 4.0 or less.
  • the pH of the liquid 4042 is 2.5 or more and 4.0 or less
  • the corrosion of the component that contacts the sterilizing water is suppressed, and the corrosion of the object to be processed that contacts the sterilizing water is suppressed.
  • the pH of the liquid 4042 is less than 2.5, for example, when the pH of the liquid 4042 is about 2.0, this effect can be obtained depending on conditions.
  • the previous operation is performed prior to the subsequent operation.
  • the previous operation eliminates the need to add a pH adjuster to the liquid 4042 in order to make the pH of the liquid 4042 4.0 or lower. However, it is allowed to add a pH adjusting agent to the liquid 4042 instead of performing the previous operation.
  • the pulse power source 4422 performs an operation of generating a pulse voltage so that the liquid 4042 becomes sterilized water.
  • At least one chemical species generated by generating streamer discharge 4462 is dissolved in liquid 4042.
  • the produced sterilizing water contains at least one active species.
  • the at least one active species typically includes O * , HO 2 * , O 2 — * , singlet oxygen, OH *, and H 2 O 2 .
  • At least one active species is allowed to include active species other than O * , HO 2 * , O 2- * , singlet oxygen, OH * and H 2 O 2 . It is also permissible that at least one active species does not contain O * , HO 2 * , O 2- * , singlet oxygen, OH * or H 2 O 2 .
  • Active species such as O * and HO 2 * have a long lifetime. For this reason, the sterilizing water containing active species such as O * and HO 2 * has a sterilizing power that can be used for sterilizing the object to be treated.
  • Ozone generated in the bubble 4082 is not dissolved in the liquid 4042 and is discharged by the discharge mechanism 4106. For this reason, the ozone concentration of the produced
  • generated sterilization water will be less than 0.02 ppm. Thereby, it is possible to prevent the ozone contained in the sterilized water from affecting the health of the user.
  • Oxygen can be procured by adjusting the oxygen ratio of air.
  • the liquid 4042 is also allowed to be tap water. These contribute to eliminating the need for materials other than air and tap water.
  • the fifth embodiment relates to an electrode structure that replaces the electrode structure 4108 of the fourth embodiment.
  • FIG. 14 is an enlarged cross-sectional view illustrating the vicinity of the electrode structure of the fifth embodiment.
  • the electrode structure 5000 illustrated in FIG. 14 includes an electrode 5022, an electrode 5024, an electrode 5026, an electrode 5028, an electrode 5030, an electrode 5032, a resin plate 5034, a resin plate 5036, and a resin plate 5038.
  • Electrodes 5022, 5024 and 5026 are inside the space 4142 and are immersed in the liquid 4042. Electrodes 5028, 5030, and 5032 are inside the space 4142, are immersed in the liquid 4042, and face the electrodes 5022, 5024, and 5026 with the gaps 5042, 5044, and 5046 interposed therebetween, respectively.
  • the electrode structure 5000 is disposed above the air stone 4164 in the vertical direction. Thus, when the bubble 4082 rises, the bubble 4082 reaches the electrode structure 5000, and the bubble 4082 sequentially passes through the gaps 5042, 5044, and 5046. Bubble 4082 contacts electrodes 5022 and 5028 simultaneously as it passes through gap 5042, simultaneously contacts electrodes 5024 and 5030 as it passes through gap 5044, and simultaneously contacts electrodes 5026 and 5032 as it passes through gap 5046. When a pulse voltage is applied between the electrodes 5022 and 5028 while the bubble 4082 is in contact with the electrodes 5022 and 5028, a streamer discharge is generated between the electrodes 5022 and 5028, and the streamer discharge is generated in the bubble 4082. Will occur.
  • the bubble 4082 Since the bubble 4082 is surrounded by the interface 4242 between the liquid 4042 and the gas 4062, the plasma and the active species contained therein are in contact with the liquid 4042 with almost no inactivation. This contributes to producing sterilizing water having high sterilizing power without wasting energy used for generating plasma.
  • the opposing object 5062 provided in the electrode structure 5000 includes an electrode 5022, an electrode 5024, an electrode 5026, and a resin plate 5034.
  • a counter object 5064 provided in the electrode structure 5000 includes an electrode 5028, an electrode 5030, an electrode 5032, and a resin plate 5036.
  • the facing surface 5084 of the facing object 5064 faces the facing surface 5082 of the facing object 5062 with the passage 5102 interposed therebetween. This causes electrode structure 5000 to have a surface 5122 that includes opposing surfaces 5082 and 5084 and that defines passageway 5102.
  • Each of the electrodes 5022, 5024 and 5026 has a needle shape, penetrates the resin plate 5034 in the thickness direction, and protrudes from the facing surface 5082 toward the facing surface 5084.
  • Each of electrodes 5028, 5030, and 5032 has a flat plate shape or a sheet shape, and is attached to main surface 5142 of resin plate 5036. Electrodes 5028, 5030, and 5032 have main surfaces 5162, 5164, and 5166 included in opposing surface 5084, respectively. Accordingly, the passage 5102 includes the gaps 5042, 5044, and 5046, and the bubble 4082 sequentially passes through the gaps 5042, 5044, and 5046 while the bubble 4082 passes through the passage 5102.
  • the bubble 4082 simultaneously contacts the tip 5182 of the electrode 5022 and the major surface 5162 of the electrode 5028 when passing through the gap 5042, and simultaneously contacts the tip 5184 of the electrode 5024 and the major surface 5164 of the electrode 5030 when passing through the gap 5044, When passing through the gap 5046, the tip 5186 of the electrode 5026 and the main surface 5166 of the electrode 5032 are simultaneously contacted.
  • the electrode structure 5000 is arranged such that the bubble 4082 passes through the passage 5102.
  • the passage 5102 guides the bubble 4082 in the vertical direction 5202 and restricts the expansion of the bubble 4082 in the horizontal direction 5204 in which the surface 5122 is perpendicular to the vertical direction 5202.
  • the electrodes 5022, 5024 and 5026 are arranged in the guide direction in which the bubble 4082 is guided.
  • the electrodes 5028, 5030, and 5032 are arranged in the guide direction in which the bubble 4082 is guided.
  • the gaps 5042, 5044 and 5046 are arranged in the guide direction in which the bubble 4082 is guided. This increases the time during which streamer discharge is generated in the bubble 4082.
  • the electrode structure 5000 is configured such that the size of the bubble 4082 in the horizontal direction 5204 immediately before the bubble 4082 enters the passage 5102 is greater than one time and less than twice the size of the passage 5102 in the horizontal direction 5204. The Since the size of the bubble 4082 in the horizontal direction 5204 is larger than one time the size of the passage 5102 in the horizontal direction 5204, the bubble 4082 is crushed in the horizontal direction 5204 when the bubble 4082 enters the passage 5102, and the bubble The friction between 4082 and surface 5122 increases, the speed at which bubble 4082 travels through passage 5102 decreases, and the time it takes for bubble 4082 to pass through gaps 5042, 5044 and 5046 increases.
  • the bubble 4082 in the horizontal direction 5204 is less than or equal to twice the size of the passage 5102 in the horizontal direction 5204, the bubble 4082 is prevented from entering the passage 5102. These contribute to increasing the amount of plasma generated and producing sterilizing water having high sterilizing power.
  • the size of the passage 5102 in the horizontal direction 5204 that is, the distance from the facing surface 5082 to the facing surface 5084 is desirably 0.5 mm or more and 10 mm or less.
  • Electrodes 5022 and 5028 are arranged such that when the electrode 5028 is separated from the electrode 5022 in the horizontal direction 5204 and the bubble 4082 enters the gap 5042, the bubble 4082 advances in the vertical direction 5202 different from the horizontal direction 5204. Thus, the electrodes 5022 and 5028 are not prevented from entering the gap 5042. Electrodes 5024 and 5030 are positioned such that when electrode 5030 is separated from electrode 5024 in horizontal direction 5204 and bubble 4082 enters gap 5044, bubble 4082 advances in a vertical direction 5202 different from horizontal direction 5204. This prevents the electrodes 5024 and 5030 from preventing the bubble 4082 from entering the gap 5044.
  • Electrodes 5026 and 5032 are arranged such that when electrode 5032 is separated from electrode 5026 in horizontal direction 5204 and bubble 4082 enters gap 5046, bubble 4082 advances in a vertical direction 5202 different from horizontal direction 5204. Thus, the electrodes 5026 and 5032 are not prevented from entering the gap 5046 by the bubble 4082. These contribute to increasing the amount of plasma generated and producing sterilizing water having high sterilizing power.
  • the three electrodes composed of the electrodes 5022, 5024 and 5026 may be replaced with two or less electrodes or four or more electrodes.
  • Three electrodes composed of the electrodes 5028, 5030 and 5032 may be replaced with two or less electrodes or four or more electrodes. Two or more electrodes may be opposed to one common electrode.
  • the resin plate 5038 is disposed so as to close the upper end of the passage 5102.
  • the electrodes 5022, 5024 and 5026 are made of copper.
  • the electrodes 5028, 5030 and 5032 are made of aluminum.
  • Resin plates 5034, 5036 and 5038 are made of resin.
  • the same deformation as that performed on the electrode structure 4108 provided in the device 4000 for generating sterilizing water according to the fourth embodiment may be performed on the electrode structure 5000 according to the fifth embodiment.
  • the sixth embodiment relates to a method for sterilizing an object to be processed.
  • FIG. 15 is a flowchart showing a method of sterilizing an object to be processed according to the sixth embodiment.
  • sterilizing water is generated in step S601.
  • the sterilizing water may be generated by the apparatus 1000 for generating sterilizing water according to the first embodiment, and the electrode group 1066 provided in the apparatus 1000 for generating sterilizing water according to the first embodiment is replaced with the electrode group according to the second embodiment. It may be generated by an apparatus for generating sterilized water obtained by replacing 2066, may be generated by the apparatus 3000 for generating sterilized water of the third embodiment, or generates sterilized water of the fourth embodiment.
  • the device for generating sterilized water may be generated by replacing the electrode structure 4108 provided in the device 4000 for generating sterilized water of the fourth embodiment with the electrode structure 5000 of the fifth embodiment. May be generated.
  • step S602 sterilizing water is sprinkled on the workpiece.
  • a to-be-processed object is made to contact sterilization water
  • the active species contained in sterilization water act on a to-be-processed object
  • a to-be-processed object is disinfected.
  • the treatment object is brought into contact with the sterilization water by immersing the treatment object in the sterilization water. Also good.
  • a device 4000 for producing sterilized water according to the fourth embodiment was made as a prototype, and treated water that was sterilized water was produced using the prototyped device 4000.
  • the gas 4062 includes oxygen gas, a mixture of 20 parts by volume of nitrogen gas and 80 parts by volume of oxygen gas, a mixture of 30 parts by volume of nitrogen gas and 70 parts by volume of oxygen gas, 50 parts by volume of nitrogen gas and 50 parts by volume.
  • a mixture of volume parts of oxygen gas, a mixture of 80 parts by volume of nitrogen gas and 20 parts by volume of oxygen gas, a mixture of 90 parts by volume of nitrogen gas and 10 parts by volume of nitrogen gas and nitrogen gas were used.
  • the ratio of nitrogen gas partial pressure to the total of nitrogen gas partial pressure and oxygen gas partial pressure is 0%, 20%, 30%, 50%, 80%, 90% and 100%.
  • Treated water was generated for each case.
  • the duration of the discharge is 10 minutes.
  • the electric power input during discharge is 10W.
  • the width of the gap is 3 mm.
  • the produced treated water was sterilized by mixing with E. coli to obtain a mixed solution.
  • the obtained mixed solution was applied to an agar medium.
  • the time from when the mixed solution was obtained until the mixed solution was applied was 20 minutes.
  • the cells were cultured overnight on an agar medium to obtain a sample for bacterial count evaluation.
  • the number of bacteria after sterilization treatment was measured using a sample for evaluation of the number of bacteria, and the cell viability, which was the ratio of the number of bacteria after sterilization treatment to the number of bacteria before sterilization treatment, was determined.
  • the cell viability which was the ratio of the number of bacteria after sterilization treatment to the number of bacteria before sterilization treatment.
  • Bacterium survival rate number of bacteria after sterilization treatment / number of bacteria before sterilization treatment (Formula 2)
  • the survival rate of bacteria is 10 ⁇ 7 .
  • the bacteria survival rate is an index indicating the sterilizing power of treated water. The sterilizing power of treated water increases as the bacteria survival rate decreases.
  • FIG. 16 is a graph illustrating changes in the survival rate of bacteria due to the nitrogen ratio.
  • the nitrogen ratio is taken on the horizontal axis
  • the bacterial survival rate is taken on the vertical axis.
  • the bacteria survival rate is the smallest.
  • the bacteria survival rate decreases as the nitrogen ratio increases, but when the nitrogen ratio is approximately 85% or more, the bacteria survival rate becomes particularly small.
  • the bacteria survival rate decreases as the nitrogen ratio decreases, but when the nitrogen ratio is approximately 95% or less, the bacteria survival rate is particularly small.
  • FIG. 17 is a graph showing the change in the concentration of nitrate ions in the treated water according to the nitrogen ratio.
  • the nitrogen ratio is taken on the horizontal axis, and the concentration of nitrate ions in the treated water is taken on the vertical axis.
  • FIG. 18 is a graph showing changes in pH of treated water according to the nitrogen ratio. In the graph of FIG. 18, the nitrogen ratio is taken on the horizontal axis, and the pH of the treated water is taken on the vertical axis.
  • the gas 4062 contains nitrogen gas
  • the treated water contains nitrate ions of several tens of ppm, and the pH of the treated water becomes about 3.8.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

The present invention generates sterile water without wasting energy consumed for generating plasma. A liquid comprising water or an aqueous solution is poured in a space formed within a container. Bubbles of a gas comprising nitrogen gas and/or oxygen gas are generated in water. A first electrode and a second electrode are immersed in the water. The second electrode is disposed opposite to the first electrode across a gap therebetween. The bubbles are introduced into the gap. A pulse voltage is applied between the first electrode and the second electrode.

Description

殺菌水を生成する装置、被処理物を殺菌する方法および殺菌水を生成する方法Apparatus for generating sterilizing water, method for sterilizing an object to be processed, and method for generating sterilizing water
 本発明は、殺菌水を生成する装置、被処理物を殺菌する方法および殺菌水を生成する方法に関する。 The present invention relates to an apparatus for generating sterilizing water, a method for sterilizing an object to be processed, and a method for generating sterilizing water.
 特許文献1に記載された技術は、ラジカル機能液の製造装置に関する(段落0029)。 The technique described in Patent Document 1 relates to a radical functional liquid production apparatus (paragraph 0029).
 特許文献1に記載された技術においては、アルゴンガス、窒素ガス、酸素ガス、二酸化炭素ガスまたは空気に放電を生じさせプラズマガスが発生させられ、発生させられたプラズマガスがガス導入部を介して貯留部に導入され、貯留部に貯留されたイオン交換水に気泡状のプラズマガスが接触させられ、プラズマガスに起因するラジカルがイオン交換水に溶解させられラジカル機能液が作製される(段落0049および0050)。作製されたラジカル機能液は、対象物の洗浄、殺菌・消毒、消臭、表面改質、親水化・撥水化処理等に使用される(段落0028)。ラジカル機能液の効果の持続時間は、pH調整剤、ラジカル安定剤またはラジカル抑制剤等を溶解させることにより制御される(段落0046)。 In the technique described in Patent Document 1, argon gas, nitrogen gas, oxygen gas, carbon dioxide gas or air is discharged to generate plasma gas, and the generated plasma gas is passed through the gas introduction part. Bubble-shaped plasma gas is brought into contact with ion-exchanged water introduced into the reservoir and stored in the reservoir, and radicals resulting from the plasma gas are dissolved in ion-exchanged water to produce a radical functional liquid (paragraph 0049). And 0050). The produced radical functional liquid is used for cleaning, sterilization / disinfection, deodorization, surface modification, hydrophilization / water repellency treatment, etc. of an object (paragraph 0028). The duration of the effect of the radical functional liquid is controlled by dissolving a pH adjuster, a radical stabilizer or a radical inhibitor (paragraph 0046).
 特許文献2および3に記載された技術においては、インディゴカーミンに対する脱色能力によりプラズマ処理水の能力が測定される。インディゴカーミンに対する脱色能力は酸化力を示すため、特許文献2および3に記載された技術においては、酸化力によりプラズマ処理水の能力が測定される。しかし、酸化力と殺菌力との関係は不明であるため、特許文献2および3に記載された技術におけるプラズマ処理水が殺菌力を有するか否かは不明である。また、特許文献2および3に記載された技術においては、供給される気体の種類によるインディゴカーミンに対する脱色能力の違いが不明である。 In the techniques described in Patent Documents 2 and 3, the ability of plasma treated water is measured by the decolorizing ability for indigo carmine. Since the decolorizing ability with respect to indigo carmine indicates oxidizing power, in the techniques described in Patent Documents 2 and 3, the ability of plasma treated water is measured by oxidizing power. However, since the relationship between the oxidizing power and the sterilizing power is unclear, it is unclear whether the plasma treated water in the techniques described in Patent Documents 2 and 3 has the sterilizing power. Moreover, in the technique described in patent document 2 and 3, the difference in the decoloring capability with respect to indigo carmine by the kind of gas supplied is unknown.
特開2015-93864号公報Japanese Patent Laying-Open No. 2015-93864 特許第5362934号明細書Japanese Patent No. 5362934 特許第5796174号明細書Japanese Patent No. 5796174
 特許文献1に記載された技術においては、プラズマガスがガス導入部を介して貯留部に導入される間に放電により発生したプラズマまたはラジカルが失活し、プラズマの発生のために消費されたエネルギーが無駄になり、生成されるラジカル機能液の殺菌力が低下する。 In the technique described in Patent Document 1, plasma or radicals generated by discharge are deactivated while plasma gas is introduced into the storage part via the gas introduction part, and energy consumed for the generation of the plasma. Is wasted, and the sterilizing power of the generated radical functional liquid is reduced.
 また、特許文献1に記載された技術においては、プラズマ生成用ガスによるラジカルの濃度の変化が明らかにされているが、殺菌力を向上できるプラズマ生成用ガスが不明である。 Further, in the technique described in Patent Document 1, the change in radical concentration due to the plasma generating gas is clarified, but the plasma generating gas capable of improving the sterilizing power is unknown.
 本発明は、これらの問題を解決することを目的とする。本発明が解決しようとする課題は、プラズマの発生のために消費されたエネルギーを無駄にすることなく高い殺菌力を有する殺菌水を生成することにある。 The present invention aims to solve these problems. The problem to be solved by the present invention is to generate sterilizing water having high sterilizing power without wasting energy consumed for generating plasma.
 殺菌水を生成する装置は、容器、供給機構、発生機構、電極群および印加機構を備える。 An apparatus for generating sterilizing water includes a container, a supply mechanism, a generation mechanism, an electrode group, and an application mechanism.
 容器に形成される空間に水または水溶液からなる液体が入れられる。 ・ Liquid composed of water or aqueous solution is placed in the space formed in the container.
 供給機構は、窒素ガスおよび酸素ガスの少なくとも一方を含むガスを供給する。 The supply mechanism supplies a gas containing at least one of nitrogen gas and oxygen gas.
 発生機構には、供給機構からガスが供給される。発生機構は、液体の中にガスの気泡を発生させる。 Gas is supplied from the supply mechanism to the generation mechanism. The generation mechanism generates gas bubbles in the liquid.
 電極群は、第1の電極および第2の電極を備える。第1の電極および第2の電極は液体に浸される。第2の電極は、間隙を挟んで第1の電極に対向する。電極群は、気泡が間隙に導入されるように配置される。 The electrode group includes a first electrode and a second electrode. The first electrode and the second electrode are immersed in the liquid. The second electrode faces the first electrode with a gap in between. The electrode group is arranged such that bubbles are introduced into the gap.
 印加機構は、第1の電極と第2の電極との間にパルス電圧を印加する。 The application mechanism applies a pulse voltage between the first electrode and the second electrode.
 本発明は、被処理物を殺菌する方法および殺菌水を生成する方法にも向けられる。 The present invention is also directed to a method of sterilizing an object to be processed and a method of generating sterilized water.
 プラズマの発生のために消費されたエネルギーを無駄にすることなく高い殺菌力を有する殺菌水が生成される。 The sterilizing water having high sterilizing power is generated without wasting energy consumed for the generation of plasma.
 この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。 The objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description and the accompanying drawings.
第1実施形態の殺菌水を生成する装置を図示する模式図である。It is a mimetic diagram illustrating the device which generates sterilization water of a 1st embodiment. 第1実施形態の殺菌水を生成する装置に備えられる電極群の付近を図示する拡大断面図である。It is an expanded sectional view which illustrates the vicinity of the electrode group with which the apparatus which produces | generates sterilizing water of 1st Embodiment is equipped. 第2実施形態の電極群の付近を図示する拡大断面図である。It is an expanded sectional view which illustrates the vicinity of the electrode group of 2nd Embodiment. 第3実施形態の殺菌水を生成する装置を図示する模式図である。It is a schematic diagram which illustrates the apparatus which produces | generates sterilizing water of 3rd Embodiment. 第3実施形態の殺菌水を生成する装置に備えられる電極群の付近を図示する拡大断面図である。It is an expanded sectional view which illustrates the vicinity of the electrode group with which the apparatus which produces | generates sterilizing water of 3rd Embodiment is equipped. 窒素割合による菌生存率の変化を示すグラフである。It is a graph which shows the change of the bacteria survival rate by a nitrogen ratio. 処理水が生成されてからの経過時間による菌生存率の変化を示すグラフである。It is a graph which shows the change of the microbe survival rate by the elapsed time after process water was produced | generated. 第4実施形態の殺菌水を生成する装置を図示する模式図である。It is a schematic diagram which illustrates the apparatus which produces | generates sterilizing water of 4th Embodiment. 第4実施形態の殺菌水を生成する装置に備えられる電極構造の付近を図示する拡大断面図である。It is an expanded sectional view which illustrates the vicinity of the electrode structure with which the apparatus which produces | generates sterilizing water of 4th Embodiment is equipped. 第4実施形態の殺菌水を生成する装置における気泡の状態を図示する断面図である。It is sectional drawing which illustrates the state of the bubble in the apparatus which produces | generates sterilizing water of 4th Embodiment. 第4実施形態の殺菌水を生成する装置における気泡の状態を図示する断面図である。It is sectional drawing which illustrates the state of the bubble in the apparatus which produces | generates sterilizing water of 4th Embodiment. 第4実施形態の殺菌水を生成する装置における気泡の状態を図示する断面図である。It is sectional drawing which illustrates the state of the bubble in the apparatus which produces | generates sterilizing water of 4th Embodiment. 第4実施形態の殺菌水を生成する装置における気泡の状態を図示する断面図である。It is sectional drawing which illustrates the state of the bubble in the apparatus which produces | generates sterilizing water of 4th Embodiment. 第5実施形態の電極構造の付近を図示する拡大断面図である。It is an expanded sectional view illustrating the neighborhood of the electrode structure of a 5th embodiment. 第6実施形態の被処理物を殺菌する方法を示すフローチャートである。It is a flowchart which shows the method of disinfecting the to-be-processed object of 6th Embodiment. 窒素割合による菌生存率の変化を示すグラフである。It is a graph which shows the change of the bacteria survival rate by a nitrogen ratio. 窒素割合による処理水中の硝酸イオンの濃度の変化を示すグラフである。It is a graph which shows the change of the density | concentration of the nitrate ion in treated water by a nitrogen ratio. 窒素割合による処理水のpHの変化を示すグラフである。It is a graph which shows the change of the pH of the treated water by a nitrogen ratio.
 1 第1実施形態
 1.1 序
 第1実施形態は、殺菌水を生成する装置および殺菌水を生成する方法に関する。
1 1st Embodiment 1.1 Introduction 1st Embodiment is related with the apparatus which produces | generates sterilization water, and the method of producing | generating sterilization water.
 1.2 殺菌水を生成する装置の構成
 図1は、第1実施形態の殺菌水を生成する装置を図示する模式図である。図2の模式図は、第1実施形態の殺菌水を生成する装置に備えられる電極群の付近を図示する拡大断面図である。
1.2 Configuration of Apparatus for Generating Sterilized Water FIG. 1 is a schematic diagram illustrating an apparatus for generating sterilized water according to the first embodiment. The schematic diagram of FIG. 2 is an enlarged sectional view illustrating the vicinity of an electrode group provided in the apparatus for generating sterilizing water according to the first embodiment.
 図1に図示される殺菌水を生成する装置1000は、リアクター1020、供給機構1022および印加機構1024を備える。装置1000がこれらの構成物以外の構成物を備えてもよい。 1 includes a reactor 1020, a supply mechanism 1022, and an application mechanism 1024. The apparatus 1000 may include components other than these components.
 殺菌水を生成する装置1000においては、水1040がリアクター1020に入れられ、供給機構1022がリアクター1020に窒素ガスおよび酸素ガスからなる混合ガスを供給し、印加機構1024がリアクター1020に高圧のパルス電圧を印加する。リアクター1020は、水1040の中に混合ガスの気泡1050を発生させ、気泡1050の中に放電を発生させる。発生した放電により、気泡1050の中にプラズマが発生し、発生したプラズマが水1040に接触する。発生したプラズマに含まれるラジカルおよび発生したプラズマが水1040に接触することにより生成するラジカルが水1040に溶解し、殺菌水が生成される。生成された殺菌水は、食品の洗浄、衛生管理、清掃、手洗い等に使用される。生成された殺菌水により殺菌が行われる場合は、生成された殺菌水に溶解したラジカルが菌に作用する。 In the apparatus 1000 for generating sterilized water, water 1040 is put into a reactor 1020, a supply mechanism 1022 supplies a mixed gas composed of nitrogen gas and oxygen gas to the reactor 1020, and an application mechanism 1024 supplies a high-pressure pulse voltage to the reactor 1020. Apply. The reactor 1020 generates a mixed gas bubble 1050 in the water 1040 and generates a discharge in the bubble 1050. Due to the generated discharge, plasma is generated in the bubble 1050, and the generated plasma comes into contact with the water 1040. Radicals contained in the generated plasma and radicals generated by the generated plasma coming into contact with the water 1040 are dissolved in the water 1040 to generate sterilized water. The produced sterilizing water is used for food washing, hygiene management, cleaning, hand washing and the like. When sterilization is performed with the generated sterilized water, radicals dissolved in the generated sterilized water act on the bacteria.
 リアクター1020は、容器1060、発生機構1062、排出機構1064、電極群1066および支持体1068を備える。リアクター1020がこれらの構成物以外の構成物を備えてもよい。 The reactor 1020 includes a container 1060, a generation mechanism 1062, a discharge mechanism 1064, an electrode group 1066, and a support 1068. The reactor 1020 may include components other than these components.
 容器1060は、ガラス管1080、シリコーン栓1082およびシリコーン栓1084を備える。シリコーン栓1082は、ガラス管1080の一方の開口端に挿入される。シリコーン栓1084は、ガラス管1080の他方の開口端に挿入される。これにより、ガラス管1080、シリコーン栓1082およびシリコーン栓1084に囲まれる空間1100が容器1060に形成される。形成される空間1100には、水1040が入れられる。容器1060の構造が変更されてもよい。 The container 1060 includes a glass tube 1080, a silicone stopper 1082, and a silicone stopper 1084. Silicone plug 1082 is inserted into one open end of glass tube 1080. Silicone plug 1084 is inserted into the other open end of glass tube 1080. As a result, a space 1100 surrounded by the glass tube 1080, the silicone stopper 1082, and the silicone stopper 1084 is formed in the container 1060. Water 1040 is placed in the space 1100 to be formed. The structure of the container 1060 may be changed.
 発生機構1062は、管1120およびバブラー1122を備える。管1120は、シリコーン栓1082を貫通する。管1120の一端は、空間1100の外部にある。管1120の他端は、空間1100の内部にある。バブラー1122は、空間1100の内部にあり、水1040に浸され、管1120の他端に結合される。発生機構1062には、供給機構1022から混合ガスが供給される。発生機構1062は、水1040の中に混合ガスの気泡1050を発生させる。発生機構1062に混合ガスが供給される場合は、管1120の一端に混合ガスが供給される。管1120は、管1120の一端に供給される混合ガスを管1120の他端まで導き、導いた混合ガスをバブラー1122に供給する。バブラー1122は、供給された混合ガスを水1040の中に放出し、混合ガスを水1040の中に放出する際に混合ガスの気泡1050を発生させる。混合ガスの気泡1050の発生は、混合ガスにセラミックス多孔質体を通過させることにより行われる。セラミックス多孔質体が他の種類の多孔質体に置き換えられてもよい。例えば、セラミックス多孔質体が樹脂多孔質体に置き換えられてもよい。発生機構1062の構造が変更されてもよい。 The generation mechanism 1062 includes a tube 1120 and a bubbler 1122. Tube 1120 passes through silicone plug 1082. One end of the tube 1120 is outside the space 1100. The other end of the tube 1120 is inside the space 1100. The bubbler 1122 is inside the space 1100, immersed in water 1040 and coupled to the other end of the tube 1120. The mixed gas is supplied from the supply mechanism 1022 to the generation mechanism 1062. The generation mechanism 1062 generates a mixed gas bubble 1050 in the water 1040. When the mixed gas is supplied to the generation mechanism 1062, the mixed gas is supplied to one end of the pipe 1120. The pipe 1120 guides the mixed gas supplied to one end of the pipe 1120 to the other end of the pipe 1120 and supplies the guided mixed gas to the bubbler 1122. The bubbler 1122 discharges the supplied mixed gas into the water 1040, and generates a bubble 1050 of the mixed gas when the mixed gas is discharged into the water 1040. Generation of the mixed gas bubble 1050 is performed by passing the porous ceramic body through the mixed gas. The ceramic porous body may be replaced with another type of porous body. For example, the ceramic porous body may be replaced with a resin porous body. The structure of the generation mechanism 1062 may be changed.
 排出機構1064は、管1130を備える。管1130は、シリコーン栓1084を貫通する。管1130の一端は、空間1100の内部にあるが、水1040に浸されない。管1130の他端は、空間1100の外部にある。管1130は、水1040の水面から放出されリアクター1020から排出される混合ガスを管1130の一端から管1130の他端に導く。排出機構1064の構造が変更されてもよい。水1040の上面から放出された混合ガスを圧縮し圧縮した混合ガスを蓄積する機構が空間1100の中に配置されてもよく、当該機構が空間1100の中に配置される場合は排出機構1064が省略されてもよい。 The discharge mechanism 1064 includes a tube 1130. The tube 1130 passes through the silicone plug 1084. One end of the tube 1130 is inside the space 1100 but is not immersed in the water 1040. The other end of the tube 1130 is outside the space 1100. The pipe 1130 guides the mixed gas discharged from the water surface of the water 1040 and discharged from the reactor 1020 from one end of the pipe 1130 to the other end of the pipe 1130. The structure of the discharge mechanism 1064 may be changed. A mechanism for compressing the mixed gas discharged from the upper surface of the water 1040 and accumulating the compressed mixed gas may be disposed in the space 1100. When the mechanism is disposed in the space 1100, the discharge mechanism 1064 is It may be omitted.
 電極群1066は、図2に示されるように、電極1140および1142を備える。電極1140および1142の各々は、空間1100の内部にあり、水1040に浸される。電極1142は、間隙1160を挟んで電極1140に対向する。電極群1066は、バブラー1122の鉛直方向上方に配置される。これにより、気泡1050が間隙1160を通って浮上し、気泡1050が間隙1160を通る場合に気泡1050が電極1140および1142に同時に接触する。気泡1050が電極1140および1142に接触している間に電極1140と電極1142との間にパルス電圧が印加された場合は、電極1140と電極1142との間に放電が発生し、気泡1050の中に放電が発生する。発生した放電は、気泡1050の中にプラズマを発生させる。気泡1050は、混合ガスと水1040との界面に囲まれるため、プラズマおよびそれに含まれるラジカルはほとんど失活することなく水1040に接触する。このことは、プラズマの発生に使用されたエネルギーを無駄にすることなく高い殺菌力を有する殺菌水を生成することに寄与する。 The electrode group 1066 includes electrodes 1140 and 1142, as shown in FIG. Each of the electrodes 1140 and 1142 is inside the space 1100 and is immersed in water 1040. The electrode 1142 faces the electrode 1140 with the gap 1160 interposed therebetween. The electrode group 1066 is disposed above the bubbler 1122 in the vertical direction. This causes bubble 1050 to rise through gap 1160, and bubble 1050 contacts electrodes 1140 and 1142 simultaneously when bubble 1050 passes through gap 1160. When a pulse voltage is applied between the electrode 1140 and the electrode 1142 while the bubble 1050 is in contact with the electrodes 1140 and 1142, a discharge is generated between the electrode 1140 and the electrode 1142, and the inside of the bubble 1050 Discharge occurs. The generated discharge generates plasma in the bubble 1050. Since the bubble 1050 is surrounded by the interface between the mixed gas and the water 1040, the plasma and radicals contained in the bubble 1050 come into contact with the water 1040 with almost no inactivation. This contributes to producing sterilizing water having high sterilizing power without wasting energy used for generating plasma.
 電極1142は、電極1140から水平方向に離される。これにより、間隙1160の鉛直方向下方に気泡1050の通過を妨げる構成物が配置されず、気泡1050が間隙1160に侵入しやすくなる。このことは、プラズマの発生量を増やし高い殺菌力を有する殺菌水を生成することに寄与する。 The electrode 1142 is separated from the electrode 1140 in the horizontal direction. Accordingly, a component that prevents the passage of the bubble 1050 is not disposed below the gap 1160 in the vertical direction, and the bubble 1050 easily enters the gap 1160. This contributes to increasing the amount of plasma generated and producing sterilizing water having high sterilizing power.
 電極1140は、針状電極である。電極1142は、平板状電極である。電極1140は、水平方向に延在し、電極1142の主面1220の法線方向に延在する。電極1140の尖った先端1200は、電極1142の主面1220に向けられる。気泡1050が間隙1160を通過する場合は、気泡1050が電極1140の尖った先端1200および電極1142の主面1220に同時に接触する。電極群1066の構造が変更されてもよい。 The electrode 1140 is a needle electrode. The electrode 1142 is a flat electrode. Electrode 1140 extends in the horizontal direction and extends in the normal direction of main surface 1220 of electrode 1142. The pointed tip 1200 of the electrode 1140 is directed toward the major surface 1220 of the electrode 1142. When bubble 1050 passes through gap 1160, bubble 1050 simultaneously contacts sharp tip 1200 of electrode 1140 and major surface 1220 of electrode 1142. The structure of the electrode group 1066 may be changed.
 支持体1068は、電極群1066を支持する。支持体1068が省略され、電極群1066が容器1060に直接的に支持されてもよい。 The support 1068 supports the electrode group 1066. The support body 1068 may be omitted, and the electrode group 1066 may be directly supported by the container 1060.
 混合ガスにおける窒素ガスの分圧および酸素ガスの分圧の合計に対する窒素ガスの分圧の比は、望ましくは0.5以上であり、さらに望ましくは0.7以上であり、特に望ましくは0.8以上である。当該比は、望ましくは0.95以下である。したがって、当該比は、望ましくは0.5以上0.95以下であり、さらに望ましくは0.7以上0.95以下であり、特に望ましくは0.8以上0.95以下である。これにより、高い殺菌力を有する殺菌水が生成される。当該比が約0.9である場合に生成される殺菌水の殺菌力が最高になる。 The ratio of the partial pressure of nitrogen gas to the sum of the partial pressure of nitrogen gas and the partial pressure of oxygen gas in the mixed gas is desirably 0.5 or more, more desirably 0.7 or more, and particularly desirably 0. 8 or more. The ratio is desirably 0.95 or less. Therefore, the ratio is desirably 0.5 or more and 0.95 or less, more desirably 0.7 or more and 0.95 or less, and particularly desirably 0.8 or more and 0.95 or less. Thereby, the sterilization water which has high sterilization power is produced | generated. When the ratio is about 0.9, the sterilizing power produced is maximized.
 混合ガスが窒素ガスおよび酸素ガス以外のガスを含んでもよい。例えば、混合ガスが二酸化炭素ガス、アルゴンガス、水蒸気等を含んでもよい。したがって、混合ガスが空気であってもよい。混合ガスが、空気に窒素富化膜を通過させることにより得られる、空気よりも窒素ガスを多く含むガスであってもよい。混合ガスが窒素ガスおよび酸素ガス以外のガスを含む場合においても、窒素ガスおよび酸素ガスの一方は主成分であり、窒素ガスおよび酸素ガスの他方は最も多く含まれる副成分である。望ましくは、窒素ガスは主成分であり、酸素ガスは最も多く含まれる副成分である。 The mixed gas may contain a gas other than nitrogen gas and oxygen gas. For example, the mixed gas may include carbon dioxide gas, argon gas, water vapor and the like. Therefore, the mixed gas may be air. The mixed gas may be a gas containing more nitrogen gas than air obtained by passing air through a nitrogen-rich film. Even when the mixed gas contains a gas other than nitrogen gas and oxygen gas, one of the nitrogen gas and oxygen gas is the main component, and the other of the nitrogen gas and oxygen gas is the most frequently contained subcomponent. Desirably, nitrogen gas is the main component, and oxygen gas is the most abundant subcomponent.
 印加機構1024は、パルス電源1240、電気配線1242および電気配線1244を備える。電気配線1242は、パルス電源1240の正極を電極1140に電気的に接続する。電気配線1244は、パルス電源1240の負極を電極1142に電気的に接続し、電極1142およびパルス電源1240の負極を接地する。これにより、パルス電源1240により発生させられたパルス電圧が電極1140と電極1142との間に印加され、電極1140がアノードとなり、電極1142がカソードとなる。電極1140がカソードとなり電極1142がアノードとなることも許される。 The application mechanism 1024 includes a pulse power source 1240, an electrical wiring 1242, and an electrical wiring 1244. The electrical wiring 1242 electrically connects the positive electrode of the pulse power source 1240 to the electrode 1140. The electrical wiring 1244 electrically connects the negative electrode of the pulse power source 1240 to the electrode 1142, and grounds the electrode 1142 and the negative electrode of the pulse power source 1240. Thus, a pulse voltage generated by the pulse power source 1240 is applied between the electrode 1140 and the electrode 1142, and the electrode 1140 becomes an anode and the electrode 1142 becomes a cathode. It is permissible for electrode 1140 to be the cathode and electrode 1142 to be the anode.
 水1040は、純水である。水1040がわずかな不純物を含んでもよい。例えば、水1040が水道水であってもよい。水1040が純水または水道水であることにより、殺菌水に溶解しているラジカルが失活した後に殺菌水の後処理を行うことが不要になる。 Water 1040 is pure water. Water 1040 may contain slight impurities. For example, the water 1040 may be tap water. When the water 1040 is pure water or tap water, it is not necessary to perform a post-treatment of the sterilizing water after the radicals dissolved in the sterilizing water are deactivated.
 水1040は、電気伝導率を著しく上昇させる不純物を含まない。これにより、電極1140と電極1142との間にパルス電圧が印加された場合に水1040に電流が流れにくくなり、気泡1050の中に放電を容易に発生させることができる。 Water 1040 does not contain impurities that significantly increase electrical conductivity. Accordingly, when a pulse voltage is applied between the electrode 1140 and the electrode 1142, it becomes difficult for a current to flow through the water 1040, and a discharge can be easily generated in the bubble 1050.
 殺菌水に含まれるラジカルは、殺菌水が使用された後に失活する。このため、殺菌水が使用された後には殺菌水に残留物がほとんど残存せず、殺菌水が接触するものに錆び等が発生すること等が抑制される。また、殺菌水が使用された後に殺菌水の後処理を行う必要はない。 Radicals contained in sterilized water are deactivated after the sterilized water is used. For this reason, after sterilizing water is used, a residue hardly remains in sterilizing water, and it is suppressed that rust etc. generate | occur | produce in what sterilizing water contacts. Moreover, it is not necessary to perform a post-treatment of the sterilized water after the sterilized water is used.
 これに対して、殺菌に広く使用される次亜塩素酸、電解水、オゾン水等の殺菌水においては、殺菌水が使用された後に殺菌水に塩素等の残留物が残存し、殺菌水が接触するものに錆び等が発生する。 On the other hand, in sterilized water such as hypochlorous acid, electrolyzed water, and ozone water widely used for sterilization, after sterilized water is used, residues such as chlorine remain in the sterilized water. Rust etc. occur in the contact.
 また、特開2015-93864号公報に記載された技術においてpH調整剤、ラジカル安定剤またはラジカル抑制剤などが溶解させられた場合は、pH調整剤、ラジカル安定剤またはラジカル抑制剤などの後処理が必要になる可能性がある。 Further, when a pH adjuster, radical stabilizer, radical inhibitor, or the like is dissolved in the technique described in JP-A-2015-93864, post-treatment such as a pH adjuster, radical stabilizer, or radical inhibitor May be required.
 2 第2実施形態
 第2実施形態は、第1実施形態の殺菌水を生成する装置に備えられる電極群を置き換える電極群に関する。
2 2nd Embodiment 2nd Embodiment is related with the electrode group which replaces the electrode group with which the apparatus which produces | generates the disinfection water of 1st Embodiment is equipped.
 図3の模式図は、第2実施形態の電極群の付近を図示する拡大断面図である。 3 is an enlarged cross-sectional view illustrating the vicinity of the electrode group of the second embodiment.
 図3に図示される電極群2066は、電極2140および2142を備える。電極2140および2142の各々は、空間1100の内部にあり、水1040に浸される。電極2142は、間隙2160を挟んで電極2140に対向する。電極群2066は、バブラー1122の鉛直方向上方に配置される。これにより、気泡1050が間隙2160を通って浮上し、気泡1050が間隙2160を通る場合に気泡1050が電極2140および2142に同時に接触する。気泡1050が電極2140および2142に接触している間に電極2140と電極2142との間にパルス電圧が印加された場合は、電極2140と電極2142との間に放電が発生し、気泡1050の中に放電が発生する。発生した放電は、気泡1050の中にプラズマを発生させる。気泡1050は、混合ガスと水1040との界面に囲まれるため、プラズマまたはそれに含まれるラジカルはほとんど失活することなく水1040に接触する。このことは、プラズマの発生に使用されたエネルギーを無駄にすることなく高い殺菌力を有する殺菌水を生成することに寄与する。 3 includes an electrode 2140 and 2142. The electrode group 2066 illustrated in FIG. Each of electrodes 2140 and 2142 is inside space 1100 and is immersed in water 1040. The electrode 2142 faces the electrode 2140 with the gap 2160 interposed therebetween. The electrode group 2066 is disposed above the bubbler 1122 in the vertical direction. Thereby, the bubble 1050 rises through the gap 2160, and when the bubble 1050 passes through the gap 2160, the bubble 1050 contacts the electrodes 2140 and 2142 simultaneously. When a pulse voltage is applied between the electrode 2140 and the electrode 2142 while the bubble 1050 is in contact with the electrodes 2140 and 2142, a discharge is generated between the electrode 2140 and the electrode 2142, Discharge occurs. The generated discharge generates plasma in the bubble 1050. Since the bubble 1050 is surrounded by the interface between the mixed gas and the water 1040, the plasma or radicals contained in the bubble 1050 come into contact with the water 1040 with almost no deactivation. This contributes to producing sterilizing water having high sterilizing power without wasting energy used for generating plasma.
 電極2142は、電極2140から水平方向に離される。 The electrode 2142 is separated from the electrode 2140 in the horizontal direction.
 電極2140および2142の各々は、平板状電極である。電極2142の主面2220は、電極2140の主面2200と平行をなす。電極2140の主面2200の法線方向および電極2142の主面2220の法線方向の各々は、水平方向である。気泡1050が間隙2160を通過する場合は、気泡1050が電極2140の主面2200および電極2142の主面2220に同時に接触する。 Each of the electrodes 2140 and 2142 is a flat electrode. The main surface 2220 of the electrode 2142 is parallel to the main surface 2200 of the electrode 2140. Each of the normal direction of main surface 2200 of electrode 2140 and the normal direction of main surface 2220 of electrode 2142 is a horizontal direction. When bubble 1050 passes through gap 2160, bubble 1050 contacts main surface 2200 of electrode 2140 and main surface 2220 of electrode 2142 at the same time.
 電極2140は、電気配線1242によりパルス電源1240の正極に電気的に接続される。電極2142は、電気配線1244によりパルス電源1240の負極に電気的に接続される。これにより、パルス電源1240により発生させられたパルス電圧が電極2140と電極2142との間に印加され、電極2140がアノードとなり、電極2142がカソードとなる。 The electrode 2140 is electrically connected to the positive electrode of the pulse power source 1240 through the electric wiring 1242. The electrode 2142 is electrically connected to the negative electrode of the pulse power source 1240 through an electric wiring 1244. Thus, a pulse voltage generated by the pulse power source 1240 is applied between the electrode 2140 and the electrode 2142, the electrode 2140 becomes an anode, and the electrode 2142 becomes a cathode.
 3 第3実施形態
 3.1 序
 第3実施形態は、殺菌水を生成する装置および殺菌水を生成する方法に関する。
3 Third Embodiment 3.1 Introduction The third embodiment relates to an apparatus for generating sterilized water and a method for generating sterilized water.
 3.2 殺菌水を生成する装置の構成
 図4は、第3実施形態の殺菌水を生成する装置を図示する模式図である。図5の模式図は、第3実施形態の殺菌水を生成する装置に備えられる電極群の付近を図示する拡大断面図である。
3.2 Configuration of Apparatus for Generating Sterilized Water FIG. 4 is a schematic diagram illustrating an apparatus for generating sterilized water according to the third embodiment. The schematic diagram of FIG. 5 is an enlarged cross-sectional view illustrating the vicinity of an electrode group provided in the apparatus for generating sterilizing water according to the third embodiment.
 図4に図示される殺菌水を生成する装置3000は、リアクター3020、供給機構3022および印加機構3024を備える。装置3000がこれらの構成物以外の構成物を備えてもよい。 4 includes a reactor 3020, a supply mechanism 3022, and an application mechanism 3024. The apparatus 3000 for generating sterilized water illustrated in FIG. The apparatus 3000 may include components other than these components.
 殺菌水を生成する装置3000においては、水3040がリアクター3020に入れられ、供給機構3022がリアクター3020に窒素ガスおよび酸素ガスからなる混合ガスを供給し、印加機構3024がリアクター3020に高圧のパルス電圧を印加する。リアクター3020は、水3040の中に混合ガスの気泡3050を発生させ、気泡3050の中に放電を発生させる。放電により、気泡3050の中にプラズマが発生し、発生したプラズマが水3040に接触する。発生したプラズマに含まれるラジカルおよび発生したプラズマが水3040に接触することにより生成するラジカルが水3040に溶解し、殺菌水が生成される。 In the device 3000 for generating sterilized water, water 3040 is placed in the reactor 3020, the supply mechanism 3022 supplies the reactor 3020 with a mixed gas composed of nitrogen gas and oxygen gas, and the application mechanism 3024 supplies the reactor 3020 with a high-pressure pulse voltage. Apply. The reactor 3020 generates a mixed gas bubble 3050 in the water 3040 and generates a discharge in the bubble 3050. Due to the discharge, plasma is generated in the bubbles 3050, and the generated plasma comes into contact with the water 3040. Radicals contained in the generated plasma and radicals generated by the generated plasma coming into contact with the water 3040 are dissolved in the water 3040 to generate sterilized water.
 リアクター3020は、容器3060、発生機構3062、排出機構3064および電極群3066を備える。リアクター3020がこれらの構成物以外の構成物を備えてもよい。 The reactor 3020 includes a container 3060, a generation mechanism 3062, a discharge mechanism 3064, and an electrode group 3066. The reactor 3020 may include components other than these components.
 容器3060は、ガラス管3080、シリコーン栓3082およびシリコーン栓3084を備える。シリコーン栓3082は、ガラス管3080の一方の開口端に挿入される。シリコーン栓3084は、ガラス管3080の他方の開口端に挿入される。これにより、ガラス管3080、シリコーン栓3082およびシリコーン栓3084に囲まれる空間3100が容器3060に形成される。形成される空間3100には、水3040が入れられる。容器3060の構造が変更されてもよい。 The container 3060 includes a glass tube 3080, a silicone stopper 3082, and a silicone stopper 3084. Silicone plug 3082 is inserted into one open end of glass tube 3080. Silicone plug 3084 is inserted into the other open end of glass tube 3080. As a result, a space 3100 surrounded by the glass tube 3080, the silicone plug 3082, and the silicone plug 3084 is formed in the container 3060. Water 3040 is placed in the space 3100 to be formed. The structure of the container 3060 may be changed.
 発生機構3062は、管3120を備える。管3120は、シリコーン栓3082を貫通する。管3120の一端は、空間3100の外部にある。管3120の他端は、空間3100の内部にあり、水3040に浸される。発生機構3062には、供給機構3022から混合ガスが供給される。発生機構3062は、水3040の中に混合ガスの気泡3050を発生させる。発生機構3062に混合ガスが供給される場合は、管3120の一端に混合ガスが供給される。管3120は、管3120の一端に供給される混合ガスを管3120の他端まで導き、供給された混合ガスを管3120の他端から水3040の中に放出し、混合ガスを水3040の中に放出する際に混合ガスの気泡3050を発生する。発生機構3062の構造が変更されてもよい。 The generation mechanism 3062 includes a tube 3120. Tube 3120 passes through silicone plug 3082. One end of the tube 3120 is outside the space 3100. The other end of the tube 3120 is inside the space 3100 and is immersed in water 3040. The mixed gas is supplied from the supply mechanism 3022 to the generation mechanism 3062. The generation mechanism 3062 generates a mixed gas bubble 3050 in the water 3040. When the mixed gas is supplied to the generation mechanism 3062, the mixed gas is supplied to one end of the pipe 3120. The pipe 3120 guides the mixed gas supplied to one end of the pipe 3120 to the other end of the pipe 3120, discharges the supplied mixed gas from the other end of the pipe 3120 into the water 3040, and discharges the mixed gas into the water 3040. When the gas is discharged, a mixed gas bubble 3050 is generated. The structure of the generation mechanism 3062 may be changed.
 排出機構3064は、第1実施形態の殺菌水を生成する装置1000に備えられる排出機構1064と同様のものである。 The discharge mechanism 3064 is the same as the discharge mechanism 1064 provided in the apparatus 1000 for generating sterilized water according to the first embodiment.
 電極群3066は、図5に示されるように、電極3140および3142を備える。電極3140および3142の各々は、空間3100の内部にあり、水3040に浸される。電極3142は、間隙3160を挟んで電極3140に対向する。気泡3050は、間隙3160に導入され、間隙3160を通って浮上し、間隙3160を通る場合に電極3140および3142に同時に接触する。気泡3050が電極3140および3142に接触している間に電極3140と電極3142との間にパルス電圧が印加された場合は、電極3140と電極3142との間に放電が発生し、気泡3050の中に放電が発生する。発生した放電は、気泡3050の中にプラズマを発生させる。気泡3050は、混合ガスと水3040との界面に囲まれるため、プラズマまたはそれに含まれるラジカルはほとんど失活することなく水3040に接触する。このことは、プラズマの発生に使用されたエネルギーを無駄にすることなく高い殺菌力を有する殺菌水を生成することに寄与する。 The electrode group 3066 includes electrodes 3140 and 3142 as shown in FIG. Each of electrodes 3140 and 3142 is inside space 3100 and is immersed in water 3040. The electrode 3142 faces the electrode 3140 with the gap 3160 interposed therebetween. Bubble 3050 is introduced into gap 3160, floats through gap 3160, and simultaneously contacts electrodes 3140 and 3142 as it passes through gap 3160. When a pulse voltage is applied between the electrode 3140 and the electrode 3142 while the bubble 3050 is in contact with the electrodes 3140 and 3142, a discharge is generated between the electrode 3140 and the electrode 3142, and the inside of the bubble 3050 Discharge occurs. The generated discharge generates plasma in the bubble 3050. Since the bubble 3050 is surrounded by the interface between the mixed gas and the water 3040, the plasma or radicals contained in the bubble 3050 come into contact with the water 3040 with almost no deactivation. This contributes to producing sterilizing water having high sterilizing power without wasting energy used for generating plasma.
 電極3142は、電極3140から鉛直方向に離され、電極3140の鉛直方向上方に配置される。電極3140は、針状電極である。電極3142は、平板状電極である。電極3140は、鉛直方向に延在し、電極3142の主面3220の法線方向に延在する。電極3140の尖った先端3200は、電極3142の主面3220に向けられる。これにより、間隙3160の鉛直方向下方に気泡3050の通過をほとんど妨げない電極3140が配置され、間隙3160の鉛直方向上方に気泡3050の通過を妨げる電極3142が配置され、気泡3050が間隙3160に侵入しやすくなるとともに気泡3050が間隙3160に滞留する時間が長くなる。このことは、プラズマの発生量を増やし高い殺菌力を有する殺菌水を生成することに寄与する。気泡3050が間隙3160を通過する場合は、気泡3050が電極3140の尖った先端3200および電極3142の主面3220に同時に接触する。電極群3066の構造が変更されてもよい。 The electrode 3142 is separated from the electrode 3140 in the vertical direction and is disposed above the electrode 3140 in the vertical direction. The electrode 3140 is a needle electrode. The electrode 3142 is a flat electrode. Electrode 3140 extends in the vertical direction and extends in the normal direction of main surface 3220 of electrode 3142. The pointed tip 3200 of the electrode 3140 is directed to the major surface 3220 of the electrode 3142. Accordingly, an electrode 3140 that hardly interferes with the passage of the bubble 3050 is arranged below the gap 3160 in the vertical direction, an electrode 3142 that prevents the passage of the bubble 3050 is arranged above the gap 3160 in the vertical direction, and the bubble 3050 enters the gap 3160. This makes it easier for the bubbles 3050 to stay in the gap 3160. This contributes to increasing the amount of plasma generated and producing sterilizing water having high sterilizing power. When bubble 3050 passes through gap 3160, bubble 3050 simultaneously contacts sharp tip 3200 of electrode 3140 and main surface 3220 of electrode 3142. The structure of the electrode group 3066 may be changed.
 混合ガスは、第1実施形態の殺菌水を生成する装置1000に備えられる供給機構1022により供給される混合ガスと同様のものである。 The mixed gas is the same as the mixed gas supplied by the supply mechanism 1022 provided in the apparatus 1000 for generating sterilized water according to the first embodiment.
 印加機構3024は、パルス電源3240、電気配線3242および電気配線3244を備える。電気配線3242は、パルス電源3240の正極を電極3140に電気的に接続する。電気配線3244は、パルス電源3240の負極を電極3142に電気的に接続し、電極3142およびパルス電源3240の負極を接地する。これにより、パルス電源3240により発生させられたパルス電圧が電極3140と電極3142との間に印加され、電極3140がアノードとなり、電極3142がカソードとなる。電極3140がカソードとなり電極3142がアノードとなることも許される。 The application mechanism 3024 includes a pulse power source 3240, an electrical wiring 3242, and an electrical wiring 3244. The electrical wiring 3242 electrically connects the positive electrode of the pulse power source 3240 to the electrode 3140. The electrical wiring 3244 electrically connects the negative electrode of the pulse power source 3240 to the electrode 3142 and grounds the electrode 3142 and the negative electrode of the pulse power source 3240. Accordingly, a pulse voltage generated by the pulse power source 3240 is applied between the electrode 3140 and the electrode 3142, and the electrode 3140 becomes an anode and the electrode 3142 becomes a cathode. It is permissible for electrode 3140 to be the cathode and electrode 3142 to be the anode.
 水3040は、第1実施形態の水の殺菌水を生成する装置1000に備えられる容器1060の空間1100に入れられる水と同様のものである。 The water 3040 is the same as the water that is put into the space 1100 of the container 1060 provided in the apparatus 1000 that generates the sterilizing water of the water according to the first embodiment.
 4 第1の実験
 第1実施形態の殺菌水を生成する装置1000を試作し、試作した装置1000を使用して殺菌水である処理水を生成した。処理水の生成においては、60ミリリットルの純水を空間1100に入れ、2リットル/分の流量を有する混合ガスを供給機構1022からリアクター1020に供給した。混合ガスとしては、20体積部の窒素ガスと80体積部の酸素ガスとの混合物、30体積部の窒素ガスと70体積部の酸素ガスとの混合物、50体積部の窒素ガスと50体積部の酸素ガスとの混合物、80体積部の窒素ガスと20体積部の酸素ガスとの混合物、および90体積部の窒素ガスと10体積部の窒素ガスとの混合物を使用した。また、混合ガスに代えて窒素ガスを使用して処理水を生成した。これにより、窒素ガスの分圧および酸素ガスの分圧の合計に対する窒素ガスの分圧の比である窒素割合が20%,30%,50%,80%,90%および100%の各々である場合について処理水を生成した。
4 First Experiment A device 1000 for producing sterilized water according to the first embodiment was made as a prototype, and treated water as sterilized water was produced using the prototyped device 1000. In the generation of treated water, 60 ml of pure water was put into the space 1100 and a mixed gas having a flow rate of 2 liters / minute was supplied from the supply mechanism 1022 to the reactor 1020. Examples of the mixed gas include a mixture of 20 parts by volume of nitrogen gas and 80 parts by volume of oxygen gas, a mixture of 30 parts by volume of nitrogen gas and 70 parts by volume of oxygen gas, 50 parts by volume of nitrogen gas and 50 parts by volume of nitrogen gas. A mixture with oxygen gas, a mixture of 80 parts by volume of nitrogen gas and 20 parts by volume of oxygen gas, and a mixture of 90 parts by volume of nitrogen gas and 10 parts by volume of nitrogen gas were used. Further, treated water was generated using nitrogen gas instead of the mixed gas. As a result, the ratio of nitrogen gas partial pressure to the total of nitrogen gas partial pressure and oxygen gas partial pressure is 20%, 30%, 50%, 80%, 90%, and 100%, respectively. In some cases treated water was generated.
 続いて、生成した処理水を大腸菌と混合することにより殺菌処理を行い、混合液を得た。 Subsequently, the produced treated water was sterilized by mixing with E. coli to obtain a mixed solution.
 続いて、得た混合液を寒天培地に塗布した。 Subsequently, the obtained mixed solution was applied to an agar medium.
 続いて、寒天培地において培養を行い、菌数評価用の試料を得た。 Subsequently, culture was performed on an agar medium to obtain a sample for bacterial count evaluation.
 続いて、菌数評価用の試料を使用して殺菌処理後の菌数を測定し、殺菌処理前の菌数に対する殺菌処理後の菌数の比である菌生存率を求めた。菌生存率、殺菌処理後の菌数および殺菌処理前の菌数の間には、(式1)に示される関係がある。 Subsequently, the number of bacteria after sterilization treatment was measured using a sample for evaluation of the number of bacteria, and the cell viability, which was the ratio of the number of bacteria after sterilization treatment to the number of bacteria before sterilization treatment, was determined. There is a relationship shown in (Formula 1) among the survival rate of bacteria, the number of bacteria after sterilization treatment, and the number of bacteria before sterilization treatment.
 菌生存率=殺菌処理後の菌数/殺菌処理前の菌数・・・(式1) Bacterial survival rate = Number of bacteria after sterilization / Number of bacteria before sterilization (Equation 1)
 例えば殺菌処理前の菌数が1CFU/mlであり殺菌処理後の菌数が10-7CFU/mlである場合は、菌生存率は10-7となる。菌生存率は、処理水の殺菌力を示す指標となり、菌生存率が小さくなるほど処理水の殺菌力が高くなる。 For example if the number of bacteria after sterilization prior number of bacteria was 1 CFU / ml sterilization treatment is 10-7 CFU / ml is fungal survival rate is 10 -7. The bacteria survival rate is an index indicating the sterilizing power of the treated water, and the sterilizing power of the treated water increases as the bacteria survival rate decreases.
 図6は、窒素割合による菌生存率の変化を図示するグラフである。 FIG. 6 is a graph illustrating the change in the survival rate of bacteria due to the nitrogen ratio.
 図6に図示されるように、窒素割合が90%である場合に菌生存率は最も小さくなる。また、窒素割合が20%以上90%以下である場合は、窒素割合が大きくなるほど菌生存率が小さくなるが、窒素割合が50%以上である場合に菌生存率が小さくなり、窒素割合が70%以上である場合に菌生存率がさらに小さくなり、窒素割合が80%以上である場合に菌生存率が特に小さくなる。 As shown in FIG. 6, the survival rate of bacteria is the smallest when the nitrogen ratio is 90%. In addition, when the nitrogen ratio is 20% or more and 90% or less, the bacteria survival rate decreases as the nitrogen ratio increases. However, when the nitrogen ratio is 50% or more, the bacteria survival rate decreases and the nitrogen ratio is 70%. When the percentage is greater than or equal to%, the bacteria survival rate is further reduced, and when the nitrogen ratio is greater than or equal to 80%, the bacteria survival rate is particularly reduced.
 5 第2の実験
 第1実施形態の殺菌水を生成する装置1000を試作し、試作した装置1000を使用して殺菌水である処理水を生成した。処理水の生成においては、60ミリリットルの純水を空間1100に入れ、2リットル/分の流量を有する混合ガスを供給機構1022からリアクター1020に供給した。混合ガスとしては、90体積部の窒素ガスと10体積部の窒素ガスとの混合物を使用した。
5 Second Experiment A device 1000 for producing sterilized water according to the first embodiment was made as a prototype, and treated water as sterilized water was produced using the prototyped device 1000. In the generation of treated water, 60 ml of pure water was put into the space 1100 and a mixed gas having a flow rate of 2 liters / minute was supplied from the supply mechanism 1022 to the reactor 1020. As the mixed gas, a mixture of 90 parts by volume of nitrogen gas and 10 parts by volume of nitrogen gas was used.
 続いて、生成された直後の処理液を大腸菌と混合することにより殺菌処理を行い、混合液を得た。また、生成されてから24時間が経過した処理液を大腸菌と混合することにより殺菌処理を行い、混合液を得た。 Subsequently, a sterilization treatment was performed by mixing the treatment solution immediately after the production with E. coli to obtain a mixture solution. Moreover, the processing liquid which 24 hours passed after producing | generating was sterilized by mixing with colon_bacillus | E._coli, and the liquid mixture was obtained.
 続いて、得た混合液を寒天培地に塗布した。 Subsequently, the obtained mixed solution was applied to an agar medium.
 続いて、寒天培地において培養を行い、菌数評価用の試料を得た。 Subsequently, culture was performed on an agar medium to obtain a sample for bacterial count evaluation.
 続いて、菌数評価用の試料を使用して殺菌処理後の菌数を測定し、殺菌処理前の菌数に対する殺菌処理後の菌数の比である菌生存率を求めた。 Subsequently, the number of bacteria after sterilization treatment was measured using a sample for evaluation of the number of bacteria, and the cell viability, which was the ratio of the number of bacteria after sterilization treatment to the number of bacteria before sterilization treatment, was determined.
 図7は、処理水が生成されてからの経過時間による菌生存率の変化を図示するグラフである。 FIG. 7 is a graph illustrating the change in the survival rate of bacteria due to the elapsed time since the treated water was generated.
 図7に図示されるように、生成された直後の処理液が大腸菌と混合された場合は菌生存率が10-7を下回るが、生成されてから24時間が経過した処理液が大腸菌と混合された場合は菌生存率が1に近づく。このことは、処理液が生成されてから24時間が経過した場合は処理液に溶解していたラジカルはほとんど失活していることを示す。 As shown in FIG. 7, when the treatment solution immediately after generation is mixed with Escherichia coli, the survival rate of the bacteria is less than 10 −7 , but the treatment solution after 24 hours has been mixed with Escherichia coli. If this is done, the survival rate of bacteria will approach 1. This indicates that the radicals dissolved in the treatment liquid are almost inactivated when 24 hours have passed since the treatment liquid was generated.
 6 第4実施形態
 6.1 序
 第4実施形態は、殺菌水を生成する装置および殺菌水を生成する方法に関する。
6 4th Embodiment 6.1 Introduction 4th Embodiment is related with the apparatus which produces | generates sterilizing water, and the method of producing | generating sterilizing water.
 6.2 殺菌水を生成する装置の構成
 図8は、第4実施形態の殺菌水を生成する装置を図示する模式図である。図9の模式図は、第4実施形態の殺菌水を生成する装置に備えられる電極構造の付近を図示する拡大断面図である。
6.2 Configuration of Apparatus for Generating Sterilized Water FIG. 8 is a schematic diagram illustrating an apparatus for generating sterilized water according to the fourth embodiment. The schematic diagram of FIG. 9 is an enlarged cross-sectional view illustrating the vicinity of the electrode structure provided in the apparatus for generating sterilizing water according to the fourth embodiment.
 図8に図示される殺菌水を生成する装置4000は、リアクター4022、供給機構4024および印加機構4026を備える。装置4000がこれらの構成物以外の構成物を備えてもよい。 The apparatus 4000 for generating sterilized water illustrated in FIG. 8 includes a reactor 4022, a supply mechanism 4024, and an application mechanism 4026. The device 4000 may include components other than these components.
 殺菌水を生成する装置4000においては、リアクター4022に水または水溶液からなる液体4042が入れられ、供給機構4024がリアクター4022にガス4062を供給し、印加機構4026がリアクター4022にパルス電圧を印加する。リアクター4022は、ガス4062の気泡4082を液体4042の中に発生させ、気泡4082の中にストリーマ放電を発生させる。発生させられたストリーマ放電により、気泡4082の中にプラズマが発生し、発生させられたプラズマが液体4042に接触する。発生させられたプラズマに含まれるラジカルその他の活性種が液体4042に溶解し、発生させられたプラズマが液体4042に接触することにより生成される活性種が液体4042に溶解し、殺菌水が生成される。生成された殺菌水は、食品の洗浄、衛生管理、清掃、手洗い等に使用される。生成された殺菌水により殺菌が行われる場合は、生成された殺菌水に溶解した活性種が菌に作用する。 In the apparatus 4000 for generating sterilized water, a liquid 4042 made of water or an aqueous solution is placed in a reactor 4022, a supply mechanism 4024 supplies a gas 4062 to the reactor 4022, and an application mechanism 4026 applies a pulse voltage to the reactor 4022. The reactor 4022 generates bubbles 4082 of the gas 4062 in the liquid 4042 and generates streamer discharge in the bubbles 4082. Due to the generated streamer discharge, plasma is generated in the bubble 4082, and the generated plasma comes into contact with the liquid 4042. Radicals and other active species contained in the generated plasma are dissolved in the liquid 4042, and active species generated when the generated plasma comes into contact with the liquid 4042 are dissolved in the liquid 4042, so that sterilizing water is generated. The The produced sterilizing water is used for food washing, hygiene management, cleaning, hand washing and the like. When sterilization is performed with the generated sterilized water, active species dissolved in the generated sterilized water act on the bacteria.
 リアクター4022は、容器4102、発生機構4104、排出機構4106、電極構造4108および支持体4110を備える。リアクター4022がこれらの構成物以外の構成物を備えてもよい。 The reactor 4022 includes a container 4102, a generation mechanism 4104, a discharge mechanism 4106, an electrode structure 4108, and a support 4110. The reactor 4022 may include components other than these components.
 容器4102は、ガラス管4122、シリコーン栓4124およびシリコーン栓4126を備える。ガラス管4122の内径は、例えば数mmから数10mmであり、典型的には約30mmである。シリコーン栓4124は、ガラス管4122の一方の開口端に挿入される。シリコーン栓4126は、ガラス管4122の他方の開口端に挿入される。これにより、ガラス管4122、シリコーン栓4124およびシリコーン栓4126に囲まれる空間4142が容器4102に形成される。空間4142には、液体4042が入れられる。容器4102の構造が変更されてもよい。 The container 4102 includes a glass tube 4122, a silicone stopper 4124, and a silicone stopper 4126. The inner diameter of the glass tube 4122 is, for example, several mm to several tens mm, and is typically about 30 mm. The silicone stopper 4124 is inserted into one open end of the glass tube 4122. The silicone stopper 4126 is inserted into the other open end of the glass tube 4122. As a result, a space 4142 surrounded by the glass tube 4122, the silicone stopper 4124, and the silicone stopper 4126 is formed in the container 4102. A liquid 4042 is placed in the space 4142. The structure of the container 4102 may be changed.
 発生機構4104は、管4162およびエアーストーン4164を備える。管4162は、シリコーン栓4124を貫通する。管4162の一端は、空間4142の外部にある。管4162の他端は、空間4142の内部にある。エアーストーン4164は、空間4142の内部にあり、液体4042に浸され、管4162の他端に結合される。発生機構4104には、供給機構4024からガス4062が供給される。発生機構4104は、ガス4062の気泡4082を液体4042の中に発生させる。発生機構4104にガス4062が供給される場合は、管4162の一端にガス4062が供給される。管4162は、管4162の一端に供給されたガス4062を管4162の他端まで導き、導いたガス4062をエアーストーン4164に供給する。エアーストーン4164は、供給されたガス4062を液体4042の中に放出し、供給されたガス4062を液体4042の中に放出する際に供給されたガス4062の気泡4082を発生させる。ガス4062の気泡4082の発生は、ガス4062にセラミックス多孔質体を通過させることにより行われる。セラミックス多孔質体が他の種類の多孔質体に置き換えられてもよい。例えば、セラミックス多孔質体が樹脂多孔質体に置き換えられてもよい。発生機構4104の構造が変更されてもよい。例えば、発生機構4104が、エアーストーン4164に代えて、金属、樹脂等からなるものに孔加工を施したものを備えてもよい。発生機構4104および電極構造4108が一体化されてもよい。 The generation mechanism 4104 includes a tube 4162 and an air stone 4164. Tube 4162 passes through silicone plug 4124. One end of the tube 4162 is outside the space 4142. The other end of the tube 4162 is inside the space 4142. The air stone 4164 is inside the space 4142, immersed in the liquid 4042 and coupled to the other end of the tube 4162. Gas 4062 is supplied from the supply mechanism 4024 to the generation mechanism 4104. The generation mechanism 4104 generates bubbles 4082 of the gas 4062 in the liquid 4042. When the gas 4062 is supplied to the generation mechanism 4104, the gas 4062 is supplied to one end of the pipe 4162. The pipe 4162 guides the gas 4062 supplied to one end of the pipe 4162 to the other end of the pipe 4162 and supplies the guided gas 4062 to the air stone 4164. The air stone 4164 discharges the supplied gas 4062 into the liquid 4042, and generates bubbles 4082 of the supplied gas 4062 when the supplied gas 4062 is discharged into the liquid 4042. The generation of the bubbles 4082 of the gas 4062 is performed by passing the ceramic porous body through the gas 4062. The ceramic porous body may be replaced with another type of porous body. For example, the ceramic porous body may be replaced with a resin porous body. The structure of the generation mechanism 4104 may be changed. For example, the generating mechanism 4104 may be provided with a material made of a metal, a resin, or the like, instead of the air stone 4164. The generation mechanism 4104 and the electrode structure 4108 may be integrated.
 排出機構4106は、管4182を備える。管4182は、シリコーン栓4126を貫通する。管4182の一端は、空間4142の内部にあるが、液体4042に浸されない。管4182の他端は、空間4142の外部にある。管4182は、液体4042の上面から放出されたガス4062を管4182の一端から管4182の他端に導き、導いたガス4062をリアクター4022から排出する。排出機構4106の構造が変更されてもよい。液体4042の上面から放出されたガス4062を圧縮し圧縮したガス4062を蓄積する機構が空間4142の中に配置されてもよく、当該機構が空間4142の中に配置される場合は排出機構4106が省略されてもよい。 The discharge mechanism 4106 includes a tube 4182. Tube 4182 passes through silicone plug 4126. One end of the tube 4182 is inside the space 4142 but is not immersed in the liquid 4042. The other end of the tube 4182 is outside the space 4142. The pipe 4182 guides the gas 4062 released from the upper surface of the liquid 4042 from one end of the pipe 4182 to the other end of the pipe 4182, and discharges the led gas 4062 from the reactor 4022. The structure of the discharge mechanism 4106 may be changed. A mechanism for compressing the gas 4062 released from the upper surface of the liquid 4042 and accumulating the compressed gas 4062 may be disposed in the space 4142. When the mechanism is disposed in the space 4142, the discharge mechanism 4106 is provided. It may be omitted.
 電極構造4108は、電極および必要な付属物を備える構造であって、図9に示されるように、電極4202、電極4204、樹脂板4206、樹脂板4208および樹脂板4210を備える。電極構造4108がこれらの構成物以外の構成物を備えてもよい。電極構造4108が電極のみからなり付属物を備えないことも許される。 The electrode structure 4108 includes an electrode and necessary accessories, and includes an electrode 4202, an electrode 4204, a resin plate 4206, a resin plate 4208, and a resin plate 4210 as shown in FIG. The electrode structure 4108 may include components other than these components. It is also permissible for the electrode structure 4108 to consist only of electrodes and no appendages.
 電極4202は、空間4142の内部にあり、液体4042に浸される。電極4204は、空間4142の内部にあり、液体4042に浸され、間隙4222を挟んで電極4202に対向する。 The electrode 4202 is inside the space 4142 and is immersed in the liquid 4042. The electrode 4204 is inside the space 4142, is immersed in the liquid 4042, and faces the electrode 4202 with the gap 4222 interposed therebetween.
 電極構造4108は、エアーストーン4164の鉛直方向上方に配置される。これにより、気泡4082が浮上した場合に、気泡4082が電極構造4108に到達し、気泡4082が間隙4222に導入される。導入された気泡4082は、間隙4222を通過する時に電極4202および4204に同時に接触する。気泡4082が電極4202および4204に接触している間に電極4202および4204の間にパルス電圧が印加された場合は、電極4202および4204の間にストリーマ放電が発生し、気泡4082の中にストリーマ放電が発生する。発生させられたストリーマ放電は、気泡4082の中にプラズマを発生させる。気泡4082は、液体4042とガス4062との界面4242に囲まれるため、プラズマおよびそれに含まれる活性種はほとんど失活することなく液体4042に接触する。このことは、プラズマの発生に使用されたエネルギーを無駄にすることなく高い殺菌力を有する殺菌水を生成することに寄与する。気泡4082が電極4202および4204の少なくとも一方に接触しない場合であっても、殺菌水を生成するストリーマ放電が発生する場合もある。ストリーマ放電とは異なる放電により殺菌水が生成する場合もある。 The electrode structure 4108 is disposed above the air stone 4164 in the vertical direction. Thereby, when the bubble 4082 rises, the bubble 4082 reaches the electrode structure 4108, and the bubble 4082 is introduced into the gap 4222. The introduced bubble 4082 contacts the electrodes 4202 and 4204 simultaneously when passing through the gap 4222. When a pulse voltage is applied between the electrodes 4202 and 4204 while the bubble 4082 is in contact with the electrodes 4202 and 4204, a streamer discharge is generated between the electrodes 4202 and 4204, and the streamer discharge is generated in the bubble 4082. Will occur. The generated streamer discharge generates plasma in the bubble 4082. Since the bubble 4082 is surrounded by the interface 4242 between the liquid 4042 and the gas 4062, the plasma and the active species contained therein are in contact with the liquid 4042 with almost no inactivation. This contributes to producing sterilizing water having high sterilizing power without wasting energy used for generating plasma. Even when the bubble 4082 does not contact at least one of the electrodes 4202 and 4204, a streamer discharge that generates sterilizing water may occur. The sterilizing water may be generated by a discharge different from the streamer discharge.
 電極構造4108に備えられる対向物4262は、電極4202および樹脂板4206を備える。電極構造4108に備えられる対向物4264は、電極4204および樹脂板4208を備える。対向物4264の対向面4284は、通路4302を挟んで対向物4262の対向面4282と対向する。これにより、電極構造4108は、対向面4282および4284を含み通路4302を定義する面4322を有するようになる。 The opposing object 4262 provided in the electrode structure 4108 includes an electrode 4202 and a resin plate 4206. A counter object 4264 provided in the electrode structure 4108 includes an electrode 4204 and a resin plate 4208. The facing surface 4284 of the facing object 4264 faces the facing surface 4282 of the facing object 4262 with the passage 4302 interposed therebetween. This causes electrode structure 4108 to have a surface 4322 that includes opposing surfaces 4282 and 4284 and that defines a passage 4302.
 電極4202は、針状であり、樹脂板4206を厚さ方向に貫通し、対向面4282から対向面4284に向かって突出する。電極4204は、平板状またはシート状であり、樹脂板4208の主面4342に貼り付けられ、対向面4284に含まれる主面4362を有する。これにより、通路4302が間隙4222を含むようになり、気泡4082が通路4302を通過する途中で気泡4082が間隙4222を通過するようになる。気泡4082は、間隙4222を通過する時に電極4202の先端4382および電極4204の主面4362に同時に接触する。電極4202の直径は、例えば数100μmから数mmであり、典型的には約2mmである。 The electrode 4202 has a needle shape, penetrates the resin plate 4206 in the thickness direction, and protrudes from the facing surface 4282 toward the facing surface 4284. The electrode 4204 has a plate shape or a sheet shape, and is attached to the main surface 4342 of the resin plate 4208 and has a main surface 4362 included in the facing surface 4284. Accordingly, the passage 4302 includes the gap 4222, and the bubble 4082 passes through the gap 4222 while the bubble 4082 passes through the passage 4302. The bubble 4082 simultaneously contacts the tip 4382 of the electrode 4202 and the main surface 4362 of the electrode 4204 when passing through the gap 4222. The diameter of the electrode 4202 is, for example, several hundred μm to several mm, and is typically about 2 mm.
 電極構造4108は、気泡4082が通路4302を通過するように配置される。対向面4282の法線方向は水平方向と平行をなし、対向面4284の法線方向は水平方向および対向面4282の法線方向と平行をなすため、気泡4082が通路4302を通過する場合には、通路4302が気泡4082を鉛直方向4402に案内し、面4322が鉛直方向4402と垂直をなす水平方向4404に気泡4082が拡がることを規制する。気泡4082が鉛直方向4402と異なる案内方向に案内されてもよく、当該案内方向と垂直をなす規制方向に気泡4082が拡がることが規制されてもよい。 The electrode structure 4108 is arranged such that the bubble 4082 passes through the passage 4302. When the bubble 4082 passes through the passage 4302, the normal direction of the facing surface 4282 is parallel to the horizontal direction, and the normal direction of the facing surface 4284 is parallel to the horizontal direction and the normal direction of the facing surface 4282. The passage 4302 guides the bubble 4082 in the vertical direction 4402, and the surface 4322 restricts the bubble 4082 from expanding in the horizontal direction 4404 perpendicular to the vertical direction 4402. The bubble 4082 may be guided in a guide direction different from the vertical direction 4402, and the expansion of the bubble 4082 in a restriction direction perpendicular to the guide direction may be restricted.
 電極構造4108は、気泡4082が通路4302に入る直前における水平方向4404についての気泡4082の大きさが、水平方向4404についての通路4302の大きさの1倍より大きく2倍以下であるように構成される。水平方向4404についての気泡4082の大きさが水平方向4404についての通路4302の大きさの1倍より大きくなることにより、気泡4082が通路4302に入るときに気泡4082が水平方向4404に押しつぶされ、気泡4082と面4322との間の摩擦が増加し、気泡4082が通路4302を進む速度が低下し、気泡4082が間隙4222を通過するのに要する時間が長くなる。水平方向4404についての気泡4082の大きさが水平方向4404についての通路4302の大きさの2倍以下となることにより、気泡4082が通路4302に入りにくくなることが抑制される。これらのことは、プラズマの発生量を増やし高い殺菌力を有する殺菌水を生成することに寄与する。 The electrode structure 4108 is configured such that the size of the bubble 4082 in the horizontal direction 4404 immediately before the bubble 4082 enters the passage 4302 is greater than one time and less than two times the size of the passage 4302 in the horizontal direction 4404. The Since the size of the bubble 4082 in the horizontal direction 4404 is larger than one time the size of the passage 4302 in the horizontal direction 4404, the bubble 4082 is crushed in the horizontal direction 4404 when the bubble 4082 enters the passage 4302, and the bubble The friction between 4082 and surface 4322 increases, the speed at which bubble 4082 travels through passage 4302 is reduced, and the time required for bubble 4082 to pass through gap 4222 is increased. Since the size of the bubble 4082 in the horizontal direction 4404 is less than or equal to twice the size of the passage 4302 in the horizontal direction 4404, it is suppressed that the bubble 4082 is difficult to enter the passage 4302. These contribute to increasing the amount of plasma generated and producing sterilizing water having high sterilizing power.
 水平方向4404についての通路4302の大きさ、すなわち、対向面4282から対向面4284までの距離は、望ましくは0.5mm以上10mm以下である。 The size of the passage 4302 in the horizontal direction 4404, that is, the distance from the facing surface 4282 to the facing surface 4284 is desirably 0.5 mm or more and 10 mm or less.
 電極4202および4204は、電極4204が電極4202から水平方向4404に離され、気泡4082が間隙4222に入る場合に気泡4082が水平方向4404と異なる鉛直方向4402に進むように配置される。これにより、気泡4082が間隙4222に入ることが電極4202および4204に妨げられなくなる。このことは、プラズマの発生量を増やし高い殺菌力を有する殺菌水を生成することに寄与する。電極4204が電極4202から水平方向4404と異なる離間方向に離されてもよく、気泡4082が当該離間方向と異なる進行方向に進んでもよい。 The electrodes 4202 and 4204 are arranged such that when the electrode 4204 is separated from the electrode 4202 in the horizontal direction 4404 and the bubble 4082 enters the gap 4222, the bubble 4082 advances in a vertical direction 4402 different from the horizontal direction 4404. This prevents the electrodes 4202 and 4204 from preventing the bubble 4082 from entering the gap 4222. This contributes to increasing the amount of plasma generated and producing sterilizing water having high sterilizing power. The electrode 4204 may be separated from the electrode 4202 in a separation direction different from the horizontal direction 4404, and the bubble 4082 may advance in a traveling direction different from the separation direction.
 樹脂板4210は、通路4302の上端を閉塞するように配置される。 The resin plate 4210 is disposed so as to close the upper end of the passage 4302.
 電極4202は、銅からなる。電極4202が銅以外の導電体からなることも許される。例えば、電極4202が、合金または銅以外の金属からなることも許される。電極4204は、アルミニウムからなる。電極4204がアルミニウム以外の導電体からなることも許される。例えば、電極4204が合金またはアルミニウム以外の金属からなることも許される。 The electrode 4202 is made of copper. The electrode 4202 may be made of a conductor other than copper. For example, the electrode 4202 may be made of a metal other than an alloy or copper. The electrode 4204 is made of aluminum. The electrode 4204 may be made of a conductor other than aluminum. For example, the electrode 4204 may be made of an alloy or a metal other than aluminum.
 樹脂板4206、4208および4210の各々である各樹脂板は、樹脂からなる。各樹脂板が樹脂以外の絶縁体からなる板に置き換えられてもよい。例えば、各樹脂板がセラミックス板に置き換えられてもよい。 Each resin plate which is each of the resin plates 4206, 4208 and 4210 is made of resin. Each resin plate may be replaced with a plate made of an insulator other than resin. For example, each resin plate may be replaced with a ceramic plate.
 支持体4110は、電極構造4108を支持する。支持体4110が省略され、電極構造4108が容器4102に直接的に支持されてもよい。 Support body 4110 supports electrode structure 4108. The support 4110 may be omitted, and the electrode structure 4108 may be directly supported by the container 4102.
 ガス4062は、窒素ガスおよび酸素ガスの少なくとも一方を含む。ガス4062が窒素ガスおよび酸素ガス以外のガスを含んでもよい。例えば、ガス4062が二酸化炭素ガス、アルゴンガス、水蒸気等を含んでもよい。したがって、ガス4062が空気であってもよい。ガス4062が、空気に窒素富化膜を通過させることにより得られる、空気よりも窒素ガスを多く含むガスであってもよい。ガス4062が窒素ガスおよび酸素ガス以外のガスを含む場合においても、窒素ガスおよび酸素ガスの一方は主成分である。 The gas 4062 contains at least one of nitrogen gas and oxygen gas. The gas 4062 may include a gas other than nitrogen gas and oxygen gas. For example, the gas 4062 may include carbon dioxide gas, argon gas, water vapor, and the like. Therefore, the gas 4062 may be air. The gas 4062 may be a gas that is obtained by passing air through a nitrogen-enriched film and contains more nitrogen gas than air. Even in the case where the gas 4062 includes a gas other than nitrogen gas and oxygen gas, one of the nitrogen gas and the oxygen gas is a main component.
 窒素ガスが主成分である場合は、ガス4062は、窒素ガスを含み、望ましくは酸素ガスをさらに含む。ガス4062が窒素ガスおよび酸素ガスを含む場合は、ガス4062における窒素ガスの分圧および酸素ガスの分圧の合計に対する窒素ガスの分圧の比は、望ましくは0.75以上0.85以下である。これらのことは、高い殺菌力を有する殺菌水を生成することに寄与する。空気における窒素ガスの分圧および酸素ガスの分圧の合計に対する窒素ガスの分圧の比である約0.79は0.75以上0.85以下という範囲に含まれるため、ガス4062が空気である場合は高い殺菌力を有する殺菌水が生成される。 When nitrogen gas is the main component, the gas 4062 contains nitrogen gas, and preferably further contains oxygen gas. When the gas 4062 includes nitrogen gas and oxygen gas, the ratio of the partial pressure of the nitrogen gas to the sum of the partial pressure of the nitrogen gas and the partial pressure of the oxygen gas in the gas 4062 is desirably 0.75 or more and 0.85 or less. is there. These things contribute to producing sterilized water having high sterilizing power. Since the ratio of the partial pressure of nitrogen gas to the total of the partial pressure of nitrogen gas and the partial pressure of oxygen gas in air is approximately 0.79, which is included in the range of 0.75 to 0.85, In some cases, sterilized water having high sterilizing power is produced.
 酸素ガスが主成分である場合は、ガス4062は、望ましくは酸素ガスからなる。このことは、高い殺菌力を有する殺菌水を生成することに寄与する。 When oxygen gas is the main component, the gas 4062 is preferably made of oxygen gas. This contributes to producing sterilized water having high sterilizing power.
 印加機構4026は、パルス電源4422、電気配線4424および電気配線4426を備える。電気配線4424は、パルス電源4422の正極を電極4202に電気的に接続する。電気配線4426は、パルス電源4422の負極を電極4204に電気的に接続し、電極4204およびパルス電源4422の負極を接地する。これにより、パルス電源4422により発生させられたパルス電圧が電極4202および4204の間に印加され、電極4202がアノードとなり、電極4204がカソードとなる。電極4202がカソードとなり電極4204がアノードとなることも許される。電気配線4424が省略されパルス電源4422の正極が電極4202に直結されてもよい。電気配線4426が省略されパルス電源4422の負極が電極4204に直結されてもよい。 The application mechanism 4026 includes a pulse power source 4422, an electrical wiring 4424, and an electrical wiring 4426. The electrical wiring 4424 electrically connects the positive electrode of the pulse power source 4422 to the electrode 4202. The electrical wiring 4426 electrically connects the negative electrode of the pulse power source 4422 to the electrode 4204 and grounds the electrode 4204 and the negative electrode of the pulse power source 4422. Accordingly, a pulse voltage generated by the pulse power source 4422 is applied between the electrodes 4202 and 4204, and the electrode 4202 becomes an anode and the electrode 4204 becomes a cathode. It is permissible for electrode 4202 to be the cathode and electrode 4204 to be the anode. The electrical wiring 4424 may be omitted, and the positive electrode of the pulse power source 4422 may be directly connected to the electrode 4202. The electric wiring 4426 may be omitted, and the negative electrode of the pulse power source 4422 may be directly connected to the electrode 4204.
 パルス電源4422は、誘導エネルギー蓄積型である。誘導エネルギー蓄積型であるパルス電源4422は、誘導性素子に磁界の形で蓄積したエネルギーを短時間で放出する。誘導エネルギー蓄積型であるパルス電源4422は、容量性素子に電界の形で蓄積したエネルギーを短時間で放出する容量エネルギー蓄積型であるパルス電源と比較して、著しく大きいエネルギーを高い繰り返し頻度で投入することができる。このことは、高い殺菌力を有する殺菌水を生成することに寄与する。このように高い殺菌力を有する殺菌水は、被処理物に接触させることにより被処理物を殺菌する間接処理に好適であり、電解水、オゾン水等の代替物となる。間接処理によれば、被処理物にプラズマを直接的に照射する必要がなくなる。 The pulse power source 4422 is an inductive energy storage type. An inductive energy storage type pulse power source 4422 releases energy stored in the form of a magnetic field in the inductive element in a short time. The pulse power source 4422, which is an inductive energy storage type, is supplied with significantly higher energy at a higher repetition frequency than the pulse power source, which is a capacitive energy storage type, which releases the energy stored in the capacitive element in the form of an electric field in a short time. can do. This contributes to producing sterilized water having high sterilizing power. The sterilizing water having such a high sterilizing power is suitable for indirect processing for sterilizing the object to be processed by bringing it into contact with the object to be processed, and is an alternative to electrolytic water, ozone water and the like. Indirect processing eliminates the need to directly irradiate the workpiece with plasma.
 パルス電源4422が誘導エネルギー蓄積型である場合は、パルス電源4422により発生させられたパルス電圧が電極4202および4204の間に印加された場合に気泡4082の中にストリーマ放電が発生する。発生させられたストリーマ放電は、気泡4082の中において拡がり、界面4242に接触する。誘導エネルギー蓄積型でないパルス電源であって気泡4082の中にストリーマ放電を発生させることができるパルス電源が開発された場合は、パルス電源4422がそのようなパルス電源であってもよい。 When the pulse power source 4422 is an inductive energy storage type, a streamer discharge is generated in the bubble 4082 when a pulse voltage generated by the pulse power source 4422 is applied between the electrodes 4202 and 4204. The generated streamer discharge spreads in the bubble 4082 and contacts the interface 4242. When a pulse power source that is not an inductive energy storage type and can generate a streamer discharge in the bubble 4082 has been developed, the pulse power source 4422 may be such a pulse power source.
 発生させられるパルス電圧のパルス幅は、望ましくは半値全幅で表現された場合に0.1μ秒以上10μ秒以下である。発生させられるパルス電圧の周波数は、望ましくは0.1kHz以上10kHz以下である。発生させられるパルス電圧のピーク電圧は、望ましくは3kV以上20kV以下であり、さらに望ましくは3kV以上10kV以下である。 The pulse width of the generated pulse voltage is preferably 0.1 μsec or more and 10 μsec or less when expressed by the full width at half maximum. The frequency of the generated pulse voltage is desirably 0.1 kHz or more and 10 kHz or less. The peak voltage of the generated pulse voltage is desirably 3 kV to 20 kV, and more desirably 3 kV to 10 kV.
 液体4042は、初期状態においては、水または水溶液であり、望ましくは水であり、さらに望ましくは純水である。液体4042は、最終的に殺菌水になる。液体4042が初期状態において水である場合は、生成された殺菌水に溶解している活性種が失活した後に生成された殺菌水の後処理を行うことが不要になる。水がわずかな不純物を含んでもよい。例えば、水が水道水であってもよい。 In the initial state, the liquid 4042 is water or an aqueous solution, preferably water, and more preferably pure water. The liquid 4042 eventually becomes sterilized water. When the liquid 4042 is water in the initial state, it is not necessary to perform a post-treatment of the generated sterilized water after the active species dissolved in the generated sterilized water are deactivated. Water may contain slight impurities. For example, the water may be tap water.
 6.3 殺菌水を生成する装置における気泡の状態
 図10から13までの各々の模式図は、第4実施形態の殺菌水を生成する装置における気泡の状態を図示する。
6.3 State of Bubbles in Device for Generating Sterilized Water Each schematic diagram of FIGS. 10 to 13 illustrates the state of bubbles in the device for producing sterilized water of the fourth embodiment.
 気泡4082は、図10に示されるように通路4302の下端にある入口4442の直下に到達する。気泡4082が入口4442の直下に到達した時に、水平方向4404についての気泡4082の大きさは、水平方向4404についての通路4302の大きさの1倍より大きく2倍以下となっている。 The bubble 4082 reaches just below the inlet 4442 at the lower end of the passage 4302 as shown in FIG. When the bubble 4082 reaches just below the inlet 4442, the size of the bubble 4082 in the horizontal direction 4404 is greater than one time and less than twice the size of the passage 4302 in the horizontal direction 4404.
 入口4442の直下に到達した気泡4082は、さらに浮上し、入口4442を経由して通路4302に入る。気泡4082が通路4302に入った時に、気泡4082は水平方向4404に押しつぶされ、水平方向4404についての気泡4082の大きさは、水平方向4404についての通路4302の大きさと同じになる。 The bubble 4082 that has reached just below the inlet 4442 further floats and enters the passage 4302 via the inlet 4442. When the bubble 4082 enters the passage 4302, the bubble 4082 is crushed in the horizontal direction 4404, and the size of the bubble 4082 in the horizontal direction 4404 is the same as the size of the passage 4302 in the horizontal direction 4404.
 通路4302に入った気泡4082は、さらに浮上し、図11に示されるように、間隙4222に到達し電極4202の先端4382および電極4204の主面4362に同時に接触する。 The bubble 4082 entering the passage 4302 further floats, reaches the gap 4222, and simultaneously contacts the tip 4382 of the electrode 4202 and the main surface 4362 of the electrode 4204, as shown in FIG.
 気泡4082が電極4202の先端4382および電極4204の主面4362に同時に接触している状態において電極4202および4204の間にパルス電圧が印加された場合は、図12に示されるように、電極4202の先端4382と電極4204の主面4362との間にストリーマ放電4462が発生する。ストリーマ放電4462は、気泡4082の中に広がり、液体4042とガス4062との界面4242に達する。ストリーマ放電4462は、気泡4082の中にプラズマを発生させる。発生させられたプラズマは、気泡4082の中に活性種を発生させる。ストリーマ放電4462が界面4242に達するため、発生させられたプラズマおよび活性種はほとんど失活することなく液体4042に直接的に接触し、液体4042の中に活性種を発生させる。したがって、殺菌水を生成する装置4000においては、放電により消費された電力がプラズマおよび活性種の失活により無駄になることが抑制され、電力効率が向上する。 When a pulse voltage is applied between the electrodes 4202 and 4204 in a state where the bubble 4082 is simultaneously in contact with the tip 4382 of the electrode 4202 and the main surface 4362 of the electrode 4204, as shown in FIG. A streamer discharge 4462 is generated between the tip 4382 and the main surface 4362 of the electrode 4204. The streamer discharge 4462 extends into the bubble 4082 and reaches the interface 4242 between the liquid 4042 and the gas 4062. Streamer discharge 4462 generates plasma in bubble 4082. The generated plasma generates active species in the bubble 4082. Since the streamer discharge 4462 reaches the interface 4242, the generated plasma and active species come into direct contact with the liquid 4042 with almost no deactivation and generate active species in the liquid 4042. Therefore, in the device 4000 that generates sterilizing water, it is possible to suppress the power consumed by the discharge from being wasted due to the deactivation of the plasma and the active species, thereby improving the power efficiency.
 気泡4082の中でストリーマ放電4462が発生した場合は、図13に示されるように、ストリーマ放電4462により生成される衝撃波により気泡4082が細かく破砕され、気泡4082が多数の気泡4482になる。 When the streamer discharge 4462 is generated in the bubble 4082, as shown in FIG. 13, the bubble 4082 is finely crushed by the shock wave generated by the streamer discharge 4462, and the bubble 4082 becomes a large number of bubbles 4482.
 6.4 ガスが窒素ガスを含む場合の殺菌水の生成
 ガス4062が窒素ガスを含む場合は、パルス電源4422が、液体4042のpHが4.0以下になるようにパルス電圧を発生する先の動作を行い、液体4042が殺菌水になるようにパルス電圧を発生する後の動作を行う。
6.4 Generation of sterilizing water when the gas contains nitrogen gas When the gas 4062 contains nitrogen gas, the pulse power source 4422 generates a pulse voltage so that the pH of the liquid 4042 is 4.0 or less. The operation is performed, and the operation after generating the pulse voltage so that the liquid 4042 becomes sterilizing water is performed.
 先の動作においては、ストリーマ放電4462を発生させることにより生成される少なくとも1種類の化学種が液体4042に溶解する。これにより、硝酸が生成され、生成された硝酸により液体4042のpHが4.0以下になる。当該少なくとも1種類の化学種の各々は、窒素原子を含む化学種である。当該少なくとも1種類の化学種は、典型的にはNOラジカル、NO等の活性種を含む。当該少なくとも1種類の化学種がNOラジカルおよびNO以外の化学種を含むことも許される。当該少なくとも1種類の化学種がNOラジカルまたはNOを含まないことも許される。 In the previous operation, at least one chemical species generated by generating streamer discharge 4462 is dissolved in liquid 4042. As a result, nitric acid is generated, and the pH of the liquid 4042 becomes 4.0 or less due to the generated nitric acid. Each of the at least one chemical species is a chemical species containing a nitrogen atom. The at least one chemical species typically includes active species such as NO radicals and NO 2 . The at least one chemical species is also allowed to contain a chemical species other than NO radicals and NO 2. The at least one chemical species is also allowed without the NO radical or NO 2.
 後の動作は、液体4042のpHが4.0以下である状態において行われる。後の動作においては、ストリーマ放電4462を発生させることにより生成される少なくとも1種類の化学種が液体4042に溶解する。当該少なくとも1種類の化学種は、典型的には活性種を含む。これにより、液体4042は、殺菌水になる。殺菌水は、少なくとも1種類の活性種を含む。当該少なくとも1種類の活性種は、典型的にはHO およびONOOを含む。当該少なくとも1種類の活性種がHO およびONOO以外の活性種を含むことも許される。当該少なくとも1種類の活性種がHO またはONOOを含まないことも許される。液体4042を殺菌水にすることに寄与するHO 、ONOO等の活性種は、液体4042のpHが4.0以下である状態において多く発生する。このため、液体4042のpHが4.0以下である状態において後の動作を行うことは、殺菌水に含まれる活性種を多くすることにより殺菌水の殺菌力を高くすることに寄与し、殺菌水に含まれる活性種が失活するまでに要する時間を長くすることにより殺菌力の持続時間を長くすることに寄与する。また、液体4042のpHが4.0以下である状態において後の動作を行うことは、電力効率を向上することに寄与する。 The subsequent operation is performed in a state where the pH of the liquid 4042 is 4.0 or less. In later operations, at least one chemical species generated by generating streamer discharge 4462 is dissolved in liquid 4042. The at least one chemical species typically includes an active species. Thereby, the liquid 4042 becomes sterilizing water. The sterilizing water contains at least one active species. The at least one active species typically includes HO 2 * and ONOO . The at least one active species HO 2 * and ONOO - is also allowed to contain other active species. It is also permissible that the at least one active species does not contain HO 2 * or ONOO . Active species such as HO 2 * and ONOO that contribute to making the liquid 4042 sterilizing water are generated in a state where the pH of the liquid 4042 is 4.0 or less. For this reason, performing the subsequent operation in a state where the pH of the liquid 4042 is 4.0 or less contributes to increasing the sterilizing power of the sterilizing water by increasing the number of active species contained in the sterilizing water. It contributes to extending the duration of the bactericidal power by increasing the time required for the active species contained in the water to be deactivated. Further, performing the subsequent operation in a state where the pH of the liquid 4042 is 4.0 or less contributes to improving power efficiency.
 望ましくは、液体4042のpHが2.5以上4.0以下になるように先の動作が行われ、液体4042のpHが2.5以上4.0以下である状態において後の動作が行われる。液体4042のpHが2.5以上4.0以下である場合は、殺菌水に接触する構成物の腐食が抑制され、殺菌水に接触する被処理物の腐食が抑制される。ただし、液体4042のpHが2.5未満である場合、例えば液体4042のpHが2.0程度である場合においても、条件によってはこの効果が得られる。 Desirably, the previous operation is performed so that the pH of the liquid 4042 is 2.5 or more and 4.0 or less, and the subsequent operation is performed in a state where the pH of the liquid 4042 is 2.5 or more and 4.0 or less. . When the pH of the liquid 4042 is 2.5 or more and 4.0 or less, the corrosion of the component that contacts the sterilizing water is suppressed, and the corrosion of the object to be processed that contacts the sterilizing water is suppressed. However, even when the pH of the liquid 4042 is less than 2.5, for example, when the pH of the liquid 4042 is about 2.0, this effect can be obtained depending on conditions.
 先の動作は、後の動作に先立って行われる。先の動作により、液体4042のpHを4.0以下にするためにpH調整剤を液体4042に添加する必要がなくなる。ただし、先の動作を行うことに代えてpH調整剤を液体4042に添加することも許される。 The previous operation is performed prior to the subsequent operation. The previous operation eliminates the need to add a pH adjuster to the liquid 4042 in order to make the pH of the liquid 4042 4.0 or lower. However, it is allowed to add a pH adjusting agent to the liquid 4042 instead of performing the previous operation.
 6.5 ガスが酸素ガスからなる場合の殺菌水の生成
 ガス4062が酸素ガスからなる場合は、パルス電源4422が、液体4042が殺菌水になるようにパルス電圧を発生する動作を行う。
6.5 Generation of sterilizing water when gas is made of oxygen gas When gas 4062 is made of oxygen gas, the pulse power source 4422 performs an operation of generating a pulse voltage so that the liquid 4042 becomes sterilized water.
 動作においては、ストリーマ放電4462を発生させることにより生成される少なくとも1種類の化学種が液体4042に溶解する。これにより、液体4042は、殺菌水になる。生成される殺菌水は、少なくとも1種類の活性種を含む。少なくとも1種類の活性種は、典型的にはO、HO 、O -*、1重項酸素、OHおよびHを含む。少なくとも1種類の活性種がO、HO 、O -*、1重項酸素、OHおよびH以外の活性種を含むことも許される。少なくとも1種類の活性種がO、HO 、O -*、1重項酸素、OHまたはHを含まないことも許される。O、HO 等の活性種は、長寿命を有する。このため、O、HO 等の活性種を含む殺菌水は、被処理物の殺菌に利用できる殺菌力を有する。 In operation, at least one chemical species generated by generating streamer discharge 4462 is dissolved in liquid 4042. Thereby, the liquid 4042 becomes sterilizing water. The produced sterilizing water contains at least one active species. The at least one active species typically includes O * , HO 2 * , O 2 — * , singlet oxygen, OH *, and H 2 O 2 . At least one active species is allowed to include active species other than O * , HO 2 * , O 2- * , singlet oxygen, OH * and H 2 O 2 . It is also permissible that at least one active species does not contain O * , HO 2 * , O 2- * , singlet oxygen, OH * or H 2 O 2 . Active species such as O * and HO 2 * have a long lifetime. For this reason, the sterilizing water containing active species such as O * and HO 2 * has a sterilizing power that can be used for sterilizing the object to be treated.
 気泡4082の中に発生したオゾンは、液体4042に溶解せず、排出機構4106により排出される。このため、生成される殺菌水のオゾン濃度は0.02ppm未満になる。これにより、殺菌水に含まれるオゾンが使用者の健康に影響することを防止できる。 Ozone generated in the bubble 4082 is not dissolved in the liquid 4042 and is discharged by the discharge mechanism 4106. For this reason, the ozone concentration of the produced | generated sterilization water will be less than 0.02 ppm. Thereby, it is possible to prevent the ozone contained in the sterilized water from affecting the health of the user.
 酸素は、空気の酸素比率を調整することにより調達できる。また、液体4042は、水道水であることも許容される。これらのことは、空気および水道水以外の材料を不要にすることに寄与する。 Oxygen can be procured by adjusting the oxygen ratio of air. The liquid 4042 is also allowed to be tap water. These contribute to eliminating the need for materials other than air and tap water.
 7 第5実施形態
 第5実施形態は、第4実施形態の電極構造4108を置き換える電極構造に関する。
7 Fifth Embodiment The fifth embodiment relates to an electrode structure that replaces the electrode structure 4108 of the fourth embodiment.
 図14は、第5実施形態の電極構造の付近を図示する拡大断面図である。 FIG. 14 is an enlarged cross-sectional view illustrating the vicinity of the electrode structure of the fifth embodiment.
 図14に図示される電極構造5000は、電極5022、電極5024、電極5026、電極5028、電極5030、電極5032、樹脂板5034、樹脂板5036および樹脂板5038を備える。 The electrode structure 5000 illustrated in FIG. 14 includes an electrode 5022, an electrode 5024, an electrode 5026, an electrode 5028, an electrode 5030, an electrode 5032, a resin plate 5034, a resin plate 5036, and a resin plate 5038.
 電極5022、5024および5026は、空間4142の内部にあり、液体4042に浸される。電極5028、5030および5032は、空間4142の内部にあり、液体4042に浸され、それぞれ間隙5042、5044および5046を挟んで電極5022、5024および5026と対向する。 The electrodes 5022, 5024 and 5026 are inside the space 4142 and are immersed in the liquid 4042. Electrodes 5028, 5030, and 5032 are inside the space 4142, are immersed in the liquid 4042, and face the electrodes 5022, 5024, and 5026 with the gaps 5042, 5044, and 5046 interposed therebetween, respectively.
 電極構造5000は、エアーストーン4164の鉛直方向上方に配置される。これにより、気泡4082が浮上した場合に、気泡4082が電極構造5000に到達し、気泡4082が間隙5042、5044および5046を順次に通過する。気泡4082は、間隙5042を通過する時に電極5022および5028に同時に接触し、間隙5044を通過する時に電極5024および5030に同時に接触し、間隙5046を通過する時に電極5026および5032に同時に接触する。気泡4082が電極5022および5028に接触している間に電極5022および5028の間にパルス電圧が印加された場合は、電極5022および5028の間にストリーマ放電が発生し、気泡4082の中にストリーマ放電が発生する。気泡4082が電極5024および5030に接触している間に電極5024および5030の間にパルス電圧が印加された場合は、電極5024および5030の間にストリーマ放電が発生し、気泡4082の中にストリーマ放電が発生する。気泡4082が電極5026および5032に接触している間に電極5026および5032の間にパルス電圧が印加された場合は、電極5026および5032の間にストリーマ放電が発生し、気泡4082の中にストリーマ放電が発生する。発生させられたストリーマ放電は、気泡4082の中にプラズマを発生させる。気泡4082は、液体4042とガス4062との界面4242に囲まれるため、プラズマおよびそれに含まれる活性種はほとんど失活することなく液体4042に接触する。このことは、プラズマの発生に使用されたエネルギーを無駄にすることなく高い殺菌力を有する殺菌水を生成することに寄与する。 The electrode structure 5000 is disposed above the air stone 4164 in the vertical direction. Thus, when the bubble 4082 rises, the bubble 4082 reaches the electrode structure 5000, and the bubble 4082 sequentially passes through the gaps 5042, 5044, and 5046. Bubble 4082 contacts electrodes 5022 and 5028 simultaneously as it passes through gap 5042, simultaneously contacts electrodes 5024 and 5030 as it passes through gap 5044, and simultaneously contacts electrodes 5026 and 5032 as it passes through gap 5046. When a pulse voltage is applied between the electrodes 5022 and 5028 while the bubble 4082 is in contact with the electrodes 5022 and 5028, a streamer discharge is generated between the electrodes 5022 and 5028, and the streamer discharge is generated in the bubble 4082. Will occur. When a pulse voltage is applied between the electrodes 5024 and 5030 while the bubble 4082 is in contact with the electrodes 5024 and 5030, a streamer discharge is generated between the electrodes 5024 and 5030, and the streamer discharge is generated in the bubble 4082. Will occur. When a pulse voltage is applied between the electrodes 5026 and 5032 while the bubble 4082 is in contact with the electrodes 5026 and 5032, a streamer discharge is generated between the electrodes 5026 and 5032, and the streamer discharge is generated in the bubble 4082. Will occur. The generated streamer discharge generates plasma in the bubble 4082. Since the bubble 4082 is surrounded by the interface 4242 between the liquid 4042 and the gas 4062, the plasma and the active species contained therein are in contact with the liquid 4042 with almost no inactivation. This contributes to producing sterilizing water having high sterilizing power without wasting energy used for generating plasma.
 電極構造5000に備えられる対向物5062は、電極5022、電極5024、電極5026および樹脂板5034を備える。電極構造5000に備えられる対向物5064は、電極5028、電極5030、電極5032および樹脂板5036を備える。対向物5064の対向面5084は、通路5102を挟んで対向物5062の対向面5082と対向する。これにより、電極構造5000は、対向面5082および5084を含み通路5102を定義する面5122を有するようになる。 The opposing object 5062 provided in the electrode structure 5000 includes an electrode 5022, an electrode 5024, an electrode 5026, and a resin plate 5034. A counter object 5064 provided in the electrode structure 5000 includes an electrode 5028, an electrode 5030, an electrode 5032, and a resin plate 5036. The facing surface 5084 of the facing object 5064 faces the facing surface 5082 of the facing object 5062 with the passage 5102 interposed therebetween. This causes electrode structure 5000 to have a surface 5122 that includes opposing surfaces 5082 and 5084 and that defines passageway 5102.
 電極5022、5024および5026の各々は、針状であり、樹脂板5034を厚さ方向に貫通し、対向面5082から対向面5084に向かって突出する。電極5028、5030および5032の各々は、平板状またはシート状であり、樹脂板5036の主面5142に貼り付けられる。電極5028、5030および5032は、それぞれ対向面5084に含まれる主面5162、5164および5166を有する。これにより、通路5102が間隙5042、5044および5046を含むようになり、気泡4082が通路5102を通過する途中で気泡4082が間隙5042、5044および5046を順次に通過する。気泡4082は、間隙5042を通過する時に電極5022の先端5182および電極5028の主面5162に同時に接触し、間隙5044を通過する時に電極5024の先端5184および電極5030の主面5164に同時に接触し、間隙5046を通過する時に電極5026の先端5186および電極5032の主面5166に同時に接触する。 Each of the electrodes 5022, 5024 and 5026 has a needle shape, penetrates the resin plate 5034 in the thickness direction, and protrudes from the facing surface 5082 toward the facing surface 5084. Each of electrodes 5028, 5030, and 5032 has a flat plate shape or a sheet shape, and is attached to main surface 5142 of resin plate 5036. Electrodes 5028, 5030, and 5032 have main surfaces 5162, 5164, and 5166 included in opposing surface 5084, respectively. Accordingly, the passage 5102 includes the gaps 5042, 5044, and 5046, and the bubble 4082 sequentially passes through the gaps 5042, 5044, and 5046 while the bubble 4082 passes through the passage 5102. The bubble 4082 simultaneously contacts the tip 5182 of the electrode 5022 and the major surface 5162 of the electrode 5028 when passing through the gap 5042, and simultaneously contacts the tip 5184 of the electrode 5024 and the major surface 5164 of the electrode 5030 when passing through the gap 5044, When passing through the gap 5046, the tip 5186 of the electrode 5026 and the main surface 5166 of the electrode 5032 are simultaneously contacted.
 電極構造5000は、気泡4082が通路5102を通過するように配置される。気泡4082が通路5102を通過する場合には、通路5102が気泡4082を鉛直方向5202に案内し、面5122が鉛直方向5202と垂直をなす水平方向5204に気泡4082が拡がることを規制する。 The electrode structure 5000 is arranged such that the bubble 4082 passes through the passage 5102. When the bubble 4082 passes through the passage 5102, the passage 5102 guides the bubble 4082 in the vertical direction 5202 and restricts the expansion of the bubble 4082 in the horizontal direction 5204 in which the surface 5122 is perpendicular to the vertical direction 5202.
 電極5022、5024および5026は、気泡4082が案内される案内方向に配列される。電極5028、5030および5032は、気泡4082が案内される案内方向に配列される。間隙5042、5044および5046は、気泡4082が案内される案内方向に配列される。これにより、気泡4082の中にストリーマ放電が発生させられている時間が長くなる。 The electrodes 5022, 5024 and 5026 are arranged in the guide direction in which the bubble 4082 is guided. The electrodes 5028, 5030, and 5032 are arranged in the guide direction in which the bubble 4082 is guided. The gaps 5042, 5044 and 5046 are arranged in the guide direction in which the bubble 4082 is guided. This increases the time during which streamer discharge is generated in the bubble 4082.
 電極構造5000は、気泡4082が通路5102に入る直前における水平方向5204についての気泡4082の大きさが、水平方向5204についての通路5102の大きさの1倍より大きく2倍以下であるように構成される。水平方向5204についての気泡4082の大きさが水平方向5204についての通路5102の大きさの1倍より大きくなることにより、気泡4082が通路5102に入る場合に気泡4082が水平方向5204に押しつぶされ、気泡4082と面5122との間の摩擦が増加し、気泡4082が通路5102を進む速度が低下し、気泡4082が間隙5042、5044および5046を通過するのに要する時間が長くなる。水平方向5204についての気泡4082の大きさが水平方向5204についての通路5102の大きさの2倍以下となることにより、気泡4082が通路5102に入りにくくなることが抑制される。これらのことは、プラズマの発生量を増やし高い殺菌力を有する殺菌水を生成することに寄与する。 The electrode structure 5000 is configured such that the size of the bubble 4082 in the horizontal direction 5204 immediately before the bubble 4082 enters the passage 5102 is greater than one time and less than twice the size of the passage 5102 in the horizontal direction 5204. The Since the size of the bubble 4082 in the horizontal direction 5204 is larger than one time the size of the passage 5102 in the horizontal direction 5204, the bubble 4082 is crushed in the horizontal direction 5204 when the bubble 4082 enters the passage 5102, and the bubble The friction between 4082 and surface 5122 increases, the speed at which bubble 4082 travels through passage 5102 decreases, and the time it takes for bubble 4082 to pass through gaps 5042, 5044 and 5046 increases. When the size of the bubble 4082 in the horizontal direction 5204 is less than or equal to twice the size of the passage 5102 in the horizontal direction 5204, the bubble 4082 is prevented from entering the passage 5102. These contribute to increasing the amount of plasma generated and producing sterilizing water having high sterilizing power.
 水平方向5204についての通路5102の大きさ、すなわち、対向面5082から対向面5084までの距離は、望ましくは0.5mm以上10mm以下である。 The size of the passage 5102 in the horizontal direction 5204, that is, the distance from the facing surface 5082 to the facing surface 5084 is desirably 0.5 mm or more and 10 mm or less.
 電極5022および5028は、電極5028が電極5022から水平方向5204に離され気泡4082が間隙5042に入る場合に気泡4082が水平方向5204と異なる鉛直方向5202に進むように配置される。これにより、気泡4082が間隙5042に入ることが電極5022および5028に妨げられなくなる。電極5024および5030は、電極5030が電極5024から水平方向5204に離され気泡4082が間隙5044に入る場合に気泡4082が水平方向5204と異なる鉛直方向5202に進むように配置される。これにより、気泡4082が間隙5044に入ることが電極5024および5030に妨げられなくなる。電極5026および5032は、電極5032が電極5026から水平方向5204に離され気泡4082が間隙5046に入る場合に気泡4082が水平方向5204と異なる鉛直方向5202に進むように配置される。これにより、気泡4082が間隙5046に入ることが電極5026および5032に妨げられなくなる。これらのことは、プラズマの発生量を増やし高い殺菌力を有する殺菌水を生成することに寄与する。 The electrodes 5022 and 5028 are arranged such that when the electrode 5028 is separated from the electrode 5022 in the horizontal direction 5204 and the bubble 4082 enters the gap 5042, the bubble 4082 advances in the vertical direction 5202 different from the horizontal direction 5204. Thus, the electrodes 5022 and 5028 are not prevented from entering the gap 5042. Electrodes 5024 and 5030 are positioned such that when electrode 5030 is separated from electrode 5024 in horizontal direction 5204 and bubble 4082 enters gap 5044, bubble 4082 advances in a vertical direction 5202 different from horizontal direction 5204. This prevents the electrodes 5024 and 5030 from preventing the bubble 4082 from entering the gap 5044. Electrodes 5026 and 5032 are arranged such that when electrode 5032 is separated from electrode 5026 in horizontal direction 5204 and bubble 4082 enters gap 5046, bubble 4082 advances in a vertical direction 5202 different from horizontal direction 5204. Thus, the electrodes 5026 and 5032 are not prevented from entering the gap 5046 by the bubble 4082. These contribute to increasing the amount of plasma generated and producing sterilizing water having high sterilizing power.
 電極5022、5024および5026からなる3個の電極が、2個以下または4個以上の電極に置き換えられてもよい。電極5028、5030および5032からなる3個の電極が、2個以下または4個以上の電極に置き換えられてもよい。2個以上の電極が共通する1個の電極に対向してもよい。 The three electrodes composed of the electrodes 5022, 5024 and 5026 may be replaced with two or less electrodes or four or more electrodes. Three electrodes composed of the electrodes 5028, 5030 and 5032 may be replaced with two or less electrodes or four or more electrodes. Two or more electrodes may be opposed to one common electrode.
 樹脂板5038は、通路5102の上端を閉塞するように配置される。 The resin plate 5038 is disposed so as to close the upper end of the passage 5102.
 電極5022、5024および5026は、銅からなる。電極5028、5030および5032は、アルミニウムからなる。 The electrodes 5022, 5024 and 5026 are made of copper. The electrodes 5028, 5030 and 5032 are made of aluminum.
 樹脂板5034、5036および5038は、樹脂からなる。 Resin plates 5034, 5036 and 5038 are made of resin.
 第4実施形態の殺菌水を生成する装置4000に備えられる電極構造4108に対して行われる変形と同様の変形が、第5実施形態の電極構造5000に対して行われてもよい。 The same deformation as that performed on the electrode structure 4108 provided in the device 4000 for generating sterilizing water according to the fourth embodiment may be performed on the electrode structure 5000 according to the fifth embodiment.
 8 第6実施形態
 第6実施形態は、被処理物を殺菌する方法に関する。
8 Sixth Embodiment The sixth embodiment relates to a method for sterilizing an object to be processed.
 図15は、第6実施形態の被処理物を殺菌する方法を示すフローチャートである。 FIG. 15 is a flowchart showing a method of sterilizing an object to be processed according to the sixth embodiment.
 図15に示されるように、ステップS601においては、殺菌水が生成される。殺菌水は、第1実施形態の殺菌水を生成する装置1000により生成されてもよいし、第1実施形態の殺菌水を生成する装置1000に備えられる電極群1066を第2実施形態の電極群2066に置き換えることにより得られる殺菌水を生成する装置により生成されてもよいし、第3実施形態の殺菌水を生成する装置3000により生成されてもよいし、第4実施形態の殺菌水を生成する装置4000により生成されてもよいし、第4実施形態の殺菌水を生成する装置4000に備えられる電極構造4108を第5実施形態の電極構造5000に置き換えることにより得られる殺菌水を生成する装置により生成されてもよい。 As shown in FIG. 15, sterilizing water is generated in step S601. The sterilizing water may be generated by the apparatus 1000 for generating sterilizing water according to the first embodiment, and the electrode group 1066 provided in the apparatus 1000 for generating sterilizing water according to the first embodiment is replaced with the electrode group according to the second embodiment. It may be generated by an apparatus for generating sterilized water obtained by replacing 2066, may be generated by the apparatus 3000 for generating sterilized water of the third embodiment, or generates sterilized water of the fourth embodiment. The device for generating sterilized water may be generated by replacing the electrode structure 4108 provided in the device 4000 for generating sterilized water of the fourth embodiment with the electrode structure 5000 of the fifth embodiment. May be generated.
 ステップS601に続くステップS602においては、殺菌水が被処理物に振り掛けられる。これにより、被処理物が殺菌水に接触させられ、殺菌水に含まれる活性種が被処理物に作用して被処理物が殺菌される。殺菌水を被処理物に振り掛けることにより被処理物を殺菌水に接触させることに代えて、被処理物を殺菌水に浸漬することにより被処理物を殺菌水に接触させることが行われてもよい。 In step S602 following step S601, sterilizing water is sprinkled on the workpiece. Thereby, a to-be-processed object is made to contact sterilization water, the active species contained in sterilization water act on a to-be-processed object, and a to-be-processed object is disinfected. Instead of bringing the treatment object into contact with the sterilization water by sprinkling the sterilization water on the treatment object, the treatment object is brought into contact with the sterilization water by immersing the treatment object in the sterilization water. Also good.
 9 第3の実験
 第4実施形態の殺菌水を生成する装置4000を試作し、試作した装置4000を使用して殺菌水である処理水を生成した。処理水の生成においては、60ミリリットルの純水を空間4142に入れ、2リットル/分の流量を有するガス4062を供給機構4024からリアクター4022に供給した。ガス4062としては、酸素ガス、20体積部の窒素ガスと80体積部の酸素ガスとの混合物、30体積部の窒素ガスと70体積部の酸素ガスとの混合物、50体積部の窒素ガスと50体積部の酸素ガスとの混合物、80体積部の窒素ガスと20体積部の酸素ガスとの混合物、90体積部の窒素ガスと10体積部の窒素ガスとの混合物および窒素ガスを使用した。これにより、窒素ガスの分圧および酸素ガスの分圧の合計に対する窒素ガスの分圧の比である窒素割合が0%、20%、30%、50%、80%、90%および100%の各々である場合について処理水を生成した。放電を継続した時間は10分間である。放電中に投入された電力は10Wである。間隙の幅は、3mmである。
9 Third Experiment A device 4000 for producing sterilized water according to the fourth embodiment was made as a prototype, and treated water that was sterilized water was produced using the prototyped device 4000. In the generation of treated water, 60 milliliters of pure water was placed in the space 4142 and gas 4062 having a flow rate of 2 liters / minute was supplied from the supply mechanism 4024 to the reactor 4022. The gas 4062 includes oxygen gas, a mixture of 20 parts by volume of nitrogen gas and 80 parts by volume of oxygen gas, a mixture of 30 parts by volume of nitrogen gas and 70 parts by volume of oxygen gas, 50 parts by volume of nitrogen gas and 50 parts by volume. A mixture of volume parts of oxygen gas, a mixture of 80 parts by volume of nitrogen gas and 20 parts by volume of oxygen gas, a mixture of 90 parts by volume of nitrogen gas and 10 parts by volume of nitrogen gas and nitrogen gas were used. Thus, the ratio of nitrogen gas partial pressure to the total of nitrogen gas partial pressure and oxygen gas partial pressure is 0%, 20%, 30%, 50%, 80%, 90% and 100%. Treated water was generated for each case. The duration of the discharge is 10 minutes. The electric power input during discharge is 10W. The width of the gap is 3 mm.
 続いて、生成した処理水を大腸菌と混合することにより殺菌処理を行い、混合液を得た。 Subsequently, the produced treated water was sterilized by mixing with E. coli to obtain a mixed solution.
 続いて、得た混合液を寒天培地に塗布した。混合液が得られてから混合液が塗布されるまでの時間は、20分とした。 Subsequently, the obtained mixed solution was applied to an agar medium. The time from when the mixed solution was obtained until the mixed solution was applied was 20 minutes.
 続いて、寒天培地において一晩かけて培養を行い、菌数評価用の試料を得た。 Subsequently, the cells were cultured overnight on an agar medium to obtain a sample for bacterial count evaluation.
 続いて、菌数評価用の試料を使用して殺菌処理後の菌数を測定し、殺菌処理前の菌数に対する殺菌処理後の菌数の比である菌生存率を求めた。菌生存率、殺菌処理後の菌数および殺菌処理前の菌数の間には、(式2)に示される関係がある。 Subsequently, the number of bacteria after sterilization treatment was measured using a sample for evaluation of the number of bacteria, and the cell viability, which was the ratio of the number of bacteria after sterilization treatment to the number of bacteria before sterilization treatment, was determined. There is a relationship shown in (Formula 2) among the survival rate of bacteria, the number of bacteria after sterilization treatment, and the number of bacteria before sterilization treatment.
 菌生存率=殺菌処理後の菌数/殺菌処理前の菌数・・・(式2) Bacterium survival rate = number of bacteria after sterilization treatment / number of bacteria before sterilization treatment (Formula 2)
 例えば殺菌処理前の菌数が1CFU/mlであり殺菌処理後の菌数が10-7CFU/mlである場合は、菌生存率は10-7となる。菌生存率は、処理水の殺菌力を示す指標となる。菌生存率が小さくなるほど処理水の殺菌力は高くなる。 For example, when the number of bacteria before sterilization is 1 CFU / ml and the number of bacteria after sterilization is 10 −7 CFU / ml, the survival rate of bacteria is 10 −7 . The bacteria survival rate is an index indicating the sterilizing power of treated water. The sterilizing power of treated water increases as the bacteria survival rate decreases.
 図16は、窒素割合による菌生存率の変化を図示するグラフである。図16のグラフにおいては、窒素割合が横軸にとられ、菌生存率が縦軸にとられている。 FIG. 16 is a graph illustrating changes in the survival rate of bacteria due to the nitrogen ratio. In the graph of FIG. 16, the nitrogen ratio is taken on the horizontal axis, and the bacterial survival rate is taken on the vertical axis.
 図16に図示されるように、窒素割合が90%である場合に菌生存率が最も小さくなる。窒素割合が20%以上90%以下である場合は、窒素割合が大きくなるほど菌生存率が小さくなるが、窒素割合が概ね85%以上である場合に菌生存率が特に小さくなる。窒素割合が90%以上100%以下である場合は、窒素割合が小さくなるほど菌生存率が小さくなるが、窒素割合が概ね95%以下である場合に菌生存率が特に小さくなる。 As shown in FIG. 16, when the nitrogen ratio is 90%, the bacteria survival rate is the smallest. When the nitrogen ratio is 20% or more and 90% or less, the bacteria survival rate decreases as the nitrogen ratio increases, but when the nitrogen ratio is approximately 85% or more, the bacteria survival rate becomes particularly small. When the nitrogen ratio is 90% or more and 100% or less, the bacteria survival rate decreases as the nitrogen ratio decreases, but when the nitrogen ratio is approximately 95% or less, the bacteria survival rate is particularly small.
 図16に図示されるように、窒素割合が0%である場合も、菌生存率が小さくなる。 As shown in FIG. 16, even when the nitrogen ratio is 0%, the survival rate of the bacteria is reduced.
 図17は、窒素割合による処理水中の硝酸イオンの濃度の変化を示すグラフである。図17のグラフにおいては、窒素割合が横軸にとられ、処理水中の硝酸イオンの濃度が縦軸にとられている。図18は、窒素割合による処理水のpHの変化を示すグラフである。図18のグラフにおいては、窒素割合が横軸にとられ、処理水のpHが縦軸にとられている。 FIG. 17 is a graph showing the change in the concentration of nitrate ions in the treated water according to the nitrogen ratio. In the graph of FIG. 17, the nitrogen ratio is taken on the horizontal axis, and the concentration of nitrate ions in the treated water is taken on the vertical axis. FIG. 18 is a graph showing changes in pH of treated water according to the nitrogen ratio. In the graph of FIG. 18, the nitrogen ratio is taken on the horizontal axis, and the pH of the treated water is taken on the vertical axis.
 図17および18からは、ガス4062が窒素ガスを含む場合は処理水が数10ppmの硝酸イオンを含むようになり処理水のpHが約3.8になることを把握できる。 17 and 18, it can be understood that when the gas 4062 contains nitrogen gas, the treated water contains nitrate ions of several tens of ppm, and the pH of the treated water becomes about 3.8.
 この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。 Although the present invention has been described in detail, the above description is illustrative in all aspects, and the present invention is not limited thereto. It is understood that countless variations that are not illustrated can be envisaged without departing from the scope of the present invention.
 1000 殺菌水を生成する装置
 1020 リアクター
 1022 供給機構
 1024 印加機構
 1040 水
 1050 気泡
 1060 容器
 1062 発生機構
 1064 排出機構
 1066 電極群
 1068 支持体
 1100 空間
 1140 電極
 1142 電極
 1160 間隙
 2066 電極群
 2140 電極
 2142 電極
 3000 殺菌水を生成する装置
 3020 リアクター
 3022 供給機構
 3024 印加機構
 3040 水
 3060 容器
 3062 発生機構
 3064 排出機構
 3066 電極群
 3100 空間
 3140 電極
 3142 電極
 3160 間隙
 4000 殺菌水を生成する装置
 4022 リアクター
 4024 供給機構
 4026 印加機構
 4042 液体
 4062 ガス
 4102 容器
 4104 発生機構
 4108 電極構造
 4202 電極
 4204 電極
 4422 パルス電源
 5000 電極構造
 5022 電極
 5024 電極
 5026 電極
 5028 電極
 5030 電極
 5032 電極
1000 Device for generating sterilized water 1020 Reactor 1022 Supply mechanism 1024 Application mechanism 1040 Water 1050 Bubble 1060 Container 1062 Generation mechanism 1064 Discharge mechanism 1066 Electrode group 1068 Support 1100 Space 1140 Electrode 1142 Electrode 1160 Gap 2066 Electrode 2140 Electrode 2142 Electrode 2142 Electrode 2142 Electrode Apparatus 3020 for generating water 3020 Reactor 3022 Supply mechanism 3024 Application mechanism 3040 Water 3060 Container 3062 Generation mechanism 3064 Discharge mechanism 3066 Electrode group 3100 Space 3140 Electrode 3142 Electrode 3160 Gap 4000 Apparatus for generating sterilization water 4022 Reactor 4024 Supply mechanism 4026 Liquid 4062 Gas 4102 Container 4104 Generation mechanism 4108 Electrode structure 4202 Electrode 4 204 electrode 4422 pulse power supply 5000 electrode structure 5022 electrode 5024 electrode 5026 electrode 5028 electrode 5030 electrode 5032 electrode

Claims (36)

  1.  水または水溶液からなる液体が入れられる空間が形成される容器と、
     窒素ガスおよび酸素ガスの少なくとも一方を含むガスを供給する供給機構と、
     前記供給機構から前記ガスが供給され前記液体の中に前記ガスの気泡を発生させる発生機構と、
     第1の少なくとも1個の電極及び第2の少なくとも1個の電極を備え、前記第1の少なくとも1個の電極が前記液体に浸され、前記第2の少なくとも1個の電極が前記液体に浸され少なくとも1個の間隙を挟んで前記第1の少なくとも1個の電極と対向し、前記気泡が前記少なくとも1個の間隙に導入されるように配置される電極群と、
     前記第1の少なくとも1個の電極と前記第2の少なくとも1個の電極との間にパルス電圧を印加する印加機構と、
    を備える殺菌水を生成する装置。
    A container in which a space in which a liquid composed of water or an aqueous solution is placed is formed;
    A supply mechanism for supplying a gas containing at least one of nitrogen gas and oxygen gas;
    A generating mechanism that is supplied with the gas from the supply mechanism and generates bubbles of the gas in the liquid;
    A first at least one electrode and a second at least one electrode, wherein the first at least one electrode is immersed in the liquid, and the second at least one electrode is immersed in the liquid. A group of electrodes arranged to face the first at least one electrode across at least one gap and to introduce the bubble into the at least one gap;
    An application mechanism for applying a pulse voltage between the first at least one electrode and the second at least one electrode;
    A device for generating sterilized water.
  2.  前記電極群は、前記気泡が前記少なくとも1個の間隙を通り前記気泡が前記少なくとも1個の間隙を通る場合に前記気泡が前記第1の少なくとも1個の電極及び前記第2の少なくとも1個の電極に接触するように配置される
    請求項1の殺菌水を生成する装置。
    The electrode group is configured such that when the bubble passes through the at least one gap and the bubble passes through the at least one gap, the bubble passes through the at least one electrode and the second at least one. The apparatus for producing sterilized water according to claim 1, which is disposed so as to contact the electrode.
  3.  前記第2の少なくとも1個の電極は、前記第1の少なくとも1個の電極から水平方向に離される
    請求項1または2の殺菌水を生成する装置。
    The apparatus for producing sterilizing water according to claim 1 or 2, wherein the second at least one electrode is horizontally separated from the first at least one electrode.
  4.  前記第1の少なくとも1個の電極は、尖った先端を有する針状電極を備え、
     前記第2の少なくとも1個の電極は、前記尖った先端が向けられる主面を有する平板状電極を備える
    請求項3の殺菌水を生成する装置。
    The first at least one electrode comprises a needle electrode having a pointed tip;
    The apparatus for generating sterilizing water according to claim 3, wherein the second at least one electrode comprises a flat electrode having a main surface to which the pointed tip is directed.
  5.  前記第1の少なくとも1個の電極は、第1の主面を有する第1の平板状電極を備え、
     前記第2の少なくとも1個の電極は、前記第1の主面と平行をなす第2の主面を有する第2の平板状電極を備える
    請求項3の殺菌水を生成する装置。
    The first at least one electrode comprises a first plate electrode having a first main surface,
    4. The apparatus for generating sterilizing water according to claim 3, wherein the second at least one electrode comprises a second flat electrode having a second main surface parallel to the first main surface.
  6.  前記第2の少なくとも1個の電極は、前記第1の少なくとも1個の電極から鉛直方向に離される
    請求項1または2の殺菌水を生成する装置。
    The apparatus for producing sterilizing water according to claim 1 or 2, wherein the second at least one electrode is vertically separated from the first at least one electrode.
  7.  前記第1の少なくとも1個の電極は、尖った先端を有する針状電極を備え、
     前記第2の少なくとも1個の電極は、前記尖った先端が向けられる主面を有し前記針状電極の鉛直方向上方に配置される平板状電極を備える
    請求項6の殺菌水を生成する装置。
    The first at least one electrode comprises a needle electrode having a pointed tip;
    The device for generating sterilizing water according to claim 6, wherein the second at least one electrode includes a plate-like electrode having a main surface to which the pointed tip is directed and disposed vertically above the needle-like electrode. .
  8.  前記気泡が前記少なくとも1個の間隙を通って浮上するように前記電極群が配置される
    請求項1から7までのいずれかの殺菌水を生成する装置。
    The apparatus for producing sterilizing water according to any one of claims 1 to 7, wherein the electrode group is arranged so that the bubbles float through the at least one gap.
  9.  前記気泡は、前記液体と前記ガスとの界面に囲まれ、
     前記パルス電圧は、前記第1の少なくとも1個の電極と前記第2の少なくとも1個の電極との間に印加された場合に前記界面に接触する放電を前記気泡の中に発生させる
    請求項1から8までのいずれかの殺菌水を生成する装置。
    The bubbles are surrounded by an interface between the liquid and the gas,
    The pulse voltage generates a discharge in the bubble that contacts the interface when applied between the first at least one electrode and the second at least one electrode. To produce any one of sterilized water from 1 to 8.
  10.  前記放電は、ストリーマ放電である
    請求項9の殺菌水を生成する装置。
    The apparatus for generating sterilizing water according to claim 9, wherein the discharge is a streamer discharge.
  11.  前記印加機構は、前記パルス電圧を発生させる誘導エネルギー蓄積型のパルス電源を備える
    請求項1から10までのいずれかの殺菌水を生成する装置。
    The said application | coating mechanism is an apparatus which produces | generates the sterilization water in any one of Claim 1-10 provided with the induction energy storage type pulse power supply which generates the said pulse voltage.
  12.  前記ガスは、窒素ガスを含む
    請求項1から11までのいずれかの殺菌水を生成する装置。
    The apparatus for producing sterilized water according to any one of claims 1 to 11, wherein the gas contains nitrogen gas.
  13.  前記ガスは、酸素ガスをさらに含む
    請求項12の殺菌水を生成する装置。
    The apparatus for generating sterilized water according to claim 12, wherein the gas further comprises oxygen gas.
  14.  前記ガスにおける窒素ガスの分圧および酸素ガスの分圧の合計に対する窒素ガスの分圧の比が0.5以上である
    請求項13の殺菌水を生成する装置。
    The apparatus for producing sterilizing water according to claim 13, wherein the ratio of the partial pressure of nitrogen gas to the total partial pressure of nitrogen gas and oxygen gas in the gas is 0.5 or more.
  15.  前記ガスにおける窒素ガスの分圧および酸素ガスの分圧の合計に対する窒素ガスの分圧の比が0.75以上0.85以下である
    請求項14の殺菌水を生成する装置。
    The apparatus for producing sterilizing water according to claim 14, wherein a ratio of a partial pressure of nitrogen gas to a total partial pressure of nitrogen gas and oxygen gas in the gas is 0.75 or more and 0.85 or less.
  16.  前記ガスが空気である
    請求項15の殺菌水を生成する装置。
    The apparatus for producing sterilizing water according to claim 15, wherein the gas is air.
  17.  前記印加機構は、ストリーマ放電を発生させることにより生成される少なくとも1種類の化学種が前記液体に溶解することにより前記液体が前記殺菌水になるように前記パルス電圧を発生する動作を前記液体のpHが4.0以下である状態において行うパルス電源を備える
    請求項12から16までのいずれかの殺菌水を生成する装置。
    The application mechanism performs an operation of generating the pulse voltage so that the liquid becomes the sterilizing water by dissolving at least one chemical species generated by generating a streamer discharge in the liquid. The apparatus which produces | generates the sterilization water in any one of Claim 12-16 provided with the pulse power supply performed in the state whose pH is 4.0 or less.
  18.  前記殺菌水は、HO およびONOOからなる群より選択される少なくとも1種類の活性種を含む
    請求項17の殺菌水を生成する装置。
    18. The apparatus for producing sterilized water according to claim 17, wherein the sterilized water contains at least one active species selected from the group consisting of HO 2 * and ONOO .
  19.  前記動作は、第1の動作であり、
     前記少なくとも1種類の化学種は、第1の少なくとも1種類の化学種であり、
     前記パルス電源は、前記ストリーマ放電を発生させることにより生成される第2の少なくとも1種類の化学種が前記液体に溶解することにより前記液体のpHが4.0以下になるように前記パルス電圧を発生する第2の動作を前記第1の動作に先立って行う
    請求項17または18の殺菌水を生成する装置。
    The operation is a first operation,
    The at least one chemical species is a first at least one chemical species;
    The pulse power supply supplies the pulse voltage so that the pH of the liquid becomes 4.0 or less when the second at least one chemical species generated by generating the streamer discharge is dissolved in the liquid. The apparatus for producing sterilizing water according to claim 17 or 18, wherein the second operation to be generated is performed prior to the first operation.
  20.  前記第2の少なくとも1種類の化学種は、NOラジカルおよびNOからなる群より選択される少なくとも1種類の化学種を含み、
     前記第2の動作において、前記第2の少なくとも1種類の化学種が前記液体に溶解することにより生成される硝酸により前記液体のpHが4.0以下になる
    請求項19の殺菌水を生成する装置。
    The second at least one chemical species includes at least one chemical species selected from the group consisting of NO radicals and NO 2 ;
    20. The sterilizing water according to claim 19, wherein in the second operation, the pH of the liquid becomes 4.0 or less by nitric acid generated by dissolving the second at least one chemical species in the liquid. apparatus.
  21.  前記ガスは、酸素ガスからなる
    請求項1から11までのいずれかの殺菌水を生成する装置。
    The apparatus for producing sterilizing water according to any one of claims 1 to 11, wherein the gas comprises oxygen gas.
  22.  前記印加機構は、ストリーマ放電を発生させることにより生成される少なくとも1種類の化学種が前記液体に溶解することにより前記液体が前記殺菌水になるように前記パルス電圧を発生する動作を行うパルス電源を備える
    請求項21の殺菌水を生成する装置。
    The application mechanism is a pulse power source that performs an operation of generating the pulse voltage so that the liquid becomes the sterilizing water when at least one chemical species generated by generating a streamer discharge is dissolved in the liquid. An apparatus for producing sterilized water according to claim 21.
  23.  前記殺菌水は、O、HO 、O -*、1重項酸素、OHおよびHからなる群より選択される少なくとも1種類の活性種を含む
    請求項22の殺菌水を生成する装置。
    The sterilizing water, O *, HO 2 *, O 2 - *, 1 singlet oxygen, sterilizing water according to claim 22 comprising at least one active species selected from the group consisting of OH * and H 2 O 2 A device that generates.
  24.  前記殺菌水のオゾン濃度は、0.02ppm未満である
    請求項22または23の殺菌水を生成する装置。
    The apparatus for producing sterilized water according to claim 22 or 23, wherein the ozone concentration of the sterilized water is less than 0.02 ppm.
  25.  前記電極群を備え、前記少なくとも1個の間隙を含む通路を定義する面を有し、前記気泡が前記通路を通過するように配置され、前記気泡が前記通路を通過する場合に前記通路が前記気泡を第1の方向に案内し前記面が前記第1の方向と垂直をなす第2の方向に前記気泡が拡がることを規制し、前記気泡が前記通路に入る直前における前記第2の方向についての前記気泡の大きさが前記第2の方向についての前記通路の大きさの1倍より大きく2倍以下であるように構成される電極構造
    をさらに備える
    請求項1から24までのいずれかの殺菌水を生成する装置。
    The electrode group, having a surface defining a passage including the at least one gap, arranged so that the bubble passes through the passage, and the passage when the bubble passes through the passage; Regarding the second direction immediately before the bubble enters the passage, the bubble is guided in a first direction and the surface is restricted from expanding in a second direction perpendicular to the first direction. 25. The sterilization according to any one of claims 1 to 24, further comprising an electrode structure configured such that the size of the bubble is greater than 1 and less than or equal to 2 times the size of the passage in the second direction. A device that produces water.
  26.  前記第2の方向についての前記通路の大きさは、0.5mm以上10mm以下である
    請求項25の殺菌水を生成する装置。
    26. The apparatus for generating sterilizing water according to claim 25, wherein the size of the passage in the second direction is not less than 0.5 mm and not more than 10 mm.
  27.  前記電極構造は、
     前記面に含まれる第1の対向面を有する第1の対向物と、
     前記通路を挟んで前記第1の対向面に対向し前記面に含まれる第2の対向面を有する第2の対向物と、
    を備える
    請求項25または26の殺菌水を生成する装置。
    The electrode structure is
    A first opposing object having a first opposing surface included in the surface;
    A second opposing object facing the first opposing surface across the passage and having a second opposing surface included in the surface;
    An apparatus for producing sterilized water according to claim 25 or 26.
  28.  前記第1の対向物は、前記第1の少なくとも1個の電極を備え、
     前記第2の対向物は、前記第2の少なくとも1個の電極を備える
    請求項27の殺菌水を生成する装置。
    The first counter object includes the first at least one electrode;
    28. The apparatus for producing sterilizing water of claim 27, wherein the second counter object comprises the second at least one electrode.
  29.  前記第1の少なくとも1個の電極の各々は、針状であり、前記第1の対向面から前記第2の対向面に向かって突出し、
     前記第2の少なくとも1個の電極の各々は、平板状またはシート状であり、前記第2の対向面に含まれる主面を有する
    請求項28の殺菌水を生成する装置。
    Each of the first at least one electrode is needle-shaped and protrudes from the first facing surface toward the second facing surface,
    29. The apparatus for generating sterilizing water according to claim 28, wherein each of the second at least one electrode has a plate shape or a sheet shape and has a main surface included in the second facing surface.
  30.  前記第2の少なくとも1個の電極が前記第1の少なくとも1個の電極から一の方向に離され前記気泡が前記少なくとも1個の間隙に入る場合に前記気泡が前記一の方向と異なる他の方向に進むように前記第1の少なくとも1個の電極および前記第2の少なくとも1個の電極が配置される
    請求項1から29までのいずれかの殺菌水を生成する装置。
    When the second at least one electrode is separated from the first at least one electrode in one direction and the bubble enters the at least one gap, the bubble is different from the one direction. 30. The apparatus for producing sterilizing water according to any of claims 1 to 29, wherein the first at least one electrode and the second at least one electrode are arranged to travel in a direction.
  31.  前記第1の少なくとも1個の電極は、nが2以上の整数である第1から第nまでの電極を備え、
     前記少なくとも1個の間隙は、第1から第nまでの間隙を含み、
     前記第1から第nまでの電極は、それぞれ前記第1から第nまでの間隙を挟んで前記第2の少なくとも1個の電極と対向する
    請求項1から30までのいずれかの殺菌水を生成する装置。
    The first at least one electrode includes first to nth electrodes in which n is an integer of 2 or more,
    The at least one gap includes first to nth gaps;
    31. The sterilizing water according to any one of claims 1 to 30, wherein the first to n-th electrodes are opposed to the second at least one electrode with the first to n-th gaps interposed therebetween, respectively. Device to do.
  32.  前記第2の少なくとも1個の電極は、前記第1から第nまでの間隙を挟んで前記第1から第nまでの電極とそれぞれ対向する第n+1から第2nまでの電極を備える
    請求項31の殺菌水を生成する装置。
    32. The second at least one electrode includes n + 1 to 2n electrodes respectively opposed to the first to nth electrodes across the first to nth gaps. A device that produces sterilized water.
  33.  前記第2の少なくとも1個の電極は、nが2以上の整数である第1から第nまでの電極を備え、
     前記少なくとも1個の間隙は、第1から第nまでの間隙を含み、
     前記第1から第nまでの電極は、それぞれ前記第1から第nまでの間隙を挟んで前記第1の少なくとも1個の電極と対向する
    請求項1から30までのいずれかの殺菌水を生成する装置。
    The second at least one electrode includes first to nth electrodes in which n is an integer of 2 or more,
    The at least one gap includes first to nth gaps;
    The sterilized water according to any one of claims 1 to 30, wherein the first to nth electrodes face the first at least one electrode with the first to nth gaps therebetween, respectively. Device to do.
  34.  前記パルス電圧のパルス幅は、半値全幅で表現された場合に0.1μ秒以上10μ秒以下であり、
     前記パルス電圧の周波数は、0.1kHz以上10kHz以下であり、
     前記パルス電圧のピーク電圧は、3kV以上20kV以下である
    請求項1から33までのいずれかの殺菌水を生成する装置。
    The pulse width of the pulse voltage is 0.1 μsec or more and 10 μsec or less when expressed by the full width at half maximum,
    The frequency of the pulse voltage is 0.1 kHz or more and 10 kHz or less,
    The apparatus for generating sterilized water according to any one of claims 1 to 33, wherein a peak voltage of the pulse voltage is 3 kV or more and 20 kV or less.
  35.  請求項1から34までのいずれかの殺菌水を生成する装置により前記殺菌水を生成する工程と、
     前記殺菌水に被処理物を接触させる工程と、
    を備える被処理物を殺菌する方法。
    Producing the sterilizing water by an apparatus for producing sterilizing water according to any one of claims 1 to 34;
    Contacting the object to be treated with the sterilized water;
    A method for sterilizing an object to be processed.
  36.  a) 窒素ガスおよび酸素ガスの少なくとも一方を含むガスを供給する工程と、
     b) 水または水溶液からなる液体の中に前記ガスの気泡を発生させる工程と、
     c) 前記液体に浸され互いに対向する第1の少なくとも1個の電極と第2の少なくとも1個の電極とに挟まれる少なくとも1個の間隙に前記気泡を導入する工程と、
     d) 前記第1の少なくとも1個の電極と前記第2の少なくとも1個の電極との間に前記パルス電圧を印加する工程と、
    を備える殺菌水を生成する方法。
    a) supplying a gas containing at least one of nitrogen gas and oxygen gas;
    b) generating the gas bubbles in a liquid comprising water or an aqueous solution;
    c) introducing the bubbles into at least one gap sandwiched between the first at least one electrode and the second at least one electrode which are immersed in the liquid and opposed to each other;
    d) applying the pulse voltage between the first at least one electrode and the second at least one electrode;
    A method for producing sterilized water comprising:
PCT/JP2017/027438 2016-07-28 2017-07-28 Device for generating sterile water, method for sterilizing an object to be treated, and method for generating sterile water WO2018021528A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018530419A JP6917597B2 (en) 2016-07-28 2017-07-28 A device for generating sterilizing water that sterilizes the object to be treated and a method for generating sterilizing water that sterilizes the object to be contacted.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-147946 2016-07-28
JP2016147946 2016-07-28
JP2016189204 2016-09-28
JP2016-189204 2016-09-28

Publications (1)

Publication Number Publication Date
WO2018021528A1 true WO2018021528A1 (en) 2018-02-01

Family

ID=61017180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027438 WO2018021528A1 (en) 2016-07-28 2017-07-28 Device for generating sterile water, method for sterilizing an object to be treated, and method for generating sterile water

Country Status (2)

Country Link
JP (1) JP6917597B2 (en)
WO (1) WO2018021528A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019166508A (en) * 2018-03-26 2019-10-03 日本碍子株式会社 Apparatus for generating sterilizing water, method for sterilizing object to be processed, and method for generating sterilizing water
WO2020065814A1 (en) * 2018-09-27 2020-04-02 日本碍子株式会社 Sterilizing water producing device, sterilizing water producing method, and method for manufacturing sterilized object
JP2021107040A (en) * 2018-09-27 2021-07-29 日本碍子株式会社 Manufacturing apparatus of sterilization water, manufacturing method of sterilization water, and manufacturing method of sterilized article

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005296909A (en) * 2004-03-16 2005-10-27 Toshiba Corp Water treating system
WO2009041049A1 (en) * 2007-09-27 2009-04-02 Satoshi Ikawa Method and apparatus for pasteurization
JP2013086072A (en) * 2011-10-21 2013-05-13 Tohoku Univ Radical generation device and clarification method using the same
WO2013161327A1 (en) * 2012-04-27 2013-10-31 国立大学法人大阪大学 Sterilization treatment method, preparation for sterilization use, frozen body for sterilization use and method and apparatus for producing same, and method for producing liquid for sterilization use
JP2013258159A (en) * 2011-05-17 2013-12-26 Panasonic Corp Plasma generation device and plasma generation method
WO2014077181A1 (en) * 2012-11-13 2014-05-22 三菱電機株式会社 Water treatment device and water treatment method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005296909A (en) * 2004-03-16 2005-10-27 Toshiba Corp Water treating system
WO2009041049A1 (en) * 2007-09-27 2009-04-02 Satoshi Ikawa Method and apparatus for pasteurization
JP2013258159A (en) * 2011-05-17 2013-12-26 Panasonic Corp Plasma generation device and plasma generation method
JP2013086072A (en) * 2011-10-21 2013-05-13 Tohoku Univ Radical generation device and clarification method using the same
WO2013161327A1 (en) * 2012-04-27 2013-10-31 国立大学法人大阪大学 Sterilization treatment method, preparation for sterilization use, frozen body for sterilization use and method and apparatus for producing same, and method for producing liquid for sterilization use
WO2014077181A1 (en) * 2012-11-13 2014-05-22 三菱電機株式会社 Water treatment device and water treatment method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019166508A (en) * 2018-03-26 2019-10-03 日本碍子株式会社 Apparatus for generating sterilizing water, method for sterilizing object to be processed, and method for generating sterilizing water
WO2020065814A1 (en) * 2018-09-27 2020-04-02 日本碍子株式会社 Sterilizing water producing device, sterilizing water producing method, and method for manufacturing sterilized object
JP2021107040A (en) * 2018-09-27 2021-07-29 日本碍子株式会社 Manufacturing apparatus of sterilization water, manufacturing method of sterilization water, and manufacturing method of sterilized article

Also Published As

Publication number Publication date
JPWO2018021528A1 (en) 2019-05-23
JP6917597B2 (en) 2021-08-11

Similar Documents

Publication Publication Date Title
US10941062B2 (en) Microbubble generator for enhanced plasma treatment of liquid
JP5067802B2 (en) Plasma generating apparatus, radical generating method, and cleaning and purifying apparatus
JP5099612B2 (en) Liquid processing equipment
WO2018021528A1 (en) Device for generating sterile water, method for sterilizing an object to be treated, and method for generating sterile water
JP5906444B2 (en) Liquid processing apparatus, liquid processing method, and plasma processing liquid
JP5884074B2 (en) Liquid processing apparatus and liquid processing method
KR101579349B1 (en) Water treatment apparatus using plasma-membrane and method using the same
JP5070644B2 (en) Reduced water generating apparatus and reduced water generating method
JP6097942B2 (en) Liquid processing apparatus and liquid processing method
JP5899455B2 (en) Liquid processing apparatus and liquid processing method
EP1942951A1 (en) Method for the preparation of biocidal activated water solutions
JP6544623B2 (en) Treatment liquid generating apparatus and processing liquid generation method
US10562796B2 (en) Liquid treatment apparatus including first electrode, second electrode, and third electrode, and liquid treatment method using liquid treatment apparatus
KR101256577B1 (en) Electrode for underwater discharge and apparatus for generating underwater capillary plasma including the electrode
Son et al. Electrical discharges with liquid electrodes used in water decontamination
WO2017090431A1 (en) Device for producing reduced water and method for producing reduced water
WO2019003484A1 (en) Liquid treatment device
JP2014159010A (en) Water treatment apparatus
JP2013138981A (en) Ionized water generator
KR101873106B1 (en) Reactive species generator with non-thermal atmospheric pressure plasma
CN109867332B (en) Liquid treatment device
JP2014010931A (en) Plasma processing method and plasma processing unit
JP2019166508A (en) Apparatus for generating sterilizing water, method for sterilizing object to be processed, and method for generating sterilizing water
RU2195961C2 (en) Method for making sterilization
JP2023074906A (en) hydrogen peroxide generator

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018530419

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834530

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17834530

Country of ref document: EP

Kind code of ref document: A1