WO2020135734A1 - 电池加热***及其控制方法 - Google Patents

电池加热***及其控制方法 Download PDF

Info

Publication number
WO2020135734A1
WO2020135734A1 PCT/CN2019/129258 CN2019129258W WO2020135734A1 WO 2020135734 A1 WO2020135734 A1 WO 2020135734A1 CN 2019129258 W CN2019129258 W CN 2019129258W WO 2020135734 A1 WO2020135734 A1 WO 2020135734A1
Authority
WO
WIPO (PCT)
Prior art keywords
bridge arm
switch module
module
arm
switch
Prior art date
Application number
PCT/CN2019/129258
Other languages
English (en)
French (fr)
Inventor
但志敏
左希阳
张伟
侯贻真
李国伟
吴兴远
李艳茹
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to KR1020207031197A priority Critical patent/KR102455823B1/ko
Publication of WO2020135734A1 publication Critical patent/WO2020135734A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/667Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an electronic component, e.g. a CPU, an inverter or a capacitor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/18Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/20Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits characterised by logic function, e.g. AND, OR, NOR, NOT circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/12Buck converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0025Sequential battery discharge in systems with a plurality of batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present application belongs to the field of battery power, and particularly relates to a battery heating system and its control method.
  • the battery can be equipped with a special thermal cycle container, by indirectly heating the thermally conductive material in the thermal cycle container to conduct heat to the battery to achieve heating of the battery.
  • this heating method takes a long time and the heating efficiency is low.
  • the embodiments of the present application provide a battery heating system and a control method thereof, which can improve the heating efficiency of the battery pack.
  • an embodiment of the present application provides a battery heating system, including a main positive switch connected to the positive pole of the battery pack, a main negative switch connected to the negative pole of the battery pack, and an inverter connected to the main positive switch and the main negative switch Converter, motor connected to the inverter, and battery management module;
  • the inverter includes a first phase bridge arm, a second phase bridge arm and a third phase bridge arm connected in parallel, the first phase bridge arm and the second phase bridge arm
  • Both the third and third phase bridge arms have an upper bridge arm and a lower bridge arm, and the upper bridge arm is provided with a switch module, and the lower bridge arm is provided with a switch module; the first phase input end, the second phase input end and the third phase of the motor
  • the input points are connected to the connection points of the upper and lower arms of the first phase bridge arm, the connection points of the upper and lower arms of the second phase bridge arm, and the upper and lower arms of the third phase bridge arm
  • the connection point of the arm is connected;
  • the inverter also includes
  • the target upper arm switch module is the switch module of the upper arm of any one of the first phase bridge arm, the second phase bridge arm, and the third phase bridge arm.
  • the bridge arm switch module is the switch module of the lower arm of at least one bridge arm except the bridge arm where the target upper arm switch module is located; the battery management module is used to collect the state parameters of the battery pack. When setting heating conditions, send control signals to the motor controller to control the motor controller to output drive signals.
  • an embodiment of the present application provides a control method for a battery heating system, which is applied to the battery heating system in the technical solution of the first aspect.
  • the control method for the battery heating system includes: a battery management module collects battery pack status parameters ,When the state parameter of the battery pack meets the preset heating conditions, send a control signal to the motor controller; The motor controller receives the control signal and outputs a drive signal to the target upper arm switch module and the target lower arm switch module to control the target The bridge arm switch module and the target lower bridge arm switch module are periodically turned on and off.
  • the embodiments of the present application provide a battery heating system and a control method thereof.
  • the battery management module in the battery heating system determines that the state parameters of the battery pack meet the preset heating conditions, sends a control signal to the motor controller, and controls the motor controller to the target
  • the upper arm switch module and the target lower arm switch module output drive signals to control the target upper arm switch module and the target lower arm switch module to periodically turn on and off.
  • an alternating current is generated in the loop formed by the battery pack, the main positive switch, the switch module in the upper bridge arm, the motor, the switch module in the lower bridge arm, and the main negative switch, that is, the battery pack is alternately charged and discharged.
  • the battery pack has an internal resistance. In the process of alternating charging and discharging of the battery pack, alternating current flows through the internal resistance of the battery pack to generate heat, that is, the battery pack generates heat from the inside, thereby improving the heating efficiency of the battery pack.
  • FIG. 1 is a schematic structural diagram of a battery heating system according to an embodiment of this application.
  • FIG. 2 is a schematic structural diagram of a battery heating system in another embodiment of this application.
  • FIG. 3 is a schematic structural diagram of a driving signal generating unit in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a dead time in a driving signal according to an embodiment of this application.
  • FIG. 5 is a flowchart of a method for controlling a battery heating system according to an embodiment of this application.
  • FIG. 6 is a flowchart of a method for controlling a battery heating system in another embodiment of this application.
  • the embodiments of the present application provide a battery heating system and a control method thereof, which can be applied to heat the battery pack under the condition that the temperature of the battery pack is low, so that the temperature of the battery pack rises, and the battery pack can be used normally temperature.
  • the battery pack may include at least one battery module or at least one battery unit, which is not limited herein.
  • the battery pack can be used in electric vehicles to supply power to motors as a source of power for electric vehicles.
  • the battery pack can also provide power for other power-consuming devices in electric vehicles, such as in-car air conditioners and on-board players.
  • an alternating current is generated in the circuit where the battery pack is located.
  • the alternating current can continuously pass through the battery pack, so that the internal resistance of the battery pack heats up, thereby achieving uniform and high-efficiency heating of the battery pack.
  • FIG. 1 is a schematic structural diagram of a battery heating system according to an embodiment of the present application.
  • the battery heating system includes a main positive switch K1 connected to the positive pole of the battery pack P1, a main negative switch K2 connected to the negative pole of the battery pack P1, and a reverse connected to the main positive switch K1 and the main negative switch K2.
  • the main positive switch K1 and the main negative switch K2 may be relays.
  • the inverter P2 includes a parallel support capacitor, a first phase bridge arm, a second phase bridge arm, and a third phase bridge arm.
  • the first phase bridge arm, the second phase bridge arm and the third phase bridge arm all have an upper bridge arm and a lower bridge arm, and the upper bridge arm is provided with a switch module, and the lower bridge arm is provided with a switch module.
  • the first phase bridge arm is a U-phase bridge arm
  • the second phase bridge arm is a V-phase bridge arm
  • the third phase bridge arm is a W-phase bridge arm.
  • the switch module of the upper bridge arm of the U-phase bridge arm is the first switch module P21
  • the switch module of the lower bridge arm of the U-phase bridge arm is the second switch module P22.
  • the switch module of the upper arm of the V-phase bridge arm is the third switch module P23
  • the switch module of the lower arm of the V-phase bridge arm is the fourth switch module P24.
  • the switch module of the upper arm of the W-phase bridge arm is the fifth switch module P25
  • the switch module of the lower arm of the W-phase bridge arm is the sixth switch module P26.
  • the switch module may include an insulated gate bipolar transistor (Insulated Gate Bipolar Transistor, IGBT) chip, an IGBT module, a metal-oxide semiconductor field effect transistor (Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET), etc.
  • IGBT Insulated Gate Bipolar Transistor
  • MOSFET metal-oxide semiconductor field effect transistor
  • One or more of the power switching devices are not limited.
  • the material type of the power switching device is not limited. For example, a power switching device made of silicon carbide (ie, SiC) or other materials can be used. It is worth mentioning that the above power switching device has a diode.
  • the diode may be a parasitic diode or a specially arranged diode.
  • the material type of the diode is not limited.
  • a diode made of silicon (ie Si), silicon carbide (ie SiC) or other materials can be used.
  • the support capacitor Ca is used to absorb the high pulsating voltage and current that may be generated when the switch module is turned off, so that the voltage fluctuation and current fluctuation in the battery heating system are kept within the allowable range to avoid voltage and current overshoot.
  • connection points of the first phase input terminal, the second phase input terminal and the third phase input terminal of the motor P3 to the upper and lower bridge arms in the first phase bridge arm, the upper and lower bridge arms in the second phase bridge arm
  • the connection point of the bridge arm is connected to the connection point of the upper bridge arm and the lower bridge arm in the third phase bridge arm.
  • the stator of the motor P3 is equivalent to a three-phase stator inductance.
  • the stator inductance has an energy storage function.
  • Each phase stator inductance is connected to one phase bridge arm.
  • Let the three-phase stator inductance be the first stator inductance L1, the second stator inductance L2, and the third stator inductance L3, respectively.
  • the first phase input terminal is the input terminal corresponding to the first stator inductance L1.
  • the second phase input terminal is the input terminal corresponding to the second stator inductance L2.
  • the third phase input terminal is the input terminal corresponding to the third stator inductance L3.
  • the first-phase input end, the second-phase input end, and the third-phase input end of the motor P3 can be used as input current input or output current output.
  • one end of the first stator inductance L1 is the first phase input end, and the other end of the first stator inductance L1 is connected to the other end of the second stator inductance L2 and the other end of the third stator inductance L3.
  • One end of the second stator inductance L2 is the second phase input end.
  • One end of the third stator inductance L3 is the third phase input end.
  • the inverter P2 also includes a motor controller P20.
  • the motor controller P20 is used to output a drive signal to the target upper arm switch module and the target lower arm switch module to control the target upper arm switch module and the target lower arm switch module to periodically turn on and off. It should be noted that the motor controller P20 is connected to each switch module in the inverter P2, and this connection relationship is not shown in FIG. 1.
  • the driving signal may specifically be a pulse signal. Further, the driving signal may be a pulse width modulation (Pulse Width Modulation, PWM) signal. In some examples, a high level in the drive signal can drive the switch module to be turned on, and a low level signal in the drive signal can drive the switch module to be turned off. The driving signal can control the target upper arm switch module and the target lower arm switch module to be periodically turned on and off.
  • PWM pulse width modulation
  • the target upper arm switch module is a switch module of an upper arm of any one of the first phase bridge arm, the second phase bridge arm, and the third phase bridge arm.
  • the target lower arm switch module is a switch module of a lower arm of at least one bridge arm except the bridge arm where the target upper arm switch module is located.
  • switch modules that is, the switch modules other than the target upper arm switch module and the target lower arm switch module that are not driven by the drive signal are disconnected.
  • the target upper arm switch module is the first switch module P21
  • the target lower arm switch module is the fourth switch module P24 and/or the sixth switch module P26.
  • the target upper arm switch module is the third switch module P23
  • the target lower arm switch module is the second switch module P22 and/or the sixth switch module P26.
  • the target upper arm switch module is the fifth switch module P25
  • the target lower arm switch module is the second switch module P22 and/or the fourth switch module P24.
  • the target upper arm switch module and the target lower arm switch module in each cycle of periodic on and off may be the same or different, which is not limited herein.
  • the driving signals in each cycle drive the first switch module P21 and the fourth switch module P24 on and off.
  • the drive signal drives the first switch module P21 and the fourth switch module P24 on and off; in the second cycle, the drive signal drives the third switch module P23 and the second switch The module P22 is turned on and off; in the third cycle, the drive signal drives the first switch module P21, the fourth switch module P24, and the sixth switch module P26 on and off; that is, in different cycles, the drive The target upper arm switch module and the target lower arm switch module driven by the signal may be different.
  • the driving signal drives the target upper arm switch module and the target lower arm switch module to periodically turn on and off, so that the battery pack P1, the main positive switch K1, the switch module in the upper arm, the motor P3, the lower arm In the circuit formed by the switch module in the main and the negative switch K2, an alternating current is generated. Specifically, an alternating sine wave current can be generated. That is, the battery pack P1 is alternately charged and discharged. In the process of alternately charging and discharging the battery pack P1, the battery pack P1 generates heat, that is, the battery pack P1 generates heat from the inside. Thus, the heating of the battery pack P1 is realized.
  • the battery management module P4 is used to collect the state parameters of the battery pack P1. When the state parameters of the battery pack P1 satisfy the preset heating conditions, a control signal is sent to the motor controller P20 to control the motor controller P20 to output a drive signal.
  • a communication connection is established between the battery management module P4 and the motor controller P20, which may specifically be a wired connection or a wireless connection, which is not limited herein, and the connection relationship is not shown in FIG. 1.
  • the state parameters include temperature and state of charge
  • the preset heating conditions include a temperature below the heating temperature threshold and a state of charge above the heating allowable state of charge threshold. That is, when the temperature of the collected battery pack is lower than the heating temperature threshold and the state of charge is higher than the heating allowable state of charge threshold, the battery management module P4 sends a control signal to the motor controller P20 to control the motor controller P20 Output drive signal.
  • the battery heating system can be installed in the electrical equipment.
  • battery heating systems are installed in electric vehicles.
  • the inverter P2 and the motor P3 are in the working state, and the switch modules in each bridge arm in the inverter P2 cannot be controlled. Therefore, in the battery heating system in the embodiment of the present application, when it is determined that both the inverter P2 and the motor P3 are in a non-working state, that is, the electric vehicle is in a stationary state, the battery management module P4 executes the state parameter of the battery pack P1 Judgment, and the step of sending a control signal to the motor controller P20.
  • the battery management module P4 may first control the main negative switch K2 to close, and then control the main positive switch K1 to close. Specifically, before sending the control signal to the motor controller P20, the battery management module P4 may report a heating instruction to the vehicle controller. The vehicle controller issues control commands to the battery management module P4 and the motor controller P20. The battery management module P4 first controls the main negative switch K2 to close, and then controls the main positive switch K1 to close.
  • a temperature sensor may be provided on the battery pack P1.
  • the battery management module P4 collects the temperature of the battery pack P1 from the temperature sensor.
  • the temperature of the battery pack P1 here may specifically be the temperature of the casing of the battery pack P1, the temperature of the air in the internal space of the battery pack P1, or the temperature of any battery pack P1 or battery cell in the battery pack P1, and It may be the average value of the temperatures of all battery packs P1 or battery cells in the battery pack P1, etc., which is not limited herein.
  • the heating temperature threshold may be the minimum required temperature at which the battery pack P1 can work normally, that is, the temperature threshold at which the battery heating system needs to enter the heating mode.
  • the heating temperature threshold can be set according to the working scene and working requirements, which is not limited here. If the temperature of the battery pack P1 is lower than the heating temperature threshold, the battery pack P1 cannot work normally and needs to be heated.
  • the threshold of the allowable state of charge for heating and the minimum required state of charge for allowing the battery pack P1 to heat that is, the threshold of the state of charge for the battery heating system to enter the heating mode.
  • the state-of-charge threshold can be set according to work scenarios and work requirements, and is not limited here. If the state of charge of the battery pack P1 is higher than the threshold of the state of charge, it means that the current power of the battery pack P1 is sufficient to provide the power required to enter the heating mode.
  • the battery management module P4 determines that the temperature of the battery pack P1 is lower than the heating temperature threshold and the state of charge of the battery pack P1 is higher than the heating allowable state of charge threshold, and then sends a control signal to the motor controller P20.
  • the control signal can trigger the motor controller P20 to output a drive signal, so that an alternating current is generated in the battery heating system, and heat is generated inside the battery pack P1 to heat the battery pack P1.
  • the resistance between the battery pack P1 and the main positive switch K1 is the equivalent internal resistance Rx of the battery pack P1.
  • the internal resistance of the battery pack P1 increases when the temperature is low.
  • the internal resistance of the power lithium battery at -25°C is 5 to 15 times that of the power lithium battery at 25°C.
  • a fuse can also be provided inside the battery pack P1 to ensure the safe use of the battery pack P1.
  • the battery management module P4, the main positive switch K1, and the main negative switch K2 may be packaged in a high-voltage box.
  • the battery management module P4 in the battery heating system determines that the state parameter of the battery pack P1 meets the preset heating condition, sends a control signal to the motor controller P20, and controls the motor controller P20 to the target upper arm switch module And the target lower arm switch module output a drive signal to control the target upper arm switch module and the target lower arm switch module to periodically turn on and off.
  • an alternating current is generated in the loop formed by the battery pack P1, the main positive switch K1, the switch module in the upper bridge arm, the motor P3, the switch module in the lower bridge arm, and the main negative switch K2, that is, the battery pack P1 is alternately charged And discharge.
  • the battery pack has an internal resistance.
  • an alternating current flows through the internal resistance of the battery pack P1 to generate heat, that is, the battery pack P1 generates heat from the inside, thereby improving the heating efficiency of the battery pack P1. Since the heat in the embodiment of the present application is generated due to the alternating current passing through the battery pack P1, the internal heat of the battery pack P1 is uniform. Moreover, since the structure of the inverter P2 and the motor P3 is not changed, no additional structural modification cost will be incurred.
  • each switching module includes a power switching device as an example for description.
  • 2 is a schematic structural diagram of a battery heating system in another embodiment of the present application. The difference between FIG. 2 and FIG. 1 is that the switch module includes a power switch device.
  • the battery heating system further includes a fuse module P5 disposed between the positive electrode of the battery pack P1 and the main positive switch K1, and a current sensor P6 disposed between the negative electrode of the battery pack P1 and the main negative switch K2.
  • the fuse module P5 is used to disconnect the battery pack P1 from the battery heating system.
  • the insurance module P5 may be a manual service switch (Manual Service Disconnect, MSD).
  • the current sensor P6 can collect the current parameters in the battery heating system and upload the current parameters to the battery management module P4 for the battery management module P4 to perform analysis and calculation.
  • the battery management module P4 can also wake up the current sensor P6 before sending a control signal to the motor controller P20.
  • the first switching module P21 includes a first power switching device S1
  • the second switching module P22 includes a second power switching device S2
  • the third switching module P23 includes a third power switching device S3, and the fourth switching module P24
  • the fourth power switching device S4 is included
  • the fifth switching module P25 includes the fifth power switching device S5
  • the sixth switching module P26 includes the sixth power switching device S6.
  • the diode of the first power switching device S1 is VD1
  • the diode of the second power switching device S2 is VD2
  • the diode of the third power switching device S3 is VD3
  • the diode of the fourth power switching device S4 is VD4
  • the fifth power switch The diode of the device S5 is VD5, and the diode of the sixth power switching device S6 is VD6.
  • the anode of the diode of the switch module of the upper bridge arm is connected to the connection point of the upper bridge arm and the lower bridge arm; the cathode of the diode is located between the upper bridge arm and the main positive switch K1, for example, the diode of the switch module of the upper bridge arm
  • the cathode is connected to the end of the upper bridge arm connected to the main positive switch K1.
  • the anode of the diode is located between the lower bridge arm and the main negative switch K2.
  • the anode of the diode of the switch module of the lower bridge arm is connected to the end of the lower bridge arm connected to the main negative switch K2; the diode of the switch module of the lower bridge arm The cathode is connected to the connection point of the upper and lower bridge arms.
  • the driving signal drives the target upper arm switch module and the target lower arm switch module to conduct, then the discharge circuit of the battery pack P1 is formed, and the current direction is the battery pack P1 ⁇ the insurance module P5 ⁇ the main positive switch K1 ⁇ the target upper arm switch module ⁇ Stator inductance corresponding to the target upper arm switch module ⁇ Stator inductance corresponding to the target lower arm switch module ⁇ Target lower bridge switch module ⁇ Main negative switch K2 ⁇ Current sensor P6 ⁇ Battery pack P1.
  • the driving signal drives the target upper arm switch module and the target lower arm switch module to be disconnected.
  • the stator inductor has an energy storage function and the stator inductor discharges, a charging loop of the battery pack P1 is formed, and the current direction is the same as the target lower arm switch module
  • Corresponding stator inductance ⁇ a diode of the upper arm switch module except the target upper arm switch module ⁇ main positive switch K1 ⁇ insurance module P5 ⁇ battery pack P1 ⁇ current sensor P6 ⁇ main negative switch K2 ⁇ except the target lower arm
  • the diode of a lower arm switch module outside the switch module ⁇ the stator inductance corresponding to the target upper arm switch module.
  • the frequency of the driving signal ranges from 100 Hz to 100,000 Hz.
  • the frequency of the drive signal is the switching frequency of the switch module.
  • the duty cycle of the driving signal ranges from 5% to 50%.
  • the duty ratio of the driving signal is the ratio of the on-duration of the switch module to the sum of the on-duration and the off-duration.
  • the driving signal frequently switches the control of the switch modules in each bridge arm. If the switch module of the upper bridge arm and the switch module of the lower bridge arm in the same bridge arm are both turned on, for example, the switch module of the upper bridge arm and the switch module of the lower bridge arm in the same bridge arm are both turned on for more than 10 milliseconds, It may cause the devices in the battery heating system or the battery pack P1 to be burned.
  • the switch module of the upper bridge arm and the switch module of the lower bridge arm in the same bridge arm can be implemented by a logic circuit in the motor controller P20
  • the switch modules of the bridge arms are mutually exclusive.
  • the motor controller P20 in the embodiment of the present application may include three drive signal generation units respectively corresponding to the first phase bridge arm, the second phase bridge arm, and the third phase bridge arm.
  • Each driving signal generating unit corresponds to a bridge arm.
  • the three driving signal generating units are A1, A2, and A3.
  • the driving signal generating unit A1 corresponds to the U-phase bridge arm in FIG. 2, and the driving signal generating unit A1 has two output terminals A11 and A12.
  • the output terminal A11 of the driving signal generating unit A1 is connected to the control terminal of the first power switching device S1 in the first switching module P21 to output the driving signal of the first power switching device S1 in the first switching module P21; the driving signal generating unit A1
  • the output terminal A12 is connected to the control terminal of the second power switching device S2 in the second switching module P22, and outputs a driving signal of the second power switching device S2 in the second switching module P22.
  • the driving signal generating unit A2 corresponds to the V-phase bridge arm in FIG. 2, and the driving signal generating unit A2 has two output terminals A21 and A22.
  • the output terminal A21 of the driving signal generating unit A2 is connected to the control terminal of the third power switching device S3 in the third switching module P23, and outputs the driving signal of the third power switching device S3 in the third switching module P23; the driving signal generating unit A2
  • the output terminal A22 is connected to the control terminal of the fourth power switching device S4 in the fourth switching module P24, and outputs the driving signal of the fourth power switching device S4 in the fourth switching module P24.
  • the driving signal generating unit A3 corresponds to the W-phase bridge arm in FIG. 2, and the driving signal generating unit A3 has two output terminals A31 and A32.
  • the output terminal A31 of the driving signal generating unit A3 is connected to the control terminal of the fifth power switching device S5 in the fifth switching module P25, and outputs the driving signal of the fifth power switching device S5 in the fifth switching module P25; the driving signal generating unit A3
  • the output terminal A32 is connected to the control terminal of the sixth power switching device S6 in the sixth switching module P26, and outputs the driving signal of the sixth power switching device S6 in the sixth switching module P26.
  • FIG. 3 is a schematic structural diagram of a driving signal generating unit in an embodiment of the present application.
  • the driving signal generating unit includes a first filtering subunit P203, a second filtering subunit P204, a first NOR module P201, and a second NOR module P202.
  • the first end of the first filter sub-unit P203 is connected to the original driving signal end of the upper arm, the second end of the first filter sub-unit P203 is connected to the first input end of the first or non-module P201, and the first filter sub-unit P203 The third terminal is connected to the second input terminal of the first or non-module P201 and to ground.
  • the first filtering subunit may include a first set of voltage dividing resistors and a first capacitor C1.
  • One end of the first voltage-dividing resistor set is connected to the original driving signal terminal of the upper bridge arm, and the other end of the first voltage-dividing resistor set is connected to the first input terminal of the first or non-module P201.
  • the first set of voltage dividing resistors may include at least one resistor. If the first set of voltage dividing resistors includes multiple resistors, the connection relationship between the multiple resistors is not limited herein.
  • the driving signal generating unit shown in FIG. 3 takes the first voltage dividing resistor set including a resistor R1 as an example. One end of the first capacitor C1 is connected to the other end of the first voltage-dividing resistor set, and the other end of the first capacitor C1 is connected to the second input end of the first or non-module P201 and ground.
  • the original drive signal terminal of the upper bridge arm provides the original drive signal of the upper bridge arm.
  • the original drive signal of the upper bridge arm is used to turn on and turn off the switch module of the upper bridge arm.
  • the first end of the second filtering sub-unit P204 is connected to the original driving signal end of the lower bridge arm, the second end of the second filtering sub-unit P204 is connected to the third input end of the first or non-module P201, and the second filtering sub-unit P204 The third terminal is connected to the fourth input terminal of the first or non-module P201 and ground.
  • the second filtering sub-unit P204 may include a second voltage dividing resistor set and a second capacitor C2.
  • One end of the second voltage-dividing resistor set is connected to the original driving signal terminal of the lower bridge arm, and the other end of the second voltage-dividing resistor set is connected to the third input terminal of the first or non-module P201.
  • the second voltage dividing resistor set includes multiple resistors, the connection relationship between the multiple resistors is not limited herein.
  • the driving signal generating unit shown in FIG. 3 takes the second voltage dividing resistor set including one resistor R2 as an example.
  • One end of the second capacitor C2 is connected to the other end of the second voltage dividing resistor set, and the other end of the second capacitor C2 is connected to the fourth input end of the first or non-module P201 and ground.
  • the original drive signal terminal of the lower bridge arm provides the original drive signal of the lower bridge arm, and the original drive signal of the lower bridge arm is used to turn on and off the switch module of the lower bridge arm.
  • the first output terminal of the first or non-module P201 is connected to the second input terminal of the second or non-module P202, and the second output terminal of the first or non-module P201 is connected to the third input terminal of the second or non-module P202.
  • the first NOR module P201 is used to perform a NOR operation on the signal of the first input terminal of the first NOR module P201 and the signal of the second input terminal of the first NOR module P201, and from the first The output terminal outputs the input signal of the second input terminal of the second or non-module P202, and performs a NOR operation on the signal of the third input terminal of the first or non-module P201 and the signal of the fourth input terminal of the first or non-module P201, and The input signal of the third input terminal of the second NOR module P202 is output from the second output terminal of the first NOR module P201.
  • the first NOR module P201 may be a four-input two-output NOR gate device, and two inputs control one output.
  • the first NOR module P201 may include two two-input one-output NOR gate devices.
  • the first input terminal of the second NOR module P202 is connected to the lower bridge arm original drive signal terminal, and the fourth input terminal of the second NOR module P202 is connected to the upper bridge arm original drive signal terminal.
  • the first output of the second NOR module P202 is connected to the control terminal of the switch module in the upper arm of the bridge arm, and the second output of the second NOR module P202 is connected to the control terminal of the switch module in the lower arm of the bridge arm connection.
  • the second NOR module P202 is used to perform a NOR operation on the signal of the first input terminal of the second NOR module P202 and the signal of the second input terminal of the second NOR module P202, and from the first of the second NOR module P202
  • the output terminal outputs the driving signal of the switch module of the upper arm in the bridge arm, and performs a NOR operation on the signal of the third input terminal of the second or non-module P202 and the signal of the fourth input terminal of the second or non-module P202, and from The second output terminal of the second NOR module P202 outputs the driving signal of the switch module of the lower arm of the bridge arm.
  • the second NOR module P202 may be a four-input two-output NOR gate device, and two inputs control one output.
  • the second NOR module P202 may include two NOR gate devices with two inputs and one output.
  • the S1 original drive signal is the upper-bridge original drive signal provided by the upper-bridge original drive signal terminal of the first power switching device S1.
  • the S2 original driving signal is the upper-bridge original driving signal provided by the upper-bridge original driving signal terminal of the second power switching device S2.
  • the S1 driving signal is the driving signal of the first power switching device S1 output by the driving signal generating unit.
  • the S2 driving signal is the driving signal of the second power switching device S2 output by the driving signal generating unit.
  • the drive signal of the switch module of the upper bridge arm in the same bridge arm and the drive signal of the switch module of the lower bridge arm in the same bridge arm can also be adjusted.
  • the driving signal and the driving signal of the switch module of the lower bridge arm in the same bridge arm are set with a dead time to avoid that the switch module of the upper bridge arm and the switch module of the lower bridge arm in the same bridge arm are simultaneously turned on.
  • the dead time is set between the time when the level of the drive signal of the switch module of the upper bridge arm in the same bridge arm changes and the time when the level of the drive signal of the switch module of the lower bridge arm in the same bridge arm changes .
  • the dead time is related to the on delay, on duration, off delay, and off duration of the switch module.
  • the dead time can be set according to equation (1):
  • Dead time [(off delay-on delay) + (off duration-on duration)] ⁇ D (1)
  • D is a calculation parameter, and the value range of D is 1.1 to 2.
  • FIG. 4 is a schematic diagram of a dead time in a driving signal according to an embodiment of this application.
  • FIG. 4 shows the driving signal of the first power device and the driving signal of the second power device in the battery heating system in FIG. 2.
  • the horizontal direction is time.
  • the time difference between the moment when the drive signal of the first power device changes from low level to high level and the moment when the drive signal of the second power device changes from high level to low level is the dead time.
  • the time difference between the moment when the drive signal of the first power device changes from high level to low level and the moment when the drive signal of the second power device changes from low level to high level is the dead time.
  • the above-mentioned driving signal generating unit and the dead time can be set in the battery heating system at the same time to improve the safety of the battery heating system.
  • the battery heating system may also include a vehicle controller (not shown in FIGS. 1 and 2). If the battery heating system is installed in an electric vehicle, the battery management module and the motor controller need to establish communication in advance.
  • the vehicle controller is used to detect the vehicle status. If the vehicle controller determines that the motor is in a non-working state, it sends a heating command to the motor controller P20.
  • the heating command is used to indicate that the battery heating system needs to enter the heating mode.
  • the motor controller P20 receives the heating command sent by the vehicle controller and sends a communication request to the vehicle controller.
  • the vehicle controller receives the communication request sent by the motor controller P20, and opens the communication authority between the motor controller P20 and the battery management module P4. So that the motor controller P20 and the battery management module P4 can establish a communication connection.
  • FIG. 5 is a flowchart of a control method of a battery heating system in an embodiment of the present application. This control method can be applied to the battery heating system shown in FIGS. 1 and 2 described above. As shown in FIG. 5, the control method of the battery heating system may include step S501 and step S502.
  • step S501 the battery management module collects the state parameters of the battery pack, and sends a control signal to the motor controller when the state parameters of the battery pack meet the preset heating conditions.
  • the state parameters include temperature and state of charge.
  • the preset heating conditions include that the temperature is lower than the expected temperature threshold and the state of charge is higher than the heating allowable state of charge threshold.
  • step S502 the motor controller receives the control signal, outputs a drive signal to the target upper arm switch module and the target lower arm switch module, and controls the target upper arm switch module and the target lower arm switch module to periodically conduct and disconnect.
  • the target upper arm switch module and the target lower arm switch module can be selected in the following nine ways:
  • the target upper arm switch module includes the switch module of the upper arm of the first phase bridge arm
  • the target lower arm switch module includes the switch module of the lower arm of the second phase bridge arm
  • the target upper arm switch module includes the switch module of the upper arm of the first phase bridge arm
  • the target lower arm switch module includes the switch module of the lower arm of the third phase bridge arm
  • the target upper arm switch module includes the switch arm module of the upper arm of the first phase arm
  • the target lower arm switch module includes the switch arm of the lower arm of the second phase arm and the third phase arm The switch module of the lower bridge arm.
  • the target upper arm switch module includes the switch module of the upper arm of the second phase bridge arm
  • the target lower arm switch module includes the switch module of the lower arm of the first phase bridge arm
  • the target upper arm switch module includes the switch module of the upper arm of the second phase bridge arm, and the target lower arm switch module includes the switch module of the lower arm of the third phase bridge arm.
  • the target upper arm switch module includes the switch arm module of the upper arm of the second phase arm
  • the target lower arm switch module includes the switch arm of the lower arm of the first phase arm and the third phase arm The switch module of the lower bridge arm.
  • the target upper arm switch module includes the switch module of the upper arm of the third phase bridge arm, and the target lower arm switch module includes the switch module of the lower arm of the first phase bridge arm.
  • the target upper arm switch module includes the switch module of the upper arm of the third phase bridge arm
  • the target lower arm switch module includes the switch module of the lower arm of the second phase bridge arm
  • the target upper arm switch module includes the switch arm module of the upper arm of the third phase arm
  • the target lower arm switch module includes the switch arm of the lower arm of the first phase arm and the second phase arm The switch module of the lower bridge arm.
  • the circuit for AC current transmission is also different.
  • the battery heating system shown in FIG. 2 is taken as an example to describe the transmission circuit of the alternating current generated in the battery heating system and the direction of the current.
  • the driving signal sent by the motor controller P20 to the first power switching device S1 and the fourth power switching device S4 drives the first power switching device S1 and the fourth power switching device S4 to be turned on.
  • the battery pack P1 is discharged to form a discharge circuit of the battery pack P1.
  • the current direction is battery pack P1 ⁇ insurance module P5 ⁇ main positive switch K1 ⁇ first power switching device S1 ⁇ first stator inductance L1 ⁇ second stator inductance L2 ⁇ fourth power switching device S4 ⁇ main negative switch K2 ⁇ current sensor P6 ⁇ battery pack P1.
  • the driving signal sent by the motor controller P20 to the first power switching device S1 and the fourth power switching device S4 drives the first power switching device S1 and the fourth power switching device S4 to be turned off.
  • the first stator inductance L1 and the second stator inductance L2 are discharged to charge the battery pack P1 to form a charging circuit of the battery pack P1.
  • the current direction is the second stator inductance L2 ⁇ the diode VD3 of the third power switching device S3 ⁇ the main positive switch K1 ⁇ the fuse module P5 ⁇ the battery pack P1 ⁇ the current sensor P6 ⁇ the main negative switch K2 ⁇ the diode VD2 of the second power switching device S2 ⁇ The first stator inductance L1.
  • the driving signal sent by the motor controller P20 to the first power switching device S1 and the sixth power switching device S6 drives the first power switching device S1 and the sixth power switching device S6 to be turned on.
  • the battery pack P1 is discharged to form a discharge circuit of the battery pack P1.
  • the current direction is battery pack P1 ⁇ insurance module P5 ⁇ main positive switch K1 ⁇ first power switching device S1 ⁇ first stator inductance L1 ⁇ third stator inductance L3 ⁇ sixth power switching device S6 ⁇ main negative switch K2 ⁇ current sensor P6 ⁇ battery pack P1.
  • the drive signal sent by the motor controller P20 to the first power switching device S1 and the sixth power switching device S6 drives the first power switching device S1 and the sixth power switching device S6 to be turned off.
  • the first stator inductance L1 and the third stator inductance L3 are discharged to charge the battery pack P1 to form a charging circuit of the battery pack P1.
  • the current direction is the third stator inductance L3 ⁇ the diode VD5 of the fifth power switching device S5 ⁇ the main positive switch K1 ⁇ the insurance module P5 ⁇ the battery pack P1 ⁇ the current sensor P6 ⁇ the main negative switch K2 ⁇ the diode VD2 of the second power switching device S2 ⁇ The first stator inductance L1.
  • the drive signal sent by the motor controller P20 to the first power switching device S1, the fourth power switching device S4, and the sixth power switching device S6 drives the first power switching device S1, the fourth power switching device S4 and the sixth power switching device S6 are turned on.
  • the battery pack P1 is discharged to form a discharge circuit of the battery pack P1.
  • the current direction is battery pack P1 ⁇ insurance module P5 ⁇ main positive switch K1 ⁇ first power switching device S1 ⁇ first stator inductance L1 ⁇ second stator inductance L2 and third stator inductance L3 ⁇ fourth power switching device S4 and the first Six-power switching device S6 ⁇ main negative switch K2 ⁇ current sensor P6 ⁇ battery pack P1. That is, the second stator inductance L2 and the third stator inductance L3 are connected in parallel, and then connected in series with the first stator inductance L1.
  • the drive signal sent by the motor controller P20 to the first power switching device S1, the fourth power switching device S4, and the sixth power switching device S6 drives the first power switching device S1, the fourth power switching device S4, and the sixth power switching device S6 is disconnected.
  • the first stator inductance L1, the second stator inductance L2, and the third stator inductance L3 discharge, and charge the battery pack P1, forming a charging circuit of the battery pack P1.
  • the current direction is the second stator inductance L2 ⁇ the diode VD3 of the third power switching device S3 ⁇ the main positive switch K1 ⁇ the fuse module P5 ⁇ the battery pack P1 ⁇ the current sensor P6 ⁇ the main negative switch K2 ⁇ the diode VD2 of the second power switching device S2 ⁇ The first stator inductance L1.
  • the current direction is the third stator inductance L3 ⁇ the diode VD5 of the fifth power switching device S5 ⁇ the main positive switch K1 ⁇ the insurance module P5 ⁇ the battery pack P1 ⁇ the current sensor P6 ⁇ the main negative switch K2 ⁇ the second power switching device S2 Diode VD2 ⁇ first stator inductance L1.
  • the drive signal sent by the motor controller P20 to the third power switching device S3 and the second power switching device S2 drives the third power switching device S3 and the second power switching device S2 to be turned on.
  • the battery pack P1 is discharged to form a discharge circuit of the battery pack P1.
  • the current direction is battery pack P1 ⁇ insurance module P5 ⁇ main positive switch K1 ⁇ third power switching device S3 ⁇ second stator inductance L2 ⁇ first stator inductance L1 ⁇ second power switching device S2 ⁇ main negative switch K2 ⁇ current sensor P6 ⁇ battery pack P1.
  • the drive signal sent by the motor controller P20 to the third power switching device S3 and the second power switching device S2 drives the third power switching device S3 and the second power switching device S2 to be turned off.
  • the second stator inductance L2 and the first stator inductance L1 are discharged to charge the battery pack P1 to form a charging circuit of the battery pack P1.
  • the current direction is the first stator inductance L1 ⁇ the diode VD1 of the first power switching device S1 ⁇ the main positive switch K1 ⁇ the insurance module P5 ⁇ the battery pack P1 ⁇ the current sensor P6 ⁇ the main negative switch K2 ⁇ the diode of the fourth power switching device S4 VD4 ⁇ second stator inductance L2.
  • the drive signal sent by the motor controller P20 to the third power switching device S3 and the sixth power switching device S6 drives the third power switching device S3 and the sixth power switching device S6 to be turned on.
  • the battery pack P1 is discharged to form a discharge circuit of the battery pack P1.
  • the current direction is battery pack P1 ⁇ insurance module P5 ⁇ main positive switch K1 ⁇ third power switching device S3 ⁇ second stator inductance L2 ⁇ third stator inductance L3 ⁇ sixth power switching device S6 ⁇ main negative switch K2 ⁇ current sensor P6 ⁇ Battery pack P1.
  • the drive signal sent by the motor controller P20 to the third power switching device S3 and the sixth power switching device S6 drives the third power switching device S3 and the sixth power switching device S6 to be turned off.
  • the second stator inductance L2 and the third stator inductance L3 are discharged to charge the battery pack P1 to form a charging circuit of the battery pack P1.
  • the current direction is the third stator inductance L3 ⁇ the diode VD5 of the fifth power switching device S5 ⁇ the main positive switch K1 ⁇ the insurance module P5 ⁇ the battery pack P1 ⁇ the current sensor P6 ⁇ the main negative switch K2 ⁇ the diode VD4 of the fourth power switching device S4 ⁇ Second stator inductance L2.
  • the battery pack P1 is discharged to form a discharge circuit of the battery pack P1.
  • the current direction is battery pack P1 ⁇ insurance module P5 ⁇ main positive switch K1 ⁇ third power switching device S3 ⁇ second stator inductance L2 ⁇ first stator inductance L1 and third stator inductance L3 ⁇ second power switching device S2 and the first Six-power switching device S6 ⁇ main negative switch K2 ⁇ current sensor P6 ⁇ battery pack P1. That is, after the first stator inductance L1 and the third stator inductance L3 are connected in parallel, they are connected in series with the second stator inductance L2.
  • the second stator inductance L2, the first stator inductance L1 and the third stator inductance L3 are discharged to charge the battery pack P1 to form a charging circuit of the battery pack P1.
  • the current direction is the first stator inductance L1 ⁇ the diode VD1 of the first power switching device S1 ⁇ the main positive switch K1 ⁇ the insurance module P5 ⁇ the battery pack P1 ⁇ the current sensor P6 ⁇ the main negative switch K2 ⁇ the diode of the fourth power switching device S4 VD4 ⁇ second stator inductance L2.
  • the current direction is the third stator inductance L3 ⁇ the diode VD5 of the fifth power switching device S5 ⁇ the main positive switch K1 ⁇ the insurance module P5 ⁇ the battery pack P1 ⁇ the current sensor P6 ⁇ the main negative switch K2 ⁇ the fourth power switching device S4 Diode VD4 ⁇ second stator inductance L2.
  • the driving signal sent by the motor controller P20 to the fifth power switching device S5 and the second power switching device S2 drives the fifth power switching device S5 and the second power switching device S2 to be turned on.
  • the battery pack P1 is discharged to form a discharge circuit of the battery pack P1.
  • the current direction is battery pack P1 ⁇ insurance module P5 ⁇ main positive switch K1 ⁇ fifth power switching device S5 ⁇ third stator inductance L3 ⁇ first stator inductance L1 ⁇ second power switching device S2 ⁇ main negative switch K2 ⁇ current sensor P6 ⁇ battery pack P1.
  • the drive signal sent by the motor controller P20 to the fifth power switching device S5 and the second power switching device S2 drives the fifth power switching device S5 and the second power switching device S2 to be turned off.
  • the third stator inductance L3 and the first stator inductance L1 are discharged to charge the battery pack P1 to form a charging circuit of the battery pack P1.
  • the current direction is the first stator inductance L1 ⁇ the diode VD1 of the first power switching device S1 ⁇ the main positive switch K1 ⁇ the insurance module P5 ⁇ the battery pack P1 ⁇ the current sensor P6 ⁇ the main negative switch K2 ⁇ the diode of the sixth power switching device S6 VD6 ⁇ third stator inductance L3.
  • the driving signal sent by the motor controller P20 to the fifth power switching device S5 and the fourth power switching device S4 drives the fifth power switching device S5 and the fourth power switching device S4 to be turned on.
  • the battery pack P1 is discharged to form a discharge circuit of the battery pack P1.
  • the current direction is battery pack P1 ⁇ insurance module P5 ⁇ main positive switch K1 ⁇ fifth power switching device S5 ⁇ third stator inductance L3 ⁇ second stator inductance L2 ⁇ fourth power switching device S4 ⁇ main negative switch K2 ⁇ current sensor P6 ⁇ Battery pack P1.
  • the drive signal sent by the motor controller P20 to the fifth power switching device S5 and the fourth power switching device S4 drives the fifth power switching device S5 and the fourth power switching device S4 to be turned off.
  • the third stator inductance L3 and the second stator inductance L2 are discharged to charge the battery pack P1 to form a charging circuit of the battery pack P1.
  • the current direction is the second stator inductance L2 ⁇ the diode VD3 of the third power switching device S3 ⁇ the main positive switch K1 ⁇ the insurance module P5 ⁇ the battery pack P1 ⁇ the current sensor P6 ⁇ the main negative switch K2 ⁇ the diode VD6 of the sixth power switching device S6 ⁇ The third stator inductance L3.
  • the drive signal sent by the motor controller P20 to the fifth power switching device S5, the second power switching device S2, and the fourth power switching device S4 drives the fifth power switching device S5, the second power switching device S2 and the fourth power switching device S4 are turned on.
  • the battery pack P1 is discharged to form a discharge circuit of the battery pack P1.
  • the current direction is battery pack P1 ⁇ fuse module P5 ⁇ main positive switch K1 ⁇ fifth power switching device S5 ⁇ third stator inductance L3 ⁇ first stator inductance L1 and second stator inductance L2 ⁇ second power switching device S2 and the first Four-power switching device S4 ⁇ main negative switch K2 ⁇ current sensor P6 ⁇ battery pack P1. That is, after the first stator inductance L1 and the second stator inductance L2 are connected in parallel, they are connected in series with the third stator inductance L3.
  • the third stator inductance L3, the first stator inductance L1 and the second stator inductance L2 are discharged to charge the battery pack P1 to form a charging circuit of the battery pack P1.
  • the current direction is the second stator inductance L2 ⁇ the diode VD3 of the third power switching device S3 ⁇ the main positive switch K1 ⁇ the insurance module P5 ⁇ the battery pack P1 ⁇ the current sensor P6 ⁇ the main negative switch K2 ⁇ the diode VD6 of the sixth power switching device S6 ⁇ The third stator inductance L3.
  • the current direction is the first stator inductance L1 ⁇ the diode VD1 of the first power switching device S1 ⁇ the main positive switch K1 ⁇ the insurance module P5 ⁇ the battery pack P1 ⁇ the current sensor P6 ⁇ the main negative switch K2 ⁇ the sixth power switching device S6 Diode VD6 ⁇ third stator inductance L3.
  • both the non-target upper arm switch module and the non-target lower arm switch module are in the off state.
  • step S501 and step S502 reference may be made to the description in the above embodiment, and details are not described herein again.
  • the battery management module in the battery heating system determines that the state parameters of the battery pack meet the preset heating conditions, sends a control signal to the motor controller, and controls the motor controller to the target upper arm switch module and the target lower bridge
  • the arm switch module outputs a driving signal to control the target upper arm switch module and the target lower arm switch module to periodically turn on and off.
  • an alternating current is generated in the loop formed by the battery pack, the main positive switch, the switch module in the upper bridge arm, the motor, the switch module in the lower bridge arm, and the main negative switch, that is, the battery pack is alternately charged and discharged.
  • the battery pack has an internal resistance.
  • an alternating current flows through the internal resistance of the battery pack to generate heat, that is, the battery pack generates heat from the inside, thereby improving the heating efficiency of the battery pack. Since the heat in the embodiment of the present application is generated due to the alternating current passing through the battery pack, the internal heat of the battery pack is uniform. Moreover, since the structure of the inverter and the motor is not changed, there is no additional cost for structural modification.
  • FIG. 6 is a flowchart of a method for controlling a battery heating system in another embodiment of this application. 6 is different from FIG. 5 in that the control method of the battery heating system shown in FIG. 6 may further include steps S503 to S514.
  • step S503 the vehicle controller detects the vehicle state, determines that the motor is in a non-working state, and sends a heating command to the motor controller.
  • the battery heating system may further include a vehicle controller, which may detect the status of various components in the vehicle to obtain the vehicle status. If the motor is in a non-working state, the vehicle is in a static state, that is, in a non-driving state. The vehicle is in a non-driving state, and the battery heating system can enter the heating mode. The vehicle controller sends a heating command to the motor controller to inform the motor controller that the battery heating system can enter the heating mode.
  • step S503 the battery management module may collect the state parameters of the battery pack. If the state parameters of the battery pack meet the preset heating conditions, the vehicle controller executes step S503.
  • step S504 the motor controller receives the heating instruction and sends a communication request to the vehicle controller.
  • the motor controller receives the heating instruction and needs to establish communication with the battery management module. Then, the motor controller sends a communication request to the vehicle controller to request the vehicle controller to open the communication authority between the motor controller and the battery management module.
  • step S505 the vehicle controller receives the communication request and opens the communication authority between the motor controller and the battery management module.
  • the vehicle controller may configure communication parameters for the motor controller and the battery management module, thereby opening communication authority between the motor controller and the battery management module.
  • step S506 the motor controller performs handshake communication with the battery management module to establish a communication connection.
  • the motor controller and the battery management module can establish a communication connection.
  • the motor controller may initiate handshake communication to the battery management module, or the battery management module may initiate handshake communication to the motor controller, thereby establishing a communication connection between the motor controller and the battery management module.
  • step S507 the battery management module drives the main negative switch and the main positive switch to turn on sequentially.
  • the battery heating system enters the heating mode, and the battery management module can first drive the main negative switch to turn on, and then drive the main positive switch to turn on.
  • the battery management module may also report the on-off status of the main negative switch and the main positive switch to the vehicle controller.
  • the vehicle controller determines that both the main negative switch and the main positive switch are turned on, and notifies the motor controller that the motor controller then outputs a drive signal to the target upper arm switch module and the target lower arm switch module.
  • step S508 the battery management module collects the state parameters of the battery pack, and when the state parameters exceed the parameter safety range, sends a stop signal to the motor controller to control the motor controller to stop outputting the drive signal.
  • the state parameter may include temperature and/or voltage. If the state parameter includes temperature, the parameter safety range includes the temperature safety range. If the temperature of the battery pack exceeds the parameter safety range, for example, the battery pack is over temperature, the battery management module sends a stop signal to the motor controller, and the motor controller stops outputting the drive signal to the switch module. If the state parameter includes voltage, the parameter safety range includes the voltage safety range. If the voltage of the battery pack exceeds the voltage safety range, for example, the battery pack is under-voltage, the battery management module sends a stop signal to the motor controller, and the motor controller stops outputting the drive signal to the switch module.
  • the battery management module sends a stop signal to the motor controller, and the motor controller stops outputting the drive signal to the switch module.
  • the parameter safety range can be set according to the working scene and working requirements, which is not limited here.
  • the battery management module collects the status parameters of the battery pack in real time, and detects the status parameters in real time. If the battery pack is found abnormal, in order to ensure the safety of the battery heating system, the battery heating system exits the heating mode.
  • the battery management module can also control the main positive switch and the main negative switch to be disconnected, completely cutting off the circuit in the battery heating system.
  • step S509 the motor controller collects the temperature of the switch module, and stops outputting the drive signal when the temperature of the switch module exceeds the switch temperature safety threshold.
  • a temperature sensor may be provided at the switch module to collect the temperature of the switch module. If the temperature of the switch module (the switch module includes the power switch device, and the temperature of the switch module includes the temperature of the power switch device) exceeds the switch temperature safety threshold, it indicates that the switch module temperature is abnormal and needs to exit the heating mode. Therefore, the motor controller stops outputting the drive signal.
  • step S510 the battery management module calculates the expected frequency and expected duty ratio of the drive signal based on the collected state parameters, and sends the expected frequency and expected duty ratio of the drive signal to the motor controller.
  • the battery heating system also includes a current sensor.
  • the state parameters also include current.
  • the current is the current collected by the current sensor.
  • the proportional-integral-derivative (PID) algorithm or other feedback adjustment algorithm can be used to calculate the expected frequency of the drive signal according to the real-time collected state parameters such as temperature, state of charge, current, etc. And expected duty cycle.
  • the battery management module can periodically collect status parameters and periodically calculate the expected frequency and expected duty cycle of the drive signal.
  • the battery management module can send the desired frequency and the desired duty cycle of the drive signal to the motor controller in real time, or can periodically send the desired frequency and the desired duty cycle of the drive signal to the motor controller, which is not limited herein .
  • step S511 the motor controller adjusts the frequency and duty cycle of the output drive signal to the desired frequency and desired duty cycle, and controls the on duration and off of the target upper arm switch module and the target lower arm switch module duration.
  • the magnitude of the AC current generated by each switching module in the drive signal drive inverter is related to the frequency and duty cycle of the drive signal. The larger the AC current, the more heat the battery pack generates.
  • the motor controller can adjust the frequency of the output drive signal to the desired frequency and the duty cycle of the output drive signal to the desired duty cycle, thereby adjusting the temperature, state of charge, current, etc. in the battery heating system to stabilize The heating rate of the battery heating system.
  • the frequency and duty cycle of the drive signal can be adjusted periodically or in real time, which is not limited herein.
  • step S512 the battery management module determines that the temperature of the battery pack reaches the expected temperature threshold, and sends a stop signal to the motor controller.
  • the expected temperature threshold is a temperature threshold at which the battery can work normally. If the temperature of the battery pack reaches the expected temperature threshold, there is no need to continue heating the battery, and the battery heating system can exit the heating mode.
  • the battery management module may send a stop signal to the motor controller to control the motor controller to stop outputting the drive signal to the switch module.
  • step S513 the motor controller receives the stop signal and stops outputting the drive signal.
  • the battery management module determines that the temperature of the battery pack reaches the expected temperature threshold, and may also control the main positive switch and the main negative switch to open to cut off the circuit of the battery heating system.
  • the battery heating system circuit is cut off.
  • the communication connection between the battery management module and the motor controller can be disconnected.
  • the battery management module or the motor controller can initiate communication disconnection, which is not limited herein.
  • the motor controller and the battery management module can also report to the vehicle controller that the battery heating system has exited the heating mode and that the communication connection between the battery management module and the motor controller has been disconnected.
  • the frequency of the driving signal ranges from 100 Hz to 100,000 Hz.
  • the duty cycle of the driving signal ranges from 5% to 50%.
  • the dead time in the driving signal may also be set. Specifically, a dead time is set between the moment when the level of the drive signal of the switch module of the upper bridge arm in the same bridge arm changes and the moment when the level of the drive signal of the switch module of the lower bridge arm in the same bridge arm changes .
  • the dead time is related to the turn-on delay, turn-on duration, turn-off delay, and turn-off duration of the switch module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Physics (AREA)
  • Physics & Mathematics (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Inverter Devices (AREA)
  • Protection Of Static Devices (AREA)

Abstract

一种电池加热***及其控制方法,涉及电池电力领域。该电池加热***,包括主正开关(K1)、主负开关(K2)、逆变器(P2)、电机(P3),以及电池管理模块(P4);逆变器(P2)包括并联的第一相桥臂、第二相桥臂和第三相桥臂;逆变器(P2)中的电机控制器(P20)用于向目标上桥臂开关模块和目标下桥臂开关模块输出驱动信号,控制三相桥臂中任意一个桥臂的上桥臂的开关模块和除目标上桥臂开关模块所在的桥臂外的至少一个桥臂的下桥臂的开关模块周期性地导通和断开;电池管理模块(P4)用于采集电池组(P1)的状态参数,当电池组(P1)的状态参数满足预设加热条件时,向电机控制器(P20)发送控制信号,以控制电机控制器(P20)输出驱动信号。该技术方案能够提高电池组的加热效率。

Description

电池加热***及其控制方法
相关申请的交叉引用
本申请要求享有于2018年12月29日提交的名称为“电池加热***及其控制方法”的中国专利申请201811641276.2的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请属于电池电力领域,尤其涉及一种电池加热***及其控制方法。
背景技术
随着新能源的发展,越来越多的领域采用新能源作为动力。由于具有能量密度高、可循环充电、安全环保等优点,电池被广泛应用于新能源汽车、消费电子、储能***等领域中。
但是低温环境下电池的使用会受到一定限制。具体的,电池在低温环境下的放电容量会严重衰退,以及电池在低温环境下无法充电。因此,为了能够正常使用电池,需要在低温环境下为电池进行加热。
现阶段,可通过为电池配备专门的热循环容器,通过间接加热热循环容器中的导热物质,将热量传导到电池上,以实现对电池的加热。但是这种加热方式所花费的时间较长,加热效率较低。
发明内容
本申请实施例提供了一种电池加热***及其控制方法,能够提高电池组的加热效率。
一方面,本申请实施例提供了一种电池加热***,包括与电池组的正极连接的主正开关、与电池组的负极连接的主负开关、与主正开关和主负 开关连接的逆变器、与逆变器连接的电机,以及电池管理模块;逆变器包括并联的第一相桥臂、第二相桥臂和第三相桥臂,第一相桥臂、第二相桥臂和第三相桥臂均具有上桥臂和下桥臂,且上桥臂设置有开关模块,下桥臂设置有开关模块;电机的第一相输入端、第二相输入端和第三相输入端分别与第一相桥臂中上桥臂和下桥臂的连接点、第二相桥臂中上桥臂和下桥臂的连接点和第三相桥臂中上桥臂和下桥臂的连接点连接;逆变器还包括电机控制器,电机控制器用于向目标上桥臂开关模块和目标下桥臂开关模块输出驱动信号,以控制目标上桥臂开关模块和目标下桥臂开关模块周期性地导通和断开,目标上桥臂开关模块为第一相桥臂、第二相桥臂、第三相桥臂中任意一个桥臂的上桥臂的开关模块,目标下桥臂开关模块为除目标上桥臂开关模块所在的桥臂外的至少一个桥臂的下桥臂的开关模块;电池管理模块用于采集电池组的状态参数,当电池组的状态参数满足预设加热条件时,向电机控制器发送控制信号,以控制电机控制器输出驱动信号。
第二方面,本申请实施例提供了一种电池加热***的控制方法,应用于第一方面的技术方案中的电池加热***,电池加热***的控制方法包括:电池管理模块采集电池组的状态参数,当电池组的状态参数满足预设加热条件时,向电机控制器发送控制信号;电机控制器接收控制信号,向目标上桥臂开关模块和目标下桥臂开关模块输出驱动信号,控制目标上桥臂开关模块和目标下桥臂开关模块周期性地导通和断开。
本申请实施例提供了一种电池加热***及其控制方法,电池加热***中的电池管理模块确定电池组的状态参数满足预设加热条件,向电机控制器发送控制信号,控制电机控制器向目标上桥臂开关模块和目标下桥臂开关模块输出驱动信号,以控制所述目标上桥臂开关模块和所述目标下桥臂开关模块周期性地导通和断开。使得电池组、主正开关、上桥臂中的开关模块、电机、下桥臂中的开关模块、主负开关所形成的回路中产生了交流电流,即电池组交替进行充电和放电。电池组具有内阻,在电池组交替进行充电和放电的过程中,交流电流流过电池组的内阻产生热量,即电池组从内部发热,从而提高了电池组的加热效率。
附图说明
从下面结合附图对本申请的具体实施方式的描述中可以更好地理解本申请其中,相同或相似的附图标记表示相同或相似的特征。
图1为本申请一实施例中一种电池加热***的结构示意图;
图2为本申请另一实施例中一种电池加热***的结构示意图;
图3为本申请一实施例中驱动信号生成单元的结构示意图;
图4为本申请实施例中一种驱动信号中死区时间的示意图;
图5为本申请一实施例中一种电池加热***的控制方法的流程图;
图6为本申请另一实施例中一种电池加热***的控制方法的流程图。
具体实施方式
下面将详细描述本申请的各个方面的特征和示例性实施例。在下面的详细描述中,提出了许多具体细节,以便提供对本申请的全面理解。但是,对于本领域技术人员来说很明显的是,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请的更好的理解。本申请决不限于下面所提出的任何具体配置和算法,而是在不脱离本申请的精神的前提下覆盖了元素、部件和算法的任何修改、替换和改进。在附图和下面的描述中,没有示出公知的结构和技术,以便避免对本申请造成不必要的模糊。
本申请实施例提供了一种电池加热***及其控制方法,可应用于在电池组的温度较低的条件下,对电池组进行加热,以使电池组的温度上升,达到电池组可正常使用的温度。其中,电池组可包括至少一个电池模组或至少一个电池单元,在此并不限定。电池组可应用于电动汽车,为电机供电,作为电动汽车的动力源。电池组还可为电动汽车中的其他用电器件供电,比如为车内空调、车载播放器等供电。在本申请实施例中,通过对电池加热***的控制,使得电池组所在的回路中产生交流电流。交流电流可连续不断的通过电池组,使得电池组的内阻发热,从而实现对电池组的均匀、高效率的加热。
图1为本申请一实施例中一种电池加热***的结构示意图。如图1所示,该电池加热***包括与电池组P1的正极连接的主正开关K1、与电池组P1的负极连接的主负开关K2、与主正开关K1和主负开关K2连接的逆变器P2、与逆变器P2连接的电机P3,以及电池管理模块P4。
在一些示例中,主正开关K1与主负开关K2可以为继电器。
逆变器P2包括并联的支撑电容、第一相桥臂、第二相桥臂和第三相桥臂。第一相桥臂、第二相桥臂和第三相桥臂均具有上桥臂和下桥臂,且上桥臂设置有开关模块,下桥臂设置有开关模块。
比如,如图1所示,第一相桥臂为U相桥臂,第二相桥臂为V相桥臂,第三相桥臂为W相桥臂。U相桥臂的上桥臂的开关模块为第一开关模块P21,U相桥臂的下桥臂的开关模块为第二开关模块P22。V相桥臂的上桥臂的开关模块为第三开关模块P23,V相桥臂的下桥臂的开关模块为第四开关模块P24。W相桥臂的上桥臂的开关模块为第五开关模块P25,W相桥臂的下桥臂的开关模块为第六开关模块P26。
在一些示例中,开关模块可包括绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,IGBT)芯片、IGBT模块、金属-氧化物半导体场效应晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)等功率开关器件中的一种或多种。在此对开关模块中各IGBT器件和MOSFET器件等的组合方式及连接方式并不限定。对上述功率开关器件的材料类型也不做限定,比如,可采用碳化硅(即SiC)或其他材料制得的功率开关器件。值得一提的是,上述功率开关器件具有二极管。具体可以为寄生二极管或特意设置的二极管。二极管的材料类型也不做限定,比如,可采用硅(即Si)、碳化硅(即SiC)或其他材料制得的二极管。
支撑电容Ca的一端与第一相桥臂与主正开关K1相连的一端连接,支撑电容Ca的另一端与第一相桥臂与主负开关K2相连的一端连接。支撑电容Ca用于吸收开关模块断开时可能产生的高脉动电压电流,使得电池加热***中电压波动和电流波动保持在允许范围内,避免电压、电流过冲。
电机P3的第一相输入端、第二相输入端和第三相输入端分别与第一相桥臂中上桥臂和下桥臂的连接点、第二相桥臂中上桥臂和下桥臂的连接 点和第三相桥臂中上桥臂和下桥臂的连接点连接。
比如,如图1所示,将电机P3的定子等效为三相定子电感。定子电感具有储能功能。每一相定子电感与一相桥臂连接。将三相定子电感分别作为第一定子电感L1、第二定子电感L2和第三定子电感L3。第一相输入端为第一定子电感L1对应的输入端。第二相输入端为第二定子电感L2对应的输入端。第三相输入端为第三定子电感L3对应的输入端。值得一提的是,电机P3的第一相输入端、第二相输入端和第三相输入端可作为输入端输入电流,也可作为输出端输出电流。
具体的,第一定子电感L1的一端即为第一相输入端,第一定子电感L1的另一端与第二定子电感L2的另一端和第三定子电感L3的另一端连接。第二定子电感L2的一端即为第二相输入端。第三定子电感L3的一端即为第三相输入端。
上述逆变器P2还包括电机控制器P20。电机控制器P20用于向目标上桥臂开关模块和目标下桥臂开关模块输出驱动信号,以控制目标上桥臂开关模块和目标下桥臂开关模块周期性地导通和断开。需要注意的是,电机控制器P20与逆变器P2中的各个开关模块均连接,该连接关系并未在图1中示出。
驱动信号具体可为脉冲信号。进一步地,驱动信号可为脉冲宽度调制(Pulse Width Modulation,PWM)信号。在一些示例中,驱动信号中的高电平可驱动开关模块导通,驱动信号中的低电平信号可驱动开关模块断开。驱动信号可控制目标上桥臂开关模块和目标下桥臂开关模块周期性的导通和断开。
其中,目标上桥臂开关模块为第一相桥臂、第二相桥臂、第三相桥臂中任意一个桥臂的上桥臂的开关模块。目标下桥臂开关模块为除目标上桥臂开关模块所在的桥臂外的至少一个桥臂的下桥臂的开关模块。
需要说明的是,没有收到驱动信号驱动的开关模块(即除目标上桥臂开关模块和目标下桥臂开关模块之外的开关模块)均断开。
比如,如图1所示,若目标上桥臂开关模块为第一开关模块P21,则目标下桥臂开关模块为第四开关模块P24和/或第六开关模块P26。若目标 上桥臂开关模块为第三开关模块P23,则目标下桥臂开关模块为第二开关模块P22和/或第六开关模块P26。若目标上桥臂开关模块为第五开关模块P25,则目标下桥臂开关模块为第二开关模块P22和/或第四开关模块P24。
需要说明的是,周期性的导通和断开的每一周期中的目标上桥臂开关模块、目标下桥臂开关模块可以相同,也可以不同,在此并不限定。比如,每个周期中驱动信号均驱动的均为第一开关模块P21和第四开关模块P24的导通和断开。又比如,在第一个周期中,驱动信号驱动第一开关模块P21和第四开关模块P24的导通和断开;在第二个周期中,驱动信号驱动第三开关模块P23和第二开关模块P22的导通和断开;在第三个周期中,驱动信号驱动第一开关模块P21、第四开关模块P24和第六开关模块P26的导通和断开;即不同的周期中,驱动信号驱动的目标上桥臂开关模块、目标下桥臂开关模块可以不同。
驱动信号驱动目标上桥臂开关模块和目标下桥臂开关模块周期性地导通和断开,从而在电池组P1、主正开关K1、上桥臂中的开关模块、电机P3、下桥臂中的开关模块、主负开关K2所形成的回路中产生了交流电流。具体的,可产生交变正弦波电流。即电池组P1交替进行充电和放电。在电池组P1交替进行充电和放电的过程中,电池组P1均会产生热量,即电池组P1从内部发热。从而实现对电池组P1的加热。
电池管理模块P4用于采集电池组P1的状态参数,当电池组P1的状态参数满足预设加热条件时,向电机控制器P20发送控制信号,以控制电机控制器P20输出驱动信号。电池管理模块P4与电机控制器P20之间建立有通信连接,具体可以为有线连接,也可为无线连接,在此并不限定,该连接关系并未在图1中示出。
在一些示例中,状态参数包括温度和荷电状态,预设加热条件包括温度低于加热温度阈值和荷电状态高于加热允许荷电状态阈值。也就是说,当采集得到的电池组的温度低于加热温度阈值且荷电状态高于加热允许荷电状态阈值时,电池管理模块P4向电机控制器P20发送控制信号,以控制电机控制器P20输出驱动信号。
需要说明的是,由于电池加热***可安装在用电设备中。比如,电池加热***安装在电动汽车中。电动汽车在运行过程中,逆变器P2和电机P3均处于工作状态,无法对逆变器P2中的各个桥臂中的开关模块进行控制。因此,本申请实施例中的电池加热***中,可在确定逆变器P2和电机P3均处于非工作状态时,即电动汽车处于静置状态下,电池管理模块P4执行电池组P1的状态参数判断,以及向电机控制器P20发送控制信号的步骤。在一些示例中,电池管理模块P4在向电机控制器P20发送控制信号之前,电池管理模块P4可先控制主负开关K2闭合,再控制主正开关K1闭合。具体的,电池管理模块P4在向电机控制器P20发送控制信号之前,可向整车控制器上报加热指令。整车控制器在将控制指令下发给电池管理模块P4和电机控制器P20。电池管理模块P4先控制主负开关K2闭合,再控制主正开关K1闭合。
在一些示例中,可在电池组P1设置温度传感器。电池管理模块P4从温度传感器采集电池组P1的温度。这里的电池组P1的温度具体可为电池组P1壳体的温度,也可为电池组P1内部空间中空气的温度,也可为电池组P1中任意一个电池组P1或电池单元的温度,还可为电池组P1中所有电池组P1或电池单元的温度的平均值等等,在此并不限定。
加热温度阈值可为电池组P1可正常工作的最低要求温度,即电池加热***需要进入加热模式的温度门限。加热温度阈值可根据工作场景和工作需求设定,在此并不限定。若电池组P1的温度低于加热温度阈值,则电池组P1无法正常工作,需要进行加热。
加热允许荷电状态阈值与允许电池组P1进行加热的最低要求荷电状态,即电池加热***需要进入加热模式的荷电状态的门限。荷电状态阈值可根据工作场景和工作需求设定,在此并不限定。若电池组P1的荷电状态高于荷电状态阈值,则表示电池组P1当前的电量足以提供进入加热模式所需的电量。
因此,电池管理模块P4确定电池组P1的温度低于加热温度阈值且电池组P1的荷电状态高于加热允许荷电状态阈值,则向电机控制器P20发送控制信号。控制信号可触发电机控制器P20输出驱动信号,以使电池加 热***中产生交流电流,电池组P1内部产生热量实现对电池组P1的加热。
在图1中,在电池组P1与主正开关K1之间的电阻为电池组P1的等效内阻Rx。电池组P1的内阻在温度较低时阻值增大。比如在-25℃下的动力锂电池的内阻为25℃下的动力锂电池的内阻的5至15倍。在电池组P1交替进行充电和放电的过程中,产生的热量更大,加热速度更快。电池组P1内部还可设置有保险丝,以保证电池组P1的安全使用。
在一些示例中,电池管理模块P4、主正开关K1和主负开关K2可封装在高压盒中。
在本申请实施例中,电池加热***中的电池管理模块P4确定电池组P1的状态参数满足预设加热条件,向电机控制器P20发送控制信号,控制电机控制器P20向目标上桥臂开关模块和目标下桥臂开关模块输出驱动信号,以控制所述目标上桥臂开关模块和所述目标下桥臂开关模块周期性地导通和断开。使得电池组P1、主正开关K1、上桥臂中的开关模块、电机P3、下桥臂中的开关模块、主负开关K2所形成的回路中产生了交流电流,即电池组P1交替进行充电和放电。电池组具有内阻,在电池组P1交替进行充电和放电的过程中,交流电流流过电池组P1的内阻产生热量,即电池组P1从内部发热,从而提高了电池组P1的加热效率。由于本申请实施例中的热量是由于交流电流经过电池组P1而产生的,电池组P1内部发热均匀。而且,由于未改变逆变器P2和电机P3的结构,因此也不会产生额外的结构改造费用。
下面以各个开关模块均包括一个功率开关器件为例进行说明。图2为本申请另一实施例中一种电池加热***的结构示意图。图2与图1的不同之处在于,开关模块包括功率开关器件。电池加热***还包括设置于电池组P1的正极与主正开关K1之间的保险模块P5,以及设置于电池组P1的负极与主负开关K2之间的电流传感器P6。
保险模块P5用于断开电池组P1与电池加热***的连接。在一些示例中,保险模块P5可以为手动维护开关(Manual Service Disconnect,MSD)。
电流传感器P6可采集电池加热***中的电流参数,并将电流参数上传至电池管理模块P4,以供电池管理模块P4进行分析运算。电池管理模块P4在向电机控制器P20发送控制信号之前,还可唤醒电流传感器P6。
如图2所示,第一开关模块P21包括第一功率开关器件S1,第二开关模块P22包括第二功率开关器件S2,第三开关模块P23包括第三功率开关器件S3,第四开关模块P24包括第四功率开关器件S4,第五开关模块P25包括第五功率开关器件S5,第六开关模块P26包括第六功率开关器件S6。其中,第一功率开关器件S1的二极管为VD1,第二功率开关器件S2的二极管为VD2,第三功率开关器件S3的二极管为VD3,第四功率开关器件S4的二极管为VD4,第五功率开关器件S5的二极管为VD5,第六功率开关器件S6的二极管为VD6。
上桥臂的开关模块的二极管的阳极,与上桥臂与下桥臂的连接点连接;二极管的阴极位于上桥臂与主正开关K1之间,比如,上桥臂的开关模块的二极管的阴极,与上桥臂与主正开关K1连接的一端连接。二极管的阳极位于下桥臂与主负开关K2之间,比如,下桥臂的开关模块的二极管的阳极与下桥臂与主负开关K2连接的一端连接;下桥臂的开关模块的二极管的阴极,与上桥臂与下桥臂的连接点连接。
驱动信号驱动目标上桥臂开关模块和目标下桥臂开关模块导通,则形成电池组P1的放电回路,电流方向为电池组P1→保险模块P5→主正开关K1→目标上桥臂开关模块→与目标上桥臂开关模块对应的定子电感→与目标下桥臂开关模块对应的定子电感→目标下桥臂开关模块→主负开关K2→电流传感器P6→电池组P1。
驱动信号驱动目标上桥臂开关模块和目标下桥臂开关模块断开,由于定子电感具有储能功能,定子电感放电,则形成电池组P1的充电回路,电流方向为与目标下桥臂开关模块对应的定子电感→除目标上桥臂开关模块外的一个上桥臂开关模块的二极管→主正开关K1→保险模块P5→电池组P1→电流传感器P6→主负开关K2→除目标下桥臂开关模块外的一个下桥臂开关模块的二极管→与目标上桥臂开关模块对应的定子电感。
在一些示例中,驱动信号的频率的范围为100赫兹至100000赫兹。 驱动信号的频率即为开关模块的开关频率。驱动信号的占空比的范围为5%至50%。驱动信号的占空比即为开关模块的导通时长占导通时长与断开时长的和的比例。
由于在电池加热***中,驱动信号对各个桥臂中的开关模块的控制频繁切换。若同一个桥臂中上桥臂的开关模块和下桥臂的开关模块均导通,比如同一个桥臂中的上桥臂的开关模块和下桥臂的开关模块均导通超过10毫秒,则可能导致电池加热***中的器件或电池组P1被烧毁。为了防止出现同一桥臂中上桥臂的开关模块和下桥臂的开关模块均导通的情况,可在电机控制器P20中利用逻辑电路实现同一桥臂中的上桥臂的开关模块和下桥臂的开关模块导通的互斥。
本申请实施例中的电机控制器P20可包括分别与第一相桥臂、所述第二相桥臂和所述第三相桥臂对应的三个驱动信号生成单元。每个驱动信号生成单元对应一个桥臂。
比如,三个驱动信号生成单元分别为A1、A2和A3。驱动信号生成单元A1与图2中的U相桥臂对应,驱动信号生成单元A1具有两个输出端A11和A12。驱动信号生成单元A1的输出端A11与第一开关模块P21中的第一功率开关器件S1的控制端连接,输出第一开关模块P21中第一功率开关器件S1的驱动信号;驱动信号生成单元A1的输出端A12与第二开关模块P22中的第二功率开关器件S2的控制端连接,输出第二开关模块P22中第二功率开关器件S2的驱动信号。
驱动信号生成单元A2与图2中的V相桥臂对应,驱动信号生成单元A2具有两个输出端A21和A22。驱动信号生成单元A2的输出端A21与第三开关模块P23中的第三功率开关器件S3的控制端连接,输出第三开关模块P23中第三功率开关器件S3的驱动信号;驱动信号生成单元A2的输出端A22与第四开关模块P24中的第四功率开关器件S4的控制端连接,输出第四开关模块P24中第四功率开关器件S4的驱动信号。
驱动信号生成单元A3与图2中的W相桥臂对应,驱动信号生成单元A3具有两个输出端A31和A32。驱动信号生成单元A3的输出端A31与第五开关模块P25中的第五功率开关器件S5的控制端连接,输出第五开 关模块P25中第五功率开关器件S5的驱动信号;驱动信号生成单元A3的输出端A32与第六开关模块P26中的第六功率开关器件S6的控制端连接,输出第六开关模块P26中第六功率开关器件S6的驱动信号。
下面针对其中的一个驱动信号生成单元进行说明。图3为本申请一实施例中驱动信号生成单元的结构示意图。如图3所示,驱动信号生成单元包括第一滤波子单元P203、第二滤波子单元P204、第一或非模块P201和第二或非模块P202。
第一滤波子单元P203的第一端与上桥臂原始驱动信号端连接,第一滤波子单元P203的第二端与第一或非模块P201的第一输入端连接,第一滤波子单元P203的第三端与第一或非模块P201的第二输入端和与地连接。
具体的,第一滤波子单元可包括第一分压电阻集合和第一电容C1。第一分压电阻集合的一端与上桥臂原始驱动信号端连接,第一分压电阻集合的另一端与第一或非模块P201的第一输入端连接。第一分压电阻集合可包括至少一个电阻。若第一分压电阻集合包括多个电阻,则多个电阻之间的连接关系在此并不限定。图3所示的驱动信号生成单元以第一分压电阻集合包括一个电阻R1为例。第一电容C1的一端与第一分压电阻集合的另一端连接,第一电容C1的另一端与第一或非模块P201的第二输入端和地连接。
上桥臂原始驱动信号端提供上桥臂原始驱动信号,上桥臂原始驱动信号用于驱动上桥臂的开关模块的导通和断开。
第二滤波子单元P204的第一端与下桥臂原始驱动信号端连接,第二滤波子单元P204的第二端与第一或非模块P201的第三输入端连接,第二滤波子单元P204的第三端与第一或非模块P201的第四输入端和地连接。
具体的,第二滤波子单元P204可包括第二分压电阻集合和第二电容C2。第二分压电阻集合的一端与下桥臂原始驱动信号端连接,第二分压电阻集合的另一端与第一或非模块P201的第三输入端连接。若第二分压电阻集合包括多个电阻,则多个电阻之间的连接关系在此并不限定。图3所示的驱动信号生成单元以第二分压电阻集合包括一个电阻R2为例。第二 电容C2的一端与第二分压电阻集合的另一端连接,第二电容C2的另一端与第一或非模块P201的第四输入端和地连接。
下桥臂原始驱动信号端提供下桥臂原始驱动信号,下桥臂原始驱动信号用于驱动下桥臂的开关模块的导通和断开。
第一或非模块P201的第一输出端与第二或非模块P202的第二输入端连接,第一或非模块P201的第二输出端与第二或非模块P202的第三输入端连接。
第一或非模块P201用于对第一或非模块P201的第一输入端的信号和第一或非模块P201的第二输入端的信号进行或非操作,并从第一或非模块P201的第一输出端输出第二或非模块P202第二输入端的输入信号,以及,对第一或非模块P201的第三输入端的信号和第一或非模块P201的第四输入端的信号进行或非操作,并从第一或非模块P201的第二输出端输出第二或非模块P202第三输入端的输入信号。
在一些示例中,如图3所示,第一或非模块P201可为一个四输入两输出的或非门器件,且两个输入控制一个输出。
在另一些示例中,第一或非模块P201可包括两个两输入一输出的或非门器件。
第二或非模块P202的第一输入端与下桥臂原始驱动信号端连接,第二或非模块P202的第四输入端与上桥臂原始驱动信号端连接。第二或非模块P202的第一输出端与桥臂中上桥臂的开关模块的控制端连接,第二或非模块P202的第二输出端与桥臂中下桥臂的开关模块的控制端连接。
第二或非模块P202用于对第二或非模块P202的第一输入端的信号和第二或非模块P202的第二输入端的信号进行或非操作,并从第二或非模块P202的第一输出端输出桥臂中上桥臂的开关模块的驱动信号,以及对第二或非模块P202的第三输入端的信号和第二或非模块P202的第四输入端的信号进行或非操作,并从第二或非模块P202的第二输出端输出桥臂中下桥臂的开关模块的驱动信号。
在一些示例中,如图3所示,第二或非模块P202可为一个四输入两输出的或非门器件,且两个输入控制一个输出。
在另一些示例中,第二或非模块P202可包括两个两输入一输出的或非门器件。
下面结合图2和图3,举例说明第一功率开关器件S1和第二功率开关器件S2所在的U相桥臂对应的驱动信号生成单元中的信号输入和输出。表一示出了驱动信号生成单元中的信号输入和输出。
表一
Figure PCTCN2019129258-appb-000001
其中,S1原始驱动信号即为第一功率开关器件S1的上桥臂原始驱动信号端提供的上桥臂原始驱动信号。S2原始驱动信号即为第二功率开关器件S2的上桥臂原始驱动信号端提供的上桥臂原始驱动信号。S1驱动信号即为驱动信号生成单元输出的第一功率开关器件S1的驱动信号。S2驱动信号即为驱动信号生成单元输出的第二功率开关器件S2的驱动信号。
表一中的1表示高电平,0表示低电平。高电平驱动功率开关器件导通,低电平驱动功率开关器件断开。由表一可得,当上桥臂原始驱动信号端提供的上桥臂原始驱动信号和下桥臂原始驱动信号端提供的下桥臂原始驱动信号均指示第一功率开关器件S1和第二功率开关器件S2导通时,经过驱动信号生成单元,输出的提供给第一功率开关器件S1和第二功率开关器件S2的驱动信号相斥,不会出现第一功率开关器件S1与第二功率开关器件S2同时导通的情况,从而实现同一桥臂中的上桥臂的开关模块和下桥臂的开关模块导通的互斥。
在另一个实施例中,还可以调整同一桥臂中上桥臂的开关模块的驱动信号和同一桥臂中下桥臂的开关模块的驱动信号,针对同一桥臂中上桥臂的开关模块的驱动信号和同一桥臂中下桥臂的开关模块的驱动信号,设置死区时间,以避免同一桥臂中上桥臂的开关模块和下桥臂的开关模块同时导通。具体的,在同一桥臂中上桥臂的开关模块的驱动信号的电平改变的时刻,与同一桥臂中下桥臂的开关模块的驱动信号的电平改变的时刻之间 设置死区时间。
在一些示例中,死区时间与开关模块的导通延时、导通时长、断开延时和断开时长相关。比如,死区时间可按照算式(1)设置:
死区时间=[(断开延时-导通延时)+(断开时长-导通时长)]×D  (1)
其中,D为计算参数,D的取值范围为1.1至2。
比如,图4为本申请实施例中一种驱动信号中死区时间的示意图。图4示出了图2中的电池加热***中第一功率器件的驱动信号和第二功率器件的驱动信号。
如图4所示,横方向为时间。第一功率器件的驱动信号由低电平变化为高电平的时刻与第二功率器件的驱动信号由高电平变化为低电平的时刻之间的时间差即为死区时间。第一功率器件的驱动信号由高电平变化为低电平的时刻与第二功率器件的驱动信号由低电平变化为高电平的时刻之间的时间差即为死区时间。通过设置死区时间,避免出现第一功率开关器件S1与第二功率开关器件S2同时导通的情况,从而实现同一桥臂中的上桥臂的开关模块和下桥臂的开关模块导通的互斥。
需要说明的是,上述驱动信号生成单元与死区时间可同时设置在电池加热***中,以提高电池加热***的安全性。
在一些示例中,电池加热***还可包括整车控制器(在图1和图2中未标出)。若电池加热***安装于电动汽车中,则电池管理模块与电机控制器需要预先建立通信。整车控制器用于检测车辆状态。若整车控制器确定电机处于非工作状态,则向电机控制器P20发送加热指令。加热指令用于表征电池加热***需要进入加热模式。电机控制器P20接收整车控制器发送的加热指令,向整车控制器发送通信请求。整车控制器接收电机控制器P20发送的通信请求,开放电机控制器P20与电池管理模块P4之间的通信权限。以使电机控制器P20与电池管理模块P4可建立通信连接。
图5为本申请一实施例中一种电池加热***的控制方法的流程图。该控制方法可应用于上述图1和图2所示的电池加热***。如图5所示,该电池加热***的控制方法可包括步骤S501和步骤S502。
在步骤S501中,电池管理模块采集电池组的状态参数,当电池组的 状态参数满足预设加热条件时,向电机控制器发送控制信号。
在一些示例中,状态参数包括温度和荷电状态。预设加热条件包括温度低于预期温度阈值和荷电状态高于加热允许荷电状态阈值。
在步骤S502中,电机控制器接收控制信号,向目标上桥臂开关模块和目标下桥臂开关模块输出驱动信号,控制目标上桥臂开关模块和目标下桥臂开关模块周期性地导通和断开。
目标上桥臂开关模块和目标下桥臂开关模块的选取可有多种方式。比如,目标上桥臂开关模块和目标下桥臂开关模块的选取有如下九种方式:
第一种方式:目标上桥臂开关模块包括第一相桥臂的上桥臂的开关模块,目标下桥臂开关模块包括第二相桥臂的下桥臂的开关模块。
第二种方式:目标上桥臂开关模块包括第一相桥臂的上桥臂的开关模块,目标下桥臂开关模块包括第三相桥臂的下桥臂的开关模块。
第三种方式:目标上桥臂开关模块包括第一相桥臂的上桥臂的开关模块,目标下桥臂开关模块包括第二相桥臂的下桥臂的开关模块和第三相桥臂的下桥臂的开关模块。
第四种方式:目标上桥臂开关模块包括第二相桥臂的上桥臂的开关模块,目标下桥臂开关模块包括第一相桥臂的下桥臂的开关模块。
第五种方式:目标上桥臂开关模块包括第二相桥臂的上桥臂的开关模块,目标下桥臂开关模块包括第三相桥臂的下桥臂的开关模块。
第六种方式:目标上桥臂开关模块包括第二相桥臂的上桥臂的开关模块,目标下桥臂开关模块包括第一相桥臂的下桥臂的开关模块和第三相桥臂的下桥臂的开关模块。
第七种方式:目标上桥臂开关模块包括第三相桥臂的上桥臂的开关模块,目标下桥臂开关模块包括第一相桥臂的下桥臂的开关模块。
第八种方式:目标上桥臂开关模块包括第三相桥臂的上桥臂的开关模块,目标下桥臂开关模块包括第二相桥臂的下桥臂的开关模块。
第九种方式:目标上桥臂开关模块包括第三相桥臂的上桥臂的开关模块,目标下桥臂开关模块包括第一相桥臂的下桥臂的开关模块和第二相桥臂的下桥臂的开关模块。
目标上桥臂开关模块和目标下桥臂开关模块选取的不同,则交流电流传输的回路也不同。下面以图2所示的电池加热***为例,说明电池加热***中产生的交流电流的传输回路以及电流方向。
在第一种方式中,电机控制器P20向第一功率开关器件S1和第四功率开关器件S4发送的驱动信号,驱动第一功率开关器件S1和第四功率开关器件S4导通。电池组P1放电,形成电池组P1的放电回路。电流方向为电池组P1→保险模块P5→主正开关K1→第一功率开关器件S1→第一定子电感L1→第二定子电感L2→第四功率开关器件S4→主负开关K2→电流传感器P6→电池组P1。
电机控制器P20向第一功率开关器件S1和第四功率开关器件S4发送的驱动信号,驱动第一功率开关器件S1和第四功率开关器件S4断开。第一定子电感L1和第二定子电感L2放电,对电池组P1充电,形成电池组P1的充电回路。电流方向为第二定子电感L2→第三功率开关器件S3的二极管VD3→主正开关K1→保险模块P5→电池组P1→电流传感器P6→主负开关K2→第二功率开关器件S2的二极管VD2→第一定子电感L1。
在第二种方式中,电机控制器P20向第一功率开关器件S1和第六功率开关器件S6发送的驱动信号,驱动第一功率开关器件S1和第六功率开关器件S6导通。电池组P1放电,形成电池组P1的放电回路。电流方向为电池组P1→保险模块P5→主正开关K1→第一功率开关器件S1→第一定子电感L1→第三定子电感L3→第六功率开关器件S6→主负开关K2→电流传感器P6→电池组P1。
电机控制器P20向第一功率开关器件S1和第六功率开关器件S6发送的驱动信号,驱动第一功率开关器件S1和第六功率开关器件S6断开。第一定子电感L1和第三定子电感L3放电,对电池组P1充电,形成电池组P1的充电回路。电流方向为第三定子电感L3→第五功率开关器件S5的二极管VD5→主正开关K1→保险模块P5→电池组P1→电流传感器P6→主负开关K2→第二功率开关器件S2的二极管VD2→第一定子电感L1。
在第三种方式中,电机控制器P20向第一功率开关器件S1、第四功率开关器件S4和第六功率开关器件S6发送的驱动信号,驱动第一功率开关 器件S1、第四功率开关器件S4和第六功率开关器件S6导通。电池组P1放电,形成电池组P1的放电回路。电流方向为电池组P1→保险模块P5→主正开关K1→第一功率开关器件S1→第一定子电感L1→第二定子电感L2和第三定子电感L3→第四功率开关器件S4和第六功率开关器件S6→主负开关K2→电流传感器P6→电池组P1。即第二定子电感L2和第三定子电感L3并联后,再与第一定子电感L1串联。
电机控制器P20向第一功率开关器件S1、第四功率开关器件S4和第六功率开关器件S6发送的驱动信号,驱动第一功率开关器件S1、第四功率开关器件S4和第六功率开关器件S6断开。第一定子电感L1、第二定子电感L2和第三定子电感L3放电,对电池组P1充电,形成电池组P1的充电回路。电流方向为第二定子电感L2→第三功率开关器件S3的二极管VD3→主正开关K1→保险模块P5→电池组P1→电流传感器P6→主负开关K2→第二功率开关器件S2的二极管VD2→第一定子电感L1。以及,电流方向为第三定子电感L3→第五功率开关器件S5的二极管VD5→主正开关K1→保险模块P5→电池组P1→电流传感器P6→主负开关K2→第二功率开关器件S2的二极管VD2→第一定子电感L1。
在第四种方式中,电机控制器P20向第三功率开关器件S3和第二功率开关器件S2发送的驱动信号,驱动第三功率开关器件S3和第二功率开关器件S2导通。电池组P1放电,形成电池组P1的放电回路。电流方向为电池组P1→保险模块P5→主正开关K1→第三功率开关器件S3→第二定子电感L2→第一定子电感L1→第二功率开关器件S2→主负开关K2→电流传感器P6→电池组P1。
电机控制器P20向第三功率开关器件S3和第二功率开关器件S2发送的驱动信号,驱动第三功率开关器件S3和第二功率开关器件S2断开。第二定子电感L2和第一定子电感L1放电,对电池组P1充电,形成电池组P1的充电回路。电流方向为第一定子电感L1→第一功率开关器件S1的二极管VD1→主正开关K1→保险模块P5→电池组P1→电流传感器P6→主负开关K2→第四功率开关器件S4的二极管VD4→第二定子电感L2。
在第五种方式中,电机控制器P20向第三功率开关器件S3和第六功 率开关器件S6发送的驱动信号,驱动第三功率开关器件S3和第六功率开关器件S6导通。电池组P1放电,形成电池组P1的放电回路。电流方向为电池组P1→保险模块P5→主正开关K1→第三功率开关器件S3→第二定子电感L2→第三定子电感L3→第六功率开关器件S6→主负开关K2→电流传感器P6→电池组P1。
电机控制器P20向第三功率开关器件S3和第六功率开关器件S6发送的驱动信号,驱动第三功率开关器件S3和第六功率开关器件S6断开。第二定子电感L2和第三定子电感L3放电,对电池组P1充电,形成电池组P1的充电回路。电流方向为第三定子电感L3→第五功率开关器件S5的二极管VD5→主正开关K1→保险模块P5→电池组P1→电流传感器P6→主负开关K2→第四功率开关器件S4的二极管VD4→第二定子电感L2。
在第六种方式中,电机控制器P20向第三功率开关器件S3、第二功率开关器件S2和第六功率开关器件S6发送的驱动信号,驱动第三功率开关器件S3、第二功率开关器件S2和第六功率开关器件S6导通。电池组P1放电,形成电池组P1的放电回路。电流方向为电池组P1→保险模块P5→主正开关K1→第三功率开关器件S3→第二定子电感L2→第一定子电感L1和第三定子电感L3→第二功率开关器件S2和第六功率开关器件S6→主负开关K2→电流传感器P6→电池组P1。即第一定子电感L1和第三定子电感L3并联后,再与第二定子电感L2串联。
电机控制器P20向第三功率开关器件S3、第二功率开关器件S2和第六功率开关器件S6发送的驱动信号,驱动第三功率开关器件S3、第二功率开关器件S2和第六功率开关器件S6断开。第二定子电感L2、第一定子电感L1和第三定子电感L3放电,对电池组P1充电,形成电池组P1的充电回路。电流方向为第一定子电感L1→第一功率开关器件S1的二极管VD1→主正开关K1→保险模块P5→电池组P1→电流传感器P6→主负开关K2→第四功率开关器件S4的二极管VD4→第二定子电感L2。以及,电流方向为第三定子电感L3→第五功率开关器件S5的二极管VD5→主正开关K1→保险模块P5→电池组P1→电流传感器P6→主负开关K2→第四功率开关器件S4的二极管VD4→第二定子电感L2。
在第七种方式中,电机控制器P20向第五功率开关器件S5和第二功率开关器件S2发送的驱动信号,驱动第五功率开关器件S5和第二功率开关器件S2导通。电池组P1放电,形成电池组P1的放电回路。电流方向为电池组P1→保险模块P5→主正开关K1→第五功率开关器件S5→第三定子电感L3→第一定子电感L1→第二功率开关器件S2→主负开关K2→电流传感器P6→电池组P1。
电机控制器P20向第五功率开关器件S5和第二功率开关器件S2发送的驱动信号,驱动第五功率开关器件S5和第二功率开关器件S2断开。第三定子电感L3和第一定子电感L1放电,对电池组P1充电,形成电池组P1的充电回路。电流方向为第一定子电感L1→第一功率开关器件S1的二极管VD1→主正开关K1→保险模块P5→电池组P1→电流传感器P6→主负开关K2→第六功率开关器件S6的二极管VD6→第三定子电感L3。
在第八种方式中,电机控制器P20向第五功率开关器件S5和第四功率开关器件S4发送的驱动信号,驱动第五功率开关器件S5和第四功率开关器件S4导通。电池组P1放电,形成电池组P1的放电回路。电流方向为电池组P1→保险模块P5→主正开关K1→第五功率开关器件S5→第三定子电感L3→第二定子电感L2→第四功率开关器件S4→主负开关K2→电流传感器P6→电池组P1。
电机控制器P20向第五功率开关器件S5和第四功率开关器件S4发送的驱动信号,驱动第五功率开关器件S5和第四功率开关器件S4断开。第三定子电感L3和第二定子电感L2放电,对电池组P1充电,形成电池组P1的充电回路。电流方向为第二定子电感L2→第三功率开关器件S3的二极管VD3→主正开关K1→保险模块P5→电池组P1→电流传感器P6→主负开关K2→第六功率开关器件S6的二极管VD6→第三定子电感L3。
在第九种方式中,电机控制器P20向第五功率开关器件S5、第二功率开关器件S2和第四功率开关器件S4发送的驱动信号,驱动第五功率开关器件S5、第二功率开关器件S2和第四功率开关器件S4导通。电池组P1放电,形成电池组P1的放电回路。电流方向为电池组P1→保险模块P5→主正开关K1→第五功率开关器件S5→第三定子电感L3→第一定子电感 L1和第二定子电感L2→第二功率开关器件S2和第四功率开关器件S4→主负开关K2→电流传感器P6→电池组P1。即第一定子电感L1和第二定子电感L2并联后,再与第三定子电感L3串联。
电机控制器P20向第五功率开关器件S5、第二功率开关器件S2和第四功率开关器件S4发送的驱动信号,驱动第五功率开关器件S5、第二功率开关器件S2和第四功率开关器件S4断开。第三定子电感L3、第一定子电感L1和第二定子电感L2放电,对电池组P1充电,形成电池组P1的充电回路。电流方向为第二定子电感L2→第三功率开关器件S3的二极管VD3→主正开关K1→保险模块P5→电池组P1→电流传感器P6→主负开关K2→第六功率开关器件S6的二极管VD6→第三定子电感L3。以及,电流方向为第一定子电感L1→第一功率开关器件S1的二极管VD1→主正开关K1→保险模块P5→电池组P1→电流传感器P6→主负开关K2→第六功率开关器件S6的二极管VD6→第三定子电感L3。
需要说明的是,在上述九种方式中,非目标上桥臂开关模块和非目标下桥臂开关模块均处于断开状态。
步骤S501和步骤S502的其他相关说明可参见上述实施例中的说明内容,在此不再赘述。
在本申请实施例中,电池加热***中的电池管理模块确定电池组的状态参数满足预设加热条件,向电机控制器发送控制信号,控制电机控制器向目标上桥臂开关模块和目标下桥臂开关模块输出驱动信号,以控制所述目标上桥臂开关模块和所述目标下桥臂开关模块周期性地导通和断开。使得电池组、主正开关、上桥臂中的开关模块、电机、下桥臂中的开关模块、主负开关所形成的回路中产生了交流电流,即电池组交替进行充电和放电。电池组具有内阻,在电池组交替进行充电和放电的过程中,交流电流流过电池组的内阻产生热量,即电池组从内部发热,从而提高了电池组的加热效率。由于本申请实施例中的热量是由于交流电流经过电池组而产生的,电池组内部发热均匀。而且,由于未改变逆变器和电机的结构,因此也不会产生额外的结构改造费用。
图6为本申请另一实施例中一种电池加热***的控制方法的流程图。 图6与图5的不同之处在于,图6所示的电池加热***的控制方法还可包括步骤S503至步骤S514。
在步骤S503中,整车控制器检测车辆状态,确定电机处于非工作状态,向电机控制器发送加热指令。
电池加热***还可包括整车控制器,整车控制器可检测车辆中各个部件的状态,以得到车辆状态。若电机处于非工作状态,则车辆处于静置状态,即处于非行驶状态。车辆处于非行驶状态,电池加热***能够进入加热模式。整车控制器向电机控制器发送加热指令,通知电机控制器电池加热***可进入加热模式。
需要说明的是,在步骤S503之前,电池管理模块可采集电池组的状态参数,若电池组的状态参数满足预设加热条件,整车控制器执行步骤S503。
在步骤S504中,电机控制器接收加热指令,向整车控制器发送通信请求。
电机控制器接收加热指令,需要与电池管理模块建立通信。则电机控制器向整车控制器发送通信请求,以请求整车控制器开放电机控制器与电池管理模块之间的通信权限。
在步骤S505中,整车控制器接收通信请求,开放电机控制器与电池管理模块之间的通信权限。
比如,整车控制器可为电机控制器与电池管理模块配置通信参数,从而开放电机控制器与电池管理模块之间的通信权限。
在步骤S506中,电机控制器与电池管理模块进行握手通信,建立通信连接。
在电机控制器与电池管理模块之间的通信权限被开放之后,电机控制器与电池管理模块可建立通信连接。具体的,可由电机控制器向电池管理模块发起握手通信,也可由电池管理模块向电机控制器发起握手通信,从而建立电机控制器与电池管理模块之间的通信连接。
在步骤S507中,电池管理模块驱动主负开关和主正开关依次导通。
电池加热***进入加热模式,电池管理模块可先驱动主负开关导通, 再驱动主正开关导通。在步骤S507之后,电池管理模块还可将主负开关和主正开关的通断状态向整车控制器上报。整车控制器确定主负开关和主正开关均导通,通知电机控制器,电机控制器再向目标上桥臂开关模块和目标下桥臂开关模块输出驱动信号。
在步骤S508中,电池管理模块采集电池组的状态参数,当状态参数超出参数安全范围时,向电机控制器发送停止信号,以控制电机控制器停止输出驱动信号。
其中,状态参数可包括温度和/或电压。若状态参数包括温度,则参数安全范围包括温度安全范围。若电池组的温度超出参数安全范围,比如电池组发生过温现象,则电池管理模块向电机控制器发送停止信号,电机控制器停止向开关模块输出驱动信号。若状态参数包括电压,则参数安全范围包括电压安全范围。若电池组的电压超出电压安全范围,比如电池组出现欠压现象,则电池管理模块向电机控制器发送停止信号,电机控制器停止向开关模块输出驱动信号。若状态参数包括温度和电压,则电池组的温度超出参数安全范围,或者电池组的电压超出电压安全范围,电池管理模块向电机控制器发送停止信号,电机控制器停止向开关模块输出驱动信号。参数安全范围可根据工作场景和工作需求设定,在此并不限定。
电池管理模块实时采集电池组的状态参数,实时进行状态参数的检测。若发现电池组异常,为了保证电池加热***的安全,电池加热***退出加热模式。
若发现电池组异常,为了进一步保证电池加热***的安全,电池管理模块还可控制主正开关和主负开关断开,彻底切断电池加热***中的回路。
在步骤S509中,电机控制器采集开关模块的温度,当开关模块的温度超出开关温度安全阈值时,停止输出驱动信号。
具体可在开关模块处设置温度传感器,以采集开关模块的温度。若开关模块的温度(开关模块包括功率开关器件,开关模块的温度包括功率开关器件的温度)超出开关温度安全阈值,表明开关模块温度出现异常,需要退出加热模式。因此电机控制器停止输出驱动信号。
在步骤S510中,电池管理模块基于采集的状态参数,计算得到驱动信号的期望频率和期望占空比,并将驱动信号的期望频率和期望占空比发送给电机控制器。
电池加热***还包括电流传感器。状态参数还包括电流,具体的,电流为电流传感器采集的电流。
在一些示例中,可利用比例-积分-导数(proportion-integral-derivative,PID)算法或其他反馈调节算法,根据温度、荷电状态、电流等实时采集的状态参数,计算得到驱动信号的期望频率和期望占空比。电池管理模块可周期性采集状态参数,周期性计算驱动信号的期望频率和期望占空比。电池管理模块可实时地将驱动信号的期望频率和期望占空比发送给电机控制器,也可周期性地将驱动信号的期望频率和期望占空比发送给电机控制器,在此并不限定。
在步骤S511中,电机控制器将输出的驱动信号的频率和占空比调整为期望频率和期望占空比,控制目标上桥臂开关模块和目标下桥臂开关模块的导通时长和断开时长。
驱动信号的频率和占空比发生变化,则电池加热***中的温度、荷电状态、电流等均会随之变化。驱动信号驱动逆变器中的各开关模块产生的交流电流的大小与驱动信号的频率和占空比相关。交流电流的大小越大,则电池组产生的热量越多。电机控制器可将输出的驱动信号的频率调整为期望频率,将输出的驱动信号的占空比调整为期望占空比,从而调整电池加热***中的温度、荷电状态、电流等,以稳定电池加热***的加热速率。驱动信号的频率和占空比的调整可周期性进行,也可实时进行,在此并不限定。
在步骤S512中,电池管理模块确定电池组的温度达到预期温度阈值,向电机控制器发送停止信号。
预期温度阈值为电池可正常工作的温度阈值,电池组的温度达到预期温度阈值,则不需要继续对电池进行加热,电池加热***可退出加热模式。电池管理模块可向电机控制器发送停止信号,以控制电机控制器停止向开关模块输出驱动信号。
在步骤S513中,电机控制器接收停止信号,停止输出驱动信号。
在一些示例中,电池管理模块确定电池组的温度达到预期温度阈值,还可控制主正开关和主负开关断开,以切断电池加热***的回路。
在一些示例中,在电机控制器停止输出驱动信号,电池加热***回路被切断后。可断开电池管理模块与电机控制器之间的通信连接,具体可由电池管理模块或电机控制器发起通信切断,在此并不限定。
电机控制器和电池管理模块还可向整车控制器上报电池加热***退出加热模式,以及电池管理模块与电机控制器之间的通信连接已经断开的信息。
在一些示例中,驱动信号的频率的范围为100赫兹至100000赫兹。驱动信号的占空比的范围为5%至50%。
在一些示例中,为了保证各个开关模块的安全,还可设置驱动信号中的死区时间。具体的,同一桥臂中上桥臂的开关模块的驱动信号的电平改变的时刻,与同一桥臂中下桥臂的开关模块的驱动信号的电平改变的时刻之间设置有死区时间。死区时间与开关模块的导通延时、导通时长、断开延时和断开时长相关。
死区时间的相关说明可参见上述实施例中的说明内容,在此不再赘述。
需要明确的是,本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同或相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。对于控制方法实施例而言,相关之处可以参见电池加热***实施例的说明部分。本申请并不局限于上文所描述并在图中示出的特定步骤和结构。本领域的技术人员可以在领会本申请的精神之后,作出各种改变、修改和添加,或者改变步骤之间的顺序。并且,为了简明起见,这里省略对已知方法技术的详细描述。
本领域技术人员应能理解,上述实施例均是示例性而非限制性的。在不同实施例中出现的不同技术特征可以进行组合,以取得有益效果。本领域技术人员在研究附图、说明书及权利要求书的基础上,应能理解并实现所揭示的实施例的其他变化的实施例。在权利要求书中,术语“包括”并 不排除其他装置或步骤;不定冠词“一个”不排除多个;术语“第一”、“第二”用于标示名称而非用于表示任何特定的顺序。权利要求中的任何附图标记均不应被理解为对保护范围的限制。权利要求中出现的多个部分的功能可以由一个单独的硬件或软件模块来实现。某些技术特征出现在不同的从属权利要求中并不意味着不能将这些技术特征进行组合以取得有益效果。

Claims (22)

  1. 一种电池加热***,包括与电池组的正极连接的主正开关、与所述电池组的负极连接的主负开关、与所述主正开关和所述主负开关连接的逆变器、与所述逆变器连接的电机,以及电池管理模块;
    所述逆变器包括并联的支撑电容、第一相桥臂、第二相桥臂和第三相桥臂,所述第一相桥臂、所述第二相桥臂和所述第三相桥臂均具有上桥臂和下桥臂,且所述上桥臂设置有开关模块,所述下桥臂设置有开关模块;
    所述电机的第一相输入端、第二相输入端和第三相输入端分别与所述第一相桥臂中上桥臂和下桥臂的连接点、所述第二相桥臂中上桥臂和下桥臂的连接点和所述第三相桥臂中上桥臂和下桥臂的连接点连接;
    所述逆变器还包括电机控制器,所述电机控制器用于向目标上桥臂开关模块和目标下桥臂开关模块输出驱动信号,以控制所述目标上桥臂开关模块和所述目标下桥臂开关模块周期性地导通和断开,所述目标上桥臂开关模块为所述第一相桥臂、所述第二相桥臂、所述第三相桥臂中任意一个桥臂的上桥臂的开关模块,所述目标下桥臂开关模块为除所述目标上桥臂开关模块所在的桥臂外的至少一个桥臂的下桥臂的开关模块;
    所述电池管理模块用于采集所述电池组的状态参数,当所述电池组的所述状态参数满足预设加热条件时,向所述电机控制器发送控制信号,以控制所述电机控制器输出所述驱动信号。
  2. 根据权利要求1所述的电池加热***,其中,所述状态参数包括温度和荷电状态,所述预设加热条件包括所述温度低于加热温度阈值和所述荷电状态高于加热允许荷电状态阈值。
  3. 根据权利要求1所述的电池加热***,其中,所述开关模块具有二极管;
    针对所述上桥臂的所述开关模块,所述二极管的阳极与所述上桥臂和所述下桥臂的连接点连接,所述二极管的阴极位于所述上桥臂与所述主正开关之间;
    针对所述下桥臂的所述开关模块,所述二极管的阳极位于所述下桥臂 与所述主负开关之间,所述二极管的阴极与所述上桥臂和所述下桥臂的连接点连接。
  4. 根据权利要求1所述的电池加热***,其中,所述电机控制器包括分别与所述第一相桥臂、所述第二相桥臂和所述第三相桥臂对应的三个驱动信号生成单元;
    所述驱动信号生成单元包括第一滤波子单元、第二滤波子单元、第一或非模块和第二或非模块;
    所述第一滤波子单元的第一端与上桥臂原始驱动信号端连接,所述第一滤波子单元的第二端与所述第一或非模块的第一输入端连接,所述第一滤波子单元的第三端与所述第一或非模块的第二输入端和与地连接;
    所述第二滤波子单元的第一端与下桥臂原始驱动信号端连接,所述第二滤波子单元的第二端与所述第一或非模块的第三输入端连接,所述第二滤波子单元的第三端与所述第一或非模块的第四输入端和地连接;
    所述第一或非模块的第一输出端与所述第二或非模块的第二输入端连接,所述第一或非模块的第二输出端与所述第二或非模块的第三输入端连接,所述第一或非模块用于对所述第一或非模块的第一输入端的信号和所述第一或非模块的第二输入端的信号进行或非操作,并从所述第一或非模块的第一输出端输出所述第二或非模块第二输入端的输入信号,以及,对所述第一或非模块的第三输入端的信号和所述第一或非模块的第四输入端的信号进行或非操作,并从所述第一或非模块的第二输出端输出所述第二或非模块第三输入端的输入信号;
    所述第二或非模块的第一输入端与所述下桥臂原始驱动信号端连接,所述第二或非模块的第四输入端与所述上桥臂原始驱动信号端连接,所述第二或非模块的第一输出端与桥臂中上桥臂的开关模块的控制端连接,所述第二或非模块的第二输出端与桥臂中下桥臂的开关模块的控制端连接,所述第二或非模块用于对所述第二或非模块的第一输入端的信号和所述第二或非模块的第二输入端的信号进行或非操作,并从所述第二或非模块的第一输出端输出桥臂中上桥臂的开关模块的驱动信号,以及对所述第二或非模块的第三输入端的信号和所述第二或非模块的第四输入端的信号进行 或非操作,并从所述第二或非模块的第二输出端输出桥臂中下桥臂的开关模块的驱动信号。
  5. 根据权利要求1所述的电池加热***,其中,同一桥臂中上桥臂的开关模块的驱动信号的电平改变的时刻,与同一桥臂中下桥臂的开关模块的驱动信号的电平改变的时刻之间设置有死区时间。
  6. 根据权利要求1所述的电池加热***,其中,所述电池加热***还包括设置于所述电池组的正极与所述主正开关之间的保险模块。
  7. 根据权利要求1所述的电池加热***,其中,所述电池加热***还包括设置于所述电池组的负极与所述主负开关之间的电流传感器。
  8. 根据权利要求1所述的电池加热***,其中,所述驱动信号的频率的范围为100赫兹至100000赫兹,所述驱动信号的占空比的范围为5%至50%。
  9. 根据权利要求1所述的电池加热***,其中,所述开关模块包括绝缘栅双极型晶体管IGBT芯片、IGBT模块、金属-氧化物半导体场效应晶体管MOSFET中的一种或多种。
  10. 根据权利要求1所述的电池加热***,其中,还包括:
    整车控制器,用于检测车辆状态,确定所述电机处于非工作状态,向所述电机控制器发送加热指令;以及,用于接收所述电机控制器发送的通信请求,开放所述电机控制器与所述电池管理模块之间的通信权限。
  11. 一种电池加热***的控制方法,应用于权利要求1至10中任意一项所述的电池加热***,所述电池加热***的控制方法包括:
    所述电池管理模块采集所述电池组的状态参数,当所述电池组的状态参数满足预设加热条件时,向所述电机控制器发送控制信号;
    所述电机控制器接收所述控制信号,向目标上桥臂开关模块和目标下桥臂开关模块输出驱动信号,控制所述目标上桥臂开关模块和所述目标下桥臂开关模块周期性地导通和断开。
  12. 根据权利要求11所述的电池加热***的控制方法,其中,所述状态参数包括温度和荷电状态,所述预设加热条件包括所述温度低于预期 温度阈值和所述荷电状态高于加热允许荷电状态阈值。
  13. 根据权利要求11所述的电池加热***的控制方法,其中,所述电池加热***还包括整车控制器;
    在所述电池管理模块向所述电机控制器发送控制信号之前,所述电池加热***的控制方法还包括:
    所述整车控制器检测车辆状态,确定所述电机处于非工作状态,向所述电机控制器发送加热指令;
    所述电机控制器接收所述加热指令,向所述整车控制器发送通信请求;
    所述整车控制器接收所述通信请求,开放所述电机控制器与所述电池管理模块之间的通信权限;
    所述电机控制器与所述电池管理模块进行握手通信,建立通信连接。
  14. 根据权利要求11所述的电池加热***的控制方法,其中,在所述电池管理模块向所述电机控制器发送控制信号之前,还包括:
    所述电池管理模块驱动所述主负开关和所述主正开关依次导通。
  15. 根据权利要求11所述的电池加热***的控制方法,其中,所述状态参数包括温度和/或电压,
    所述电池加热***的控制方法还包括:
    所述电池管理模块采集所述电池组的所述状态参数,当所述状态参数超出参数安全范围时,向所述电机控制器发送停止信号,以控制所述电机控制器停止输出所述驱动信号。
  16. 根据权利要求11所述的电池加热***的控制方法,其中,还包括:
    所述电机控制器采集所述开关模块的温度,当所述开关模块的温度超出开关温度安全阈值时,停止输出所述驱动信号。
  17. 根据权利要求12所述的电池加热***的控制方法,其中,所述电池加热***还包括电流传感器,所述状态参数还包括电流;
    所述电池加热***的控制方法,还包括:
    所述电池管理模块基于采集的所述状态参数,计算得到所述驱动信号 的期望频率和期望占空比,并将所述驱动信号的期望频率和期望占空比发送给所述电机控制器;
    所述电机控制器将输出的所述驱动信号的频率和占空比调整为所述期望频率和所述期望占空比,控制所述目标上桥臂开关模块和所述目标下桥臂开关模块的导通时长和断开时长。
  18. 根据权利要求11所述的电池加热***的控制方法,其中,还包括:
    所述电池管理模块确定所述电池组的温度达到预期温度阈值,向所述电机控制器发送停止信号;
    所述电机控制器接收所述停止信号,停止输出所述驱动信号。
  19. 根据权利要求11所述的电池加热***的控制方法,其中,
    所述目标上桥臂开关模块包括所述第一相桥臂的上桥臂的开关模块,所述目标下桥臂开关模块包括所述第二相桥臂的下桥臂的开关模块;
    或者,
    所述目标上桥臂开关模块包括所述第一相桥臂的上桥臂的开关模块,所述目标下桥臂开关模块包括所述第三相桥臂的下桥臂的开关模块;
    或者,
    所述目标上桥臂开关模块包括所述第一相桥臂的上桥臂的开关模块,所述目标下桥臂开关模块包括所述第二相桥臂的下桥臂的开关模块和所述第三相桥臂的下桥臂的开关模块;
    或者,
    所述目标上桥臂开关模块包括所述第二相桥臂的上桥臂的开关模块,所述目标下桥臂开关模块包括所述第一相桥臂的下桥臂的开关模块;
    或者,
    所述目标上桥臂开关模块包括所述第二相桥臂的上桥臂的开关模块,所述目标下桥臂开关模块包括所述第三相桥臂的下桥臂的开关模块;
    或者,
    所述目标上桥臂开关模块包括所述第二相桥臂的上桥臂的开关模块,所述目标下桥臂开关模块包括所述第一相桥臂的下桥臂的开关模块和所述 第三相桥臂的下桥臂的开关模块;
    或者,
    所述目标上桥臂开关模块包括所述第三相桥臂的上桥臂的开关模块,所述目标下桥臂开关模块包括所述第一相桥臂的下桥臂的开关模块;
    或者,
    所述目标上桥臂开关模块包括所述第三相桥臂的上桥臂的开关模块,所述目标下桥臂开关模块包括所述第二相桥臂的下桥臂的开关模块;
    或者,
    所述目标上桥臂开关模块包括所述第三相桥臂的上桥臂的开关模块,所述目标下桥臂开关模块包括所述第一相桥臂的下桥臂的开关模块和所述第二相桥臂的下桥臂的开关模块。
  20. 根据权利要求11所述的电池加热***的控制方法,其中,所述驱动信号的频率的范围为100赫兹至100000赫兹,所述驱动信号的占空比的范围为5%至50%。
  21. 根据权利要求11所述的电池加热***的控制方法,其中,同一桥臂中上桥臂的开关模块的驱动信号的电平改变的时刻,与同一桥臂中下桥臂的开关模块的驱动信号的电平改变的时刻之间设置有死区时间。
  22. 根据权利要求11所述的电池加热***的控制方法,其中,所述死区时间与所述开关模块的导通延时、导通时长、断开延时和断开时长相关。
PCT/CN2019/129258 2018-12-29 2019-12-27 电池加热***及其控制方法 WO2020135734A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020207031197A KR102455823B1 (ko) 2018-12-29 2019-12-27 배터리 가열 시스템 및 이의 제어 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811641276.2A CN110962631B (zh) 2018-12-29 2018-12-29 电池加热***及其控制方法
CN201811641276.2 2018-12-29

Publications (1)

Publication Number Publication Date
WO2020135734A1 true WO2020135734A1 (zh) 2020-07-02

Family

ID=65724194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/129258 WO2020135734A1 (zh) 2018-12-29 2019-12-27 电池加热***及其控制方法

Country Status (6)

Country Link
US (2) US10971771B2 (zh)
EP (1) EP3674132B1 (zh)
JP (2) JP6861791B2 (zh)
KR (1) KR102455823B1 (zh)
CN (1) CN110962631B (zh)
WO (1) WO2020135734A1 (zh)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110896233B (zh) * 2018-09-12 2021-07-30 宁德时代新能源科技股份有限公司 电池管理***
WO2020110259A1 (ja) * 2018-11-29 2020-06-04 三菱電機株式会社 回転電機の駆動装置
CN110962692B (zh) 2019-06-24 2020-12-11 宁德时代新能源科技股份有限公司 电池组加热***及其控制方法
CN113745700B (zh) * 2020-05-29 2023-08-08 比亚迪股份有限公司 电动汽车及其动力电池的加热方法、装置和存储介质
CN113733987B (zh) * 2020-05-29 2023-07-14 比亚迪股份有限公司 电池能量处理装置和方法、车辆
CN111404245B (zh) * 2020-06-04 2020-10-23 比亚迪股份有限公司 能量转换装置及其安全控制方法
CN111391718B (zh) * 2020-06-04 2020-10-23 比亚迪股份有限公司 电池能量处理装置、方法及车辆
CN111391719B (zh) * 2020-06-04 2020-10-20 比亚迪股份有限公司 能量转换装置及车辆
CN113752912B (zh) * 2020-06-04 2023-06-13 比亚迪股份有限公司 车辆、能量转换装置及其控制方法
CN113752908B (zh) * 2020-06-04 2023-12-12 比亚迪股份有限公司 车辆、能量转换装置及其控制方法
CN113752911B (zh) * 2020-06-04 2023-06-13 比亚迪股份有限公司 能量处理装置、方法及车辆
CN111605439B (zh) * 2020-06-08 2021-08-27 安徽江淮汽车集团股份有限公司 电机辅助加热控制方法、装置、设备及存储介质
CN113844334B (zh) * 2020-06-28 2024-05-07 比亚迪股份有限公司 车辆、能量转换装置及其控制方法
CN113844333A (zh) * 2020-06-28 2021-12-28 比亚迪股份有限公司 一种能量转换装置的控制方法、能量装换装置及车辆
CN113928183B (zh) * 2020-06-29 2023-06-13 比亚迪股份有限公司 车辆、能量转换装置及其控制方法
JP2022019201A (ja) * 2020-07-17 2022-01-27 本田技研工業株式会社 昇温装置
CN113972707A (zh) * 2020-07-23 2022-01-25 比亚迪股份有限公司 车辆、能量转换装置及其控制方法
CN114069102B (zh) * 2020-07-31 2024-06-18 比亚迪股份有限公司 一种动力电池的自加热方法、装置、***及电动车辆
CN112216908A (zh) * 2020-11-13 2021-01-12 东风柳州汽车有限公司 一种锂离子电池包自加热方法及***
EP4046862B1 (en) 2020-12-24 2024-06-12 Contemporary Amperex Technology Co., Limited Control method and apparatus, power system and electric vehicle
CN114670656A (zh) * 2020-12-24 2022-06-28 宁德时代新能源科技股份有限公司 控制方法、装置、动力***及电动汽车
EP4261063A4 (en) * 2020-12-30 2024-02-28 Huawei Technologies Co., Ltd. VEHICLE HEAT MANAGEMENT SYSTEM, DRIVE DEVICE AND ELECTRIC VEHICLE
EP4102619A4 (en) * 2021-01-08 2023-07-19 Contemporary Amperex Technology Co., Limited BATTERY HEATING MANAGEMENT SYSTEM, METHOD OF CONTROLLING BATTERY HEATING SYSTEM, DEVICE, DEVICE AND MEDIUM
CN114851918B (zh) * 2021-01-20 2024-01-23 宁德时代新能源科技股份有限公司 充电加热装置、充电加热装置的控制方法及装置
CN112977171B (zh) * 2021-04-30 2022-05-31 重庆长安新能源汽车科技有限公司 一种电动汽车及动力电池脉冲加热***
CN113043870B (zh) * 2021-04-30 2022-05-31 重庆长安新能源汽车科技有限公司 一种动力电池充电***及电动汽车
CN112977173B (zh) * 2021-04-30 2022-05-03 重庆长安新能源汽车科技有限公司 一种电动汽车及其动力电池脉冲加热***和加热方法
CN113022344B (zh) * 2021-04-30 2022-05-31 重庆长安新能源汽车科技有限公司 一种基于双电机的动力电池充电***及电动汽车
CN113085516B (zh) * 2021-04-30 2022-05-06 重庆长安新能源汽车科技有限公司 一种电动汽车的动力电池脉冲加热***及加热方法
CN113161649B (zh) * 2021-04-30 2022-10-04 重庆长安新能源汽车科技有限公司 确定对动力电池脉冲加热时的最优脉冲电流参数的方法
CN113183826B (zh) * 2021-05-14 2024-03-26 苏州汇川联合动力***股份有限公司 基于母线谐振的电池加热方法、装置及车辆
JP7483760B2 (ja) * 2021-08-05 2024-05-15 寧徳時代新能源科技股▲分▼有限公司 動力電池加熱システム、その制御方法及び制御回路
JP7488288B2 (ja) * 2021-08-31 2024-05-21 寧徳時代新能源科技股▲分▼有限公司 電池パック加熱方法、電池加熱システム及び電力消費装置
KR102625180B1 (ko) 2021-09-08 2024-01-16 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 파워 배터리 충전 방법 및 배터리 관리 시스템
CN115832525B (zh) 2021-09-28 2024-05-14 宁德时代新能源科技股份有限公司 一种加热***、加热方法及装置、用电设备
US20230163378A1 (en) * 2021-11-24 2023-05-25 Rivian Ip Holdings, Llc Systems and methods for heating batteries
CN114274844B (zh) * 2021-12-29 2023-10-24 臻驱科技(上海)有限公司 一种用于电机的动力电池的加热控制方法、***及电动车
CN114834319B (zh) * 2022-03-04 2023-06-06 华为电动技术有限公司 动力电池加热方法、装置、芯片***及电动汽车
CN114725544A (zh) * 2022-03-28 2022-07-08 华为数字能源技术有限公司 电池管理***及电池***
WO2023201659A1 (zh) * 2022-04-21 2023-10-26 宁德时代新能源科技股份有限公司 电池加热***、及其控制方法、装置和电子设备
CN114889497B (zh) * 2022-04-28 2024-05-07 重庆大学 一种电动车辆动力***复合加热装置和控制方法
CN117639170A (zh) * 2022-05-10 2024-03-01 宁德时代新能源科技股份有限公司 动力电池控制电路、***及其控制方法
CN117673570A (zh) * 2022-08-31 2024-03-08 比亚迪股份有限公司 电池加热装置和车辆
CN115649012B (zh) * 2022-10-31 2024-06-04 重庆长安汽车股份有限公司 电机主动降效加热控制方法、装置、设备、车辆及存储介质
CN115648966A (zh) * 2022-10-31 2023-01-31 华为数字能源技术有限公司 一种电机控制器、控制单元、电驱动***以及电动车辆
CN115939595B (zh) * 2022-12-01 2024-05-07 广东力科新能源有限公司 一种电池加热的方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5291388A (en) * 1992-04-16 1994-03-01 Westinghouse Electric Corp. Reconfigurable inverter apparatus for battery-powered vehicle drive
US20060290325A1 (en) * 2005-06-13 2006-12-28 Ashtiani Cyrus N Heating of Batteries Using Reactive Power
CN103419654A (zh) * 2012-05-22 2013-12-04 比亚迪股份有限公司 电动汽车、电动汽车的动力***及电池加热方法
CN103560304A (zh) * 2013-11-19 2014-02-05 东风汽车公司 一种电动汽车动力电池组加热控制方法
CN107666028A (zh) * 2017-08-16 2018-02-06 同济大学 一种电动车用锂离子电池低温交流加热装置
CN108123637A (zh) * 2016-11-29 2018-06-05 赵吉彬 一种新型三相全桥逆变器调制技术
CN108306078A (zh) * 2018-03-07 2018-07-20 苏州汇川联合动力***有限公司 动力电池加热***及方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100740107B1 (ko) * 2005-09-08 2007-07-16 삼성에스디아이 주식회사 제어신호 생성회로 및 이를 이용한 배터리 관리 시스템
JP4888600B2 (ja) 2008-10-31 2012-02-29 トヨタ自動車株式会社 電動車両の電源システム、電動車両および電動車両の制御方法
JP5502603B2 (ja) * 2010-06-04 2014-05-28 本田技研工業株式会社 車両の電池加温装置
JP4951721B2 (ja) * 2010-07-29 2012-06-13 パナソニック株式会社 電池昇温回路および電池昇温装置
US8947049B2 (en) * 2010-07-30 2015-02-03 Byd Company Limited Battery heating circuits and methods using voltage inversion and freewheeling circuit components
JP5527183B2 (ja) * 2010-12-01 2014-06-18 株式会社デンソー 電池制御システム、充放電制御ecu
JP5338799B2 (ja) * 2010-12-20 2013-11-13 株式会社日本自動車部品総合研究所 バッテリ昇温システム
JP5259752B2 (ja) * 2011-02-04 2013-08-07 株式会社日立製作所 車両走行用モータの制御装置及びそれを搭載した車両
DE102011004624A1 (de) * 2011-02-24 2012-08-30 Zf Friedrichshafen Ag Verfahren und Vorrichtung zum Erwärmen einer Fahrbatterie eines Fahrzeugs
JP5849917B2 (ja) * 2012-09-28 2016-02-03 株式会社豊田自動織機 電気自動車におけるバッテリ昇温制御装置
JP2014073045A (ja) 2012-10-01 2014-04-21 Toyota Motor Corp スイッチング回路
JP6024601B2 (ja) * 2012-11-26 2016-11-16 株式会社豊田自動織機 インバータの暖機制御装置
US9831534B2 (en) * 2013-10-18 2017-11-28 Textron Innovations Inc. Lithium ion battery heater systems and methods
US9442029B2 (en) * 2013-12-27 2016-09-13 Deere & Company Methods of torque estimation and compensation and systems thereof
JP6503636B2 (ja) * 2014-05-12 2019-04-24 株式会社ジェイテクト モータ制御装置
CN104538701B (zh) 2014-11-28 2016-08-17 富奥汽车零部件股份有限公司 一种内置于电机驱动***的电池加热方法及结构
CN204376462U (zh) * 2014-12-31 2015-06-03 昆明理工大学 一种双层桥臂串联蓄电池组高效均衡器拓扑电路
JP6305363B2 (ja) 2015-03-06 2018-04-04 株式会社東芝 インバータ装置および車両
JP6585525B2 (ja) * 2016-03-08 2019-10-02 本田技研工業株式会社 電源システム
CN105932363B (zh) * 2016-05-16 2019-03-19 北京理工大学 一种电源***的自加热方法
CN105762434B (zh) * 2016-05-16 2018-12-07 北京理工大学 一种具有自加热功能的电源***和车辆
CN106025443B (zh) * 2016-07-25 2018-12-07 北京理工大学 一种基于lc谐振进行加热的电源***及车辆
JP2018064322A (ja) * 2016-10-11 2018-04-19 株式会社豊田自動織機 車両用インバータ駆動装置及び車両用流体機械
US10611246B2 (en) * 2017-03-29 2020-04-07 Ford Global Technologies, Llc Gate driver with temperature compensated turn-off

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5291388A (en) * 1992-04-16 1994-03-01 Westinghouse Electric Corp. Reconfigurable inverter apparatus for battery-powered vehicle drive
US20060290325A1 (en) * 2005-06-13 2006-12-28 Ashtiani Cyrus N Heating of Batteries Using Reactive Power
CN103419654A (zh) * 2012-05-22 2013-12-04 比亚迪股份有限公司 电动汽车、电动汽车的动力***及电池加热方法
CN103560304A (zh) * 2013-11-19 2014-02-05 东风汽车公司 一种电动汽车动力电池组加热控制方法
CN108123637A (zh) * 2016-11-29 2018-06-05 赵吉彬 一种新型三相全桥逆变器调制技术
CN107666028A (zh) * 2017-08-16 2018-02-06 同济大学 一种电动车用锂离子电池低温交流加热装置
CN108306078A (zh) * 2018-03-07 2018-07-20 苏州汇川联合动力***有限公司 动力电池加热***及方法

Also Published As

Publication number Publication date
KR20200139201A (ko) 2020-12-11
US20200212520A1 (en) 2020-07-02
JP6861791B2 (ja) 2021-04-21
EP3674132A1 (en) 2020-07-01
US10971771B2 (en) 2021-04-06
CN110962631B (zh) 2020-11-17
CN110962631A (zh) 2020-04-07
US20210043990A1 (en) 2021-02-11
JP2021119561A (ja) 2021-08-12
EP3674132B1 (en) 2020-11-04
JP7113933B2 (ja) 2022-08-05
KR102455823B1 (ko) 2022-10-19
JP2020110042A (ja) 2020-07-16

Similar Documents

Publication Publication Date Title
WO2020135734A1 (zh) 电池加热***及其控制方法
KR102278905B1 (ko) 배터리 가열 시스템 및 이의 제어 방법
WO2020133615A1 (zh) 一种电池加热***
WO2020259104A1 (zh) 开关控制装置及方法、电机控制器和电池组加热控制***
WO2020259071A1 (zh) 电池组加热***及其控制方法
WO2023061278A1 (zh) 电池***及供电***
US11699957B2 (en) Energy conversion system, energy conversion method, and power system
Dong et al. Analysis of critical inductance and capacitor voltage ripple for a bidirectional Z-source inverter
US8087259B2 (en) Control method and system
JP2013176252A (ja) 電力変換装置
EP4398376A1 (en) Battery system and power supply system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19904406

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207031197

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19904406

Country of ref document: EP

Kind code of ref document: A1