WO2020134974A1 - 冰箱 - Google Patents

冰箱 Download PDF

Info

Publication number
WO2020134974A1
WO2020134974A1 PCT/CN2019/123678 CN2019123678W WO2020134974A1 WO 2020134974 A1 WO2020134974 A1 WO 2020134974A1 CN 2019123678 W CN2019123678 W CN 2019123678W WO 2020134974 A1 WO2020134974 A1 WO 2020134974A1
Authority
WO
WIPO (PCT)
Prior art keywords
partition wall
cold air
compartment
refrigerator
cooler
Prior art date
Application number
PCT/CN2019/123678
Other languages
English (en)
French (fr)
Inventor
吉池真史
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Aqua株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司, Aqua株式会社 filed Critical 青岛海尔电冰箱有限公司
Priority to CN201980028115.2A priority Critical patent/CN112074699A/zh
Publication of WO2020134974A1 publication Critical patent/WO2020134974A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/08Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation using ducts

Definitions

  • the invention relates to a refrigerator, which cools and stores foods in a storage room, and particularly relates to a refrigerator with reduced overall cost.
  • the return air duct of the freezer compartment is not provided in the heat insulation partition wall, but is provided inside the box.
  • the refrigeration refrigerator 100 has a structure shown in FIG. 7. 7 is a cross-sectional view illustrating a conventional refrigeration refrigerator 100.
  • a freezer compartment 101 is provided in the upper stage, and a refrigerating compartment 102 is provided in the lower stage.
  • the freezer compartment 101 and the refrigerating compartment 102 are partitioned in the vertical direction by a heat-insulating partition wall 103.
  • a cooling compartment 104 is provided, and inside the cooling compartment 104, a cooler 105 and a blower 106 are provided.
  • the heat insulation partition wall 103 is provided with a return air duct 107 for the freezer compartment and a return air duct 108 for the refrigerating compartment.
  • the return air duct 107 for the freezer compartment is used to return the cold air passing through the freezer compartment 101 to the cooling compartment 104 for refrigeration
  • the room return air duct 108 is used to return the cold air passing through the refrigerating room 102 to the cooling room 104.
  • the cold air is cooled by the cooler 105 of the cooling room 104 and then sent to the freezing room 101 and the refrigerating room 102 by the blower 106.
  • the cold air returns to the cooling compartment 104 via the freezing compartment return air duct 107 and the refrigerating compartment return air duct 108 (for example, refer to Patent Document 1).
  • the return air duct 107 for the freezer compartment and the return air duct 108 for the refrigerating compartment are formed through the heat insulation partition wall 103. After passing through the freezing compartment 101, the cold air returns to the defrost heater 109 side and the region below the cooler 105, and then is sucked into the cooling compartment 104 from below the cooler 105.
  • the freezer compartment return air duct 107 In the refrigerating refrigerator 100, it is necessary to form the freezer compartment return air duct 107 on the heat insulation partition wall 103, which makes it difficult to reduce the cost.
  • the heat insulation partition 103 forms the return air duct 107 of the freezer compartment, parts such as aluminum sheets and aluminum bands need to be attached to the return air duct 107 of the freezer compartment. The number of components increases, and it is difficult to reduce the overall cost of the refrigerator 100.
  • the present invention has been made in light of the above circumstances, and an object of the present invention is to provide a refrigerator that reduces the overall cost.
  • the return air duct of the freezer compartment is not provided in the heat insulation partition wall, but is provided inside the box.
  • the refrigerator of the present invention includes: a refrigerator compartment and a freezer compartment, which are formed by partitioning the inside of the heat insulation box by a heat insulation partition wall; a cooling compartment, provided with a cooler, to cool the cold air supplied to the refrigerator compartment and the freezer compartment , Above the cooler, a blower is provided to send the cold air to the refrigerator compartment and the freezer compartment; a partition wall that partitions the front surface of the cooling compartment in the depth direction; and the freezer compartment returns The air duct returns the cold air from the freezer compartment to the cooling compartment; the width of the cooling compartment in the depth direction is configured such that the area where the cooler is provided is wider than the area where the blower is provided, in On one side of the freezer compartment, the return air duct of the freezer compartment is provided outside the heat insulation partition wall.
  • the lower end of the partition wall is located above the outer peripheral surface of the heat-insulating partition wall, and at least in the area where the cooler is provided, the partition wall is formed There is a protruding portion that protrudes toward the freezing compartment side.
  • a cold air forcing plate is provided at the lower end of the partition wall for guiding the cold air in the return air duct of the freezing chamber to the space below the cooler, the cold air
  • the forced plate is inclined to the cooling chamber side more than the partition wall.
  • the cold air forcing plate is provided with reinforcing ribs.
  • the refrigerator of the present invention includes: a refrigerator compartment and a freezer compartment, which are arranged inside a heat insulation box; a cooling compartment, which is provided with a cooler and a blower, the cooler cools the cold air circulating in the box, and the blower sends the cold air into the box;
  • the partition wall partitions its front surface in the depth direction of the cooling chamber; and the return air duct of the freezing chamber is used to return cold air from the freezing chamber to the cooling chamber.
  • the space width of the cooling chamber in the depth direction is such that the area where the cooler is installed is wider than the area where the blower is installed.
  • the return air duct of the freezer compartment is provided outside the heat insulation partition wall.
  • the return air duct of the freezer compartment is provided outside the heat insulation partition wall, and the overall cost of the refrigerator can be reduced.
  • the cold air is stably sent from the cooling chamber to the cooler, which prevents the difference in cooling efficiency.
  • the lower end of the partition wall is located above the outer peripheral surface of the heat-insulating partition wall, and at least in the area where the cooler is provided, a projection is formed on the partition wall, which faces the freezer compartment Side protruding.
  • a cold air forcing plate is provided at the lower end of the partition wall to guide the cold air in the return air duct of the freezing compartment to the space below the cooler.
  • the cold air forcing plate is inclined to the cooling chamber side more than the partition wall.
  • the cold air forcing plate is provided with ribs.
  • FIG. 1 is a diagram showing a refrigerator according to an embodiment of the present invention, (A) is a perspective view of the refrigerator as viewed from the front, and (B) is a side cross-sectional view of the refrigerator.
  • FIG. 2 is a front view illustrating an air duct of cold air circulating in the refrigerator according to the embodiment of the present invention.
  • FIG. 3 is a diagram illustrating the structure of a partition wall of a refrigerator according to an embodiment of the present invention, (A) is a perspective view, and (B) is a cross-sectional view.
  • FIG. 4 is a cross-sectional view illustrating a cold air duct from the freezing compartment to the cooling compartment of the refrigerator according to the embodiment of the present invention.
  • FIG. 5 is a diagram illustrating a partition wall of a refrigerator according to another embodiment of the present invention, (A) is a perspective view, and (B) is a cross-sectional view.
  • FIG. 6 is a cross-sectional view illustrating a cold air duct from a freezing compartment to a cooling compartment of a refrigerator according to another embodiment of the present invention.
  • FIG. 7 is a cross-sectional view illustrating a conventional refrigeration refrigerator.
  • the refrigerator 10 according to the embodiment of the present invention will be described based on the drawings.
  • the same members are denoted by the same reference numerals, and redundant descriptions are omitted.
  • the up-down direction indicates the height direction of the refrigerator 10
  • the left-right direction indicates the width direction of the refrigerator 10
  • the front-back direction indicates the depth direction of the refrigerator 10.
  • the above-mentioned left-right direction indicates the left-right direction when the refrigerator 10 is viewed from the front.
  • FIG. 1(A) is a perspective view illustrating a schematic configuration of a refrigerator 10 according to an embodiment of the present invention.
  • 1(B) is a side cross-sectional view illustrating a schematic structure of a refrigerator 10 according to an embodiment of the present invention.
  • FIG. 2 is a front view illustrating a duct of cold air circulating in the refrigerator 10 according to the embodiment of the present invention.
  • arrows indicate the direction of circulation of cold air.
  • the refrigerator 10 includes a heat insulation box 11 as a main body, and a storage room is formed inside the heat insulation box 11 for storing food and the like.
  • the storage compartment has a freezer compartment 15 (refer to FIG. 1(B)) and a refrigerating compartment 16 (refer to FIG. 1(B)) formed from top to bottom.
  • each storage room of the heat insulation box 11 is opened, and the heat insulation door 17 and the heat insulation door 18 that can be opened and closed are provided in the openings, respectively.
  • the upper and lower ends of the right end of the heat insulation door 17 are rotatably supported by the heat insulation box 11, and the opening of the freezer compartment 15 is opened or closed from the front.
  • the upper and lower ends of the right end of the heat insulation door 18 are rotatably supported by the heat insulation box 11, and the opening of the refrigerator compartment 16 is opened or closed from the front.
  • the main body heat-insulating box 11 of the refrigerator 10 has an outer box 12 made of a steel plate and an inner box 13 made of synthetic resin, and the inner box 13 is provided with a gap therebetween, and Open front surface.
  • the gap between the outer box 12 and the inner box 13 is filled with a heat insulating material 14 made of foamed polyurethane.
  • the heat insulation door 17 and the heat insulation door 18 also have a heat insulation structure for closing the freezing compartment 15 and the refrigerating compartment 16.
  • a cooling room 20 is formed behind the freezing room 15. Inside the cooling chamber 20, a cooler 22 is provided, which is an evaporator for cooling air circulating in the refrigerator 10.
  • the cooler 22 is connected to a compressor 23, a radiator (not shown), and a capillary tube (not shown) via refrigerant piping (not shown), thereby forming a vapor compression refrigeration cycle circuit.
  • a blower cavity 26 is formed, which is partitioned by partition walls 21, 25 made of synthetic resin.
  • the cooling chamber 20 and the air supply chamber 26 are partitioned by the partition wall 21, and the freezing chamber 15 and the air supply chamber 26 are partitioned by the partition wall 25.
  • an air supply port 27 is formed in the upper part of the partition wall 21, and cold air supplied to the air supply chamber 26 is circulated. The cold air is first sent to the air supply chamber 26 and then supplied to the freezer compartment 15 and the refrigerator compartment 16.
  • a blower 24 is provided above the cooler 22 of the cooling chamber 20 and in the vicinity of the air outlet 27.
  • the blower 24 is, for example, an axial blower. After the blower 24 is operated, the cold air cooled by the cooler 22 circulates in the freezing compartment 15 and the refrigerating compartment 16. Furthermore, the freezing compartment 15 is cooled to the freezing temperature zone, and the refrigerating compartment 16 is cooled to the refrigerating temperature zone.
  • a suction port 28 is formed in the lower part of the partition wall 21 for sucking the cool air returned from the freezing compartment 15 and the refrigerating compartment 16 into the cooling compartment 20.
  • an air outlet 29 is formed in the upper part of the partition wall 25 for sending cold air to the freezing compartment 15, and a return air outlet 31 is formed in the lower part of the partition wall 25 for sending the cold air in the freezing compartment 15
  • the freezer compartment return air duct 30 is formed along the outer peripheral surface by the heat insulation partition wall 19 on the freezer compartment 15 side, and communicates with the cooling compartment 20 via the suction port 28.
  • a defrost heater 32 is provided below the cooler 22 of the cooling chamber 20, which is energized during defrosting to remove frost on the cooler 22.
  • the heat insulation partition wall 19 partitions the freezing compartment 15 and the refrigerating compartment 16 in the height direction in the box.
  • a refrigerating compartment return air duct 33 is formed inside the heat-insulating partition wall 19, and communicates with the refrigerating compartment 16 and the cooling compartment 20.
  • the cold air sent to the refrigerator compartment 16 returns to the cooling compartment 20 via the refrigerator compartment return air duct 33.
  • the heat insulation partition wall 19 also has a heat insulation structure.
  • the area surrounded by the chain line 41 is the freezer compartment 15, and the area surrounded by the chain line 42 is the refrigerating compartment 16.
  • the area indicated by the broken line 43 is the air supply chamber 26 and the air supply duct 47 of the refrigerating compartment, and is used to send out the cool air of the cooling compartment 20 (refer to FIG. 1(B) ).
  • the cold air is cooled by the cooler 22 (refer to FIG. 1(B)) in the cooling chamber 20, and then sent to the blower chamber 26 by the blower 24 (refer to FIG. 1(B)).
  • the cold air is sent to the air blowing chamber 26, a part of it is sent to the freezing chamber 15 through the air outlet 29 of the partition wall 25.
  • the cold air circulates in the freezer compartment 15, it is sent to the freezer compartment return air duct 30 via the return air inlet 31 of the partition wall 25 (refer to FIG. 1(B)).
  • Fig. 3(A) is a perspective view illustrating a schematic structure of the partition wall 21 of the refrigerator 10 according to the embodiment of the present invention.
  • 3(B) is a cross-sectional view illustrating a schematic structure of the partition wall 21 of the refrigerator 10 according to the embodiment of the present invention, which is a cross-section taken along line A-A shown in FIG. 3(A).
  • 4 is a cross-sectional view illustrating the flow of cold air from the freezing compartment 15 to the cooling compartment 20 of the refrigerator 10 according to the embodiment of the present invention.
  • the partition wall 21 is a plate-like body, and the front surface side of the partition cooling chamber 20 is formed with an air outlet 27 in the upper central region, and a cold air forcing plate 51 is provided at the lower end.
  • the cold air forcing plate 51 forcibly guides the cold air flowing in the return air duct 30 of the freezer compartment (refer to FIG. 1(B)) below the defrost heater 32 (refer to FIG. 1(B)).
  • the cold air circulating in the freezer compartment 15 has a short gas path and is in a dry state, and the specific gravity is also light.
  • the return air duct 30 in the freezer compartment also maintains a certain amount of air volume.
  • the cold air forcing plate 51 and the partition wall 21 in the vicinity thereof need to have a certain degree of strength, collide with the cold air to weaken the amount of cold air, and force the cold air to below the defrost heater 32 (refer to FIG. 1(B)).
  • the reinforcing rib 53 is formed in the central portion of the cold air forcing plate 51.
  • the structural durability of the cold air forcing plate 51 is improved, and it can withstand the collision with the cold air as described above, thereby preventing noise generated by the vibration of the cold air forcing plate 51.
  • the reinforcing ribs 53 may be provided at both ends of the cold air forcing plate 51 in the lateral direction.
  • a protruding portion 52 is formed at the lower part of the partition wall 21, and a part of the protruding portion 52 protrudes toward the freezing compartment 15 (refer to FIG. 1(B)).
  • the protruding portion 52 of the partition wall 21 corresponds to the installation area of the cooler 22 (refer to FIG. 1(B)), and its protruding width W1 is, for example, 2 mm. That is, the cross-sectional area of the lower side of the partition wall 21 is larger than that of the upper side of the partition wall 21, and the blower 24 (refer to FIG. 1(B)) is provided on the upper side, and the air volume of the cold air becomes larger.
  • the protrusion 52 of the partition wall 21 is formed in a rectangular parallelepiped shape corresponding to the installation area of the cooler 22, and is continuously formed to the lower end 21A of the partition wall 21.
  • the cold air forcing plate 51 is inclined to the side of the cooling chamber 20 (refer to FIG. 1(B)) more than the partition wall 21. Specifically, the lower end 51A of the cold air forcing plate 51 is closer to the back side of the cooling chamber 20 than the partition wall 21. With this structure, the cold air forcing plate 51 can reliably guide the cold air flowing in the return air duct 30 of the freezer compartment below the defrost heater 32 (refer to FIG. 1(B)).
  • the cold air is sent to the freezer compartment 15 and circulated in the box, and is sent to the return air duct 30 of the freezer compartment through the return air port 31 of the partition wall 25.
  • the cold air collides with the cold air forcing plate 51 and the partition wall 21, its momentum is weakened, and is sucked into the cooling chamber 20 through the suction port 28.
  • the freezer air return duct 30 is not formed inside the heat insulation partition wall 19 but is formed outside the heat insulation partition wall 19. That is, the return air duct 30 of the freezer compartment is constituted by the outer peripheral surface of the heat-insulating partition wall 19, the partition walls 21 and 25, and the forced cooling plate 51.
  • the protrusion 52 of the partition wall 21 corresponds to the installation area of the cooler 22. Further, in the cooling chamber 20, the cross-sectional area on the lower side where the cooler 22 is installed is larger than the cross-sectional area on the upper side where the blower 24 (refer to FIG. 1(B)) is installed, and the amount of cold air becomes larger.
  • the cold air forcing plate 51 is formed wider than the protrusion 52 of the partition wall 21 in the lateral width direction of the cooling chamber 20.
  • the installation area of the cooler 22 similar to the structure in which the tunnel-shaped return air duct is formed in the conventional heat insulation partition wall 19, after the momentum of the cold air returned to the cooling chamber 20 is weakened, from below the cooler 22 Sucked from the side.
  • the cold air forcing plate 51 and the reinforcement rib 53 are integrally formed with the partition wall 21, but it is not limited to this, and may be separately fixed to the partition wall 21.
  • the refrigerator 70 differs from the refrigerator 10 described in FIGS. 1 to 4 mainly in the structure of the partition wall 71 and the return air duct 72 of the freezer compartment. Therefore, in the following description of the refrigerator 70, the same constituent members as those of the refrigerator 10 are denoted by the same reference numerals, and repeated explanations are omitted, and only the configurations of the partition wall 71 and the return air duct 72 of the freezer compartment will be mainly described. In addition, when explaining the refrigerator 70, refer to the description of FIGS. 1 to 4 as appropriate.
  • FIG. 5(A) is a perspective view for explaining the schematic structure of the partition wall 71 of the refrigerator 70 according to the embodiment of the present invention.
  • 5(B) is a cross-sectional view illustrating a schematic structure of the partition wall 71 of the refrigerator 70 according to the embodiment of the present invention, which is a cross-section taken along the line B-B shown in FIG. 5(A).
  • 6 is a cross-sectional view illustrating the flow of cold air from the freezing compartment 15 to the cooling compartment 20 of the refrigerator 70 according to the embodiment of the present invention.
  • the partition wall 71 is a plate-shaped body, partitions the front surface side of the cooling chamber 20 (refer to FIG. 6), and an air supply port 27 is formed in the upper central area thereof.
  • the installation position of the lower end 71A of the partition wall 71 is substantially the same as the lower end of the cooler 22 (refer to FIG. 6 ).
  • the cold air forcing plate 51 of the refrigerator 10 is not provided (refer to FIG. 3(A)).
  • a protruding portion 73 is formed at the lower portion of the partition wall 71, and a part of the protruding portion 73 protrudes toward the freezing compartment 15 (refer to FIG. 6 ).
  • the protrusion 73 of the partition wall 71 corresponds to the installation area of the cooler 22.
  • the protrusion 73 of the partition wall 71 is formed in a rectangular parallelepiped shape corresponding to the installation area of the cooler 22, and is continuously formed to the lower end 71A of the partition wall 71.
  • the cold air circulating in the freezing compartment 15 has a short gas path and is in a dry state, and the specific gravity is also light.
  • the return air duct 72 of the freezing compartment also maintains a certain amount of air volume.
  • the structure of the partition wall 71 is superior to the structure of the partition wall 21 of the refrigerator 10 (refer to FIG. 3(A)) in terms of noise.
  • the protruding width W2 of the protruding portion 73 of the partition wall 71 is, for example, 5 mm, and protrudes toward the freezing compartment 15 side more than the protruding portion 52 of the partition wall 21 of the refrigerator 10 (refer to FIG. 3(B)).
  • the protrusion 73 of the partition wall 71 is formed in a rectangular parallelepiped shape corresponding to the installation area of the cooler 22, and is continuously formed to the lower end 71A of the partition wall 71.
  • the cross-sectional area on the lower side where the cooler 22 is installed is larger than the cross-sectional area on the upper side where the blower 24 (refer to FIG. 1(B)) is installed, and the amount of cold air becomes larger.
  • the freezer compartment return air passage 72 communicates with the freezer compartment 15 via the return air port 31 of the partition wall 25, and communicates with the cooling compartment 20 via the suction port 74 of the partition wall 71. And, as indicated by arrow 81, the cold air is sent to the freezer compartment 15 and circulated in the box, and then sent to the freezer compartment return air passage 72 through the return air port 31 of the partition wall 25. Next, as indicated by arrow 82, cold air is drawn into the periphery of the defrost heater 32, which is located below the cooler 22 of the cooling chamber 20.
  • the installation position of the lower end 71A of the partition wall 71 is substantially the same as the lower end of the cooler 22, and the cold air forcing plate 51 is not provided at the lower end 71A of the partition wall 71 (refer to FIG. 3(A)). Therefore, the cold air flowing in the return air duct 72 of the freezing chamber maintains a constant wind speed and pressure, and flows to the cooling chamber 20 through the suction port 74. That is, in the structure of the freezer compartment return air duct 72 of the refrigerator 70, the amount of cold air drawn into the cooling compartment 20 becomes larger than the structure of the freezer compartment return air duct 30 of the refrigerator 10.
  • the width of the protruding portion 73 formed in the lower portion of the partition wall 71 in the depth direction becomes larger.
  • the cross-sectional area of the area where the cooler 22 is provided in the cooling chamber 20 becomes larger, and the amount of cold air becomes larger.
  • the protruding portion 73 is formed up to the vicinity of the upper end portion of the cooler 22.
  • Protruding portions 52 and 73 are formed on the partition walls 21 and 71, respectively, until the vicinity of the upper end of the cooler 22, the amount of cold air suction in the cooling chamber 22 is stabilized, and the occurrence of cooling efficiency is prevented Differences, but not limited to this structure.
  • the protrusions 52 and 73 may be located below the blower 24 and formed up to the cooler 22. In this case, the cooling air intake amount of the cooling chamber 22 can be more stable.
  • various changes can be implemented without departing from the gist of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

一种冰箱(10),其冷冻室回风风道(30)由设置在冷冻室(15)后方的隔热分隔壁(19)、分隔壁(21、25)以及设置在分隔壁(21)下端(21A)的冷气强制板(51)构成。通过该结构,冷冻室回风风道(30)并非贯穿隔热分隔壁(19)的隧道形状,可减少部件数量,降低冰箱整体成本。此外,利用加强肋(53)强化冷气强制板(51),可防止冷气强制板(51)产生噪音。

Description

冰箱 技术领域
本发明涉及一种冰箱,在储藏室内冷却并保存食品等,尤其涉及一种整体成本降低的冰箱,冷冻室回风风道并非设置在隔热分隔壁内,而是设置在箱内侧。
背景技术
现有的JP专利第3655950号公报中,制冷冰箱100已知有图7所示的结构。图7是说明现有的制冷冰箱100的剖视图。
如图7所示,制冷冰箱100中,其上段设置冷冻室101,下段设置冷藏室102。冷冻室101与冷藏室102通过隔热分隔壁103在上下方向被分隔。而且,在冷冻室101的后方,设置有冷却室104,在冷却室104内,设置有冷却器105及送风机106。
在隔热分隔壁103上,设置有冷冻室回风风道107与冷藏室回风风道108,冷冻室回风风道107用于使经过冷冻室101后的冷气返回到冷却室104,冷藏室回风风道108用于使经过冷藏室102后的冷气返回到冷却室104。
通过该结构,冷气由冷却室104的冷却器105冷却后,通过送风机106被送往冷冻室101及冷藏室102。然后,冷冻室101及冷藏室102被冷却至设定温度后,冷气经由冷冻室回风风道107与冷藏室回风风道108,返回到冷却室104(例如参考专利文献1)。
发明要解决的问题
制冷冰箱100中,冷冻室回风风道107与冷藏室回风风道108是贯穿隔热分隔壁103而形成的。并且,冷气经过冷冻室101后,返回到设置在冷却器105下方的除霜加热器109一侧及其下方区域,再从冷却器105的下方被吸入到冷却室104内。
制冷冰箱100中,需要在隔热分隔壁103上形成冷冻室回风风道107,导致成本难以降低。此外,在隔热分隔壁103形成冷冻室回风风道107时,还需要对冷冻室回风风道107安装铝片、铝带等部件,部件数量增加,制冷冰箱100的整体成本难以降低。
发明内容
本发明是鉴于上述情况研究而成的,其目的在于提供一种降低整体成本的冰箱,冷冻室回风风道并非设置在隔热分隔壁内,而是设置在箱内侧。
用于解决问题的方案
本发明的冰箱包括:冷藏室及冷冻室,由隔热分隔壁将隔热箱体的内部分隔而形成;冷却室,设置有冷却器,冷却供给至所述冷藏室及所述冷冻室的冷气,在所 述冷却器上方,设置有送风机,将所述冷气送至所述冷藏室及所述冷冻室;分隔壁,在所述冷却室的深度方向上将其前表面分隔;以及冷冻室回风风道,使所述冷气从所述冷冻室返回到所述冷却室;所述冷却室在深度方向上的空间宽度构造为设置所述冷却器的区域比设置所述送风机的区域宽,在所述冷冻室一侧,所述冷冻室回风风道设置在所述隔热分隔壁的外部。
此外,本发明的冰箱中,在所述冷冻室一侧,所述分隔壁的下端位于所述隔热分隔壁的外周面上方,至少在设置所述冷却器的区域,所述分隔壁上形成有突出部,其向所述冷冻室侧突出。
此外,本发明的冰箱中,在所述分隔壁的下端,设置有冷气强制板,用于将所述冷冻室回风风道内的所述冷气引导至所述冷却器的下方空间,所述冷气强制板比所述分隔壁更向所述冷却室侧倾斜。
此外,本发明的冰箱中,在所述冷气强制板设置有加强肋。
发明效果
本发明的冰箱包括:冷藏室及冷冻室,设置在隔热箱体内部;冷却室,设置有冷却器与送风机,冷却器将箱内循环的冷气冷却,送风机将上述冷气送至箱内;分隔壁,在冷却室的深度方向上将其前表面分隔;以及冷冻室回风风道,用于使冷气从冷冻室返回到冷却室。并且,冷却室在深度方向上的空间宽度为,设置冷却器的区域比设置送风机的区域宽。此外,在冷冻室一侧,冷冻室回风风道设置在隔热分隔壁的外侧。通过该结构,在冰箱中,冷冻室回风风道设置在隔热分隔壁的外部,可降低冰箱的整体成本。此外,冷气从冷却室稳定地被送至冷却器,可防止冷却效率出现差异。
此外,本发明的冰箱中,在所述冷冻室一侧,分隔壁的下端位于隔热分隔壁的外周面上方,至少在设置冷却器的区域,分隔壁上形成有突出部,其向冷冻室侧突出。通过该结构,在分隔壁上形成有突出部,无需增加部件数量,就能使冷气稳定地从冷却室送至冷却器。
此外,本发明的冰箱中,在分隔壁的下端设置有冷气强制板,用于将冷冻室回风风道内的冷气引导至冷却器的下方空间。并且,冷气强制板比分隔壁更向冷却室侧倾斜。通过该结构,在冷冻室回风风道中,从冷冻室送风的冷气碰撞冷气强制板,冷气的动量减小。然后,上述冷气被冷气强制板强制引导至冷却室的除霜加热器的下方,使得冷气稳定地从冷却室送至冷却器。
此外,本发明的冰箱中,在冷气强制板设置有肋。通过该结构,在冷冻室回风风道中,虽然从冷冻室送风的冷气碰撞冷气强制板,但冷气强制板的耐久性得到了增加,可防止因冷气强制板产生的噪音。
附图说明
图1是表示本发明的实施方式所涉及的冰箱的图,(A)是从前方观察冰箱的立体图,(B)是冰箱的侧面剖视图。
图2是说明在本发明的实施方式所涉及的冰箱内循环的冷气的风道的前视图。
图3是说明本发明的实施方式所涉及的冰箱的分隔壁的结构的图,(A)是立体图,(B)是剖视图。
图4是说明本发明的实施方式所涉及的冰箱的冷冻室至冷却室的冷气风道的剖视图。
图5是说明本发明的其它实施方式所涉及的冰箱的分隔壁的图,(A)是立体图,(B)是剖视图。
图6是说明本发明的其它实施方式所涉及的冰箱的冷冻室至冷却室的冷气风道的剖视图。
图7是说明现有的制冷冰箱的剖视图。
具体实施方式
以下,基于附图来说明本发明的实施方式所涉及的冰箱10。另外,说明本实施方式时,原则上对相同构件标注相同标号,并省略重复的说明。此外,以下说明中,上下方向表示冰箱10的高度方向,左右方向表示冰箱10的宽度方向,前后方向表示冰箱10的深度方向。并且,上述左右方向表示从前方观察冰箱10时的左右方向。
图1(A)是说明本发明的实施方式所涉及的冰箱10的示意结构的立体图。图1(B)是说明本发明的实施方式所涉及的冰箱10的示意结构的侧面剖视图。图2是说明在本发明的实施方式所涉及的冰箱10内循环的冷气的风道的前视图。另外,用箭头表示冷气的循环方向。
如图1(A)所示,冰箱10包括作为主体的隔热箱体11,该隔热箱体11的内部形成有储藏室,用于储藏食品等。储藏室从上往下形成有冷冻室15(参考图1(B))、及冷藏室16(参考图1(B))。
隔热箱体11的各储藏室的前表面开口,上述开口分别设置有自由开关的隔热门17、隔热门18。前视图中,隔热门17的右端的上下端部转动自由地被隔热箱体11支撑,从前方打开或关闭冷冻室15的开口。类似地,前视图中,隔热门18的右端的上下端部转动自由地被隔热箱体11支撑,从前方打开或关闭冷藏室16的开口。
如图1(B)所示,冰箱10的主体隔热箱体11具有前表面开口的钢板制外箱12与合成树脂制内箱13,其隔开间隙设置于该外箱12的内部,且前表面开口。在外箱12与内箱13的间隙内,填充发泡聚氨酯制的隔热材料14。另外,与隔热箱体11一样,隔热门17及隔热门18也具有隔热结构,用于关闭冷冻室15及冷藏室16。
在冷冻室15的后方形成有冷却室20。在冷却室20的内部,设置有冷却器22,其是用于冷却在冰箱10内循环的空气的蒸发器。冷却器22经由制冷剂配管(未图示)连接于压缩机23、散热器(未图示)及毛细管(未图示),从而构成蒸汽压缩式 制冷循环回路。
在冷冻室15与冷却室20之间,形成有送风腔26,通过合成树脂制分隔壁21、25隔开。冷却室20与送风腔26由分隔壁21分隔,冷冻室15与送风腔26由分隔壁25分隔。并且,在分隔壁21的上部形成有送风口27,其中流通供给至送风腔26的冷气,冷气先送至送风腔26,然后被供给至冷冻室15及冷藏室16。
在冷却室20的冷却器22的上方及送风口27的附近,设置有送风机24。送风机24例如为轴流送风机。送风机24运行后,被冷却器22冷却的冷气在冷冻室15及冷藏室16内循环。并且,冷冻室15被冷却至冷冻温度区,冷藏室16被冷却至冷藏温度区。另外,在分隔壁21的下部,形成有吸入口28,用于将从冷冻室15及冷藏室16返回的冷气吸入冷却室20内。
如图所示,在分隔壁25的上部,形成有出风口29,用于向冷冻室15送出冷气,在分隔壁25的下部,形成有回风口31,用于将冷冻室15内的冷气送至冷冻室回风风道30。冷冻室回风风道30是冷冻室15一侧的隔热分隔壁19沿着外周面形成的,经由吸入口28而连通冷却室20。并且,在冷却室20的冷却器22的下方,设置有除霜加热器32,除霜时通电,用于去除冷却器22上的结霜。
此外,隔热分隔壁19在箱内的高度方向上分隔冷冻室15与冷藏室16。在隔热分隔壁19的内部形成有冷藏室回风风道33,连通冷藏室16与冷却室20。并且,送至冷藏室16的冷气经由冷藏室回风风道33而返回到冷却室20。另外,与上述隔热箱体11一样,隔热分隔壁19也具有隔热结构。
如图2所示,被点划线41包围的区域是冷冻室15,被点划线42包围的区域是冷藏室16。并且,虚线43表示的区域是送风腔26及冷藏室送风风道47,用于送出冷却室20(参考图1(B))的冷气。
如图所示,冷气在冷却室20内被冷却器22(参考图1(B))冷却,然后通过送风机24(参考图1(B))被送至送风腔26。冷气被送至送风腔26后,一部分经由分隔壁25的出风口29送至冷冻室15。并且,冷气在冷冻室15内循环后,经由分隔壁25的回风口31被送至冷冻室回风风道30(参考图1(B))。
另一方面,冷气被送至送风腔26后,一部分经由流通口46送至冷藏室送风风道47。并且,该冷气通过出风口45被送至冷藏室16,所述出风口45设置在冷藏室16的分隔壁44上。然后,冷气在冷藏室16内循环后,经由冷藏室回风风道33(参考图1(B))返回到冷却室20,所述冷藏室回风风道33设置在隔热分隔壁19(参考图1(B))的内部。
此时,一部分冷气沿着送风腔26内的壁部上升,通过送风腔26的上部设置的流通口46被送至冷藏室送风风道47及冷藏室16。通过该结构,可调整送至冷藏室16的冷气量,从而防止冷藏室16被过度冷却。
图3(A)是说明本发明的实施方式所涉及的冰箱10的分隔壁21的示意结构的 立体图。图3(B)是说明本发明的实施方式所涉及的冰箱10的分隔壁21的示意结构的剖视图,其是图3(A)所示的A-A线方向的截面。图4是说明本发明的实施方式所涉及的冰箱10的冷冻室15至冷却室20的冷气的流动的剖视图。
如图3(A)所示,分隔壁21为板状体,分隔冷却室20的前表面侧,其上部中央区域形成有送风口27,其下端部设置有冷气强制板51。冷气强制板51将冷冻室回风风道30(参考图1(B))内流动的冷气强制引导至除霜加热器32(参考图1(B))的下方。
在此,冷冻室15(参考图1(B))内循环的冷气,气体路径短且为干燥状态,比重也轻,冷冻室回风风道30内也维持一定程度的风量。并且,冷气强制板51及其附近的分隔壁21需要具有一定程度的强度,与上述冷气碰撞以减弱冷气动量,将冷气强制引导至除霜加热器32(参考图1(B))的下方。
因此,本实施方式中,在冷气强制板51的中央部形成有加强肋53。通过该结构,冷气强制板51的结构耐久性提高,能承受与上述冷气的碰撞,防止冷气强制板51振动而产生的噪音。另外,加强肋53也可以设置在冷气强制板51的横宽方向的两端部。
如图3(B)所示,在分隔壁21的下部,形成有突出部52,一部分向冷冻室15(参考图1(B))侧突出而成。分隔壁21的突出部52对应于冷却器22(参考图1(B))的设置区域,其突出宽度W1例如为2mm。即,分隔壁21的下部侧的截面面积比分隔壁21的上部侧大,上部侧设置有送风机24(参考图1(B)),冷气的风量变大。另外,如图3(A)所示,对应冷却器22的设置区域,分隔壁21的突出部52形成为长方体形状,连续形成到分隔壁21的下端21A。
此外,如图所示,冷气强制板51比分隔壁21更向冷却室20(参考图1(B))侧倾斜。具体来说,冷气强制板51的下端51A比分隔壁21更靠近冷却室20的里侧。通过该结构,冷气强制板51可以可靠地将冷冻室回风风道30内流动的冷气引导至除霜加热器32(参考图1(B))的下方。
如图4所示,如箭头61所示,冷气被送至冷冻室15后在箱内循环,通过分隔壁25的回风口31被送至冷冻室回风风道30。并且,如箭头62所示,冷气碰撞冷气强制板51及分隔壁21,其动量减弱,通过吸入口28被吸入冷却室20。
本实施方式中,为了降低制造成本、减少部件数量,冷冻室回风风道30并非形成于隔热分隔壁19的内部,而是形成于隔热分隔壁19的外侧。即,冷冻室回风风道30由隔热分隔壁19的外周面、分隔壁21、25及冷气强制板51构成。
如图3(A)及图3(B)所示,分隔壁21的突出部52对应冷却器22的设置区域。并且,冷却室20内,设置冷却器22的下部侧截面面积比设置送风机24(参考图1(B))的上部侧截面面积大,冷气的风量变大。
此外,冷气强制板51在冷却室20的横宽方向上形成得比分隔壁21的突出部52 宽。并且,在冷却器22的设置区域,与现有隔热分隔壁19中形成隧道状回风风道的结构类似地,返回到冷却室20的冷气的动量被减弱后,从冷却器22的下方侧被吸入。
通过上述结构,冷气被吸入冷却室20后不会滞留在冷冻室回风风道30,设置冷却器22的区域的吸入量稳定,从而防止冷却效率出现差异。
另外,本实施方式中,冷气强制板51及加强肋53是与分隔壁21一体形成的,但并不限定于此,也可以单独固定于分隔壁21。
其次,基于附图详细说明本发明的其它实施方式所涉及的冰箱70。冰箱70与图1至图4说明的冰箱10在结构上主要不同在于,分隔壁71及冷冻室回风风道72的结构不同。因此,以下说明冰箱70时,对与冰箱10相同的构成构件标注相同标号,省略重复的说明,仅以分隔壁71及冷冻室回风风道72的结构为主进行说明。另外,说明冰箱70时,适当地参考图1至图4的说明。
图5(A)是用于说明本发明的实施方式所涉及的冰箱70的分隔壁71的示意结构的立体图。图5(B)是说明本发明的实施方式所涉及的冰箱70的分隔壁71的示意结构的剖视图,其是图5(A)所示的B-B线方向的截面。图6是说明本发明的实施方式所涉及的冰箱70的冷冻室15至冷却室20的冷气的流动的剖视图。
如图5(A)所示,分隔壁71为板状体,将冷却室20(参考图6)的前表面侧分隔,其上部中央区域形成有送风口27。分隔壁71的下端71A的设置位置与冷却器22(参考图6)的下端大致相同。并且,分隔壁71的下端71A处,并未设置冰箱10的冷气强制板51(参考图3(A))。
此外,在分隔壁71的下部,形成有突出部73,一部分向冷冻室15(参考图6)侧突出而成。分隔壁71的突出部73对应冷却器22的设置区域。并且,对应冷却器22的设置区域,分隔壁71的突出部73形成为长方体形状,连续形成到分隔壁71的下端71A。
在此,冷冻室15(参考图6)内循环的冷气,气体路径短且为干燥状态,比重也轻,冷冻室回风风道72(参考图6)内也维持一定程度的风量。如上所述,由于分隔壁71处并未设置冷气强制板51(参考图3(A)),因此不会因冷气流动产生噪音。因此,从噪音方面来说,分隔壁71的结构优于冰箱10的分隔壁21(参考图3(A))的结构。
如图5(B)所示,分隔壁71的突出部73的突出宽度W2例如为5mm,比冰箱10的分隔壁21的突出部52(参考图3(B))更向冷冻室15侧突出。此外,如图5(A)所示,对应冷却器22的设置区域,分隔壁71的突出部73形成为长方体形状,连续形成到分隔壁71的下端71A。并且,在冷却室20,设置冷却器22的下部侧截面面积比设置送风机24(参考图1(B))的上部侧截面面积大,冷气的风量变大。
如图6所示,冷冻室回风风道72经由分隔壁25的回风口31而连通冷冻室15, 经由分隔壁71的吸入口74而连通冷却室20。并且,如箭头81所示,冷气被送至冷冻室15并在箱内循环,然后通过分隔壁25的回风口31被送至冷冻室回风风道72。接着,如箭头82所示,冷气被吸入到除霜加热器32的周边,所述除霜加热器32位于冷却室20的冷却器22下方。
如上所述,分隔壁71的下端71A的设置位置与冷却器22的下端大致相同,在分隔壁71的下端71A处,并未设置冷气强制板51(参考图3(A))。因此,冷冻室回风风道72内流动的冷气维持一定的风速、风压,通过吸入口74流动至冷却室20。即,在冰箱70的冷冻室回风风道72的结构中,相比冰箱10的冷冻室回风风道30的结构,吸入到冷却室20的冷气的风量变大。
因此,本实施方式中,形成在分隔壁71下部的突出部73在深度方向上的宽度变大,尤其是冷却室20中设置冷却器22的区域的截面面积变大,冷气的风量变大。并且,突出部73形成到冷却器22的上端部附近为止。通过该结构,冷却室20内,冷气在设置冷却器22的区域的风量比在设置送风机24(参考图1(B))的区域的风量大。并且,冷气从冷冻室回风风道72稳定地流向冷却室20,如箭头83所示,冷却器22的吸入量稳定,防止冷却效率出现差异。此外,如箭头84所示,还能防止冷气滞留在冷冻室回风风道72内。
另外,本实施方式中说明的结构如下:在分隔壁21、71上分别形成突出部52、73,形成到冷却器22的上端部附近为止,冷却室22的冷气吸入量稳定,防止冷却效率出现差异,但并不限定于该结构。例如,突出部52、73也可以位于送风机24附近的下方,形成到冷却器22的上方为止。在此情况下,冷却室22的冷气吸入量可以更加稳定。此外,在不脱离本发明的主旨的范围内可实施各种变更。

Claims (10)

  1. 一种冰箱,其特征在于,包括:
    冷藏室及冷冻室,由隔热分隔壁将隔热箱体的内部分隔而形成;
    冷却室,设置有冷却器,冷却供给至所述冷藏室及所述冷冻室的冷气,在所述冷却器上方,设置有送风机,将所述冷气送至所述冷藏室及所述冷冻室;
    分隔壁,在所述冷却室的深度方向上将其前表面分隔;
    冷冻室回风风道,将所述冷气从所述冷冻室返回到所述冷却室;
    所述冷却室在深度方向上的空间宽度构造为设置所述冷却器的区域比设置所述送风机的区域宽,
    在所述冷冻室一侧,所述冷冻室回风风道设置在所述隔热分隔壁外部。
  2. 根据权利要求1所述的冰箱,其特征在于,
    在所述冷冻室一侧,所述分隔壁的下端位于所述隔热分隔壁的外周面上方,
    至少在设置所述冷却器的区域,所述分隔壁上形成突出部,其向所述冷冻室侧突出。
  3. 根据权利要求2所述的冰箱,其特征在于,
    在所述分隔壁的下端设置有冷气强制板,将所述冷冻室回风风道内的所述冷气引导至所述冷却器的下方空间,
    所述冷气强制板比所述分隔壁更向所述冷却室一侧倾斜。
  4. 根据权利要求3所述的冰箱,其特征在于,
    在所述冷气强制板上配置有加强肋。
  5. 根据权利要求1所述的冰箱,其特征在于,所述分隔壁包括沿冰箱深度方向前后间隔设置的第一分隔壁和第二分隔壁,所述第一分隔壁和第二分隔壁之间形成有送风腔,冷冻室与送风腔由第一分隔壁分隔,冷却室与送风腔由第二分隔壁分隔,在第二分隔壁的上部形成有送风口,其中流通供给至送风腔的冷气,冷气先送至送风腔,然后被供给至冷冻室及冷藏室。
  6. 根据权利要求5所述的冰箱,其特征在于,所述送风机临近所述送风口设置,所述第二分隔壁的下部,形成有吸入口,用于将从冷冻室及冷藏室返回的冷气吸入冷却室内。
  7. 根据权利要求5所述的冰箱,其特征在于,所述送风腔上部设置流通口,所述第一分隔壁上设有出风口,一部分冷气通过所述流通口被送至冷藏室,一部分冷气经由出风口送至冷冻室。
  8. 根据权利要求2所述的冰箱,其特征在于,对应冷却器的设置区域,所述分隔壁的突出部形成为长方体形状,连续形成到分隔壁的下端。
  9. 根据权利要求3所述的冰箱,其特征在于,所述冷气强制板在冷却室的横宽方向上形成得比分隔壁的突出部宽。
  10. 根据权利要求1所述的冰箱,其特征在于,冷却室中,设置冷却器的下部侧截面面积比设置送风机的上部侧截面面积大。
PCT/CN2019/123678 2018-12-25 2019-12-06 冰箱 WO2020134974A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980028115.2A CN112074699A (zh) 2018-12-25 2019-12-06 冰箱

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018241644A JP2020101351A (ja) 2018-12-25 2018-12-25 冷蔵庫
JP2018-241644 2018-12-25

Publications (1)

Publication Number Publication Date
WO2020134974A1 true WO2020134974A1 (zh) 2020-07-02

Family

ID=71126807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123678 WO2020134974A1 (zh) 2018-12-25 2019-12-06 冰箱

Country Status (3)

Country Link
JP (1) JP2020101351A (zh)
CN (1) CN112074699A (zh)
WO (1) WO2020134974A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114027675B (zh) * 2021-11-15 2023-07-21 珠海格力电器股份有限公司 陈列柜

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4741175A (en) * 1987-03-17 1988-05-03 General Electric Company Auto defrost refrigerator
CN101963423A (zh) * 2010-08-06 2011-02-02 海信容声(广东)冰箱有限公司 一种无霜冰箱的风道***及其控制方法
CN103438641A (zh) * 2013-07-25 2013-12-11 青岛海尔电冰箱有限公司 冰箱
CN203396180U (zh) * 2013-05-27 2014-01-15 中韩科技有限公司 一种冰箱冷冻室风道结构
CN107036370A (zh) * 2017-03-28 2017-08-11 青岛海尔特种电冰柜有限公司 制冷设备
CN107062747A (zh) * 2017-01-18 2017-08-18 合肥华凌股份有限公司 一种冰箱风道组件以及冰箱

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4481787A (en) * 1982-07-16 1984-11-13 Whirlpool Corporation Sequentially controlled single evaporator refrigerator
JPH0641099Y2 (ja) * 1986-10-09 1994-10-26 三菱電機株式会社 冷却器
JP2937752B2 (ja) * 1994-05-30 1999-08-23 株式会社東芝 冷蔵庫
JP3345187B2 (ja) * 1994-09-20 2002-11-18 松下冷機株式会社 冷蔵庫
JPH1038449A (ja) * 1996-07-26 1998-02-13 Matsushita Refrig Co Ltd 冷凍冷蔵庫
JP2004069277A (ja) * 2002-08-01 2004-03-04 Goro Saeki 暖冷房機用風向調整装置
KR101203975B1 (ko) * 2006-05-19 2012-11-23 엘지전자 주식회사 냉장고
JP5357610B2 (ja) * 2009-04-10 2013-12-04 日立アプライアンス株式会社 空気調和機の室内機
JP6553922B2 (ja) * 2015-04-07 2019-07-31 日立グローバルライフソリューションズ株式会社 冷蔵庫
CN107246754B (zh) * 2017-06-22 2019-09-20 海信容声(广东)冷柜有限公司 一种风冷卧式冷柜

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4741175A (en) * 1987-03-17 1988-05-03 General Electric Company Auto defrost refrigerator
CN101963423A (zh) * 2010-08-06 2011-02-02 海信容声(广东)冰箱有限公司 一种无霜冰箱的风道***及其控制方法
CN203396180U (zh) * 2013-05-27 2014-01-15 中韩科技有限公司 一种冰箱冷冻室风道结构
CN103438641A (zh) * 2013-07-25 2013-12-11 青岛海尔电冰箱有限公司 冰箱
CN107062747A (zh) * 2017-01-18 2017-08-18 合肥华凌股份有限公司 一种冰箱风道组件以及冰箱
CN107036370A (zh) * 2017-03-28 2017-08-11 青岛海尔特种电冰柜有限公司 制冷设备

Also Published As

Publication number Publication date
JP2020101351A (ja) 2020-07-02
CN112074699A (zh) 2020-12-11

Similar Documents

Publication Publication Date Title
KR102627719B1 (ko) 냉장고
KR102412189B1 (ko) 냉장고
CN103339454B (zh) 冷藏库
WO2020134974A1 (zh) 冰箱
WO2012140854A1 (ja) 冷蔵庫
US20220011035A1 (en) Refrigerator
CN110513943B (zh) 冰箱
JP2019219112A (ja) 冷蔵庫
KR102508224B1 (ko) 냉장고
WO2018025353A1 (ja) 冷蔵庫
WO2020134971A1 (zh) 冰箱
JP5523986B2 (ja) 冷蔵庫
TWI691692B (zh) 冰箱
WO2022143635A1 (zh) 冰箱
JP2021042865A (ja) 冷蔵庫
JP2000337748A (ja) 冷蔵庫
JP2018159500A (ja) 冷蔵庫
JP7233021B2 (ja) 解凍保冷庫
JP6714970B2 (ja) 冷蔵庫
JP7463217B2 (ja) 冷蔵庫
JP5175954B2 (ja) 冷蔵庫
JP6709346B2 (ja) 冷蔵庫
JP3619679B2 (ja) 冷却貯蔵庫
JP4156952B2 (ja) 冷却貯蔵庫
CN109791014B (zh) 冰箱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19905778

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19905778

Country of ref document: EP

Kind code of ref document: A1