WO2020134130A1 - 光学成像镜头 - Google Patents

光学成像镜头 Download PDF

Info

Publication number
WO2020134130A1
WO2020134130A1 PCT/CN2019/102149 CN2019102149W WO2020134130A1 WO 2020134130 A1 WO2020134130 A1 WO 2020134130A1 CN 2019102149 W CN2019102149 W CN 2019102149W WO 2020134130 A1 WO2020134130 A1 WO 2020134130A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical imaging
radius
curvature
object side
Prior art date
Application number
PCT/CN2019/102149
Other languages
English (en)
French (fr)
Inventor
闻人建科
王昱昊
戴付建
赵烈烽
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Publication of WO2020134130A1 publication Critical patent/WO2020134130A1/zh
Priority to US17/027,170 priority Critical patent/US20210003826A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components

Definitions

  • the present application relates to an optical imaging lens, and more specifically, the present application relates to an optical imaging lens including seven lenses.
  • the large-aperture lens with large aperture can collect more light information, has smaller optical aberrations and better imaging quality, and can provide users with the possibility to choose the aperture size independently.
  • the present application provides an optical imaging lens applicable to portable electronic products, which can at least solve or partially solve at least one of the above-mentioned shortcomings in the prior art, for example, a large aperture large image surface lens.
  • the present application provides an optical imaging lens that includes, in order from the object side to the image side along the optical axis: a first lens, a second lens, a third lens, a fourth lens, a fifth lens Lens, sixth lens and seventh lens. Both the first lens and the third lens have positive power; the fifth lens has negative power.
  • the total effective focal length f of the optical imaging lens and the entrance pupil diameter EPD of the optical imaging lens satisfy f/EPD ⁇ 1.3.
  • the effective pixel area on the imaging surface of the optical imaging lens has a diagonal length of ImgH and the total effective focal length f of the optical imaging lens satisfies 0.6 ⁇ ImgH/f ⁇ 0.8.
  • the effective focal length f1 of the first lens, the radius of curvature R1 of the object side of the first lens and the radius of curvature R2 of the image side of the first lens satisfy 1 ⁇ f1/(R2-R1) ⁇ 2.
  • the radius of curvature R3 of the object side of the second lens and the radius of curvature R4 of the image side of the second lens satisfy 1.2 ⁇ R3/R4 ⁇ 1.6.
  • the effective focal length f3 of the third lens, the radius of curvature R6 of the image side of the third lens, and the radius of curvature R5 of the object side of the third lens satisfy 1.2 ⁇ f3/(R6-R5) ⁇ 1.7.
  • the effective focal length f2 of the second lens and the effective focal length f7 of the seventh lens satisfy 0.7 ⁇ f2/f7 ⁇ 1.3.
  • the effective focal length f6 of the sixth lens, the effective focal length f5 of the fifth lens, and the effective focal length f4 of the fourth lens satisfy 0.5 ⁇ (f6-f5)/f4 ⁇ 1.0.
  • the radius of curvature R11 of the object side of the sixth lens, the radius of curvature R12 of the image side of the sixth lens, the radius of curvature R13 of the object side of the seventh lens, and the radius of curvature R14 of the image side of the seventh lens satisfy 1.4 ⁇ (R11+R12)/(R13+R14) ⁇ 2.1.
  • the maximum effective radius DT11 of the object side of the first lens, the maximum effective radius DT12 of the image side of the first lens and the half of the diagonal length of the effective pixel area on the imaging surface of the optical imaging lens ImgH satisfy 1 ⁇ (DT11+DT12)/ImgH ⁇ 1.5.
  • the edge thickness ET7 of the seventh lens and the center thickness CT7 of the seventh lens on the optical axis satisfy 1.2 ⁇ ET7/CT7 ⁇ 1.7.
  • the separation distance T34 between the third lens and the fourth lens on the optical axis and the separation distance T67 between the sixth lens and the seventh lens on the optical axis satisfy 1.1 ⁇ T34/T67 ⁇ 1.5.
  • the center thickness of the third lens on the optical axis CT3, the center thickness of the sixth lens on the optical axis CT6 and the distance from the object side of the first lens to the imaging surface of the optical imaging lens on the optical axis TTL Satisfy 2 ⁇ (CT3+CT6)/TTL ⁇ 10 ⁇ 2.4.
  • both the second lens and the seventh lens have negative power; the fourth lens and the sixth lens have positive power.
  • the object sides of the first lens, the second lens, the third lens, the sixth lens, and the seventh lens are all convex, and the image sides are all concave.
  • the optical imaging lens has a large image surface, a large aperture, At least one beneficial effect such as high imaging quality.
  • FIG. 1 shows a schematic structural diagram of an optical imaging lens according to Embodiment 1 of the present application
  • 2A to 2C respectively show the astigmatism curve, distortion curve, and magnification chromatic aberration curve of the optical imaging lens of Example 1;
  • FIG. 3 is a schematic structural diagram of an optical imaging lens according to Embodiment 2 of the present application.
  • 4A to 4C respectively show astigmatism curves, distortion curves, and magnification chromatic aberration curves of the optical imaging lens of Example 2;
  • FIG. 5 shows a schematic structural diagram of an optical imaging lens according to Embodiment 3 of the present application.
  • 6A to 6C respectively show the astigmatism curve, distortion curve, and magnification chromatic aberration curve of the optical imaging lens of Example 3;
  • Example 7 shows a schematic structural diagram of an optical imaging lens according to Example 4 of the present application.
  • 8A to 8C respectively show the astigmatism curve, distortion curve and magnification chromatic aberration curve of the optical imaging lens of Example 4;
  • FIG. 9 shows a schematic structural diagram of an optical imaging lens according to Example 5 of the present application.
  • 10A to 10C respectively show the astigmatism curve, distortion curve, and chromatic aberration curve of magnification of the optical imaging lens of Example 5;
  • FIG. 11 shows a schematic structural diagram of an optical imaging lens according to Example 6 of the present application.
  • 12A to 12C show the astigmatism curve, distortion curve, and magnification chromatic aberration curve of the optical imaging lens of Example 6, respectively.
  • first, second, third, etc. are only used to distinguish one feature from another feature, and do not represent any limitation on the feature. Therefore, without departing from the teaching of this application, the first lens discussed below may also be referred to as a second lens or a third lens.
  • the thickness, size, and shape of the lens have been slightly exaggerated for ease of explanation.
  • the shape of the spherical surface or aspherical surface shown in the drawings is shown by way of example. That is, the shape of the spherical surface or aspherical surface is not limited to the shape of the spherical surface or aspherical surface shown in the drawings.
  • the drawings are only examples and are not strictly drawn to scale.
  • the paraxial region refers to the region near the optical axis. If the lens surface is convex and the convex position is not defined, it means that the lens surface is convex at least in the paraxial region; if the lens surface is concave and the concave position is not defined, it means that the lens surface is at least in the paraxial region. Concave surface. The surface of each lens closest to the object is called the object side of the lens, and the surface of each lens closest to the imaging surface is called the image side of the lens.
  • the optical imaging lens according to the exemplary embodiment of the present application may include, for example, seven lenses having optical power, that is, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a sixth lens, and a first lens Seven lenses.
  • the seven lenses are arranged in sequence along the optical axis from the object side to the image side, and each adjacent lens can have an air gap.
  • the first lens may have positive power; the second lens may have positive power or negative power; the third lens may have positive power; the fourth lens has positive power or negative power The fifth lens may have negative power; the sixth lens has positive power or negative power; and the seventh lens has positive power or negative power.
  • the first lens has positive power, which can converge light while achieving a large image surface and large aperture lens; the third lens has positive power, which can effectively correct the optical path difference of each optical band generated by the first lens and the second lens.
  • the fifth lens has negative power and can adjust the optical magnification, so that the system can image on the large image surface, and can effectively control the curve direction of the system chief ray angle (CRA) So that it can be matched with a large image plane chip.
  • CRA system chief ray angle
  • the object side of the first lens may be convex, and the image side may be concave.
  • the second lens may have negative power, its object side may be convex, and the image side may be concave.
  • the second lens has negative optical power, which can effectively correct the optical path difference generated by the first lens, balance the system chromatic aberration, and deflect the light to obtain a large image surface.
  • the object side of the third lens may be convex, and the image side may be concave.
  • the fourth lens may have positive power, its object side may be convex, and the image side may be convex.
  • the fourth lens has a positive refractive power, which can further converge the light on the basis of the third lens, and at the same time, the relative brightness of the edge field of view can be improved by the face-shaped edge recurve.
  • the object side of the fifth lens may be concave, and the image side may be concave.
  • the sixth lens may have positive power, its object side may be convex, and the image side may be concave.
  • the sixth lens has positive optical power, which can effectively correct the optical path difference generated by the fifth lens, balance the chromatic aberration of the system, and also make the system have a certain field curvature correction ability.
  • the seventh lens may have negative power, its object side may be convex, and the image side may be concave.
  • the seventh lens has negative optical power, which can effectively balance the system chromatic aberration, correct field curvature and optical distortion, and improve imaging quality.
  • the angle of incidence and exit angle of the light in each lens can also be adjusted reasonably to increase the angle of the chief ray of the lens and The matching degree of the chip; at the same time, it can also avoid the total reflection ghost image caused by the excessive light deflection angle.
  • the optical imaging lens of the present application may satisfy the conditional expression f/EPD ⁇ 1.3, where f is the total effective focal length of the optical imaging lens, and EPD is the entrance pupil diameter of the optical imaging lens. More specifically, f and EPD may further satisfy 1.0 ⁇ f/EPD ⁇ 1.3, for example, 1.03 ⁇ f/EPD ⁇ 1.29. Satisfying the conditional expression f/EPD ⁇ 1.3 can make the entire system have the advantage of a large aperture, and can enhance the imaging effect of the system in a weak light environment, while also reducing the aberration of the edge field of view.
  • the optical imaging lens of the present application may satisfy the conditional expression 0.6 ⁇ ImgH/f ⁇ 0.8, where ImgH is half the diagonal length of the effective pixel area on the imaging surface of the optical imaging lens, and f is optical imaging The total effective focal length of the lens. More specifically, ImgH and f can further satisfy 0.67 ⁇ ImgH/f ⁇ 0.75. Satisfying the conditional expression 0.6 ⁇ ImgH/f ⁇ 0.8 can effectively improve the telephoto ratio of the optical lens, increase the magnification of the shooting, and also control the size of the angle of view to increase the shooting range.
  • the optical imaging lens of the present application may satisfy the conditional expression 1 ⁇ f1/(R2-R1) ⁇ 2, where f1 is the effective focal length of the first lens and R1 is the curvature of the object side of the first lens Radius, R2 is the radius of curvature of the image side of the first lens. More specifically, f1, R2, and R1 may further satisfy 1.01 ⁇ f1/(R2-R1) ⁇ 1.91. Satisfying the conditional expression 1 ⁇ f1/(R2-R1) ⁇ 2, can effectively increase the overall focal length of the lens, and can reasonably allocate the power of the first lens to reduce the sensitivity of the actual part processing.
  • the object side of the first lens may be convex, and the image side may be concave.
  • the optical imaging lens of the present application may satisfy the conditional expression 1.2 ⁇ R3/R4 ⁇ 1.6, where R3 is the radius of curvature of the object side of the second lens and R4 is the radius of curvature of the image side of the second lens . More specifically, R3 and R4 can further satisfy 1.36 ⁇ R3/R4 ⁇ 1.39. Satisfying the conditional expression 1.2 ⁇ R3/R4 ⁇ 1.6, the curvature of the object side and the image side of the second lens can be optimized, the forming processability of the lens can be improved, the axial chromatic aberration of the optical system can be reduced, and the The optical modulation transfer function (MTF) value of the off-axis field of view meets higher imaging requirements.
  • MTF optical modulation transfer function
  • the optical imaging lens of the present application may satisfy the conditional expression 1.2 ⁇ f3/(R6-R5) ⁇ 1.7, where f3 is the effective focal length of the third lens and R6 is the curvature of the image side of the third lens Radius, R5 is the radius of curvature of the object side of the third lens. More specifically, f3, R6, and R5 may further satisfy 1.32 ⁇ f3/(R6-R5) ⁇ 1.55. Satisfy the conditional expression 1.2 ⁇ f3/(R6-R5) ⁇ 1.7, which can effectively correct the optical path difference of each optical band generated by the second lens with negative power, and can reasonably allocate the power of the third lens to reduce Sensitivity of actual part processing.
  • the object side of the third lens may be convex, and the image side may be concave.
  • the optical imaging lens of the present application may satisfy the conditional expression 0.7 ⁇ f2/f7 ⁇ 1.3, where f2 is the effective focal length of the second lens and f7 is the effective focal length of the seventh lens. More specifically, f2 and f7 can further satisfy 0.77 ⁇ f2/f7 ⁇ 1.28. Satisfying the conditional expression 0.7 ⁇ f2/f7 ⁇ 1.3 is conducive to adjusting the effective focal length of the optical system, and can also effectively reduce the distortion of the edge of the optical system, ensure the relative brightness of the edge, and then make the system have a better imaging effect.
  • the optical imaging lens of the present application may satisfy the conditional expression 0.5 ⁇ (f6-f5)/f4 ⁇ 1.0, where f6 is the effective focal length of the sixth lens, f5 is the effective focal length of the fifth lens, f4 Is the effective focal length of the fourth lens. More specifically, f6, f5, and f4 may further satisfy 0.68 ⁇ (f6-f5)/f4 ⁇ 0.86. Satisfying the conditional formula 0.5 ⁇ (f6-f5)/f4 ⁇ 1.0, it can balance the contribution weight of the fourth lens, the fifth lens and the sixth lens in the focal length of the entire optical system, reduce the sensitivity of the entire system, and make the optical system Has a good balance of field curvature.
  • the optical imaging lens of the present application may satisfy the conditional expression 1.4 ⁇ (R11+R12)/(R13+R14) ⁇ 2.1, where R11 is the radius of curvature of the object side of the sixth lens, and R12 is the first The radius of curvature of the image side of the six lens, R13 is the radius of curvature of the object side of the seventh lens, and R14 is the radius of curvature of the image side of the seventh lens. More specifically, R11, R12, R13, and R14 may further satisfy 1.49 ⁇ (R11+R12)/(R13+R14) ⁇ 2.00. Satisfying the conditional expression 1.4 ⁇ (R11+R12)/(R13+R14) ⁇ 2.1, the optical system can better match the chief ray angle of the chip, correct the system field curvature and improve the relative brightness of the system.
  • the optical imaging lens of the present application may satisfy the conditional expression 1 ⁇ (DT11+DT12)/ImgH ⁇ 1.5, where DT11 is the maximum effective radius of the object side of the first lens and DT12 is the The maximum effective radius on the image side, ImgH is half the diagonal length of the effective pixel area on the imaging surface of the optical imaging lens. More specifically, DT11, DT12, and ImgH can further satisfy 1.01 ⁇ (DT11+DT12)/ImgH ⁇ 1.32. Satisfying the conditional formula 1 ⁇ (DT11 + DT12) / ImgH ⁇ 1.5, can ensure that the lens has a larger focal length, and can increase the aperture size, properly control the depth of field range, to meet more shooting needs.
  • the optical imaging lens of the present application may satisfy the conditional expression 1.1 ⁇ T34/T67 ⁇ 1.5, where T34 is the separation distance between the third lens and the fourth lens on the optical axis, and T67 is the sixth lens and The separation distance of the seventh lens on the optical axis. More specifically, T34 and T67 can further satisfy 1.16 ⁇ T34/T67 ⁇ 1.36. Satisfying the conditional expression 1.1 ⁇ T34/T67 ⁇ 1.5 can make the optical system have better dispersion balance ability, and can effectively control the effective focal length by adjusting the optical path of the separation distance between adjacent lenses.
  • the optical imaging lens of the present application may satisfy the conditional expression 1.2 ⁇ ET7/CT7 ⁇ 1.7, where ET7 is the edge thickness of the seventh lens and CT7 is the center thickness of the seventh lens on the optical axis. More specifically, ET7 and CT7 can further satisfy 1.26 ⁇ ET7/CT7 ⁇ 1.63. Satisfying the conditional expression 1.2 ⁇ ET7/CT7 ⁇ 1.7, which can effectively control the deflection of the light and reduce the size of the rear end of the optical system. At the same time, controlling the thickness of the seventh lens to be relatively small is also conducive to the formation of the lens, avoiding welding marks and reducing Stress problems during the forming process.
  • the optical imaging lens of the present application may satisfy the conditional expression 2 ⁇ (CT3+CT6)/TTL ⁇ 10 ⁇ 2.4, where CT3 is the center thickness of the third lens on the optical axis and CT6 is the sixth The center thickness of the lens on the optical axis, TTL is the distance from the object side of the first lens to the imaging surface of the optical imaging lens on the optical axis. More specifically, CT3, CT6, and TTL can further satisfy 2.13 ⁇ (CT3+CT6)/TTL ⁇ 10 ⁇ 2.20.
  • the above-mentioned optical imaging lens may further include an aperture to improve the imaging quality of the lens.
  • the diaphragm may be provided between the object side and the first lens.
  • the optical imaging lens described above may further include a filter for correcting color deviation and/or a protective glass for protecting the photosensitive element on the imaging surface.
  • the optical imaging lens according to the above embodiments of the present application may employ multiple lenses, such as the seven described above.
  • the volume of the lens can be effectively reduced, the sensitivity of the lens can be reduced, and the processability of the lens can be improved.
  • the optical imaging lens is more conducive to production and processing and can be applied to portable electronic products.
  • the optical imaging lens configured as described above may also have beneficial effects such as a large image plane, a large aperture, and high imaging quality.
  • At least one of the mirror surfaces of each lens is an aspheric mirror surface, that is, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a sixth lens, and a seventh lens
  • At least one of the object side and the image side of each lens in is an aspheric mirror surface.
  • the characteristics of aspheric lenses are: from the lens center to the lens periphery, the curvature is continuously changing. Unlike spherical lenses, which have a constant curvature from the center of the lens to the periphery of the lens, aspheric lenses have better curvature radius characteristics, and have the advantages of improving distortion aberrations and improving astigmatic aberrations.
  • the object side and the image side of each of the first lens, the second lens, the third lens, the fourth lens, the fifth lens, the sixth lens, and the seventh lens are aspheric mirror surfaces.
  • the number of lenses constituting the optical imaging lens can be changed to obtain various results and advantages described in this specification.
  • the optical imaging lens is not limited to include seven lenses. If desired, the optical imaging lens may also include other numbers of lenses.
  • optical imaging lens applicable to the above-mentioned embodiment.
  • FIG. 1 shows a schematic structural diagram of an optical imaging lens according to Embodiment 1 of the present application.
  • the optical imaging lens includes, in order from the object side to the image side along the optical axis: an aperture STO, a first lens E1, a second lens E2, a third lens E3, a third The four lens E4, the fifth lens E5, the sixth lens E6, the seventh lens E7, the filter E8, and the imaging surface S17.
  • the first lens E1 has positive refractive power, its object side S1 is convex, and its image side S2 is concave.
  • the second lens E2 has negative refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has positive refractive power, and its object side surface S5 is convex, and its image side surface S6 is concave.
  • the fourth lens E4 has positive refractive power, and its object side surface S7 is convex, and its image side surface S8 is convex.
  • the fifth lens E5 has negative refractive power, and its object side surface S9 is concave and the image side surface S10 is concave.
  • the sixth lens E6 has positive refractive power, and its object side surface S11 is convex, and its image side surface S12 is concave.
  • the seventh lens E7 has negative refractive power, and its object side surface S13 is convex, and its image side surface S14 is concave.
  • the filter E8 has an object side S15 and an image side S16. The light from the object sequentially passes through the surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • Table 1 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging lens of Example 1, wherein the units of radius of curvature and thickness are both millimeters (mm).
  • each aspheric lens can be defined by, but not limited to, the following aspheric formula:
  • x is the distance from the apex of the aspheric surface to the height of the aspheric surface at the height h along the optical axis;
  • k is the conic coefficient (given in Table 1);
  • Ai is the correction coefficient for the i-th order of the aspheric surface.
  • Table 2 shows the high-order coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16 , A 18 and A 20 that can be used for each aspherical mirror surface S1-S14 in Example 1 .
  • Table 3 shows the effective focal lengths f1 to f7 of each lens in Example 1, the total effective focal length f of the optical imaging lens, and the total optical length TTL (ie, from the object side S1 of the first lens E1 to the imaging plane S17 on the optical axis ) And half the diagonal length of the effective pixel area on the imaging plane S17, ImgH.
  • FIG. 2A shows the astigmatism curve of the optical imaging lens of Example 1, which represents meridional image plane curvature and sagittal image plane curvature.
  • FIG. 2B shows the distortion curve of the optical imaging lens of Example 1, which represents the distortion magnitude values corresponding to different image heights.
  • 2C shows the magnification chromatic aberration curve of the optical imaging lens of Example 1, which represents the deviation of different image heights on the imaging plane of light rays passing through the lens.
  • the optical imaging lens provided in Embodiment 1 can achieve good imaging quality.
  • FIG. 3 shows a schematic structural diagram of an optical imaging lens according to Embodiment 2 of the present application.
  • the optical imaging lens includes, in order from the object side to the image side along the optical axis: an aperture STO, a first lens E1, a second lens E2, a third lens E3, a The four lens E4, the fifth lens E5, the sixth lens E6, the seventh lens E7, the filter E8, and the imaging surface S17.
  • the first lens E1 has positive refractive power, its object side S1 is convex, and its image side S2 is concave.
  • the second lens E2 has negative refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has positive refractive power, and its object side surface S5 is convex, and its image side surface S6 is concave.
  • the fourth lens E4 has positive refractive power, and its object side surface S7 is convex, and its image side surface S8 is convex.
  • the fifth lens E5 has negative refractive power, and its object side surface S9 is concave and the image side surface S10 is concave.
  • the sixth lens E6 has positive refractive power, and its object side surface S11 is convex, and its image side surface S12 is concave.
  • the seventh lens E7 has negative refractive power, and its object side surface S13 is convex, and its image side surface S14 is concave.
  • the filter E8 has an object side S15 and an image side S16. The light from the object sequentially passes through the surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • Table 4 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging lens of Example 2, wherein the units of radius of curvature and thickness are both millimeters (mm).
  • Example 2 the object side and the image side of any one of the first lens E1 to the seventh lens E7 are aspherical.
  • Table 5 shows the higher-order coefficients that can be used for each aspherical mirror surface in Example 2, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 6 shows the effective focal lengths f1 to f7 of each lens in Example 2, the total effective focal length f of the optical imaging lens, the total optical length TTL, and the half of the diagonal length of the effective pixel area on the imaging plane S17, ImgH.
  • 4A shows the astigmatism curve of the optical imaging lens of Example 2, which represents meridional image plane curvature and sagittal image plane curvature.
  • 4B shows the distortion curve of the optical imaging lens of Example 2, which represents the distortion magnitude values corresponding to different image heights.
  • 4C shows the magnification chromatic aberration curve of the optical imaging lens of Example 2, which represents the deviation of different image heights on the imaging plane of light rays passing through the lens. It can be seen from FIGS. 4A to 4C that the optical imaging lens provided in Embodiment 2 can achieve good imaging quality.
  • FIG. 5 shows a schematic structural diagram of an optical imaging lens according to Embodiment 3 of the present application.
  • the optical imaging lens includes, in order from the object side to the image side along the optical axis: an aperture STO, a first lens E1, a second lens E2, a third lens E3, a The four lens E4, the fifth lens E5, the sixth lens E6, the seventh lens E7, the filter E8, and the imaging surface S17.
  • the first lens E1 has positive refractive power, its object side S1 is convex, and its image side S2 is concave.
  • the second lens E2 has negative refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has positive refractive power, and its object side surface S5 is convex, and its image side surface S6 is concave.
  • the fourth lens E4 has positive refractive power, and its object side surface S7 is convex, and its image side surface S8 is convex.
  • the fifth lens E5 has negative refractive power, and its object side surface S9 is concave and the image side surface S10 is concave.
  • the sixth lens E6 has positive refractive power, and its object side surface S11 is convex, and its image side surface S12 is concave.
  • the seventh lens E7 has negative refractive power, and its object side surface S13 is convex, and its image side surface S14 is concave.
  • the filter E8 has an object side S15 and an image side S16. The light from the object sequentially passes through the surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • Table 7 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging lens of Example 3, where the units of radius of curvature and thickness are both millimeters (mm).
  • Example 3 the object side and the image side of any one of the first lens E1 to the seventh lens E7 are aspherical.
  • Table 8 shows the high-order coefficients that can be used for each aspherical mirror surface in Example 3, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 9 shows the effective focal lengths f1 to f7 of the lenses in Example 3, the total effective focal length f of the optical imaging lens, the total optical length TTL, and the half of the diagonal length of the effective pixel area on the imaging plane S17, ImgH.
  • 6A shows the astigmatism curve of the optical imaging lens of Example 3, which represents meridional image plane curvature and sagittal image plane curvature.
  • 6B shows the distortion curve of the optical imaging lens of Example 3, which represents the distortion magnitude values corresponding to different image heights.
  • 6C shows the magnification chromatic aberration curve of the optical imaging lens of Example 3, which represents the deviation of different image heights on the imaging plane of light rays passing through the lens. It can be seen from FIGS. 6A to 6C that the optical imaging lens provided in Embodiment 3 can achieve good imaging quality.
  • FIGS. 7 to 8C The optical imaging lens according to Embodiment 4 of the present application is described below with reference to FIGS. 7 to 8C.
  • 7 is a schematic structural diagram of an optical imaging lens according to Embodiment 4 of the present application.
  • the optical imaging lens includes, in order from the object side to the image side along the optical axis: an aperture STO, a first lens E1, a second lens E2, a third lens E3, a The four lens E4, the fifth lens E5, the sixth lens E6, the seventh lens E7, the filter E8, and the imaging surface S17.
  • the first lens E1 has positive refractive power, its object side S1 is convex, and its image side S2 is concave.
  • the second lens E2 has negative refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has positive refractive power, and its object side surface S5 is convex, and its image side surface S6 is concave.
  • the fourth lens E4 has positive refractive power, and its object side surface S7 is convex, and its image side surface S8 is convex.
  • the fifth lens E5 has negative refractive power, and its object side surface S9 is concave and the image side surface S10 is concave.
  • the sixth lens E6 has positive refractive power, and its object side surface S11 is convex, and its image side surface S12 is concave.
  • the seventh lens E7 has negative refractive power, and its object side surface S13 is convex, and its image side surface S14 is concave.
  • the filter E8 has an object side S15 and an image side S16. The light from the object sequentially passes through the surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • Table 10 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging lens of Example 4, wherein the units of radius of curvature and thickness are both millimeters (mm).
  • Example 4 the object side and the image side of any one of the first lens E1 to the seventh lens E7 are aspherical.
  • Table 11 shows the coefficients of higher order that can be used for each aspherical mirror surface in Example 4, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 12 shows the effective focal lengths f1 to f7 of each lens in Example 4, the total effective focal length f of the optical imaging lens, the total optical length TTL, and the half of the diagonal length of the effective pixel area on the imaging plane S17, ImgH.
  • 8A shows the astigmatism curve of the optical imaging lens of Example 4, which represents meridional image plane curvature and sagittal image plane curvature.
  • 8B shows the distortion curve of the optical imaging lens of Example 4, which represents the distortion magnitude values corresponding to different image heights.
  • 8C shows the magnification chromatic aberration curve of the optical imaging lens of Example 4, which represents the deviation of different image heights on the imaging plane of light rays passing through the lens. According to FIGS. 8A to 8C, the optical imaging lens provided in Example 4 can achieve good imaging quality.
  • FIGS. 9 to 10C The optical imaging lens according to Embodiment 5 of the present application is described below with reference to FIGS. 9 to 10C.
  • 9 is a schematic structural diagram of an optical imaging lens according to Embodiment 5 of the present application.
  • the optical imaging lens includes, in order from the object side to the image side along the optical axis: an aperture STO, a first lens E1, a second lens E2, a third lens E3, a The four lens E4, the fifth lens E5, the sixth lens E6, the seventh lens E7, the filter E8, and the imaging surface S17.
  • the first lens E1 has positive refractive power, its object side S1 is convex, and its image side S2 is concave.
  • the second lens E2 has negative refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has positive refractive power, and its object side surface S5 is convex, and its image side surface S6 is concave.
  • the fourth lens E4 has positive refractive power, and its object side surface S7 is convex, and its image side surface S8 is convex.
  • the fifth lens E5 has negative refractive power, and its object side surface S9 is concave and the image side surface S10 is concave.
  • the sixth lens E6 has positive refractive power, and its object side surface S11 is convex, and its image side surface S12 is concave.
  • the seventh lens E7 has negative refractive power, and its object side surface S13 is convex, and its image side surface S14 is concave.
  • the filter E8 has an object side S15 and an image side S16. The light from the object sequentially passes through the surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • Table 13 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging lens of Example 5, wherein the units of radius of curvature and thickness are both millimeters (mm).
  • Example 5 the object side and the image side of any one of the first lens E1 to the seventh lens E7 are aspherical.
  • Table 14 shows the coefficients of higher order that can be used for each aspherical mirror surface in Example 5, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 15 shows the effective focal lengths f1 to f7 of the lenses in Example 5, the total effective focal length f of the optical imaging lens, the total optical length TTL, and the half of the diagonal length of the effective pixel area on the imaging surface S17, ImgH.
  • 10A shows the astigmatism curve of the optical imaging lens of Example 5, which represents meridional image plane curvature and sagittal image plane curvature.
  • 10B shows the distortion curve of the optical imaging lens of Example 5, which represents the distortion magnitude values corresponding to different image heights.
  • 10C shows the magnification chromatic aberration curve of the optical imaging lens of Example 5, which represents the deviation of different image heights on the imaging plane of light rays passing through the lens.
  • the optical imaging lens provided in Example 5 can achieve good imaging quality.
  • FIG. 11 shows a schematic structural diagram of an optical imaging lens according to Embodiment 6 of the present application.
  • the optical imaging lens includes, in order from the object side to the image side along the optical axis: an aperture STO, a first lens E1, a second lens E2, a third lens E3, a The four lens E4, the fifth lens E5, the sixth lens E6, the seventh lens E7, the filter E8, and the imaging surface S17.
  • the first lens E1 has positive refractive power, its object side S1 is convex, and its image side S2 is concave.
  • the second lens E2 has negative refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has positive refractive power, and its object side surface S5 is convex, and its image side surface S6 is concave.
  • the fourth lens E4 has positive refractive power, and its object side surface S7 is convex, and its image side surface S8 is convex.
  • the fifth lens E5 has negative refractive power, and its object side surface S9 is concave and the image side surface S10 is concave.
  • the sixth lens E6 has positive refractive power, and its object side surface S11 is convex, and its image side surface S12 is concave.
  • the seventh lens E7 has negative refractive power, and its object side surface S13 is convex, and its image side surface S14 is concave.
  • the filter E8 has an object side S15 and an image side S16. The light from the object sequentially passes through the surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • Table 16 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging lens of Example 6, wherein the units of radius of curvature and thickness are both millimeters (mm).
  • Example 6 the object side and the image side of any one of the first lens E1 to the seventh lens E7 are aspherical.
  • Table 17 shows the high-order coefficients that can be used for each aspherical mirror surface in Example 6, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 18 shows the effective focal lengths f1 to f7 of each lens in Example 6, the total effective focal length f of the optical imaging lens, the total optical length TTL, and the half of the diagonal length of the effective pixel area on the imaging plane S17, ImgH.
  • 12A shows the astigmatism curve of the optical imaging lens of Example 6, which represents meridional image plane curvature and sagittal image plane curvature.
  • 12B shows the distortion curve of the optical imaging lens of Example 6, which represents the distortion magnitude values corresponding to different image heights.
  • 12C shows the magnification chromatic aberration curve of the optical imaging lens of Example 6, which represents the deviation of different image heights on the imaging plane of light rays passing through the lens. It can be seen from FIGS. 12A to 12C that the optical imaging lens provided in Example 6 can achieve good imaging quality.
  • Examples 1 to 6 satisfy the relationships shown in Table 19, respectively.
  • the present application also provides an imaging device whose electronic photosensitive element may be a photosensitive coupling element (CCD) or a complementary metal oxide semiconductor element (CMOS).
  • the camera device may be an independent camera device such as a digital camera, or a camera module integrated on a mobile electronic device such as a mobile phone.
  • the imaging device is equipped with the optical imaging lens described above.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学成像镜头,镜头沿着光轴由物侧至像侧依序包括:具有光焦度的第一透镜(E1)、第二透镜(E2)、第三透镜(E3)、第四透镜(E4)、第五透镜(E5)、第六透镜(E6)和第七透镜(E7)。其中,第一透镜(E1)和第三透镜(E3)均具有正光焦度;第五透镜(E5)具有负光焦度;以及光学成像镜头的总有效焦距(f)与光学成像镜头的入瞳直径(EPD)满足f/EPD<1.3。

Description

光学成像镜头
相关申请的交叉引用
本申请要求于2018年12月24日提交于中国国家知识产权局(CNIPA)的、专利申请号为201811583073.2的中国专利申请的优先权和权益,该中国专利申请通过引用整体并入本文。
技术领域
本申请涉及一种光学成像镜头,更具体地,本申请涉及一种包括七片透镜的光学成像镜头。
背景技术
随着科技的进步,智能手机等电子产品迅速发展,人们对智能手机拍照的成像要求也不断提高。目前,手机等电子产品上所搭载的摄像镜头已不再仅局限于单摄像头,而是逐渐发展成多摄像头,大部分高端镜头均会使用广角加长焦的组合方式,以实现光学变焦的功能。
然而,目前单纯的变焦功能已无法满足人们对大像面高成像质量的拍照需求。大像面大光圈镜头由于可采集更多的光线信息,拥有更小的光学像差和更优秀的成像品质,并可为用户提供自主选择光圈大小的可能性,因而也在逐渐受到用户的的青睐。
发明内容
本申请提供了可适用于便携式电子产品的、可至少解决或部分解决现有技术中的上述至少一个缺点的光学成像镜头,例如,大光圈大像面镜头。
本申请提供了这样一种光学成像镜头,该镜头沿着光轴由物侧至像侧依序包括:具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜。第一透镜和第三透镜均具有正光焦度;第五透镜具有负光焦度。
在一个实施方式中,光学成像镜头的总有效焦距f与光学成像镜头的入瞳直径EPD满足f/EPD<1.3。
在一个实施方式中,光学成像镜头的成像面上有效像素区域对角线长的一半ImgH与光学成像镜头的总有效焦距f满足0.6<ImgH/f<0.8。
在一个实施方式中,第一透镜的有效焦距f1、第一透镜的物侧面的曲率半径R1与第一透镜的像侧面的曲率半径R2满足1<f1/(R2-R1)<2。
在一个实施方式中,第二透镜的物侧面的曲率半径R3与第二透镜的像侧面的曲率半径R4满足1.2<R3/R4<1.6。
在一个实施方式中,第三透镜的有效焦距f3、第三透镜的像侧面的曲率半径R6与第三透镜的物侧面的曲率半径R5满足1.2<f3/(R6-R5)<1.7。
在一个实施方式中,第二透镜的有效焦距f2与第七透镜的有效焦距f7满足0.7<f2/f7<1.3。
在一个实施方式中,第六透镜的有效焦距f6、第五透镜的有效焦距f5与第四透镜的有效焦距 f4满足0.5<(f6-f5)/f4<1.0。
在一个实施方式中,第六透镜的物侧面的曲率半径R11、第六透镜的像侧面的曲率半径R12、第七透镜的物侧面的曲率半径R13与第七透镜的像侧面的曲率半径R14满足1.4<(R11+R12)/(R13+R14)<2.1。
在一个实施方式中,第一透镜的物侧面的最大有效半径DT11、第一透镜的像侧面的最大有效半径DT12与光学成像镜头的成像面上有效像素区域对角线长的一半ImgH满足1<(DT11+DT12)/ImgH<1.5。
在一个实施方式中,第七透镜的边缘厚度ET7与第七透镜在光轴上的中心厚度CT7满足1.2<ET7/CT7<1.7。
在一个实施方式中,第三透镜和第四透镜在光轴上的间隔距离T34与第六透镜和第七透镜在光轴上的间隔距离T67满足1.1<T34/T67<1.5。
在一个实施方式中,第三透镜在光轴上的中心厚度CT3、第六透镜在光轴上的中心厚度CT6与第一透镜的物侧面至光学成像镜头的成像面在光轴上的距离TTL满足2<(CT3+CT6)/TTL×10<2.4。
在一个实施方式中,第二透镜和第七透镜均具有负光焦度;第四透镜和第六透镜均具有正光焦度。
在一个实施方式中,第一透镜、第二透镜、第三透镜、第六透镜和第七透镜的物侧面均为凸面,像侧面均为凹面。
本申请采用了七片透镜,通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,使得上述光学成像镜头具有大像面、大光圈、高成像质量等至少一个有益效果。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本申请的其他特征、目的和优点将变得更加明显。在附图中:
图1示出了根据本申请实施例1的光学成像镜头的结构示意图;
图2A至图2C分别示出了实施例1的光学成像镜头的象散曲线、畸变曲线以及倍率色差曲线;
图3示出了根据本申请实施例2的光学成像镜头的结构示意图;
图4A至图4C分别示出了实施例2的光学成像镜头的象散曲线、畸变曲线以及倍率色差曲线;
图5示出了根据本申请实施例3的光学成像镜头的结构示意图;
图6A至图6C分别示出了实施例3的光学成像镜头的象散曲线、畸变曲线以及倍率色差曲线;
图7示出了根据本申请实施例4的光学成像镜头的结构示意图;
图8A至图8C分别示出了实施例4的光学成像镜头的象散曲线、畸变曲线以及倍率色差曲线;
图9示出了根据本申请实施例5的光学成像镜头的结构示意图;
图10A至图10C分别示出了实施例5的光学成像镜头的象散曲线、畸变曲线以及倍率色差曲 线;
图11示出了根据本申请实施例6的光学成像镜头的结构示意图;
图12A至图12C分别示出了实施例6的光学成像镜头的象散曲线、畸变曲线以及倍率色差曲线。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜最靠近被摄物的表面称为该透镜的物侧面,每个透镜最靠近成像面的表面称为该透镜的像侧面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其他特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
以下对本申请的特征、原理和其他方面进行详细描述。
根据本申请示例性实施方式的光学成像镜头可包括例如七片具有光焦度的透镜,即,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜。这七片透镜沿着光轴由 物侧至像侧依序排列,且各相邻透镜之间均可具有空气间隔。
在示例性实施方式中,第一透镜可具有正光焦度;第二透镜具有正光焦度或负光焦度;第三透镜可具有正光焦度;第四透镜具有正光焦度或负光焦度;第五透镜可具有负光焦度;第六透镜具有正光焦度或负光焦度;以及第七透镜具有正光焦度或负光焦度。第一透镜具有正光焦度,可在会聚光线的同时实现大像面大光圈镜头;第三透镜具有正光焦度,可有效矫正第一透镜和第二透镜产生的各光波段光程差,同时还可收敛光线走势,防止发生全反射;第五透镜具有负光焦度,可调整光学放大倍率,使***能够在大像面上成像,并可有效控制***主光线角度(CRA)的曲线走向,使其能与大像面芯片匹配。
在示例性实施方式中,第一透镜的物侧面可为凸面,像侧面可为凹面。
在示例性实施方式中,第二透镜可具有负光焦度,其物侧面可为凸面,像侧面可为凹面。第二透镜具有负光焦度,可有效矫正第一透镜所产生的光程差,平衡***色差,并可偏折光线以获得大像面。
在示例性实施方式中,第三透镜的物侧面可为凸面,像侧面可为凹面。
在示例性实施方式中,第四透镜可具有正光焦度,其物侧面可为凸面,像侧面可为凸面。第四透镜具有正光焦度,可在第三透镜的基础上进一步收敛光线,同时还可通过面型边缘反曲来提高边缘视场的相对亮度。
在示例性实施方式中,第五透镜的物侧面可为凹面,像侧面可为凹面。
在示例性实施方式中,第六透镜可具有正光焦度,其物侧面可为凸面,像侧面可为凹面。第六透镜具有正光焦度,可有效矫正第五透镜所产生的光程差,平衡***色差,也可使***具备一定的场曲矫正能力。
在示例性实施方式中,第七透镜可具有负光焦度,其物侧面可为凸面,像侧面可为凹面。第七透镜具有负光焦度,可有效平衡***色差,矫正场曲和光学畸变,提高成像质量。
另外,通过合理配置第一透镜、第二透镜、第三透镜、第六透镜和第七透镜的面型,还可合理调整光线在各个透镜中的入射角和出射角,提高镜头主光线角度与芯片的匹配度;同时,还可规避因光线偏折角度过大而产生全反射鬼像。
在示例性实施方式中,本申请的光学成像镜头可满足条件式f/EPD<1.3,其中,f为光学成像镜头的总有效焦距,EPD为光学成像镜头的入瞳直径。更具体地,f和EPD进一步可满足1.0<f/EPD<1.3,例如1.03≤f/EPD≤1.29。满足条件式f/EPD<1.3,可使整个***具有大光圈的优势,并可增强***在光线较弱环境下的成像效果,同时还可减小边缘视场的像差。
在示例性实施方式中,本申请的光学成像镜头可满足条件式0.6<ImgH/f<0.8,其中,ImgH为光学成像镜头的成像面上有效像素区域对角线长的一半,f为光学成像镜头的总有效焦距。更具体地,ImgH和f进一步可满足0.67≤ImgH/f≤0.75。满足条件式0.6<ImgH/f<0.8,可有效提升光学镜头的摄远比,增加拍摄的放大倍率,也可控制视场角的大小,增大拍照范围。
在示例性实施方式中,本申请的光学成像镜头可满足条件式1<f1/(R2-R1)<2,其中,f1为第一透镜的有效焦距,R1为第一透镜的物侧面的曲率半径,R2为第一透镜的像侧面的曲率半径。 更具体地,f1、R2和R1进一步可满足1.01≤f1/(R2-R1)≤1.91。满足条件式1<f1/(R2-R1)<2,可有效增加镜头的整体焦距,并可合理分配第一透镜的光焦度,降低实际零件加工的敏感度。可选地,第一透镜的物侧面可为凸面,像侧面可为凹面。
在示例性实施方式中,本申请的光学成像镜头可满足条件式1.2<R3/R4<1.6,其中,R3为第二透镜的物侧面的曲率半径,R4为第二透镜的像侧面的曲率半径。更具体地,R3和R4进一步可满足1.36≤R3/R4≤1.39。满足条件式1.2<R3/R4<1.6,可对第二透镜的物侧面和像侧面的曲率进行优化,还可提高透镜的成形加工性,并可降低光学***的轴上色差,同时还可提高轴外视场的光学调制传递函数(MTF)值,满足更高的成像要求。
在示例性实施方式中,本申请的光学成像镜头可满足条件式1.2<f3/(R6-R5)<1.7,其中,f3为第三透镜的有效焦距,R6为第三透镜的像侧面的曲率半径,R5为第三透镜的物侧面的曲率半径。更具体地,f3、R6和R5进一步可满足1.32≤f3/(R6-R5)≤1.55。满足条件式1.2<f3/(R6-R5)<1.7,可有效矫正具有负光焦度的第二透镜所产生的各光波段光程差,并可合理分配第三透镜的光焦度,降低实际零件加工的敏感度。可选地,第三透镜的物侧面可为凸面,像侧面可为凹面。
在示例性实施方式中,本申请的光学成像镜头可满足条件式0.7<f2/f7<1.3,其中,f2为第二透镜的有效焦距,f7为第七透镜的有效焦距。更具体地,f2和f7进一步可满足0.77≤f2/f7≤1.28。满足条件式0.7<f2/f7<1.3,有利于调整光学***有效焦距的大小,还可有效降低光学***边缘的畸变,确保边缘的相对亮度,进而可使***拥有更好的成像效果。
在示例性实施方式中,本申请的光学成像镜头可满足条件式0.5<(f6-f5)/f4<1.0,其中,f6为第六透镜的有效焦距,f5为第五透镜的有效焦距,f4为第四透镜的有效焦距。更具体地,f6、f5和f4进一步可满足0.68≤(f6-f5)/f4≤0.86。满足条件式0.5<(f6-f5)/f4<1.0,可均衡第四透镜、第五透镜和第六透镜在整个光学***焦距中的贡献权重,降低整个***的敏感性,并可使光学***具有较好的场曲平衡能力。
在示例性实施方式中,本申请的光学成像镜头可满足条件式1.4<(R11+R12)/(R13+R14)<2.1,其中,R11为第六透镜的物侧面的曲率半径,R12为第六透镜的像侧面的曲率半径,R13为第七透镜的物侧面的曲率半径,R14为第七透镜的像侧面的曲率半径。更具体地,R11、R12、R13和R14进一步可满足1.49≤(R11+R12)/(R13+R14)≤2.00。满足条件式1.4<(R11+R12)/(R13+R14)<2.1,使光学***可更好地匹配芯片的主光线角度,矫正***场曲并提高***的相对亮度。
在示例性实施方式中,本申请的光学成像镜头可满足条件式1<(DT11+DT12)/ImgH<1.5,其中,DT11为第一透镜的物侧面的最大有效半径,DT12为第一透镜的像侧面的最大有效半径,ImgH为光学成像镜头的成像面上有效像素区域对角线长的一半。更具体地,DT11、DT12和ImgH进一步可满足1.01≤(DT11+DT12)/ImgH≤1.32。满足条件式1<(DT11+DT12)/ImgH<1.5,能保证镜头拥有更大的焦距,并可提升光圈大小,适当控制景深范围,满足更多种拍摄需求。
在示例性实施方式中,本申请的光学成像镜头可满足条件式1.1<T34/T67<1.5,其中,T34为第三透镜和第四透镜在光轴上的间隔距离,T67为第六透镜和第七透镜在光轴上的间隔距离。更具体地,T34和T67进一步可满足1.16≤T34/T67≤1.36。满足条件式1.1<T34/T67<1.5,可使 光学***具有较好的色散平衡能力,并可通过调整相邻透镜之间的间隔距离的光程来合理控制有效焦距。
在示例性实施方式中,本申请的光学成像镜头可满足条件式1.2<ET7/CT7<1.7,其中,ET7为第七透镜的边缘厚度,CT7为第七透镜在光轴上的中心厚度。更具体地,ET7和CT7进一步可满足1.26≤ET7/CT7≤1.63。满足条件式1.2<ET7/CT7<1.7,可有效控制光线偏折,降低光学***的后端尺寸,同时控制第七透镜的厚薄比较小还有利于透镜的成形,避免熔接痕,并可减小成形过程中所产生的应力问题。
在示例性实施方式中,本申请的光学成像镜头可满足条件式2<(CT3+CT6)/TTL×10<2.4,其中,CT3为第三透镜在光轴上的中心厚度,CT6为第六透镜在光轴上的中心厚度,TTL为第一透镜的物侧面至光学成像镜头的成像面在光轴上的距离。更具体地,CT3、CT6和TTL进一步可满足2.13≤(CT3+CT6)/TTL×10≤2.20。满足条件式2<(CT3+CT6)/TTL×10<2.4,可均衡光学***前后端尺寸的分配,使各个透镜拥有较合理的中心厚度,防止透镜成形后发生破裂,同时还可使***具有较好的场曲矫正能力。
在示例性实施方式中,上述光学成像镜头还可包括光阑,以提升镜头的成像质量。可选地,光阑可设置在物侧与第一透镜之间。
可选地,上述光学成像镜头还可包括用于校正色彩偏差的滤光片和/或用于保护位于成像面上的感光元件的保护玻璃。
根据本申请的上述实施方式的光学成像镜头可采用多片镜片,例如上文所述的七片。通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,可有效地缩小镜头的体积、降低镜头的敏感度并提高镜头的可加工性,使得光学成像镜头更有利于生产加工并且可适用于便携式电子产品。通过上述配置的光学成像镜头还可具有大像面、大光圈、高成像质量等有益效果。
在本申请的实施方式中,各透镜的镜面中的至少一个为非球面镜面,即,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜中的每个透镜的物侧面和像侧面中的至少一个为非球面镜面。非球面透镜的特点是:从透镜中心到透镜周边,曲率是连续变化的。与从透镜中心到透镜周边具有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。可选地,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜中的每个透镜的物侧面和像侧面均为非球面镜面。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成光学成像镜头的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以七个透镜为例进行了描述,但是该光学成像镜头不限于包括七个透镜。如果需要,该光学成像镜头还可包括其他数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的光学成像镜头的具体实施例。
实施例1
以下参照图1至图2C描述根据本申请实施例1的光学成像镜头。图1示出了根据本申请实施例1的光学成像镜头的结构示意图。
如图1所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凹面。第七透镜E7具有负光焦度,其物侧面S13为凸面,像侧面S14为凹面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表1示出了实施例1的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2019102149-appb-000001
表1
由表1可知,第一透镜E1至第七透镜E7中的任意一个透镜的物侧面和像侧面均为非球面。在本实施例中,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:
Figure PCTCN2019102149-appb-000002
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数(在表1中已给出);Ai是非球面第i-th阶的修正系数。下表2给出了可用于实施例1中各非球面镜面S1-S14的高次项系数A 4、A 6、A 8、A 10、A 12、A 14、A 16、A 18和A 20
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 3.2870E-03 1.2180E-03 -3.1000E-04 -3.6700E-03 5.1060E-03 -3.1600E-03 1.0410E-03 -1.8000E-04 1.2800E-05
S2 -1.4050E-02 6.4492E-02 -1.2551E-01 1.4071E-01 -1.0186E-01 4.7740E-02 -1.3860E-02 2.2580E-03 -1.6000E-04
S3 3.0249E-02 -9.4300E-03 -3.9730E-02 6.3453E-02 -5.2900E-02 2.7194E-02 -8.4400E-03 1.4400E-03 -1.0000E-04
S4 -1.4130E-02 3.3435E-02 -3.3010E-02 2.0944E-02 -9.6400E-03 3.4010E-03 -6.8000E-04 2.7800E-06 1.2800E-05
S5 -2.9280E-02 6.6642E-02 -1.5202E-01 2.3274E-01 -2.2029E-01 1.2937E-01 -4.5810E-02 8.9640E-03 -7.4000E-04
S6 -1.2900E-03 -1.0380E-02 5.3200E-04 1.3567E-02 -2.6330E-02 2.6894E-02 -1.5300E-02 4.5600E-03 -5.5000E-04
S7 -6.7640E-02 1.0091E-01 -3.5416E-01 6.4567E-01 -7.1563E-01 4.9480E-01 -2.0743E-01 4.8184E-02 -4.7600E-03
S8 3.1940E-03 -7.4970E-02 5.3884E-02 -6.8460E-02 8.1466E-02 -5.3660E-02 1.9407E-02 -3.6900E-03 2.9200E-04
S9 8.9705E-02 -1.9364E-01 2.9358E-01 -3.3167E-01 2.4066E-01 -1.0804E-01 2.8863E-02 -4.2200E-03 2.6200E-04
S10 3.4522E-02 -2.2714E-01 4.0333E-01 -4.0280E-01 2.4434E-01 -9.2020E-02 2.0917E-02 -2.6100E-03 1.3700E-04
S11 1.0690E-03 -1.4634E-01 1.9464E-01 -1.6359E-01 8.7686E-02 -2.9970E-02 6.2700E-03 -7.2000E-04 3.5000E-05
S12 6.3558E-02 -5.7350E-02 1.9028E-02 -3.4800E-03 7.8700E-05 1.3600E-04 -3.4000E-05 3.5100E-06 -1.4000E-07
S13 -2.9079E-01 1.9398E-01 -1.1508E-01 5.0389E-02 -1.4180E-02 2.4940E-03 -2.7000E-04 1.5700E-05 -4.0000E-07
S14 -1.3449E-01 7.8790E-02 -3.8690E-02 1.2986E-02 -2.7600E-03 3.6900E-04 -3.0000E-05 1.3600E-06 -2.6000E-08
表2
表3给出实施例1中各透镜的有效焦距f1至f7、光学成像镜头的总有效焦距f、光学总长度TTL(即,从第一透镜E1的物侧面S1至成像面S17在光轴上的距离)以及成像面S17上有效像素区域对角线长的一半ImgH。
f1(mm) 6.85 f6(mm) 9.65
f2(mm) -9.74 f7(mm) -10.07
f3(mm) 7.43 f(mm) 4.80
f4(mm) 32.31 TTL(mm) 6.19
f5(mm) -14.84 ImgH(mm) 3.60
表3
图2A示出了实施例1的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2B示出了实施例1的光学成像镜头的畸变曲线,其表示不同像高所对应的畸变大小值。图2C示出了实施例1的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图2A至图2C可知,实施例1所给出的光学成像镜头能够实现良好的成像品质。
实施例2
以下参照图3至图4C描述根据本申请实施例2的光学成像镜头。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了根据本申请实施例2的光学成像镜头的结构示意图。
如图3所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、 第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凹面。第七透镜E7具有负光焦度,其物侧面S13为凸面,像侧面S14为凹面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表4示出了实施例2的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2019102149-appb-000003
表4
由表4可知,在实施例2中,第一透镜E1至第七透镜E7中的任意一个透镜的物侧面和像侧面均为非球面。表5示出了可用于实施例2中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 4.0020E-03 -3.3000E-04 9.1100E-04 -3.5500E-03 4.0800E-03 -2.3100E-03 7.1300E-04 -1.1000E-04 7.6700E-06
S2 -1.3170E-02 6.1674E-02 -1.1847E-01 1.3046E-01 -9.2380E-02 4.2246E-02 -1.1960E-02 1.9020E-03 -1.3000E-04
S3 3.0335E-02 -9.5400E-03 -3.5150E-02 5.3251E-02 -4.1840E-02 2.0295E-02 -5.9500E-03 9.5700E-04 -6.5000E-05
S4 -1.2630E-02 3.0148E-02 -2.5900E-02 1.0507E-02 -1.0900E-03 -5.5000E-04 3.2100E-04 -1.1000E-04 1.6200E-05
S5 -2.9140E-02 6.6434E-02 -1.5162E-01 2.3063E-01 -2.1640E-01 1.2572E-01 -4.3910E-02 8.4490E-03 -6.9000E-04
S6 -1.4100E-03 -1.4260E-02 9.2930E-03 -3.1000E-04 -1.1450E-02 1.6092E-02 -1.0180E-02 3.1690E-03 -3.9000E-04
S7 -6.5000E-02 6.7731E-02 -2.2954E-01 3.9979E-01 -4.2800E-01 2.8836E-01 -1.1807E-01 2.6793E-02 -2.5900E-03
S8 1.3402E-02 -1.7953E-01 3.8878E-01 -5.8061E-01 5.2900E-01 -2.9110E-01 9.5458E-02 -1.7260E-02 1.3310E-03
S9 9.1091E-02 -2.7243E-01 5.4723E-01 -6.9247E-01 5.2971E-01 -2.4828E-01 6.9870E-02 -1.0880E-02 7.2300E-04
S10 2.7520E-02 -2.5582E-01 4.9421E-01 -5.1756E-01 3.2461E-01 -1.2582E-01 2.9425E-02 -3.7900E-03 2.0500E-04
S11 5.1100E-04 -1.4425E-01 1.9684E-01 -1.7307E-01 9.6413E-02 -3.3880E-02 7.2200E-03 -8.4000E-04 4.1200E-05
S12 7.4946E-02 -5.6950E-02 1.0788E-02 3.6260E-03 -2.9100E-03 8.5600E-04 -1.3000E-04 1.1100E-05 -3.8000E-07
S13 -2.8129E-01 1.8483E-01 -1.0127E-01 4.0323E-02 -1.0400E-02 1.6920E-03 -1.7000E-04 9.3200E-06 -2.2000E-07
S14 -1.2201E-01 6.4464E-02 -2.8010E-02 8.2570E-03 -1.5400E-03 1.8400E-04 -1.4000E-05 5.7800E-07 -1.1000E-08
表5
表6给出实施例2中各透镜的有效焦距f1至f7、光学成像镜头的总有效焦距f、光学总长度TTL以及成像面S17上有效像素区域对角线长的一半ImgH。
f1(mm) 6.95 f6(mm) 8.89
f2(mm) -9.91 f7(mm) -7.75
f3(mm) 7.44 f(mm) 4.80
f4(mm) 29.37 TTL(mm) 6.22
f5(mm) -16.31 ImgH(mm) 3.60
表6
图4A示出了实施例2的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4B示出了实施例2的光学成像镜头的畸变曲线,其表示不同像高所对应的畸变大小值。图4C示出了实施例2的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图4A至图4C可知,实施例2所给出的光学成像镜头能够实现良好的成像品质。
实施例3
以下参照图5至图6C描述了根据本申请实施例3的光学成像镜头。图5示出了根据本申请实施例3的光学成像镜头的结构示意图。
如图5所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凹面。第七透镜E7具有负光焦度,其物侧面S13为凸面,像侧面S14为凹面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表7示出了实施例3的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2019102149-appb-000004
Figure PCTCN2019102149-appb-000005
表7
由表7可知,在实施例3中,第一透镜E1至第七透镜E7中的任意一个透镜的物侧面和像侧面均为非球面。表8示出了可用于实施例3中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 3.4780E-03 6.3800E-04 1.7600E-04 -3.3000E-03 4.1070E-03 -2.3700E-03 7.3700E-04 -1.2000E-04 7.9700E-06
S2 -1.4230E-02 6.2619E-02 -1.1766E-01 1.2861E-01 -9.0780E-02 4.1384E-02 -1.1660E-02 1.8400E-03 -1.2000E-04
S3 3.0732E-02 -1.0040E-02 -3.4910E-02 5.3395E-02 -4.2120E-02 2.0489E-02 -6.0300E-03 9.7900E-04 -6.7000E-05
S4 -1.1990E-02 2.8524E-02 -2.3280E-02 7.2770E-03 1.5710E-03 -1.9600E-03 7.7500E-04 -1.9000E-04 2.1100E-05
S5 -3.0510E-02 6.3930E-02 -1.4012E-01 2.0743E-01 -1.9005E-01 1.0775E-01 -3.6650E-02 6.8520E-03 -5.4000E-04
S6 -1.2000E-04 -1.4220E-02 8.9020E-03 -8.2000E-04 -9.2800E-03 1.3365E-02 -8.5000E-03 2.6380E-03 -3.2000E-04
S7 -6.4130E-02 7.0210E-02 -2.4396E-01 4.2943E-01 -4.6105E-01 3.0995E-01 -1.2611E-01 2.8328E-02 -2.7000E-03
S8 2.0408E-02 -2.3956E-01 5.1131E-01 -7.0330E-01 5.9674E-01 -3.1103E-01 9.7703E-02 -1.7050E-02 1.2740E-03
S9 1.0925E-01 -3.4817E-01 6.7668E-01 -8.0516E-01 5.8684E-01 -2.6598E-01 7.3185E-02 -1.1220E-02 7.3800E-04
S10 5.2111E-02 -3.2373E-01 5.6640E-01 -5.5239E-01 3.2801E-01 -1.2185E-01 2.7591E-02 -3.4600E-03 1.8400E-04
S11 4.7910E-03 -1.5425E-01 2.0738E-01 -1.8204E-01 1.0154E-01 -3.5880E-02 7.7380E-03 -9.2000E-04 4.5800E-05
S12 8.1813E-02 -5.3030E-02 2.6730E-03 8.5460E-03 -4.6000E-03 1.2210E-03 -1.8000E-04 1.4900E-05 -5.0000E-07
S13 -3.1682E-01 2.2491E-01 -1.2711E-01 5.1282E-02 -1.3440E-02 2.2320E-03 -2.3000E-04 1.3000E-05 -3.2000E-07
S14 -1.3600E-01 7.6830E-02 -3.4470E-02 1.0176E-02 -1.8600E-03 2.1300E-04 -1.5000E-05 6.0400E-07 -1.1000E-08
表8
表9给出实施例3中各透镜的有效焦距f1至f7、光学成像镜头的总有效焦距f、光学总长度TTL以及成像面S17上有效像素区域对角线长的一半ImgH。
f1(mm) 6.87 f6(mm) 9.70
f2(mm) -9.58 f7(mm) -12.39
f3(mm) 7.41 f(mm) 4.69
f4(mm) 28.71 TTL(mm) 6.14
f5(mm) -14.37 ImgH(mm) 3.41
表9
图6A示出了实施例3的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6B示出了实施例3的光学成像镜头的畸变曲线,其表示不同像高所对应的畸变大小值。图6C示出了实施例3的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图6A至图6C可知,实施例3所给出的光学成像镜头能够实现良好的成像品质。
实施例4
以下参照图7至图8C描述了根据本申请实施例4的光学成像镜头。图7示出了根据本申请实施例4的光学成像镜头的结构示意图。
如图7所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凹面。第七透镜E7具有负光焦度,其物侧面S13为凸面,像侧面S14为凹面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表10示出了实施例4的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2019102149-appb-000006
Figure PCTCN2019102149-appb-000007
表10
由表10可知,在实施例4中,第一透镜E1至第七透镜E7中的任意一个透镜的物侧面和像侧面均为非球面。表11示出了可用于实施例4中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 2.8580E-03 3.2800E-04 2.8000E-04 -1.7700E-03 1.6840E-03 -7.6000E-04 1.8300E-04 -2.3000E-05 1.2000E-06
S2 -7.3700E-03 4.4865E-02 -7.3930E-02 6.9862E-02 -4.2280E-02 1.6453E-02 -3.9600E-03 5.3400E-04 -3.1000E-05
S3 3.0056E-02 -1.1430E-02 -2.1820E-02 3.0684E-02 -2.1580E-02 9.2170E-03 -2.3500E-03 3.2600E-04 -1.9000E-05
S4 -6.0500E-03 1.8636E-02 -1.5130E-02 4.4890E-03 -8.8000E-05 -1.3000E-04 7.7600E-06 -9.2000E-06 2.4500E-06
S5 -2.3310E-02 4.8343E-02 -8.6280E-02 1.0226E-01 -7.5090E-02 3.4117E-02 -9.3000E-03 1.3960E-03 -8.9000E-05
S6 -1.0700E-03 -1.7400E-02 1.5443E-02 -9.1800E-03 -1.5700E-03 6.7440E-03 -4.4000E-03 1.2590E-03 -1.4000E-04
S7 -6.2930E-02 2.6995E-02 -7.7850E-02 1.2183E-01 -1.2324E-01 8.0407E-02 -3.1640E-02 6.7930E-03 -6.1000E-04
S8 1.3198E-01 -8.5054E-01 1.9271E+00 -2.4852E+00 1.9503E+00 -9.5221E-01 2.8366E-01 -4.7350E-02 3.4020E-03
S9 2.5964E-01 -1.0295E+00 2.1312E+00 -2.5487E+00 1.8574E+00 -8.4334E-01 2.3325E-01 -3.6000E-02 2.3800E-03
S10 8.1882E-02 -5.6550E-01 1.1022E+00 -1.1848E+00 7.7067E-01 -3.1153E-01 7.6402E-02 -1.0370E-02 5.9600E-04
S11 -4.0020E-02 -1.2707E-01 2.5825E-01 -3.0377E-01 2.0324E-01 -8.0640E-02 1.8856E-02 -2.3900E-03 1.2600E-04
S12 8.1718E-02 -1.9000E-03 -9.1960E-02 8.2239E-02 -3.7400E-02 1.0217E-02 -1.6900E-03 1.5500E-04 -6.1000E-06
S13 -4.1305E-01 3.1900E-01 -1.9159E-01 8.5123E-02 -2.5160E-02 4.7450E-03 -5.5000E-04 3.5400E-05 -9.8000E-07
S14 -1.7948E-01 1.1094E-01 -5.3720E-02 1.7266E-02 -3.3600E-03 3.9300E-04 -2.7000E-05 1.0100E-06 -1.6000E-08
表11
表12给出实施例4中各透镜的有效焦距f1至f7、光学成像镜头的总有效焦距f、光学总长度TTL以及成像面S17上有效像素区域对角线长的一半ImgH。
f1(mm) 6.53 f6(mm) 7.27
f2(mm) -9.25 f7(mm) -11.58
f3(mm) 7.89 f(mm) 4.70
f4(mm) 24.97 TTL(mm) 6.24
f5(mm) -10.83 ImgH(mm) 3.14
表12
图8A示出了实施例4的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8B示出了实施例4的光学成像镜头的畸变曲线,其表示不同像高所对应的畸变大小值。图8C示出了实施例4的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图8A至图8C可知,实施例4所给出的光学成像镜头能够实现良好的成像品质。
实施例5
以下参照图9至图10C描述了根据本申请实施例5的光学成像镜头。图9示出了根据本申请实施例5的光学成像镜头的结构示意图。
如图9所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、 第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凹面。第七透镜E7具有负光焦度,其物侧面S13为凸面,像侧面S14为凹面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表13示出了实施例5的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2019102149-appb-000008
表13
由表13可知,在实施例5中,第一透镜E1至第七透镜E7中的任意一个透镜的物侧面和像侧面均为非球面。表14示出了可用于实施例5中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 2.4020E-03 5.7400E-04 2.3400E-04 -1.7800E-03 1.7050E-03 -7.7000E-04 1.8600E-04 -2.4000E-05 1.2200E-06
S2 -7.2700E-03 4.3759E-02 -7.1520E-02 6.7045E-02 -4.0250E-02 1.5538E-02 -3.7100E-03 4.9700E-04 -2.9000E-05
S3 2.9976E-02 -1.1450E-02 -2.1380E-02 2.9911E-02 -2.0910E-02 8.8700E-03 -2.2500E-03 3.0800E-04 -1.8000E-05
S4 -5.8700E-03 1.8957E-02 -1.5510E-02 4.7290E-03 -2.2000E-04 -4.9000E-05 -2.7000E-05 -2.3000E-06 1.9500E-06
S5 -2.1790E-02 4.7152E-02 -8.3660E-02 9.7908E-02 -7.1100E-02 3.1902E-02 -8.5600E-03 1.2620E-03 -7.8000E-05
S6 -6.2000E-04 -1.6900E-02 1.4651E-02 -9.0000E-03 -1.3600E-03 6.4540E-03 -4.2200E-03 1.2030E-03 -1.3000E-04
S7 -6.1900E-02 2.6457E-02 -7.4760E-02 1.1545E-01 -1.1526E-01 7.4286E-02 -2.8840E-02 6.1070E-03 -5.4000E-04
S8 1.6680E-01 -1.0086E+00 2.2437E+00 -2.8388E+00 2.1913E+00 -1.0550E+00 3.1049E-01 -5.1260E-02 3.6460E-03
S9 2.7918E-01 -1.1303E+00 2.3318E+00 -2.7623E+00 1.9951E+00 -8.9889E-01 2.4694E-01 -3.7880E-02 2.4880E-03
S10 7.2785E-02 -5.5264E-01 1.0822E+00 -1.1580E+00 7.5040E-01 -3.0300E-01 7.4423E-02 -1.0140E-02 5.8600E-04
S11 -4.0410E-02 -1.1430E-01 2.2685E-01 -2.6870E-01 1.8093E-01 -7.1880E-02 1.6741E-02 -2.1000E-03 1.1000E-04
S12 8.5203E-02 -1.0800E-03 -1.0226E-01 9.4181E-02 -4.4020E-02 1.2289E-02 -2.0600E-03 1.9100E-04 -7.5000E-06
S13 -4.0922E-01 3.2101E-01 -1.8745E-01 7.8315E-02 -2.1560E-02 3.7830E-03 -4.1000E-04 2.4600E-05 -6.4000E-07
S14 -1.7485E-01 1.0759E-01 -5.0880E-02 1.5742E-02 -2.9400E-03 3.2900E-04 -2.2000E-05 7.7300E-07 -1.2000E-08
表14
表15给出实施例5中各透镜的有效焦距f1至f7、光学成像镜头的总有效焦距f、光学总长度TTL以及成像面S17上有效像素区域对角线长的一半ImgH。
f1(mm) 6.51 f6(mm) 7.30
f2(mm) -9.24 f7(mm) -11.50
f3(mm) 7.91 f(mm) 4.69
f4(mm) 25.33 TTL(mm) 6.24
f5(mm) -11.25 ImgH(mm) 3.24
表15
图10A示出了实施例5的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图10B示出了实施例5的光学成像镜头的畸变曲线,其表示不同像高所对应的畸变大小值。图10C示出了实施例5的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图10A至图10C可知,实施例5所给出的光学成像镜头能够实现良好的成像品质。
实施例6
以下参照图11至图12C描述了根据本申请实施例6的光学成像镜头。图11示出了根据本申请实施例6的光学成像镜头的结构示意图。
如图11所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凹面。第七透镜E7具有负光焦度,其物侧面S13为凸面,像侧面S14为凹面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表16示出了实施例6的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2019102149-appb-000009
Figure PCTCN2019102149-appb-000010
表16
由表16可知,在实施例6中,第一透镜E1至第七透镜E7中的任意一个透镜的物侧面和像侧面均为非球面。表17示出了可用于实施例6中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 2.3810E-03 6.0600E-04 2.2000E-04 -1.7700E-03 1.6880E-03 -7.6000E-04 1.8300E-04 -2.3000E-05 1.1900E-06
S2 -7.2400E-03 4.5012E-02 -7.4020E-02 6.9925E-02 -4.2340E-02 1.6483E-02 -3.9700E-03 5.3500E-04 -3.1000E-05
S3 3.0150E-02 -1.1720E-02 -2.1390E-02 2.9930E-02 -2.0910E-02 8.8590E-03 -2.2400E-03 3.0700E-04 -1.7000E-05
S4 -5.8900E-03 1.9379E-02 -1.5470E-02 4.3060E-03 2.3800E-04 -3.3000E-04 8.1400E-05 -2.6000E-05 4.0300E-06
S5 -2.0760E-02 4.6118E-02 -8.2380E-02 9.6629E-02 -7.0070E-02 3.1378E-02 -8.4100E-03 1.2380E-03 -7.7000E-05
S6 -3.9000E-04 -1.5900E-02 1.3519E-02 -8.6400E-03 -1.2900E-03 6.3030E-03 -4.1100E-03 1.1660E-03 -1.3000E-04
S7 -6.1640E-02 2.6535E-02 -7.3770E-02 1.1327E-01 -1.1276E-01 7.2481E-02 -2.8040E-02 5.9110E-03 -5.2000E-04
S8 1.6833E-01 -9.8603E-01 2.1793E+00 -2.7603E+00 2.1362E+00 -1.0304E+00 3.0351E-01 -5.0110E-02 3.5620E-03
S9 2.9375E-01 -1.1482E+00 2.3489E+00 -2.7862E+00 2.0203E+00 -9.1421E-01 2.5240E-01 -3.8970E-02 2.5830E-03
S10 8.9500E-02 -5.9530E-01 1.1658E+00 -1.2595E+00 8.2297E-01 -3.3366E-01 8.1943E-02 -1.1130E-02 6.3900E-04
S11 -3.8960E-02 -1.4971E-01 3.0535E-01 -3.5848E-01 2.4155E-01 -9.6850E-02 2.2895E-02 -2.9300E-03 1.5700E-04
S12 6.7725E-02 1.2486E-02 -1.0501E-01 9.2093E-02 -4.2270E-02 1.1690E-02 -1.9500E-03 1.8000E-04 -7.1000E-06
S13 -3.9468E-01 3.0041E-01 -1.7386E-01 7.3878E-02 -2.0890E-02 3.7740E-03 -4.2000E-04 2.5900E-05 -6.9000E-07
S14 -1.6990E-01 1.0174E-01 -4.8030E-02 1.5029E-02 -2.8300E-03 3.1800E-04 -2.1000E-05 7.4200E-07 -1.1000E-08
表17
表18给出实施例6中各透镜的有效焦距f1至f7、光学成像镜头的总有效焦距f、光学总长度TTL以及成像面S17上有效像素区域对角线长的一半ImgH。
f1(mm) 6.50 f6(mm) 7.30
f2(mm) -9.27 f7(mm) -11.23
f3(mm) 7.90 f(mm) 4.69
f4(mm) 28.26 TTL(mm) 6.24
f5(mm) -11.95 ImgH(mm) 3.24
表18
图12A示出了实施例6的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图12B示出了实施例6的光学成像镜头的畸变曲线,其表示不同像高所对应的畸变大小值。图12C示出了实施例6的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图12A至图12C可知,实施例6所给出的光学成像镜头能够实现良好的成像品质。
综上,实施例1至实施例6分别满足表19中所示的关系。
Figure PCTCN2019102149-appb-000011
表19
本申请还提供一种摄像装置,其电子感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。摄像装置可以是诸如数码相机的独立摄像设备,也可以是集成在诸如手机等移动电子设备上的摄像模块。该摄像装置装配有以上描述的光学成像镜头。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其他技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (28)

  1. 光学成像镜头,沿着光轴由物侧至像侧依序包括:具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜,其特征在于,所述第一透镜和所述第三透镜均具有正光焦度;所述第五透镜具有负光焦度;以及所述光学成像镜头的总有效焦距f与所述光学成像镜头的入瞳直径EPD满足f/EPD<1.3。
  2. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头的成像面上有效像素区域对角线长的一半ImgH与所述光学成像镜头的总有效焦距f满足0.6<ImgH/f<0.8。
  3. 根据权利要求1所述的光学成像镜头,其特征在于,所述第一透镜的有效焦距f1、所述第一透镜的物侧面的曲率半径R1与所述第一透镜的像侧面的曲率半径R2满足1<f1/(R2-R1)<2。
  4. 根据权利要求1所述的光学成像镜头,其特征在于,所述第二透镜的物侧面的曲率半径R3与所述第二透镜的像侧面的曲率半径R4满足1.2<R3/R4<1.6。
  5. 根据权利要求1所述的光学成像镜头,其特征在于,所述第三透镜的有效焦距f3、所述第三透镜的像侧面的曲率半径R6与所述第三透镜的物侧面的曲率半径R5满足1.2<f3/(R6-R5)<1.7。
  6. 根据权利要求1所述的光学成像镜头,其特征在于,所述第二透镜的有效焦距f2与所述第七透镜的有效焦距f7满足0.7<f2/f7<1.3。
  7. 根据权利要求1所述的光学成像镜头,其特征在于,所述第六透镜的有效焦距f6、所述第五透镜的有效焦距f5与所述第四透镜的有效焦距f4满足0.5<(f6-f5)/f4<1.0。
  8. 根据权利要求1所述的光学成像镜头,其特征在于,所述第六透镜的物侧面的曲率半径R11、所述第六透镜的像侧面的曲率半径R12、所述第七透镜的物侧面的曲率半径R13与所述第七透镜的像侧面的曲率半径R14满足1.4<(R11+R12)/(R13+R14)<2.1。
  9. 根据权利要求1所述的光学成像镜头,其特征在于,所述第一透镜的物侧面的最大有效半径DT11、所述第一透镜的像侧面的最大有效半径DT12与所述光学成像镜头的成像面上有效像素区域对角线长的一半ImgH满足1<(DT11+DT12)/ImgH<1.5。
  10. 根据权利要求1所述的光学成像镜头,其特征在于,所述第七透镜的边缘厚度ET7与所述第七透镜在所述光轴上的中心厚度CT7满足1.2<ET7/CT7<1.7。
  11. 根据权利要求1所述的光学成像镜头,其特征在于,所述第二透镜和所述第七透镜均具有负光焦度;所述第四透镜和所述第六透镜均具有正光焦度。
  12. 根据权利要求1所述的光学成像镜头,其特征在于,所述第一透镜、所述第二透镜、所述第三透镜、所述第六透镜和所述第七透镜的物侧面均为凸面,像侧面均为凹面。
  13. 根据权利要求1至12中任一项所述的光学成像镜头,其特征在于,所述第三透镜和所述第四透镜在所述光轴上的间隔距离T34与所述第六透镜和所述第七透镜在所述光轴上的间隔距离T67满足1.1<T34/T67<1.5。
  14. 根据权利要求1至12中任一项所述的光学成像镜头,其特征在于,所述第三透镜在所述光轴上的中心厚度CT3、所述第六透镜在所述光轴上的中心厚度CT6与所述第一透镜的物侧面至 所述光学成像镜头的成像面在所述光轴上的距离TTL满足2<(CT3+CT6)/TTL×10<2.4。
  15. 光学成像镜头,沿着光轴由物侧至像侧依序包括:具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜,其特征在于,所述第一透镜和所述第三透镜均具有正光焦度;所述第五透镜具有负光焦度;以及所述第三透镜的有效焦距f3、所述第三透镜的像侧面的曲率半径R6与所述第三透镜的物侧面的曲率半径R5满足1.2<f3/(R6-R5)<1.7。
  16. 根据权利要求15所述的光学成像镜头,其特征在于,所述光学成像镜头的成像面上有效像素区域对角线长的一半ImgH与所述光学成像镜头的总有效焦距f满足0.6<ImgH/f<0.8。
  17. 根据权利要求16所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f与所述光学成像镜头的入瞳直径EPD满足f/EPD<1.3。
  18. 根据权利要求15所述的光学成像镜头,其特征在于,所述第二透镜的物侧面的曲率半径R3与所述第二透镜的像侧面的曲率半径R4满足1.2<R3/R4<1.6。
  19. 根据权利要求15所述的光学成像镜头,其特征在于,所述第一透镜的有效焦距f1、所述第一透镜的物侧面的曲率半径R1与所述第一透镜的像侧面的曲率半径R2满足1<f1/(R2-R1)<2。
  20. 根据权利要求15所述的光学成像镜头,其特征在于,所述第二透镜的有效焦距f2与所述第七透镜的有效焦距f7满足0.7<f2/f7<1.3。
  21. 根据权利要求15所述的光学成像镜头,其特征在于,所述第六透镜的有效焦距f6、所述第五透镜的有效焦距f5与所述第四透镜的有效焦距f4满足0.5<(f6-f5)/f4<1.0。
  22. 根据权利要求15所述的光学成像镜头,其特征在于,所述第六透镜的物侧面的曲率半径R11、所述第六透镜的像侧面的曲率半径R12、所述第七透镜的物侧面的曲率半径R13与所述第七透镜的像侧面的曲率半径R14满足1.4<(R11+R12)/(R13+R14)<2.1。
  23. 根据权利要求15所述的光学成像镜头,其特征在于,所述第一透镜的物侧面的最大有效半径DT11、所述第一透镜的像侧面的最大有效半径DT12与所述光学成像镜头的成像面上有效像素区域对角线长的一半ImgH满足1<(DT11+DT12)/ImgH<1.5。
  24. 根据权利要求15所述的光学成像镜头,其特征在于,所述第七透镜的边缘厚度ET7与所述第七透镜在所述光轴上的中心厚度CT7满足1.2<ET7/CT7<1.7。
  25. 根据权利要求15所述的光学成像镜头,其特征在于,所述第二透镜和所述第七透镜均具有负光焦度;所述第四透镜和所述第六透镜均具有正光焦度。
  26. 根据权利要求15所述的光学成像镜头,其特征在于,所述第一透镜、所述第二透镜、所述第三透镜、所述第六透镜和所述第七透镜的物侧面均为凸面,像侧面均为凹面。
  27. 根据权利要求15至26中任一项所述的光学成像镜头,其特征在于,所述第三透镜和所述第四透镜在所述光轴上的间隔距离T34与所述第六透镜和所述第七透镜在所述光轴上的间隔距离T67满足1.1<T34/T67<1.5。
  28. 根据权利要求15至26中任一项所述的光学成像镜头,其特征在于,所述第三透镜在所述光轴上的中心厚度CT3、所述第六透镜在所述光轴上的中心厚度CT6与所述第一透镜的物侧面至所述光学成像镜头的成像面在所述光轴上的距离TTL满足2<(CT3+CT6)/TTL×10<2.4。
PCT/CN2019/102149 2018-12-24 2019-08-23 光学成像镜头 WO2020134130A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/027,170 US20210003826A1 (en) 2018-12-24 2020-09-21 Optical imaging lens assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811583073.2 2018-12-24
CN201811583073.2A CN109358415B (zh) 2018-12-24 2018-12-24 光学成像镜头

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/027,170 Continuation US20210003826A1 (en) 2018-12-24 2020-09-21 Optical imaging lens assembly

Publications (1)

Publication Number Publication Date
WO2020134130A1 true WO2020134130A1 (zh) 2020-07-02

Family

ID=65330053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/102149 WO2020134130A1 (zh) 2018-12-24 2019-08-23 光学成像镜头

Country Status (3)

Country Link
US (1) US20210003826A1 (zh)
CN (1) CN109358415B (zh)
WO (1) WO2020134130A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109358415B (zh) * 2018-12-24 2024-04-09 浙江舜宇光学有限公司 光学成像镜头
JP7002508B2 (ja) * 2019-08-19 2022-01-20 東京晨美光学電子株式会社 撮像レンズ
CN110456489B (zh) * 2019-09-19 2024-05-28 浙江舜宇光学有限公司 光学成像镜头
TWI790416B (zh) * 2020-01-17 2023-01-21 先進光電科技股份有限公司 光學成像系統
WO2021196030A1 (zh) * 2020-03-31 2021-10-07 江西晶超光学有限公司 光学***、镜头模组和电子设备
CN111413784A (zh) * 2020-05-15 2020-07-14 浙江舜宇光学有限公司 光学成像镜头
CN115437111A (zh) * 2021-06-03 2022-12-06 浙江舜宇光学有限公司 光学成像镜头
CN114114654B (zh) * 2021-11-10 2023-09-05 江西晶超光学有限公司 光学***、取像模组及电子设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014032329A (ja) * 2012-08-03 2014-02-20 Ricoh Opt Ind Co Ltd 投射用ズームレンズおよび投射型画像表示装置および撮像装置
CN107942493A (zh) * 2017-10-19 2018-04-20 瑞声科技(新加坡)有限公司 摄像光学镜头
CN108227120A (zh) * 2017-12-04 2018-06-29 瑞声科技(新加坡)有限公司 摄像光学镜头
CN108873272A (zh) * 2018-08-02 2018-11-23 浙江舜宇光学有限公司 光学成像镜头
CN108873255A (zh) * 2018-07-09 2018-11-23 浙江舜宇光学有限公司 光学成像***
CN109031628A (zh) * 2018-10-29 2018-12-18 浙江舜宇光学有限公司 光学成像镜片组
CN109358415A (zh) * 2018-12-24 2019-02-19 浙江舜宇光学有限公司 光学成像镜头
CN209327659U (zh) * 2018-12-24 2019-08-30 浙江舜宇光学有限公司 光学成像镜头

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5543970A (en) * 1990-04-11 1996-08-06 Minolta Camera Kabushiki Kaisha Zoom lens system
US6008950A (en) * 1997-01-30 1999-12-28 Matsushita Electric Industrial Co., Ltd. Projection lens
JP2011107450A (ja) * 2009-11-18 2011-06-02 Sony Corp 撮像レンズ及び撮像装置
TWI570467B (zh) * 2012-07-06 2017-02-11 大立光電股份有限公司 光學影像拾取系統組
JP6160423B2 (ja) * 2013-10-04 2017-07-12 コニカミノルタ株式会社 撮像レンズ、撮像装置及び携帯端末
TWI510804B (zh) * 2014-08-01 2015-12-01 Largan Precision Co Ltd 取像用光學鏡組、取像裝置及電子裝置
JP6376561B2 (ja) * 2014-10-29 2018-08-22 カンタツ株式会社 撮像レンズ
JP6478903B2 (ja) * 2015-12-21 2019-03-06 カンタツ株式会社 撮像レンズ
JP5951912B1 (ja) * 2016-01-08 2016-07-13 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. 撮像レンズ
JP6783549B2 (ja) * 2016-05-19 2020-11-11 キヤノン株式会社 光学系及びそれを有する撮像装置
CN107621683B (zh) * 2017-10-26 2023-06-16 浙江舜宇光学有限公司 光学成像镜头
CN108051902B (zh) * 2017-11-18 2020-06-16 瑞声光学解决方案私人有限公司 摄像光学镜头
CN108535843B (zh) * 2018-05-02 2019-10-11 浙江舜宇光学有限公司 光学成像***
CN108873256B (zh) * 2018-07-09 2020-04-07 浙江舜宇光学有限公司 光学成像***
CN108732724B (zh) * 2018-08-22 2023-06-30 浙江舜宇光学有限公司 光学成像***

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014032329A (ja) * 2012-08-03 2014-02-20 Ricoh Opt Ind Co Ltd 投射用ズームレンズおよび投射型画像表示装置および撮像装置
CN107942493A (zh) * 2017-10-19 2018-04-20 瑞声科技(新加坡)有限公司 摄像光学镜头
CN108227120A (zh) * 2017-12-04 2018-06-29 瑞声科技(新加坡)有限公司 摄像光学镜头
CN108873255A (zh) * 2018-07-09 2018-11-23 浙江舜宇光学有限公司 光学成像***
CN108873272A (zh) * 2018-08-02 2018-11-23 浙江舜宇光学有限公司 光学成像镜头
CN109031628A (zh) * 2018-10-29 2018-12-18 浙江舜宇光学有限公司 光学成像镜片组
CN109358415A (zh) * 2018-12-24 2019-02-19 浙江舜宇光学有限公司 光学成像镜头
CN209327659U (zh) * 2018-12-24 2019-08-30 浙江舜宇光学有限公司 光学成像镜头

Also Published As

Publication number Publication date
CN109358415A (zh) 2019-02-19
US20210003826A1 (en) 2021-01-07
CN109358415B (zh) 2024-04-09

Similar Documents

Publication Publication Date Title
WO2020093725A1 (zh) 摄像光学***
WO2020024634A1 (zh) 光学成像镜片组
WO2020024633A1 (zh) 光学成像镜头
WO2020082814A1 (zh) 成像镜头
WO2019100868A1 (zh) 光学成像镜头
WO2020073702A1 (zh) 光学成像镜片组
WO2020019794A1 (zh) 光学成像镜头
WO2020168717A1 (zh) 光学成像镜头
WO2020029620A1 (zh) 光学成像镜片组
WO2020088022A1 (zh) 光学成像镜片组
WO2020010878A1 (zh) 光学成像***
WO2020010879A1 (zh) 光学成像***
WO2020134130A1 (zh) 光学成像镜头
WO2020007069A1 (zh) 光学成像镜片组
WO2020191951A1 (zh) 光学成像镜头
WO2021068753A1 (zh) 光学成像***
WO2020119146A1 (zh) 光学成像镜头
WO2020024635A1 (zh) 光学成像镜头
WO2020186759A1 (zh) 光学成像镜头
WO2020001119A1 (zh) 摄像镜头
WO2020151251A1 (zh) 光学透镜组
WO2020134026A1 (zh) 光学成像***
WO2020007081A1 (zh) 光学成像镜头
WO2020088024A1 (zh) 光学成像镜头
WO2020134129A1 (zh) 光学成像***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19905009

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19905009

Country of ref document: EP

Kind code of ref document: A1