WO2020073702A1 - 光学成像镜片组 - Google Patents

光学成像镜片组 Download PDF

Info

Publication number
WO2020073702A1
WO2020073702A1 PCT/CN2019/095359 CN2019095359W WO2020073702A1 WO 2020073702 A1 WO2020073702 A1 WO 2020073702A1 CN 2019095359 W CN2019095359 W CN 2019095359W WO 2020073702 A1 WO2020073702 A1 WO 2020073702A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical imaging
imaging lens
object side
lens group
Prior art date
Application number
PCT/CN2019/095359
Other languages
English (en)
French (fr)
Inventor
李龙
吕赛锋
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Publication of WO2020073702A1 publication Critical patent/WO2020073702A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the present application relates to an optical imaging lens group, and more specifically, the present application relates to an optical imaging lens group including eight lenses.
  • the present application provides an optical imaging lens set applicable to portable electronic products, which can at least solve or partially solve the above-mentioned at least one disadvantage in the prior art.
  • the present application provides an optical imaging lens group, the optical imaging lens group including, in order from the object side to the image side along the optical axis: a first lens, a second lens, a third lens, a fourth lens, The fifth lens, the sixth lens, the seventh lens, and the eighth lens.
  • the first lens has positive power or negative power; the second lens can have positive power; the third lens has positive power or negative power; the fourth lens can have negative power; the fifth lens has positive power Power or negative power; the sixth lens has positive power or negative power, the object side can be concave and the image side can be convex; the seventh lens can have positive power; and the eighth lens has positive power Degrees or negative power.
  • the image side of the third lens may be convex.
  • the object side of the second lens may be convex.
  • the image side of the fourth lens may be concave.
  • the object side of the seventh lens may be convex.
  • the effective focal length f2 of the second lens and the effective focal length f7 of the seventh lens may satisfy 0 ⁇ f2 / f7 ⁇ 0.8.
  • the total effective focal length f of the optical imaging lens group and the effective focal length f4 of the fourth lens may satisfy -0.8 ⁇ f / f4 ⁇ 0.
  • the distance between the center thickness of the seventh lens on the optical axis CT7 and the object side of the first lens to the imaging surface of the optical imaging lens group on the optical axis TTL can satisfy 1.5 ⁇ CT7 / TTL ⁇ 10 ⁇ 2.5 .
  • the maximum effective radius DT61 of the object side of the sixth lens and the maximum effective radius DT71 of the object side of the seventh lens may satisfy 0.2 ⁇ DT61 / DT71 ⁇ 0.7.
  • the radius of curvature R1 of the object side of the first lens, the radius of curvature R2 of the image side of the first lens, and the effective focal length f1 of the first lens can satisfy 0 ⁇ (R1 + R2) /
  • the curvature radius R6 of the image side of the third lens and the effective focal length f3 of the third lens may satisfy 0 ⁇
  • the radius of curvature R15 of the object side of the eighth lens and the radius of curvature R16 of the image side of the eighth lens can satisfy -0.8 ⁇ R15 / R16 ⁇ -0.3.
  • the radius of curvature R12 of the image side of the sixth lens and the radius of curvature R11 of the object side of the sixth lens may satisfy 0.3 ⁇ R12 / R11 ⁇ 1.3.
  • the total effective focal length f of the optical imaging lens group and the entrance pupil diameter EPD of the optical imaging lens group can satisfy f / EPD ⁇ 2.0.
  • the maximum half angle of view HFOV of the optical imaging lens group may satisfy 40 ° ⁇ HFOV ⁇ 50 °.
  • the distance between the object side of the first lens and the imaging surface of the optical imaging lens group on the optical axis is TTL and the effective pixel area on the imaging surface of the optical imaging lens group is half the diagonal of ImgH. ImgH ⁇ 1.4.
  • the combined focal length f123456 of the first lens, the second lens, the third lens, the fourth lens, the fifth lens, and the sixth lens and the total effective focal length f of the optical imaging lens group can satisfy 1.0 ⁇ f123456 / f ⁇ 1.5.
  • the separation distance T67 between the sixth lens and the seventh lens on the optical axis and the separation distance T78 between the seventh lens and the eighth lens on the optical axis may satisfy 0.4 ⁇ T67 / T78 ⁇ 1.0.
  • This application uses eight lenses.
  • the above optical imaging lens group has ultra-thin and large light flux , Wide imaging range, miniaturization and other at least one beneficial effect.
  • FIGS. 2A to 2D respectively show an on-axis chromatic aberration curve, astigmatism curve, and distortion curve of the optical imaging lens group of Example 1. Magnification color difference curve;
  • FIG. 3 shows a schematic structural diagram of an optical imaging lens group according to Example 2 of the present application
  • FIGS. 4A to 4D show axial chromatic aberration curves, astigmatism curves, distortion curves, and Magnification color difference curve
  • FIG. 5 shows a schematic structural diagram of an optical imaging lens group according to Example 3 of the present application
  • FIGS. 6A to 6D respectively show an on-axis chromatic aberration curve, astigmatism curve, and distortion curve of the optical imaging lens group of Example 3
  • Magnification color difference curve
  • FIGS. 8A to 8D show axial chromatic aberration curves, astigmatism curves, and distortion curves of the optical imaging lens group of Example 4 and Magnification color difference curve;
  • FIGS. 10A to 10D show axial chromatic aberration curves, astigmatism curves, and distortion curves of the optical imaging lens group of Example 5 and Magnification color difference curve;
  • FIG 11 shows a schematic structural diagram of an optical imaging lens group according to Example 6 of the present application
  • FIGS. 12A to 12D respectively show an on-axis chromatic aberration curve, astigmatism curve, and distortion curve of the optical imaging lens group of Example 6; Magnification color difference curve;
  • FIG. 13 shows a schematic structural view of an optical imaging lens group according to Example 7 of the present application
  • FIGS. 14A to 14D respectively show an on-axis chromatic aberration curve, astigmatism curve, and distortion curve of the optical imaging lens group of Example 7; Magnification color difference curve;
  • FIG. 15 shows a schematic structural diagram of an optical imaging lens group according to Example 8 of the present application
  • FIGS. 16A to 16D show axial chromatic aberration curves, astigmatism curves, and distortion curves of the optical imaging lens group of Example 8 and Magnification color difference curve;
  • FIG. 17 shows a schematic structural diagram of an optical imaging lens group according to Example 9 of the present application
  • FIGS. 18A to 18D show on-axis chromatic aberration curves, astigmatism curves, and distortion curves of the optical imaging lens group of Example 9 and Magnification color difference curve;
  • FIGS. 20A to 20D respectively show an on-axis chromatic aberration curve, astigmatism curve, and distortion curve of the optical imaging lens group of Example 10; Magnification chromatic aberration curve.
  • first, second, third, etc. are only used to distinguish one feature from another feature, and do not represent any limitation on the feature. Therefore, without departing from the teachings of the present application, the first lens discussed below may also be referred to as a second lens or a third lens.
  • the thickness, size, and shape of the lens have been slightly exaggerated for ease of explanation.
  • the shape of the spherical surface or aspherical surface shown in the drawings is shown by way of example. That is, the shape of the spherical surface or aspherical surface is not limited to the shape of the spherical surface or aspherical surface shown in the drawings.
  • the drawings are only examples and are not strictly drawn to scale.
  • the paraxial region refers to the region near the optical axis. If the lens surface is convex and the convex position is not defined, it means that the lens surface is convex at least in the paraxial region; if the lens surface is concave and the concave position is not defined, it means that the lens surface is at least in the paraxial region. Concave. The surface of each lens closest to the object is called the object side of the lens, and the surface of each lens closest to the imaging surface is called the image side of the lens.
  • the optical imaging lens group may include, for example, eight lenses having optical power, that is, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a sixth lens, The seventh lens and the eighth lens.
  • the eight lenses are arranged in sequence along the optical axis from the object side to the image side, and each adjacent lens can have an air gap.
  • the first lens has positive power or negative power; the second lens may have positive power; the third lens has positive power or negative power, and its image side may be convex; The four lenses may have negative power; the fifth lens has positive power or negative power; the sixth lens has positive power or negative power, and the object side may be concave and the image side may be convex; seventh The lens may have positive power; the eighth lens has positive power or negative power.
  • the power distribution of the entire lens group avoids excessive concentration of power, and also helps balance the vertical and lateral chromatic aberrations of the lens group.
  • the image side of the third lens is designed to be convex, which can effectively cooperate with the first lens and the second lens to reduce the system spherical aberration and improve the system aberration correction ability.
  • the design of the sixth lens as a concave-convex structure can help expand the imaging range of the system, increase the image height, and realize the characteristics of the high image height of the system.
  • the object side of the first lens may be convex, and the image side may be concave.
  • the object side of the second lens may be convex.
  • the second lens can assume positive power, and can effectively reduce the aberration of the entire system, reduce the system sensitivity, improve the system yield, and also benefit the follow-up Processing and assembly of structures.
  • the image side of the fourth lens may be concave. Designing the image side of the fourth lens to be concave makes the fourth lens assume negative power, which helps to improve the aberration correction capability of the system.
  • the seventh lens object side surface may be convex. Designing the object side of the seventh lens as a convex surface allows the seventh lens to assume a certain degree of positive power, and can share part of the power of the system to avoid excessive concentration of power.
  • the eighth lens may have negative refractive power, and both the object side and the image side may be concave.
  • the optical imaging lens group of the present application may satisfy the conditional expression f / EPD ⁇ 2.0, where f is the total effective focal length of the optical imaging lens group, and EPD is the entrance pupil diameter of the optical imaging lens group. More specifically, f and EPD may further satisfy 1.6 ⁇ f / EPD ⁇ 2.0, for example, 1.70 ⁇ f / EPD ⁇ 1.98.
  • the control meets the conditional expression f / EPD ⁇ 2.0, which can effectively increase the light flux per unit time of the lens, make the lens have higher relative illuminance, and can better improve the imaging quality of the lens in a dark environment, making the lens more Practicality.
  • the optical imaging lens group of the present application may satisfy the conditional expression 40 ° ⁇ HFOV ⁇ 50 °, where HFOV is the maximum half angle of view of the optical imaging lens group. More specifically, HFOV may further satisfy 43 ° ⁇ HFOV ⁇ 48 °, for example, 45.2 ° ⁇ HFOV ⁇ 47.1 °.
  • the angle of view of the system By adjusting the angle of view of the system, the image height of the system can be improved while avoiding excessive aberrations in the edge field of view, which helps to better achieve the characteristics of a wide imaging range and high imaging quality.
  • the optical imaging lens group of the present application may satisfy the conditional expression 0 ⁇ f2 / f7 ⁇ 0.8, where f2 is the effective focal length of the second lens and f7 is the effective focal length of the seventh lens. More specifically, f2 and f7 may further satisfy 0.25 ⁇ f2 / f7 ⁇ 0.59.
  • the first function is to make the power of the lens group more reasonably distributed, so as not to be excessively concentrated on the seventh lens, which is conducive to improving the imaging quality of the system and Reduce the sensitivity of the system; the second role is to effectively maintain the ultra-thin characteristics of the lens group.
  • the optical imaging lens group of the present application may satisfy the conditional expression -0.8 ⁇ f / f4 ⁇ 0, where f is the total effective focal length of the optical imaging lens group, and f4 is the effective focal length of the fourth lens. More specifically, f and f4 may further satisfy -0.64 ⁇ f / f4 ⁇ -0.19.
  • the spherical aberration contribution of the fourth lens can be controlled within a reasonable range, so that the on-axis field of view of the optical system has a better Image quality.
  • the optical imaging lens group of the present application may satisfy the conditional expression 0 ⁇ (R1 + R2) /
  • Reasonable control of the radius of curvature and effective focal length of the object side and image side of the first lens can effectively reduce the size of the system, and can reasonably distribute the optical power of the system to avoid excessive concentration on the first lens, and also facilitate the correction
  • the aberration of the end lens is beneficial to the first lens to maintain good processability.
  • the optical imaging lens group of the present application may satisfy the conditional expression 0 ⁇
  • the astigmatism and coma contribution of the third lens can be controlled within a reasonable range, and the remaining astigmatism and coma of the front lens can be effectively balanced. So that the lens group has better imaging quality.
  • the optical imaging lens group of the present application may satisfy the conditional expression TTL / ImgH ⁇ 1.4, where TTL is the distance from the object side of the first lens to the imaging surface of the optical imaging lens group on the optical axis, ImgH It is half the diagonal length of the effective pixel area on the imaging surface of the optical imaging lens group. More specifically, TTL and ImgH may further satisfy 1.0 ⁇ TTL / ImgH ⁇ 1.4, for example, 1.27 ⁇ TTL / ImgH ⁇ 1.35. Satisfying the conditional TTL / ImgH ⁇ 1.4 can effectively reduce the total size of the lens group, realize the ultra-thin characteristics and miniaturization of the lens group, thereby making the lens group better suitable for ultra-thin portable electronic products.
  • the optical imaging lens group of the present application may satisfy the conditional expression 0.3 ⁇ R12 / R11 ⁇ 1.3, where R12 is the radius of curvature of the image side of the sixth lens, and R11 is the curvature of the object side of the sixth lens radius. More specifically, R12 and R11 may further satisfy 0.54 ⁇ R12 / R11 ⁇ 1.14.
  • the optical imaging lens group of the present application may satisfy the conditional expression -0.8 ⁇ R15 / R16 ⁇ -0.3, where R15 is the curvature radius of the object side of the eighth lens and R16 is the image side of the eighth lens Radius of curvature. More specifically, R15 and R16 can further satisfy -0.71 ⁇ R15 / R16 ⁇ -0.41.
  • R15 and R16 can further satisfy -0.71 ⁇ R15 / R16 ⁇ -0.41.
  • the optical imaging lens group of the present application may satisfy the conditional expression 0.2 ⁇ DT61 / DT71 ⁇ 0.7, where DT61 is the maximum effective radius of the object side of the sixth lens and DT71 is the object effective side of the seventh lens Maximum effective radius. More specifically, DT61 and DT71 can further satisfy 0.35 ⁇ DT61 / DT71 ⁇ 0.65, for example 0.50 ⁇ DT61 / DT71 ⁇ 0.64. By reasonably controlling the effective radius of the sixth lens object side and the seventh lens object side, it can effectively increase the light flux of the lens group and increase the relative illuminance of the edge field of view of the system, so that the system can be in a dark environment It still has good imaging quality.
  • the optical imaging lens group of the present application may satisfy the conditional expression 1.5 ⁇ CT7 / TTL ⁇ 10 ⁇ 2.5, where CT7 is the center thickness of the seventh lens on the optical axis, and TTL is the object of the first lens The distance from the side to the imaging surface of the optical imaging lens group on the optical axis. More specifically, CT7 and TTL can further satisfy 1.74 ⁇ CT7 / TTL ⁇ 10 ⁇ 2.27. Reasonable control of the center thickness of the seventh lens on the optical axis is conducive to the miniaturization of the system and can reduce the risk of ghost images. At the same time, the fifth lens and the sixth lens can effectively reduce the chromatic aberration of the system, while The lens is too thin and the system performance is degraded.
  • the optical imaging lens group of the present application may satisfy the conditional expression 1.0 ⁇ f123456 / f ⁇ 1.5, where f123456 is a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and The combined focal length of the sixth lens, f is the total effective focal length of the optical imaging lens group. More specifically, f123456 and f can further satisfy 1.03 ⁇ f123456 / f ⁇ 1.20.
  • the optical power of the system is more distributed on the first lens to the sixth lens, which can better improve the aberration of the system Correction ability, while also effectively reducing the size of the lens group so that it can maintain ultra-thin characteristics.
  • the optical imaging lens group of the present application may satisfy the conditional expression 0.4 ⁇ T67 / T78 ⁇ 1.0, where T67 is the separation distance between the sixth lens and the seventh lens on the optical axis, and T78 is the seventh lens The distance from the eighth lens on the optical axis. More specifically, T67 and T78 can further satisfy 0.47 ⁇ T67 / T78 ⁇ 0.91.
  • the above-mentioned optical imaging lens group may further include at least one diaphragm to improve the imaging quality of the optical imaging lens group.
  • the diaphragm may be provided between the object side and the first lens.
  • the above-mentioned optical imaging lens group may further include a filter for correcting color deviation and / or a protective glass for protecting the photosensitive element on the imaging surface.
  • the optical imaging lens group according to the above embodiments of the present application may employ multiple lenses, such as the eight described above.
  • the volume of the optical imaging lens group can be effectively reduced, the sensitivity of the optical imaging lens group can be reduced, and the The processability of the optical imaging lens group makes the optical imaging lens group more conducive to production and processing and applicable to portable electronic products.
  • the optical imaging lens set with the above configuration can also have beneficial effects such as ultra-thin, large aperture, large angle of view, and high imaging quality.
  • At least one of the mirror surfaces of each lens is an aspheric mirror surface, that is, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a sixth lens, a seventh lens
  • At least one of the object side and the image side of each of the eighth lenses is aspherical.
  • the characteristics of aspheric lenses are: from the lens center to the lens periphery, the curvature is continuously changing. Unlike spherical lenses, which have a constant curvature from the center of the lens to the periphery of the lens, aspheric lenses have better curvature radius characteristics, and have the advantages of improving distortion aberrations and improving astigmatic aberrations.
  • the object side and the image side of each of the first lens, the second lens, the third lens, the fourth lens, the fifth lens, the sixth lens, the seventh lens, and the eighth lens may be non- Sphere.
  • the number of lenses constituting the optical imaging lens group can be changed to obtain various results and advantages described in this specification without departing from the technical solution claimed in this application.
  • the optical imaging lens group is not limited to include eight lenses.
  • the optical imaging lens set may also include other numbers of lenses. Specific examples of the optical imaging lens set applicable to the above-mentioned embodiment will be further described below with reference to the drawings.
  • FIG. 1 shows a schematic structural diagram of an optical imaging lens group according to Example 1 of the present application.
  • the optical imaging lens group includes, in order from the object side to the image side along the optical axis: an aperture STO, a first lens E1, a second lens E2, a third lens E3, The fourth lens E4, the fifth lens E5, the sixth lens E6, the seventh lens E7, the eighth lens E8, the filter E9, and the imaging plane S19.
  • the first lens E1 has negative refractive power, its object side S1 is convex, and its image side S2 is concave.
  • the second lens E2 has positive refractive power, and its object side S3 is convex, and its image side S4 is convex.
  • the third lens E3 has positive refractive power, and its object side surface S5 is a concave surface, and its image side surface S6 is a convex surface.
  • the fourth lens E4 has negative refractive power, and its object side surface S7 is concave and the image side surface S8 is concave.
  • the fifth lens E5 has positive refractive power, and its object side surface S9 is convex, and its image side surface S10 is convex.
  • the sixth lens E6 has negative refractive power, and its object side surface S11 is concave and its image side surface S12 is convex.
  • the seventh lens E7 has positive refractive power, and its object side surface S13 is convex, and its image side surface S14 is concave.
  • the eighth lens E8 has negative refractive power, and its object side surface S15 is concave and the image side surface S16 is concave.
  • the filter E9 has an object side S17 and an image side S18. The light from the object sequentially passes through the surfaces S1 to S18 and is finally imaged on the imaging plane S19.
  • Table 1 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging lens group of Example 1, wherein the units of radius of curvature and thickness are both millimeters (mm).
  • each aspheric lens can be defined by, but not limited to, the following aspheric formula:
  • x is the distance from the apex of the aspheric surface to the height of the aspheric surface at the height h along the optical axis;
  • k is the conic coefficient (given in Table 1);
  • Ai is the correction coefficient of the i-th order of the aspheric surface.
  • Table 2 shows the high-order coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16 , A 18 and A 20 that can be used for each aspherical mirror surface S1-S16 in Example 1 .
  • Table 3 shows the effective focal lengths f1 to f8 of each lens of the optical imaging lens group in Example 1, the total effective focal length f of the optical imaging lens group, and the total optical length TTL (ie, from the object side S1 of the first lens E1 to The distance of the plane S19 on the optical axis), the effective pixel area on the imaging plane S19 is half the diagonal length of ImgH and the maximum half angle of view HFOV.
  • FIG. 2A shows the on-axis chromatic aberration curve of the optical imaging lens group of Example 1, which indicates that rays of different wavelengths will deviate from the focal point after passing through the optical imaging lens group.
  • 2B shows the astigmatism curve of the optical imaging lens set of Example 1, which represents meridional image plane curvature and sagittal image plane curvature.
  • 2C shows the distortion curve of the optical imaging lens set of Example 1, which represents the distortion magnitude values corresponding to different image heights.
  • 2D shows the magnification chromatic aberration curve of the optical imaging lens group of Example 1, which represents the deviation of different image heights on the imaging plane of light rays passing through the optical imaging lens group. It can be seen from FIGS. 2A to 2D that the optical imaging lens group provided in Example 1 can achieve good imaging quality.
  • FIG. 3 shows a schematic structural diagram of an optical imaging lens group according to Example 2 of the present application.
  • the optical imaging lens group includes, in order from the object side to the image side along the optical axis: an aperture STO, a first lens E1, a second lens E2, a third lens E3, The fourth lens E4, the fifth lens E5, the sixth lens E6, the seventh lens E7, the eighth lens E8, the filter E9, and the imaging plane S19.
  • the first lens E1 has positive refractive power, and its object side surface S1 is convex, and its image side surface S2 is concave.
  • the second lens E2 has positive refractive power, and its object side S3 is convex, and its image side S4 is convex.
  • the third lens E3 has positive refractive power, and its object side surface S5 is a concave surface, and its image side surface S6 is a convex surface.
  • the fourth lens E4 has negative refractive power, and its object side surface S7 is concave and the image side surface S8 is concave.
  • the fifth lens E5 has positive refractive power, and its object side surface S9 is a concave surface, and its image side surface S10 is a convex surface.
  • the sixth lens E6 has positive refractive power, and its object side surface S11 is a concave surface, and its image side surface S12 is a convex surface.
  • the seventh lens E7 has positive refractive power, and its object side surface S13 is convex, and its image side surface S14 is concave.
  • the eighth lens E8 has negative refractive power, and its object side surface S15 is concave and the image side surface S16 is concave.
  • the filter E9 has an object side S17 and an image side S18. The light from the object sequentially passes through the surfaces S1 to S18 and is finally imaged on the imaging plane S19.
  • Table 4 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging lens group of Example 2, wherein the units of radius of curvature and thickness are both millimeters (mm).
  • Table 5 shows the coefficients of higher order that can be used for each aspherical mirror surface in Example 2, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 6 shows the effective focal length f1 to f8 of each lens of the optical imaging lens group in Example 2, the total effective focal length f of the optical imaging lens group, the total optical length TTL, and the half of the diagonal length of the effective pixel area on the imaging surface S19 ImgH and the maximum half angle of view HFOV.
  • FIG. 4A shows the on-axis chromatic aberration curve of the optical imaging lens group of Example 2, which indicates that rays of different wavelengths will deviate from the focal point after passing through the optical imaging lens group.
  • 4B shows the astigmatism curve of the optical imaging lens group of Example 2, which represents the meridional image plane curvature and sagittal image plane curvature.
  • 4C shows the distortion curve of the optical imaging lens set of Example 2, which represents the distortion magnitude values corresponding to different image heights.
  • 4D shows the magnification chromatic aberration curve of the optical imaging lens group of Example 2, which represents the deviation of different image heights on the imaging plane of light rays passing through the optical imaging lens group. It can be seen from FIGS. 4A to 4D that the optical imaging lens set provided in Example 2 can achieve good imaging quality.
  • FIG. 5 shows a schematic structural diagram of an optical imaging lens group according to Example 3 of the present application.
  • the optical imaging lens group includes, in order from the object side to the image side along the optical axis: an aperture STO, a first lens E1, a second lens E2, a third lens E3, The fourth lens E4, the fifth lens E5, the sixth lens E6, the seventh lens E7, the eighth lens E8, the filter E9, and the imaging plane S19.
  • the first lens E1 has negative refractive power, its object side S1 is convex, and its image side S2 is concave.
  • the second lens E2 has positive refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has positive refractive power, and its object side surface S5 is a concave surface, and its image side surface S6 is a convex surface.
  • the fourth lens E4 has negative refractive power, and its object side surface S7 is concave and the image side surface S8 is concave.
  • the fifth lens E5 has positive refractive power, and its object side surface S9 is a concave surface, and its image side surface S10 is a convex surface.
  • the sixth lens E6 has positive refractive power, and its object side surface S11 is a concave surface, and its image side surface S12 is a convex surface.
  • the seventh lens E7 has positive refractive power, and its object side surface S13 is convex, and its image side surface S14 is concave.
  • the eighth lens E8 has negative refractive power, and its object side surface S15 is concave and the image side surface S16 is concave.
  • the filter E9 has an object side S17 and an image side S18. The light from the object sequentially passes through the surfaces S1 to S18 and is finally imaged on the imaging plane S19.
  • Table 7 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging lens group of Example 3, wherein the units of radius of curvature and thickness are both millimeters (mm).
  • Table 8 shows the coefficients of higher order that can be used for each aspherical mirror surface in Example 3, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 9 shows the effective focal lengths f1 to f8 of each lens of the optical imaging lens group in Example 3, the total effective focal length f of the optical imaging lens group, the total optical length TTL, and the half of the diagonal length of the effective pixel area on the imaging surface S19 ImgH and the maximum half angle of view HFOV.
  • FIG. 6A shows the on-axis chromatic aberration curve of the optical imaging lens group of Example 3, which indicates that rays of different wavelengths will deviate from the focal point after passing through the optical imaging lens group.
  • 6B shows the astigmatism curve of the optical imaging lens set of Example 3, which represents meridional image plane curvature and sagittal image plane curvature.
  • 6C shows the distortion curve of the optical imaging lens set of Example 3, which represents the distortion magnitude values corresponding to different image heights.
  • 6D shows the magnification chromatic aberration curve of the optical imaging lens group of Example 3, which represents the deviation of different image heights on the imaging plane of light rays passing through the optical imaging lens group. It can be seen from FIGS. 6A to 6D that the optical imaging lens set provided in Example 3 can achieve good imaging quality.
  • FIGS. 7 to 8D shows a schematic structural diagram of an optical imaging lens group according to Example 4 of the present application.
  • the optical imaging lens group includes, in order from the object side to the image side along the optical axis: an aperture STO, a first lens E1, a second lens E2, a third lens E3
  • the fourth lens E4 the fifth lens E5, the sixth lens E6, the seventh lens E7, the eighth lens E8, the filter E9, and the imaging plane S19.
  • the first lens E1 has positive refractive power, and its object side surface S1 is convex, and its image side surface S2 is concave.
  • the second lens E2 has positive refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has positive refractive power, and its object side surface S5 is convex, and its image side surface S6 is convex.
  • the fourth lens E4 has negative refractive power, and its object side surface S7 is concave and the image side surface S8 is concave.
  • the fifth lens E5 has positive refractive power, and its object side surface S9 is convex, and its image side surface S10 is convex.
  • the sixth lens E6 has negative refractive power, and its object side surface S11 is concave and its image side surface S12 is convex.
  • the seventh lens E7 has positive refractive power, and its object side surface S13 is convex, and its image side surface S14 is concave.
  • the eighth lens E8 has negative refractive power, and its object side surface S15 is concave and the image side surface S16 is concave.
  • the filter E9 has an object side S17 and an image side S18. The light from the object sequentially passes through the surfaces S1 to S18 and is finally imaged on the imaging plane S19.
  • Table 10 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging lens group of Example 4, wherein the units of radius of curvature and thickness are both millimeters (mm).
  • Table 11 shows the coefficients of higher order that can be used for each aspherical mirror surface in Example 4, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 12 shows the effective focal lengths f1 to f8 of each lens of the optical imaging lens group in Example 4, the total effective focal length f of the optical imaging lens group, the total optical length TTL, and the half of the diagonal length of the effective pixel area on the imaging surface S19 ImgH and the maximum half angle of view HFOV.
  • FIG. 8A shows the on-axis chromatic aberration curve of the optical imaging lens group of Example 4, which indicates that rays of different wavelengths will deviate from the focal point after passing through the optical imaging lens group.
  • 8B shows the astigmatism curve of the optical imaging lens group of Example 4, which represents meridional image plane curvature and sagittal image plane curvature.
  • 8C shows the distortion curve of the optical imaging lens group of Example 4, which represents the distortion magnitude values corresponding to different image heights.
  • 8D shows the magnification chromatic aberration curve of the optical imaging lens group of Example 4, which represents the deviation of different image heights on the imaging plane of light rays passing through the optical imaging lens group. It can be known from FIGS. 8A to 8D that the optical imaging lens group provided in Example 4 can achieve good imaging quality.
  • FIGS. 9 to 10D shows a schematic structural diagram of an optical imaging lens group according to Example 5 of the present application.
  • the optical imaging lens group includes, in order from the object side to the image side along the optical axis: an aperture STO, a first lens E1, a second lens E2, a third lens E3, The fourth lens E4, the fifth lens E5, the sixth lens E6, the seventh lens E7, the eighth lens E8, the filter E9, and the imaging plane S19.
  • the first lens E1 has positive refractive power, and its object side surface S1 is convex, and its image side surface S2 is concave.
  • the second lens E2 has positive refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has negative refractive power, and its object side surface S5 is a concave surface, and its image side surface S6 is a convex surface.
  • the fourth lens E4 has negative refractive power, and its object side surface S7 is convex, and its image side surface S8 is concave.
  • the fifth lens E5 has positive refractive power, and its object side surface S9 is convex, and its image side surface S10 is convex.
  • the sixth lens E6 has negative refractive power, and its object side surface S11 is concave and its image side surface S12 is convex.
  • the seventh lens E7 has positive refractive power, and its object side surface S13 is convex, and its image side surface S14 is concave.
  • the eighth lens E8 has negative refractive power, and its object side surface S15 is concave and the image side surface S16 is concave.
  • the filter E9 has an object side S17 and an image side S18. The light from the object sequentially passes through the surfaces S1 to S18 and is finally imaged on the imaging plane S19.
  • Table 13 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging lens group of Example 5, wherein the units of radius of curvature and thickness are both millimeters (mm).
  • Table 14 shows the coefficients of higher order that can be used for each aspherical mirror surface in Example 5, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 15 shows the effective focal lengths f1 to f8 of each lens of the optical imaging lens group in Example 5, the total effective focal length f of the optical imaging lens group, the total optical length TTL, and the half of the diagonal length of the effective pixel area on the imaging surface S19 ImgH and the maximum half angle of view HFOV.
  • FIG. 10A shows the on-axis chromatic aberration curve of the optical imaging lens group of Example 5, which indicates that rays of different wavelengths will deviate from the focus point after passing through the optical imaging lens group.
  • 10B shows the astigmatism curve of the optical imaging lens group of Example 5, which represents meridional image plane curvature and sagittal image plane curvature.
  • 10C shows the distortion curve of the optical imaging lens group of Example 5, which represents the distortion magnitude values corresponding to different image heights.
  • 10D shows the magnification chromatic aberration curve of the optical imaging lens group of Example 5, which represents the deviation of different image heights on the imaging plane of light rays passing through the optical imaging lens group. It can be known from FIGS. 10A to 10D that the optical imaging lens group provided in Example 5 can achieve good imaging quality.
  • FIG. 11 shows a schematic structural diagram of an optical imaging lens group according to Example 6 of the present application.
  • the optical imaging lens group includes, in order from the object side to the image side along the optical axis: an aperture STO, a first lens E1, a second lens E2, a third lens E3
  • the fourth lens E4 the fifth lens E5, the sixth lens E6, the seventh lens E7, the eighth lens E8, the filter E9, and the imaging plane S19.
  • the first lens E1 has positive refractive power, and its object side surface S1 is convex, and its image side surface S2 is concave.
  • the second lens E2 has positive refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has negative refractive power, and its object side surface S5 is a concave surface, and its image side surface S6 is a convex surface.
  • the fourth lens E4 has negative refractive power, and its object side surface S7 is concave and the image side surface S8 is concave.
  • the fifth lens E5 has positive refractive power, and its object side surface S9 is convex, and its image side surface S10 is convex.
  • the sixth lens E6 has positive refractive power, and its object side surface S11 is a concave surface, and its image side surface S12 is a convex surface.
  • the seventh lens E7 has positive refractive power, and its object side surface S13 is convex, and its image side surface S14 is concave.
  • the eighth lens E8 has negative refractive power, and its object side surface S15 is concave and the image side surface S16 is concave.
  • the filter E9 has an object side S17 and an image side S18. The light from the object sequentially passes through the surfaces S1 to S18 and is finally imaged on the imaging plane S19.
  • Table 16 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging lens group of Example 6, wherein the units of radius of curvature and thickness are both millimeters (mm).
  • Table 17 shows the coefficients of higher order that can be used for each aspherical mirror surface in Example 6, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 18 shows the effective focal length f1 to f8 of each lens of the optical imaging lens group in Example 6, the total effective focal length f of the optical imaging lens group, the total optical length TTL, and the half of the diagonal length of the effective pixel area on the imaging surface S19 ImgH and the maximum half angle of view HFOV.
  • FIG. 12A shows the on-axis chromatic aberration curve of the optical imaging lens group of Example 6, which indicates that rays of different wavelengths will deviate from the focal point after passing through the optical imaging lens group.
  • 12B shows the astigmatism curve of the optical imaging lens group of Example 6, which represents meridional image plane curvature and sagittal image plane curvature.
  • 12C shows the distortion curve of the optical imaging lens set of Example 6, which represents the distortion magnitude values corresponding to different image heights.
  • 12D shows the magnification chromatic aberration curve of the optical imaging lens group of Example 6, which represents the deviation of different image heights on the imaging plane of light rays passing through the optical imaging lens group. It can be seen from FIGS. 12A to 12D that the optical imaging lens group provided in Example 6 can achieve good imaging quality.
  • FIGS. Fig. 13 shows a schematic structural diagram of an optical imaging lens group according to Example 7 of the present application.
  • the optical imaging lens group includes, in order from the object side to the image side along the optical axis: an aperture STO, a first lens E1, a second lens E2, a third lens E3
  • the fourth lens E4 the fifth lens E5, the sixth lens E6, the seventh lens E7, the eighth lens E8, the filter E9, and the imaging plane S19.
  • the first lens E1 has negative refractive power, its object side S1 is convex, and its image side S2 is concave.
  • the second lens E2 has positive refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has negative refractive power, and its object side surface S5 is a concave surface, and its image side surface S6 is a convex surface.
  • the fourth lens E4 has negative refractive power, and its object side surface S7 is concave and the image side surface S8 is concave.
  • the fifth lens E5 has positive refractive power, and its object side surface S9 is convex, and its image side surface S10 is convex.
  • the sixth lens E6 has positive refractive power, and its object side surface S11 is a concave surface, and its image side surface S12 is a convex surface.
  • the seventh lens E7 has positive refractive power, and its object side surface S13 is convex and the image side surface S14 is convex.
  • the eighth lens E8 has negative refractive power, and its object side surface S15 is concave and the image side surface S16 is concave.
  • the filter E9 has an object side S17 and an image side S18. The light from the object sequentially passes through the surfaces S1 to S18 and is finally imaged on the imaging plane S19.
  • Table 19 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging lens group of Example 7, wherein the units of radius of curvature and thickness are both millimeters (mm).
  • Table 20 shows the coefficients of higher order that can be used for each aspherical mirror surface in Example 7, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 21 shows the effective focal length f1 to f8 of each lens of the optical imaging lens group in Example 7, the total effective focal length f of the optical imaging lens group, the total optical length TTL, and the half of the diagonal length of the effective pixel area on the imaging surface S19 ImgH and maximum half angle of view.
  • FIG. 14A shows the on-axis chromatic aberration curve of the optical imaging lens group of Example 7, which indicates that rays of different wavelengths will deviate from the focal point after passing through the optical imaging lens group.
  • 14B shows the astigmatism curve of the optical imaging lens group of Example 7, which represents meridional image plane curvature and sagittal image plane curvature.
  • 14C shows the distortion curve of the optical imaging lens group of Example 7, which represents the distortion magnitude values corresponding to different image heights.
  • 14D shows the magnification chromatic aberration curve of the optical imaging lens group of Example 7, which represents the deviation of different image heights on the imaging plane of light rays passing through the optical imaging lens group. It can be seen from FIGS. 14A to 14D that the optical imaging lens group provided in Example 7 can achieve good imaging quality.
  • FIGS. 15 to 16D shows a schematic structural diagram of an optical imaging lens group according to Example 8 of the present application.
  • the optical imaging lens group includes, in order from the object side to the image side along the optical axis: an aperture STO, a first lens E1, a second lens E2, a third lens E3, The fourth lens E4, the fifth lens E5, the sixth lens E6, the seventh lens E7, the eighth lens E8, the filter E9, and the imaging plane S19.
  • the first lens E1 has positive refractive power, and its object side surface S1 is convex, and its image side surface S2 is concave.
  • the second lens E2 has positive refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has positive refractive power, and its object side surface S5 is convex, and its image side surface S6 is convex.
  • the fourth lens E4 has negative refractive power, and its object side surface S7 is convex, and its image side surface S8 is concave.
  • the fifth lens E5 has negative refractive power, and its object side surface S9 is convex, and its image side surface S10 is concave.
  • the sixth lens E6 has positive refractive power, and its object side surface S11 is concave and its image side surface S12 is convex.
  • the seventh lens E7 has positive refractive power, and its object side surface S13 is convex, and its image side surface S14 is concave.
  • the eighth lens E8 has negative refractive power, and its object side surface S15 is concave and the image side surface S16 is concave.
  • the filter E9 has an object side S17 and an image side S18. The light from the object sequentially passes through the surfaces S1 to S18 and is finally imaged on the imaging plane S19.
  • Table 22 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging lens group of Example 8, wherein the units of radius of curvature and thickness are both millimeters (mm).
  • Table 23 shows the coefficients of higher order that can be used for each aspherical mirror surface in Example 8, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 24 shows the effective focal lengths f1 to f8 of each lens of the optical imaging lens group in Example 8, the total effective focal length f of the optical imaging lens group, the total optical length TTL, and the half of the diagonal length of the effective pixel area on the imaging surface S19 ImgH and the maximum half angle of view HFOV.
  • FIG. 16A shows an on-axis chromatic aberration curve of the optical imaging lens group of Example 8, which indicates that rays of different wavelengths will deviate from the focal point after passing through the optical imaging lens group.
  • 16B shows the astigmatism curve of the optical imaging lens group of Example 8, which represents meridional image plane curvature and sagittal image plane curvature.
  • FIG. 16C shows the distortion curve of the optical imaging lens group of Example 8, which represents the distortion magnitude values corresponding to different image heights.
  • 16D shows the magnification chromatic aberration curve of the optical imaging lens group of Example 8, which represents the deviation of different image heights on the imaging plane of light rays passing through the optical imaging lens group. It can be known from FIGS. 16A to 16D that the optical imaging lens group provided in Example 8 can achieve good imaging quality.
  • FIGS. 17 to 18D show a schematic structural diagram of an optical imaging lens group according to Example 9 of the present application.
  • the optical imaging lens group includes, in order from the object side to the image side along the optical axis: an aperture STO, a first lens E1, a second lens E2, a third lens E3
  • the fourth lens E4 the fifth lens E5, the sixth lens E6, the seventh lens E7, the eighth lens E8, the filter E9, and the imaging plane S19.
  • the first lens E1 has negative refractive power, its object side S1 is convex, and its image side S2 is concave.
  • the second lens E2 has positive refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has negative refractive power, and its object side surface S5 is a concave surface, and its image side surface S6 is a convex surface.
  • the fourth lens E4 has negative refractive power, and its object side surface S7 is concave and the image side surface S8 is concave.
  • the fifth lens E5 has negative refractive power, and its object side surface S9 is convex, and its image side surface S10 is concave.
  • the sixth lens E6 has positive refractive power, and its object side surface S11 is a concave surface, and its image side surface S12 is a convex surface.
  • the seventh lens E7 has positive refractive power, and its object side surface S13 is convex, and its image side surface S14 is concave.
  • the eighth lens E8 has negative refractive power, and its object side surface S15 is concave and the image side surface S16 is concave.
  • the filter E9 has an object side S17 and an image side S18. The light from the object sequentially passes through the surfaces S1 to S18 and is finally imaged on the imaging plane S19.
  • Table 25 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging lens group of Example 9, wherein the units of radius of curvature and thickness are both millimeters (mm).
  • Table 26 shows the coefficients of higher order that can be used for each aspherical mirror surface in Example 9, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 27 shows the effective focal length f1 to f8 of each lens of the optical imaging lens group in Example 9, the total effective focal length f of the optical imaging lens group, the total optical length TTL, and the half of the diagonal length of the effective pixel area on the imaging surface S19 ImgH and the maximum half angle of view HFOV.
  • FIG. 18A shows the on-axis chromatic aberration curve of the optical imaging lens group of Example 9, which indicates that rays of different wavelengths will deviate from the focal point after passing through the optical imaging lens group.
  • 18B shows the astigmatism curve of the optical imaging lens set of Example 9, which represents meridional image plane curvature and sagittal image plane curvature.
  • 18C shows the distortion curve of the optical imaging lens group of Example 9, which represents the distortion magnitude values corresponding to different image heights.
  • 18D shows the magnification chromatic aberration curve of the optical imaging lens group of Example 9, which represents the deviation of different image heights on the imaging plane of light rays passing through the optical imaging lens group. It can be seen from FIGS. 18A to 18D that the optical imaging lens group provided in Example 9 can achieve good imaging quality.
  • FIG. 19 shows a schematic structural diagram of an optical imaging lens group according to Example 10 of the present application.
  • the optical imaging lens group includes, in order from the object side to the image side along the optical axis: an aperture STO, a first lens E1, a second lens E2, a third lens E3
  • the fourth lens E4 the fifth lens E5, the sixth lens E6, the seventh lens E7, the eighth lens E8, the filter E9, and the imaging plane S19.
  • the first lens E1 has negative refractive power, its object side S1 is convex, and its image side S2 is concave.
  • the second lens E2 has positive refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has positive refractive power, and its object side surface S5 is convex, and its image side surface S6 is convex.
  • the fourth lens E4 has negative refractive power, and its object side surface S7 is concave and the image side surface S8 is concave.
  • the fifth lens E5 has negative refractive power, and its object side surface S9 is convex, and its image side surface S10 is concave.
  • the sixth lens E6 has positive refractive power, and its object side surface S11 is a concave surface, and its image side surface S12 is a convex surface.
  • the seventh lens E7 has positive refractive power, and its object side surface S13 is convex, and its image side surface S14 is concave.
  • the eighth lens E8 has negative refractive power, and its object side surface S15 is concave and the image side surface S16 is concave.
  • the filter E9 has an object side S17 and an image side S18. The light from the object sequentially passes through the surfaces S1 to S18 and is finally imaged on the imaging plane S19.
  • Table 28 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging lens group of Example 10, in which the units of radius of curvature and thickness are both millimeters (mm).
  • Table 29 shows the coefficients of higher order that can be used for each aspherical mirror surface in Example 10, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 30 shows the effective focal length f1 to f8 of each lens of the optical imaging lens group in Example 10, the total effective focal length f of the optical imaging lens group, the total optical length TTL, and the half of the diagonal length of the effective pixel area on the imaging surface S19 ImgH and the maximum half angle of view HFOV.
  • FIG. 20A shows the on-axis chromatic aberration curve of the optical imaging lens group of Example 10, which indicates that rays of different wavelengths will deviate from the focal point after passing through the optical imaging lens group.
  • 20B shows the astigmatism curve of the optical imaging lens group of Example 10, which represents meridional image plane curvature and sagittal image plane curvature.
  • FIG. 20C shows the distortion curve of the optical imaging lens group of Example 10, which represents the distortion magnitude values corresponding to different image heights.
  • FIG. 20D shows the magnification chromatic aberration curve of the optical imaging lens group of Example 10, which represents the deviation of different image heights on the imaging plane of light rays passing through the optical imaging lens group. It can be seen from FIGS. 20A to 20D that the optical imaging lens group provided in Example 10 can achieve good imaging quality.
  • Examples 1 to 10 satisfy the relationships shown in Table 31, respectively.
  • the present application also provides an imaging device whose electronic photosensitive element may be a photosensitive coupling element (CCD) or a complementary metal oxide semiconductor element (CMOS).
  • the imaging device may be an independent imaging device such as a digital camera, or an imaging module integrated on a mobile electronic device such as a mobile phone.
  • the imaging device is equipped with the optical imaging lens group described above.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学成像镜片组,沿着光轴由物侧至像侧依序包括:第一透镜(E1)、第二透镜(E2)、第三透镜(E3)、第四透镜(E4)、第五透镜(E5)、第六透镜(E6)、第七透镜(E7)和第八透镜(E8)。第一透镜(E1)具有光焦度;第二透镜(E2)具有正光焦度;第三透镜(E3)具有光焦度,其像侧面(S6)为凸面;第四透镜(E4)具有负光焦度;第五透镜(E5)具有光焦度;第六透镜(E6)具有光焦度,其物侧面(S11)为凹面、像侧面(S12)为凸面;第七透镜(E7)具有正光焦度;以及第八透镜(E8)具有光焦度。

Description

光学成像镜片组
相关申请的交叉引用
本申请要求于2018年10月08日提交于中国国家知识产权局(CNIPA)的、专利申请号为201811167277.8的中国专利申请的优先权和权益,该中国专利申请通过引用整体并入本文。
技术领域
本申请涉及一种光学成像镜片组,更具体地,本申请涉及一种包括八片透镜的光学成像镜片组。
背景技术
近年来,随着对手机软硬件要求的提升,对搭载于手机的成像镜头的成像质量提出越来越高的要求。除了要求手机镜头具有高像素、高分辨率等基本参数之外,越来越要求手机镜头还可以具有超薄、大孔径、广视场角的特点。因而,针对这些特点的针对性开发成为目前手机镜头设计的主要关注点。
理论上,通过添加多片透镜使得***能够有更多的空间和自由度去寻找最优解是提高光学***成像质量最高效的方法之一。但与此矛盾的是,透镜数量的增加极会导致***的尺寸增大,这与目前手机镜头超薄化的趋势相悖。因而,如何在维持镜头超薄的前提下提升镜头的成像质量是本领域研究亟待解决的事项。
发明内容
本申请提供了可适用于便携式电子产品的、可至少解决或部分解决现有技术中的上述至少一个缺点的光学成像镜片组。
一方面,本申请提供了这样一种光学成像镜片组,该光学成像镜片组沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜和第八透镜。第一透镜具有正光焦度或负光焦度;第二透镜可具有正光焦度;第三透镜具有正光焦度或负光焦度;第四透镜可具有负光焦度;第五透镜具有正光焦度或负光焦度;第六透镜具有正光焦度或负光焦度,其物侧面可为凹面,像侧面可为凸面;第七透镜可具有正光焦度;以及第八透镜具有正光焦度或负光焦度。
在一个实施方式中,第三透镜的像侧面可为凸面。
在一个实施方式中,第二透镜的物侧面可为凸面。
在一个实施方式中,第四透镜的像侧面可为凹面。
在一个实施方式中,第七透镜的物侧面可为凸面。
在一个实施方式中,第二透镜的有效焦距f2与第七透镜的有效焦距f7可满足0<f2/f7<0.8。
在一个实施方式中,光学成像镜片组的总有效焦距f与第四透镜的有效焦距f4可满足-0.8< f/f4<0。
在一个实施方式中,第七透镜于光轴上的中心厚度CT7与第一透镜的物侧面至光学成像镜片组的成像面在光轴上的距离TTL可满足1.5<CT7/TTL×10<2.5。
在一个实施方式中,第六透镜的物侧面的最大有效半径DT61与第七透镜的物侧面的最大有效半径DT71可满足0.2<DT61/DT71<0.7。
在一个实施方式中,第一透镜的物侧面的曲率半径R1、第一透镜的像侧面的曲率半径R2与第一透镜的有效焦距f1可满足0<(R1+R2)/|f1|<0.5。
在一个实施方式中,第三透镜的像侧面的曲率半径R6与第三透镜的有效焦距f3可满足0<|R6/f3|<0.8。
在一个实施方式中,第八透镜的物侧面的曲率半径R15与第八透镜的像侧面的曲率半径R16可满足-0.8<R15/R16<-0.3。
在一个实施方式中,第六透镜的像侧面的曲率半径R12与第六透镜的物侧面的曲率半径R11可满足0.3<R12/R11<1.3。
在一个实施方式中,光学成像镜片组的总有效焦距f与光学成像镜片组的入瞳直径EPD可满足f/EPD<2.0。
在一个实施方式中,光学成像镜片组的最大半视场角HFOV可满足40°<HFOV<50°。
在一个实施方式中,第一透镜的物侧面至光学成像镜片组的成像面在光轴上的距离TTL与光学成像镜片组的成像面上有效像素区域对角线长的一半ImgH可满足TTL/ImgH<1.4。
在一个实施方式中,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜的组合焦距f123456与光学成像镜片组的总有效焦距f可满足1.0<f123456/f<1.5。
在一个实施方式中,第六透镜和第七透镜在光轴上的间隔距离T67与第七透镜和第八透镜在光轴上的间隔距离T78可满足0.4<T67/T78<1.0。
本申请采用了八片透镜,通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,使得上述光学成像镜片组具有超薄、通光量大、成像范围广和小型化等至少一个有益效果。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本申请的其他特征、目的和优点将变得更加明显。在附图中:
图1示出了根据本申请实施例1的光学成像镜片组的结构示意图;图2A至图2D分别示出了实施例1的光学成像镜片组的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图3示出了根据本申请实施例2的光学成像镜片组的结构示意图;图4A至图4D分别示出了实施例2的光学成像镜片组的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图5示出了根据本申请实施例3的光学成像镜片组的结构示意图;图6A至图6D分别示出了实施例3的光学成像镜片组的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图7示出了根据本申请实施例4的光学成像镜片组的结构示意图;图8A至图8D分别示出了实施例4的光学成像镜片组的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图9示出了根据本申请实施例5的光学成像镜片组的结构示意图;图10A至图10D分别示出了实施例5的光学成像镜片组的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图11示出了根据本申请实施例6的光学成像镜片组的结构示意图;图12A至图12D分别示出了实施例6的光学成像镜片组的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图13示出了根据本申请实施例7的光学成像镜片组的结构示意图;图14A至图14D分别示出了实施例7的光学成像镜片组的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图15示出了根据本申请实施例8的光学成像镜片组的结构示意图;图16A至图16D分别示出了实施例8的光学成像镜片组的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图17示出了根据本申请实施例9的光学成像镜片组的结构示意图;图18A至图18D分别示出了实施例9的光学成像镜片组的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图19示出了根据本申请实施例10的光学成像镜片组的结构示意图;图20A至图20D分别示出了实施例10的光学成像镜片组的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜最靠近被摄物体的表面称为该透镜的物侧面,每个透镜最靠近成像面的表面称为该透镜的像侧面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可相互组合。下面将参考附图并结合示例来详细说明本申请。以下对本申请的特征、原理和其他方面进行详细描述。
根据本申请示例性实施方式的光学成像镜片组可包括例如八片具有光焦度的透镜,即,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜和第八透镜。这八片透镜沿着光轴由物侧至像侧依序排列,各相邻透镜之间均可具有空气间隔。
在示例性实施方式中,第一透镜具有正光焦度或负光焦度;第二透镜可具有正光焦度;第三透镜具有正光焦度或负光焦度,其像侧面可为凸面;第四透镜可具有负光焦度;第五透镜具有正光焦度或负光焦度;第六透镜具有正光焦度或负光焦度,其物侧面可为凹面,像侧面可为凸面;第七透镜可具有正光焦度;第八透镜具有正光焦度或负光焦度。通过将第二透镜设置为正光焦度,可有效提高镜片组矫正像差的能力并可降低***的敏感性,进一步配合第四透镜的负光焦度和第七透镜的正光焦度将有利于整个镜片组的光焦度分配、避免光焦度过度集中,同时还有助于平衡镜片组垂轴色差和横向色差。将第三透镜的像侧面设计为凸面,可有效配合第一透镜和第二透镜降低***球差并提高***像差矫正能力。而将第六透镜设计成凹凸结构可以有助于扩大***的成像范围,增大像高,实现***高像高的特点。
在示例性实施方式中,第一透镜的物侧面可为凸面,像侧面可为凹面。
在示例性实施方式中,第二透镜的物侧面可为凸面。通过将第二透镜的物侧面设计为凸面,可使第二透镜承担正的光焦度,并可有效减小整个***的像差,降低***敏感度,提高***良率,同时也有利于后续结构的加工和组装。
在示例性实施方式中,第四透镜的像侧面可为凹面。将第四透镜像侧面设计为凹面,使第四透镜承担负的光焦度,有助于提高***的像差矫正能力。
在示例性实施方式中,第七透镜物侧面可为凸面。将第七透镜物侧面设计为凸面,可使第七透镜承担一定程度的正光焦度,并可分担***的部分光焦度以避免光焦度过度集中。
在示例性实施方式中,第八透镜可具有负光焦度,其物侧面和像侧面均可为凹面。
在示例性实施方式中,本申请的光学成像镜片组可满足条件式f/EPD<2.0,其中,f为光学成像镜片组的总有效焦距,EPD为光学成像镜片组的入瞳直径。更具体地,f和EPD进一步可满足1.6<f/EPD<2.0,例如1.70≤f/EPD≤1.98。控制满足条件式f/EPD<2.0,可有效增加镜头单位时间内的通光量,使镜头具有较高的相对照度,并可较好地提升镜头在较暗环境下的成像质量,使镜头更具实用性。
在示例性实施方式中,本申请的光学成像镜片组可满足条件式40°<HFOV<50°,其中,HFOV为光学成像镜片组的最大半视场角。更具体地,HFOV进一步可满足43°<HFOV<48°,例如45.2°≤HFOV≤47.1°。通过调节***视场角可在提高***成像像高的同时避免边缘视场的 像差过大,有助于更好地实现***成像范围广、成像质量高的特点。
在示例性实施方式中,本申请的光学成像镜片组可满足条件式0<f2/f7<0.8,其中,f2为第二透镜的有效焦距,f7为第七透镜的有效焦距。更具体地,f2和f7进一步可满足0.25≤f2/f7≤0.59。通过合理调节第二透镜和第七透镜的有效焦距,第一个作用是使得镜片组的光焦度得以更合理地分配,不至于在第七透镜上过度集中,有利于提升***的成像质量并降低***的敏感度;第二个作用就是有效地保持镜片组超薄的特性。
在示例性实施方式中,本申请的光学成像镜片组可满足条件式-0.8<f/f4<0,其中,f为光学成像镜片组的总有效焦距,f4为第四透镜的有效焦距。更具体地,f和f4进一步可满足-0.64≤f/f4≤-0.19。通过合理控制镜片组的总有效焦距与第四透镜的有效焦距的比值,可将第四透镜的球差贡献量控制在合理的范围内,从而使光学***的轴上视场区具有更佳的成像质量。
在示例性实施方式中,本申请的光学成像镜片组可满足条件式0<(R1+R2)/|f1|<0.5,其中,R1为第一透镜的物侧面的曲率半径,R2为第一透镜的像侧面的曲率半径,f1为第一透镜的有效焦距。更具体地,R1、R2和f1进一步可满足0<(R1+R2)/|f1|<0.1,例如0.03≤(R1+R2)/|f1|≤0.08。合理控制第一透镜物侧面和像侧面的曲率半径及其有效焦距,可有效降低***尺寸,并可使***光焦度得到合理分配以避免过度集中于第一透镜上,同时还有利于矫正后端透镜的像差,并且有利于第一透镜保持良好的工艺加工性。
在示例性实施方式中,本申请的光学成像镜片组可满足条件式0<|R6/f3|<0.8,其中,R6为第三透镜的像侧面的曲率半径,f3为第三透镜的有效焦距。更具体地,R6和f3进一步可满足0.17≤|R6/f3|≤0.61。通过合理控制第三透镜的像侧面曲率半径和有效焦距,可将第三透镜的像散、彗差贡献量控制在合理范围内,并可有效地平衡前端透镜所残留的像散和彗差,从而使镜片组具有更好的成像质量。
在示例性实施方式中,本申请的光学成像镜片组可满足条件式TTL/ImgH<1.4,其中,TTL为第一透镜的物侧面至光学成像镜片组的成像面在光轴上的距离,ImgH为光学成像镜片组的成像面上有效像素区域对角线长的一半。更具体地,TTL和ImgH进一步可满足1.0<TTL/ImgH<1.4,例如1.27≤TTL/ImgH≤1.35。满足条件式TTL/ImgH<1.4,可有效降低镜片组的总尺寸,实现镜片组的超薄特性和小型化,从而使得镜片组能够更好地适用于超薄化便携式电子产品。
在示例性实施方式中,本申请的光学成像镜片组可满足条件式0.3<R12/R11<1.3,其中,R12为第六透镜的像侧面的曲率半径,R11为第六透镜的物侧面的曲率半径。更具体地,R12和R11进一步可满足0.54≤R12/R11≤1.14。通过合理分配第六透镜物侧面和像侧面的曲率半径,可有效平衡第六透镜和前端透镜之间的像散和彗差,使镜头能够具有更好的成像质量。
在示例性实施方式中,本申请的光学成像镜片组可满足条件式-0.8<R15/R16<-0.3,其中,R15为第八透镜的物侧面的曲率半径,R16为第八透镜的像侧面的曲率半径。更具体地,R15和R16进一步可满足-0.71≤R15/R16≤-0.41。通过合理分配第八透镜物侧面和像侧面的曲率半径,可有效平衡第八透镜和前端透镜之间的像散和彗差,配合第七透镜的物侧凸面可使镜头保持更好成像质量,与此同时有利于增加镜片组在成像面的像高。
在示例性实施方式中,本申请的光学成像镜片组可满足条件式0.2<DT61/DT71<0.7,其中,DT61为第六透镜的物侧面的最大有效半径,DT71为第七透镜的物侧面的最大有效半径。更具体地,DT61和DT71进一步可满足0.35≤DT61/DT71≤0.65,例如0.50≤DT61/DT71≤0.64。通过合理控制第六透镜物侧面的有效半径和第七透镜物侧面的有效半径,可有效增加镜片组的通光量并可增加***边缘视场的相对照度,使得***能够在光线较暗的环境下仍然具有好的成像质量。
在示例性实施方式中,本申请的光学成像镜片组可满足条件式1.5<CT7/TTL×10<2.5,其中,CT7为第七透镜于光轴上的中心厚度,TTL为第一透镜的物侧面至光学成像镜片组的成像面在光轴上的距离。更具体地,CT7和TTL进一步可满足1.74≤CT7/TTL×10≤2.27。合理控制第七透镜于光轴上的中心厚度,有利于***小型化,还可降低产生鬼像的风险;同时配合第五透镜和第六透镜可有效降低***色差,同时还可避免因第七透镜过薄而导致***性能下降。
在示例性实施方式中,本申请的光学成像镜片组可满足条件式1.0<f123456/f<1.5,其中,f123456为第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜的组合焦距,f为光学成像镜片组的总有效焦距。更具体地,f123456和f进一步可满足1.03≤f123456/f≤1.20。通过合理调节第一透镜至第六透镜的组合焦距与光学***总焦距的比值,将***的光焦度更多地分配在第一透镜至第六透镜上,能够较好地提高***的像差矫正能力,同时还可有效减小镜片组的尺寸使其能够保持超薄的特性。
在示例性实施方式中,本申请的光学成像镜片组可满足条件式0.4<T67/T78<1.0,其中,T67为第六透镜和第七透镜在光轴上的间隔距离,T78为第七透镜和第八透镜在光轴上的间隔距离。更具体地,T67和T78进一步可满足0.47≤T67/T78≤0.91。通过合理控制第六透镜和第七透镜之间的间隔距离以及第七透镜和第八透镜的间隔距离,可有效降低***产生鬼像的风险,并有助于压缩镜片组的尺寸。
在示例性实施方式中,上述光学成像镜片组还可包括至少一个光阑,以提升光学成像镜片组的成像质量。可选地,光阑可设置在物侧与第一透镜之间。可选地,上述光学成像镜片组还可包括用于校正色彩偏差的滤光片和/或用于保护位于成像面上的感光元件的保护玻璃。
根据本申请的上述实施方式的光学成像镜片组可采用多片镜片,例如上文所述的八片。通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,可有效地缩小光学成像镜片组的体积、降低光学成像镜片组的敏感度并提高光学成像镜片组的可加工性,使得光学成像镜片组更有利于生产加工并且可适用于便携式电子产品。通过上述配置的光学成像镜片组还可具有超薄、大孔径、较大视场角和高成像质量等有益效果。
在本申请的实施方式中,各透镜的镜面中的至少一个为非球面镜面,即,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜和第八透镜中的每个透镜的物侧面和像侧面中的至少一个为非球面。非球面透镜的特点是:从透镜中心到透镜周边,曲率是连续变化的。与从透镜中心到透镜周边具有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。可选地,第一透镜、第二透镜、第三透镜、第四透镜、第 五透镜、第六透镜、第七透镜和第八透镜中的每个透镜的物侧面和像侧面均可为非球面。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成光学成像镜片组的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以八个透镜为例进行了描述,但是该光学成像镜片组不限于包括八个透镜。如果需要,该光学成像镜片组还可包括其它数量的透镜。下面参照附图进一步描述可适用于上述实施方式的光学成像镜片组的具体实施例。
实施例1
以下参照图1至图2D描述根据本申请实施例1的光学成像镜片组。图1示出了根据本申请实施例1的光学成像镜片组的结构示意图。
如图1所示,根据本申请示例性实施方式的光学成像镜片组沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、第八透镜E8、滤光片E9和成像面S19。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有正光焦度,其物侧面S5为凹面,像侧面S6为凸面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面S12为凸面。第七透镜E7具有正光焦度,其物侧面S13为凸面,像侧面S14为凹面。第八透镜E8具有负光焦度,其物侧面S15为凹面,像侧面S16为凹面。滤光片E9具有物侧面S17和像侧面S18。来自物体的光依序穿过各表面S1至S18并最终成像在成像面S19上。
表1示出了实施例1的光学成像镜片组的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2019095359-appb-000001
Figure PCTCN2019095359-appb-000002
表1
由表1可知,第一透镜E1至第八透镜E8中的任意一个透镜的物侧面和像侧面均为非球面。在本实施例中,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:
Figure PCTCN2019095359-appb-000003
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数(在表1中已给出);Ai是非球面第i-th阶的修正系数。下表2给出了可用于实施例1中各非球面镜面S1-S16的高次项系数A 4、A 6、A 8、A 10、A 12、A 14、A 16、A 18和A 20
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -5.4500E-02 -4.6660E-02 1.2747E-01 -4.3541E-01 8.4064E-01 -9.9804E-01 7.2113E-01 -2.9114E-01 5.0495E-02
S2 -6.7070E-02 -5.4610E-02 1.4375E-01 -4.6224E-01 8.3661E-01 -9.1248E-01 5.8514E-01 -2.0156E-01 2.8596E-02
S3 -1.0860E-02 9.4760E-03 -4.9330E-02 2.2994E-01 -5.8281E-01 8.6445E-01 -7.4452E-01 3.4291E-01 -6.4960E-02
S4 -1.5280E-02 -4.6100E-03 -1.6390E-02 1.7322E-01 -4.7988E-01 7.2006E-01 -6.1594E-01 2.8557E-01 -5.5680E-02
S5 -1.9710E-02 1.5441E-02 1.0452E-02 3.7620E-02 -1.7848E-01 3.5657E-01 -3.7767E-01 2.1131E-01 -4.8910E-02
S6 1.8448E-02 9.8160E-03 9.3870E-03 1.6320E-02 -5.6520E-02 1.1044E-01 -1.3036E-01 8.5067E-02 -2.2880E-02
S7 5.8308E-02 -2.8720E-02 -1.9230E-02 1.0309E-01 -2.0714E-01 2.5153E-01 -1.8914E-01 8.0124E-02 -1.4370E-02
S8 3.3071E-02 -1.9040E-02 2.1725E-02 -4.7870E-02 8.4561E-02 -9.1390E-02 5.7625E-02 -1.9410E-02 2.7050E-03
S9 -5.9090E-02 4.3262E-02 -1.7856E-01 5.1289E-01 -8.6894E-01 9.0597E-01 -5.6671E-01 1.9633E-01 -2.9220E-02
S10 -5.7230E-02 3.1872E-02 -2.1874E-01 5.7316E-01 -8.6593E-01 7.8573E-01 -4.2650E-01 1.2878E-01 -1.6770E-02
S11 5.6190E-02 -1.3510E-02 -6.9890E-02 2.0031E-01 -2.4822E-01 1.5315E-01 -4.2910E-02 1.6960E-03 1.0250E-03
S12 3.6697E-02 -8.9500E-03 2.2000E-02 1.8420E-03 -2.3500E-02 2.3536E-02 -1.1780E-02 3.1050E-03 -3.4000E-04
S13 -3.1420E-02 9.9980E-03 -5.1900E-03 1.9100E-03 -5.8000E-04 1.3700E-04 -2.2000E-05 1.9500E-06 -7.7000E-08
S14 -1.6300E-03 2.2580E-03 -1.4000E-03 3.2500E-04 -4.2000E-05 3.0600E-06 -1.2000E-07 1.8200E-09 1.8700E-12
S15 2.1280E-03 3.3090E-03 -1.0300E-03 3.3100E-04 -7.4000E-05 9.7500E-06 -7.3000E-07 2.8700E-08 -4.6000E-10
S16 -9.9800E-03 -4.1000E-04 3.8300E-04 -8.7000E-05 1.0600E-05 -7.0000E-07 1.9500E-08 9.6000E-11 -1.1000E-11
表2
表3给出实施例1中光学成像镜片组的各透镜的有效焦距f1至f8、光学成像镜片组的总有效焦距f、光学总长度TTL(即,从第一透镜E1的物侧面S1至成像面S19在光轴上的距离)、成像面S19上有效像素区域对角线长的一半ImgH以及最大半视场角HFOV。
f1(mm) -49.32 f7(mm) 10.36
f2(mm) 4.07 f8(mm) -3.62
f3(mm) 10.87 f(mm) 4.25
f4(mm) -6.77 TTL(mm) 5.76
f5(mm) 17.29 ImgH(mm) 4.28
f6(mm) -98.16 HFOV(°) 45.2
表3
图2A示出了实施例1的光学成像镜片组的轴上色差曲线,其表示不同波长的光线经由光学成像镜片组后的会聚焦点偏离。图2B示出了实施例1的光学成像镜片组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2C示出了实施例1的光学成像镜片组的畸变曲线,其表示不同像高所对应的畸变大小值。图2D示出了实施例1的光学成像镜片组的倍率色差曲线,其表示光线经由光学成像镜片组后在成像面上的不同的像高的偏差。根据图2A至图2D可知,实施例1所给出的光学成像镜片组能够实现良好的成像品质。
实施例2
以下参照图3至图4D描述根据本申请实施例2的光学成像镜片组。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了根据本申请实施例2的光学成像镜片组的结构示意图。
如图3所示,根据本申请示例性实施方式的光学成像镜片组沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、第八透镜E8、滤光片E9和成像面S19。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有正光焦度,其物侧面S5为凹面,像侧面S6为凸面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凹面,像侧面S10为凸面。第六透镜E6具有正光焦度,其物侧面S11为凹面,像侧面S12为凸面。第七透镜E7具有正光焦度,其物侧面S13为凸面,像侧面S14为凹面。第八透镜E8具有负光焦度,其物侧面S15为凹面,像侧面S16为凹面。滤光片E9具有物侧面S17和像侧面S18。来自物体的光依序穿过各表面S1至S18并最终成像在成像面S19上。
表4示出了实施例2的光学成像镜片组的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表5示出了可用于实施例2中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表6给出实施例2中光学成像镜片组的各透镜的有效焦距f1至f8、光学成像镜片组的总有效焦距f、光学总长度TTL、成像面S19上有效像素区域对角线长的一半ImgH以及最大半视场角HFOV。
Figure PCTCN2019095359-appb-000004
Figure PCTCN2019095359-appb-000005
表4
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -4.1450E-02 -3.9890E-02 5.6131E-02 -1.9340E-01 3.6938E-01 -4.7890E-01 3.9379E-01 -1.8142E-01 3.5567E-02
S2 -5.0220E-02 -5.3260E-02 6.5160E-02 -5.1390E-02 -1.7484E-01 4.8182E-01 -5.2832E-01 2.7681E-01 -5.6570E-02
S3 -1.4800E-02 2.3895E-02 -1.6778E-01 6.9180E-01 -1.4752E+00 1.8840E+00 -1.4394E+00 6.0179E-01 -1.0517E-01
S4 -1.6490E-02 -3.3500E-03 -1.5290E-02 1.7448E-01 -4.7885E-01 7.2037E-01 -6.1594E-01 2.8557E-01 -5.5680E-02
S5 -1.9730E-02 1.5723E-02 1.0040E-02 3.7264E-02 -1.7833E-01 3.5721E-01 -3.7767E-01 2.1131E-01 -4.8910E-02
S6 1.2711E-02 8.5670E-03 1.0303E-02 1.6926E-02 -5.6390E-02 1.1036E-01 -1.3036E-01 8.5067E-02 -2.2880E-02
S7 4.9959E-02 -4.9380E-02 1.1441E-01 -3.0114E-01 5.2015E-01 -5.4392E-01 3.3000E-01 -1.0529E-01 1.3490E-02
S8 3.4354E-02 -1.9020E-02 2.1720E-02 -4.7850E-02 8.4600E-02 -9.1270E-02 5.7642E-02 -1.9410E-02 2.7050E-03
S9 -5.2750E-02 4.4914E-02 -1.7861E-01 5.1247E-01 -8.6917E-01 9.0606E-01 -5.6671E-01 1.9633E-01 -2.9220E-02
S10 -5.6110E-02 3.1747E-02 -2.1882E-01 5.7328E-01 -8.6587E-01 7.8572E-01 -4.2650E-01 1.2878E-01 -1.6770E-02
S11 5.1999E-02 -1.3430E-02 -6.9550E-02 2.0042E-01 -2.4822E-01 1.5312E-01 -4.2940E-02 1.6960E-03 1.0250E-03
S12 4.0729E-02 -4.1000E-03 -2.8600E-03 4.7723E-02 -7.0530E-02 5.3007E-02 -2.3220E-02 5.6260E-03 -5.8000E-04
S13 -2.5630E-02 5.4750E-03 -3.7500E-03 1.9350E-03 -8.0000E-04 2.2800E-04 -4.0000E-05 3.7600E-06 -1.5000E-07
S14 -4.1000E-04 1.3190E-03 -1.3000E-03 3.4600E-04 -4.8000E-05 3.6600E-06 -1.4000E-07 1.4700E-09 3.0300E-11
S15 3.6000E-03 2.8220E-03 -9.4000E-04 3.1200E-04 -7.0000E-05 9.0600E-06 -6.7000E-07 2.6300E-08 -4.2000E-10
S16 -9.5400E-03 -4.7000E-04 3.5800E-04 -8.5000E-05 1.2300E-05 -1.1000E-06 5.5500E-08 -1.4000E-09 1.3200E-11
表5
f1(mm) 100.00 f7(mm) 12.83
f2(mm) 4.51 f8(mm) -3.69
f3(mm) 11.12 f(mm) 4.25
f4(mm) -6.59 TTL(mm) 5.71
f5(mm) 17.66 ImgH(mm) 4.28
f6(mm) 100.00 HFOV(°) 45.2
表6
图4A示出了实施例2的光学成像镜片组的轴上色差曲线,其表示不同波长的光线经由光学成像镜片组后的会聚焦点偏离。图4B示出了实施例2的光学成像镜片组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4C示出了实施例2的光学成像镜片组的畸变曲线,其表示不同像高所对应的畸变大小值。图4D示出了实施例2的光学成像镜片组的倍率色差曲线,其表示光线经由光学成像镜片组后在成像面上的不同的像高的偏差。根据图4A至图4D可知,实施例2所给出的光学成像镜片组能够实现良好的成像品质。
实施例3
以下参照图5至图6D描述了根据本申请实施例3的光学成像镜片组。图5示出了根据本申请实施例3的光学成像镜片组的结构示意图。
如图5所示,根据本申请示例性实施方式的光学成像镜片组沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、第八透镜E8、滤光片E9和成像面S19。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凹面,像侧面S6为凸面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凹面,像侧面S10为凸面。第六透镜E6具有正光焦度,其物侧面S11为凹面,像侧面S12为凸面。第七透镜E7具有正光焦度,其物侧面S13为凸面,像侧面S14为凹面。第八透镜E8具有负光焦度,其物侧面S15为凹面,像侧面S16为凹面。滤光片E9具有物侧面S17和像侧面S18。来自物体的光依序穿过各表面S1至S18并最终成像在成像面S19上。
表7示出了实施例3的光学成像镜片组的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表8示出了可用于实施例3中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表9给出实施例3中光学成像镜片组的各透镜的有效焦距f1至f8、光学成像镜片组的总有效焦距f、光学总长度TTL、成像面S19上有效像素区域对角线长的一半ImgH以及最大半视场角HFOV。
Figure PCTCN2019095359-appb-000006
表7
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -4.5230E-02 -5.6260E-02 1.8918E-01 -5.9134E-01 1.0794E+00 -1.2305E+00 8.5267E-01 -3.2850E-01 5.4057E-02
S2 -6.2350E-02 -5.6020E-02 1.5705E-01 -4.5712E-01 7.5122E-01 -7.6438E-01 4.5738E-01 -1.4632E-01 1.9304E-02
S3 -1.3690E-02 2.1757E-02 -1.1893E-01 4.5093E-01 -9.4046E-01 1.1768E+00 -8.7630E-01 3.5631E-01 -6.0430E-02
S4 -1.8160E-02 -3.9300E-03 -1.5800E-02 1.7441E-01 -4.7863E-01 7.2071E-01 -6.1594E-01 2.8557E-01 -5.5680E-02
S5 -2.1700E-02 1.7990E-02 1.1093E-02 3.7833E-02 -1.7777E-01 3.5779E-01 -3.7767E-01 2.1131E-01 -4.8910E-02
S6 1.0509E-02 6.9360E-03 1.1525E-02 1.8411E-02 -5.5310E-02 1.1108E-01 -1.3036E-01 8.5067E-02 -2.2880E-02
S7 4.5155E-02 -2.3840E-02 -4.0580E-02 1.4165E-01 -2.4283E-01 2.7044E-01 -1.9301E-01 7.8922E-02 -1.3790E-02
S8 3.2049E-02 -1.8530E-02 2.2331E-02 -4.7460E-02 8.4758E-02 -9.1300E-02 5.7480E-02 -1.9410E-02 2.7050E-03
S9 -6.1340E-02 4.3988E-02 -1.7798E-01 5.1316E-01 -8.6886E-01 9.0599E-01 -5.6671E-01 1.9633E-01 -2.9220E-02
S10 -5.7890E-02 3.0388E-02 -2.1952E-01 5.7293E-01 -8.6601E-01 7.8570E-01 -4.2646E-01 1.2878E-01 -1.6770E-02
S11 5.1723E-02 -1.5580E-02 -7.0620E-02 2.0000E-01 -2.4837E-01 1.5305E-01 -4.2980E-02 1.6960E-03 1.0250E-03
S12 4.1843E-02 -1.2120E-02 1.9499E-02 6.0270E-03 -2.4670E-02 2.2959E-02 -1.1850E-02 3.3760E-03 -4.0000E-04
S13 -1.9600E-02 1.4720E-03 -2.4000E-04 -3.4000E-04 1.9800E-04 -5.0000E-05 7.0100E-06 -5.2000E-07 1.5700E-08
S14 3.5170E-03 -6.5000E-04 -9.2000E-04 3.2900E-04 -5.5000E-05 5.1700E-06 -2.8000E-07 7.5500E-09 -8.1000E-11
S15 1.7050E-03 2.9230E-03 -9.0000E-04 2.9600E-04 -6.5000E-05 8.4500E-06 -6.2000E-07 2.3900E-08 -3.8000E-10
S16 -1.3070E-02 2.7600E-05 4.1700E-04 -1.2000E-04 2.0400E-05 -2.0000E-06 1.1300E-07 -3.4000E-09 4.1400E-11
表8
f1(mm) -60.39 f7(mm) 12.30
f2(mm) 4.29 f8(mm) -3.61
f3(mm) 11.46 f(mm) 4.25
f4(mm) -7.80 TTL(mm) 5.65
f5(mm) 21.37 ImgH(mm) 4.28
f6(mm) 67.29 HFOV(°) 45.2
表9
图6A示出了实施例3的光学成像镜片组的轴上色差曲线,其表示不同波长的光线经由光学成像镜片组后的会聚焦点偏离。图6B示出了实施例3的光学成像镜片组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6C示出了实施例3的光学成像镜片组的畸变曲线,其表示不同像高所对应的畸变大小值。图6D示出了实施例3的光学成像镜片组的倍率色差曲线,其表示光线经由光学成像镜片组后在成像面上的不同的像高的偏差。根据图6A至图6D可知,实施例3所给出的光学成像镜片组能够实现良好的成像品质。
实施例4
以下参照图7至图8D描述了根据本申请实施例4的光学成像镜片组。图7示出了根据本申请实施例4的光学成像镜片组的结构示意图。
如图7所示,根据本申请示例性实施方式的光学成像镜片组沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、第八透镜E8、滤光片E9和成像面S19。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面。第六透镜E6具有负光焦度,其 物侧面S11为凹面,像侧面S12为凸面。第七透镜E7具有正光焦度,其物侧面S13为凸面,像侧面S14为凹面。第八透镜E8具有负光焦度,其物侧面S15为凹面,像侧面S16为凹面。滤光片E9具有物侧面S17和像侧面S18。来自物体的光依序穿过各表面S1至S18并最终成像在成像面S19上。
表10示出了实施例4的光学成像镜片组的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表11示出了可用于实施例4中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表12给出实施例4中光学成像镜片组的各透镜的有效焦距f1至f8、光学成像镜片组的总有效焦距f、光学总长度TTL、成像面S19上有效像素区域对角线长的一半ImgH以及最大半视场角HFOV。
Figure PCTCN2019095359-appb-000007
表10
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -3.6560E-02 -1.5700E-02 4.3990E-03 -5.3310E-02 6.6622E-02 -5.4020E-02 2.2778E-02 -1.6900E-03 -9.1000E-04
S2 -4.8750E-02 -1.9350E-02 3.9711E-02 -9.7800E-02 9.9100E-03 1.6957E-01 -2.5932E-01 1.6181E-01 -3.7230E-02
S3 -2.4210E-02 3.9529E-02 -1.3357E-01 4.5993E-01 -9.0546E-01 1.1152E+00 -8.4463E-01 3.5557E-01 -6.2830E-02
S4 -3.1290E-02 -2.0000E-04 -1.3970E-02 1.7583E-01 -4.7791E-01 7.2073E-01 -6.1594E-01 2.8557E-01 -5.5680E-02
S5 -3.7520E-02 1.5132E-02 1.0012E-02 3.6499E-02 -1.7825E-01 3.5827E-01 -3.7767E-01 2.1131E-01 -4.8910E-02
S6 -2.4100E-03 -2.5900E-03 1.0825E-02 1.9414E-02 -5.4960E-02 1.1070E-01 -1.3036E-01 8.5067E-02 -2.2880E-02
S7 2.3151E-02 -6.0540E-02 1.1347E-01 -2.1922E-01 2.8622E-01 -2.1007E-01 7.8679E-02 -1.1040E-02 -3.1000E-04
S8 2.7346E-02 -1.8790E-02 2.3037E-02 -4.6720E-02 8.5003E-02 -9.1440E-02 5.7170E-02 -1.9410E-02 2.7050E-03
S9 -4.8970E-02 4.1164E-02 -1.7927E-01 5.1296E-01 -8.6886E-01 9.0611E-01 -5.6671E-01 1.9633E-01 -2.9220E-02
S10 -5.0290E-02 2.8862E-02 -2.2107E-01 5.7240E-01 -8.6623E-01 7.8565E-01 -4.2642E-01 1.2878E-01 -1.6770E-02
S11 6.0233E-02 -1.4690E-02 -6.9640E-02 2.0030E-01 -2.4848E-01 1.5276E-01 -4.3310E-02 1.6960E-03 1.0250E-03
S12 2.4636E-02 -1.3770E-02 7.2126E-02 -1.2109E-01 1.3750E-01 -9.4900E-02 3.6634E-02 -7.1300E-03 5.3200E-04
S13 -3.9970E-02 1.4235E-02 -8.2300E-03 2.9640E-03 -7.0000E-04 9.8300E-05 -7.5000E-06 4.8100E-07 -3.7000E-08
S14 -2.9200E-03 1.7170E-03 -1.5800E-03 4.7900E-04 -8.0000E-05 7.9800E-06 -4.7000E-07 1.4600E-08 -1.8000E-10
S15 -3.1500E-03 4.0530E-03 -9.4000E-04 2.9200E-04 -6.5000E-05 8.5100E-06 -6.3000E-07 2.4800E-08 -4.0000E-10
S16 -1.4750E-02 7.3800E-04 2.5100E-04 -9.9000E-05 1.5600E-05 -1.2000E-06 4.5200E-08 -3.6000E-10 -1.2000E-11
表11
f1(mm) 100.00 f7(mm) 10.54
f2(mm) 5.63 f8(mm) -3.60
f3(mm) 8.41 f(mm) 4.02
f4(mm) -7.11 TTL(mm) 5.48
f5(mm) 10.64 ImgH(mm) 4.28
f6(mm) -40.54 HFOV(°) 47.1
表12
图8A示出了实施例4的光学成像镜片组的轴上色差曲线,其表示不同波长的光线经由光学成像镜片组后的会聚焦点偏离。图8B示出了实施例4的光学成像镜片组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8C示出了实施例4的光学成像镜片组的畸变曲线,其表示不同像高所对应的畸变大小值。图8D示出了实施例4的光学成像镜片组的倍率色差曲线,其表示光线经由光学成像镜片组后在成像面上的不同的像高的偏差。根据图8A至图8D可知,实施例4所给出的光学成像镜片组能够实现良好的成像品质。
实施例5
以下参照图9至图10D描述了根据本申请实施例5的光学成像镜片组。图9示出了根据本申请实施例5的光学成像镜片组的结构示意图。
如图9所示,根据本申请示例性实施方式的光学成像镜片组沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、第八透镜E8、滤光片E9和成像面S19。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凸面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面S12为凸面。第七透镜E7具有正光焦度,其物侧面S13为凸面,像侧面S14为凹面。第八透镜E8具有负光焦度,其物侧面S15为凹面,像侧面S16为凹面。滤光片E9具有物侧面S17和像侧面S18。来自物体的光依序穿过各表面S1至S18并最终成像在成像面S19上。
表13示出了实施例5的光学成像镜片组的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表14示出了可用于实施例5中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表15给出实施例5中光学成像镜片组的各透镜的有效焦距f1至f8、光学成像镜片组的总有效焦距f、光学总长度TTL、成像面S19上有效像素区域对角线长的一半ImgH以及最大半视场角HFOV。
Figure PCTCN2019095359-appb-000008
表13
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -3.2360E-02 4.5980E-03 -1.3313E-01 3.9171E-01 -7.4369E-01 8.3026E-01 -5.5636E-01 2.1022E-01 -3.4440E-02
S2 -3.8990E-02 -1.9060E-02 -1.3510E-02 7.8517E-02 -2.5131E-01 3.5420E-01 -3.0060E-01 1.4416E-01 -2.8990E-02
S3 -2.0490E-02 4.4491E-02 -1.9666E-01 6.1871E-01 -1.1030E+00 1.2499E+00 -8.8951E-01 3.5917E-01 -6.1820E-02
S4 -3.5730E-02 -2.6100E-03 -1.0750E-02 1.7799E-01 -4.7758E-01 7.2025E-01 -6.1594E-01 2.8557E-01 -5.5680E-02
S5 -1.6220E-02 2.0747E-02 9.7670E-03 3.6063E-02 -1.7855E-01 3.5789E-01 -3.7767E-01 2.1131E-01 -4.8910E-02
S6 -1.9790E-02 -4.1100E-03 1.0647E-02 1.9562E-02 -5.4420E-02 1.1151E-01 -1.3036E-01 8.5067E-02 -2.2880E-02
S7 7.2120E-03 -2.9930E-02 -8.2200E-02 3.3458E-01 -6.4826E-01 7.7478E-01 -5.5430E-01 2.1596E-01 -3.4980E-02
S8 3.5073E-02 -1.6960E-02 2.2641E-02 -4.7430E-02 8.4685E-02 -9.1410E-02 5.7389E-02 -1.9350E-02 2.7050E-03
S9 -3.2830E-02 4.4566E-02 -1.7987E-01 5.1185E-01 -8.6956E-01 9.0575E-01 -5.6663E-01 1.9653E-01 -2.9220E-02
S10 -5.1730E-02 2.4062E-02 -2.2224E-01 5.7266E-01 -8.6595E-01 7.8572E-01 -4.2645E-01 1.2880E-01 -1.6770E-02
S11 4.7943E-02 -1.4970E-02 -6.9650E-02 2.0036E-01 -2.4823E-01 1.5302E-01 -4.3150E-02 1.5150E-03 1.0250E-03
S12 2.9613E-02 -2.2100E-03 2.3938E-02 -2.3060E-02 2.4138E-02 -1.6130E-02 3.8300E-03 4.2800E-04 -2.1000E-04
S13 -2.3630E-02 7.8390E-03 -6.3800E-03 2.7180E-03 -8.8000E-04 1.9700E-04 -3.1000E-05 3.1900E-06 -1.5000E-07
S14 1.9620E-03 2.1330E-03 -1.8200E-03 5.1400E-04 -8.1000E-05 7.7600E-06 -4.5000E-07 1.3500E-08 -1.5000E-10
S15 -7.1400E-03 4.5010E-03 -6.8000E-04 2.4000E-04 -6.4000E-05 9.0100E-06 -6.9000E-07 2.7300E-08 -4.4000E-10
S16 -1.9710E-02 3.0570E-03 -5.4000E-04 9.1300E-05 -1.4000E-05 1.5200E-06 -1.1000E-07 3.9800E-09 -6.1000E-11
表14
f1(mm) 99.97 f7(mm) 11.50
f2(mm) 4.69 f8(mm) -3.39
f3(mm) -100.00 f(mm) 4.07
f4(mm) -18.12 TTL(mm) 5.52
f5(mm) 8.15 ImgH(mm) 4.29
f6(mm) -32.99 HFOV(°) 46.4
表15
图10A示出了实施例5的光学成像镜片组的轴上色差曲线,其表示不同波长的光线经由光学成像镜片组后的会聚焦点偏离。图10B示出了实施例5的光学成像镜片组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图10C示出了实施例5的光学成像镜片组的畸变曲线,其表示不同像高所对应的畸变大小值。图10D示出了实施例5的光学成像镜片组的倍率色差曲线,其表示光线经由光学成像镜片组后在成像面上的不同的像高的偏差。根据图10A至图10D可知,实施例5所给出的光学成像镜片组能够实现良好的成像品质。
实施例6
以下参照图11至图12D描述了根据本申请实施例6的光学成像镜片组。图11示出了根据本申请实施例6的光学成像镜片组的结构示意图。
如图11所示,根据本申请示例性实施方式的光学成像镜片组沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、第八透镜E8、滤光片E9和成像面S19。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凸面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面。第六透镜E6具有正光焦度,其物侧面S11为凹面,像侧面S12为凸面。第七透镜E7具有正光焦度,其物侧面S13为凸面,像侧面S14为凹面。第八透镜E8具有负光焦度,其物侧面S15为凹面,像侧面S16为凹面。滤光片E9具有物侧面S17和像侧面S18。来自物体的光依序穿过各表面S1至S18并最终成像在成像面S19上。
表16示出了实施例6的光学成像镜片组的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表17示出了可用于实施例6中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表18给出实施例6中光学成像镜片组的各透镜的有效焦距f1至f8、光学成像镜片组的总有效焦距f、光学总长度TTL、成像面S19上有效像素区域对角线长的一半ImgH以及最大半视场角HFOV。
Figure PCTCN2019095359-appb-000009
Figure PCTCN2019095359-appb-000010
表16
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -3.2300E-02 -5.8600E-03 -5.9180E-02 1.4355E-01 -2.4683E-01 2.3053E-01 -1.2799E-01 4.2548E-02 -6.6300E-03
S2 -4.1880E-02 -2.2000E-02 1.8865E-02 -4.8540E-02 2.7048E-02 9.0300E-04 -4.0640E-02 3.9833E-02 -1.1250E-02
S3 -2.0830E-02 4.5710E-02 -2.0337E-01 6.2587E-01 -1.1188E+00 1.2829E+00 -9.2398E-01 3.7559E-01 -6.4730E-02
S4 -3.2620E-02 -3.0800E-03 -1.1830E-02 1.7735E-01 -4.7779E-01 7.2025E-01 -6.1594E-01 2.8557E-01 -5.5680E-02
S5 -1.5660E-02 2.0834E-02 1.0299E-02 3.6229E-02 -1.7864E-01 3.5774E-01 -3.7767E-01 2.1131E-01 -4.8910E-02
S6 -2.2540E-02 -5.2000E-03 9.4150E-03 1.9067E-02 -5.4500E-02 1.1157E-01 -1.3036E-01 8.5067E-02 -2.2880E-02
S7 1.8630E-03 -2.0820E-02 -1.1874E-01 4.1526E-01 -7.6209E-01 8.8244E-01 -6.2020E-01 2.3958E-01 -3.8730E-02
S8 3.3536E-02 -1.7250E-02 2.2837E-02 -4.7350E-02 8.4706E-02 -9.1400E-02 5.7405E-02 -1.9330E-02 2.7050E-03
S9 -3.8040E-02 4.4883E-02 -1.8030E-01 5.1149E-01 -8.6970E-01 9.0575E-01 -5.6659E-01 1.9659E-01 -2.9220E-02
S10 -4.7920E-02 2.3759E-02 -2.2263E-01 5.7265E-01 -8.6591E-01 7.8574E-01 -4.2644E-01 1.2881E-01 -1.6770E-02
S11 4.2631E-02 -1.5980E-02 -6.9660E-02 2.0040E-01 -2.4822E-01 1.5300E-01 -4.3190E-02 1.4540E-03 1.0250E-03
S12 4.2722E-02 -1.7750E-02 4.8227E-02 -5.3710E-02 5.2262E-02 -3.1140E-02 7.5540E-03 2.5200E-04 -2.6000E-04
S13 -1.2060E-02 1.6770E-03 -3.9100E-03 2.3780E-03 -1.0700E-03 3.1000E-04 -5.5000E-05 5.4700E-06 -2.3000E-07
S14 3.7280E-03 1.0950E-03 -1.4700E-03 4.1000E-04 -5.7000E-05 4.2000E-06 -1.3000E-07 -1.2000E-09 1.3500E-10
S15 -4.3100E-03 4.2160E-03 -7.0000E-04 2.2000E-04 -5.4000E-05 7.2800E-06 -5.3000E-07 2.0300E-08 -3.1000E-10
S16 -1.9140E-02 3.0900E-03 -6.6000E-04 1.2300E-04 -1.8000E-05 1.8100E-06 -1.2000E-07 4.3800E-09 -6.7000E-11
表17
f1(mm) 99.97 f7(mm) 17.95
f2(mm) 4.57 f8(mm) -3.46
f3(mm) -100.00 f(mm) 4.03
f4(mm) -16.67 TTL(mm) 5.44
f5(mm) 9.99 ImgH(mm) 4.29
f6(mm) 48.22 HFOV(°) 46.8
表18
图12A示出了实施例6的光学成像镜片组的轴上色差曲线,其表示不同波长的光线经由光学成像镜片组后的会聚焦点偏离。图12B示出了实施例6的光学成像镜片组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图12C示出了实施例6的光学成像镜片组的畸变曲线,其表示不同像高所对应的畸变大小值。图12D示出了实施例6的光学成像镜片组的倍率色差曲线,其表示光线经由光学成像镜片组后在成像面上的不同的像高的偏差。根据图12A至图12D可知,实施例6所给出的光学成像镜片组能够实现良好的成像品质。
实施例7
以下参照图13至图14D描述了根据本申请实施例7的光学成像镜片组。图13示出了根据本 申请实施例7的光学成像镜片组的结构示意图。
如图13所示,根据本申请示例性实施方式的光学成像镜片组沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、第八透镜E8、滤光片E9和成像面S19。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凸面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面。第六透镜E6具有正光焦度,其物侧面S11为凹面,像侧面S12为凸面。第七透镜E7具有正光焦度,其物侧面S13为凸面,像侧面S14为凸面。第八透镜E8具有负光焦度,其物侧面S15为凹面,像侧面S16为凹面。滤光片E9具有物侧面S17和像侧面S18。来自物体的光依序穿过各表面S1至S18并最终成像在成像面S19上。
表19示出了实施例7的光学成像镜片组的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表20示出了可用于实施例7中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表21给出实施例7中光学成像镜片组的各透镜的有效焦距f1至f8、光学成像镜片组的总有效焦距f、光学总长度TTL、成像面S19上有效像素区域对角线长的一半ImgH以及最大半视场角。
Figure PCTCN2019095359-appb-000011
表19
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -3.9430E-02 -2.3960E-02 4.8979E-02 -9.5200E-02 6.8382E-02 1.8669E-02 -8.8800E-02 6.6713E-02 -1.6280E-02
S2 -6.8560E-02 -1.3210E-02 1.4667E-02 -3.6910E-02 3.5284E-02 -7.7000E-04 -7.5840E-02 7.1897E-02 -1.9520E-02
S3 -3.0500E-02 3.6690E-02 -1.8196E-01 5.7997E-01 -1.0556E+00 1.2490E+00 -9.2190E-01 3.7728E-01 -6.4430E-02
S4 -3.0110E-02 -5.6400E-03 -1.0620E-02 1.7996E-01 -4.7612E-01 7.2089E-01 -6.1594E-01 2.8557E-01 -5.5680E-02
S5 -1.9140E-02 1.8293E-02 9.8680E-03 3.6098E-02 -1.7830E-01 3.5841E-01 -3.7767E-01 2.1131E-01 -4.8910E-02
S6 -3.4300E-02 -1.0430E-02 4.9550E-03 1.7453E-02 -5.4460E-02 1.1214E-01 -1.3036E-01 8.5067E-02 -2.2880E-02
S7 -8.8800E-03 -1.8910E-02 -1.7046E-01 6.1390E-01 -1.1810E+00 1.4037E+00 -9.9180E-01 3.8115E-01 -6.1290E-02
S8 2.8479E-02 -1.8510E-02 2.4098E-02 -4.6910E-02 8.4664E-02 -9.1500E-02 5.7355E-02 -1.9360E-02 2.7050E-03
S9 -4.4790E-02 5.0012E-02 -1.8164E-01 5.1017E-01 -8.7004E-01 9.0579E-01 -5.6656E-01 1.9657E-01 -2.9220E-02
S10 -4.7090E-02 2.4236E-02 -2.2227E-01 5.7308E-01 -8.6568E-01 7.8584E-01 -4.2638E-01 1.2885E-01 -1.6770E-02
S11 4.3402E-02 -1.7180E-02 -6.9920E-02 2.0060E-01 -2.4786E-01 1.5336E-01 -4.2900E-02 1.6680E-03 1.0250E-03
S12 4.4958E-02 -1.9090E-02 4.7712E-02 -4.9690E-02 4.3924E-02 -2.7000E-02 9.0740E-03 -1.3500E-03 5.1700E-05
S13 -1.2290E-02 6.9960E-03 -6.8000E-03 3.4250E-03 -1.1600E-03 2.3600E-04 -2.8000E-05 1.7100E-06 -4.3000E-08
S14 2.6320E-03 3.8840E-03 -2.6900E-03 8.9500E-04 -2.0000E-04 3.0700E-05 -2.8000E-06 1.4300E-07 -3.0000E-09
S15 -3.4200E-03 -3.8000E-04 7.5700E-04 3.6800E-06 -3.8000E-05 7.2600E-06 -6.6000E-07 3.1000E-08 -5.9000E-10
S16 -1.7210E-02 7.7100E-04 5.6500E-05 2.6500E-05 -1.5000E-05 2.5100E-06 -2.0000E-07 8.1900E-09 -1.3000E-10
表20
f1(mm) -100.00 f7(mm) 10.01
f2(mm) 4.15 f8(mm) -3.16
f3(mm) -48.77 f(mm) 4.08
f4(mm) -18.31 TTL(mm) 5.63
f5(mm) 10.29 ImgH(mm) 4.29
f6(mm) 100.00 HFOV(°) 46.4
表21
图14A示出了实施例7的光学成像镜片组的轴上色差曲线,其表示不同波长的光线经由光学成像镜片组后的会聚焦点偏离。图14B示出了实施例7的光学成像镜片组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图14C示出了实施例7的光学成像镜片组的畸变曲线,其表示不同像高所对应的畸变大小值。图14D示出了实施例7的光学成像镜片组的倍率色差曲线,其表示光线经由光学成像镜片组后在成像面上的不同的像高的偏差。根据图14A至图14D可知,实施例7所给出的光学成像镜片组能够实现良好的成像品质。
实施例8
以下参照图15至图16D描述了根据本申请实施例8的光学成像镜片组。图15示出了根据本申请实施例8的光学成像镜片组的结构示意图。
如图15所示,根据本申请示例性实施方式的光学成像镜片组沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、第八透镜E8、滤光片E9和成像面S19。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其 物侧面S11为凹面,像侧面S12为凸面。第七透镜E7具有正光焦度,其物侧面S13为凸面,像侧面S14为凹面。第八透镜E8具有负光焦度,其物侧面S15为凹面,像侧面S16为凹面。滤光片E9具有物侧面S17和像侧面S18。来自物体的光依序穿过各表面S1至S18并最终成像在成像面S19上。
表22示出了实施例8的光学成像镜片组的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表23示出了可用于实施例8中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表24给出实施例8中光学成像镜片组的各透镜的有效焦距f1至f8、光学成像镜片组的总有效焦距f、光学总长度TTL、成像面S19上有效像素区域对角线长的一半ImgH以及最大半视场角HFOV。
Figure PCTCN2019095359-appb-000012
表22
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -3.0530E-02 -3.1200E-03 -1.3716E-01 5.5890E-01 -1.2712E+00 1.6646E+00 -1.2854E+00 5.4283E-01 -9.6270E-02
S2 -3.6510E-02 -5.9980E-02 1.7457E-01 -4.3167E-01 6.4010E-01 -5.6437E-01 2.2221E-01 -3.3100E-03 -1.4110E-02
S3 -1.4470E-02 2.3700E-04 -3.2860E-02 2.4304E-01 -6.0995E-01 9.4195E-01 -8.6247E-01 4.1638E-01 -8.0680E-02
S4 -1.5970E-02 -3.2500E-03 -1.4310E-02 1.7958E-01 -4.7587E-01 7.2035E-01 -6.1594E-01 2.8557E-01 -5.5680E-02
S5 -1.2630E-02 1.2001E-02 8.4760E-03 3.4909E-02 -1.7894E-01 3.5870E-01 -3.7767E-01 2.1131E-01 -4.8910E-02
S6 -5.1520E-02 -1.8300E-03 5.4520E-03 1.6250E-02 -5.5330E-02 1.1157E-01 -1.3036E-01 8.5067E-02 -2.2880E-02
S7 -2.1720E-02 -3.6550E-02 -2.5260E-02 1.7949E-01 -4.2252E-01 5.7918E-01 -4.5274E-01 1.8694E-01 -3.1600E-02
S8 3.3330E-02 -2.3360E-02 2.3460E-02 -4.6390E-02 8.4763E-02 -9.1640E-02 5.7240E-02 -1.9380E-02 2.7050E-03
S9 -5.4210E-02 5.5148E-02 -1.7730E-01 5.1120E-01 -8.7029E-01 9.0544E-01 -5.6671E-01 1.9653E-01 -2.9220E-02
S10 -4.0420E-02 3.1350E-02 -2.2111E-01 5.7271E-01 -8.6616E-01 7.8555E-01 -4.2653E-01 1.2878E-01 -1.6770E-02
S11 3.1470E-02 -1.7420E-02 -6.9790E-02 1.9987E-01 -2.4854E-01 1.5288E-01 -4.3220E-02 1.4670E-03 1.0250E-03
S12 1.1211E-02 -8.5900E-03 4.7694E-02 -8.4500E-02 1.1220E-01 -8.3170E-02 2.9441E-02 -3.9000E-03 -7.6000E-06
S13 -1.5720E-02 1.4930E-03 -2.4000E-04 -1.6000E-04 7.2600E-05 -1.5000E-05 1.7700E-06 -1.1000E-07 2.6500E-09
S14 1.4600E-04 -2.8300E-03 1.1750E-03 -3.0000E-04 5.6900E-05 -7.5000E-06 6.3400E-07 -3.1000E-08 6.2900E-10
S15 -2.1050E-02 7.5330E-03 -8.7000E-04 2.3900E-04 -6.5000E-05 9.2600E-06 -7.0000E-07 2.6900E-08 -4.2000E-10
S16 -1.0980E-02 -2.8700E-03 1.8990E-03 -4.7000E-04 6.6600E-05 -5.8000E-06 3.0800E-07 -9.0000E-09 1.1200E-10
表23
f1(mm) 100.00 f7(mm) 10.43
f2(mm) 4.88 f8(mm) -3.56
f3(mm) 99.28 f(mm) 4.07
f4(mm) -15.28 TTL(mm) 5.50
f5(mm) -100.00 ImgH(mm) 4.29
f6(mm) 10.53 HFOV(°) 45.7
表24
图16A示出了实施例8的光学成像镜片组的轴上色差曲线,其表示不同波长的光线经由光学成像镜片组后的会聚焦点偏离。图16B示出了实施例8的光学成像镜片组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图16C示出了实施例8的光学成像镜片组的畸变曲线,其表示不同像高所对应的畸变大小值。图16D示出了实施例8的光学成像镜片组的倍率色差曲线,其表示光线经由光学成像镜片组后在成像面上的不同的像高的偏差。根据图16A至图16D可知,实施例8所给出的光学成像镜片组能够实现良好的成像品质。
实施例9
以下参照图17至图18D描述了根据本申请实施例9的光学成像镜片组。图17示出了根据本申请实施例9的光学成像镜片组的结构示意图。
如图17所示,根据本申请示例性实施方式的光学成像镜片组沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、第八透镜E8、滤光片E9和成像面S19。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凸面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凹面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凹面,像侧面S12为凸面。第七透镜E7具有正光焦度,其物侧面S13为凸面,像侧面S14为凹面。第八透镜E8具有负光焦度,其物侧面S15为凹面,像侧面S16为凹面。滤光片E9具有物侧面S17和像侧面S18。来自物体的光依序穿过各表面S1至S18并最终成像在成像面S19上。
表25示出了实施例9的光学成像镜片组的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表26示出了可用于实施例9中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表27给出实施例9中光学成像镜片组的各透镜的有效焦距f1至f8、光学成像镜片组的总有效焦距f、光学总长度TTL、成像面S19上有效像素区域对角线长的一半ImgH以及最大半视场角HFOV。
Figure PCTCN2019095359-appb-000013
表25
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -4.0090E-02 -3.8660E-02 1.0210E-01 -1.2814E-01 -4.0270E-02 2.8052E-01 -3.2690E-01 1.6644E-01 -3.2230E-02
S2 -7.5190E-02 -3.9020E-02 1.4898E-01 -3.0837E-01 2.8921E-01 -3.4430E-02 -2.0416E-01 1.6702E-01 -4.0730E-02
S3 -3.1460E-02 2.3373E-02 -1.5898E-01 6.8360E-01 -1.5181E+00 1.9984E+00 -1.5386E+00 6.3475E-01 -1.0776E-01
S4 -1.8000E-02 -7.7300E-03 -1.6810E-02 1.7984E-01 -4.7498E-01 7.2055E-01 -6.1594E-01 2.8557E-01 -5.5680E-02
S5 -2.0060E-02 1.0148E-02 1.0029E-02 3.6385E-02 -1.7777E-01 3.5878E-01 -3.7767E-01 2.1131E-01 -4.8910E-02
S6 -5.4490E-02 -5.0000E-04 3.2750E-03 1.5808E-02 -5.4130E-02 1.1163E-01 -1.3036E-01 8.5067E-02 -2.2880E-02
S7 -2.9220E-02 -4.8000E-04 -2.4069E-01 7.8992E-01 -1.4921E+00 1.7359E+00 -1.1998E+00 4.5115E-01 -7.0990E-02
S8 3.4082E-02 -2.4710E-02 2.4637E-02 -4.5860E-02 8.4652E-02 -9.1870E-02 5.7224E-02 -1.9370E-02 2.7050E-03
S9 -5.6980E-02 5.8117E-02 -1.7782E-01 5.1071E-01 -8.7031E-01 9.0547E-01 -5.6672E-01 1.9651E-01 -2.9220E-02
S10 -4.3530E-02 3.0867E-02 -2.2023E-01 5.7308E-01 -8.6611E-01 7.8551E-01 -4.2652E-01 1.2879E-01 -1.6770E-02
S11 2.2124E-02 -1.0670E-02 -6.9200E-02 1.9968E-01 -2.4833E-01 1.5328E-01 -4.3200E-02 1.4850E-03 1.0250E-03
S12 -1.0710E-02 3.9898E-02 -9.3170E-02 1.7487E-01 -1.8114E-01 1.1916E-01 -5.1860E-02 1.3333E-02 -1.4800E-03
S13 -1.5480E-02 3.6170E-03 -2.1400E-03 8.4300E-04 -2.1000E-04 2.9900E-05 -2.4000E-06 9.7800E-08 -1.5000E-09
S14 4.7080E-03 -3.7400E-03 6.8200E-04 7.7400E-05 -4.4000E-05 6.3600E-06 -4.2000E-07 1.1800E-08 -6.6000E-11
S15 -3.3050E-02 9.9030E-03 -1.0600E-03 2.8900E-04 -8.2000E-05 1.2200E-05 -9.5000E-07 3.8200E-08 -6.2000E-10
S16 -1.0790E-02 -5.9200E-03 3.3640E-03 -8.1000E-04 1.1600E-04 -1.0000E-05 5.5100E-07 -1.6000E-08 2.0800E-10
表26
f1(mm) -100.00 f7(mm) 7.55
f2(mm) 4.49 f8(mm) -3.41
f3(mm) -300.00 f(mm) 4.00
f4(mm) -21.10 TTL(mm) 5.48
f5(mm) -100.00 ImgH(mm) 4.29
f6(mm) 12.81 HFOV(°) 46.3
表27
图18A示出了实施例9的光学成像镜片组的轴上色差曲线,其表示不同波长的光线经由光学成像镜片组后的会聚焦点偏离。图18B示出了实施例9的光学成像镜片组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图18C示出了实施例9的光学成像镜片组的畸变曲线,其表示不同像高所对应的畸变大小值。图18D示出了实施例9的光学成像镜片组的倍率色差曲线,其表示光线经由光学成像镜片组后在成像面上的不同的像高的偏差。根据图18A至图18D可知,实施例9所给出的光学成像镜片组能够实现良好的成像品质。
实施例10
以下参照图19至图20D描述了根据本申请实施例10的光学成像镜片组。图19示出了根据本申请实施例10的光学成像镜片组的结构示意图。
如图19所示,根据本申请示例性实施方式的光学成像镜片组沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、第八透镜E8、滤光片E9和成像面S19。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凹面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凹面,像侧面S12为凸面。第七透镜E7具有正光焦度,其物侧面S13为凸面,像侧面S14为凹面。第八透镜E8具有负光焦度,其物侧面S15为凹面,像侧面S16为凹面。滤光片E9具有物侧面S17和像侧面S18。来自物体的光依序穿过各表面S1至S18并最终成像在成像面S19上。
表28示出了实施例10的光学成像镜片组的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表29示出了可用于实施例10中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表30给出实施例10中光学成像镜片组的各透镜的有效焦距f1至f8、光学成像镜片组的总有效焦距f、光学总长度TTL、成像面S19上有效像素区域对角线长的一半ImgH以及最大半视场角HFOV。
Figure PCTCN2019095359-appb-000014
Figure PCTCN2019095359-appb-000015
表28
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -4.0680E-02 -1.0390E-02 -4.3280E-02 5.1682E-02 -7.1250E-02 7.4461E-02 -5.8080E-02 3.0112E-02 -6.9200E-03
S2 -4.9670E-02 -4.3600E-02 1.3948E-01 -5.3063E-01 1.0093E+00 -1.1600E+00 7.7231E-01 -2.7011E-01 3.8154E-02
S3 -1.8120E-02 1.3939E-02 5.7380E-03 -2.0020E-02 7.2056E-02 -1.0532E-01 7.7842E-02 -2.9700E-02 4.7620E-03
S4 -5.0280E-02 5.3341E-02 -2.3371E-01 8.0015E-01 -1.4799E+00 1.6544E+00 -1.0529E+00 3.4630E-01 -4.5750E-02
S5 -6.4200E-02 8.5348E-02 -2.2737E-01 5.6738E-01 -8.3556E-01 7.3149E-01 -3.5655E-01 9.0746E-02 -1.0760E-02
S6 -2.6500E-02 7.0430E-03 1.4475E-01 -5.0485E-01 9.2466E-01 -1.0063E+00 6.5509E-01 -2.2461E-01 2.9575E-02
S7 8.3900E-04 9.0450E-03 -1.0666E-01 1.8931E-01 -2.3459E-01 2.1585E-01 -1.1867E-01 3.3721E-02 -3.8400E-03
S8 2.5544E-02 1.0959E-02 -8.3690E-02 1.5004E-01 -1.6014E-01 1.1948E-01 -5.8990E-02 1.6728E-02 -2.0200E-03
S9 -5.1800E-02 -2.0160E-02 8.9703E-02 -1.3213E-01 1.3877E-01 -9.6960E-02 4.3320E-02 -1.1700E-02 1.5230E-03
S10 -3.8170E-02 -2.0700E-02 1.0856E-02 -1.6200E-03 8.9100E-04 -7.0900E-03 7.4530E-03 -3.1000E-03 4.3200E-04
S11 8.6628E-02 -8.1190E-02 6.1945E-02 -6.1480E-02 4.6404E-02 -1.8910E-02 -1.0800E-03 3.7210E-03 -9.9000E-04
S12 6.5073E-02 -5.9040E-02 5.4901E-02 -2.7580E-02 -3.9500E-03 1.8532E-02 -1.2970E-02 3.8430E-03 -4.0000E-04
S13 -1.9040E-02 -9.2300E-03 6.7250E-03 -3.1500E-03 9.5200E-04 -1.8000E-04 1.9100E-05 -7.8000E-07 -1.1000E-08
S14 2.8440E-03 -8.2400E-03 2.5590E-03 -4.9000E-04 6.2700E-05 -5.4000E-06 2.9300E-07 -9.3000E-09 1.2900E-10
S15 -5.6600E-03 3.4080E-03 -6.5000E-04 2.1600E-04 -5.0000E-05 6.3000E-06 -4.5000E-07 1.7200E-08 -2.7000E-10
S16 -3.5200E-02 1.1674E-02 -3.3800E-03 6.7700E-04 -8.9000E-05 7.5400E-06 -4.0000E-07 1.1700E-08 -1.5000E-10
表29
f1(mm) -100.02 f7(mm) 16.93
f2(mm) 5.21 f8(mm) -3.48
f3(mm) 8.27 f(mm) 4.08
f4(mm) -8.33 TTL(mm) 5.48
f5(mm) -100.00 ImgH(mm) 4.20
f6(mm) 10.76 HFOV(°) 46.2
表30
图20A示出了实施例10的光学成像镜片组的轴上色差曲线,其表示不同波长的光线经由光学成像镜片组后的会聚焦点偏离。图20B示出了实施例10的光学成像镜片组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图20C示出了实施例10的光学成像镜片组的畸变曲线,其表示不同像高所对应的畸变大小值。图20D示出了实施例10的光学成像镜片组的倍率色差曲线,其表示光线经由光学成像镜片组后在成像面上的不同的像高的偏差。根据图20A至图20D可知,实施例10所给出的光学成像镜片组能够实现良好的成像品质。
综上,实施例1至实施例10分别满足表31中所示的关系。
Figure PCTCN2019095359-appb-000016
表31
本申请还提供一种成像装置,其电子感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。成像装置可以是诸如数码相机的独立成像设备,也可以是集成在诸如手机等移动电子设备上的成像模块。该成像装置装配有以上描述的光学成像镜片组。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (33)

  1. 光学成像镜片组,沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜和第八透镜,其特征在于,
    所述第一透镜具有光焦度;
    所述第二透镜具有正光焦度;
    所述第三透镜具有光焦度,其像侧面为凸面;
    所述第四透镜具有负光焦度;
    所述第五透镜具有光焦度;
    所述第六透镜具有光焦度,其物侧面为凹面,像侧面为凸面;
    所述第七透镜具有正光焦度;以及
    所述第八透镜具有光焦度。
  2. 根据权利要求1所述的光学成像镜片组,其特征在于,所述第二透镜的物侧面为凸面。
  3. 根据权利要求2所述的光学成像镜片组,其特征在于,所述第七透镜的物侧面为凸面。
  4. 根据权利要求3所述的光学成像镜片组,其特征在于,所述第二透镜的有效焦距f2与所述第七透镜的有效焦距f7满足0<f2/f7<0.8。
  5. 根据权利要求1所述的光学成像镜片组,其特征在于,所述第四透镜的像侧面为凹面。
  6. 根据权利要求5所述的光学成像镜片组,其特征在于,所述光学成像镜片组的总有效焦距f与所述第四透镜的有效焦距f4满足-0.8<f/f4<0。
  7. 根据权利要求1所述的光学成像镜片组,其特征在于,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜和所述第六透镜的组合焦距f123456与所述光学成像镜片组的总有效焦距f满足1.0<f123456/f<1.5。
  8. 根据权利要求1所述的光学成像镜片组,其特征在于,所述第七透镜于所述光轴上的中心厚度CT7与所述第一透镜的物侧面至所述光学成像镜片组的成像面在所述光轴上的距离TTL满足1.5<CT7/TTL×10<2.5。
  9. 根据权利要求1所述的光学成像镜片组,其特征在于,所述第六透镜的物侧面的最大有效半径DT61与所述第七透镜的物侧面的最大有效半径DT71满足0.2<DT61/DT71<0.7。
  10. 根据权利要求1所述的光学成像镜片组,其特征在于,所述第一透镜的物侧面的曲率半径R1、所述第一透镜的像侧面的曲率半径R2与所述第一透镜的有效焦距f1满足0<(R1+R2)/|f1|<0.5。
  11. 根据权利要求1所述的光学成像镜片组,其特征在于,所述第三透镜的像侧面的曲率半径R6与所述第三透镜的有效焦距f3满足0<|R6/f3|<0.8。
  12. 根据权利要求1所述的光学成像镜片组,其特征在于,所述第八透镜的物侧面的曲率半径R15与所述第八透镜的像侧面的曲率半径R16满足-0.8<R15/R16<-0.3。
  13. 根据权利要求1所述的光学成像镜片组,其特征在于,所述第六透镜的像侧面的曲率半 径R12与所述第六透镜的物侧面的曲率半径R11满足0.3<R12/R11<1.3。
  14. 根据权利要求1所述的光学成像镜片组,其特征在于,所述第六透镜和所述第七透镜在所述光轴上的间隔距离T67与所述第七透镜和所述第八透镜在所述光轴上的间隔距离T78满足0.4<T67/T78<1.0。
  15. 根据权利要求1至14中任一项所述的光学成像镜片组,其特征在于,所述光学成像镜片组的总有效焦距f与所述光学成像镜片组的入瞳直径EPD满足f/EPD<2.0。
  16. 根据权利要求15所述的光学成像镜片组,其特征在于,所述第一透镜的物侧面至所述光学成像镜片组的成像面在所述光轴上的距离TTL与所述光学成像镜片组的成像面上有效像素区域对角线长的一半ImgH满足TTL/ImgH<1.4。
  17. 根据权利要求1至14中任一项所述的光学成像镜片组,其特征在于,所述光学成像镜片组的最大半视场角HFOV满足40°<HFOV<50°。
  18. 光学成像镜片组,沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜和第八透镜,其特征在于,
    所述第一透镜具有光焦度;
    所述第二透镜具有正光焦度;
    所述第三透镜具有光焦度;
    所述第四透镜具有负光焦度;
    所述第五透镜具有光焦度;
    所述第六透镜具有光焦度,其物侧面为凹面,像侧面为凸面;
    所述第七透镜具有正光焦度;
    所述第八透镜具有光焦度;以及
    所述第一透镜的物侧面至所述光学成像镜片组的成像面在所述光轴上的距离TTL与所述光学成像镜片组的成像面上有效像素区域对角线长的一半ImgH满足TTL/ImgH<1.4。
  19. 根据权利要求18所述的光学成像镜片组,其特征在于,所述第一透镜的物侧面的曲率半径R1、所述第一透镜的像侧面的曲率半径R2与所述第一透镜的有效焦距f1满足0<(R1+R2)/|f1|<0.5。
  20. 根据权利要求18所述的光学成像镜片组,其特征在于,所述第三透镜的像侧面的曲率半径R6与所述第三透镜的有效焦距f3满足0<|R6/f3|<0.8。
  21. 根据权利要求18所述的光学成像镜片组,其特征在于,所述第六透镜的像侧面的曲率半径R12与所述第六透镜的物侧面的曲率半径R11满足0.3<R12/R11<1.3。
  22. 根据权利要求18所述的光学成像镜片组,其特征在于,所述第八透镜的物侧面的曲率半径R15与所述第八透镜的像侧面的曲率半径R16满足-0.8<R15/R16<-0.3。
  23. 根据权利要求18所述的光学成像镜片组,其特征在于,所述光学成像镜片组的总有效焦距f与所述第四透镜的有效焦距f4满足-0.8<f/f4<0。
  24. 根据权利要求23所述的光学成像镜片组,其特征在于,所述第四透镜的像侧面为凹面。
  25. 根据权利要求18所述的光学成像镜片组,其特征在于,所述第二透镜的有效焦距f2与所述第七透镜的有效焦距f7满足0<f2/f7<0.8。
  26. 根据权利要求18所述的光学成像镜片组,其特征在于,所述第二透镜的物侧面为凸面。
  27. 根据权利要求18所述的光学成像镜片组,其特征在于,所述第七透镜的物侧面为凸面。
  28. 根据权利要求18所述的光学成像镜片组,其特征在于,所述第七透镜于所述光轴上的中心厚度CT7与所述第一透镜的物侧面至所述光学成像镜片组的成像面在所述光轴上的距离TTL满足1.5<CT7/TTL×10<2.5。
  29. 根据权利要求18所述的光学成像镜片组,其特征在于,所述第六透镜和所述第七透镜在所述光轴上的间隔距离T67与所述第七透镜和所述第八透镜在所述光轴上的间隔距离T78满足0.4<T67/T78<1.0。
  30. 根据权利要求18所述的光学成像镜片组,其特征在于,所述第六透镜的物侧面的最大有效半径DT61与所述第七透镜的物侧面的最大有效半径DT71满足0.2<DT61/DT71<0.7。
  31. 根据权利要求18至30中任一项所述的光学成像镜片组,其特征在于,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜和所述第六透镜的组合焦距f123456与所述光学成像镜片组的总有效焦距f满足1.0<f123456/f<1.5。
  32. 根据权利要求18至30中任一项所述的光学成像镜片组,其特征在于,所述光学成像镜片组的最大半视场角HFOV满足40°<HFOV<50°。
  33. 根据权利要求32所述的光学成像镜片组,其特征在于,所述光学成像镜片组的总有效焦距f与所述光学成像镜片组的入瞳直径EPD满足f/EPD<2.0。
PCT/CN2019/095359 2018-10-08 2019-07-10 光学成像镜片组 WO2020073702A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811167277.8 2018-10-08
CN201811167277.8A CN108983399B (zh) 2018-10-08 2018-10-08 光学成像镜片组

Publications (1)

Publication Number Publication Date
WO2020073702A1 true WO2020073702A1 (zh) 2020-04-16

Family

ID=64543284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/095359 WO2020073702A1 (zh) 2018-10-08 2019-07-10 光学成像镜片组

Country Status (2)

Country Link
CN (2) CN116679423A (zh)
WO (1) WO2020073702A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116679423A (zh) * 2018-10-08 2023-09-01 浙江舜宇光学有限公司 光学成像镜片组
CN111239978B (zh) * 2018-12-13 2022-03-29 浙江舜宇光学有限公司 光学成像镜头
CN109375349B (zh) * 2018-12-25 2024-05-14 浙江舜宇光学有限公司 成像镜头
US11226473B2 (en) * 2018-12-28 2022-01-18 Samsung Electro-Mechanics Co., Ltd. Optical imaging system including eight lenses of +++−+−+−, −++−+++− or +−+−++−− refractive powers
KR20200131010A (ko) * 2019-05-13 2020-11-23 삼성전기주식회사 촬상 광학계
CN110007444B (zh) * 2019-05-21 2024-04-16 浙江舜宇光学有限公司 光学成像镜头
JP7352400B2 (ja) * 2019-07-18 2023-09-28 東京晨美光学電子株式会社 撮像レンズ
TWI714368B (zh) 2019-11-27 2020-12-21 大立光電股份有限公司 攝像用光學系統、取像裝置及電子裝置
WO2021127873A1 (zh) * 2019-12-23 2021-07-01 诚瑞光学(常州)股份有限公司 摄像光学镜头
CN111142228B (zh) * 2019-12-28 2021-09-24 诚瑞光学(常州)股份有限公司 摄像光学镜头
CN111308659A (zh) * 2020-03-16 2020-06-19 南昌欧菲精密光学制品有限公司 光学***、摄像模组及电子装置
CN111736311B (zh) * 2020-07-27 2020-11-13 常州市瑞泰光电有限公司 摄像光学镜头
CN112305837A (zh) * 2020-10-30 2021-02-02 维沃移动通信有限公司 光学成像镜头及电子设备
CN114428386B (zh) * 2021-12-28 2024-04-19 浙江舜宇光学有限公司 光学成像镜头
CN114647062B (zh) * 2022-03-25 2023-12-01 浙江舜宇光学有限公司 光学成像镜头

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014178522A (ja) * 2013-03-15 2014-09-25 Ricoh Co Ltd 撮像光学系、カメラ装置および携帯情報端末装置
CN205992078U (zh) * 2016-07-08 2017-03-01 黄俊裕 成像镜头
CN107085285A (zh) * 2017-07-05 2017-08-22 浙江舜宇光学有限公司 光学成像镜头
CN107219609A (zh) * 2017-07-20 2017-09-29 沈阳中光学科技有限公司 50mmF0.95数码微单相机超大光圈全幅镜头
CN108983399A (zh) * 2018-10-08 2018-12-11 浙江舜宇光学有限公司 光学成像镜片组
CN208833988U (zh) * 2018-10-08 2019-05-07 浙江舜宇光学有限公司 光学成像镜片组

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114137694B (zh) * 2017-11-22 2024-04-19 浙江舜宇光学有限公司 光学成像镜头

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014178522A (ja) * 2013-03-15 2014-09-25 Ricoh Co Ltd 撮像光学系、カメラ装置および携帯情報端末装置
CN205992078U (zh) * 2016-07-08 2017-03-01 黄俊裕 成像镜头
CN107085285A (zh) * 2017-07-05 2017-08-22 浙江舜宇光学有限公司 光学成像镜头
CN107219609A (zh) * 2017-07-20 2017-09-29 沈阳中光学科技有限公司 50mmF0.95数码微单相机超大光圈全幅镜头
CN108983399A (zh) * 2018-10-08 2018-12-11 浙江舜宇光学有限公司 光学成像镜片组
CN208833988U (zh) * 2018-10-08 2019-05-07 浙江舜宇光学有限公司 光学成像镜片组

Also Published As

Publication number Publication date
CN116679423A (zh) 2023-09-01
CN108983399B (zh) 2023-10-13
CN108983399A (zh) 2018-12-11

Similar Documents

Publication Publication Date Title
WO2020073702A1 (zh) 光学成像镜片组
WO2020119172A1 (zh) 光学成像镜头
WO2020024633A1 (zh) 光学成像镜头
WO2020024634A1 (zh) 光学成像镜片组
WO2020107962A1 (zh) 光学成像透镜组
WO2020199573A1 (zh) 摄像透镜组
WO2020019794A1 (zh) 光学成像镜头
WO2020082814A1 (zh) 成像镜头
WO2020093725A1 (zh) 摄像光学***
WO2020119146A1 (zh) 光学成像镜头
WO2020113985A1 (zh) 光学成像镜片组
WO2019100868A1 (zh) 光学成像镜头
WO2019192180A1 (zh) 光学成像镜头
WO2020010878A1 (zh) 光学成像***
WO2020010879A1 (zh) 光学成像***
WO2020088022A1 (zh) 光学成像镜片组
WO2020107935A1 (zh) 光学成像镜头
WO2020007069A1 (zh) 光学成像镜片组
WO2020038134A1 (zh) 光学成像***
WO2019223263A1 (zh) 摄像镜头
WO2020001119A1 (zh) 摄像镜头
WO2020191951A1 (zh) 光学成像镜头
WO2019100768A1 (zh) 光学成像镜头
WO2020119171A1 (zh) 光学成像镜头
WO2020024635A1 (zh) 光学成像镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19871047

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19871047

Country of ref document: EP

Kind code of ref document: A1