WO2021196030A1 - 光学***、镜头模组和电子设备 - Google Patents

光学***、镜头模组和电子设备 Download PDF

Info

Publication number
WO2021196030A1
WO2021196030A1 PCT/CN2020/082596 CN2020082596W WO2021196030A1 WO 2021196030 A1 WO2021196030 A1 WO 2021196030A1 CN 2020082596 W CN2020082596 W CN 2020082596W WO 2021196030 A1 WO2021196030 A1 WO 2021196030A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical system
optical axis
circumference
object side
Prior art date
Application number
PCT/CN2020/082596
Other languages
English (en)
French (fr)
Inventor
刘彬彬
李明
邹海荣
Original Assignee
江西晶超光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江西晶超光学有限公司 filed Critical 江西晶超光学有限公司
Priority to EP20924981.2A priority Critical patent/EP3929645A4/en
Priority to PCT/CN2020/082596 priority patent/WO2021196030A1/zh
Priority to US17/465,927 priority patent/US20210396973A1/en
Publication of WO2021196030A1 publication Critical patent/WO2021196030A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0012Optical design, e.g. procedures, algorithms, optimisation routines
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/146Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups
    • G02B15/1461Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups the first group being positive
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation

Definitions

  • This application belongs to the field of optical imaging, and in particular relates to an optical system, a lens module having the optical system, and electronic equipment.
  • the five-chip optical system is relatively mature, but the resolution is increasingly unable to meet the needs of consumers.
  • the seven-element optical system has obvious advantages, can obtain higher resolution, and can be used in high-end mobile electronic products, thereby improving the image quality of shooting, increasing the resolution and clarity.
  • the current seven-chip optical system is not perfect, and the shooting effect in dark environments such as night scenes, rainy days, and starry sky is still not satisfactory. Therefore, how to further improve the seven-piece optical system so that it can overcome the dark environment and have a better shooting effect becomes the key.
  • the purpose of this application is to provide an optical system that still has a better shooting effect under low light conditions.
  • the present application provides an optical system.
  • the optical system sequentially includes from the object side to the image side: a first lens with positive tortuosity, the object side of the first lens is convex at the optical axis, and The image side surface of the first lens is concave at the optical axis and at the circumference; the second lens has a tortuous force, the object side of the second lens is convex at the optical axis, and the image side of the second lens is at the Both the optical axis and the circumference are concave; the third lens with tortuous power; the fourth lens with tortuous power; the fifth lens with tortuous power; the sixth lens with tortuous power; the seventh with negative tortuous power Lens, the image side of the seventh lens is concave at the optical axis and is provided with at least one inflection point; the optical system satisfies the conditional formula: f/EPD ⁇ 1.7; where f is the effective of the optical system Focal length, EPD is the entrance pupil diameter of the optical system.
  • the optical system provided by this application has a reasonable configuration of the tortuosity and surface shape of the first lens to the seventh lens, and at the same time, satisfies the value of f/EPD within 1.7.
  • the amount of light entering can improve the shooting effect under dark conditions and have a better imaging effect.
  • the optical system satisfies the conditional expression: TTL/Imgh ⁇ 1.7; wherein, TTL is the distance from the object side of the first lens to the imaging surface of the optical system on the optical axis, and Imgh is the distance Half of the diagonal length of the effective photosensitive area on the imaging surface of the optical system.
  • the optical system satisfies the conditional formula: f*tan(HFOV)>5.15mm; where HFOV is the half angle of view of the optical system.
  • HFOV the half angle of view of the optical system.
  • the optical system satisfies the conditional formula: 1 ⁇ TTL/f ⁇ 1.5; wherein, TTL is the distance from the object side of the first lens to the imaging surface of the optical system on the optical axis.
  • TTL is the distance from the object side of the first lens to the imaging surface of the optical system on the optical axis.
  • the optical system satisfies the conditional formula: 0.5 ⁇
  • the optical system satisfies the conditional formula: 0.5 ⁇ TTH2/CT3 ⁇ 1.5; wherein, TTH2 is the air separation distance from the second lens to the third lens on the optical axis, and CT3 is the The thickness of the third lens on the optical axis.
  • the optical system satisfies the conditional formula:
  • the optical system satisfies the conditional formula: 0.2 ⁇ ET2/CT2 ⁇ 1.3; wherein, ET2 is the thickness of the edge of the optical effective area of the second lens, and CT2 is the second lens on the optical axis thickness of.
  • ET2/CT2 is between 0.2 and 1.3, controlling the ratio of the edge thickness of the second lens to the middle thickness of the second lens within a suitable range is beneficial to the processing and production of the second lens.
  • the optical system satisfies the conditional formula: TTL/f1 ⁇ 1.5; where TTL is the distance from the object side of the first lens to the imaging surface of the optical system on the optical axis, and f1 is the The effective focal length of the first lens is described.
  • TTL/f1 the refractive power of the first lens can be reasonably controlled to avoid excessive increase of the first lens's refractive power and ensure a relatively short overall length of the optical system.
  • the optical system satisfies the conditional formula: EPD/R1 ⁇ 1.5; wherein, R1 is the radius of curvature of the object side surface of the first lens at the optical axis.
  • the optical system satisfies the conditional formula: sd61/sd52 ⁇ 1.3; where sd61 is the clear aperture of the sixth lens object side at the maximum field angle; sd52 is the maximum field angle.
  • the present application also provides a lens module, which includes a lens barrel, a photosensitive element, and the optical system according to any one of the embodiments of the first aspect, and the first lens of the optical system to The seventh lens is installed in the lens barrel, and the photosensitive element is arranged on the image side of the optical system.
  • the lens module has a larger light-intake aperture, thereby having a larger light input, which can improve the shooting effect under dark conditions and have a better imaging effect.
  • the present application also provides an electronic device.
  • the electronic device includes a housing and the lens module of the second aspect, and the lens module is provided in the housing.
  • the optical system has a larger light-entry aperture, thereby having a larger amount of light, which can improve the shooting effect of the electronic device under dark conditions, so that the electronic device has better The imaging effect.
  • Fig. 1a is a schematic diagram of the structure of the optical system of the first embodiment
  • Figure 1b is the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the first embodiment
  • 2a is a schematic diagram of the structure of the optical system of the second embodiment
  • Fig. 2b is the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the second embodiment
  • 3a is a schematic diagram of the structure of the optical system of the third embodiment
  • Fig. 3b is the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the third embodiment
  • 4a is a schematic diagram of the structure of the optical system of the fourth embodiment
  • 4b is a longitudinal spherical aberration curve, astigmatism curve and distortion curve of the fourth embodiment
  • 5a is a schematic diagram of the structure of the optical system of the fifth embodiment
  • Fig. 5b is the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the fifth embodiment
  • Fig. 6a is a schematic diagram of the structure of the optical system of the sixth embodiment.
  • Fig. 6b shows the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the sixth embodiment.
  • Fig. 7a is a schematic structural diagram of an optical system of a seventh embodiment
  • Fig. 7b is the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the seventh embodiment
  • Fig. 8a is a schematic structural diagram of an optical system of an eighth embodiment
  • Fig. 8b is a longitudinal spherical aberration curve, astigmatism curve and distortion curve of the eighth embodiment
  • Fig. 9a is a schematic structural diagram of an optical system of a ninth embodiment
  • Fig. 9b is a longitudinal spherical aberration curve, astigmatism curve and distortion curve of the ninth embodiment
  • 10a is a schematic diagram of the structure of the optical system of the tenth embodiment
  • Fig. 10b shows the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the tenth embodiment.
  • An embodiment of the application provides an electronic device.
  • the electronic device includes a housing and the lens module provided in the embodiment of the application, and the lens module is provided in the housing.
  • the electronic device can be a smart phone, a personal digital assistant (PDA), a tablet computer, a smart watch, a drone, an e-book reader, a driving recorder, a wearable device, etc.
  • PDA personal digital assistant
  • the optical system has a larger light-entry aperture, thereby having a larger amount of light, which can improve the shooting effect of the electronic device under dark conditions, so that the electronic device has better The imaging effect.
  • the embodiment of the present application also provides a lens module.
  • the lens module includes a lens barrel, a photosensitive element, and the optical system provided in the embodiment of the present application.
  • the first lens to the seventh lens of the optical system are installed in the lens barrel, and the photosensitive element It is arranged on the image side of the optical system and is used to convert the light passing through the first lens to the seventh lens and incident on the photosensitive element into an electrical signal of the image.
  • the photosensitive element may be a complementary metal oxide semiconductor (Complementary Metal Oxide Semiconductor, CMOS) or a charge-coupled device (Charge-coupled Device, CCD).
  • CMOS Complementary Metal Oxide Semiconductor
  • CCD Charge-coupled Device
  • the lens module can be an independent lens of a digital camera, or it can be an imaging module integrated on an electronic device such as a smart phone. By adding the optical system provided by the present application to the lens module, the lens module has a larger light-intake aperture, thereby having a larger
  • the embodiment of the present application provides an optical system.
  • the optical system sequentially includes from the object side to the image side: a first lens with positive refractive power, the object side of the first lens is convex at the optical axis, and the image side of the first lens Both the optical axis and the circumference are concave; for the second lens with tortuous power, the object side of the second lens is convex at the optical axis, and the near image side of the second lens is both at the optical axis and at the circumference Concave surface; a third lens with a tortuous power; a fourth lens with a tortuous power; a fifth lens with a tortuous power; a sixth lens with a tortuous power; a seventh lens with a negative tortuous power, the image side of the seventh lens is
  • the optical axis is concave with at least one inflection point; the optical system satisfies the conditional formula: f/EPD ⁇ 1.7; where f is the effective focal length of the optical system, and E
  • the optical system provided by this application has a reasonable configuration of the tortuosity and surface shape of the first lens to the seventh lens, and at the same time, satisfies the value of f/EPD within 1.7.
  • the amount of light entering can improve the shooting effect under dark conditions and have a better imaging effect.
  • the value of f/EPD can be 1.7, 1.4, 1.1, 0.7, 0.5, 0.1, and so on.
  • the optical system satisfies the conditional formula: TTL/Imgh ⁇ 1.7; where TTL is the distance from the object side of the first lens to the imaging surface of the optical system on the optical axis, and Imgh is the effective light-sensitivity on the imaging surface of the optical system Half of the diagonal length of the area.
  • TTL/Imgh the optical system has the characteristics of ultra-thin, thereby realizing the miniaturization of the system.
  • the value of TTL/Imgh can be 1.7, 1.5, 1.2, 1.0, 0.5, 0.3, 0.1, etc.
  • the optical system satisfies the conditional formula: f*tan(HFOV)>5.15mm; where HFOV is the half angle of view of the optical system.
  • HFOV the conditional formula
  • the optical system has the characteristics of a large image area, and thus has the characteristics of high pixels and high definition.
  • the value of f*tan(HFOV) can be 5.15mm, 5.18mm, 5.2mm, 5.5mm, 6mm, 8mm, 10mm, etc.
  • the optical system satisfies the conditional formula: 1 ⁇ TTL/f ⁇ 1.5; where TTL is the distance from the object side of the first lens to the imaging surface of the optical system on the optical axis.
  • TTL is the distance from the object side of the first lens to the imaging surface of the optical system on the optical axis.
  • TTL/f the ratio of the total length of the control system to the focal length is less than 1.5, so that the optical system has the characteristics of miniaturization; at the same time, controlling the ratio to be greater than 1 reduces the sensitivity of the optical system and is beneficial Product processing and production.
  • the value of TTL/f can be 1, 1.1, 1.2, 1.3, 1.4, 1.5, and so on.
  • the optical system satisfies the conditional formula: 0.5 ⁇
  • is between 0.5 and 0.6, it is beneficial to the processing and shaping of the third lens and can effectively reduce the sensitivity of the optical system on the third lens.
  • can be 0.5, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, etc.
  • the optical system satisfies the conditional formula: 0.5 ⁇ TTH2/CT3 ⁇ 1.5; where TTH2 is the air separation distance from the second lens to the third lens on the optical axis, and CT3 is the third lens on the optical axis. thickness.
  • TTH2/CT3 the value of TTH2/CT3 between 0.5 and 1.5, the sensitivity of the optical system field is effectively reduced, which is beneficial to the processing and production of products.
  • the value of TTH2/CT3 can be 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, etc.
  • the optical system satisfies the conditional formula:
  • can be 0.1, 0.4, 0.7, 1, 1.4, 1.8, 2, etc.
  • the optical system satisfies the conditional formula: 0.2 ⁇ ET2/CT2 ⁇ 1.3, where ET2 is the thickness of the edge of the optical effective area of the second lens, and CT2 is the thickness of the second lens on the optical axis.
  • ET2/CT2 is between 0.2 and 1.3
  • controlling the ratio of the edge thickness of the second lens to the middle thickness of the second lens within a suitable range is beneficial to the processing and production of the second lens.
  • the value of ET2/CT2 can be 0.2, 0.5, 0.7, 1, 1.1, 1.3, etc.
  • the optical system satisfies the conditional formula: TTL/f1 ⁇ 1.5; where TTL is the distance from the object side of the first lens to the imaging surface of the optical system on the optical axis, and f1 is the effective focal length of the first lens.
  • TTL/f1 the refractive power of the first lens can be reasonably controlled to avoid excessive increase of the first lens's refractive power and ensure a relatively short overall length of the optical system.
  • the value of TTL/f1 can be 1.5, 1.2, 1, 0.8, 0.5, 0.3, 0.1, and so on.
  • the optical system satisfies the conditional formula: EPD/R1 ⁇ 1.5; where R1 is the radius of curvature of the object side surface of the first lens at the optical axis.
  • R1 is the radius of curvature of the object side surface of the first lens at the optical axis.
  • the value of EPD/R1 can be 1.5, 1.2, 1, 0.8, 0.5, 0.3, 0.1, and so on.
  • the optical system satisfies the conditional formula: sd61/sd52 ⁇ 1.3 where sd61 is the clear aperture of the sixth lens at the maximum angle of view; sd52 is the clear aperture of the fifth lens at the maximum angle of view.
  • Optical aperture By satisfying that the value of sd61/sd52 is within 1.3, the gap between the fifth lens and the sixth lens structure is effectively reduced, the edge field of view light is smoother, and the processing and production of the product are stable.
  • the value of sd61/sd52 can be 1.2, 1, 0.8, 0.5, 0.3, 0.1, and so on.
  • the optical system of this embodiment from the object side to the image side along the optical axis direction, includes:
  • the first lens L1 has a positive refractive power.
  • the object side surface S1 of the first lens L1 is convex at the optical axis and the circumference;
  • the image side surface S2 of the first lens L1 is concave at the optical axis and the circumference;
  • the second lens L2 has a negative refractive power.
  • the object side surface S3 of the second lens L2 is convex at the optical axis and the circumference;
  • the image side surface S4 of the second lens L2 is concave at the optical axis and the circumference;
  • the third lens L3 has positive refractive power.
  • the object side surface S5 of the third lens L3 is convex at the optical axis and concave at the circumference;
  • the image side S6 of the third lens L3 is convex at the optical axis and at the circumference ;
  • the fourth lens L4 has a negative refractive power.
  • the object side surface S7 of the fourth lens L4 is concave at the optical axis and at the circumference;
  • the image side surface S8 of the fourth lens L4 is concave at the optical axis and convex at the circumference ;
  • the fifth lens L5 has positive refractive power.
  • the object side surface S9 of the fifth lens L5 is concave at the optical axis and the circumference; the image side surface S10 of the fifth lens L5 is convex at the optical axis and the circumference.
  • the sixth lens L6 has a positive refractive power.
  • the object side surface S11 of the sixth lens L6 is convex at the optical axis and concave at the circumference; the image side S12 of the sixth lens L6 is concave at the optical axis and at the circumference Convex.
  • the seventh lens L7 has a negative refractive power.
  • the object side surface S13 of the seventh lens L7 is convex at the optical axis and concave at the circumference; the image side S14 of the seventh lens L7 is concave at the optical axis and at the circumference Convex.
  • the materials of the first lens L1 to the seventh lens L7 are all plastic.
  • the optical system also includes a stop STO, an infrared cut filter L8 and an imaging surface S17.
  • the stop STO is arranged on the object side S1 of the first lens L1 for controlling the amount of light entering. In other embodiments, the stop STO can also be arranged between two adjacent lenses, or on other lenses.
  • the infrared cut filter L8 is arranged on the image side of the seventh lens L7, which includes the object side S15 and the image side S16.
  • the infrared cut filter L8 is used to filter out infrared light so that the light entering the imaging surface S17 is visible light , The wavelength of visible light is 380nm-780nm.
  • the material of the infrared cut filter L8 is glass, and it can be coated on the glass.
  • the imaging surface S17 is the effective pixel area of the photosensitive element.
  • Table 1a shows a table of the characteristics of the optical system of this embodiment, where the data is obtained using light with a wavelength of 555 nm, and the units of Y radius, thickness, and focal length are all millimeters (mm).
  • f is the effective focal length of the optical system
  • FNO is the aperture number of the optical system
  • FOV is the maximum angle of view in the diagonal direction of the optical system
  • TTL is the object side of the first lens to the imaging surface of the optical system on the optical axis the distance.
  • the object side surface and the image side surface of any one of the first lens L1 to the seventh lens L7 are aspherical surfaces, and the surface shape x of each aspherical lens can be defined by but not limited to the following aspherical surface formula:
  • x is the maximum vector height when the aspheric surface is at a height of h along the optical axis direction;
  • k is the conic coefficient;
  • Ai is the correction coefficient of the i-th order of the aspheric surface.
  • Table 1b shows the high-order coefficients A4, A6, A8, A10, A12, A14, A16, A18, and A20 that can be used for each aspheric mirror surface S1-S14 in the first embodiment.
  • FIG. 1b shows the longitudinal spherical aberration curve, astigmatism curve, and distortion curve of the optical system of the first embodiment.
  • the light reference wavelength of the astigmatism curve and the distortion curve is 555nm, where the longitudinal spherical aberration curve represents the deviation of the focus point of light rays of different wavelengths after passing through the lenses of the optical system; the astigmatism curve meridian image plane curvature and sagittal image plane curvature;
  • the distortion curve represents the magnitude of distortion corresponding to different angles of view. According to Fig. 1b, it can be seen that the optical system provided in the first embodiment can achieve good imaging quality.
  • the optical system of this embodiment from the object side to the image side along the optical axis direction, includes:
  • the first lens L1 has a positive refractive power.
  • the object side surface S1 of the first lens L1 is convex at the optical axis and the circumference;
  • the image side surface S2 of the first lens L1 is concave at the optical axis and the circumference;
  • the second lens L2 has a negative refractive power.
  • the object side surface S3 of the second lens L2 is convex at the optical axis and the circumference;
  • the image side surface S4 of the second lens L2 is concave at the optical axis and the circumference;
  • the third lens L3 has positive refractive power.
  • the object side surface S5 of the third lens L3 is convex at the optical axis and concave at the circumference;
  • the image side S6 of the third lens L3 is convex at the optical axis and at the circumference ;
  • the fourth lens L4 has a negative refractive power.
  • the object side surface S7 of the fourth lens L4 is concave at the optical axis and at the circumference;
  • the image side surface S8 of the fourth lens L4 is concave at the optical axis and convex at the circumference ;
  • the fifth lens L5 has positive refractive power.
  • the object side surface S9 of the fifth lens L5 is concave at the optical axis and the circumference; the image side surface S10 of the fifth lens L5 is convex at the optical axis and the circumference.
  • the sixth lens L6 has negative refractive power.
  • the object side surface S11 of the sixth lens L6 is convex at the optical axis and concave at the circumference; the image side S12 of the sixth lens L6 is concave at the optical axis and at the circumference Convex.
  • the seventh lens L7 has a negative refractive power.
  • the object side surface S13 of the seventh lens L7 is convex at the optical axis and concave at the circumference; the image side S14 of the seventh lens L7 is concave at the optical axis and at the circumference Convex.
  • the other structure of the second embodiment is the same as that of the first embodiment, so refer to.
  • Table 2a shows a table of the characteristics of the optical system of this embodiment, where the data is obtained using light with a wavelength of 555 nm, and the units of Y radius, thickness, and focal length are all millimeters (mm).
  • f is the effective focal length of the optical system
  • FNO is the aperture number of the optical system
  • FOV is the maximum angle of view in the diagonal direction of the optical system
  • TTL is the object side of the first lens to the imaging surface of the optical system on the optical axis the distance.
  • Table 2b shows the coefficients of higher-order terms that can be used for each aspheric mirror surface in the second embodiment, where each aspheric surface type can be defined by the formula given in the first embodiment.
  • Fig. 2b shows the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the optical system of the second embodiment.
  • the reference wavelength of the astigmatism curve and the distortion curve is 555nm. According to Fig. 2b, it can be seen that the optical system provided in the second embodiment can achieve good imaging quality.
  • the optical system of this embodiment from the object side to the image side along the optical axis direction, includes:
  • the first lens L1 has a positive refractive power.
  • the object side surface S1 of the first lens L1 is convex at the optical axis and the circumference;
  • the image side surface S2 of the first lens L1 is concave at the optical axis and the circumference;
  • the second lens L2 has a negative refractive power.
  • the object side surface S3 of the second lens L2 is convex at the optical axis and the circumference;
  • the image side surface S4 of the second lens L2 is concave at the optical axis and the circumference;
  • the third lens L3 has positive refractive power.
  • the object side surface S5 of the third lens L3 is convex at the optical axis and concave at the circumference;
  • the image side S6 of the third lens L3 is convex at the optical axis and at the circumference ;
  • the fourth lens L4 has a negative refractive power.
  • the object side surface S7 of the fourth lens L4 is concave at the optical axis and at the circumference;
  • the image side surface S8 of the fourth lens L4 is concave at the optical axis and convex at the circumference ;
  • the fifth lens L5 has positive refractive power.
  • the object side surface S9 of the fifth lens L5 is concave at the optical axis and the circumference; the image side surface S10 of the fifth lens L5 is convex at the optical axis and the circumference.
  • the sixth lens L6 has positive refractive power.
  • the object side surface S11 of the sixth lens L6 is convex at the optical axis and concave at the circumference; the image side S12 of the sixth lens L6 is concave at the optical axis and at the circumference Convex.
  • the seventh lens L7 has a negative refractive power.
  • the object side surface S13 of the seventh lens L7 is convex at the optical axis and concave at the circumference; the image side S14 of the seventh lens L7 is concave at the optical axis and at the circumference Convex.
  • the other structure of the third embodiment is the same as that of the first embodiment, so refer to.
  • Table 3a shows a table of the characteristics of the optical system of this embodiment, where the data is obtained using light with a wavelength of 555 nm, and the units of Y radius, thickness, and focal length are all millimeters (mm).
  • f is the effective focal length of the optical system
  • FNO is the aperture number of the optical system
  • FOV is the maximum angle of view in the diagonal direction of the optical system
  • TTL is the object side of the first lens to the imaging surface of the optical system on the optical axis the distance.
  • Table 3b shows the coefficients of higher-order terms that can be used for each aspheric mirror surface in the third embodiment, where each aspheric surface type can be defined by the formula given in the first embodiment.
  • Fig. 3b shows the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the optical system of the third embodiment.
  • the reference wavelength of the astigmatism curve and the distortion curve is 555nm. According to FIG. 3b, it can be seen that the optical system provided in the third embodiment can achieve good imaging quality.
  • the optical system of this embodiment from the object side to the image side along the optical axis direction, includes:
  • the first lens L1 has a positive refractive power.
  • the object side surface S1 of the first lens L1 is convex at the optical axis and the circumference;
  • the image side surface S2 of the first lens L1 is concave at the optical axis and the circumference;
  • the second lens L2 has a negative refractive power.
  • the object side surface S3 of the second lens L2 is convex at the optical axis and the circumference;
  • the image side surface S4 of the second lens L2 is concave at the optical axis and the circumference;
  • the third lens L3 has positive refractive power.
  • the object side surface S5 of the third lens L3 is convex at the optical axis and concave at the circumference;
  • the image side S6 of the third lens L3 is convex at the optical axis and at the circumference ;
  • the fourth lens L4 has a positive refractive power.
  • the object side surface S7 of the fourth lens L4 is concave at the optical axis and at the circumference;
  • the image side surface S8 of the fourth lens L4 is convex at the optical axis and at the circumference;
  • the fifth lens L5 has positive refractive power.
  • the object side surface S9 of the fifth lens L5 is concave at the optical axis and the circumference; the image side surface S10 of the fifth lens L5 is convex at the optical axis and the circumference.
  • the sixth lens L6 has positive refractive power.
  • the object side surface S11 of the sixth lens L6 is convex at the optical axis and concave at the circumference; the image side S12 of the sixth lens L6 is concave at the optical axis and at the circumference Convex.
  • the seventh lens L7 has a negative refractive power.
  • the object side surface S13 of the seventh lens L7 is convex at the optical axis and concave at the circumference; the image side S14 of the seventh lens L7 is concave at the optical axis and at the circumference Convex.
  • the other structure of the fourth embodiment is the same as that of the first embodiment, so refer to.
  • Table 4a shows a table of the characteristics of the optical system of this embodiment, where the data is obtained using light with a wavelength of 555 nm, and the units of Y radius, thickness, and focal length are all millimeters (mm).
  • f is the effective focal length of the optical system
  • FNO is the aperture number of the optical system
  • FOV is the maximum angle of view in the diagonal direction of the optical system
  • TTL is the object side of the first lens to the imaging surface of the optical system on the optical axis the distance.
  • Table 4b shows the coefficients of higher-order terms that can be used for each aspherical mirror surface in the fourth embodiment, where each aspherical surface type can be defined by the formula given in the first embodiment.
  • Fig. 4b shows the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the optical system of the fourth embodiment.
  • the reference wavelength of the astigmatism curve and the distortion curve is 555nm. According to FIG. 4b, it can be seen that the optical system provided in the fourth embodiment can achieve good imaging quality.
  • the optical system of this embodiment from the object side to the image side along the optical axis direction, includes:
  • the first lens L1 has a positive refractive power.
  • the object side surface S1 of the first lens L1 is convex at the optical axis and the circumference;
  • the image side surface S2 of the first lens L1 is concave at the optical axis and the circumference;
  • the second lens L2 has a negative refractive power.
  • the object side surface S3 of the second lens L2 is convex at the optical axis and the circumference;
  • the image side surface S4 of the second lens L2 is concave at the optical axis and the circumference;
  • the third lens L3 has a positive refractive power.
  • the object side surface S5 of the third lens L3 is convex at the optical axis and concave at the circumference;
  • the image side S6 of the third lens L3 is convex at the optical axis and at the circumference ;
  • the fourth lens L4 has a negative refractive power.
  • the object side surface S7 of the fourth lens L4 is concave at the optical axis and at the circumference;
  • the image side surface S8 of the fourth lens L4 is convex at the optical axis and at the circumference;
  • the fifth lens L5 has a negative refractive power.
  • the object side surface S9 of the fifth lens L5 is concave at the optical axis and at the circumference; the image side surface S10 of the fifth lens L5 is convex at the optical axis and concave at the circumference .
  • the sixth lens L6 has a positive refractive power.
  • the object side surface S11 of the sixth lens L6 is convex at the optical axis and concave at the circumference; the image side S12 of the sixth lens L6 is concave at the optical axis and at the circumference Convex.
  • the seventh lens L7 has a negative refractive power.
  • the object side surface S13 of the seventh lens L7 is convex at the optical axis and concave at the circumference; the image side S14 of the seventh lens L7 is concave at the optical axis and at the circumference Convex.
  • the other structure of the fifth embodiment is the same as that of the first embodiment, so refer to.
  • Table 5a shows a table of the characteristics of the optical system of this embodiment, where the data is obtained using light with a wavelength of 555 nm, and the units of Y radius, thickness, and focal length are all millimeters (mm).
  • f is the effective focal length of the optical system
  • FNO is the aperture number of the optical system
  • FOV is the maximum angle of view in the diagonal direction of the optical system
  • TTL is the object side of the first lens to the imaging surface of the optical system on the optical axis the distance.
  • Table 5b shows the coefficients of higher-order terms applicable to each aspheric mirror surface in the fifth embodiment, where each aspheric surface type can be defined by the formula given in the first embodiment.
  • Fig. 5b shows the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the optical system of the fifth embodiment.
  • the reference wavelength of the astigmatism curve and the distortion curve is 555nm. According to FIG. 5b, it can be seen that the optical system provided in the fifth embodiment can achieve good imaging quality.
  • the optical system of this embodiment from the object side to the image side along the optical axis direction, includes:
  • the first lens L1 has a positive refractive power.
  • the object side surface S1 of the first lens L1 is convex at the optical axis and the circumference;
  • the image side surface S2 of the first lens L1 is concave at the optical axis and the circumference;
  • the second lens L2 has a negative refractive power.
  • the object side surface S3 of the second lens L2 is convex at the optical axis and the circumference;
  • the image side surface S4 of the second lens L2 is concave at the optical axis and the circumference;
  • the third lens L3 has negative refractive power.
  • the object side surface S5 of the third lens L3 is concave at the optical axis and the circumference;
  • the image side surface S6 of the third lens L3 is convex at the optical axis and the circumference;
  • the fourth lens L4 has a negative refractive power.
  • the object side surface S7 of the fourth lens L4 is concave at the optical axis and at the circumference;
  • the image side surface S8 of the fourth lens L4 is concave at the optical axis and convex at the circumference ;
  • the fifth lens L5 has a positive refractive power.
  • the object side surface S9 of the fifth lens L5 is convex at the optical axis and concave at the circumference; the image side S10 of the fifth lens L5 is convex at the optical axis and at the circumference .
  • the sixth lens L6 has a positive refractive power.
  • the object side surface S11 of the sixth lens L6 is convex at the optical axis and concave at the circumference; the image side S12 of the sixth lens L6 is concave at the optical axis and at the circumference Convex.
  • the seventh lens L7 has a negative refractive power.
  • the object side surface S13 of the seventh lens L7 is convex at the optical axis and concave at the circumference; the image side S14 of the seventh lens L7 is concave at the optical axis and at the circumference Convex.
  • the other structure of the sixth embodiment is the same as that of the first embodiment, so refer to.
  • Table 6a shows a table of the characteristics of the optical system of this embodiment, where the data is obtained using light with a wavelength of 555 nm, and the units of the Y radius, thickness, and focal length are all millimeters (mm).
  • f is the effective focal length of the optical system
  • FNO is the aperture number of the optical system
  • FOV is the maximum angle of view in the diagonal direction of the optical system
  • TTL is the object side of the first lens to the imaging surface of the optical system on the optical axis the distance.
  • Table 6b shows the coefficients of higher-order terms that can be used for each aspherical mirror surface in the sixth embodiment, where each aspherical surface type can be defined by the formula given in the first embodiment.
  • Fig. 6b shows the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the optical system of the sixth embodiment.
  • the reference wavelength of the astigmatism curve and the distortion curve is 555nm. According to FIG. 6b, it can be seen that the optical system provided in the sixth embodiment can achieve good imaging quality.
  • the optical system of this embodiment from the object side to the image side along the optical axis direction, includes:
  • the first lens L1 has a positive refractive power.
  • the object side surface S1 of the first lens L1 is convex at the optical axis and the circumference;
  • the image side surface S2 of the first lens L1 is concave at the optical axis and the circumference;
  • the second lens L2 has a positive refractive power.
  • the object side surface S3 of the second lens L2 is convex at the optical axis and the circumference;
  • the image side surface S4 of the second lens L2 is concave at the optical axis and the circumference;
  • the third lens L3 has positive refractive power.
  • the object side surface S5 of the third lens L3 is convex at the optical axis and concave at the circumference;
  • the image side S6 of the third lens L3 is convex at the optical axis and at the circumference ;
  • the fourth lens L4 has a negative refractive power.
  • the object side surface S7 of the fourth lens L4 is concave at the optical axis and at the circumference;
  • the image side surface S8 of the fourth lens L4 is concave at the optical axis and convex at the circumference ;
  • the fifth lens L5 has a positive refractive power.
  • the object side surface S9 of the fifth lens L5 is convex at the optical axis and concave at the circumference; the image side S10 of the fifth lens L5 is convex at the optical axis and at the circumference .
  • the sixth lens L6 has a positive refractive power.
  • the object side surface S11 of the sixth lens L6 is convex at the optical axis and concave at the circumference; the image side S12 of the sixth lens L6 is concave at the optical axis and at the circumference Convex.
  • the seventh lens L7 has a negative refractive power.
  • the object side surface S13 of the seventh lens L7 is convex at the optical axis and concave at the circumference; the image side S14 of the seventh lens L7 is concave at the optical axis and at the circumference Convex.
  • the other structure of the seventh embodiment is the same as that of the first embodiment, so refer to.
  • Table 7a shows a table of the characteristics of the optical system of this embodiment, in which the data is obtained using light with a wavelength of 555 nm, and the units of Y radius, thickness and focal length are all millimeters (mm).
  • f is the effective focal length of the optical system
  • FNO is the aperture number of the optical system
  • FOV is the maximum angle of view in the diagonal direction of the optical system
  • TTL is the object side of the first lens to the imaging surface of the optical system on the optical axis the distance.
  • Table 7b shows the coefficients of higher-order terms that can be used for each aspheric mirror surface in the seventh embodiment, where each aspheric surface type can be defined by the formula given in the first embodiment.
  • Fig. 7b shows the longitudinal spherical aberration curve, astigmatism curve, and distortion curve of the optical system of the seventh embodiment.
  • the reference wavelength of the astigmatism curve and the distortion curve is 555nm. According to FIG. 7b, it can be seen that the optical system provided in the seventh embodiment can achieve good imaging quality.
  • the optical system of this embodiment from the object side to the image side along the optical axis direction, includes:
  • the first lens L1 has a positive refractive power.
  • the object side surface S1 of the first lens L1 is convex at the optical axis and the circumference;
  • the image side surface S2 of the first lens L1 is concave at the optical axis and the circumference;
  • the second lens L2 has a positive refractive power.
  • the object side surface S3 of the second lens L2 is convex at the optical axis and the circumference;
  • the image side surface S4 of the second lens L2 is concave at the optical axis and the circumference;
  • the third lens L3 has positive refractive power.
  • the object side surface S5 of the third lens L3 is convex at the optical axis and concave at the circumference;
  • the image side S6 of the third lens L3 is convex at the optical axis and at the circumference ;
  • the fourth lens L4 has a negative refractive power.
  • the object side surface S7 of the fourth lens L4 is concave at the optical axis and at the circumference;
  • the image side surface S8 of the fourth lens L4 is concave at the optical axis and convex at the circumference ;
  • the fifth lens L5 has a positive refractive power.
  • the object side surface S9 of the fifth lens L5 is convex at the optical axis and concave at the circumference; the image side S10 of the fifth lens L5 is convex at the optical axis and at the circumference .
  • the sixth lens L6 has a positive refractive power.
  • the object side surface S11 of the sixth lens L6 is convex at the optical axis and concave at the circumference; the image side S12 of the sixth lens L6 is concave at the optical axis and at the circumference Convex.
  • the seventh lens L7 has a negative refractive power.
  • the object side surface S13 of the seventh lens L7 is convex at the optical axis and concave at the circumference; the image side S14 of the seventh lens L7 is concave at the optical axis and at the circumference Convex.
  • the other structure of the eighth embodiment is the same as that of the first embodiment, so refer to.
  • Table 8a shows a table of the characteristics of the optical system of this embodiment, where the data is obtained using light with a wavelength of 555 nm, and the units of the Y radius, thickness, and focal length are all millimeters (mm).
  • f is the effective focal length of the optical system
  • FNO is the aperture number of the optical system
  • FOV is the maximum angle of view in the diagonal direction of the optical system
  • TTL is the object side of the first lens to the imaging surface of the optical system on the optical axis the distance.
  • Table 8b shows the coefficients of higher-order terms applicable to each aspheric mirror surface in the eighth embodiment, where each aspheric surface type can be defined by the formula given in the first embodiment.
  • FIG. 8b shows the longitudinal spherical aberration curve, astigmatism curve, and distortion curve of the optical system of the eighth embodiment.
  • the reference wavelength of the astigmatism curve and the distortion curve is 555nm. According to FIG. 8b, it can be seen that the optical system provided in the eighth embodiment can achieve good imaging quality.
  • the optical system of this embodiment from the object side to the image side along the optical axis direction, includes:
  • the first lens L1 has a positive refractive power.
  • the object side surface S1 of the first lens L1 is convex at the optical axis and the circumference;
  • the image side surface S2 of the first lens L1 is concave at the optical axis and the circumference;
  • the second lens L2 has a negative refractive power.
  • the object side surface S3 of the second lens L2 is convex at the optical axis and the circumference;
  • the image side surface S4 of the second lens L2 is concave at the optical axis and the circumference;
  • the third lens L3 has positive refractive power.
  • the object side surface S5 of the third lens L3 is convex at the optical axis and concave at the circumference;
  • the image side S6 of the third lens L3 is convex at the optical axis and at the circumference ;
  • the fourth lens L4 has a negative refractive power.
  • the object side surface S7 of the fourth lens L4 is concave at the optical axis and at the circumference;
  • the image side surface S8 of the fourth lens L4 is concave at the optical axis and convex at the circumference ;
  • the fifth lens L5 has a positive refractive power.
  • the object side surface S9 of the fifth lens L5 is convex at the optical axis and concave at the circumference; the image side S10 of the fifth lens L5 is convex at the optical axis and at the circumference .
  • the sixth lens L6 has a positive refractive power.
  • the object side surface S11 of the sixth lens L6 is convex at the optical axis and concave at the circumference; the image side S12 of the sixth lens L6 is concave at the optical axis and at the circumference Convex.
  • the seventh lens L7 has a negative refractive power.
  • the object side surface S13 of the seventh lens L7 is convex at the optical axis and concave at the circumference; the image side S14 of the seventh lens L7 is concave at the optical axis and at the circumference Convex.
  • the other structure of the ninth embodiment is the same as that of the first embodiment, so please refer to it.
  • Table 9a shows a table of the characteristics of the optical system of this embodiment, where the data is obtained using light with a wavelength of 555 nm, and the units of Y radius, thickness, and focal length are all millimeters (mm).
  • f is the effective focal length of the optical system
  • FNO is the aperture number of the optical system
  • FOV is the maximum angle of view in the diagonal direction of the optical system
  • TTL is the object side of the first lens to the imaging surface of the optical system on the optical axis the distance.
  • Table 9b shows the coefficients of higher-order terms that can be used for each aspheric mirror surface in the ninth embodiment, where each aspheric surface type can be defined by the formula given in the first embodiment.
  • Fig. 9b shows the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the optical system of the ninth embodiment.
  • the reference wavelength of the astigmatism curve and the distortion curve is 555nm. According to Fig. 9b, it can be seen that the optical system provided in the ninth embodiment can achieve good imaging quality.
  • the optical system of this embodiment from the object side to the image side along the optical axis direction, includes:
  • the first lens L1 has a positive refractive power.
  • the object side surface S1 of the first lens L1 is convex at the optical axis and the circumference;
  • the image side surface S2 of the first lens L1 is concave at the optical axis and the circumference;
  • the second lens L2 has a negative refractive power.
  • the object side surface S3 of the second lens L2 is convex at the optical axis and the circumference;
  • the image side surface S4 of the second lens L2 is concave at the optical axis and the circumference;
  • the third lens L3 has positive refractive power.
  • the object side surface S5 of the third lens L3 is convex at the optical axis and concave at the circumference;
  • the image side S6 of the third lens L3 is convex at the optical axis and at the circumference ;
  • the fourth lens L4 has a negative refractive power.
  • the object side surface S7 of the fourth lens L4 is concave at the optical axis and at the circumference;
  • the image side surface S8 of the fourth lens L4 is concave at the optical axis and convex at the circumference ;
  • the fifth lens L5 has positive refractive power.
  • the object side surface S9 of the fifth lens L5 is concave at the optical axis and the circumference; the image side surface S10 of the fifth lens L5 is convex at the optical axis and the circumference.
  • the sixth lens L6 has a negative refractive power.
  • the object side surface S11 of the sixth lens L6 is concave at the optical axis and at the circumference; the image side surface S12 of the sixth lens L6 is concave at the optical axis and convex at the circumference .
  • the seventh lens L7 has a negative refractive power.
  • the object side surface S13 of the seventh lens L7 is convex at the optical axis and concave at the circumference; the image side S14 of the seventh lens L7 is concave at the optical axis and at the circumference Convex.
  • the other structure of the tenth embodiment is the same as that of the first embodiment, so refer to.
  • Table 10a shows a table of the characteristics of the optical system of this embodiment, where the data is obtained using light with a wavelength of 555 nm, and the units of the Y radius, thickness, and focal length are all millimeters (mm).
  • f is the effective focal length of the optical system
  • FNO is the aperture number of the optical system
  • FOV is the maximum angle of view in the diagonal direction of the optical system
  • TTL is the object side of the first lens to the imaging surface of the optical system on the optical axis the distance.
  • Table 10b shows the coefficients of higher-order terms that can be used for each aspheric mirror surface in the tenth embodiment, where each aspheric surface type can be defined by the formula given in the first embodiment.
  • Fig. 10b shows the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the optical system of the tenth embodiment.
  • the reference wavelength of the astigmatism curve and the distortion curve is 555nm. According to FIG. 10b, it can be seen that the optical system provided in the tenth embodiment can achieve good imaging quality.
  • Table 11 shows the f/EPD, f*tan (HFOV), TTL/Imgh, TTL/f,
  • the unit of f*tan (HFOV) is millimeter (mm).
  • optical systems provided in the embodiments of this application all satisfy the following conditional formulas: f/EPD ⁇ 1.7, f*tan(HFOV)>5.15mm, TTL/Imgh ⁇ 1.7, 1 ⁇ TTL/f ⁇ 1.5, 0.5 ⁇

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学***、镜头模组和电子设备,该光学***从物侧至像侧依次包括:具有正曲折力的第一透镜(L1),第一透镜(L1)的物侧面(S1)于光轴处为凸面,第一透镜(L1)的像侧面(S2)于光轴处和于圆周处均为凹面;具有曲折力的第二透镜(L2),第二透镜(L2)的物侧面(S3)于光轴处为凸面,第二透镜(L2)的像侧面(S4)于光轴处和于圆周处均为凹面;具有曲折力的第三透镜(L3)、第四透镜(L4)、第五透镜(L5)和第六透镜(L6);具有负曲折力的第七透镜(L7),第七透镜(L7)的像侧面(S14)于光轴处为凹面,且设有至少一个反曲点;该光学***满足条件式:f/EPD<1.7。通过上述设置,该光学***具有较大的入光孔径,从而具有更大的进光量,可改善暗条件下的拍摄效果,具有更好的成像效果。

Description

光学***、镜头模组和电子设备 技术领域
本申请属于光学成像领域,尤其涉及一种光学***、具有该光学***的镜头模组和电子设备。
背景技术
如今,随着科技的飞速发展,消费者们对移动电子产品的成像质量要求也越来越高。目前,五片式的光学***做的比较成熟,但分辨率愈来愈不能满足消费者的需求。相较于它们,七片式的光学***具有明显优势,能够获得更高的解析力,可用于高端移动电子产品,从而改善拍摄的画质感、提高分辨率以及清晰度。
然而,目前七片式的光学***尚不完善,在夜景、雨天、星空等暗光环境的拍摄效果仍不如人意。因此如何对七片式的光学***进行进一步完善,使其克服暗光环境而具有较佳的拍摄效果成为了关键。
发明内容
本申请的目的是提供一种光学***,在暗光条件下仍具有较佳的拍摄效果。
为实现本申请的目的,本申请提供了如下的技术方案:
第一方面,本申请提供了一种光学***,光学***从物侧至像侧依次包括:具有正曲折力的第一透镜,所述第一透镜的物侧面于光轴处为凸面,所述第一透镜的像侧面于光轴处和于圆周处均为凹面;具有曲折力的第二透镜,所述第二透镜的物侧面于光轴处为凸面,所述第二透镜的像侧面于光轴处和于圆周处均为凹面;具有曲折力的第三透镜;具有曲折力的第四透镜;具有曲折力的第 五透镜;具有曲折力的第六透镜;具有负曲折力的第七透镜,所述第七透镜的像侧面于光轴处为凹面,且设有至少一个反曲点;所述光学***满足条件式:f/EPD<1.7;其中,f为所述光学***的有效焦距,EPD为所述光学***的入瞳直径。本申请提供的光学***,通过合理配置第一透镜至第七透镜的曲折力以及面型,同时满足f/EPD的取值在1.7以内,光学***具有较大的入光孔径,从而具有更大的进光量,可改善暗条件下的拍摄效果,具有更好的成像效果。
一种实施方式中,所述光学***满足条件式:TTL/Imgh<1.7;其中,TTL为所述第一透镜的物侧面至所述光学***的成像面于光轴上的距离,Imgh为所述光学***成像面上有效感光区域对角线长度的一半。通过满足TTL/Imgh的取值在1.7以内,光学***具有超薄的特性,从而实现***小型化。
一种实施方式中,所述光学***满足条件式:f*tan(HFOV)>5.15mm;其中,HFOV为所述光学***的半视场角。通过满足f*tan(HFOV)的取值大于5.15mm,使得光学***具有大像面的特性,从而具有高像素和高清晰度的特点。
一种实施方式中,所述光学***满足条件式:1<TTL/f<1.5;其中,TTL为所述第一透镜的物侧面至所述光学***的成像面于光轴上的距离。通过满足TTL/f的取值在1和1.5之间,控制***的总长与焦距的比值小于1.5,使光学***具有小型化的特点;同时控制此比值大于1,减弱光学***的敏感性,利于产品的加工生产。
一种实施方式中,所述光学***满足条件式:0.5<|R5/R6|<1.5;其中,R5为所述第三透镜的物侧面于光轴处的曲率半径,R6为所述第三透镜的像侧面于光轴处的曲率半径。通过满足|R5/R6|的取值在0.5和0.6之间,有利于第三透镜的加工成型且可以有效的降低光学***在第三透镜的敏感度。
一种实施方式中,所述光学***满足条件式:0.5<TTH2/CT3<1.5;其中, TTH2为所述第二透镜到所述第三透镜于光轴上的空气间隔距离,CT3为所述第三透镜于光轴上的厚度。通过满足TTH2/CT3的取值在0.5和1.5之间,有效降低光学***场区的敏感度,利于产品的加工生产。
一种实施方式中,所述光学***满足条件式:|f1/f5|<2;其中,f1为所述第一透镜的有效焦距,f5为所述第五透镜的有效焦距。通过满足|f1/f5|的取值在2以内,合理控制第一透镜和第五透镜的光学有效焦距的分配,有效的校正光学***的位置色差。
一种实施方式中,所述光学***满足条件式:0.2<ET2/CT2<1.3;其中,ET2为所述第二透镜的光学有效区域边缘的厚度,CT2为所述第二透镜于光轴上的厚度。通过满足ET2/CT2的取值在0.2和1.3之间,控制第二透镜边缘厚度与第二透镜中间厚度的比值在合适范围内,有利于第二透镜的加工和生产。
一种实施方式中,所述光学***满足条件式:TTL/f1≤1.5;其中,TTL为所述第一透镜的物侧面至所述光学***的成像面于光轴上的距离,f1为所述第一透镜的有效焦距。通过满足TTL/f1的取值在1.5以内,合理控制第一透镜的屈光度,避免第一透镜曲折力的过度增大,保证相对较短的光学***总长。
一种实施方式中,所述光学***满足条件式:EPD/R1<1.5;其中,R1为所述第一透镜的物侧面于光轴处的曲率半径。通过满足EPD/R1的取值在1.5内,有效地保证***入射光线在第一透镜偏折的合理性。
一种实施方式中,所述光学***满足条件式:sd61/sd52≤1.3;其中,sd61为最大视场角时所述第六透镜物侧面的通光孔径;sd52为最大视场角时所述第五透镜像侧面的通光孔径。通过满足sd61/sd52的取值在1.3以内,有效地减小第五透镜和第六透镜结构上的断差,使边缘视场光线更加平滑,利于产品的加工和生产的稳定。
第二方面,本申请还提供了一种镜头模组,镜头模组包括镜筒、感光元件 和第一方面任一项实施方式所述的光学***,所述光学***的所述第一透镜至所述第七透镜安装在所述镜筒内,所述感光元件设置在所述光学***的像侧。通过在镜头模组中加入本申请提供的光学***,镜头模组具有较大的入光孔径,从而具有更大的进光量,可改善暗条件下的拍摄效果,具有更好的成像效果。
第三方面,本申请还提供了一种电子设备,电子设备包括壳体和第二方面的镜头模组,所述镜头模组设于所述壳体内。通过在电子设备中加入本申请提供的镜头模组,光学***具有较大的入光孔径,从而具有更大的进光量,可改善电子设备在暗条件下的拍摄效果,使得电子设备具有更好的成像效果。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1a是第一实施例的光学***的结构示意图;
图1b是第一实施例的纵向球差曲线、像散曲线和畸变曲线;
图2a是第二实施例的光学***的结构示意图;
图2b是第二实施例的纵向球差曲线、像散曲线和畸变曲线;
图3a是第三实施例的光学***的结构示意图;
图3b是第三实施例的纵向球差曲线、像散曲线和畸变曲线;
图4a是第四实施例的光学***的结构示意图;
图4b是第四实施例的纵向球差曲线、像散曲线和畸变曲线;
图5a是第五实施例的光学***的结构示意图;
图5b是第五实施例的纵向球差曲线、像散曲线和畸变曲线;
图6a是第六实施例的光学***的结构示意图;
图6b是第六实施例的纵向球差曲线、像散曲线和畸变曲线。
图7a是第七实施例的光学***的结构示意图;
图7b是第七实施例的纵向球差曲线、像散曲线和畸变曲线;
图8a是第八实施例的光学***的结构示意图;
图8b是第八实施例的纵向球差曲线、像散曲线和畸变曲线;
图9a是第九实施例的光学***的结构示意图;
图9b是第九实施例的纵向球差曲线、像散曲线和畸变曲线;
图10a是第十实施例的光学***的结构示意图;
图10b是第十实施例的纵向球差曲线、像散曲线和畸变曲线。
具体实施方式
下面将结合本申请实施方式中的附图,对本申请实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式仅仅是本申请一部分实施方式,而不是全部的实施方式。基于本申请中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本申请保护的范围。
本申请实施例提供了一种电子设备,电子设备包括壳体和本申请实施例提供的镜头模组,镜头模组设于壳体内。该电子设备可以为智能手机、个人数字助理(PDA)、平板电脑、智能手表、无人机、电子书籍阅读器、行车记录仪、可穿戴装置等。通过在电子设备中加入本申请提供的镜头模组,光学***具有较大的入光孔径,从而具有更大的进光量,可改善电子设备在暗条件下的拍摄效果,使得电子设备具有更好的成像效果。
本申请实施例还提供了一种镜头模组,镜头模组包括镜筒、感光元件和本申请实施例提供的光学***,光学***的第一透镜至第七透镜安装在镜筒内,感光元件设置在光学***的像侧,用于将穿过第一透镜至第七透镜入射到感光 元件上的物的光线转换成图像的电信号。感光元件可以为互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)或电荷耦合器件(Charge-coupled Device,CCD)。该镜头模组可以是数码相机的独立的镜头,也可以是集成在如智能手机等电子设备上的成像模块。通过在镜头模组中加入本申请提供的光学***,镜头模组具有较大的入光孔径,从而具有更大的进光量,可改善暗条件下的拍摄效果,具有更好的成像效果。
本申请实施例提供了一种光学***,光学***从物侧至像侧依次包括:具有正曲折力的第一透镜,第一透镜的物侧面于光轴处为凸面,第一透镜的像侧面于光轴处和于圆周处均为凹面;具有曲折力的第二透镜,第二透镜的物侧面于光轴处为凸面,第二透镜近的像侧面于光轴处和于圆周处均为凹面;具有曲折力的第三透镜;具有曲折力的第四透镜;具有曲折力的第五透镜;具有曲折力的第六透镜;具有负曲折力的第七透镜,第七透镜的像侧面于光轴处为凹面,且设有至少一个反曲点;光学***满足条件式:f/EPD<1.7;其中,f为光学***的有效焦距,EPD为光学***的入瞳直径。本申请提供的光学***,通过合理配置第一透镜至第七透镜的曲折力以及面型,同时满足f/EPD的取值在1.7以内,光学***具有较大的入光孔径,从而具有更大的进光量,可改善暗条件下的拍摄效果,具有更好的成像效果。具体的,f/EPD的取值可以为1.7、1.4、1.1、0.7、0.5、和0.1等。
一种实施方式中,光学***满足条件式:TTL/Imgh<1.7;其中,TTL为第一透镜的物侧面至光学***的成像面于光轴上的距离,Imgh为光学***成像面上有效感光区域对角线长度的一半。通过满足TTL/Imgh的取值在1.7以内,光学***具有超薄的特性,从而实现***小型化。具体的,TTL/Imgh的取值可以为1.7、1.5、1.2、1.0、0.5、0.3和0.1等。
一种实施方式中,光学***满足条件式:f*tan(HFOV)>5.15mm;其中,HFOV为光学***的半视场角。通过满足f*tan(HFOV)的取值大于5.15mm,使得光学***具有大像面的特性,从而具有高像素和高清晰度的特点。f*tan(HFOV)的取值可以为5.15mm、5.18mm、5.2mm、5.5mm、6mm、8mm和10mm等。
一种实施方式中,光学***满足条件式:1<TTL/f<1.5;其中,TTL为第 一透镜的物侧面至光学***的成像面于光轴上的距离。通过满足TTL/f的取值在1和1.5之间,控制***的总长与焦距的比值小于1.5,使光学***具有小型化的特点;同时控制此比值大于1,减弱光学***的敏感性,利于产品的加工生产。具体的,TTL/f的取值可以为1、1.1、1.2、1.3、1.4和1.5等。
一种实施方式中,光学***满足条件式:0.5<|R5/R6|<1.5;其中,R5为第三透镜的物侧面于光轴处的曲率半径,R6为第三透镜的像侧面于光轴处的曲率半径。通过满足|R5/R6|的取值在0.5和0.6之间,有利于第三透镜的加工成型且可以有效的降低光学***在第三透镜的敏感度。具体的,|R5/R6|的取值可以为0.5、0.7、0.8、0.9、1、1.1、1.2、1.3、1.4和1.5等。
一种实施方式中,光学***满足条件式:0.5<TTH2/CT3<1.5;其中,TTH2为第二透镜到第三透镜于光轴上的空气间隔距离,CT3为第三透镜于光轴上的厚度。通过满足TTH2/CT3的取值在0.5和1.5之间,有效降低光学***场区的敏感度,利于产品的加工生产。具体的,TTH2/CT3的取值可以为0.5、0.6、0.7、0.8、0.9、1、1.1、1.2、1.3、1.4和1.5等。
一种实施方式中,光学***满足条件式:|f1/f5|<2;其中,f1为第一透镜的有效焦距,f5为第五透镜的有效焦距。通过满足|f1/f5|的取值在2以内,合理控制第一透镜和第五透镜的光学有效焦距的分配,有效的校正光学***的位置色差。具体的,|f1/f5|的取值可以为0.1、0.4、0.7、1、1.4、1.8和2等
一种实施方式中,光学***满足条件式:0.2<ET2/CT2<1.3其中,ET2为第二透镜的光学有效区域边缘的厚度,CT2为第二透镜于光轴上的厚度。通过满足ET2/CT2的取值在0.2和1.3之间,控制第二透镜边缘厚度与第二透镜中间厚度的比值在合适范围内,有利于第二透镜的加工和生产。具体的,ET2/CT2的取值可以为0.2、0.5、0.7、1、1.1和1.3等。
一种实施方式中,光学***满足条件式:TTL/f1≤1.5;其中,TTL为第一透镜的物侧面至光学***的成像面于光轴上的距离,f1为第一透镜的有效焦距。通过满足TTL/f1的取值在1.5以内,合理控制第一透镜的屈光度,避免第一透镜曲折力的过度增大,保证相对较短的光学***总长。具体的,TTL/f1的取值可以为1.5、1.2、1、0.8、0.5、0.3和0.1等。
一种实施方式中,光学***满足条件式:EPD/R1<1.5;其中,R1为第一 透镜的物侧面于光轴处的曲率半径。通过满足EPD/R1的取值在1.5内,有效地保证***入射光线在第一透镜偏折的合理性。具体的,EPD/R1的取值可以为1.5、1.2、1、0.8、0.5、0.3和0.1等。
一种实施方式中,光学***满足条件式:sd61/sd52≤1.3其中,sd61为最大视场角时第六透镜物侧面的通光孔径;sd52为最大视场角时第五透镜像侧面的通光孔径。通过满足sd61/sd52的取值在1.3以内,有效地减小第五透镜和第六透镜结构上的断差,使边缘视场光线更加平滑,利于产品的加工和生产的稳定。具体的,sd61/sd52的取值可以为1.2、1、0.8、0.5、0.3和0.1等。
第一实施例
请参考图1a和图1b,本实施例的光学***,沿光轴方向的物侧至像侧依次包括:
第一透镜L1,具有正曲折力,第一透镜L1的物侧面S1于光轴处和于圆周处均为凸面;第一透镜L1的像侧面S2于光轴处和于圆周处均为凹面;
第二透镜L2,具有负曲折力,第二透镜L2的物侧面S3于光轴处和于圆周处均为凸面;第二透镜L2的像侧面S4于光轴处和于圆周处均为凹面;
第三透镜L3,具有正曲折力,第三透镜L3的物侧面S5于光轴处为凸面,于圆周处为凹面;第三透镜L3的像侧面S6于光轴处和于圆周处均为凸面;
第四透镜L4,具有负曲折力,第四透镜L4的物侧面S7于光轴处和于圆周处均为凹面;第四透镜L4的像侧面S8于光轴处为凹面,于圆周处为凸面;
第五透镜L5,具有正曲折力,第五透镜L5的物侧面S9于光轴处和于圆周处均为凹面;第五透镜L5的像侧面S10于光轴处和于圆周处均为凸面。
第六透镜L6,具有正曲折力,第六透镜L6的物侧面S11于光轴处为凸面,于圆周处为凹面;第六透镜L6的像侧面S12于光轴处为凹面,于圆周处为凸面。
第七透镜L7,具有负曲折力,第七透镜L7的物侧面S13于光轴处为凸面,于圆周处为凹面;第七透镜L7的像侧面S14于光轴处为凹面,于圆周处为凸面。
上述第一透镜L1至第七透镜L7的材质均为塑料。
此外,光学***还包括光阑STO、红外截止滤光片L8和成像面S17。光 阑STO设置在第一透镜L1的物侧面S1,用于控制进光量。其他实施例中,光阑STO还可以设置在相邻两透镜之间,或者是其他透镜上。红外截止滤光片L8设置在第七透镜L7的像方侧,其包括物侧面S15和像侧面S16,红外截止滤光片L8用于过滤掉红外光线,使得射入成像面S17的光线为可见光,可见光的波长为380nm-780nm。红外截止滤光片L8的材质为玻璃,并可在玻璃上镀膜。成像面S17为感光元件的有效像素区域。
表1a示出了本实施例的光学***的特性的表格,其中的数据采用波长为555nm的光线获得,Y半径、厚度和焦距的单位均为毫米(mm)。
表1a
Figure PCTCN2020082596-appb-000001
其中,f为光学***的有效焦距,FNO为光学***的光圈数,FOV为光学 ***对角线方向的最大视场角,TTL为第一透镜的物侧面至光学***的成像面于光轴上的距离。
在本实施例中,第一透镜L1至第七透镜L7的任意一个透镜的物侧面和像侧面均为非球面,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:
Figure PCTCN2020082596-appb-000002
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离最大矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1a中Y半径R的倒数);k为圆锥系数;Ai是非球面第i-th阶的修正系数。表1b给出了可用于第一实施例中各非球面镜面S1-S14的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。
表1b
Figure PCTCN2020082596-appb-000003
Figure PCTCN2020082596-appb-000004
图1b示出了第一实施例的光学***的纵向球差曲线、像散曲线和畸变曲线。像散曲线和畸变曲线的光线参考波长为555nm,其中,纵向球差曲线表示不同波长的光线经由光学***的各透镜后的会聚焦点偏离;像散曲线子午像面弯曲和弧矢像面弯曲;畸变曲线表示不同视场角对应的畸变大小值。根据图1b可知,第一实施例所给出的光学***能够实现良好的成像品质。
第二实施例
请参考图2a和图2b,本实施例的光学***,沿光轴方向的物侧至像侧依次包括:
第一透镜L1,具有正曲折力,第一透镜L1的物侧面S1于光轴处和于圆周处均为凸面;第一透镜L1的像侧面S2于光轴处和于圆周处均为凹面;
第二透镜L2,具有负曲折力,第二透镜L2的物侧面S3于光轴处和于圆周处均为凸面;第二透镜L2的像侧面S4于光轴处和于圆周处均为凹面;
第三透镜L3,具有正曲折力,第三透镜L3的物侧面S5于光轴处为凸面,于圆周处为凹面;第三透镜L3的像侧面S6于光轴处和于圆周处均为凸面;
第四透镜L4,具有负曲折力,第四透镜L4的物侧面S7于光轴处和于圆周处均为凹面;第四透镜L4的像侧面S8于光轴处为凹面,于圆周处为凸面;
第五透镜L5,具有正曲折力,第五透镜L5的物侧面S9于光轴处和于圆周处均为凹面;第五透镜L5的像侧面S10于光轴处和于圆周处均为凸面。
第六透镜L6,具有负曲折力,第六透镜L6的物侧面S11于光轴处为凸面,于圆周处为凹面;第六透镜L6的像侧面S12于光轴处为凹面,于圆周处为凸面。
第七透镜L7,具有负曲折力,第七透镜L7的物侧面S13于光轴处为凸面,于圆周处为凹面;第七透镜L7的像侧面S14于光轴处为凹面,于圆周处为凸 面。
第二实施例的其他结构与第一实施例相同,参照即可。
表2a示出了本实施例的光学***的特性的表格,其中的数据采用波长为555nm的光线获得,Y半径、厚度和焦距的单位均为毫米(mm)。
表2a
Figure PCTCN2020082596-appb-000005
其中,f为光学***的有效焦距,FNO为光学***的光圈数,FOV为光学***对角线方向的最大视场角,TTL为第一透镜的物侧面至光学***的成像面于光轴上的距离。
表2b给出了可用于第二实施例中各非球面镜面的高次项系数,其中,各非球面面型可由第一实施例中给出的公式限定。
表2b
Figure PCTCN2020082596-appb-000006
图2b示出了第二实施例的光学***的纵向球差曲线、像散曲线和畸变曲线。像散曲线和畸变曲线的光线参考波长为555nm。根据图2b可知,第二实施例所给出的光学***能够实现良好的成像品质。
第三实施例
请参考图3a和图3b,本实施例的光学***,沿光轴方向的物侧至像侧依次包括:
第一透镜L1,具有正曲折力,第一透镜L1的物侧面S1于光轴处和于圆周处均为凸面;第一透镜L1的像侧面S2于光轴处和于圆周处均为凹面;
第二透镜L2,具有负曲折力,第二透镜L2的物侧面S3于光轴处和于圆周处均为凸面;第二透镜L2的像侧面S4于光轴处和于圆周处均为凹面;
第三透镜L3,具有正曲折力,第三透镜L3的物侧面S5于光轴处为凸面,于圆周处为凹面;第三透镜L3的像侧面S6于光轴处和于圆周处均为凸面;
第四透镜L4,具有负曲折力,第四透镜L4的物侧面S7于光轴处和于圆周处均为凹面;第四透镜L4的像侧面S8于光轴处为凹面,于圆周处为凸面;
第五透镜L5,具有正曲折力,第五透镜L5的物侧面S9于光轴处和于圆周处均为凹面;第五透镜L5的像侧面S10于光轴处和于圆周处均为凸面。
第六透镜L6,具有正曲折力,第六透镜L6的物侧面S11于光轴处为凸面,于圆周处为凹面;第六透镜L6的像侧面S12于光轴处为凹面,于圆周处为凸面。
第七透镜L7,具有负曲折力,第七透镜L7的物侧面S13于光轴处为凸面,于圆周处为凹面;第七透镜L7的像侧面S14于光轴处为凹面,于圆周处为凸面。
第三实施例的其他结构与第一实施例相同,参照即可。
表3a示出了本实施例的光学***的特性的表格,其中的数据采用波长为555nm的光线获得,Y半径、厚度和焦距的单位均为毫米(mm)。
表3a
Figure PCTCN2020082596-appb-000007
Figure PCTCN2020082596-appb-000008
其中,f为光学***的有效焦距,FNO为光学***的光圈数,FOV为光学***对角线方向的最大视场角,TTL为第一透镜的物侧面至光学***的成像面于光轴上的距离。
表3b给出了可用于第三实施例中各非球面镜面的高次项系数,其中,各非球面面型可由第一实施例中给出的公式限定。
表3b
Figure PCTCN2020082596-appb-000009
Figure PCTCN2020082596-appb-000010
图3b示出了第三实施例的光学***的纵向球差曲线、像散曲线和畸变曲线。像散曲线和畸变曲线的光线参考波长为555nm。根据图3b可知,第三实施例所给出的光学***能够实现良好的成像品质。
第四实施例
请参考图4a和图4b,本实施例的光学***,沿光轴方向的物侧至像侧依次包括:
第一透镜L1,具有正曲折力,第一透镜L1的物侧面S1于光轴处和于圆周处均为凸面;第一透镜L1的像侧面S2于光轴处和于圆周处均为凹面;
第二透镜L2,具有负曲折力,第二透镜L2的物侧面S3于光轴处和于圆周处均为凸面;第二透镜L2的像侧面S4于光轴处和于圆周处均为凹面;
第三透镜L3,具有正曲折力,第三透镜L3的物侧面S5于光轴处为凸面,于圆周处为凹面;第三透镜L3的像侧面S6于光轴处和于圆周处均为凸面;
第四透镜L4,具有正曲折力,第四透镜L4的物侧面S7于光轴处和于圆周处均为凹面;第四透镜L4的像侧面S8于光轴处和于圆周处均为凸面;
第五透镜L5,具有正曲折力,第五透镜L5的物侧面S9于光轴处和于圆周处均为凹面;第五透镜L5的像侧面S10于光轴处和于圆周处均为凸面。
第六透镜L6,具有正曲折力,第六透镜L6的物侧面S11于光轴处为凸面,于圆周处为凹面;第六透镜L6的像侧面S12于光轴处为凹面,于圆周处为凸面。
第七透镜L7,具有负曲折力,第七透镜L7的物侧面S13于光轴处为凸面,于圆周处为凹面;第七透镜L7的像侧面S14于光轴处为凹面,于圆周处为凸面。
第四实施例的其他结构与第一实施例相同,参照即可。
表4a示出了本实施例的光学***的特性的表格,其中的数据采用波长为 555nm的光线获得,Y半径、厚度和焦距的单位均为毫米(mm)。
表4a
Figure PCTCN2020082596-appb-000011
其中,f为光学***的有效焦距,FNO为光学***的光圈数,FOV为光学***对角线方向的最大视场角,TTL为第一透镜的物侧面至光学***的成像面于光轴上的距离。
表4b给出了可用于第四实施例中各非球面镜面的高次项系数,其中,各非球面面型可由第一实施例中给出的公式限定。
表4b
Figure PCTCN2020082596-appb-000012
Figure PCTCN2020082596-appb-000013
图4b示出了第四实施例的光学***的纵向球差曲线、像散曲线和畸变曲线。像散曲线和畸变曲线的光线参考波长为555nm。根据图4b可知,第四实施例所给出的光学***能够实现良好的成像品质。
第五实施例
请参考图5a和图5b,本实施例的光学***,沿光轴方向的物侧至像侧依次包括:
第一透镜L1,具有正曲折力,第一透镜L1的物侧面S1于光轴处和于圆周处均为凸面;第一透镜L1的像侧面S2于光轴处和于圆周处均为凹面;
第二透镜L2,具有负曲折力,第二透镜L2的物侧面S3于光轴处和于圆周处均为凸面;第二透镜L2的像侧面S4于光轴处和于圆周处均为凹面;
第三透镜L3,具有正曲折力,第三透镜L3的物侧面S5于光轴处为凸面, 于圆周处为凹面;第三透镜L3的像侧面S6于光轴处和于圆周处均为凸面;
第四透镜L4,具有负曲折力,第四透镜L4的物侧面S7于光轴处和于圆周处均为凹面;第四透镜L4的像侧面S8于光轴处和于圆周处均为凸面;
第五透镜L5,具有负曲折力,第五透镜L5的物侧面S9于光轴处和于圆周处均为凹面;第五透镜L5的像侧面S10于光轴处为凸面,于圆周处为凹面。
第六透镜L6,具有正曲折力,第六透镜L6的物侧面S11于光轴处为凸面,于圆周处为凹面;第六透镜L6的像侧面S12于光轴处为凹面,于圆周处为凸面。
第七透镜L7,具有负曲折力,第七透镜L7的物侧面S13于光轴处为凸面,于圆周处为凹面;第七透镜L7的像侧面S14于光轴处为凹面,于圆周处为凸面。
第五实施例的其他结构与第一实施例相同,参照即可。
表5a示出了本实施例的光学***的特性的表格,其中的数据采用波长为555nm的光线获得,Y半径、厚度和焦距的单位均为毫米(mm)。
表5a
Figure PCTCN2020082596-appb-000014
Figure PCTCN2020082596-appb-000015
其中,f为光学***的有效焦距,FNO为光学***的光圈数,FOV为光学***对角线方向的最大视场角,TTL为第一透镜的物侧面至光学***的成像面于光轴上的距离。
表5b给出了可用于第五实施例中各非球面镜面的高次项系数,其中,各非球面面型可由第一实施例中给出的公式限定。
表5b
Figure PCTCN2020082596-appb-000016
Figure PCTCN2020082596-appb-000017
图5b示出了第五实施例的光学***的纵向球差曲线、像散曲线和畸变曲线。像散曲线和畸变曲线的光线参考波长为555nm。根据图5b可知,第五实施例所给出的光学***能够实现良好的成像品质。
第六实施例
请参考图6a和图6b,本实施例的光学***,沿光轴方向的物侧至像侧依次包括:
第一透镜L1,具有正曲折力,第一透镜L1的物侧面S1于光轴处和于圆周处均为凸面;第一透镜L1的像侧面S2于光轴处和于圆周处均为凹面;
第二透镜L2,具有负曲折力,第二透镜L2的物侧面S3于光轴处和于圆周处均为凸面;第二透镜L2的像侧面S4于光轴处和于圆周处均为凹面;
第三透镜L3,具有负曲折力,第三透镜L3的物侧面S5于光轴处和于圆周处均为凹面;第三透镜L3的像侧面S6于光轴处和于圆周处均为凸面;
第四透镜L4,具有负曲折力,第四透镜L4的物侧面S7于光轴处和于圆周处均为凹面;第四透镜L4的像侧面S8于光轴处为凹面,于圆周处为凸面;
第五透镜L5,具有正曲折力,第五透镜L5的物侧面S9于光轴处为凸面,于圆周处为凹面;第五透镜L5的像侧面S10于光轴处和于圆周处均为凸面。
第六透镜L6,具有正曲折力,第六透镜L6的物侧面S11于光轴处为凸面,于圆周处为凹面;第六透镜L6的像侧面S12于光轴处为凹面,于圆周处为凸面。
第七透镜L7,具有负曲折力,第七透镜L7的物侧面S13于光轴处为凸面,于圆周处为凹面;第七透镜L7的像侧面S14于光轴处为凹面,于圆周处为凸面。
第六实施例的其他结构与第一实施例相同,参照即可。
表6a示出了本实施例的光学***的特性的表格,其中的数据采用波长为555nm的光线获得,Y半径、厚度和焦距的单位均为毫米(mm)。
表6a
Figure PCTCN2020082596-appb-000018
Figure PCTCN2020082596-appb-000019
其中,f为光学***的有效焦距,FNO为光学***的光圈数,FOV为光学***对角线方向的最大视场角,TTL为第一透镜的物侧面至光学***的成像面于光轴上的距离。
表6b给出了可用于第六实施例中各非球面镜面的高次项系数,其中,各非球面面型可由第一实施例中给出的公式限定。
表6b
Figure PCTCN2020082596-appb-000020
Figure PCTCN2020082596-appb-000021
图6b示出了第六实施例的光学***的纵向球差曲线、像散曲线和畸变曲线。像散曲线和畸变曲线的光线参考波长为555nm。根据图6b可知,第六实施例所给出的光学***能够实现良好的成像品质。
第七实施例
请参考图7a和图7b,本实施例的光学***,沿光轴方向的物侧至像侧依次包括:
第一透镜L1,具有正曲折力,第一透镜L1的物侧面S1于光轴处和于圆周处均为凸面;第一透镜L1的像侧面S2于光轴处和于圆周处均为凹面;
第二透镜L2,具有正曲折力,第二透镜L2的物侧面S3于光轴处和于圆周处均为凸面;第二透镜L2的像侧面S4于光轴处和于圆周处均为凹面;
第三透镜L3,具有正曲折力,第三透镜L3的物侧面S5于光轴处为凸面,于圆周处为凹面;第三透镜L3的像侧面S6于光轴处和于圆周处均为凸面;
第四透镜L4,具有负曲折力,第四透镜L4的物侧面S7于光轴处和于圆周处均为凹面;第四透镜L4的像侧面S8于光轴处为凹面,于圆周处为凸面;
第五透镜L5,具有正曲折力,第五透镜L5的物侧面S9于光轴处为凸面,于圆周处为凹面;第五透镜L5的像侧面S10于光轴处和于圆周处均为凸面。
第六透镜L6,具有正曲折力,第六透镜L6的物侧面S11于光轴处为凸面,于圆周处为凹面;第六透镜L6的像侧面S12于光轴处为凹面,于圆周处为凸面。
第七透镜L7,具有负曲折力,第七透镜L7的物侧面S13于光轴处为凸面,于圆周处为凹面;第七透镜L7的像侧面S14于光轴处为凹面,于圆周处为凸面。
第七实施例的其他结构与第一实施例相同,参照即可。
表7a示出了本实施例的光学***的特性的表格,其中的数据采用波长为555nm的光线获得,Y半径、厚度和焦距的单位均为毫米(mm)。
表7a
Figure PCTCN2020082596-appb-000022
Figure PCTCN2020082596-appb-000023
其中,f为光学***的有效焦距,FNO为光学***的光圈数,FOV为光学***对角线方向的最大视场角,TTL为第一透镜的物侧面至光学***的成像面于光轴上的距离。
表7b给出了可用于第七实施例中各非球面镜面的高次项系数,其中,各非球面面型可由第一实施例中给出的公式限定。
表7b
Figure PCTCN2020082596-appb-000024
图7b示出了第七实施例的光学***的纵向球差曲线、像散曲线和畸变曲 线。像散曲线和畸变曲线的光线参考波长为555nm。根据图7b可知,第七实施例所给出的光学***能够实现良好的成像品质。
第八实施例
请参考图8a和图8b,本实施例的光学***,沿光轴方向的物侧至像侧依次包括:
第一透镜L1,具有正曲折力,第一透镜L1的物侧面S1于光轴处和于圆周处均为凸面;第一透镜L1的像侧面S2于光轴处和于圆周处均为凹面;
第二透镜L2,具有正曲折力,第二透镜L2的物侧面S3于光轴处和于圆周处均为凸面;第二透镜L2的像侧面S4于光轴处和于圆周处均为凹面;
第三透镜L3,具有正曲折力,第三透镜L3的物侧面S5于光轴处为凸面,于圆周处为凹面;第三透镜L3的像侧面S6于光轴处和于圆周处均为凸面;
第四透镜L4,具有负曲折力,第四透镜L4的物侧面S7于光轴处和于圆周处均为凹面;第四透镜L4的像侧面S8于光轴处为凹面,于圆周处为凸面;
第五透镜L5,具有正曲折力,第五透镜L5的物侧面S9于光轴处为凸面,于圆周处为凹面;第五透镜L5的像侧面S10于光轴处和于圆周处均为凸面。
第六透镜L6,具有正曲折力,第六透镜L6的物侧面S11于光轴处为凸面,于圆周处为凹面;第六透镜L6的像侧面S12于光轴处为凹面,于圆周处为凸面。
第七透镜L7,具有负曲折力,第七透镜L7的物侧面S13于光轴处为凸面,于圆周处为凹面;第七透镜L7的像侧面S14于光轴处为凹面,于圆周处为凸面。
第八实施例的其他结构与第一实施例相同,参照即可。
表8a示出了本实施例的光学***的特性的表格,其中的数据采用波长为555nm的光线获得,Y半径、厚度和焦距的单位均为毫米(mm)。
表8a
Figure PCTCN2020082596-appb-000025
Figure PCTCN2020082596-appb-000026
其中,f为光学***的有效焦距,FNO为光学***的光圈数,FOV为光学***对角线方向的最大视场角,TTL为第一透镜的物侧面至光学***的成像面于光轴上的距离。
表8b给出了可用于第八实施例中各非球面镜面的高次项系数,其中,各非球面面型可由第一实施例中给出的公式限定。
表8b
Figure PCTCN2020082596-appb-000027
Figure PCTCN2020082596-appb-000028
图8b示出了第八实施例的光学***的纵向球差曲线、像散曲线和畸变曲线。像散曲线和畸变曲线的光线参考波长为555nm。根据图8b可知,第八实施例所给出的光学***能够实现良好的成像品质。
第九实施例
请参考图9a和图9b,本实施例的光学***,沿光轴方向的物侧至像侧依次包括:
第一透镜L1,具有正曲折力,第一透镜L1的物侧面S1于光轴处和于圆周处均为凸面;第一透镜L1的像侧面S2于光轴处和于圆周处均为凹面;
第二透镜L2,具有负曲折力,第二透镜L2的物侧面S3于光轴处和于圆周处均为凸面;第二透镜L2的像侧面S4于光轴处和于圆周处均为凹面;
第三透镜L3,具有正曲折力,第三透镜L3的物侧面S5于光轴处为凸面,于圆周处为凹面;第三透镜L3的像侧面S6于光轴处和于圆周处均为凸面;
第四透镜L4,具有负曲折力,第四透镜L4的物侧面S7于光轴处和于圆周处均为凹面;第四透镜L4的像侧面S8于光轴处为凹面,于圆周处为凸面;
第五透镜L5,具有正曲折力,第五透镜L5的物侧面S9于光轴处为凸面,于圆周处为凹面;第五透镜L5的像侧面S10于光轴处和于圆周处均为凸面。
第六透镜L6,具有正曲折力,第六透镜L6的物侧面S11于光轴处为凸面,于圆周处为凹面;第六透镜L6的像侧面S12于光轴处为凹面,于圆周处为凸面。
第七透镜L7,具有负曲折力,第七透镜L7的物侧面S13于光轴处为凸面,于圆周处为凹面;第七透镜L7的像侧面S14于光轴处为凹面,于圆周处为凸面。
第九实施例的其他结构与第一实施例相同,参照即可。
表9a示出了本实施例的光学***的特性的表格,其中的数据采用波长为555nm的光线获得,Y半径、厚度和焦距的单位均为毫米(mm)。
表9a
Figure PCTCN2020082596-appb-000029
其中,f为光学***的有效焦距,FNO为光学***的光圈数,FOV为光学***对角线方向的最大视场角,TTL为第一透镜的物侧面至光学***的成像面于光轴上的距离。
表9b给出了可用于第九实施例中各非球面镜面的高次项系数,其中,各非球面面型可由第一实施例中给出的公式限定。
表9b
Figure PCTCN2020082596-appb-000030
图9b示出了第九实施例的光学***的纵向球差曲线、像散曲线和畸变曲线。像散曲线和畸变曲线的光线参考波长为555nm。根据图9b可知,第九实施例所给出的光学***能够实现良好的成像品质。
第十实施例
请参考图10a和图10b,本实施例的光学***,沿光轴方向的物侧至像侧依次包括:
第一透镜L1,具有正曲折力,第一透镜L1的物侧面S1于光轴处和于圆周处均为凸面;第一透镜L1的像侧面S2于光轴处和于圆周处均为凹面;
第二透镜L2,具有负曲折力,第二透镜L2的物侧面S3于光轴处和于圆周处均为凸面;第二透镜L2的像侧面S4于光轴处和于圆周处均为凹面;
第三透镜L3,具有正曲折力,第三透镜L3的物侧面S5于光轴处为凸面,于圆周处为凹面;第三透镜L3的像侧面S6于光轴处和于圆周处均为凸面;
第四透镜L4,具有负曲折力,第四透镜L4的物侧面S7于光轴处和于圆周处均为凹面;第四透镜L4的像侧面S8于光轴处为凹面,于圆周处为凸面;
第五透镜L5,具有正曲折力,第五透镜L5的物侧面S9于光轴处和于圆周处均为凹面;第五透镜L5的像侧面S10于光轴处和于圆周处均为凸面。
第六透镜L6,具有负曲折力,第六透镜L6的物侧面S11于光轴处和于圆周处均为凹面;第六透镜L6的像侧面S12于光轴处为凹面,于圆周处为凸面。
第七透镜L7,具有负曲折力,第七透镜L7的物侧面S13于光轴处为凸面,于圆周处为凹面;第七透镜L7的像侧面S14于光轴处为凹面,于圆周处为凸面。
第十实施例的其他结构与第一实施例相同,参照即可。
表10a示出了本实施例的光学***的特性的表格,其中的数据采用波长为555nm的光线获得,Y半径、厚度和焦距的单位均为毫米(mm)。
表10a
Figure PCTCN2020082596-appb-000031
Figure PCTCN2020082596-appb-000032
其中,f为光学***的有效焦距,FNO为光学***的光圈数,FOV为光学***对角线方向的最大视场角,TTL为第一透镜的物侧面至光学***的成像面于光轴上的距离。
表10b给出了可用于第十实施例中各非球面镜面的高次项系数,其中,各非球面面型可由第一实施例中给出的公式限定。
表10b
Figure PCTCN2020082596-appb-000033
Figure PCTCN2020082596-appb-000034
图10b示出了第十实施例的光学***的纵向球差曲线、像散曲线和畸变曲线。像散曲线和畸变曲线的光线参考波长为555nm。根据图10b可知,第十实施例所给出的光学***能够实现良好的成像品质。
表11示出了第一实施例至第十实施例的光学***的f/EPD、f*tan(HFOV)、TTL/Imgh、TTL/f、|R5/R6|、TTH2/CT3、|f1/f5|、ET2/CT2、TTL/f1、EPD/R1、sd61/sd52的值。其中,f*tan(HFOV)的单位为毫米(mm)。
表11
Figure PCTCN2020082596-appb-000035
Figure PCTCN2020082596-appb-000036
由表11可知,本申请实施例提供的光学***均满足以下条件式:f/EPD<1.7、f*tan(HFOV)>5.15mm、TTL/Imgh<1.7、1<TTL/f<1.5、0.5<|R5/R6|<1.5、0.5<TTH2/CT3<1.5、|f1/f5|<2、0.2<ET2/CT2<1.3、TTL/f1≤1.5、EPD/R1<1.5、sd61/sd52≤1.3。
以上所揭露的仅为本申请一种较佳实施例而已,当然不能以此来限定本申请之权利范围,本领域普通技术人员可以理解实现上述实施例的全部或部分流程,并依本申请权利要求所作的等同变化,仍属于申请所涵盖的范围。

Claims (13)

  1. 一种光学***,其特征在于,从物侧至像侧依次包括:
    具有正曲折力的第一透镜,所述第一透镜的物侧面于光轴处为凸面,所述第一透镜的像侧面于光轴处和于圆周处均为凹面;
    具有曲折力的第二透镜,所述第二透镜的物侧面于光轴处为凸面,所述第二透镜的像侧面于光轴处和于圆周处均为凹面;
    具有曲折力的第三透镜;
    具有曲折力的第四透镜;
    具有曲折力的第五透镜;
    具有曲折力的第六透镜;
    具有负曲折力的第七透镜,所述第七透镜的像侧面于光轴处为凹面,且设有至少一个反曲点;
    所述光学***满足条件式:
    f/EPD<1.7;
    其中,f为所述光学***的有效焦距,EPD为所述光学***的入瞳直径。
  2. 如权利要求1所述的光学***,其特征在于,所述光学***满足条件式:
    TTL/Imgh<1.7;
    其中,TTL为所述第一透镜的物侧面至所述光学***的成像面于光轴上的距离,Imgh为所述光学***成像面上有效感光区域对角线长度的一半。
  3. 如权利要求1所述的光学***,其特征在于,所述光学***满足条件式:
    f*tan(HFOV)>5.15mm;
    其中,HFOV为所述光学***的半视场角。
  4. 如权利要求1所述的光学***,其特征在于,所述光学***满足条件式:
    1<TTL/f<1.5;
    其中,TTL为所述第一透镜的物侧面至所述光学***的成像面于光轴上的 距离。
  5. 如权利要求1所述的光学***,其特征在于,所述光学***满足条件式:
    0.5<|R5/R6|<1.5;
    其中,R5为所述第三透镜的物侧面于光轴处的曲率半径,R6为所述第三透镜的像侧面于光轴处的曲率半径。
  6. 如权利要求1所述的光学***,其特征在于,所述光学***满足条件式:
    0.5<TTH2/CT3<1.5;
    其中,TTH2为所述第二透镜到所述第三透镜于光轴上的空气间隔距离,CT3为所述第三透镜于光轴上的厚度。
  7. 如权利要求1所述的光学***,其特征在于,所述光学***满足条件式:
    |f1/f5|<2;
    其中,f1为所述第一透镜的有效焦距,f5为所述第五透镜的有效焦距。
  8. 如权利要求1所述的光学***,其特征在于,所述光学***满足条件式:
    0.2<ET2/CT2<1.3;
    其中,ET2为所述第二透镜的光学有效区域边缘的厚度,CT2为所述第二透镜于光轴上的厚度。
  9. 如权利要求1所述的光学***,其特征在于,所述光学***满足条件式:
    TTL/f1≤1.5;
    其中,TTL为所述第一透镜的物侧面至所述光学***的成像面于光轴上的距离,f1为所述第一透镜的有效焦距。
  10. 如权利要求1所述的光学***,其特征在于,所述光学***满足条件式:
    EPD/R1<1.5;
    其中,R1为所述第一透镜的物侧面于光轴处的曲率半径。
  11. 如权利要求1所述的光学***,其特征在于,所述光学***满足条件 式:
    sd61/sd52≤1.3;
    其中,sd61为最大视场角时所述第六透镜物侧面的通光孔径;sd52为最大视场角时所述第五透镜像侧面的通光孔径。
  12. 一种镜头模组,其特征在于,包括镜筒、感光元件和如权利要求1至11任一项所述的光学***,所述光学***的所述第一透镜至所述第七透镜安装在所述镜筒内,所述感光元件设置在所述光学***的像侧。
  13. 一种电子设备,其特征在于,包括壳体和如权利要求12所述的镜头模组,所述镜头模组设于所述壳体内。
PCT/CN2020/082596 2020-03-31 2020-03-31 光学***、镜头模组和电子设备 WO2021196030A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20924981.2A EP3929645A4 (en) 2020-03-31 2020-03-31 OPTICAL SYSTEM, LENS MODULE AND ELECTRONIC DEVICE
PCT/CN2020/082596 WO2021196030A1 (zh) 2020-03-31 2020-03-31 光学***、镜头模组和电子设备
US17/465,927 US20210396973A1 (en) 2020-03-31 2021-09-03 Optical system, lens module, and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/082596 WO2021196030A1 (zh) 2020-03-31 2020-03-31 光学***、镜头模组和电子设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/465,927 Continuation US20210396973A1 (en) 2020-03-31 2021-09-03 Optical system, lens module, and electronic device

Publications (1)

Publication Number Publication Date
WO2021196030A1 true WO2021196030A1 (zh) 2021-10-07

Family

ID=77927110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/082596 WO2021196030A1 (zh) 2020-03-31 2020-03-31 光学***、镜头模组和电子设备

Country Status (3)

Country Link
US (1) US20210396973A1 (zh)
EP (1) EP3929645A4 (zh)
WO (1) WO2021196030A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113900232A (zh) * 2021-10-19 2022-01-07 江西晶超光学有限公司 光学***、取像模组及电子设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111413784A (zh) * 2020-05-15 2020-07-14 浙江舜宇光学有限公司 光学成像镜头
TWI771811B (zh) * 2020-09-18 2022-07-21 大立光電股份有限公司 電子裝置
CN114019654B (zh) * 2021-11-09 2023-04-14 江西晶超光学有限公司 光学***、取像模组及电子设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1078393A1 (ru) * 1982-07-20 1984-03-07 Ленинградский Ордена Трудового Красного Знамени Институт Точной Механики И Оптики Гидрообъектив с вынесенным входным зрачком
SU1432440A1 (ru) * 1987-03-09 1988-10-23 Ленинградский Институт Точной Механики И Оптики Светосильный объектив с вынесенным входным зрачком
CN109358415A (zh) * 2018-12-24 2019-02-19 浙江舜宇光学有限公司 光学成像镜头
CN109491051A (zh) * 2018-12-28 2019-03-19 瑞声声学科技(深圳)有限公司 摄像光学镜头
CN109828352A (zh) * 2018-12-27 2019-05-31 瑞声科技(新加坡)有限公司 摄像光学镜头
CN109828351A (zh) * 2018-12-27 2019-05-31 瑞声科技(新加坡)有限公司 摄像光学镜头
CN109828350A (zh) * 2018-12-27 2019-05-31 瑞声科技(新加坡)有限公司 摄像光学镜头
CN109828357A (zh) * 2018-12-27 2019-05-31 瑞声科技(新加坡)有限公司 摄像光学镜头
CN109839717A (zh) * 2018-12-27 2019-06-04 瑞声科技(新加坡)有限公司 摄像光学镜头

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5304117B2 (ja) * 2008-09-05 2013-10-02 コニカミノルタ株式会社 撮像レンズ及び撮像装置並びに携帯端末
JP5890947B1 (ja) * 2016-01-07 2016-03-22 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. 撮像レンズ
TWI622822B (zh) * 2017-09-13 2018-05-01 大立光電股份有限公司 影像系統鏡組、取像裝置及電子裝置
JP6501373B1 (ja) * 2018-01-23 2019-04-17 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. 撮像光学レンズ
CN113805321A (zh) * 2018-05-29 2021-12-17 三星电机株式会社 光学成像***
WO2020158622A1 (ja) * 2019-01-28 2020-08-06 パナソニックIpマネジメント株式会社 撮像光学系と、撮像光学系を用いる撮像装置およびカメラシステム
CN110879459B (zh) * 2019-12-05 2022-01-07 浙江舜宇光学有限公司 光学成像镜头

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1078393A1 (ru) * 1982-07-20 1984-03-07 Ленинградский Ордена Трудового Красного Знамени Институт Точной Механики И Оптики Гидрообъектив с вынесенным входным зрачком
SU1432440A1 (ru) * 1987-03-09 1988-10-23 Ленинградский Институт Точной Механики И Оптики Светосильный объектив с вынесенным входным зрачком
CN109358415A (zh) * 2018-12-24 2019-02-19 浙江舜宇光学有限公司 光学成像镜头
CN109828352A (zh) * 2018-12-27 2019-05-31 瑞声科技(新加坡)有限公司 摄像光学镜头
CN109828351A (zh) * 2018-12-27 2019-05-31 瑞声科技(新加坡)有限公司 摄像光学镜头
CN109828350A (zh) * 2018-12-27 2019-05-31 瑞声科技(新加坡)有限公司 摄像光学镜头
CN109828357A (zh) * 2018-12-27 2019-05-31 瑞声科技(新加坡)有限公司 摄像光学镜头
CN109839717A (zh) * 2018-12-27 2019-06-04 瑞声科技(新加坡)有限公司 摄像光学镜头
CN109491051A (zh) * 2018-12-28 2019-03-19 瑞声声学科技(深圳)有限公司 摄像光学镜头

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113900232A (zh) * 2021-10-19 2022-01-07 江西晶超光学有限公司 光学***、取像模组及电子设备
CN113900232B (zh) * 2021-10-19 2023-07-04 江西晶超光学有限公司 光学***、取像模组及电子设备

Also Published As

Publication number Publication date
EP3929645A4 (en) 2022-12-07
EP3929645A1 (en) 2021-12-29
US20210396973A1 (en) 2021-12-23

Similar Documents

Publication Publication Date Title
WO2021196030A1 (zh) 光学***、镜头模组和电子设备
WO2021189431A1 (zh) 光学***、镜头模组及电子设备
CN111208629A (zh) 光学***、镜头模组和电子设备
CN111239988A (zh) 光学***、镜头模组和电子设备
CN113296233B (zh) 光学***、摄像头模组及电子设备
WO2022033326A1 (zh) 光学***、镜头模组和电子设备
CN111338063A (zh) 光学***、镜头模组和电子设备
CN113391430A (zh) 光学***、镜头模组和电子设备
CN211786329U (zh) 光学***、镜头模组和电子设备
US20210405330A1 (en) Optical system, lens module, and electronic device
CN113281879B (zh) 光学***、镜头模组和电子设备
WO2022056934A1 (zh) 光学成像***、取像模组和电子装置
WO2022061676A1 (zh) 光学镜头、取像模组及电子装置
CN211478744U (zh) 光学***、镜头模组和电子设备
CN210775999U (zh) 光学***、镜头模组和电子设备
CN112034593A (zh) 光学成像***、取像模组及电子装置
CN111142240A (zh) 光学***、镜头模组和电子设备
CN111239986A (zh) 光学***、镜头模组及电子设备
CN114509862B (zh) 光学***、摄像模组和电子设备
WO2021217663A1 (zh) 光学***、镜头模组和电子设备
CN114740604A (zh) 光学***、摄像模组和电子设备
CN213091989U (zh) 光学***、摄像头模组和电子设备
CN210401819U (zh) 光学***、镜头模组和电子设备
CN211826689U (zh) 光学***、镜头模组和电子设备
WO2022041054A1 (zh) 光学***、摄像模组和电子设备

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020924981

Country of ref document: EP

Effective date: 20210923

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20924981

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE