WO2020130226A1 - Method of preparing yttria stabilized zirconia (ysz) nanosol having excellent dispersibility - Google Patents

Method of preparing yttria stabilized zirconia (ysz) nanosol having excellent dispersibility Download PDF

Info

Publication number
WO2020130226A1
WO2020130226A1 PCT/KR2019/001980 KR2019001980W WO2020130226A1 WO 2020130226 A1 WO2020130226 A1 WO 2020130226A1 KR 2019001980 W KR2019001980 W KR 2019001980W WO 2020130226 A1 WO2020130226 A1 WO 2020130226A1
Authority
WO
WIPO (PCT)
Prior art keywords
stabilized zirconia
yttria
nanosol
ysz
dispersibility
Prior art date
Application number
PCT/KR2019/001980
Other languages
French (fr)
Korean (ko)
Inventor
정연길
이재현
손정훈
최연빈
이원준
박혜영
Original Assignee
창원대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 창원대학교 산학협력단 filed Critical 창원대학교 산학협력단
Publication of WO2020130226A1 publication Critical patent/WO2020130226A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0004Preparation of sols
    • B01J13/0047Preparation of sols containing a metal oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Definitions

  • the present invention is (i) National R&D project implemented by the Ministry of Trade, Industry and Energy (Task No.: 1415159227, Project name: Energy manpower training project, Research project name: Gas turbine high-temperature parts high-efficiency convergence research and manpower training advanced track, research management agency : Korea Institute of Industrial Technology Evaluation and Management, Organized by: Changwon University Industry-Academic Cooperation Foundation, Research Period: 2019.01.01.
  • thermal barrier coating (TCC) using ceramic is applied to the surface of the component.
  • zirconia Currently, most of zirconia (ZrO 2 ) is used as a heat shield coating material.Pure zirconia phase changes to monoclinic, tetragonal, and cubic according to temperature, and physical properties decrease due to contraction and expansion of volume due to phase transformation.
  • Yttria stabilized zirconia YSZ is used by adding a phase stabilizer such as Y 2 O 3 ). When yttria is added to zirconia, zirconia exists in a quasi-stable tetragonal form even at room temperature. When an external stress is applied, the tetragonal phase absorbs stress and absorbs energy while transforming into a monoclinic phase.
  • the nano-sized yttria-stabilized zirconia has more excellent properties such as chemical stability, ion conductivity, thermal conductivity, strength, toughness, and heat resistance, and in addition to the thermal barrier coating material, artificial teeth, oxygen sensors, and solid oxide fuel cells (SOFC) Research into applications such as is actively underway.
  • chemical stability ion conductivity, thermal conductivity, strength, toughness, and heat resistance
  • SOFC solid oxide fuel cells
  • the technical problem to be solved by the present invention is to provide a method for preparing an yttria-stabilized zirconia (YSZ) nanosol having excellent dispersibility to solve the aggregation problem, which has been a major limitation in the utilization of nano-YSZ. .
  • the present invention (a) ZrOCl 2 ⁇ 8H 2 O sol (sol) and Y (NO 3 ) 3 ⁇ 6H 2 O sol mixing and adding a basic material to adjust the pH; (B) preparing a yttria stabilized zirconia (YSZ) nanoparticles by hydrothermal reaction of the sol obtained in step (a); And (c) performing the treatment for improving the dispersibility of the nanosol dispersed in the yttria-stabilized zirconia nanoparticles; proposes a method for producing a yttria-stabilized zirconia nanosol having excellent dispersibility (FIG. 1) ).
  • step (a) a method for preparing a yttria-stabilized zirconia nanosol having excellent dispersibility is proposed by adding ammonia as the basic substance and adjusting the pH to 9.
  • step (b) it is proposed a method for producing a yttria-stabilized zirconia nanosol having excellent dispersibility, characterized in that the hydrothermal reaction is performed at 200°C for 2 to 8 hours.
  • the yttria-stabilized zirconia nanosol having excellent dispersibility, wherein the yttria-stabilized zirconia nanoparticle surface in step (c) is modified with a silane coupling agent and ultrasonically dispersed to improve dispersibility. Propose a method of manufacturing.
  • the silane coupling agent is 3-(trimethoxysilyl)propyl methacrylate (3-(Trimethoxysilyl)propylmethacrylate, MPS), (3-glycidoxypropyl) trimethoxysilane (( 3-Glyciduloxypropyl)trimethoxysilane (GPS) or vinyltrimethoxysilane (VPS) is proposed.
  • step (c) the method for preparing yttria-stabilized zirconia nanosol having excellent dispersibility, wherein the yttria-stabilized zirconia nanoparticles are dispersed and ultrasonic dispersion is adjusted to improve dispersibility.
  • step (c) it is proposed a method for producing a yttria-stabilized zirconia nanosol having excellent dispersibility, wherein the pH of the nanosol in which the yttria-stabilized zirconia nanoparticles are dispersed is adjusted to 3 or 10.
  • the yttria-stabilized zirconia nanoparticles are dispersed in nanosol, and 2-propeneic acid or citric acid is added and ultrasonic dispersion to improve dispersibility.
  • a method for preparing a yttria-stabilized zirconia nanosol having excellent dispersibility is proposed.
  • the present invention proposes an yttria-stabilized zirconia nanosol having excellent dispersibility produced by the above-described production method in another aspect of the invention.
  • yttria-stabilized zirconia (YSZ) sol having excellent dispersibility by adding various silane coupling agents, acids/bases, polymers and surfactants to nano-sized yttria-stabilized zirconia (YSZ) synthesized through hydrothermal reaction It can be produced, thereby solving the aggregation problem, which has been pointed out as a problem in the application of nano-sized yttria-stabilized zirconia (YSZ), thereby exhibiting better properties when applied as a heat shield coating material.
  • FIG. 1 is a process flow diagram of a method for preparing a yttria-stabilized zirconia nanosol having excellent dispersibility according to the present invention.
  • Figure 2 is a process flow diagram showing each step of the production of YSZ nanoparticles using a hydrothermal reaction in the present embodiment.
  • Figure 3 is the X-ray diffraction analysis (XRD) results for YSZ nanoparticles prepared through hydrothermal reaction by varying the reaction time in the present example ((a): 2 hours (b): 4 hours, (c) : 6 hours, (d): 8 hours).
  • XRD X-ray diffraction analysis
  • Figure 4 is a result of calculating the crystal size of the YSZ nanoparticles prepared through a hydrothermal reaction by varying the reaction time in the present embodiment by Scherer's equation ((a): 2 hours (b): 4 Hours, (c): 6 hours, (d): 8 hours).
  • FE-SEM long-release scanning electron microscope
  • Example 6 is a process flow chart showing each step of the YSZ nanosol dispersibility improvement treatment using a silane coupling agent in Example 1 of the present application.
  • FIG. 7 is a photograph showing the results of a water dispersion stabilization experiment of a sample subjected to surface treatment of YSZ nanoparticles with a silane coupling agent (MPS, GPS or VPS) in distilled water and ultrasonic treatment for 90 minutes in Example 1 of the present application.
  • MPS silane coupling agent
  • Example 8 is a process flow diagram showing each step of the treatment of improving the dispersibility of YSZ nanosol through pH adjustment by adding acid or base in Example 2 of the present application.
  • FIG. 9 is a photograph showing the results of a water dispersion stabilization experiment of a sample subjected to ultrasonic treatment for 90 minutes after adjusting the pH of the YSZ nanosol to 2 to 5 in Example 2 of the present application.
  • Example 10 is a process flow diagram showing each step of the treatment for improving the dispersibility of YSZ nanosol by adding various dispersing agents in Example 3 of the present application.
  • FIG. 11 is a photograph showing the results of a water dispersion stabilization experiment of a sample obtained by adding various dispersants to the YSZ nanosol in Example 3 and performing ultrasonic treatment for 90 minutes.
  • FIG. 2 A method for synthesizing nano-sized yttria-stabilized zirconia (YSZ) using hydrothermal synthesis is schematically shown in FIG. 2.
  • Starting materials are ZrOCl 2 ⁇ 8H 2 O(Zirconium(IV) chloride oxide octahydrate, 90.0%, JUNSEI), Y(NO 3 ) 3 ⁇ 6H 2 O(Yttrium(III) nitrate hexahydrate, 99.99%, DAEJUNG), Ammonium hydroxide (NH 4 OH, 25.0-28.0%, DAEJUNG) was used.
  • 3mol YSZ was synthesized by heat treatment at various time conditions using a hydrothermal synthesis method. After adding the precursors of ZrO 2 and Y 2 O 3 in proportion, the reaction was performed for 2 hours, 4 hours, 6 hours, and 8 hours at 200° C. to control particle size, crystallinity, and shape. 3 is a result of measuring XRD to analyze the crystallinity of 3mol YSZ synthesized through hydrothermal synthesis.
  • the YSZ Cubic crystal phase without secondary phase or impurity appeared under the reaction time condition of 2 hours, and the crystallinity of YSZ increased as the reaction time increased, and the analysis result showing the peak of the ZrO 2 Monoclinic crystal phase was confirmed.
  • silane coupling agents were added using nano-sized YSZ synthesized by hydrothermal synthesis to prepare yttria-stabilized zirconia (YSZ) sol.
  • the types of silane coupling agents used in the experiment are MPS (3-(Trim ethoxysilyl)propylmethacrylate, 98%, SIGMA-ALDRICH), GPS ((3-Glyciduloxypropyl) trimethoxy-silane, 98%, SIGMA-ALDRICH), VPS (Vinyltrimethoxysilane, 98%, SIGMA-ALDRICH) were used, respectively.
  • Silane was added to the solvent and stirred at 300 rpm for 90 minutes.
  • FIG. 6 shows a schematic diagram of preparing a yttria-stabilized zirconia (YSZ) sol by adding a silane coupling agent.
  • the dried YSZ nanoparticles were redispersed in water and then divided into samples that were subjected to ultrasound for 90 minutes and samples that were not subjected to the experiment to confirm the dispersion effect by ultrasound.
  • the YSZ dispersion was placed in a vial bottle of 15 ml each, and the precipitation results of YSZ nanoparticles over time were confirmed.
  • VPS Vinyltrimethoxysilane
  • Acetone 2-Propanol, 99.5%, SAMCHUN
  • the hydrolysis reaction was performed at 300 rpm for 90 minutes.
  • 4 g of YSZ was added, and a surface modification reaction was performed at 50° C. for 3 hours, followed by washing with acetone 5 times and drying.
  • the dried YSZ nanoparticles were redispersed in water and then divided into samples that were subjected to ultrasound for 90 minutes and samples that were not subjected to the experiment to confirm the dispersion effect by ultrasound.
  • FIG. 7 is a water dispersion stabilization photograph of a sample obtained by dispersing in a distilled water after performing a surface treatment of a support synthesized by a hydrothermal synthesis method with MPS, GPS, and VPS silane coupling agent, and performing ultrasonic waves for 90 minutes. The results showed that the dispersion stability was greatly increased by the day.
  • yttria-stabilized zirconia (YSZ) sol was prepared by adding an acid or a base to the nanosol in which YSZ nanoparticles prepared by hydrothermal synthesis in Example 1 were dispersed, and controlling pH. .
  • YSZ nano-powder was added to the distilled water at 3 wt% and stirred, followed by stirring to add HCl (Hydro-chloric acid, 35.0-37.0%, DAEJUNG) and NH 4 OH (Ammonium hydroxide, 25.0-28.0%, DAEJUNG) to pH. Was adjusted to 2-10. Thereafter, ultrasonic treatment was performed for 90 minutes to improve dispersibility.
  • Yttria-stabilized zirconia (YSZ) sol was placed in a vial bottle of 15 ml each to confirm the dispersion stability over time. As a result, it was found that precipitation occurred simultaneously with dispersion at pH 8 and pH 9.
  • YSZ sol was prepared by adding various polymers and surfactants to nanosols in which YSZ nanoparticles prepared in Example 1 were dispersed through hydrothermal synthesis.
  • YSZ nano-powder was added to 3% by weight of distilled water and stirred, followed by DARVAN 811D (2-Propenoic acid, 100%, Vanderbilt Minerals), Citric acid (2-hydroxypropane- 1,2,3tricarboxylic acid, 99.5%, SIGMA -ALDRICH), Lauric acid (Dodecanoid acid, 97.0%, SAMCHUM) or Span #80 (Sorbitan monooleate, 100%, SAMCHUN) was added 1 wt%, followed by sonication for 90 minutes to improve dispersibility.
  • Yttria-stabilized zirconia (YSZ) sol was placed in a vial bottle of 15 ml each to confirm the dispersion stability over time.
  • FIG. 11 is a water dispersion stabilization photograph of a sample subjected to ultrasonic waves for 90 minutes after dispersing with various types of dispersants as described above. It was confirmed that excellent water dispersion stability was found in Darvan and Citric acid, but precipitation occurred immediately after 24 hours in Span #80 and in Lauric acid.
  • Nano-sized yttria stabilized zirconia (YSZ) can be prepared.

Abstract

The present invention relates to a method of preparing a yttria stabilized zirconia nanosol having excellent dispersibility, the method comprising the steps of: (a) mixing a ZrOCl2·8H2O sol and a Y(NO3)3·6H2O sol and adding a basic material thereto to regulate the pH thereof; (b) subjecting the sol obtained in step (a) to a hydrothermal reaction to prepare yttria stabilized zirconia (YSZ) nanoparticles; and (c) conducting a treatment for improving the dispersibility of a nanosol with the YSZ nano particles dispersed therein. According to the present invention, a YSZ sol with excellent dispersability can be produced by adding various silane coupling agents, acids/bases, polymers, and surfactants to nanosized YSZ synthesized via a hydrothermal reaction, and as such, by resolving the coagulation issue indicated as a problem in applications of nanosized YSZ, the nanosized YSZ sol thus prepared can achieve further excellent properties when applied as a heat-shielding coating material and the like.

Description

분산성이 우수한 이트리아 안정화 지르코니아(YSZ) 나노졸의 제조방법Method for preparing yttria-stabilized zirconia (YSZ) nanosol with excellent dispersibility
본 발명은 (i) 산업통상자원부 시행 국가연구개발사업(과제고유번호:1415159227, 사업명:에너지인력양성사업, 연구과제명:가스터빈 고온부품 고효율화 융복합 연구 및 인력양성 고급트랙, 연구관리전문기관:한국산업기술평가관리원, 주관기관:창원대학교 산학협력단, 연구기간:2019.01.01. ~ 2021.12.31.), (ii) 과학기술정보통신부 시행 국가연구개발사업(과제고유번호:1711076645, 사업명:이공학분야(S/ERC) 후속지원, 연구과제명: 메카트로닉스 융합 부품 소재 연구센터, 연구관리전문기관:한국연구재단, 주관기관:창원대학교 산학협력단, 연구기간:2018.09.01. ~ 2021.08.31.), 및 (iii) 산업통상자원부 시행 국가연구개발사업(과제고유번호:1415159160, 사업명:청정화력핵심기술개발(R&D), 연구과제명:발전용 F급 가스터빈 고온부품 재생정비 기술개발 및 실증, 연구관리전문기관:한국산업기술평가관리원, 주관기관:창원대학교 산학협력단, 연구기간:2018.05.01. ~ 2022.12.31.)의 연구개발 지원 하에 창원대학교가 수행한 결과물로서, 이트리아 안정화 지르코니아(YSZ) 나노 분말의 분산성을 향상시키는 방법에 대한 것이다.The present invention is (i) National R&D project implemented by the Ministry of Trade, Industry and Energy (Task No.: 1415159227, Project name: Energy manpower training project, Research project name: Gas turbine high-temperature parts high-efficiency convergence research and manpower training advanced track, research management agency : Korea Institute of Industrial Technology Evaluation and Management, Organized by: Changwon University Industry-Academic Cooperation Foundation, Research Period: 2019.01.01. ~ 2021.12.31.), (ii) National R&D project implemented by the Ministry of Science and ICT (Task No.: 1711076645, Project name: Subsequent support in the field of Science and Engineering (S/ERC), Research Project Name: Mechatronics Convergence Components Research Center, Research Management Agency: Korea Research Foundation, Host Organization: Changwon University Industry-Academic Cooperation Foundation, Research Period: 2018.09.01. ~ 2021.08.31 .), and (iii) Ministry of Trade, Industry and Energy National R&D Project (Task No.: 1415159160, Project Name: Clean Power Core Technology Development (R&D), Research Project Name: Development of F-class gas turbine high-temperature parts recycling and maintenance technology development for power generation and Demonstration, Research Management Agency: Korea Institute of Industrial Technology Evaluation and Management, Host Organization: Changwon University Industry-Academic Cooperation Foundation, Research Period: 2018.05.01. ~ 2022.12.31. A method for improving the dispersibility of zirconia (YSZ) nano powder.
초고온·초고압 상태인 가스터빈 부품의 작동환경에서 모재를 보호하고, 에너지 효율을 높이기 위해 부품의 표면에 세라믹을 이용한 열차폐 코팅(thermal barrier coating, TBC)을 실시한다. In order to protect the base material in the operating environment of the ultra-high temperature and ultra-high pressure gas turbine component and to increase energy efficiency, a thermal barrier coating (TCC) using ceramic is applied to the surface of the component.
현재 열차폐 코팅 소재로는 지르코니아(ZrO2)가 대부분 사용되고 있는데, 순수 지르코니아는 온도에 따라 단사정, 정방정, 입방정으로 상이 변화하며 상변태에 따른 부피의 수축 팽창으로 인해 물성이 저하되어 이트리아(Y2O3)와 같은 상 안정화제를 첨가하여 이트리아 안정화 지르코니아(yttria stabilized zirconia, YSZ)를 사용하고 있다. 지르코니아에 이트리아를 첨가하면 지르코니아는 상온에서도 준 안정상인 정방정 형태로 존재하게 되는데, 외부응력이 가해지면 정방정상이 응력을 흡수하여 단사정으로 상변태를 하면서 에너지를 흡수한다. Currently, most of zirconia (ZrO 2 ) is used as a heat shield coating material.Pure zirconia phase changes to monoclinic, tetragonal, and cubic according to temperature, and physical properties decrease due to contraction and expansion of volume due to phase transformation. Yttria stabilized zirconia (YSZ) is used by adding a phase stabilizer such as Y 2 O 3 ). When yttria is added to zirconia, zirconia exists in a quasi-stable tetragonal form even at room temperature. When an external stress is applied, the tetragonal phase absorbs stress and absorbs energy while transforming into a monoclinic phase.
특히, 나노 크기의 이트리아 안정화 지르코니아는 화학적 안정성, 이온전도성, 열전도도, 강도, 인성, 내열성 등의 특성이 더욱 우수하여 상기 열차폐 코팅 소재 이외에도 인공치아, 산소센서, 고체 산화물 연료전지(SOFC) 등으로 응용하는 연구가 활발히 진행중에 있다. In particular, the nano-sized yttria-stabilized zirconia has more excellent properties such as chemical stability, ion conductivity, thermal conductivity, strength, toughness, and heat resistance, and in addition to the thermal barrier coating material, artificial teeth, oxygen sensors, and solid oxide fuel cells (SOFC) Research into applications such as is actively underway.
한편, 나노 크기의 분말의 경우 1차 혹은 2차 응집으로 인하여, 나노 분말 고유의 우수한 물성이 저하된다는 연구결과가 보고되고 있으며, 이러한 문제를 해결하기 위하여 응집을 최소하 하는 분산기술에 대한 연구가 활발히 진행 중이다. 이트리아 안정화 지르코니아(YSZ)의 경우에도 입자의 크기가 작아질수록 더욱 우수한 물성들이 보고되고 있으나, 입자 크기가 미세화됨에 따라 그 응용을 통한 우수한 물성을 기대하기 위해서는 응집방지(분산)의 문제를 반드시 해결해야 한다.On the other hand, in the case of nano-sized powder, research results have been reported that due to primary or secondary agglomeration, excellent properties of nano-powders are deteriorated. To solve this problem, research on dispersion technology that minimizes agglomeration It is actively in progress. In the case of yttria-stabilized zirconia (YSZ), as the particle size decreases, better physical properties have been reported, but as the particle size becomes smaller, the problem of anti-aggregation (dispersion) must be observed in order to expect excellent physical properties through its application. Should be solved.
본 발명이 해결하고자 하는 기술적 과제는, 그 동안 나노 YSZ의 활용에 있어 큰 제약이 되어 왔던 응집 문제를 해결하는 우수한 분산성을 가지는 이트리아 안정화 지르코니아(YSZ) 나노졸을 제조하는 방법을 제공하는 것이다.The technical problem to be solved by the present invention is to provide a method for preparing an yttria-stabilized zirconia (YSZ) nanosol having excellent dispersibility to solve the aggregation problem, which has been a major limitation in the utilization of nano-YSZ. .
상기 기술적 과제를 달성하기 위해, 본 발명은 (a) ZrOCl2·8H2O 졸(sol) 및 Y(NO3)3·6H2O 졸을 혼합하고 염기성 물질을 첨가해 pH를 조절하는 단계; (b) 상기 단계 (a)에서 얻어진 졸을 수열반응시켜 이트리아 안정화 지르코니아(yttria stabilized zirconia, YSZ) 나노 입자를 제조하는 단계; 및 (c) 상기 이트리아 안정화 지르코니아 나노 입자가 분산된 나노졸의 분산성 향상을 위한 처리를 실시하는 단계;를 포함하는 분산성이 우수한 이트리아 안정화 지르코니아 나노졸의 제조방법을 제안한다(도 1).In order to achieve the above technical problem, the present invention (a) ZrOCl 2 · 8H 2 O sol (sol) and Y (NO 3 ) 3 · 6H 2 O sol mixing and adding a basic material to adjust the pH; (B) preparing a yttria stabilized zirconia (YSZ) nanoparticles by hydrothermal reaction of the sol obtained in step (a); And (c) performing the treatment for improving the dispersibility of the nanosol dispersed in the yttria-stabilized zirconia nanoparticles; proposes a method for producing a yttria-stabilized zirconia nanosol having excellent dispersibility (FIG. 1) ).
또한, 상기 단계 (a)에서 상기 염기성 물질로서 암모니아를 첨가해 pH 9로 조절하는 것을 특징으로 하는 분산성이 우수한 이트리아 안정화 지르코니아 나노졸의 제조방법을 제안한다.In addition, in the step (a), a method for preparing a yttria-stabilized zirconia nanosol having excellent dispersibility is proposed by adding ammonia as the basic substance and adjusting the pH to 9.
또한, 상기 단계 (b)에서는 200℃에서 2 내지 8시간 동안 수열반응시키는 것을 특징으로 하는 분산성이 우수한 이트리아 안정화 지르코니아 나노졸의 제조방법을 제안한다.In addition, in the step (b), it is proposed a method for producing a yttria-stabilized zirconia nanosol having excellent dispersibility, characterized in that the hydrothermal reaction is performed at 200°C for 2 to 8 hours.
또한, 상기 단계 (c)에서 상기 이트리아 안정화 지르코니아 나노 입자 표면을 실란 커플링제(silane coupling agent)로 개질하고 초음파 분산시켜 분산성을 향상시키는 것을 특징으로 하는 분산성이 우수한 이트리아 안정화 지르코니아 나노졸의 제조방법을 제안한다.In addition, the yttria-stabilized zirconia nanosol having excellent dispersibility, wherein the yttria-stabilized zirconia nanoparticle surface in step (c) is modified with a silane coupling agent and ultrasonically dispersed to improve dispersibility. Propose a method of manufacturing.
또한, 상기 단계 (c)에서 상기 실란 커플링제는 3-(트리메톡시실릴)프로필메타크릴레이트(3-(Trimethoxysilyl)propylmethacrylate, MPS), (3-글리시독시프로필)트리메톡시실란((3-Glyciduloxypropyl)trimethoxysilane, GPS) 또는 비닐트리메톡시실란(Vinyltrimethoxysilane, VPS)인 것을 특징으로 하는 분산성이 우수한 이트리아 안정화 지르코니아 나노졸의 제조방법을 제안한다.In addition, in the step (c), the silane coupling agent is 3-(trimethoxysilyl)propyl methacrylate (3-(Trimethoxysilyl)propylmethacrylate, MPS), (3-glycidoxypropyl) trimethoxysilane (( 3-Glyciduloxypropyl)trimethoxysilane (GPS) or vinyltrimethoxysilane (VPS) is proposed.
또한, 상기 단계 (c)에서 상기 이트리아 안정화 지르코니아 나노 입자가 분산된 나노졸의 pH를 조절하고 초음파 분산시켜 분산성을 향상시키는 것을 특징으로 하는 분산성이 우수한 이트리아 안정화 지르코니아 나노졸의 제조방법을 제안한다.In addition, in the step (c), the method for preparing yttria-stabilized zirconia nanosol having excellent dispersibility, wherein the yttria-stabilized zirconia nanoparticles are dispersed and ultrasonic dispersion is adjusted to improve dispersibility. To suggest.
또한, 상기 단계 (c)에서 상기 이트리아 안정화 지르코니아 나노 입자가 분산된 나노졸의 pH를 3 또는 10으로 조절하는 것을 특징으로 하는 분산성이 우수한 이트리아 안정화 지르코니아 나노졸의 제조방법을 제안한다.In addition, in step (c), it is proposed a method for producing a yttria-stabilized zirconia nanosol having excellent dispersibility, wherein the pH of the nanosol in which the yttria-stabilized zirconia nanoparticles are dispersed is adjusted to 3 or 10.
또한, 상기 단계 (c)에서 상기 이트리아 안정화 지르코니아 나노 입자가 분산된 나노졸에 2-프로펜산(2-Propenoic acid) 또는 구연산(citric acid)을 첨가하고 초음파 분산시켜 분산성을 향상시키는 것을 특징으로 하는 분산성이 우수한 이트리아 안정화 지르코니아 나노졸의 제조방법을 제안한다.In addition, in the step (c), the yttria-stabilized zirconia nanoparticles are dispersed in nanosol, and 2-propeneic acid or citric acid is added and ultrasonic dispersion to improve dispersibility. A method for preparing a yttria-stabilized zirconia nanosol having excellent dispersibility is proposed.
그리고, 본 발명은 발명의 다른 측면에서 상기 제조방법에 의해 제조된 분산성이 우수한 이트리아 안정화 지르코니아 나노졸을 제안한다.In addition, the present invention proposes an yttria-stabilized zirconia nanosol having excellent dispersibility produced by the above-described production method in another aspect of the invention.
본 발명에 의하면, 수열반응을 통해 합성된 나노크기의 이트리아 안정화 지르코니아(YSZ)에 각종 실란 커플링제, 산/염기, 고분자 및 계면활성제를 첨가하여 분산성이 우수한 이트리아 안정화 지르코니아(YSZ)졸을 제조할 수 있으며, 그에 따라 나노 크기의 이트리아 안정화 지르코니아(YSZ)의 응용에 있어서 문제점으로 지적되어온 응집문제를 해결함으로써, 열차폐 코팅소재 등으로 응용시 더욱 우수한 물성을 발휘할 수 있다.According to the present invention, yttria-stabilized zirconia (YSZ) sol having excellent dispersibility by adding various silane coupling agents, acids/bases, polymers and surfactants to nano-sized yttria-stabilized zirconia (YSZ) synthesized through hydrothermal reaction It can be produced, thereby solving the aggregation problem, which has been pointed out as a problem in the application of nano-sized yttria-stabilized zirconia (YSZ), thereby exhibiting better properties when applied as a heat shield coating material.
도 1은 본 발명에 따른 분산성이 우수한 이트리아 안정화 지르코니아 나노졸 제조방법의 공정 흐름도이다.1 is a process flow diagram of a method for preparing a yttria-stabilized zirconia nanosol having excellent dispersibility according to the present invention.
도 2는 본원 실시예에서 수열반응을 이용한 YSZ 나노입자 제조의 각 단계를 나타낸 공정 흐름도이다.Figure 2 is a process flow diagram showing each step of the production of YSZ nanoparticles using a hydrothermal reaction in the present embodiment.
도 3은 본원 실시예에서 반응 시간을 달리해 수열반응을 통해 제조된 YSZ 나노입자에 대한 X-선 회절분석(XRD) 결과이다((a): 2시간 (b): 4시간, (c): 6시간, (d): 8시간).Figure 3 is the X-ray diffraction analysis (XRD) results for YSZ nanoparticles prepared through hydrothermal reaction by varying the reaction time in the present example ((a): 2 hours (b): 4 hours, (c) : 6 hours, (d): 8 hours).
도 4는 본원 실시예에서 반응 시간을 달리해 수열반응을 통해 제조된 YSZ 나노입자의 결정 크기를 쉐러식(Scherrer`s equation)으로 계산한 결과이다((a): 2시간 (b): 4시간, (c): 6시간, (d): 8시간).Figure 4 is a result of calculating the crystal size of the YSZ nanoparticles prepared through a hydrothermal reaction by varying the reaction time in the present embodiment by Scherer's equation ((a): 2 hours (b): 4 Hours, (c): 6 hours, (d): 8 hours).
도 5는 본원 실시예에서 반응 시간을 달리해 수열반응을 통해 제조된 YSZ 나노입자의 미세구조를 보여주는 장방출 주사전자현미경(FE-SEM) 사진이다((a): 2시간 (b): 4시간, (c): 6시간, (d): 8시간).5 is a long-release scanning electron microscope (FE-SEM) photograph showing the microstructure of YSZ nanoparticles prepared through hydrothermal reaction by varying the reaction time in the present example ((a): 2 hours (b): 4 Hours, (c): 6 hours, (d): 8 hours).
도 6은 본원 실시예 1에서 실란 커플링제를 이용한 YSZ 나노졸 분산성 향상 처리의 각 단계를 나타낸 공정 흐름도이다.6 is a process flow chart showing each step of the YSZ nanosol dispersibility improvement treatment using a silane coupling agent in Example 1 of the present application.
도 7은 본원 실시예 1에서 YSZ 나노입자를 실란 커플링제(MPS, GPS 또는 VPS)로 표면 처리한 후 증류수에 분산시키고 초음파 처리를 90분간 실시한 샘플의 수분산 안정화 실험 결과를 보여주는 사진이다.FIG. 7 is a photograph showing the results of a water dispersion stabilization experiment of a sample subjected to surface treatment of YSZ nanoparticles with a silane coupling agent (MPS, GPS or VPS) in distilled water and ultrasonic treatment for 90 minutes in Example 1 of the present application.
도 8은 본원 실시예 2에서 산 또는 염기 첨가에 의한 pH 조절을 통한 YSZ 나노졸 분산성 향상 처리의 각 단계를 나타낸 공정 흐름도이다.8 is a process flow diagram showing each step of the treatment of improving the dispersibility of YSZ nanosol through pH adjustment by adding acid or base in Example 2 of the present application.
도 9는 본원 실시예 2에서 YSZ 나노졸의 pH를 2 내지 5로 조절한 후 초음파 처리를 90분간 실시한 샘플의 수분산 안정화 실험 결과를 보여주는 사진이다.9 is a photograph showing the results of a water dispersion stabilization experiment of a sample subjected to ultrasonic treatment for 90 minutes after adjusting the pH of the YSZ nanosol to 2 to 5 in Example 2 of the present application.
도 10은 본원 실시예 3에서 각종 분산제(dispersing agent) 첨가에 의한 YSZ 나노졸 분산성 향상 처리의 각 단계를 나타낸 공정 흐름도이다.10 is a process flow diagram showing each step of the treatment for improving the dispersibility of YSZ nanosol by adding various dispersing agents in Example 3 of the present application.
도 11은 본원 실시예 3에서 YSZ 나노졸에 각종 분산제를 첨가하고 초음파 처리를 90분간 실시한 샘플의 수분산 안정화 실험 결과를 보여주는 사진이다.FIG. 11 is a photograph showing the results of a water dispersion stabilization experiment of a sample obtained by adding various dispersants to the YSZ nanosol in Example 3 and performing ultrasonic treatment for 90 minutes.
이하, 실시예를 들어 본 발명에 대해 보다 상세하게 설명하기로 한다. Hereinafter, the present invention will be described in more detail with reference to Examples.
본 명세서에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 명세서의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 명세서의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 명세서를 보다 완전하게 설명하기 위해 제공되는 것이다.The embodiments according to the present specification may be modified in various other forms, and the scope of the present specification is not interpreted to be limited to the embodiments described below. The embodiments of the present specification are provided to more fully describe the present specification to those skilled in the art.
<실시예 1><Example 1>
수열합성법을 이용하여 나노크기의 이트리아 안정화 지르코니아(YSZ)를 합성하는 방법을 도식화하여 도 2에 나타내었다. 출발 물질은 ZrOCl2·8H2O(Zirconium(Ⅳ) chloride oxide octahydrate, 90.0%, JUNSEI), Y(NO3)3·6H2O(Yttrium(Ⅲ) nitrate hexahydrate, 99.99%, DAEJUNG), Ammonium hydroxide (NH4OH, 25.0~28.0%, DAEJUNG)를 사용하였다. A method for synthesizing nano-sized yttria-stabilized zirconia (YSZ) using hydrothermal synthesis is schematically shown in FIG. 2. Starting materials are ZrOCl 2 ·8H 2 O(Zirconium(IV) chloride oxide octahydrate, 90.0%, JUNSEI), Y(NO 3 ) 3 ·6H 2 O(Yttrium(Ⅲ) nitrate hexahydrate, 99.99%, DAEJUNG), Ammonium hydroxide (NH 4 OH, 25.0-28.0%, DAEJUNG) was used.
전구체 물질을 300rpm에서 10분간 교반을 실시한 뒤, 암모니아를 첨가하여 pH 9로 적정하였다. 이후 증류수로 3회 세척하여, 잔여 물질을 제거한 뒤, 압력반응용기(Autoclave)에 넣고 200℃에서 2~8시간 동안 반응을 진행하였다. 수열반응 이후 증류수로 3회 세척, 에탄올로 2회 세척을 한 뒤, 건조로에서 100℃, 24시간동안 건조를 실시하였다. 얻어진 YSZ 나노 입자를 유발기를 이용하여 곱게 분쇄하였다. 회수된 나노 입자의 결정성 및 입자 크기를 분석하기 위하여 XRD(X-ray diffusion, MiniFlexⅡ, Rigaku) 분석을 실시하였으며, 입자의 형태와 입도 분포를 관찰하기 위하여 FE-SEM(Field emission scanning electron microscopy, CZ/MIRA I LMH)을 측정하였다. After the precursor material was stirred at 300 rpm for 10 minutes, ammonia was added to titrate to pH 9. After washing with distilled water three times, the residual material was removed, and then placed in a pressure reaction vessel (Autoclave) and reacted at 200° C. for 2 to 8 hours. After the hydrothermal reaction, washing was performed three times with distilled water and twice with ethanol, followed by drying in a drying furnace at 100° C. for 24 hours. The obtained YSZ nanoparticles were finely ground using an inducer. In order to analyze the crystallinity and particle size of the recovered nanoparticles, XRD (X-ray diffusion, MiniFlex II, Rigaku) analysis was performed, and field emission scanning electron microscopy (FE-SEM) was observed to observe particle shape and particle size distribution. CZ/MIRA I LMH).
수열합성법을 이용하여 다양한 시간조건에서 열처리를 실시한 3mol YSZ를 합성하였다. ZrO2와 Y2O3의 전구체를 비율에 맞게 첨가한 뒤 입자 크기와 결정성, 그리고 형상을 제어하기 위하여 200℃에서 2시간, 4시간, 6 시간 그리고 8시간 동안 반응을 실시하였다. 도 3은 수열합성법을 통해 합성된 3mol YSZ의 결정성을 분석하기 위하여 XRD를 측정한 결과이다. 2시간 반응시간 조건에서 이차상 또는 불순물이 없는 YSZ Cubic 결정상이 나타나며 반응 시간이 증가함에 따라 YSZ의 결정성이 증가하며, ZrO2 Monoclinic 결정상의 피크가 나타나는 분석결과를 확인할 수 있었다. 도 4는 쉘러 공식을 이용하여 XRD의 반가폭을 이용하여 합성한 나노 입자의 결정크기를 계산한 결과이다. 반응 시간이 증가함에 따라 입자 크기가 증가하는 경향성을 확인할 수 있었으며, 5nm에서 7nm 크기의 입자가 합성됨을 확인할 수 있었다. 도 5는 합성된 3mol YSZ의 미세구조를 확인하기 위한 FE-SEM 분석결과이다. FE-SEM 이미지는 샘플마다 10만배, 20만배로 측정하였다. 분석결과 아주 미세하고 구형의 5~7nm 크기의 3mol YSZ가 합성된 것을 관찰할 수 있었으며 반응 시간이 증가함에 따라 입자크기 또한 증가하는 경향성을 확인할 수 있었다.3mol YSZ was synthesized by heat treatment at various time conditions using a hydrothermal synthesis method. After adding the precursors of ZrO 2 and Y 2 O 3 in proportion, the reaction was performed for 2 hours, 4 hours, 6 hours, and 8 hours at 200° C. to control particle size, crystallinity, and shape. 3 is a result of measuring XRD to analyze the crystallinity of 3mol YSZ synthesized through hydrothermal synthesis. The YSZ Cubic crystal phase without secondary phase or impurity appeared under the reaction time condition of 2 hours, and the crystallinity of YSZ increased as the reaction time increased, and the analysis result showing the peak of the ZrO 2 Monoclinic crystal phase was confirmed. 4 is a result of calculating the crystal size of the nanoparticles synthesized using the half-width of XRD using the Scheller formula. As the reaction time increased, the tendency for the particle size to increase was confirmed, and it was confirmed that particles having a size of 5 nm to 7 nm were synthesized. 5 is a result of FE-SEM analysis to confirm the microstructure of the synthesized 3mol YSZ. FE-SEM images were measured at 100,000 times and 200,000 times per sample. As a result of the analysis, it was observed that 3 mol YSZ having a very fine and spherical 5 to 7 nm size was synthesized, and it was confirmed that the particle size also tended to increase as the reaction time increased.
이어서, 상기와 같이 수열합성법을 이용하여 합성된 나노크기의 YSZ를 이용하여 각종 실란 커플링제를 첨가하여 이트리아 안정화 지르코니아(YSZ)졸을 제조하였다. 실험에 사용한 실란 커플링제의 종류는 MPS(3-(Trim ethoxysilyl)propylmethacrylate, 98%, SIGMA- ALDRICH), GPS((3-Glyciduloxypropyl) trimethoxy- silane, 98%, SIGMA-ALDRICH), VPS(Vinyltrimethoxysilane, 98%, SIGMA-ALDRICH)를 각각 사용하였다. 용매에 실란을 첨가하여 300rpm에서 90분간 교반을 하였다. YSZ를 4g 첨가하고 300rpm에서 8시간 동안 표면개질 반응을 실시한 뒤, Methanol을 이용하여 5회 세척한 뒤 건조를 실시하였다. 건조된 YSZ 나노 입자는 물에 재분산 시킨 뒤 초음파에 의한 분산 효과를 확인하기 위해 90분간 초음파를 실시한 샘플과 하지 않은 샘플로 나누어 실험을 진행하였다. 도 6에 실란 커플링제를 첨가하여 이트리아 안정화 지르코니아(YSZ)졸을 제조하는 모식도를 나타내었다. Subsequently, various silane coupling agents were added using nano-sized YSZ synthesized by hydrothermal synthesis to prepare yttria-stabilized zirconia (YSZ) sol. The types of silane coupling agents used in the experiment are MPS (3-(Trim ethoxysilyl)propylmethacrylate, 98%, SIGMA-ALDRICH), GPS ((3-Glyciduloxypropyl) trimethoxy-silane, 98%, SIGMA-ALDRICH), VPS (Vinyltrimethoxysilane, 98%, SIGMA-ALDRICH) were used, respectively. Silane was added to the solvent and stirred at 300 rpm for 90 minutes. After adding 4 g of YSZ and performing a surface modification reaction at 300 rpm for 8 hours, washing was performed 5 times using Methanol, followed by drying. The dried YSZ nanoparticles were redispersed in water and then divided into samples that were subjected to ultrasound for 90 minutes and samples that were not. 6 shows a schematic diagram of preparing a yttria-stabilized zirconia (YSZ) sol by adding a silane coupling agent.
MPS(3-(Trimethoxysilyl)propylmethacrylate)를 분산제로 사용하였을 때 용매는 Ethanol(Ethyl alcohol anhydrous, 99.9%, DAEJUNG)과 증류수를 80:20(v/v%)로 사용하였으며, CH3COOH (Acetic acid, 99.9%, SAMCHUN)를 사용하여 pH 4.5로 조절하였다. pH 조절 이후 MPS를 주사기를 이용하여 적정량 첨가한 후, 300rpm에서 90분간 가수분해를 실시하였다. 가수분해 반응이 끝난 뒤 YSZ를 4g 첨가하고 300rpm에서 8시간동안 표면개질 반응을 실시하였다. 이후 Ethanol/증류수(80:20 v/v %)를 이용하여 3회 세척하고, 순수 Ethanol을 이용하여 2회 더 세척한 뒤 건조를 실시하였다. 건조된 YSZ 나노 입자는 물에 재 분산 시킨 뒤 초음파에 의한 분산 효과를 확인하기 위해 90분간 초음파를 실시한 샘플과 하지 않은 샘플로 나누어 실험을 진행하였다. YSZ 분산액은 각각 15ml씩 바이알(Vial) 병에 담아 시간에 따른 YSZ 나노 입자의 침전 결과를 확인하였다. When MPS (3-(Trimethoxysilyl)propylmethacrylate) was used as a dispersant, Ethanol (Ethyl alcohol anhydrous, 99.9%, DAEJUNG) and distilled water were used as 80:20 (v/v%), and CH 3 COOH (Acetic acid) , 99.9%, SAMCHUN). After the pH was adjusted, an appropriate amount of MPS was added using a syringe, followed by hydrolysis at 300 rpm for 90 minutes. After the hydrolysis reaction was completed, 4 g of YSZ was added and a surface modification reaction was performed at 300 rpm for 8 hours. Thereafter, washing was performed 3 times using Ethanol/distilled water (80:20 v/v %), followed by washing 2 times using pure Ethanol, followed by drying. The dried YSZ nanoparticles were redispersed in water and then divided into samples that were subjected to ultrasound for 90 minutes and samples that were not subjected to the experiment to confirm the dispersion effect by ultrasound. The YSZ dispersion was placed in a vial bottle of 15 ml each, and the precipitation results of YSZ nanoparticles over time were confirmed.
GPS((3-Glyciduloxypropyl)trimethoxysilane)를 분산제로 사용하였을 때 용매는 Methanol(Methyl alcohol, 99.5%, SAMCHUN)을 사용하였으며 촉매로써 Ammonium hydroxide (NH4OH, 25.0~28.0%, DAEJUNG)를 2방울 가하여 반응시켰다. GPS를 적정량 첨가한 후, 가수분해반응을 300rpm에서 90분간 실시하였다. 가수분해 반응이 끝난 뒤 YSZ를 4g 첨가하고 300rpm에서 8시간동안 표면개질 반응을 실시한 뒤 Methanol을 이용하여 5회 세척한 뒤 건조를 실시하였다. 건조된 YSZ 나노 입자는 물에 재 분산 시킨 뒤 초음파에 의한 분산 효과를 확인하기 위해 90분간 초음파를 실시한 샘플과 하지 않은 샘플로 나누어 실험을 진행하였다.When GPS ((3-Glyciduloxypropyl)trimethoxysilane) was used as a dispersant, Methanol (Methyl alcohol, 99.5%, SAMCHUN) was used as the solvent, and 2 drops of Ammonium hydroxide (NH4OH, 25.0-28.0%, DAEJUNG) were reacted as a catalyst. . After the appropriate amount of GPS was added, the hydrolysis reaction was performed at 300 rpm for 90 minutes. After the hydrolysis reaction was completed, 4 g of YSZ was added, and a surface modification reaction was performed at 300 rpm for 8 hours, followed by washing with Methanol 5 times and drying. The dried YSZ nanoparticles were redispersed in water and then divided into samples that were subjected to ultrasound for 90 minutes and samples that were not subjected to the experiment to confirm the dispersion effect by ultrasound.
VPS(Vinyltrimethoxysilane)를 분산제로 사용하였을 때 용매는 Acetone(2-Propanol, 99.5%, SAMCHUN)을 사용하였다. VPS를 용매에 적정량 첨가한 후, 가수분해반응을 300rpm에서 90분간 실시하였다. 가수분해 반응이 끝난 뒤 YSZ를 4g 첨가하고 50℃에서 3시간동안 표면개질 반응을 실시한 뒤 Acetone을 이용하여 5회 세척한 뒤 건조를 실시하였다. 건조된 YSZ 나노 입자는 물에 재분산 시킨 뒤 초음파에 의한 분산 효과를 확인하기 위해 90분간 초음파를 실시한 샘플과 하지 않은 샘플로 나누어 실험을 진행하였다.When VPS (Vinyltrimethoxysilane) was used as a dispersant, Acetone (2-Propanol, 99.5%, SAMCHUN) was used as the solvent. After the appropriate amount of VPS was added to the solvent, the hydrolysis reaction was performed at 300 rpm for 90 minutes. After the hydrolysis reaction was completed, 4 g of YSZ was added, and a surface modification reaction was performed at 50° C. for 3 hours, followed by washing with acetone 5 times and drying. The dried YSZ nanoparticles were redispersed in water and then divided into samples that were subjected to ultrasound for 90 minutes and samples that were not subjected to the experiment to confirm the dispersion effect by ultrasound.
도 7은 수열합성법으로 합성한 지지체를 MPS, GPS, VPS 실란 커플링제로 표면처리를 실시한 뒤 증류수에 분산 시키고 초음파를 90분간 실시한 샘플의 수분산 안정화 사진으로서, 초음파 실시에 따라 기존 6시간에서 4일까지 수분산 안정성이 크게 늘어난 결과를 확인할 수 있었다.FIG. 7 is a water dispersion stabilization photograph of a sample obtained by dispersing in a distilled water after performing a surface treatment of a support synthesized by a hydrothermal synthesis method with MPS, GPS, and VPS silane coupling agent, and performing ultrasonic waves for 90 minutes. The results showed that the dispersion stability was greatly increased by the day.
<실시예 2><Example 2>
도 8에 도시한 바와 같이, 상기 실시예 1에서 수열합성법을 통해 제조한 YSZ 나노입자를 분산시킨 나노졸에 산 또는 염기를 첨가하여 pH를 제어를 통해 이트리아 안정화 지르코니아(YSZ)졸을 제조하였다. As shown in FIG. 8, yttria-stabilized zirconia (YSZ) sol was prepared by adding an acid or a base to the nanosol in which YSZ nanoparticles prepared by hydrothermal synthesis in Example 1 were dispersed, and controlling pH. .
구체적으로, YSZ 나노 분말을 증류수에 3wt%로 첨가하여 교반 한 뒤 HCl(Hydro-chloric acid, 35.0~37.0%, DAEJUNG)과 NH4OH(Ammonium hydroxide, 25.0~28.0%, DAEJUNG)를 첨가하여 pH를 2~10까지 조절하였다. 이후 분산성을 향상시키기 위하여 90분간 초음파 처리를 하였다. 이트리아 안정화 지르코니아(YSZ)졸은 각각 15ml씩 바이알 병에 담아 시간에 따른 수분산 안정성을 확인하였다. 그 결과, pH 8과 pH 9에서는 분산과 동시에 침전이 발생하는 것을 알 수 있었다. 또한, YSZ 입자 크기가 작아질수록 물에 분산시켰을 때 Raw pH가 더 낮아지는 것을 확인할 수 있었으며 분산과 동시에 침전이 발생하는 pH가 높아진다는 것을 알 수 있었다. 그리고, pH 6이하에서와 pH 10이상에서 우수한 분산성을 확인할 수 있었다.Specifically, YSZ nano-powder was added to the distilled water at 3 wt% and stirred, followed by stirring to add HCl (Hydro-chloric acid, 35.0-37.0%, DAEJUNG) and NH 4 OH (Ammonium hydroxide, 25.0-28.0%, DAEJUNG) to pH. Was adjusted to 2-10. Thereafter, ultrasonic treatment was performed for 90 minutes to improve dispersibility. Yttria-stabilized zirconia (YSZ) sol was placed in a vial bottle of 15 ml each to confirm the dispersion stability over time. As a result, it was found that precipitation occurred simultaneously with dispersion at pH 8 and pH 9. In addition, the smaller the YSZ particle size, the lower the raw pH was when dispersing in water, and the higher the pH at which precipitation occurs simultaneously with dispersion. And, it was confirmed that excellent dispersibility at pH 6 or lower and at pH 10 or higher.
<실시예 3><Example 3>
도 10에 도시한 바와 같이, 상기 실시예 1에서 수열합성법을 통해 제조한 YSZ 나노입자를 분산시킨 나노졸에 각종 고분자 및 계면활성제를 첨가하여 이트리아 안정화 지르코니아(YSZ)졸을 제조하였다. As shown in FIG. 10, yttria-stabilized zirconia (YSZ) sol was prepared by adding various polymers and surfactants to nanosols in which YSZ nanoparticles prepared in Example 1 were dispersed through hydrothermal synthesis.
구체적으로, YSZ 나노 분말을 증류수에 3wt%로 첨가하여 교반 한 뒤 DARVAN 811D(2-Propenoic acid, 100%, Vanderbilt Minerals), Citric acid(2-hydroxypropane- 1,2,3tricarboxylic acid, 99.5%, SIGMA-ALDRICH), Lauric acid(Dodecanoid acid, 97.0%, SAMCHUM) 또는 Span #80(Sorbitan monooleate, 100%, SAMCHUN)을 1wt% 첨가한 후 분산성을 향상시키기 위하여 90분간 초음파 처리를 하였다. 이트리아 안정화 지르코니아(YSZ)졸은 각각 15ml씩 바이알 병에 담아 시간에 따른 수분산 안정성을 확인하였다.Specifically, YSZ nano-powder was added to 3% by weight of distilled water and stirred, followed by DARVAN 811D (2-Propenoic acid, 100%, Vanderbilt Minerals), Citric acid (2-hydroxypropane- 1,2,3tricarboxylic acid, 99.5%, SIGMA -ALDRICH), Lauric acid (Dodecanoid acid, 97.0%, SAMCHUM) or Span #80 (Sorbitan monooleate, 100%, SAMCHUN) was added 1 wt%, followed by sonication for 90 minutes to improve dispersibility. Yttria-stabilized zirconia (YSZ) sol was placed in a vial bottle of 15 ml each to confirm the dispersion stability over time.
도 11은 상기와 같이 여러 종류의 분산제와 수분산 시킨 뒤 초음파를 90분간 실시한 샘플의 수분산 안정화 사진이다. Darvan과 Citric acid에서 우수한 수분산 안정성을 확인할 수 있었으나 Span #80에서는 24시간 이후, Lauric acid에서는 바로 침전이 발생하는 것을 확인할 수 있었다.11 is a water dispersion stabilization photograph of a sample subjected to ultrasonic waves for 90 minutes after dispersing with various types of dispersants as described above. It was confirmed that excellent water dispersion stability was found in Darvan and Citric acid, but precipitation occurred immediately after 24 hours in Span #80 and in Lauric acid.
상기 실시예 1 내지 3으로부터 실란 커플링제를 이용한 분산에서는 MPS가 가장 우수한 분산특성을 나타내었으며 분산제 중에서는 Darvan과 Citric acid, 그리고 pH 3과 pH 10에서 우수한 분산특성을 나타내는 것으로 확인되었다.From Examples 1 to 3, the dispersion using a silane coupling agent showed that MPS exhibited the best dispersion properties, and among the dispersants, it was confirmed to exhibit excellent dispersion properties at Darvan and Citric acid, and at pH 3 and pH 10.
본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다.  그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.The present invention is not limited to the above embodiments, but may be manufactured in various different forms, and those skilled in the art to which the present invention pertains have other specific forms without changing the technical spirit or essential features of the present invention. It will be understood that can be carried out. Therefore, it should be understood that the embodiments described above are illustrative in all respects and not restrictive.
본 발명에 이트리아 안정화 지르코니아 나노졸의 제조방법에 따르면, 나노 크기의 이트리아 안정화 지르코니아(YSZ)의 응용에 있어서 문제점으로 지적되어온 응집문제를 해결함으로써, 열차폐 코팅소재 등으로서 더욱 우수한 물성을 가지는 나노 크기의 이트리아 안정화 지르코니아(YSZ)를 제조할 수 있다.According to the manufacturing method of the yttria-stabilized zirconia nanosol in the present invention, by solving the aggregation problem that has been pointed out as a problem in the application of the nano-sized yttria-stabilized zirconia (YSZ), it has more excellent properties as a heat shield coating material, etc. Nano-sized yttria stabilized zirconia (YSZ) can be prepared.

Claims (9)

  1. (a) ZrOCl2·8H2O 졸(sol) 및 Y(NO3)3·6H2O 졸을 혼합하고 염기성 물질을 첨가해 pH를 조절하는 단계;(a) mixing ZrOCl 2 ·8H 2 O sol and Y(NO 3 ) 3 ·6H 2 O sol and adding a basic material to adjust the pH;
    (b) 상기 단계 (a)에서 얻어진 졸을 수열반응시켜 이트리아 안정화 지르코니아(yttria stabilized zirconia, YSZ) 나노 입자를 제조하는 단계; 및 (B) preparing a yttria stabilized zirconia (YSZ) nanoparticles by hydrothermal reaction of the sol obtained in step (a); And
    (c) 상기 이트리아 안정화 지르코니아 나노 입자가 분산된 나노졸의 분산성 향상을 위한 처리를 실시하는 단계;를 포함하는 분산성이 우수한 이트리아 안정화 지르코니아 나노졸의 제조방법.(c) performing a treatment for improving dispersibility of the nanosol in which the yttria-stabilized zirconia nanoparticles are dispersed; a method for preparing a yttria-stabilized zirconia nanosol having excellent dispersibility.
  2. 제1항에 있어서,According to claim 1,
    상기 단계 (a)에서 상기 염기성 물질로서 암모니아를 첨가해 pH 9로 조절하는 것을 특징으로 하는 분산성이 우수한 이트리아 안정화 지르코니아 나노졸의 제조방법.A method for preparing a yttria-stabilized zirconia nanosol having excellent dispersibility, wherein ammonia is added as the basic substance in step (a) and adjusted to pH 9.
  3. 제1항에 있어서,According to claim 1,
    상기 단계 (b)에서는 200℃에서 2 내지 8시간 동안 수열반응시키는 것을 특징으로 하는 분산성이 우수한 이트리아 안정화 지르코니아 나노졸의 제조방법.In the step (b), a method for preparing a yttria-stabilized zirconia nanosol having excellent dispersibility, characterized in that the hydrothermal reaction is performed at 200°C for 2 to 8 hours.
  4. 제1항에 있어서,According to claim 1,
    상기 단계 (c)에서 상기 이트리아 안정화 지르코니아 나노 입자 표면을 실란 커플링제(silane coupling agent)로 개질하고 초음파 분산시켜 분산성을 향상시키는 것을 특징으로 하는 분산성이 우수한 이트리아 안정화 지르코니아 나노졸의 제조방법.Preparation of yttria-stabilized zirconia nanosol having excellent dispersibility, wherein the yttria-stabilized zirconia nanoparticle surface in step (c) is modified with a silane coupling agent and ultrasonically dispersed to improve dispersibility. Way.
  5. 제4항에 있어서,According to claim 4,
    상기 단계 (c)에서 상기 실란 커플링제는 3-(트리메톡시실릴)프로필메타크릴레이트(3-(Trimethoxysilyl)propylmethacrylate, MPS), (3-글리시독시프로필)트리메톡시실란((3-Glyciduloxypropyl)trimethoxysilane, GPS) 또는 비닐트리메톡시실란(Vinyltrimethoxysilane, VPS)인 것을 특징으로 하는 분산성이 우수한 이트리아 안정화 지르코니아 나노졸의 제조방법.In step (c), the silane coupling agent is 3-(trimethoxysilyl)propylmethacrylate (MPS), (3-glycidoxypropyl)trimethoxysilane ((3- Glyciduloxypropyl)trimethoxysilane (GPS) or vinyl trimethoxysilane (Vinyltrimethoxysilane, VPS) is a method for producing yttria-stabilized zirconia nanosol having excellent dispersibility.
  6. 제1항에 있어서,According to claim 1,
    상기 단계 (c)에서 상기 이트리아 안정화 지르코니아 나노 입자가 분산된 나노졸의 pH를 조절하고 초음파 분산시켜 분산성을 향상시키는 것을 특징으로 하는 분산성이 우수한 이트리아 안정화 지르코니아 나노졸의 제조방법.A method for preparing a yttria-stabilized zirconia nanosol having excellent dispersibility, wherein the yttria-stabilized zirconia nanoparticles in step (c) are adjusted and the pH of the nanosol dispersed therein is improved to improve dispersibility.
  7. 제6항에 있어서,The method of claim 6,
    상기 단계 (c)에서 상기 이트리아 안정화 지르코니아 나노 입자가 분산된 나노졸의 pH를 3 또는 10으로 조절하는 것을 특징으로 하는 분산성이 우수한 이트리아 안정화 지르코니아 나노졸의 제조방법.Method for producing a yttria-stabilized zirconia nanosol having excellent dispersibility, wherein the pH of the nanosol in which the yttria-stabilized zirconia nanoparticles are dispersed in step (c) is adjusted to 3 or 10.
  8. 제1항에 있어서,According to claim 1,
    상기 단계 (c)에서 상기 이트리아 안정화 지르코니아 나노 입자가 분산된 나노졸에 2-프로펜산(2-Propenoic acid) 또는 구연산(citric acid)을 첨가하고 초음파 분산시켜 분산성을 향상시키는 것을 특징으로 하는 분산성이 우수한 이트리아 안정화 지르코니아 나노졸의 제조방법.In step (c), the yttria-stabilized zirconia nanoparticles are dispersed in nanosol, and 2-propenic acid or citric acid is added and ultrasonic dispersion to improve dispersibility. Method for preparing yttria-stabilized zirconia nanosol with excellent dispersibility.
  9. 제1항 내지 제8항 중 어느 한 항에 기재된 방법에 의해 제조된 분산성이 우수한 이트리아 안정화 지르코니아 나노졸.A yttria-stabilized zirconia nanosol excellent in dispersibility produced by the method according to any one of claims 1 to 8.
PCT/KR2019/001980 2018-12-18 2019-02-19 Method of preparing yttria stabilized zirconia (ysz) nanosol having excellent dispersibility WO2020130226A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180163946A KR20200075361A (en) 2018-12-18 2018-12-18 Manufacturing method of yttria stabilized zirconia(ysz) nano sol having excellent dispersibility
KR10-2018-0163946 2018-12-18

Publications (1)

Publication Number Publication Date
WO2020130226A1 true WO2020130226A1 (en) 2020-06-25

Family

ID=71102101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/001980 WO2020130226A1 (en) 2018-12-18 2019-02-19 Method of preparing yttria stabilized zirconia (ysz) nanosol having excellent dispersibility

Country Status (2)

Country Link
KR (1) KR20200075361A (en)
WO (1) WO2020130226A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022181850A1 (en) * 2021-02-23 2022-09-01 창원대학교 산학협력단 Method for preparing nanopowder having excellent dispersibility and uniform grain size
CN115124074B (en) * 2022-07-26 2024-02-06 宣城市晶纳环保科技有限公司 Preparation method of high-dispersion composite nano zirconium dioxide
KR20240034513A (en) * 2022-09-07 2024-03-14 한국재료연구원 Meso Porous Yttria Stabilized Zirconia-Nano Spheres from Zirconium Based Metal-Organic Framework and Method for manufacturing thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110064905A (en) * 2009-12-09 2011-06-15 울산대학교 산학협력단 Manufacturing method of porous yttria stabilized zirconia

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59156926A (en) 1983-02-21 1984-09-06 Narumo Kagaku Kikai Kenkyusho:Kk Microelectrode manufacturing apparatus
KR100918994B1 (en) 2002-01-29 2009-09-25 (주) 나노랩 A method of producing zirconia, yttria stabilized zirconia powders by continuous hydrothermal synthesis reactor
KR20180018231A (en) 2016-08-10 2018-02-21 대주전자재료 주식회사 Manufacturing method of core­shell structured composite powder for solid oxide fuel cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110064905A (en) * 2009-12-09 2011-06-15 울산대학교 산학협력단 Manufacturing method of porous yttria stabilized zirconia

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Fabrication and Antibacterial Activity of Ag doped YSZ which uses Dispersing Agent", 31 December 2017 (2017-12-31) *
AMAT, NOOR FAEIZAH: "Effect of pH of suspension and mechanical treatment on nanosized zirconia dispersion", JOURNAL OF MECHANICAL ENGINEERING, 15 October 2017 (2017-10-15) *
FAN, BAOAN: "The Hydrothermal Synthesis of Nano-YSZ Crystallite and the Preparation of YSZ Electrolyte Film for SOFC", ADVANCED MATERIALS RESEARCH, 19 April 2011 (2011-04-19) *
KIM, SOO-HYUN ET AL.: "Enhanced Dispersion of Yttria Stabilized Zirconia by Mixed Dispersants Containing Carboxyl Group in Aqueous System", KOREAN JOURNAL OF MATERIALS RESEARCH, vol. 28, no. 2, 28 February 2018 (2018-02-28), pages 82 - 88 *
LEE, WON JOON: "Effect of Silane Coupling Agent on Dispersity of 3mol Yttria Stabilized Zirconia", NANOPIA 2017, 8 November 2017 (2017-11-08), Retrieved from the Internet <URL:http://2017.nanopia.org/bbs/board.php?bo_table=abstract&wr_id=108&sca=Poster&page=7> *

Also Published As

Publication number Publication date
KR20200075361A (en) 2020-06-26

Similar Documents

Publication Publication Date Title
WO2020130226A1 (en) Method of preparing yttria stabilized zirconia (ysz) nanosol having excellent dispersibility
CN108138367B (en) Nanofiber-nanowire composite and method for producing the same
AU2008207641B2 (en) Polymerised inorganic-organic precursor solutions
CN108525669B (en) Highly-dispersed silicon dioxide nanotube supported nickel catalyst and preparation method thereof
WO2015002410A1 (en) Solid electrolyte for all solid-state lithium-ion battery and manufacturing method therefor
TW200941804A (en) Homogeneous nanoparticle core doping of cathode material precursors
CN100515954C (en) Method for preparing indium oxide nano thread ordered aggregation
Qiu et al. Sintering Properties of Tetragonal Zirconia Nanopowder Preparation of the NaCl+ KCl Binary System by the Sol–Gel–Flux Method
Chen et al. Reduced activation energy and crystalline size for yttria-stabilized zirconia nano-crystals:: an experimental and theoretical study
Ha et al. Synthesis of lithium aluminate for application in radiation dosimetry
CN1915836A (en) Method for preparting Nano powder of zirconia
CN113004035B (en) Rare earth modified zirconium-based oxide with nano core-shell structure
US7829061B2 (en) Zirconium oxide hydrate particles and method for producing the same
Cao et al. Preparation of zirconium diboride ultrafine hollow spheres by a combined sol–gel and boro/carbothermal reduction technique
Ray et al. Stabilized nanoparticles of metastable ZrO2 with Cr3+/Cr4+ cations: preparation from a polymer precursor and the study of the thermal and structural properties
Karthick et al. Synthesis of nano-bound microsphere Co 3 O 4 by simple polymer-assisted sol–gel technique
WO2013157775A1 (en) Method for producing colloidal cerium oxide
IT9019536A1 (en) PROCEDURE FOR THE PREPARATION OF MIXED ZIRCONIUM AND YELLOW OXIDES
Wahyudi et al. Low-calcination temperatures of magnesia partially stabilized zirconia (Mg-PSZ) nanoparticles derived from local zirconium silicates
CN110446687A (en) For producing the method for nickel oxide nano particle and using the nickel oxide nano particle of its production
Jiao et al. Preparation of nickel hydroxide nanorods/nanotubes and microscopic nanorings under hydrothermal conditions
CN110203967B (en) Preparation method of sheet strontium titanate nano single crystal
CN107827141B (en) Nano ceric oxide and preparation method thereof
WO2022181850A1 (en) Method for preparing nanopowder having excellent dispersibility and uniform grain size
CN108002846B (en) Y-ZrO2Coated with Al2O3Nano composite powder and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19900025

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19900025

Country of ref document: EP

Kind code of ref document: A1