WO2022181850A1 - Method for preparing nanopowder having excellent dispersibility and uniform grain size - Google Patents

Method for preparing nanopowder having excellent dispersibility and uniform grain size Download PDF

Info

Publication number
WO2022181850A1
WO2022181850A1 PCT/KR2021/002253 KR2021002253W WO2022181850A1 WO 2022181850 A1 WO2022181850 A1 WO 2022181850A1 KR 2021002253 W KR2021002253 W KR 2021002253W WO 2022181850 A1 WO2022181850 A1 WO 2022181850A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoparticles
nanopowder
particle size
excellent dispersibility
uniform particle
Prior art date
Application number
PCT/KR2021/002253
Other languages
French (fr)
Korean (ko)
Inventor
정연길
손정훈
최연빈
김봉구
Original Assignee
창원대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 창원대학교 산학협력단 filed Critical 창원대학교 산학협력단
Priority to PCT/KR2021/002253 priority Critical patent/WO2022181850A1/en
Publication of WO2022181850A1 publication Critical patent/WO2022181850A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/10Preparation or treatment, e.g. separation or purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • C01F17/235Cerium oxides or hydroxides

Definitions

  • the present invention is (i) a national research and development project implemented by the Ministry of Trade, Industry and Energy (project number: 1415167893, project name: energy manpower nurturing project, research project name: high-efficiency convergence research for high-temperature gas turbine parts and advanced track for manpower nurturing, research management specialist Institution: Korea Institute of Energy Technology Evaluation and Planning, Supervisor: Changwon University Industry-University Cooperation Foundation, Research Period: 2019.01.01.
  • the technical problem to be solved by the present invention is to provide a method for producing a nanopowder that solves the problems of agglomeration and non-uniform particle size, which have been a major limitation in the use of nanopowders in the past.
  • the present invention synthesizes a nanopowder based on a co-precipitation method and a hydrothermal (or solvothermal) synthesis method, but (a) by adding a basic material to the first nanoparticle precursor solution to adjust the pH. preparing a nanoparticle precipitation solution; (b) recovering the first nanoparticles after stirring by adding a surfactant to the first nanoparticle precipitation solution; (c) synthesizing second nanoparticles from the first nanoparticles; and (d) adding silane and a dispersing agent to the solution in which the second nanoparticles are dispersed and stirring; proposes a method for preparing nanopowder having excellent dispersibility and uniform particle size (FIG. 1) ).
  • the first nanoparticle precursor is composed of an acetate based precursor, a nitrate based precursor, a chloride based precursor, and a hydroxide based precursor. It may be at least one selected from the group, and more specifically, the first nanoparticle precursor may be at least one selected from the group consisting of a metal acetate salt, a metal nitrate salt, a metal chloride salt, and a metal hydroxide salt. .
  • step (a) the basic material is added to the first nanoparticle precursor solution to adjust the pH of the solution to precipitate the first nanoparticles in the solution, and ammonium hydroxide (NH 4 OH), It may be made of sodium hydroxide (NaOH) or potassium hydroxide (KOH).
  • step (b) the surfactant is added to improve the dispersibility and particle size uniformity of the first nanoparticles formed from the first nanoparticle precursor through the co-precipitation method
  • polyvinyl alcohol (PVA) polyvinyl alcohol (PVA)
  • urea urea
  • lauric acid and adipic acid
  • adipic acid may be at least one selected from the group consisting of.
  • the first nanoparticles obtained through the co-precipitation method are washed twice or more with water and/or alcohol, and then recovered, and the second through a calcination process of heat treatment at a high temperature of 800 to 1300 ° C.
  • Nanoparticles are synthesized, or the first nanoparticles recovered after washing are dispersed in an organic solvent such as water, alcohol, or a mixed solvent of water and an organic solvent, and then the second nanoparticles are synthesized by hydrothermal reaction or solvothermal reaction.
  • ammonium hydroxide (NH 4 OH) as a pH adjuster in a solution containing cerium nitrate as a first nanoparticle precursor
  • Sodium hydroxide NaOH
  • potassium hydroxide KOH
  • polyvinyl alcohol PVA
  • urea or lauric acid urea or lauric acid
  • adipic acid as a surfactant
  • adipic acid is added and stirred to cerium hydroxide
  • a process of precipitating the first nanoparticles made of washing the precipitated cerium hydroxide with water, recovering the precipitated cerium hydroxide, and performing a hydrothermal (or solvothermal) reaction to prepare the second nanoparticles made of cerium oxide.
  • step (d) the synthesized second nanoparticles are added to a solvent together with silane and a dispersant to obtain uniformly dispersed nanoparticles
  • the silane is MPS (3-(Trimethoxysilyl)propylmethacrylate), MTES (Methyltriethoxysilane), MTMS (Methyltrimethoxysilane), ETMS (Ethyltrimethoxysilane), OTMS (Octadecyltrimethoxysilane), ETES (Ethyltriethoxysilane) and GPTMS (3-Glycidoxypropyltrimethoxysilane) may be at least one selected from, and the dispersant may be PVA, PVB, PVP, Cellulose, lauric acid, citric acid, DARVAN 811D (sodium polyacrylate), Darvan 821A (ammonium polyacrylate), etc. can be selected and added.
  • the dispersant may be PVA, PV
  • step (d) additional control of the dispersibility of the solution in which the second nanoparticles are dispersed in step (d) can be achieved by adjusting the pH through the addition of an acid or a base.
  • nanopowder having excellent dispersibility and uniform particle size prepared by the above manufacturing method is proposed.
  • the first nanoparticles having excellent dispersibility and uniform particle size distribution can be prepared, and the first nanoparticles obtained using the co-precipitation method
  • the second nanoparticles prepared by heat treatment or hydrothermal (or solvothermal) reaction are dispersed in an aqueous or non-aqueous solvent together with various silane coupling agents, pH adjusters (acid or base) and polymer-based dispersants to provide excellent dispersibility and uniform particle size Nanopowder having a distribution can be prepared.
  • the nanopowder prepared by the present invention has improved dispersibility compared to the prior art, so that it can be sintered at a temperature lower than the generally known sintering temperature, thereby improving the properties of the sintered body.
  • FIG. 1 is a process flow diagram of a method for manufacturing a nanopowder having excellent dispersibility and uniform particle size according to the present invention.
  • SEM scanning electron microscope
  • 3 is a porosity measurement result of the sintered body obtained by sintering the nanopowder prepared in the present Example.
  • Embodiments according to the present specification may be modified in various other forms, and the scope of the present specification is not to be construed as being limited to the embodiments described below.
  • the embodiments of the present specification are provided to more completely explain the present specification to those of ordinary skill in the art.
  • Ceria nanopowders were synthesized using a solvothermal process.
  • Ce(NO 3 ) 3.6H 2 O Cerium(III) nitrate hexahydrate] was added to distilled water at a concentration of 0.1 to 1M, followed by stirring at 300 to 400 rpm for 30 minutes. After stirring, the pH was adjusted to 7, 9, and 11 using NH 4 OH (ammonium hydroxide), stirred for an additional 30 minutes, and then surfactants lauric acid and adipic acid were added to 5-30 wt% based on the total solution weight.
  • the first precipitate was prepared by sufficiently stirring for 1 hour.
  • the prepared primary precipitate is dispersed in a solution of 75:25, 50:50, 25:75, and 0:100 in volume ratio of ethanol and distilled water, and then sufficiently for 30 minutes. Agitation was performed. The stirred solution was reacted at 100 to 150° C. for 1 to 10 hours using a high-temperature reaction vessel, and then washed 5 times using distilled water and ethanol. After washing, 0.5 ⁇ 10wt% of C 6 H 8 O 7 (citric acid) and DARVAN 811D (sodium polyacrylate) based on the total weight were added and dispersed, and then dried in a dry oven at 100°C for 24 hours. Nanopowder with improved dispersibility was recovered.
  • C 6 H 8 O 7 citric acid
  • DARVAN 811D sodium polyacrylate
  • the synthesized ceria powder was analyzed for crystallinity using an X-ray diffraction analyzer (X-ray diffraction), and a specific surface area was analyzed using a specific surface area analyzer (BET). Then, the microstructure was analyzed using FE-SEM (Field Emission Scanning Electron Microscopy).
  • 2 is a result of controlling the pH after adding DARVAN 811D (sodium polyacrylate) to the secondary precipitate.
  • 2 (a) and (c) are microstructure photos at pH 2 when dispersibility was relatively poor, and (b) and (d) of FIG. 2 are when the dispersibility was relatively good at pH 6-7. is a photograph of the microstructure of It can be observed that fine spherical particles are evenly distributed under the condition of excellent dispersibility.
  • 3 is a molded body using the powder of the selected conditions by controlling the dispersion characteristics of the nanopowder under various conditions, selecting conditions for excellent/poor dispersibility, and then sintering at 800 to 1200° C. for 2 hours. It is a result of measuring the apparent porosity of the sintered body and showing the result in a graph.
  • (a) is a pure powder without adding a dispersant
  • (b) is a condition in which the pH is controlled to 2 in the pure powder
  • (c) is a condition in which citric acid is added in the dispersant and the pH is controlled to 10
  • (d) ) is the condition in which citric acid is added and the pH is controlled to 5
  • (e) is the condition in which DARVAN 811D is added
  • the pH is controlled to 2
  • (f) is the condition in which only DARVAN 811D is added
  • (g) is citiric acid and DARVAN 811D were added together, and the pH was controlled to 9
  • (h) citiric acid and DARVAN 811D were added together and the pH was controlled to 4, respectively, showing the apparent porosity.
  • Condition (e) showed relatively high porosity
  • conditions (d), (f) and (h) showed relatively low porosity.
  • Nanopowder having excellent dispersibility and uniform particle size distribution can be prepared by the method for producing nanopowder according to the present invention, and the nanopowder prepared by the present invention has improved dispersibility compared to the prior art and is generally known Since sintering is possible at a temperature lower than the sintering temperature, the properties of the sintered body can be improved.

Abstract

The present invention relates to a method for preparing nanopowder having excellent dispersibility and a uniform grain size, the method in which nanopowder is synthesized on the basis of coprecipitation and hydrothermal (or solvothermal) synthesis, and which comprises the steps of: (a) preparing a first nanoparticle precipitation solution by adding a basic material to a first nanoparticle precursor solution to adjust the pH; (b) adding a surfactant to the first nanoparticle precipitation solution, stirring same, and then recovering first nanoparticles; (c) synthesizing second nanoparticles from the first nanoparticles; and (d) adding silane and a dispersant to a solution having the second nanoparticles dispersed therein, and stirring same.

Description

우수한 분산성 및 균일한 입도를 가지는 나노분말의 제조방법Method for producing nanopowder with excellent dispersibility and uniform particle size
본 발명은, (i) 산업통상자원부 시행 국가연구개발사업(과제고유번호:1415167893, 사업명:에너지인력양성사업, 연구과제명:가스터빈 고온부품 고효율화 융복합 연구 및 인력양성 고급트랙, 연구관리전문기관:한국에너지기술평가원, 주관기관:창원대학교 산학협력단, 연구기간:2019.01.01. ~ 2021.12.31.), (ii) 과학기술정보통신부 시행 국가연구개발사업(과제고유번호:1711113639, 사업명:선도연구센터지원사업, 연구과제명: 메카트로닉스 융합 부품 소재 연구센터, 연구관리전문기관:한국연구재단, 주관기관:창원대학교 산학협력단, 연구기간:2018.09.01. ~ 2021.08.31.), 및 (iii) 산업통상자원부 시행 국가연구개발사업(과제고유번호:1415168197, 사업명:청정화력핵심기술개발-실증형과제, 연구과제명:발전용 F급 가스터빈 고온부품 재생정비 기술개발 및 실증, 연구관리전문기관:한국에너지기술평가원, 주관기관:㈜성일터빈, 연구기간:2018.05.01. - 2022.12.31)의 연구개발 지원 하에 창원대학교가 수행한 결과물로서, 균일한 입도 분포를 가지고 분산성이 향상된 나노분말을 제조하는 방법에 대한 것이다.The present invention is (i) a national research and development project implemented by the Ministry of Trade, Industry and Energy (project number: 1415167893, project name: energy manpower nurturing project, research project name: high-efficiency convergence research for high-temperature gas turbine parts and advanced track for manpower nurturing, research management specialist Institution: Korea Institute of Energy Technology Evaluation and Planning, Supervisor: Changwon University Industry-University Cooperation Foundation, Research Period: 2019.01.01. ~ 2021.12.31.), (ii) National R&D project implemented by the Ministry of Science and ICT (Project unique number: 1711113639, project name: Leading Research Center Support Project, Research Project Title: Mechatronics Convergence Components and Materials Research Center, Research Management Specialized Institution: National Research Foundation, Hosted by: Changwon University Industry-University Cooperation Foundation, Research Period: 2018.09.01. ~ 2021.08.31.), and ( iii) National R&D project implemented by the Ministry of Trade, Industry and Energy (Project unique number: 1415168197, project name: Clean thermal power core technology development - Demonstration type project, research project name: Development and demonstration of high-temperature component regeneration and maintenance technology for power generation F-grade gas turbines, research management As a result of Changwon University under the R&D support of a specialized institution: Korea Energy Technology Evaluation and Planning Agency, supervising institution: Sungil Turbine Co., Ltd., research period: 2018.05.01 - 2022.12.31), it has a uniform particle size distribution and improved dispersibility. It relates to a method for producing a nanopowder.
최근 세라믹 소재(자성체, 형광체, 촉매, 구조재료, 광학재료 등)의 특성 향상을 위해 공침법, 수열(용매열) 합성법을 이용하여 나노 크기의 세라믹 소재를 합성하기 위한 연구가 활발히 진행되고 있다. Recently, in order to improve the properties of ceramic materials (magnetic materials, phosphors, catalysts, structural materials, optical materials, etc.), research for synthesizing nano-sized ceramic materials using co-precipitation and hydrothermal (solvent heat) synthesis methods is being actively conducted.
공침법, 수열(용매열) 합성법을 이용한 나노분말 합성시 분말의 응집 및 불균일한 입도 등의 문제가 발생하는 것으로 알려져 있어, 나노분말이 가지는 우수한 물성을 극대화하기 위해서는 나노분말의 응집을 최소화하는 분산 기술과 더불어 나노분말의 입도 분포를 균일하게 제어하는 기술에 대한 개발이 요구된다. It is known that problems such as aggregation and non-uniform particle size occur during nanopowder synthesis using co-precipitation and hydrothermal (solvent heat) synthesis. In addition to the technology, the development of a technology for uniformly controlling the particle size distribution of the nanopowder is required.
본 발명이 해결하고자 하는 기술적 과제는, 기존에 나노분말의 활용에 있어 큰 제약이 되어 왔던 응집 및 불균일한 입도에 대한 문제를 해결하는 나노분말의 제조방법을 제공하는 것이다.The technical problem to be solved by the present invention is to provide a method for producing a nanopowder that solves the problems of agglomeration and non-uniform particle size, which have been a major limitation in the use of nanopowders in the past.
상기 기술적 과제를 달성하기 위해, 본 발명은 공침법 및 수열(또는 용매열) 합성법을 기반으로 나노분말을 합성하되 (a) 제1 나노 입자 전구체 용액에 염기성 물질을 첨가해 pH를 조절하여 제1 나노 입자 침전액을 제조하는 단계; (b) 상기 제1 나노 입자 침전액에 계면활성제를 첨가해 교반한 후 제1 나노 입자를 회수하는 단계; (c) 상기 제1 나노 입자로부터 제2 나노 입자를 합성하는 단계; 및 (d) 상기 제2 나노 입자를 분산시킨 용액에 실란 및 분산제를 첨가하고 교반하는 단계;를 포함함으로써 우수한 분산성 및 균일한 입도를 가지는 나노분말을 제조할 수 있는 방법을 제안한다(도 1).In order to achieve the above technical object, the present invention synthesizes a nanopowder based on a co-precipitation method and a hydrothermal (or solvothermal) synthesis method, but (a) by adding a basic material to the first nanoparticle precursor solution to adjust the pH. preparing a nanoparticle precipitation solution; (b) recovering the first nanoparticles after stirring by adding a surfactant to the first nanoparticle precipitation solution; (c) synthesizing second nanoparticles from the first nanoparticles; and (d) adding silane and a dispersing agent to the solution in which the second nanoparticles are dispersed and stirring; proposes a method for preparing nanopowder having excellent dispersibility and uniform particle size (FIG. 1) ).
상기 단계 (a)에서 상기 제1 나노 입자 전구체는, 아세테이트계(acetate based) 전구체, 나이트레이트계(nitrate based) 전구체, 클로라이드계(chloride based) 전구체 및 하이드록사이드계(hydroxide based) 전구체로 이루어진 군으로부터 선택되는 1종 이상일 수 있으며, 보다 구체적으로, 상기 제1 나노 입자 전구체는 금속 아세테이트 염, 금속 나이트레이트 염, 금속 클로라이드 염 및 금속 하이드록사이드 염으로 이루어진 군으로부터 선택되는 1종 이상일 수 있다. In the step (a), the first nanoparticle precursor is composed of an acetate based precursor, a nitrate based precursor, a chloride based precursor, and a hydroxide based precursor. It may be at least one selected from the group, and more specifically, the first nanoparticle precursor may be at least one selected from the group consisting of a metal acetate salt, a metal nitrate salt, a metal chloride salt, and a metal hydroxide salt. .
또한, 상기 단계 (a)에서 상기 염기성 물질은 제1 나노 입자 전구체 용액에 첨가되어 용액의 pH를 조절하여 제1 나노 입자를 용액 중에 석출시켜 침전시키는 역할을 하며, 수산화암모늄(NH4OH), 수산화나트륨(NaOH) 또는 수산화칼륨(KOH)로 이루어질 수 있다. In addition, in step (a), the basic material is added to the first nanoparticle precursor solution to adjust the pH of the solution to precipitate the first nanoparticles in the solution, and ammonium hydroxide (NH 4 OH), It may be made of sodium hydroxide (NaOH) or potassium hydroxide (KOH).
상기 단계 (b)에서 상기 계면활성제는 공침법을 통해 제1 나노 입자 전구체로부터 형성되는 제1 나노 입자의 분산성 및 입도 균일성을 향상시키기 위해 첨가되며, 폴리비닐알코올(PVA), 우레아(urea), 라우르산(lauric acid), 아디프산(adipic acid)으로 이루어진 군으로부터 선택되는 1종 이상일 수 있다. In step (b), the surfactant is added to improve the dispersibility and particle size uniformity of the first nanoparticles formed from the first nanoparticle precursor through the co-precipitation method, polyvinyl alcohol (PVA), urea (urea) ), lauric acid, and adipic acid may be at least one selected from the group consisting of.
상기 단계 (c)에서는 공침법을 통해 얻어진 제1 나노 입자를 물 및/또는 알코올을 이용해 2회 이상 세척하고 회수해 고온, 예를 들면 800 ~ 1300 ℃의 고온에서 열처리하는 소성 공정을 통해 제2 나노 입자를 합성하거나, 세척 후 회수한 제1 나노 입자를 물, 알코올 등의 유기 용매 또는 물과 유기용매의 혼합 용매 등에 분산시킨 후 수열 반응 또는 용매열 반응시켜 제2 나노 입자를 합성한다. In the step (c), the first nanoparticles obtained through the co-precipitation method are washed twice or more with water and/or alcohol, and then recovered, and the second through a calcination process of heat treatment at a high temperature of 800 to 1300 ° C. Nanoparticles are synthesized, or the first nanoparticles recovered after washing are dispersed in an organic solvent such as water, alcohol, or a mixed solvent of water and an organic solvent, and then the second nanoparticles are synthesized by hydrothermal reaction or solvothermal reaction.
상기 단계 (a) 내지 (c)를 거쳐 제2 나노 입자를 합성하는 일례로서, 제1 나노 입자 전구체로서 세륨 나이트레이트(cerium nitrate)를 포함하는 용액에 pH 조절제로서 수산화암모늄(NH4OH), 수산화나트륨(NaOH) 또는 수산화칼륨(KOH)와, 계면활성제로서 폴리비닐알코올(PVA), 우레아(urea) 또는 라우르산(lauric acid), 아디프산(adipic acid)을 첨가하고 교반해 수산화 세륨으로 이루어진 제1 나노 입자를 침전시키고, 침전된 수산화 세륨을 물로 세척하고 회수해 수열(또는 용매열) 반응시켜 산화 세륨으로 이루어진 제2 나노 입자를 제조하는 공정을 들 수 있다. As an example of synthesizing the second nanoparticles through the steps (a) to (c), ammonium hydroxide (NH 4 OH) as a pH adjuster in a solution containing cerium nitrate as a first nanoparticle precursor, Sodium hydroxide (NaOH) or potassium hydroxide (KOH), polyvinyl alcohol (PVA), urea or lauric acid, adipic acid as a surfactant, and adipic acid are added and stirred to cerium hydroxide A process of precipitating the first nanoparticles made of , washing the precipitated cerium hydroxide with water, recovering the precipitated cerium hydroxide, and performing a hydrothermal (or solvothermal) reaction to prepare the second nanoparticles made of cerium oxide.
다음으로, 상기 단계 (d)에서는 합성된 제2 나노 입자를 실란 및 분산제와 함께 용매에 첨가해 균일하게 분산된 나노 분말을 얻는 단계로서, 상기 실란은 MPS(3-(Trimethoxysilyl)propylmethacrylate), MTES(Methyltriethoxysilane), MTMS(Methyltrimethoxysilane), ETMS(Ethyltrimethoxysilane), OTMS(Octadecyltrimethoxysilane), ETES(Ethyltriethoxysilane) 및 GPTMS (3-Glycidoxypropyltrimethoxysilane)으로부터 선택되는 1종 이상일 수 있으며, 상기 분산제는 PVA, PVB, PVP, 우레아, 셀룰로오스, 라우르산, 구연산, DARVAN 811D (sodium polyacrylate), Darvan 821A(ammonium polyacrylate) 등에서 선택해 첨가할 수 있다. Next, in step (d), the synthesized second nanoparticles are added to a solvent together with silane and a dispersant to obtain uniformly dispersed nanoparticles, wherein the silane is MPS (3-(Trimethoxysilyl)propylmethacrylate), MTES (Methyltriethoxysilane), MTMS (Methyltrimethoxysilane), ETMS (Ethyltrimethoxysilane), OTMS (Octadecyltrimethoxysilane), ETES (Ethyltriethoxysilane) and GPTMS (3-Glycidoxypropyltrimethoxysilane) may be at least one selected from, and the dispersant may be PVA, PVB, PVP, Cellulose, lauric acid, citric acid, DARVAN 811D (sodium polyacrylate), Darvan 821A (ammonium polyacrylate), etc. can be selected and added.
또한, 상기 단계 (d)에서 상기 제2 나노 입자를 분산시킨 용액의 분산성의 추가적인 제어는 산 또는 염기의 첨가를 통한 pH를 조절에 의해서 달성될 수 있다. In addition, additional control of the dispersibility of the solution in which the second nanoparticles are dispersed in step (d) can be achieved by adjusting the pH through the addition of an acid or a base.
그리고, 본 발명은 발명의 다른 측면에서 상기 제조방법에 의해 제조된 우수한 분산성 및 균일한 입도를 가지는 나노분말을 제안한다.And, in another aspect of the present invention, a nanopowder having excellent dispersibility and uniform particle size prepared by the above manufacturing method is proposed.
본 발명에 의하면, 공침법을 통한 나노 입자 형성시 계면활성제를 첨가함으로써 분산성이 우수하고 균일한 입도 분포를 가지는 제1 나노 입자를 제조할 수 있으며, 상기 공침법을 이용해 얻어진 제1 나노 입자를 열처리 또는 수열(또는 용매열) 반응시켜 제조한 제2 나노 입자를 각종 실란 커플링제, pH 조절제(산 또는 염기) 및 고분자계 분산제와 함께 수계 또는 비수계 용매에 분산시켜 분산성 우수하고 균일한 입도 분포를 가지는 나노분말을 제조할 수 있다. According to the present invention, by adding a surfactant when forming nanoparticles through the co-precipitation method, the first nanoparticles having excellent dispersibility and uniform particle size distribution can be prepared, and the first nanoparticles obtained using the co-precipitation method The second nanoparticles prepared by heat treatment or hydrothermal (or solvothermal) reaction are dispersed in an aqueous or non-aqueous solvent together with various silane coupling agents, pH adjusters (acid or base) and polymer-based dispersants to provide excellent dispersibility and uniform particle size Nanopowder having a distribution can be prepared.
본 발명에 의해 제조된 나노분말은 종래 기술 대비 향상된 분산성을 가져 일반적으로 알려진 소결 온도보다 낮은 온도에서 소결이 가능해 소결체의 특성을 향상시킬 수 있다. The nanopowder prepared by the present invention has improved dispersibility compared to the prior art, so that it can be sintered at a temperature lower than the generally known sintering temperature, thereby improving the properties of the sintered body.
도 1은 본 발명에 따른 우수한 분산성 및 균일한 입도를 가지는 나노분말의 제조방법의 공정 흐름도이다.1 is a process flow diagram of a method for manufacturing a nanopowder having excellent dispersibility and uniform particle size according to the present invention.
도 2는 본원 실시예에서 제조한 나노분말의 미세구조를 보여주는 주사전자현미경(SEM) 사진이다.2 is a scanning electron microscope (SEM) photograph showing the microstructure of the nanopowder prepared in Examples of the present application.
도 3은 본원 실시예에서 제조한 나노분말을 소결해 얻은 소결체의 기공율 측정 결과이다. 3 is a porosity measurement result of the sintered body obtained by sintering the nanopowder prepared in the present Example.
본 발명을 설명함에 있어서 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다.In describing the present invention, if it is determined that a detailed description of a related well-known function or configuration may unnecessarily obscure the gist of the present invention, the detailed description thereof will be omitted.
본 발명의 개념에 따른 실시예는 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있으므로 특정 실시예들을 도면에 예시하고 본 명세서 또는 출원에 상세하게 설명하고자 한다. 그러나 이는 본 발명의 개념에 따른 실시 예를 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.Since the embodiment according to the concept of the present invention can have various changes and can have various forms, specific embodiments are illustrated in the drawings and described in detail in the present specification or application. However, this is not intended to limit the embodiment according to the concept of the present invention with respect to a specific disclosed form, and should be understood to include all changes, equivalents or substitutes included in the spirit and scope of the present invention.
본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 설시된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used herein are used only to describe specific embodiments, and are not intended to limit the present invention. The singular expression includes the plural expression unless the context clearly dictates otherwise. In the present specification, terms such as “comprise” or “have” are intended to designate that the described feature, number, step, operation, component, part, or combination thereof exists, and includes one or more other features or numbers. , it is to be understood that it does not preclude the possibility of the presence or addition of steps, operations, components, parts, or combinations thereof.
이하, 실시예를 들어 본 발명에 대해 보다 상세하게 설명하기로 한다. Hereinafter, the present invention will be described in more detail by way of examples.
본 명세서에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 명세서의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 명세서의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 명세서를 보다 완전하게 설명하기 위해 제공되는 것이다.Embodiments according to the present specification may be modified in various other forms, and the scope of the present specification is not to be construed as being limited to the embodiments described below. The embodiments of the present specification are provided to more completely explain the present specification to those of ordinary skill in the art.
<실시예><Example>
용매열 공정(Solvothermal)을 이용하여 세리아 나노 분말을 합성하였다. 증류수에 0.1~1M 농도로 Ce(NO3)3.6H2O [Cerium(Ⅲ) nitrate hexahydrate]를 첨가한 뒤, 300~400rpm에서 30분간 교반하였다. 교반 후 NH4OH (ammonium hydroxide)를 이용하여 pH를 7, 9, 11로 적정하여 추가로 30분간 교반한 뒤, 계면 활성제인 lauric acid와 Adipic acid를 전체 용액 무게 대비 5~30wt%를 첨가하여 1시간동안 충분히 교반하여 1차 침전물을 제조하였다. 제조된 1차 침전물은 원심분리기를 이용하여 용매를 분리한 다음, 에탄올과 증류수가 부피비율로 75:25, 50:50, 25:75, 0:100으로 혼합된 용액에 분산시킨 뒤 30분간 충분히 교반을 하였다. 교반된 용액을 고온반응 용기를 이용하여 100~150℃에서 1~10시간 동안 반응 후 증류수와 에탄올을 이용하여 5회 세척을 실시하였다. 세척 후 얻어진 2차 침전물에 C6H8O7 (citric acid)와 DARVAN 811D (sodium polyacrylate)를 각각 전체 무게 대비 0.5~10wt% 첨가하여 분산을 실시한 뒤, 100℃ dry oven에서 24시간동안 건조하여 분산성이 향상된 나노분말을 회수하였다. 나노 분말의 분산성과 소결특성에 대한 연구를 진행하기 위해 회수된 분말 1g을 직경 10mm 성형몰드를 이용하여 1.5Mpa의 압력으로 성형하여 성형체를 제조하였고, 800~1200℃에서 2시간 동안 소결을 진행하여 소결체를 제조하였다. Ceria nanopowders were synthesized using a solvothermal process. Ce(NO 3 ) 3.6H 2 O [Cerium(III) nitrate hexahydrate] was added to distilled water at a concentration of 0.1 to 1M, followed by stirring at 300 to 400 rpm for 30 minutes. After stirring, the pH was adjusted to 7, 9, and 11 using NH 4 OH (ammonium hydroxide), stirred for an additional 30 minutes, and then surfactants lauric acid and adipic acid were added to 5-30 wt% based on the total solution weight. The first precipitate was prepared by sufficiently stirring for 1 hour. After separating the solvent using a centrifuge, the prepared primary precipitate is dispersed in a solution of 75:25, 50:50, 25:75, and 0:100 in volume ratio of ethanol and distilled water, and then sufficiently for 30 minutes. Agitation was performed. The stirred solution was reacted at 100 to 150° C. for 1 to 10 hours using a high-temperature reaction vessel, and then washed 5 times using distilled water and ethanol. After washing, 0.5~10wt% of C 6 H 8 O 7 (citric acid) and DARVAN 811D (sodium polyacrylate) based on the total weight were added and dispersed, and then dried in a dry oven at 100℃ for 24 hours. Nanopowder with improved dispersibility was recovered. In order to conduct research on the dispersibility and sintering characteristics of nanopowder, 1 g of the recovered powder was molded at a pressure of 1.5 Mpa using a mold with a diameter of 10 mm to prepare a compact, and sintered at 800 to 1200 ° C for 2 hours. A sintered body was prepared.
합성된 세리아 분말은 X선 회절 분석기 (X-ray diffraction)를 이용하여 결정성을 분석하였으며, 비표면적 분석기 (BET)를 이용하여 비표면적을 분석하였다. 그리고, FE-SEM (Field Emission Scanning Electron Microscopy)을 이용하여 미세구조를 분석하였다. The synthesized ceria powder was analyzed for crystallinity using an X-ray diffraction analyzer (X-ray diffraction), and a specific surface area was analyzed using a specific surface area analyzer (BET). Then, the microstructure was analyzed using FE-SEM (Field Emission Scanning Electron Microscopy).
도 2는 2차 침전물에 DARVAN 811D (sodium polyacrylate)를 첨가한 뒤 pH를 제어한 결과이다. 도 2의 (a)와 (c)는 분산성이 상대적으로 열위하였던 pH 2일때의 미세구조 사진이며, 도 2의 (b)와 (d)는 분산성이 상대적으로 우수하였던 pH 6~7일때의 미세구조 사진이다. 우수한 분산성을 가지는 조건에서는 미세한 구형의 입자들이 고르게 분포하고 있는 것을 관찰할 수 있다. 2 is a result of controlling the pH after adding DARVAN 811D (sodium polyacrylate) to the secondary precipitate. 2 (a) and (c) are microstructure photos at pH 2 when dispersibility was relatively poor, and (b) and (d) of FIG. 2 are when the dispersibility was relatively good at pH 6-7. is a photograph of the microstructure of It can be observed that fine spherical particles are evenly distributed under the condition of excellent dispersibility.
도 3은 다양한 조건으로 나노분말의 분산특성을 제어한 뒤 분산성이 우수/열위한 조건을 선정하여 선정된 조건의 분말을 이용하여 성형체를 제조한 뒤, 800~1200℃에서 2시간 동안 소결한 소결체의 겉보기기공율을 측정하여 그 결과를 그래프로 나타낸 결과이다. (a)는 분산제를 투입하지 않은 순수한 분말이며, (b)는 순수한 분말에 pH를 2로 제어한 조건, (c)는 분산제 중에서 citric acid를 투입하고, pH를 10으로 제어한 조건, (d)는 citric acid를 투입하고, pH를 5로 제어한 조건, (e)는 DARVAN 811D를 투입하고, pH를 2로 제어한 조건 (f)는 DARVAN 811D만 첨가한 조건, (g)는 citiric acid와 DARVAN 811D을 함께 투입한 뒤 pH를 9로 제어한 조건, (h) citiric acid와 DARVAN 811D을 함께 투입한 뒤 pH를 4로 제어한 조건의 겉보기 기공율을 나타내었다. (e) 조건에서 상대적으로 기공율이 높았으며, (d), (f)와 (h) 조건에서 상대적으로 낮은 기공율을 확인하였다. 3 is a molded body using the powder of the selected conditions by controlling the dispersion characteristics of the nanopowder under various conditions, selecting conditions for excellent/poor dispersibility, and then sintering at 800 to 1200° C. for 2 hours. It is a result of measuring the apparent porosity of the sintered body and showing the result in a graph. (a) is a pure powder without adding a dispersant, (b) is a condition in which the pH is controlled to 2 in the pure powder, (c) is a condition in which citric acid is added in the dispersant and the pH is controlled to 10, (d) ) is the condition in which citric acid is added and the pH is controlled to 5, (e) is the condition in which DARVAN 811D is added, and the pH is controlled to 2 (f) is the condition in which only DARVAN 811D is added, (g) is citiric acid and DARVAN 811D were added together, and the pH was controlled to 9, and (h) citiric acid and DARVAN 811D were added together and the pH was controlled to 4, respectively, showing the apparent porosity. Condition (e) showed relatively high porosity, and conditions (d), (f) and (h) showed relatively low porosity.
본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.The present invention is not limited to the above embodiments, but can be manufactured in a variety of different forms, and those of ordinary skill in the art to which the present invention pertains can take other specific forms without changing the technical spirit or essential features of the present invention. It will be understood that it can be implemented as Therefore, it should be understood that the embodiments described above are illustrative in all respects and not restrictive.
본 발명에 따른 나노분말의 제조방법에 의해 분산성이 우수하고 균일한 입도 분포를 가지는 나노분말을 제조할 수 있고, 본 발명에 의해 제조된 나노분말은 종래 기술 대비 향상된 분산성을 가져 일반적으로 알려진 소결 온도보다 낮은 온도에서 소결이 가능해 소결체의 특성을 향상시킬 수 있다. Nanopowder having excellent dispersibility and uniform particle size distribution can be prepared by the method for producing nanopowder according to the present invention, and the nanopowder prepared by the present invention has improved dispersibility compared to the prior art and is generally known Since sintering is possible at a temperature lower than the sintering temperature, the properties of the sintered body can be improved.

Claims (9)

  1. (a) 제1 나노 입자 전구체 용액에 염기성 물질을 첨가해 제1 나노 입자 침전액을 제조하는 단계; (a) preparing a first nanoparticle precipitation solution by adding a basic material to the first nanoparticle precursor solution;
    (b) 상기 제1 나노 입자 침전액에 계면활성제를 첨가해 교반한 후 제1 나노 입자를 회수하는 단계; (b) recovering the first nanoparticles after stirring by adding a surfactant to the first nanoparticle precipitation solution;
    (c) 상기 제1 나노 입자로부터 제2 나노 입자를 합성하는 단계; 및 (c) synthesizing second nanoparticles from the first nanoparticles; and
    (d) 상기 제2 나노 입자를 분산시킨 용액에 실란 및 분산제를 첨가하고 교반하는 단계;를 포함하는 우수한 분산성 및 균일한 입도를 가지는 나노분말의 제조방법.(d) adding silane and a dispersing agent to the solution in which the second nanoparticles are dispersed and stirring;
  2. 제1항에 있어서,According to claim 1,
    상기 단계 (a)에서 상기 제1 나노 입자 전구체는, The first nanoparticle precursor in step (a),
    아세테이트계(acetate based) 전구체, 나이트레이트계(nitrate based) 전구체, 클로라이드계(chloride based) 전구체 및 하이드록사이드계(hydroxide based) 전구체로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 우수한 분산성 및 균일한 입도를 가지는 나노분말의 제조방법.Excellent dispersibility, characterized in that at least one selected from the group consisting of an acetate based precursor, a nitrate based precursor, a chloride based precursor, and a hydroxide based precursor and a method for producing a nanopowder having a uniform particle size.
  3. 제1항에 있어서,According to claim 1,
    상기 단계 (a)에서 상기 염기성 물질은 수산화암모늄(NH4OH), 수산화나트륨(NaOH) 또는 수산화칼륨(KOH)인 것을 특징으로 하는 우수한 분산성 및 균일한 입도를 가지는 나노분말의 제조방법.In the step (a), the basic material is ammonium hydroxide (NH 4 OH), sodium hydroxide (NaOH) or potassium hydroxide (KOH).
  4. 제1항에 있어서,According to claim 1,
    상기 단계 (b)에서 상기 계면활성제는 폴리비닐알코올(PVA), 우레아(urea), 라우르산(lauric acid), 아디프산(adipic acid)으로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 우수한 분산성 및 균일한 입도를 가지는 나노분말의 제조방법.In the step (b), the surfactant is polyvinyl alcohol (PVA), urea (urea), lauric acid (lauric acid), characterized in that at least one selected from the group consisting of adipic acid (adipic acid) A method for producing nanopowders having excellent dispersibility and uniform particle size.
  5. 제1항에 있어서, According to claim 1,
    상기 단계 (c)에서 제1 나노 입자를 소성시켜 제2 나노 입자를 합성하는 것을 특징으로 하는 우수한 분산성 및 균일한 입도를 가지는 나노분말의 제조방법.Method for producing nanopowder having excellent dispersibility and uniform particle size, characterized in that the second nanoparticles are synthesized by calcining the first nanoparticles in step (c).
  6. 제1항에 있어서, According to claim 1,
    상기 단계 (c)에서 제1 나노 입자를 분산시킨 용액을 수열 반응 또는 용매열 반응시켜 제2 나노 입자를 합성하는 것을 특징으로 하는 우수한 분산성 및 균일한 입도를 가지는 나노분말의 제조방법.A method for producing nanopowder having excellent dispersibility and uniform particle size, characterized in that the second nanoparticles are synthesized by hydrothermal or solvothermal reaction of the solution in which the first nanoparticles are dispersed in step (c).
  7. 제1항에 있어서,According to claim 1,
    상기 단계 (d)에서 상기 실란은 MPS(3-(Trimethoxysilyl)propylmethacrylate), MTES(Methyltriethoxysilane), MTMS(Methyltrimethoxysilane), ETMS(Ethyltrimethoxysilane), OTMS(Octadecyltrimethoxysilane), ETES(Ethyltriethoxysilane) 및 GPTMS(3-Glycidoxypropyltrimethoxysilane)로부터 선택되는 1종 이상이고, In step (d), the silane is MPS(3-(Trimethoxysilyl)propylmethacrylate), MTES(Methyltriethoxysilane), MTMS(Methyltrimethoxysilane), ETMS(Ethyltrimethoxysilane), OTMS(Octadecyltrimethoxysilane), ETES(Ethyltriethoxysilane), and GPTMS(3-Glycidoxysilane) At least one selected from
    상기 분산제는 PVP (polyvinylpyrrolidone), DARVAN 811D (sodium polyacrylate) 및 C6H8O7 (citric acid)으로부터 선택되는 1종 이상인 것을 특징으로 하는 우수한 분산성 및 균일한 입도를 가지는 나노분말의 제조방법.The dispersing agent is PVP (polyvinylpyrrolidone), DARVAN 811D (sodium polyacrylate) and C 6 H 8 O 7 (citric acid), characterized in that at least one selected from a method for producing nanopowder having excellent dispersibility and uniform particle size.
  8. 제1항에 있어서,According to claim 1,
    상기 단계 (d)에서 상기 제2 나노 입자를 분산시킨 용액의 pH를 조절해 분산성을 향상시키는 것을 특징으로 하는 우수한 분산성 및 균일한 입도를 가지는 나노분말의 제조방법.Method for producing nanopowder having excellent dispersibility and uniform particle size, characterized in that the dispersibility is improved by adjusting the pH of the solution in which the second nanoparticles are dispersed in step (d).
  9. 제1항 내지 제8항 중 어느 한 항에 기재된 방법에 의해 제조된 우수한 분산성 및 균일한 입도를 가지는 나노분말.A nanopowder having excellent dispersibility and uniform particle size prepared by the method according to any one of claims 1 to 8.
PCT/KR2021/002253 2021-02-23 2021-02-23 Method for preparing nanopowder having excellent dispersibility and uniform grain size WO2022181850A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2021/002253 WO2022181850A1 (en) 2021-02-23 2021-02-23 Method for preparing nanopowder having excellent dispersibility and uniform grain size

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2021/002253 WO2022181850A1 (en) 2021-02-23 2021-02-23 Method for preparing nanopowder having excellent dispersibility and uniform grain size

Publications (1)

Publication Number Publication Date
WO2022181850A1 true WO2022181850A1 (en) 2022-09-01

Family

ID=83047544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/002253 WO2022181850A1 (en) 2021-02-23 2021-02-23 Method for preparing nanopowder having excellent dispersibility and uniform grain size

Country Status (1)

Country Link
WO (1) WO2022181850A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030081942A (en) * 2002-04-15 2003-10-22 주식회사 엘지화학 Mehtod for preparing single craystalline cerium oxide powders
KR20180039882A (en) * 2016-10-11 2018-04-19 창원대학교 산학협력단 Method for fabricating ceria nano-particle by using solvent heating process
KR101959045B1 (en) * 2017-09-26 2019-03-15 한국세라믹기술원 Process for preparing high refractive organic-inorganic hybrid sol
KR20200075361A (en) * 2018-12-18 2020-06-26 창원대학교 산학협력단 Manufacturing method of yttria stabilized zirconia(ysz) nano sol having excellent dispersibility
KR20210097419A (en) * 2020-01-30 2021-08-09 창원대학교 산학협력단 Manufacturing method of nano-sized powder having excellent dispersibility and uniform particle size

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030081942A (en) * 2002-04-15 2003-10-22 주식회사 엘지화학 Mehtod for preparing single craystalline cerium oxide powders
KR20180039882A (en) * 2016-10-11 2018-04-19 창원대학교 산학협력단 Method for fabricating ceria nano-particle by using solvent heating process
KR101959045B1 (en) * 2017-09-26 2019-03-15 한국세라믹기술원 Process for preparing high refractive organic-inorganic hybrid sol
KR20200075361A (en) * 2018-12-18 2020-06-26 창원대학교 산학협력단 Manufacturing method of yttria stabilized zirconia(ysz) nano sol having excellent dispersibility
KR20210097419A (en) * 2020-01-30 2021-08-09 창원대학교 산학협력단 Manufacturing method of nano-sized powder having excellent dispersibility and uniform particle size

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIM TAE SEOP, OCK JI YOUNG, CHOI YEON BIN, KIM BONG GU, SON JEONG HUN, JUNG YEON GIL: "Synthesis and Dispersion of Ceria(CeO2) Nanoparticles by Solvothermal Process", HAN'GUG JAERYO HAGHOEJI - KOREAN JOURNAL OF MATERIALS RESEARCH, HAN'GUG JAERYO HAGHOE, SEOUL, KR, vol. 30, no. 7, 31 July 2020 (2020-07-31), KR , pages 376 - 381, XP009539199, ISSN: 1225-0562, DOI: 10.3740/MRSK.2020.30.7.376 *

Similar Documents

Publication Publication Date Title
Yu et al. Yolk–shell Fe 3 O 4@ ZrO 2 prepared by a tunable polymer surfactant assisted sol–gel method for high temperature stable microwave absorption
CN108525669B (en) Highly-dispersed silicon dioxide nanotube supported nickel catalyst and preparation method thereof
EP1934384A1 (en) Coating method of metal oxide superfine particles on the surface of metal oxide and coating produced therefrom
KR102304582B1 (en) Manufacturing method of nano-sized powder having excellent dispersibility and uniform particle size
CN108910960B (en) Preparation method of beta-FeOOH nano capsule
CN110606504B (en) Hierarchical nuclear shell SnO2Microsphere and preparation method and application thereof
TW200941804A (en) Homogeneous nanoparticle core doping of cathode material precursors
CN107488484B (en) Method for preparing composite antiwear additive by grafting fatty acid
JP2012072004A (en) Magnesium hydroxide microparticle, magnesium oxide microparticle, and method for producing each microparticle
Huang et al. Gd2O2S: Eu3+ and Gd2O2S: Eu3+/Gd2O2S hollow microspheres: Solvothermal preparation and luminescence properties
CN107107025A (en) SiO2Layered double-hydroxide microballoon and their preparation method
CN105293567B (en) Flaky porous nanometer zinc oxide and preparation method thereof
WO2020130226A1 (en) Method of preparing yttria stabilized zirconia (ysz) nanosol having excellent dispersibility
CN109354053B (en) Synthesis method of superfine cerium dioxide nano material
WO2022181850A1 (en) Method for preparing nanopowder having excellent dispersibility and uniform grain size
CN110951479A (en) Preparation method of PEG (polyethylene glycol) coated porous rare earth phosphate fluorescent nano material
CN1915836A (en) Method for preparting Nano powder of zirconia
CN109516482A (en) A kind of preparation method of different-shape boehmite powder
CN109052493A (en) The method of molten-salt growth method synthesis metatitanic acid nano nickel particles
CN107555467A (en) A kind of surface exposure being made up of nanoneedle(0001)The preparation method of the Zinc oxide hollow spheres in face
CN111333098B (en) Preparation method of cerium dioxide nano cube
CN115501897B (en) Nanocomposite, preparation method and application thereof in hydrogen production by visible light catalysis
JP5401847B2 (en) Composite ceramic powder, method for producing the same, and solid oxide fuel cell
CN110446687A (en) For producing the method for nickel oxide nano particle and using the nickel oxide nano particle of its production
CN108622919A (en) A kind of preparation method of nickel aluminate coated aluminum oxide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21928147

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/01/2024)