WO2020110573A1 - Lathe - Google Patents

Lathe Download PDF

Info

Publication number
WO2020110573A1
WO2020110573A1 PCT/JP2019/042463 JP2019042463W WO2020110573A1 WO 2020110573 A1 WO2020110573 A1 WO 2020110573A1 JP 2019042463 W JP2019042463 W JP 2019042463W WO 2020110573 A1 WO2020110573 A1 WO 2020110573A1
Authority
WO
WIPO (PCT)
Prior art keywords
work
spindle
headstock
foreign matter
gripping
Prior art date
Application number
PCT/JP2019/042463
Other languages
French (fr)
Japanese (ja)
Inventor
則夫 賀来
Original Assignee
スター精密株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スター精密株式会社 filed Critical スター精密株式会社
Publication of WO2020110573A1 publication Critical patent/WO2020110573A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B25/00Accessories or auxiliary equipment for turning-machines
    • B23B25/06Measuring, gauging, or adjusting equipment on turning-machines for setting-on, feeding, controlling, or monitoring the cutting tools or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B3/00General-purpose turning-machines or devices, e.g. centre lathes with feed rod and lead screw; Sets of turning-machines
    • B23B3/30Turning-machines with two or more working-spindles, e.g. in fixed arrangement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form

Definitions

  • the present invention relates to a lathe in which two spindles facing each other hold a workpiece.
  • an NC (numerical control) lathe that performs front face machining on a work held by a front spindle and transfers the face-machined work to the back spindle for back machining.
  • the front spindle and the back spindle have a gripping portion such as a collet for gripping a work.
  • the NC lathe performs a process in which the back spindle moves toward the workpiece after the front surface machining which is gripped by the grip portion of the front spindle, and the grip portion of the back spindle grips the workpiece.
  • problems such as defective work and breakage of the grip portion may occur.
  • the entire length of the work may be defective. If the work is tilted and gripped by the grip of the back spindle, the shape of the work may be damaged or the grip may be damaged. Therefore, it is determined whether or not there is a foreign matter between the workpiece after the front surface machining and the grip portion of the rear spindle.
  • Patent Document 1 discloses a work changing method for a lathe, which confirms that a workpiece machined by the first spindle head is normally held by the chuck of the second spindle head.
  • This lathe puts the servo motor controlling the feed of the second spindle head in the torque limit state, feeds the second spindle head in the direction of the first spindle head, and when the movement of the second spindle head is completed.
  • the error amount which is the difference between the programmed position of the second spindle head and the actual position, is checked, and if the error amount is less than or equal to a predetermined value, the chuck of the second spindle head normally moves the workpiece. It is confirmed that it is gripped.
  • the present invention discloses a lathe capable of improving the dimensional accuracy of products.
  • the lathe of the present invention includes a first headstock provided with a first spindle having a first gripping portion for gripping a work, A second spindle stock provided with a second spindle having a second gripping portion that grips the work, facing the first spindle.
  • a servo device for moving the second spindle stock in the direction of the center line of the second spindle; An opening/closing operation of the first grip portion and the second grip portion, and a control unit that controls the movement of the second headstock via the servo device, The controller moves the second headstock toward the first headstock in a state in which the second gripping part is opened and the servo device is limited to a torque lower than the maximum torque, and the servo device has a predetermined movement.
  • the change in the position of the second headstock in the direction of the center line is detected, and the second gripper is based on the change in position detected in the range where the second gripper grips the workpiece. There is a mode for determining the presence or absence of foreign matter between the workpiece and the work.
  • a lathe 1 includes a first headstock (for example, a front headstock 11), a second headstock (for example, a back headstock 21), a servo device (for example, a Z2-axis motor MZ2), and a control unit U1.
  • the first spindle stock (11) is provided with a first spindle (for example, the front spindle 12) having a first grip portion 13 that grips the work W0.
  • the second spindle stock (21) is provided with a second spindle (for example, a back spindle 22) having a second grip portion 23 facing the first spindle (12) and gripping the work W0.
  • the servo device (MZ2) moves the second spindle stock (21) in the direction of the center line of the second spindle (22) (for example, the Z-axis direction).
  • the control unit U1 controls the opening/closing operation of the first gripping unit 13 and the second gripping unit 23, and the movement of the second spindle stock (21) via the servo device (MZ2).
  • the control unit U1 opens the second gripping unit 23 and limits the servo device (MZ2) to a torque lower than the maximum torque, and moves the second headstock (21) to the first headstock (11).
  • the presence/absence of a foreign object 800 between the second grip portion 23 and the work W0 is determined based on the position change ( ⁇ Zi) detected in the range where the grip portion 23 grips the work W0.
  • the timing at which the control unit starts giving a predetermined torque fluctuation to the servo device may be after the second gripping unit reaches a range for gripping the work, or the second gripping unit may It may be before the range for gripping the work. In the latter case, the control unit may start detecting the change in the position of the second headstock in the centerline direction after the second gripping unit reaches the range for gripping the workpiece. However, it may be before the second grip portion reaches the range where the workpiece is gripped.
  • the lathe 1 further includes a cleaning device 40 capable of cleaning at least one of the work W0 gripped by the first grip 13 and the second grip 23 separated from the work W0. You may have it.
  • the control unit U1 and the second gripping unit 23 and the workpiece W0 in the foreign matter determination process for determining the presence or absence of the foreign matter 800 between the second gripping unit 23 and the workpiece W0.
  • the second headstock (21) is moved away from the first headstock (11) to cause the cleaning device 40 to perform cleaning (for example, as shown in FIG. 7), the foreign matter discrimination processing may be performed again.
  • this aspect when it is determined that the foreign matter 800 is present between the grip 23 of the second spindle (22) and the work W0, at least one of the grip 23 of the second spindle (22) and the work W0 is cleaned. Therefore, when the foreign matter 800 is removed by cleaning, it is determined that there is no foreign matter 800 between the gripping portion 23 of the second spindle (22) and the work W0 in the next foreign matter determining process. Therefore, this aspect can provide a suitable lathe that continuously processes a workpiece.
  • FIG. 1 schematically illustrates a configuration of a main spindle moving type NC (numerical control) lathe 1 in which a front main spindle 12 moves as an example of a lathe.
  • NC numerical control
  • FIG. 1 shows only one simplified example for explaining the present technology, and does not limit the present technology. It should be noted that the description of the positional relationship of each part is merely an example. Therefore, change the left/right direction to the up/down direction or the front/rear direction, change the up/down direction to the left/right direction or the front/rear direction, change the front/rear direction to the left/right direction or the up/down direction, or change the rotation direction to the opposite direction. This is also included in the present technology. Further, the same direction, position, and the like are not limited to strict coincidence, and include deviation from strict coincidence due to an error.
  • the lathe 1 shown in FIG. 1 includes an NC device 70, a front headstock 11 installed on a fixed base 10, a rear headstock 21 installed on a fixed base 20, and a blade installed on a fixed base 30.
  • the table 31 and the cleaning device 40 are provided.
  • the NC device 70 controls the operations of the respective units 11, 21, 31, 40, etc. described above.
  • the front headstock 11 is movable in the Z-axis direction along the spindle centerline AX1.
  • the NC device 70 controls the position of the front headstock 11 in the Z-axis direction via a drive unit such as the Z1-axis motor MZ1 illustrated in FIG.
  • the front main spindle 12 provided on the front main spindle stock 11 has a first gripping portion 13 such as a collet, and the columnar (bar-shaped) work W1 inserted in the Z-axis direction can be released by the first gripping portion 13. Hold it.
  • the NC device 70 rotates the front main spindle 12 about a main spindle center line AX1 along the longitudinal direction of the work W1 via a drive unit such as the rotary motor 15. As a result, the front spindle 12 rotates the work W1 about the spindle centerline AX1.
  • a guide bush 18 may be arranged in front of the front spindle 12.
  • the guide bush 18 is arranged in front of the front main spindle 12 and slidably supports the longitudinal work W1 penetrating the front main spindle 12 in the Z-axis direction, and in synchronization with the front main spindle 12, the main shaft center line. It is rotationally driven around AX1.
  • the rear headstock 21 is movable in the Z-axis direction along the main-axis center line AX2 and in the Y-axis direction orthogonal (intersecting) to the Z-axis direction.
  • the NC device 70 controls the position of the back spindle stock 21 in the Z-axis direction and the Y-axis direction via a drive unit such as the Z2-axis motor MZ2 and the Y2-axis motor MY2 illustrated in FIG.
  • the back spindle 22 provided on the back spindle stock 21 has a second grip portion 23 such as a collet, and is inserted in the Z-axis direction with the spindle centerlines AX1 and AX2 aligned with each other, and the workpiece after the front machining.
  • the NC device 70 rotates the back main shaft 22 about the main shaft center line AX2 via a drive unit such as the rotary motor 25. Thereby, the back spindle 22 rotates the work W2 about the spindle center line AX2.
  • the back main shaft 22 may be referred to as a facing main shaft in the sense of facing the front main shaft.
  • the work W1 before the front surface machining and the work W2 after the front surface machining are collectively referred to as a work W0, and the work transferred from the grip portion 13 of the front main spindle 12 to the back main spindle 22 is referred to as the work W0.
  • the tool post 31 is attached with a plurality of tools T0 for machining the work W0 and is movable in the X-axis direction and the Z-axis direction.
  • the X-axis direction is a direction orthogonal to (intersecting) the Z-axis direction and the Y-axis direction.
  • the NC device 70 controls the position of the tool rest 31 in the X-axis direction and the Z-axis direction via a drive unit such as the X3 axis motor MX3 and the Z3 axis motor MZ3 illustrated in FIG.
  • the plurality of tools T0 includes a cutting tool T1 for cutting through the work W0 held by the holding portions 13 and 23 of the both spindles 12 and 22.
  • a turret tool post As the tool post, a turret tool post, a comb tool post, or the like can be used. Plural types of turrets may be installed on the lathe. Further, the moving directions of the respective parts 11, 21, 31 and the like are not limited to the directions shown in FIG.
  • the cleaning device 40 discharges the fluid to the nozzle 41 for discharging the fluid to the tip of the work W0 gripped by the gripping portion 13 of the front spindle 12, and the gripping portion 23 of the back spindle 22 that is distant from the work W0. It has a nozzle 42 for The fluid may be air (gas) or coolant (liquid).
  • the cleaning device 40 discharges the fluid from the nozzles 41 and 42 or stops the discharge of the fluid from the nozzles 41 and 42 under the control of the NC device 70.
  • the nozzles 41 and 42 discharge air as a fluid
  • the nozzle 41 is arranged at a position where the air is blown to the tip of the work W0 held by the holding part 13, and the back spindle at a predetermined position in the Z-axis direction.
  • the nozzle 42 is arranged at a position where air is blown against the grip portion 23 of 22.
  • the nozzles 41 and 42 discharge the coolant as a fluid
  • the nozzle 41 is arranged at a position where the coolant is sprayed on the tip of the work W0 held by the holding part 13, and the rear spindle 22 at a predetermined position in the Z-axis direction.
  • the nozzle 42 is arranged at a position where the coolant is sprayed on the grip 23.
  • FIG. 2 schematically illustrates the configuration of the electric circuit of the NC lathe 1.
  • the NC device 70 rotationally drives the operation panel 80, the Z1 axis motor MZ1, the Y2 axis motor MY2, the Z2 axis motor MZ2, the X3 axis motor MX3, the Z3 axis motor MZ3, and the front main spindle 12.
  • a rotary motor 15, a rotary motor 25 for driving the back spindle 22 to rotate, an actuator 14 for opening and closing the grip portion 13 of the front spindle 12, an actuator 24 for opening and closing the grip portion 23 of the back spindle 22, a cleaning device 40, etc. are connected. There is.
  • the NC device 70 includes a CPU (Central Processing Unit) 71, a semiconductor memory ROM (Read Only Memory) 72, a semiconductor memory RAM (Random Access Memory) 73, a timer circuit 74, an I/F (interface) 75, and the like. have.
  • the I/Fs of the operation panel 80, the servo motors MZ1, MY2, MZ2, MX3, MZ3, the rotary motors 15 and 25, the actuators 14 and 24, and the cleaning device 40 are collectively shown as I/F75. ..
  • An interpretation execution program P1 for interpreting and executing the machining program P2 is written in the ROM 72.
  • the machining program P2 created by the user is rewritably stored in the RAM 73.
  • the machining program is also called an NC program.
  • the CPU 71 causes the computer to function as the NC device 70 by using the RAM 73 as a work area and executing the interpretation execution program P1 recorded in the ROM 72.
  • the interpretation execution program P1 may be implemented by other means such as an ASIC (Application Specific Integrated Circuit).
  • the operation panel 80 includes an input unit 81 and a display unit 82, and functions as a user interface of the NC device 70.
  • the input unit 81 includes, for example, a button or a touch panel for receiving an operation input from an operator.
  • the display unit 82 is composed of, for example, a display that displays the contents of various settings received from the operator and various information regarding the NC lathe 1. The operator can store the machining program P2 in the RAM 73 using the operation panel 80 or an external computer.
  • the Z1-axis motor MZ1 moves the front headstock 11 in the Z-axis direction according to a command from the NC device 70.
  • the Y2-axis motor MY2 moves the back spindle stock 21 in the Y-axis direction according to a command from the NC device 70.
  • the Z2-axis motor MZ2 is an example of the servo device of the present technology, and moves the back spindle stock 21 in the Z-axis direction according to a command from the NC device 70.
  • the X3 axis motor MX3 moves the tool rest 31 in the X axis direction in accordance with a command from the NC device 70.
  • the Z3-axis motor MZ3 moves the tool rest 31 in the Z-axis direction according to a command from the NC device 70.
  • Each of the servo motors MZ1, MY2, MZ2, MX3, MZ3 has an encoder that generates a reference angle pulse corresponding to the position of the drive target 11, 21, 31 and the drive target 11, 21, 21 based on the pulse generated by the encoder.
  • the position of 31 is adjusted to the command from the NC device 70.
  • FIG. 2 shows the encoder EN of the Z2-axis motor MZ2.
  • the encoder EN generates a reference angle pulse according to the position of the rear headstock 21 in the Z-axis direction, and the Z2-axis motor MZ2 adjusts the position of the rear headstock 21 in the Z-axis direction to the command based on the encoder EN generated pulse.
  • the rotary motor 15 rotationally drives the front main spindle 12 at a rotational speed according to a command from the NC device 70.
  • the rotary motor 25 rotationally drives the back spindle 22 at a rotational speed according to a command from the NC device 70.
  • the rotation speed is also called the number of rotations and means the number of rotations per unit time.
  • the actuator 14 opens and closes the grip portion 13 of the front spindle 12 via a power transmission mechanism such as a sleeve member according to the control of the NC device 70.
  • a power transmission mechanism such as a sleeve member according to the control of the NC device 70.
  • the actuator 24 opens and closes the grip portion 23 of the back spindle 22 through a power transmission mechanism such as a sleeve member according to the control of the NC device 70.
  • the gripping portion 23 is opened, it is possible to insert the workpiece after the front surface processing into the gripping portion 23 in the Z-axis direction or to discharge the product from the gripping portion 23 in the Z axis direction, and the workpiece after the front surface processing is accepted.
  • a servo motor including a linear motor, an air cylinder, a hydraulic cylinder, or the like can be used.
  • the actuators 14 and 24 may include a reduction mechanism such as a ball screw mechanism.
  • the cleaning device 40 has an electromagnetic valve that opens and closes the flow path connected to the nozzles 41 and 42, and opens and closes the flow path connected to the nozzles 41 and 42 by driving the electromagnetic valve described above under the control of the NC device 70.
  • the flow path is opened, the fluid is discharged from the nozzles 41 and 42, and when the flow path is closed, the discharge of the fluid from the nozzles 41 and 42 is stopped.
  • the front headstock 11 is an example of a first headstock
  • the front headstock 12 is an example of a first headstock
  • the rear headstock 21 is an example of a second headstock
  • the rear headstock 22 is a first headstock.
  • the NC device 70 and the Z2-axis motor MZ2 that detects the positions of the rear headstock 21 in the Z-axis direction are examples of the control unit U1.
  • FIG. 3 schematically illustrates a state in which the back spindle 22 is moving toward the work W0 after the front processing.
  • FIG. 4 schematically exemplifies a state in which the foreign matter 800 has entered between the work W0 after the front surface processing and the grip portion 23 of the back spindle 22.
  • 3 and 4 show the work receiving process of the lathe that does not use the guide bush, but even when the guide bush is used, the work W0 after the front processing which is gripped by the grip portion 13 of the front spindle 12 is used. A work receiving process in which the rear main shaft 22 receives the work is performed.
  • the back spindle 22 When the front surface of the work W0 is machined, the back spindle 22 is separated from the work W0 in the Z-axis direction. Since the back spindle 22 holds the workpiece W0 after the front machining, the back spindle stock 21 including the back spindle 22 approaches the Z-axis direction with the gripping portion 23 opened. If the Z2-axis motor MZ2 tries to move the rear headstock 21 toward the front headstock 11 when the gripping portion 23 hits the work W0, the output torque of the Z2-axis motor MZ2 increases. In order to prevent the output torque from becoming excessive, the output torque of the Z2-axis motor MZ2 is limited to a predetermined low torque that is lower than the maximum torque.
  • the NC device 70 determines that the gripping portion 23 has come into contact with the work W0, that is, the gripping portion 23 has been sufficiently pressed against the work W0, and the gripping portion 23 is closed to perform control such as cutting off.
  • FIG. 4 shows a state in which the foreign matter 800 adheres to the work W0, and thus a deviation ⁇ Er occurs in the Z position where the grip portion 23 of the back spindle 22 grips the work W0.
  • a deviation ⁇ Er occurs in the Z position where the grip portion 23 of the back spindle 22 grips the work W0.
  • erroneous pressing detection If erroneous pressing detection is performed, an error occurs in the position at which the gripping portion 23 grips the work W0 even if there is no foreign matter between the gripping portion 23 of the back spindle 22 and the work W0. Is reduced. Further, if the Z position of the rear headstock 21 is out of the specified range at the time of erroneous pressing detection, processing for redoing the pressing detection is performed or a warning is output and the continuous machining operation is stopped. Therefore, erroneous pressing detection causes a loss of time such that the cycle time of work processing becomes long or the operation is stopped, resulting in a decrease in manufacturing efficiency.
  • an air gap sensor that supplies air to the gap between the work and the grip of the back spindle is installed on the lathe. It is possible to provide it. If there is no foreign matter, the gap between the workpiece and the grip on the back spindle will be narrowed, and the internal pressure of the air will rise when air is supplied.If there is foreign matter, the gap between the work and the grip on the back spindle will be widened. The internal pressure of the air does not rise too much when supplying. Therefore, by detecting the internal pressure of the air when the air is supplied, the presence or absence of foreign matter can be detected more reliably.
  • a predetermined torque fluctuation is applied to the Z2-axis motor MZ2 to detect a change in the position of the back spindle stock 21 in the Z-axis direction, and based on the detected change in the position, the grip portion 23 of the back spindle 22 and the workpiece The presence or absence of the foreign object 800 between W0 is determined.
  • a dedicated structure such as an air gap sensor on the lathe, the cycle time of workpiece machining can be shortened, and the precision of the machining position of the workpiece can be improved and the dimensional accuracy of the product can be improved. it can.
  • FIG. 5 shows the torque fluctuation applied to the Z2-axis motor MZ2, the change in the Z position of the rear headstock 21, and the fluctuation width ⁇ Z of the rear headstock 21 after the gripping portion 23 is sufficiently pressed against the work W0.
  • the graph G1 shows the time change of the torque M applied to the Z2-axis motor MZ2
  • the graph G2 shows the time change of the Z position of the back headstock 21 when no foreign matter is present
  • the graph G3 shows the graph G2.
  • the obtained fluctuation range ⁇ Zi is shown in chronological order
  • the graph G4 shows the time change of the Z position of the back spindle stock 21 when a foreign substance is present
  • the graph G5 shows the fluctuation range ⁇ Zi obtained from the graph G4 in chronological order.
  • the horizontal axis of each of the graphs G1 to G5 represents time t.
  • the direction in which the grip portion 23 of the back spindle 22 is pressed against the work W0 is the +Z direction
  • the direction in which the grip portion 23 is separated from the work W0 is the ⁇ Z direction.
  • the torque generated by the Z2-axis motor MZ2 is proportional to the magnitude of the current supplied to the Z2-axis motor MZ2. Therefore, the torque M applied to the Z2-axis motor MZ2 can be controlled by the current value applied to the Z2-axis motor MZ2.
  • the torque fluctuation applied to the Z2-axis motor MZ2 is controlled such that the maximum value Mmax and the minimum value Mmin appear alternately around the average torque Mmean when the gripping portion 23 is pressing the work W0.
  • the absolute value of the difference between the average torque Mmean and the maximum value Mmax and the absolute value of the difference between the average torque Mmean and the minimum value Mmin are the amplitudes of torque fluctuations.
  • the maximum value Mmax is smaller than the maximum torque of the Z2-axis motor MZ2.
  • the Z position of the back spindle stock 21 is as shown in the graph G2. Changes to. Generally, when the maximum value Mmax of torque is applied to the Z2-axis motor MZ2, the rear headstock 21 is displaced in the +Z direction, and when the minimum value Mmin of torque is applied to the Z2-axis motor MZ2, the rear headstock 21 is moved in the -Z direction. Displace.
  • the fluctuation range ⁇ Zi shown in the graph G2 means the difference between the maximum value and the minimum value of the Z position of the back spindle stock 21, and is twice the amplitude representing the maximum displacement from the center value.
  • each fluctuation width ⁇ Zi has a relatively stable value.
  • the presence or absence of foreign matter is determined by setting the allowable upper limit value ⁇ Zmax of the fluctuation range ⁇ Zi based on the master data D1 when no foreign matter has entered between the gripping portion 23 of the back spindle 22 and the work W0. can do.
  • the fluctuation range ⁇ Zi is less than or equal to the upper limit value ⁇ Zmax as shown in the graph G3, it can be determined that no foreign matter has entered between the gripping portion 23 and the work W0.
  • the fluctuation range ⁇ Zi exceeds the upper limit value ⁇ Zmax as shown in the graph G5
  • the amplitude of the torque fluctuation applied to the Z2-axis motor MZ2 is, for example, such that the fluctuation width ⁇ Zi is about 1 to 10 ⁇ m when no foreign matter enters between the gripping portion 23 of the back spindle 22 and the work W0. be able to.
  • the frequency f1 of the torque fluctuation can be set to, for example, about 1 to 1000 Hz.
  • the fluctuation range ⁇ Zi can be sampled 50 times in 0.1 second.
  • FIG. 6 illustrates the work receiving process performed by the NC device 70 that executes the interpretation execution program P1. This processing is started when the NC device 70 reads the work receiving instruction described in the machining program P2. It is not easy for the user to create a machining program that realizes the torque fluctuation as shown in FIG. Therefore, the NC device 70 that executes the interpretation execution program P1 realizes the torque fluctuation of the Z2-axis motor MZ2, and an example thereof is shown in FIG.
  • the processing of steps S102 to S108 is an example of the foreign matter determination processing for determining the foreign matter between the grip portion 23 of the back spindle 22 and the work W0.
  • the work receiving process shown in FIG. 6 will be described below with reference to FIGS.
  • the NC device 70 controls the actuator 24 shown in FIG. 2 to keep the grip portion 23 of the back spindle 22 open and keeps the Z2-axis motor MZ2 at a predetermined low level.
  • the Z2-axis motor MZ2 is driven while the torque is limited to move the rear headstock 21 toward the front headstock 11 (step S102).
  • the Z2-axis motor MZ2 tries to move the rear spindle headstock 21 toward the front spindle headstock 11, so that the output torque of the Z2-axis motor MZ2.
  • the NC device 70 acquires the output torque value and the Z position of the rear headstock 21 from the Z2-axis motor MZ2, the output torque value is within the specified torque width, and is specified by the machining program P2. It is determined whether the rear headstock 21 is within the range of the Z position (step S104).
  • the range of the Z position designated by the machining program P2 is a range in which the grip portion 23 of the back spindle 22 grips the work W0. Of course, the range in which the gripping portion 23 grips the work W0 may be obtained by the NC device 70 from the target Z position designated by the machining program P2.
  • step S106 the NC device 70 advances the process to step S106.
  • step S104 the condition of step S104 is not satisfied even though the value of the output torque is within the specified torque range, or when the condition of step S104 is not satisfied despite that the rear headstock 21 is within the specified range.
  • the process proceeds to step S112.
  • the NC device 70 determines the maximum value from a plurality of output torque values obtained in a predetermined period, or a predetermined number of 2 or more from the largest value. It may be possible to determine whether or not the torque width is within the specified torque range by excluding the value of.
  • step S106 the NC device 70 gives a predetermined torque fluctuation as shown in the graph G1 of FIG. 5 to the Z2-axis motor MZ2 to acquire the Z position of the rear headstock 21 from the Z2-axis motor MZ2, and the rear headstock.
  • the variation width ⁇ Zi of the Z position of 21, that is, the change of the Z position is obtained.
  • the NC device 70 determines whether the fluctuation range of the Z position of the back spindle stock 21 is equal to or less than the allowable upper limit value ⁇ Zmax (step S108).
  • the fluctuation range to be compared with the upper limit value ⁇ Zmax may be the maximum value of the fluctuation range ⁇ Zi, the maximum value from the fluctuation range ⁇ Zi, or the maximum value obtained by removing a predetermined number of 2 or more from the largest value.
  • An average value of the width ⁇ Zi may be used.
  • the NC device 70 drives the actuator 24 so as to close the grip portion 23 of the back spindle 22, continues the continuous machining operation (step S110), and ends the work receiving process. ..
  • step S112 The process of step S112 is performed when the conditions are not satisfied in steps S104 and S108.
  • the NC device 70 determines whether or not the foreign matter determination processing in steps S102 to S108 has been retried the number of times specified by the machining program P2.
  • the number of retries may be the number determined by the interpretation execution program P1 or the like instead of the processing program P2.
  • the NC device 70 performs a predetermined cleaning process (step S114) and returns the process to step S102.
  • the NC device 70 When the number of retries reaches the specified number, the NC device 70 outputs a warning indicating that the continuous machining operation of the work cannot be continued, stops the continuous machining operation of the work (step S116), and ends the workpiece receiving process.
  • the output of the warning includes displaying the warning on the display unit 82 shown in FIG. 2, outputting a warning sound from a voice output device (not shown), and the like.
  • FIG. 7 schematically illustrates the cleaning process performed in step S114.
  • the NC device 70 drives the Z2-axis motor MZ2 shown in FIG. 2 to move the rear headstock 21 away from the front headstock 11.
  • the NC device 70 drives the cleaning device 40 for a certain period of time to supply the cleaning fluid from the nozzle 41 to the work W0.
  • the cleaning fluid is discharged from the nozzle 42 to the grip portion 23. This state is shown in FIG.
  • the fluid When the fluid is air, air is blown from the nozzle 41 to the work W0 and the foreign matter 800 is blown away from the work W0 by air, and air is blown from the nozzle 42 to the gripping portion 23 so that the foreign matter is aired from the gripping portion 23. Blown away by.
  • the fluid is coolant
  • the coolant is sprayed from the nozzle 41 onto the workpiece W0 to wash away the foreign matter 800 with the coolant
  • the coolant is sprayed from the nozzle 42 onto the gripping portion 23 to wash away the foreign matter with the coolant.
  • the foreign matter discrimination process in steps S102 to S108 of FIG. 6 is performed.
  • the gripping portion 23 of the rear headstock 22 is pressed against the work W0 as illustrated in FIG.
  • the deviation ⁇ Er of the Z position at which the grip portion 23 grips the work W0 becomes small.
  • the variation amount ⁇ Zi acquired in step S106 of FIG. 6 is reduced as a whole, the variation amount of the Z position of the rear headstock 21 becomes the upper limit value ⁇ Zmax or less, and the continuous machining operation is continued.
  • the foreign matter between the gripping portion 23 of the rear spindle 22 and the workpiece W0 is based on the change in the Z position detected on the rear spindle stock 21 while the Z2 axis motor MZ2 is subjected to a predetermined torque fluctuation.
  • Various useful effects can be obtained by determining the presence or absence of.
  • the influence of disturbance factors such as impact can be reduced, the presence/absence of foreign matter between the grip portion 23 and the work W0 can be accurately determined. Therefore, the present specific example can improve the accuracy of the processing position of the work and the dimensional accuracy of the product.
  • the lathe to which the present technology can be applied is not limited to the main spindle moving type lathe, and may be a main spindle fixed type lathe in which the front main spindle does not move.
  • the above-described cleaning device 40 has both the nozzle 41 for cleaning the workpiece and the nozzle 42 for cleaning the second grip portion, but it is possible to omit one of the nozzles 41, 42.
  • the foreign matter may be removed even if one of the nozzles 41 and 42 is omitted, and thus the present technology can be applied.
  • the air may be blown from the nozzle 41 and the coolant may be discharged from the nozzle 42, or the coolant may be discharged from the nozzle 41 and the air may be blown from the nozzle 42.
  • the nozzles 41 and 42 of the cleaning device 40 may be incorporated inside the front spindle 12 or the back spindle 22.
  • the process of determining whether or not the variation range of the Z position of the back spindle stock 21 in step S108 of FIG. 6 is less than or equal to the upper limit value ⁇ Zmax may be a process of comparing the moving average of the variation range ⁇ Zi with the upper limit value ⁇ Zmax.
  • a process using pattern matching for the master data D1 shown in FIG. 5 may be used.
  • the number of moving averages is N (N is an integer of 2 or more), and the N moving averages of the fluctuation range are compared with the upper limit value ⁇ Zmax as follows. To be done. First, N averages are compared with the upper limit value ⁇ Zmax in the order of fluctuation widths ⁇ Z1, ⁇ Z2,.... Next, the N averages are compared with the upper limit value ⁇ Zmax in the order of the fluctuation widths ⁇ Z2, ⁇ Z3,.... Hereinafter, the N averages with the fluctuation widths shifted one by one are compared with the upper limit value ⁇ Zmax.
  • the presence/absence of a foreign matter is determined as follows by using the master data D1 and the detection data of the Z position of the back spindle stock 21 (for example, the data D2 shown in FIG. 5). be able to.
  • the threshold value for the degree of coincidence (referred to as C) between the master data D1 and the detection data D2 is TH (TH>0).
  • the grip portion 23 of the back spindle 22 is pressed against the work W0 so that a predetermined torque fluctuation is applied to the Z2-axis motor MZ2, and the Z position detected for the back spindle stock 21 by the Z2-axis motor MZ2.
  • the NC device 70 acquires the detection data D2 indicating the change of Next, the NC device 70 performs pattern matching between the master data D1 and the detection data D2, and obtains the degree of coincidence C between the master data D1 and the detection data D2. It can be determined that there is no foreign matter when the matching degree C is equal to or higher than the threshold TH, and it can be determined that there is a foreign matter when the matching degree C is less than the threshold TH. Since a large number of detection data D2 for the Z position of the rear headstock 21 are used for the pattern matching, even if a certain detected value of the Z position of the rear headstock 21 becomes an abnormal value due to a disturbance factor, it is small as a whole. As a result, the influence of disturbance factors on the determination of the presence or absence of foreign matter is reduced.
  • the timing at which torque fluctuation is started to be applied to the Z2-axis motor MZ2 may be before the grip 23 of the back spindle 22 is pressed against the work W0. ..
  • FIG. 9 shows another example of the work receiving process performed by the NC device 70.
  • steps S104 to S106 are replaced with steps S202 to S206 as compared with the work receiving process shown in FIG.
  • the NC device 70 moves the rear headstock 21 toward the front headstock 11 in a state where the grip portion 23 of the rear spindle 22 is opened and the Z2-axis motor MZ2 is limited to a predetermined low torque (step S102).
  • the process of giving a predetermined torque fluctuation to the Z2-axis motor MZ2 is started (step S202).
  • the timing of starting the processing of step S202 is the timing at which the rear headstock 21 is moved to a predetermined position before the grip 23 is pressed against the work W0 in the Z-axis direction. It is also possible to perform the processing of step S202 immediately after starting the movement of the back spindle stock 21 in the Z-axis direction.
  • the NC device 70 determines whether or not the rear headstock 21 is within the range of the Z position designated by the machining program P2 (step S204). When the rear headstock 21 is within the designated range for the predetermined period, the NC device 70 advances the process to step S206. If the condition of step S204 is not satisfied, the process proceeds to step S112. ..
  • step S206 since the predetermined torque fluctuation has already been applied to the Z2-axis motor MZ2, the NC device 70 acquires the Z position of the rear headstock 21 from the Z2-axis motor MZ2 and determines the Z position of the rear headstock 21.
  • the fluctuation range ⁇ Zi that is, the change in the Z position is obtained.
  • the NC device 70 determines whether the fluctuation range of the Z position of the back spindle stock 21 is equal to or less than the allowable upper limit value ⁇ Zmax (step S108).
  • the NC device 70 drives the actuator 24 so as to close the grip portion 23 of the back spindle 22, continues the continuous machining operation (step S110), and ends the work receiving process. ..
  • the fluctuation range exceeds the upper limit value ⁇ Zmax, the above-described processing including the cleaning processing is performed (steps S112 to S116).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)
  • Auxiliary Devices For Machine Tools (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Turning (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

Provided is a lathe whereby a product having enhanced dimensional accuracy can be obtained. This lathe 1 comprises a first headstock (11), a second headstock (21), a servo device (MZ2) for causing the second headstock (21) to move in the center axis direction of a second main shaft (22), and a control part U1 for controlling the opening/closing action of gripping parts 13, 23 and the movement of the second headstock (21) caused via the servo device (MZ2). The control part U1 opens a second gripping part 23 and causes the second headstock (21) to move toward the first headstock (11) in a state in which the servo device (MZ2) is limited to a torque lower than the maximum torque, imparts a predetermined torque fluctuation to the servo device (MZ2) and detects a change (∆Zi) in the position of the second headstock (21) in the center axis direction of the second main shaft, and determines whether a foreign body 800 is present between the second gripping part 23 and a work piece W0 on the basis of the change (∆Zi) in position detected in the range in which the second gripping part 23 grips the work piece W0.

Description

旋盤lathe
 本発明は、互いに対向する二つの主軸にワークを把持させる旋盤に関する。 The present invention relates to a lathe in which two spindles facing each other hold a workpiece.
 旋盤として、正面主軸に把持されているワークに正面加工を行って正面加工後のワークを背面主軸に渡して背面加工を行うNC(数値制御)旋盤が知られている。正面主軸と背面主軸は、コレット等、ワークを把持する把持部を有している。NC旋盤は、正面主軸の把持部に把持されている正面加工後のワークの方へ背面主軸が移動して当該ワークを背面主軸の把持部が把持する処理を行う。ここで、正面加工後のワークと背面主軸の把持部との間に切り屑等の異物が入り込んでいる場合、ワークの不良や把持部の破損といった問題が生じる可能性がある。例えば、ワークを把持する背面主軸の主軸中心線方向における位置がずれると、ワークの全長不良が生じることがある。ワークが傾いて背面主軸の把持部に把持されると、ワークの形状不良や把持部の破損が生じることがある。そこで、正面加工後のワークと背面主軸の把持部との間に異物があるか否かの判別が行われている。 As a lathe, there is known an NC (numerical control) lathe that performs front face machining on a work held by a front spindle and transfers the face-machined work to the back spindle for back machining. The front spindle and the back spindle have a gripping portion such as a collet for gripping a work. The NC lathe performs a process in which the back spindle moves toward the workpiece after the front surface machining which is gripped by the grip portion of the front spindle, and the grip portion of the back spindle grips the workpiece. Here, when foreign matter such as chips enters between the work after the front surface processing and the grip portion of the back spindle, problems such as defective work and breakage of the grip portion may occur. For example, if the position of the back spindle holding the work in the direction of the main axis of the work is displaced, the entire length of the work may be defective. If the work is tilted and gripped by the grip of the back spindle, the shape of the work may be damaged or the grip may be damaged. Therefore, it is determined whether or not there is a foreign matter between the workpiece after the front surface machining and the grip portion of the rear spindle.
 特許文献1には、第1の主軸ヘッドで加工されたワークを第2の主軸ヘッドのチャックが正常に把持したことを確認する旋盤のワーク交換方法が開示されている。この旋盤は、第2の主軸ヘッドの送りを制御するサーボモーターをトルクリミット状態にして、第2の主軸ヘッドを第1の主軸ヘッドの方向に送り、第2の主軸ヘッドの移動が完了した時点で、プログラミングされた第2の主軸ヘッドの位置と実際の位置との差であるエラー量を調べ、エラー量が所定の値以下であることによって、第2の主軸ヘッドのチャックが正常にワークを把持したことを確認している。 Patent Document 1 discloses a work changing method for a lathe, which confirms that a workpiece machined by the first spindle head is normally held by the chuck of the second spindle head. This lathe puts the servo motor controlling the feed of the second spindle head in the torque limit state, feeds the second spindle head in the direction of the first spindle head, and when the movement of the second spindle head is completed. Then, the error amount, which is the difference between the programmed position of the second spindle head and the actual position, is checked, and if the error amount is less than or equal to a predetermined value, the chuck of the second spindle head normally moves the workpiece. It is confirmed that it is gripped.
特許第2702575号公報Japanese Patent No. 2702575
 しかし、第2の主軸ヘッド等に衝撃等の外乱要因が入ると、サーボモーターの出力トルクが急激に上昇して第2の主軸ヘッドの移動が完了したと誤って検知されることがある。すると、ワークと第2の主軸ヘッドとの間に異物が無くても第2の主軸ヘッドがワークを把持する位置に誤差が生じ、その分、製品の寸法精度が低下する。
 尚、上述のような問題は、種々の旋盤に存在する。
However, if a disturbance factor such as a shock is applied to the second spindle head or the like, the output torque of the servo motor may suddenly increase, and it may be erroneously detected that the movement of the second spindle head has been completed. Then, even if there is no foreign matter between the work and the second spindle head, an error occurs in the position where the second spindle head grips the work, and the dimensional accuracy of the product is reduced accordingly.
The above-mentioned problems exist in various lathes.
 本発明は、製品の寸法精度を向上させることが可能な旋盤を開示するものである。 The present invention discloses a lathe capable of improving the dimensional accuracy of products.
 本発明の旋盤は、ワークを把持する第一把持部を有する第一主軸を設けた第一主軸台と、
 前記第一主軸に対向して前記ワークを把持する第二把持部を有する第二主軸を設けた第二主軸台と、
 該第二主軸台を前記第二主軸の中心線方向へ移動させるサーボ装置と、
 前記第一把持部及び前記第二把持部の開閉動作、並びに、前記サーボ装置を介した前記第二主軸台の移動を制御する制御部と、を備え、
 前記制御部は、前記第二把持部を開いて前記サーボ装置を最大トルクよりも低いトルクに制限した状態で前記第二主軸台を前記第一主軸台の方へ移動させ、前記サーボ装置に所定のトルク変動を与えて前記中心線方向における前記第二主軸台の位置の変化を検出し、前記第二把持部が前記ワークを把持する範囲において検出した位置の変化に基づいて前記第二把持部と前記ワークとの間の異物の有無を判別する、態様を有する。
The lathe of the present invention includes a first headstock provided with a first spindle having a first gripping portion for gripping a work,
A second spindle stock provided with a second spindle having a second gripping portion that grips the work, facing the first spindle.
A servo device for moving the second spindle stock in the direction of the center line of the second spindle;
An opening/closing operation of the first grip portion and the second grip portion, and a control unit that controls the movement of the second headstock via the servo device,
The controller moves the second headstock toward the first headstock in a state in which the second gripping part is opened and the servo device is limited to a torque lower than the maximum torque, and the servo device has a predetermined movement. The change in the position of the second headstock in the direction of the center line is detected, and the second gripper is based on the change in position detected in the range where the second gripper grips the workpiece. There is a mode for determining the presence or absence of foreign matter between the workpiece and the work.
 本発明によれば、製品の寸法精度を向上させる旋盤を提供することができる。 According to the present invention, it is possible to provide a lathe that improves the dimensional accuracy of products.
旋盤の構成例を模式的に示す図である。It is a figure which shows the structural example of a lathe typically. 旋盤の電気回路の構成例を模式的に示すブロック図である。It is a block diagram which shows the structural example of the electric circuit of a lathe typically. 第二主軸が正面加工後のワークの方へ移動している例を模式的に示す図である。It is a figure which shows typically the example which the 2nd main spindle has moved toward the workpiece|work after front surface processing. 正面加工後のワークと第二把持部との間に異物が入り込んでいる例を模式的に示す図である。It is a figure which shows typically the example which the foreign material has entered between the workpiece|work after front surface processing, and the 2nd holding part. サーボ装置に与えられたトルク変動、第二主軸台の位置の変化、及び、第二主軸台の変動幅の例を模式的に示す図である。It is a figure which shows typically the example of the fluctuation|variation of the torque given to the servo apparatus, the change of the position of a 2nd headstock, and the fluctuation range of a 2nd headstock. 数値制御装置で行われるワーク受け取り処理の例を示すフローチャートである。It is a flow chart which shows the example of the work reception processing performed with a numerical control device. 第二主軸をワークから離して清掃を行う例を模式的に示す図である。It is a figure which shows typically the example which separates a 2nd main spindle from a workpiece|work, and cleans it. 清掃後に第二主軸をワークの方へ移動させた例を模式的に示す図である。It is a figure which shows typically the example which moved the 2nd main spindle toward the workpiece|work after cleaning. 数値制御装置で行われるワーク受け取り処理の別の例を示すフローチャートである。It is a flow chart which shows another example of work reception processing performed with a numerical control device.
 以下、本発明の実施形態を説明する。むろん、以下の実施形態は本発明を例示するものに過ぎず、実施形態に示す特徴の全てが発明の解決手段に必須になるとは限らない。 An embodiment of the present invention will be described below. Of course, the following embodiments merely exemplify the present invention, and not all the features shown in the embodiments are essential to the means for solving the invention.
(1)本発明に含まれる技術の概要:
 まず、図1~9に示される例を参照して本発明に含まれる技術の概要を説明する。尚、本願の図は模式的に例を示す図であり、これらの図に示される各方向の拡大率は異なることがあり、各図は整合していないことがある。むろん、本技術の各要素は、符号で示される具体例に限定されない。
 また、本願において、数値範囲「Min~Max」は、最小値Min以上、且つ、最大値Max以下を意味する。
(1) Outline of technology included in the present invention:
First, the outline of the technology included in the present invention will be described with reference to the examples shown in FIGS. It should be noted that the drawings of the present application are schematic views showing examples, and the enlargement ratios in the respective directions shown in these drawings may be different, and the drawings may not match. Of course, each element of the present technology is not limited to the specific example indicated by the reference numeral.
Further, in the present application, the numerical range “Min to Max” means the minimum value Min or more and the maximum value Max or less.
[態様1]
 本技術の一態様に係る旋盤1は、第一主軸台(例えば正面主軸台11)、第二主軸台(例えば背面主軸台21)、サーボ装置(例えばZ2軸モーターMZ2)、及び、制御部U1を備えている。前記第一主軸台(11)は、ワークW0を把持する第一把持部13を有する第一主軸(例えば正面主軸12)が設けられている。前記第二主軸台(21)は、前記第一主軸(12)に対向して前記ワークW0を把持する第二把持部23を有する第二主軸(例えば背面主軸22)が設けられている。前記サーボ装置(MZ2)は、前記第二主軸台(21)を前記第二主軸(22)の中心線方向(例えばZ軸方向)へ移動させる。前記制御部U1は、前記第一把持部13及び前記第二把持部23の開閉動作、並びに、前記サーボ装置(MZ2)を介した前記第二主軸台(21)の移動を制御する。前記制御部U1は、前記第二把持部23を開いて前記サーボ装置(MZ2)を最大トルクよりも低いトルクに制限した状態で前記第二主軸台(21)を前記第一主軸台(11)の方へ移動させ、前記サーボ装置(MZ2)に所定のトルク変動を与えて前記中心線方向における前記第二主軸台(21)の位置の変化(例えば変動幅ΔZi)を検出し、前記第二把持部23が前記ワークW0を把持する範囲において検出した位置の変化(ΔZi)に基づいて前記第二把持部23と前記ワークW0との間の異物800の有無を判別する。
[Aspect 1]
A lathe 1 according to one aspect of the present technology includes a first headstock (for example, a front headstock 11), a second headstock (for example, a back headstock 21), a servo device (for example, a Z2-axis motor MZ2), and a control unit U1. Is equipped with. The first spindle stock (11) is provided with a first spindle (for example, the front spindle 12) having a first grip portion 13 that grips the work W0. The second spindle stock (21) is provided with a second spindle (for example, a back spindle 22) having a second grip portion 23 facing the first spindle (12) and gripping the work W0. The servo device (MZ2) moves the second spindle stock (21) in the direction of the center line of the second spindle (22) (for example, the Z-axis direction). The control unit U1 controls the opening/closing operation of the first gripping unit 13 and the second gripping unit 23, and the movement of the second spindle stock (21) via the servo device (MZ2). The control unit U1 opens the second gripping unit 23 and limits the servo device (MZ2) to a torque lower than the maximum torque, and moves the second headstock (21) to the first headstock (11). To a predetermined torque fluctuation to the servo device (MZ2) to detect a change in the position of the second headstock (21) in the direction of the center line (for example, fluctuation range ΔZi), The presence/absence of a foreign object 800 between the second grip portion 23 and the work W0 is determined based on the position change (ΔZi) detected in the range where the grip portion 23 grips the work W0.
 上記態様1では、第一主軸(12)の把持部13に把持されているワークW0を第二主軸(22)の把持部23で把持する際の第二主軸(22)の把持部23とワークW0との間の異物800の有無がサーボ装置(MZ2)の所定のトルク変動による第二主軸台(21)の位置の変化(ΔZi)に基づいて判別される。これにより、第二主軸(22)の把持部23とワークW0との間の異物800の有無が精度良く判別される。従って、本態様は、製品の寸法精度を向上させる旋盤を提供することができる。 In the above aspect 1, when the work W0 gripped by the gripping portion 13 of the first spindle (12) is gripped by the gripping portion 23 of the second spindle (22), the gripping portion 23 of the second spindle (22) and the work The presence/absence of the foreign object 800 with respect to W0 is determined based on the change (ΔZi) in the position of the second headstock (21) due to a predetermined torque fluctuation of the servo device (MZ2). As a result, the presence or absence of the foreign matter 800 between the gripping portion 23 of the second spindle (22) and the work W0 is accurately determined. Therefore, this aspect can provide a lathe that improves the dimensional accuracy of the product.
 ここで、前記制御部が前記サーボ装置に所定のトルク変動を与えることを開始するタイミングは、前記第二把持部が前記ワークを把持する範囲になった後でもよいし、前記第二把持部が前記ワークを把持する範囲になる前でもよい。後者の場合、前記制御部が前記中心線方向における前記第二主軸台の位置の変化を検出することを開始するタイミングは、前記第二把持部が前記ワークを把持する範囲になった後でもよいし、前記第二把持部が前記ワークを把持する範囲になる前でもよい。 Here, the timing at which the control unit starts giving a predetermined torque fluctuation to the servo device may be after the second gripping unit reaches a range for gripping the work, or the second gripping unit may It may be before the range for gripping the work. In the latter case, the control unit may start detecting the change in the position of the second headstock in the centerline direction after the second gripping unit reaches the range for gripping the workpiece. However, it may be before the second grip portion reaches the range where the workpiece is gripped.
[態様2]
 また、本旋盤1は、前記第一把持部13に把持されている前記ワークW0と、該ワークW0から離れている前記第二把持部23と、の少なくとも一方を清掃可能な清掃装置40をさらに備えていてもよい。前記制御部U1は、前記第二把持部23と前記ワークW0との間の異物800の有無を判別する異物判別処理(例えば図6に示すステップS102~S108)において前記第二把持部23と前記ワークW0との間に異物800が有ると判別すると、前記第二主軸台(21)を前記第一主軸台(11)から遠ざかる方へ移動させて前記清掃装置40に清掃を行わせ(例えば図7参照)、再び前記異物判別処理を行ってもよい。本態様は、第二主軸(22)の把持部23とワークW0との間に異物800が有ると判別されると第二主軸(22)の把持部23とワークW0との少なくとも一方が清掃されるので、清掃により異物800が除去されると次の異物判別処理において第二主軸(22)の把持部23とワークW0との間に異物800が無いと判別される。従って、本態様は、ワークを連続して加工する好適な旋盤を提供することができる。
[Aspect 2]
The lathe 1 further includes a cleaning device 40 capable of cleaning at least one of the work W0 gripped by the first grip 13 and the second grip 23 separated from the work W0. You may have it. The control unit U1 and the second gripping unit 23 and the workpiece W0 in the foreign matter determination process (for example, steps S102 to S108 shown in FIG. 6) for determining the presence or absence of the foreign matter 800 between the second gripping unit 23 and the workpiece W0. When it is determined that the foreign object 800 is present between the workpiece W0 and the work W0, the second headstock (21) is moved away from the first headstock (11) to cause the cleaning device 40 to perform cleaning (for example, as shown in FIG. 7), the foreign matter discrimination processing may be performed again. In this aspect, when it is determined that the foreign matter 800 is present between the grip 23 of the second spindle (22) and the work W0, at least one of the grip 23 of the second spindle (22) and the work W0 is cleaned. Therefore, when the foreign matter 800 is removed by cleaning, it is determined that there is no foreign matter 800 between the gripping portion 23 of the second spindle (22) and the work W0 in the next foreign matter determining process. Therefore, this aspect can provide a suitable lathe that continuously processes a workpiece.
(2)旋盤の構成の具体例:
 図1は、旋盤の例として正面主軸12が移動する主軸移動型のNC(数値制御)旋盤1の構成を模式的に例示している。図1は、本技術を説明するために簡略化した一例を示しているに過ぎず、本技術を限定するものではない。尚、各部の位置関係の説明は、例示に過ぎない。従って、左右方向を上下方向又は前後方向に変更したり、上下方向を左右方向や前後方向に変更したり、前後方向を左右方向や上下方向に変更したり、回転方向を逆方向に変更したり等することも、本技術に含まれる。また、方向や位置等の同一は、厳密な一致に限定されず、誤差により厳密な一致からずれることを含む。
(2) Specific example of the structure of the lathe:
FIG. 1 schematically illustrates a configuration of a main spindle moving type NC (numerical control) lathe 1 in which a front main spindle 12 moves as an example of a lathe. FIG. 1 shows only one simplified example for explaining the present technology, and does not limit the present technology. It should be noted that the description of the positional relationship of each part is merely an example. Therefore, change the left/right direction to the up/down direction or the front/rear direction, change the up/down direction to the left/right direction or the front/rear direction, change the front/rear direction to the left/right direction or the up/down direction, or change the rotation direction to the opposite direction. This is also included in the present technology. Further, the same direction, position, and the like are not limited to strict coincidence, and include deviation from strict coincidence due to an error.
 図1に示す旋盤1は、NC装置70、固定されたベース10に設置された正面主軸台11、固定されたベース20に設置された背面主軸台21、固定されたベース30に設置された刃物台31、清掃装置40、等を備えている。NC装置70は、前述の各部11,21,31,40等の動作を制御する。 The lathe 1 shown in FIG. 1 includes an NC device 70, a front headstock 11 installed on a fixed base 10, a rear headstock 21 installed on a fixed base 20, and a blade installed on a fixed base 30. The table 31 and the cleaning device 40 are provided. The NC device 70 controls the operations of the respective units 11, 21, 31, 40, etc. described above.
 正面主軸台11は、主軸中心線AX1に沿ったZ軸方向へ移動可能とされている。NC装置70は、図2に例示するZ1軸モーターMZ1等の駆動部を介して正面主軸台11のZ軸方向における位置を制御する。正面主軸台11に設けられた正面主軸12は、コレット等の第一把持部13を有し、Z軸方向へ挿入された円柱状(棒状)のワークW1を第一把持部13で解放可能に把持する。NC装置70は、回転モーター15等の駆動部を介して、ワークW1の長手方向に沿う主軸中心線AX1を中心として正面主軸12を回転させる。これにより、正面主軸12は、主軸中心線AX1を中心としてワークW1を回転させる。 The front headstock 11 is movable in the Z-axis direction along the spindle centerline AX1. The NC device 70 controls the position of the front headstock 11 in the Z-axis direction via a drive unit such as the Z1-axis motor MZ1 illustrated in FIG. The front main spindle 12 provided on the front main spindle stock 11 has a first gripping portion 13 such as a collet, and the columnar (bar-shaped) work W1 inserted in the Z-axis direction can be released by the first gripping portion 13. Hold it. The NC device 70 rotates the front main spindle 12 about a main spindle center line AX1 along the longitudinal direction of the work W1 via a drive unit such as the rotary motor 15. As a result, the front spindle 12 rotates the work W1 about the spindle centerline AX1.
 図1において二点鎖線で示すように、正面主軸12の前方にガイドブッシュ18が配置されてもよい。この場合のガイドブッシュ18は、正面主軸12の前方に配置され、正面主軸12を貫通した長手状のワークW1をZ軸方向へ摺動可能に支持し、正面主軸12と同期して主軸中心線AX1を中心として回転駆動される。 As shown by the chain double-dashed line in FIG. 1, a guide bush 18 may be arranged in front of the front spindle 12. In this case, the guide bush 18 is arranged in front of the front main spindle 12 and slidably supports the longitudinal work W1 penetrating the front main spindle 12 in the Z-axis direction, and in synchronization with the front main spindle 12, the main shaft center line. It is rotationally driven around AX1.
 背面主軸台21は、主軸中心線AX2に沿ったZ軸方向、及び、このZ軸方向と直交(交差)するY軸方向へ移動可能とされている。NC装置70は、図2に例示するZ2軸モーターMZ2やY2軸モーターMY2等の駆動部を介して背面主軸台21のZ軸方向及びY軸方向における位置を制御する。背面主軸台21に設けられた背面主軸22は、コレット等の第二把持部23を有し、主軸中心線AX1,AX2同士が合わせられた状態でZ軸方向へ挿入された正面加工後のワークW2を第二把持部23で解放可能に把持する。NC装置70は、回転モーター25等の駆動部を介して、主軸中心線AX2を中心として背面主軸22を回転させる。これにより、背面主軸22は、主軸中心線AX2を中心としてワークW2を回転させる。背面主軸22は、正面主軸と対向する意味で対向主軸と呼ばれることがある。
 尚、正面加工前のワークW1と正面加工後のワークW2をワークW0と総称し、正面主軸12の把持部13から背面主軸22に受け渡されるワークをワークW0と呼ぶことにする。
The rear headstock 21 is movable in the Z-axis direction along the main-axis center line AX2 and in the Y-axis direction orthogonal (intersecting) to the Z-axis direction. The NC device 70 controls the position of the back spindle stock 21 in the Z-axis direction and the Y-axis direction via a drive unit such as the Z2-axis motor MZ2 and the Y2-axis motor MY2 illustrated in FIG. The back spindle 22 provided on the back spindle stock 21 has a second grip portion 23 such as a collet, and is inserted in the Z-axis direction with the spindle centerlines AX1 and AX2 aligned with each other, and the workpiece after the front machining. W2 is releasably held by the second grip 23. The NC device 70 rotates the back main shaft 22 about the main shaft center line AX2 via a drive unit such as the rotary motor 25. Thereby, the back spindle 22 rotates the work W2 about the spindle center line AX2. The back main shaft 22 may be referred to as a facing main shaft in the sense of facing the front main shaft.
The work W1 before the front surface machining and the work W2 after the front surface machining are collectively referred to as a work W0, and the work transferred from the grip portion 13 of the front main spindle 12 to the back main spindle 22 is referred to as the work W0.
 刃物台31は、ワークW0を加工するための複数の工具T0が取り付けられ、X軸方向及びZ軸方向へ移動可能とされている。ここで、X軸方向は、Z軸方向及びY軸方向と直交(交差)する方向である。NC装置70は、図2に例示するX3軸モーターMX3やZ3軸モーターMZ3等の駆動部を介して刃物台31のX軸方向及びZ軸方向における位置を制御する。複数の工具T0には、両主軸12,22の把持部13,23に把持されているワークW0を突っ切るための突っ切り工具T1が含まれている。刃物台には、タレット刃物台、櫛型刃物台、等を用いることができる。旋盤には、複数種類の刃物台が設置されてもよい。また、各部11,21,31等の移動方向は、図1に示す方向に限定されない。 The tool post 31 is attached with a plurality of tools T0 for machining the work W0 and is movable in the X-axis direction and the Z-axis direction. Here, the X-axis direction is a direction orthogonal to (intersecting) the Z-axis direction and the Y-axis direction. The NC device 70 controls the position of the tool rest 31 in the X-axis direction and the Z-axis direction via a drive unit such as the X3 axis motor MX3 and the Z3 axis motor MZ3 illustrated in FIG. The plurality of tools T0 includes a cutting tool T1 for cutting through the work W0 held by the holding portions 13 and 23 of the both spindles 12 and 22. As the tool post, a turret tool post, a comb tool post, or the like can be used. Plural types of turrets may be installed on the lathe. Further, the moving directions of the respective parts 11, 21, 31 and the like are not limited to the directions shown in FIG.
 清掃装置40は、正面主軸12の把持部13に把持されているワークW0の先端に流体を吐出するためのノズル41、及び、ワークW0から離れている背面主軸22の把持部23に流体を吐出するためのノズル42を有している。流体は、エアー(気体)でもよいし、クーラント(液体)でもよい。清掃装置40は、NC装置70の制御に従ってノズル41,42から流体を吐出したりノズル41,42からの流体の吐出を停止したりする。ノズル41,42が流体としてエアーを吐出する場合、把持部13に把持されているワークW0の先端にエアーが吹き当てられる位置にノズル41が配置され、Z軸方向における所定の位置にある背面主軸22の把持部23にエアーが吹き当てられる位置にノズル42が配置される。ノズル41,42が流体としてクーラントを吐出する場合、把持部13に把持されているワークW0の先端にクーラントが浴びせられる位置にノズル41が配置され、Z軸方向における所定の位置にある背面主軸22の把持部23にクーラントが浴びせられる位置にノズル42が配置される。 The cleaning device 40 discharges the fluid to the nozzle 41 for discharging the fluid to the tip of the work W0 gripped by the gripping portion 13 of the front spindle 12, and the gripping portion 23 of the back spindle 22 that is distant from the work W0. It has a nozzle 42 for The fluid may be air (gas) or coolant (liquid). The cleaning device 40 discharges the fluid from the nozzles 41 and 42 or stops the discharge of the fluid from the nozzles 41 and 42 under the control of the NC device 70. When the nozzles 41 and 42 discharge air as a fluid, the nozzle 41 is arranged at a position where the air is blown to the tip of the work W0 held by the holding part 13, and the back spindle at a predetermined position in the Z-axis direction. The nozzle 42 is arranged at a position where air is blown against the grip portion 23 of 22. When the nozzles 41 and 42 discharge the coolant as a fluid, the nozzle 41 is arranged at a position where the coolant is sprayed on the tip of the work W0 held by the holding part 13, and the rear spindle 22 at a predetermined position in the Z-axis direction. The nozzle 42 is arranged at a position where the coolant is sprayed on the grip 23.
 図2は、NC旋盤1の電気回路の構成を模式的に例示している。図2に示す旋盤1において、NC装置70には、操作パネル80、Z1軸モーターMZ1、Y2軸モーターMY2、Z2軸モーターMZ2、X3軸モーターMX3、Z3軸モーターMZ3、正面主軸12を回転駆動する回転モーター15、背面主軸22を回転駆動する回転モーター25、正面主軸12の把持部13を開閉するアクチュエーター14、背面主軸22の把持部23を開閉するアクチュエーター24、清掃装置40、等が接続されている。NC装置70は、CPU(Central Processing Unit)71、半導体メモリーであるROM(Read Only Memory)72、半導体メモリーであるRAM(Random Access Memory)73、タイマー回路74、I/F(インターフェイス)75、等を有している。図2では、操作パネル80、サーボモーターMZ1,MY2,MZ2,MX3,MZ3、回転モーター15,25、アクチュエーター14,24、及び、清掃装置40のI/FをまとめてI/F75と示している。ROM72には、加工プログラムP2を解釈して実行するための解釈実行プログラムP1が書き込まれている。RAM73には、ユーザーにより作成された加工プログラムP2が書き換え可能に記憶される。加工プログラムは、NCプログラムとも呼ばれる。CPU71は、RAM73をワークエリアとして使用し、ROM72に記録されている解釈実行プログラムP1を実行することにより、コンピューターをNC装置70として機能させる。むろん、解釈実行プログラムP1により実現される機能の一部又は全部をASIC(Application Specific Integrated Circuit)といった他の手段により実現させてもよい。 FIG. 2 schematically illustrates the configuration of the electric circuit of the NC lathe 1. In the lathe 1 shown in FIG. 2, the NC device 70 rotationally drives the operation panel 80, the Z1 axis motor MZ1, the Y2 axis motor MY2, the Z2 axis motor MZ2, the X3 axis motor MX3, the Z3 axis motor MZ3, and the front main spindle 12. A rotary motor 15, a rotary motor 25 for driving the back spindle 22 to rotate, an actuator 14 for opening and closing the grip portion 13 of the front spindle 12, an actuator 24 for opening and closing the grip portion 23 of the back spindle 22, a cleaning device 40, etc. are connected. There is. The NC device 70 includes a CPU (Central Processing Unit) 71, a semiconductor memory ROM (Read Only Memory) 72, a semiconductor memory RAM (Random Access Memory) 73, a timer circuit 74, an I/F (interface) 75, and the like. have. In FIG. 2, the I/Fs of the operation panel 80, the servo motors MZ1, MY2, MZ2, MX3, MZ3, the rotary motors 15 and 25, the actuators 14 and 24, and the cleaning device 40 are collectively shown as I/F75. .. An interpretation execution program P1 for interpreting and executing the machining program P2 is written in the ROM 72. The machining program P2 created by the user is rewritably stored in the RAM 73. The machining program is also called an NC program. The CPU 71 causes the computer to function as the NC device 70 by using the RAM 73 as a work area and executing the interpretation execution program P1 recorded in the ROM 72. Of course, some or all of the functions implemented by the interpretation execution program P1 may be implemented by other means such as an ASIC (Application Specific Integrated Circuit).
 操作パネル80は、入力部81及び表示部82を備え、NC装置70のユーザーインターフェイスとして機能する。入力部81は、例えば、オペレーターから操作入力を受け付けるためのボタンやタッチパネルから構成される。表示部82は、例えば、オペレーターから操作入力を受け付けた各種設定の内容やNC旋盤1に関する各種情報を表示するディスプレイで構成される。オペレーターは、操作パネル80や外部コンピューターを用いて加工プログラムP2をRAM73に記憶させることが可能である。 The operation panel 80 includes an input unit 81 and a display unit 82, and functions as a user interface of the NC device 70. The input unit 81 includes, for example, a button or a touch panel for receiving an operation input from an operator. The display unit 82 is composed of, for example, a display that displays the contents of various settings received from the operator and various information regarding the NC lathe 1. The operator can store the machining program P2 in the RAM 73 using the operation panel 80 or an external computer.
 Z1軸モーターMZ1は、NC装置70からの指令に従って正面主軸台11をZ軸方向へ移動させる。Y2軸モーターMY2は、NC装置70からの指令に従って背面主軸台21をY軸方向へ移動させる。Z2軸モーターMZ2は、本技術のサーボ装置の例であり、NC装置70からの指令に従って背面主軸台21をZ軸方向へ移動させる。X3軸モーターMX3は、NC装置70からの指令に従って刃物台31をX軸方向へ移動させる。Z3軸モーターMZ3は、NC装置70からの指令に従って刃物台31をZ軸方向へ移動させる。
 各サーボモーターMZ1,MY2,MZ2,MX3,MZ3は、駆動対象11,21,31の位置に応じた基準角パルスを発生するエンコーダーを有し、エンコーダーの発生パルスに基づいて駆動対象11,21,31の位置をNC装置70からの指令に合わせる。図2には、Z2軸モーターMZ2のエンコーダーENが示されている。エンコーダーENは背面主軸台21のZ軸方向における位置に応じた基準角パルスを発生し、Z2軸モーターMZ2はエンコーダーEN発生パルスに基づいて背面主軸台21のZ軸方向における位置を指令に合わせる。
The Z1-axis motor MZ1 moves the front headstock 11 in the Z-axis direction according to a command from the NC device 70. The Y2-axis motor MY2 moves the back spindle stock 21 in the Y-axis direction according to a command from the NC device 70. The Z2-axis motor MZ2 is an example of the servo device of the present technology, and moves the back spindle stock 21 in the Z-axis direction according to a command from the NC device 70. The X3 axis motor MX3 moves the tool rest 31 in the X axis direction in accordance with a command from the NC device 70. The Z3-axis motor MZ3 moves the tool rest 31 in the Z-axis direction according to a command from the NC device 70.
Each of the servo motors MZ1, MY2, MZ2, MX3, MZ3 has an encoder that generates a reference angle pulse corresponding to the position of the drive target 11, 21, 31 and the drive target 11, 21, 21 based on the pulse generated by the encoder. The position of 31 is adjusted to the command from the NC device 70. FIG. 2 shows the encoder EN of the Z2-axis motor MZ2. The encoder EN generates a reference angle pulse according to the position of the rear headstock 21 in the Z-axis direction, and the Z2-axis motor MZ2 adjusts the position of the rear headstock 21 in the Z-axis direction to the command based on the encoder EN generated pulse.
 回転モーター15は、NC装置70からの指令に従った回転速度で正面主軸12を回転駆動する。回転モーター25は、NC装置70からの指令に従った回転速度で背面主軸22を回転駆動する。尚、回転速度は、回転数とも呼ばれ、単位時間当たりの回転の回数を意味する。 The rotary motor 15 rotationally drives the front main spindle 12 at a rotational speed according to a command from the NC device 70. The rotary motor 25 rotationally drives the back spindle 22 at a rotational speed according to a command from the NC device 70. The rotation speed is also called the number of rotations and means the number of rotations per unit time.
 アクチュエーター14は、NC装置70の制御に従い、スリーブ部材等の動力伝達機構を介して正面主軸12の把持部13を開閉する。把持部13を開くとワークがZ軸方向へ移動可能となり、把持部13が閉じるとワークが把持部13に把持される。アクチュエーター24は、NC装置70の制御に従い、スリーブ部材等の動力伝達機構を介して背面主軸22の把持部23を開閉する。把持部23を開くと把持部23に正面加工後のワークをZ軸方向へ挿入したり把持部23から製品をZ軸方向へ排出したりすることが可能となり、正面加工後のワークを受け入れた把持部23が閉じるとワークが把持部23に把持される。アクチュエーター14,24には、リニアモーターを含むサーボモーター、エアーシリンダー、油圧シリンダー、等を用いることができる。アクチュエーター14,24は、ボールねじ機構といった減速機構等を含んでもよい。 The actuator 14 opens and closes the grip portion 13 of the front spindle 12 via a power transmission mechanism such as a sleeve member according to the control of the NC device 70. When the grip 13 is opened, the work can move in the Z-axis direction, and when the grip 13 is closed, the work is gripped by the grip 13. The actuator 24 opens and closes the grip portion 23 of the back spindle 22 through a power transmission mechanism such as a sleeve member according to the control of the NC device 70. When the gripping portion 23 is opened, it is possible to insert the workpiece after the front surface processing into the gripping portion 23 in the Z-axis direction or to discharge the product from the gripping portion 23 in the Z axis direction, and the workpiece after the front surface processing is accepted. When the grip 23 is closed, the work is gripped by the grip 23. As the actuators 14 and 24, a servo motor including a linear motor, an air cylinder, a hydraulic cylinder, or the like can be used. The actuators 14 and 24 may include a reduction mechanism such as a ball screw mechanism.
 清掃装置40は、ノズル41,42に繋がる流路を開閉する電磁弁を有し、NC装置70の制御に従って前述の電磁弁を駆動することによりノズル41,42に繋がる流路を開閉する。流路が開くとノズル41,42から流体が吐出され、流路が閉じるとノズル41,42からの流体の吐出が停止する。 The cleaning device 40 has an electromagnetic valve that opens and closes the flow path connected to the nozzles 41 and 42, and opens and closes the flow path connected to the nozzles 41 and 42 by driving the electromagnetic valve described above under the control of the NC device 70. When the flow path is opened, the fluid is discharged from the nozzles 41 and 42, and when the flow path is closed, the discharge of the fluid from the nozzles 41 and 42 is stopped.
 本具体例において、正面主軸台11は第一主軸台の例であり、正面主軸12は第一主軸の例であり、背面主軸台21は第二主軸台の例であり、背面主軸22は第二主軸の例である。また、NC装置70、及び、背面主軸台21のZ軸方向における位置を検出するZ2軸モーターMZ2は、制御部U1の例である。 In this example, the front headstock 11 is an example of a first headstock, the front headstock 12 is an example of a first headstock, the rear headstock 21 is an example of a second headstock, and the rear headstock 22 is a first headstock. This is an example of two main axes. Further, the NC device 70 and the Z2-axis motor MZ2 that detects the positions of the rear headstock 21 in the Z-axis direction are examples of the control unit U1.
(3)ワーク受け取り処理の具体例:
 まず、図3,4を参照して、正面主軸12の把持部13に把持されている正面加工後のワークW0を背面主軸22が受け取るワーク受け取り処理の例を説明する。図3は、背面主軸22が正面加工後のワークW0の方へ移動している様子を模式的に例示している。図4は、正面加工後のワークW0と背面主軸22の把持部23との間に異物800が入り込んでいる様子を模式的に例示している。図3,4にはガイドブッシュを使用していない旋盤のワーク受け取り処理が示されているが、ガイドブッシュを使用する場合も正面主軸12の把持部13に把持されている正面加工後のワークW0を背面主軸22が受け取るワーク受け取り処理が行われる。
(3) Concrete example of work receiving process:
First, with reference to FIGS. 3 and 4, an example of a work receiving process in which the back surface spindle 22 receives the workpiece W0 after the front surface processing, which is gripped by the gripping portion 13 of the front surface spindle 12, will be described. FIG. 3 schematically illustrates a state in which the back spindle 22 is moving toward the work W0 after the front processing. FIG. 4 schematically exemplifies a state in which the foreign matter 800 has entered between the work W0 after the front surface processing and the grip portion 23 of the back spindle 22. 3 and 4 show the work receiving process of the lathe that does not use the guide bush, but even when the guide bush is used, the work W0 after the front processing which is gripped by the grip portion 13 of the front spindle 12 is used. A work receiving process in which the rear main shaft 22 receives the work is performed.
 ワークW0の正面加工時、背面主軸22は、ワークW0からZ軸方向において離れている。背面主軸22が正面加工後のワークW0を把持するため、把持部23が開いた状態で背面主軸22を含む背面主軸台21がZ軸方向へ近付いていく。把持部23がワークW0に突き当たった時にZ2軸モーターMZ2が背面主軸台21を正面主軸台11の方へ移動させようとすると、Z2軸モーターMZ2の出力トルクが増大する。出力トルクが過大とならないように、Z2軸モーターMZ2の出力トルクは最大トルクよりも低い所定の低トルクに制限されている。その状態で、Z2軸モーターMZ2の出力トルクが所定の低トルクに合わせられた規定のトルク幅となり、且つ、指定されたZ位置(Z軸方向における位置)の範囲内になると、NC装置70は、把持部23がワークW0に接触した、すなわち、ワークW0に把持部23が十分に押し付けられたと判断して把持部23を閉じて突っ切り加工等の加工を続ける制御を行う。 When the front surface of the work W0 is machined, the back spindle 22 is separated from the work W0 in the Z-axis direction. Since the back spindle 22 holds the workpiece W0 after the front machining, the back spindle stock 21 including the back spindle 22 approaches the Z-axis direction with the gripping portion 23 opened. If the Z2-axis motor MZ2 tries to move the rear headstock 21 toward the front headstock 11 when the gripping portion 23 hits the work W0, the output torque of the Z2-axis motor MZ2 increases. In order to prevent the output torque from becoming excessive, the output torque of the Z2-axis motor MZ2 is limited to a predetermined low torque that is lower than the maximum torque. In that state, when the output torque of the Z2-axis motor MZ2 becomes a specified torque width adjusted to a predetermined low torque and is within the designated Z position (position in the Z-axis direction), the NC device 70 Then, it is determined that the gripping portion 23 has come into contact with the work W0, that is, the gripping portion 23 has been sufficiently pressed against the work W0, and the gripping portion 23 is closed to perform control such as cutting off.
 ワークW0に切り屑やゴミといった異物800が付着している場合、背面主軸22の把持部23がワークW0を把持する時に、Z軸方向においてワークW0を把持する位置がずれたり、ワークW0が傾いて把持部23に把持されたりする可能性がある。図4は、ワークW0に異物800が付着していることにより背面主軸22の把持部23がワークW0を把持するZ位置にずれΔErが生じた様子を示している。
 ワークW0を把持する位置がずれるとワークW0の全長に誤差が生じ、ワークW0が傾いて把持部23に把持されるとワークW0の形状に誤差が生じる。誤差が大きくて把持部23のZ位置、すなわち、背面主軸台21のZ位置が押し付け検出の指定範囲外となれば、押し付け検出をやり直す処理が行われるか、警告が出力されて連続加工運転が停止する。
When foreign matter 800 such as chips or dust is attached to the work W0, when the gripping portion 23 of the back spindle 22 grips the work W0, the position of gripping the work W0 in the Z-axis direction shifts or the work W0 tilts. It may be gripped by the grip portion 23. FIG. 4 shows a state in which the foreign matter 800 adheres to the work W0, and thus a deviation ΔEr occurs in the Z position where the grip portion 23 of the back spindle 22 grips the work W0.
When the position of gripping the work W0 is displaced, an error occurs in the entire length of the work W0, and when the work W0 is tilted and gripped by the gripping portion 23, an error occurs in the shape of the work W0. If the Z position of the gripping portion 23, that is, the Z position of the back spindle stock 21 is outside the specified range of the pressing detection due to a large error, the pressing detection is redone or a warning is output and the continuous machining operation is performed. Stop.
 把持部23を閉じて運転を続ける条件が上述した押し付け検出だけである場合、誤った押し付け検出が行われる可能性がある。これは、背面主軸台21等に衝撃等の外乱要因が入ると、Z2軸モーターMZ2の出力トルクが急激に上昇して背面主軸台21のZ軸方向への移動が完了したと誤って検知されることがあるためである。また、地震やプレス機の振動といった外部からの振動が背面主軸台21等に入っても、同様である。誤った押し付け検出が行われると、背面主軸22の把持部23とワークW0との間に異物が無くても把持部23がワークW0を把持する位置に誤差が生じ、その分、製品の寸法精度が低下する。また、誤った押し付け検出時に背面主軸台21のZ位置が指定範囲外であれば、押し付け検出をやり直す処理が行われるか、警告が出力されて連続加工運転が停止する。従って、誤った押し付け検出によりワーク加工のサイクルタイムが長くなったり運転が停止したりするという時間のロスが生じ、製造効率が低下することになる。 If the condition for closing the grip 23 and continuing the operation is only the above-mentioned pressing detection, there is a possibility that an incorrect pressing detection will be performed. This is erroneously detected that the output torque of the Z2-axis motor MZ2 suddenly rises and the movement of the rear headstock 21 in the Z-axis direction is completed when a disturbance factor such as impact enters the rear headstock 21. This is because there are things that can happen. The same is true even if external vibration such as an earthquake or vibration of the press machine enters the rear headstock 21 or the like. If erroneous pressing detection is performed, an error occurs in the position at which the gripping portion 23 grips the work W0 even if there is no foreign matter between the gripping portion 23 of the back spindle 22 and the work W0. Is reduced. Further, if the Z position of the rear headstock 21 is out of the specified range at the time of erroneous pressing detection, processing for redoing the pressing detection is performed or a warning is output and the continuous machining operation is stopped. Therefore, erroneous pressing detection causes a loss of time such that the cycle time of work processing becomes long or the operation is stopped, resulting in a decrease in manufacturing efficiency.
 尚、押し付け検出時にワークと背面主軸の把持部との間に異物が入り込んでいるか否かを判別するために、ワークと背面主軸の把持部との隙間にエアーを供給するエアーギャップセンサーを旋盤に設けることが考えられる。異物が存在しなければワークと背面主軸の把持部との隙間が狭くなってエアーの供給時にエアーの内圧が上がり、異物が存在すればワークと背面主軸の把持部との隙間が広くなってエアーの供給時にエアーの内圧があまり上がらない。従って、エアーの供給時にエアーの内圧を検出することにより、異物の有無をより確実に検出することができる。
 しかし、エアーギャップセンサーのための設置スペースが必要であるうえ、エアーギャップセンサーのために背面主軸にエアーの通り道を形成する必要があるため、背面主軸の構造が複雑になる。従って、旋盤自体のコストが高くなる。また、背面主軸の把持部をワークに近付ける度にエアーを供給してエアーの内圧を検出する必要があるため、その分、ワーク加工のサイクルタイムが長くなる。
In addition, in order to determine whether or not foreign matter has entered between the work and the grip of the back spindle when pressing is detected, an air gap sensor that supplies air to the gap between the work and the grip of the back spindle is installed on the lathe. It is possible to provide it. If there is no foreign matter, the gap between the workpiece and the grip on the back spindle will be narrowed, and the internal pressure of the air will rise when air is supplied.If there is foreign matter, the gap between the work and the grip on the back spindle will be widened. The internal pressure of the air does not rise too much when supplying. Therefore, by detecting the internal pressure of the air when the air is supplied, the presence or absence of foreign matter can be detected more reliably.
However, since the installation space for the air gap sensor is required and it is necessary to form an air passage in the back spindle for the air gap sensor, the structure of the back spindle becomes complicated. Therefore, the cost of the lathe itself increases. Further, since it is necessary to supply air and detect the internal pressure of the air each time the grip portion of the back spindle is brought closer to the work, the cycle time of the work machining becomes longer accordingly.
 本具体例では、Z2軸モーターMZ2に所定のトルク変動を与えてZ軸方向における背面主軸台21の位置の変化を検出し、検出した位置の変化に基づいて背面主軸22の把持部23とワークW0との間の異物800の有無を判別することにしている。これにより、旋盤にエアーギャップセンサーといった専用の構造を設ける必要が無く、ワーク加工のサイクルタイムを短くすることができるうえ、ワークの加工位置の精度を向上させ、製品の寸法精度を向上させることができる。 In this specific example, a predetermined torque fluctuation is applied to the Z2-axis motor MZ2 to detect a change in the position of the back spindle stock 21 in the Z-axis direction, and based on the detected change in the position, the grip portion 23 of the back spindle 22 and the workpiece The presence or absence of the foreign object 800 between W0 is determined. As a result, it is not necessary to provide a dedicated structure such as an air gap sensor on the lathe, the cycle time of workpiece machining can be shortened, and the precision of the machining position of the workpiece can be improved and the dimensional accuracy of the product can be improved. it can.
 図5は、ワークW0に把持部23が十分に押し付けられた後において、Z2軸モーターMZ2に与えられたトルク変動、背面主軸台21のZ位置の変化、及び、背面主軸台21の変動幅ΔZを模式的に例示している。ここで、グラフG1はZ2軸モーターMZ2に与えられたトルクMの時間変化を示し、グラフG2は異物が存在しない場合の背面主軸台21のZ位置の時間変化を示し、グラフG3はグラフG2から得られる変動幅ΔZiを時間順に示し、グラフG4は異物が存在する場合の背面主軸台21のZ位置の時間変化を示し、グラフG5はグラフG4から得られる変動幅ΔZiを時間順に示している。各グラフG1~G5の横軸は、時間tを示している。ここで、Z軸方向において、背面主軸22の把持部23をワークW0に押し付ける方向を+Z方向とし、把持部23をワークW0から離す方向を-Z方向とする。 FIG. 5 shows the torque fluctuation applied to the Z2-axis motor MZ2, the change in the Z position of the rear headstock 21, and the fluctuation width ΔZ of the rear headstock 21 after the gripping portion 23 is sufficiently pressed against the work W0. Is schematically illustrated. Here, the graph G1 shows the time change of the torque M applied to the Z2-axis motor MZ2, the graph G2 shows the time change of the Z position of the back headstock 21 when no foreign matter is present, and the graph G3 shows the graph G2. The obtained fluctuation range ΔZi is shown in chronological order, the graph G4 shows the time change of the Z position of the back spindle stock 21 when a foreign substance is present, and the graph G5 shows the fluctuation range ΔZi obtained from the graph G4 in chronological order. The horizontal axis of each of the graphs G1 to G5 represents time t. Here, in the Z-axis direction, the direction in which the grip portion 23 of the back spindle 22 is pressed against the work W0 is the +Z direction, and the direction in which the grip portion 23 is separated from the work W0 is the −Z direction.
 Z2軸モーターMZ2により発生するトルクは、Z2軸モーターMZ2に供給される電流の大きさに比例する。従って、Z2軸モーターMZ2に与えるトルクMは、Z2軸モーターMZ2に与える電流値により制御することができる。Z2軸モーターMZ2に与えられるトルク変動は、把持部23がワークW0を押し付けている時の平均トルクMmeanを中心として、最大値Mmaxと最小値Mminとが交互に現れるように制御される。平均トルクMmeanと最大値Mmaxとの差の絶対値、及び、平均トルクMmeanと最小値Mminとの差の絶対値は、トルク変動の振幅である。最大値Mmaxは、Z2軸モーターMZ2の最大トルクよりも小さい。グラフG1に示されるようなトルク制御が行われることにより、背面主軸22の把持部23とワークW0との間に異物が入り込んでいなければ、背面主軸台21のZ位置がグラフG2に示すように変化する。概ね、Z2軸モーターMZ2に最大値Mmaxのトルクが与えられると背面主軸台21が+Z方向へ変位し、Z2軸モーターMZ2に最小値Mminのトルクが与えられると背面主軸台21が-Z方向へ変位する。グラフG2に示される変動幅ΔZiは、背面主軸台21のZ位置の最大値と最小値との差を意味し、中心値からの最大変位を表す振幅の2倍となる。グラフG2にはi=1~6の変動幅ΔZ1~ΔZ6が示されており、これらの変動幅ΔZ1~ΔZ6がグラフG3に示されている。把持部23とワークW0との間に異物が入り込んでいない場合、各変動幅ΔZiは比較的安定した値となる。 The torque generated by the Z2-axis motor MZ2 is proportional to the magnitude of the current supplied to the Z2-axis motor MZ2. Therefore, the torque M applied to the Z2-axis motor MZ2 can be controlled by the current value applied to the Z2-axis motor MZ2. The torque fluctuation applied to the Z2-axis motor MZ2 is controlled such that the maximum value Mmax and the minimum value Mmin appear alternately around the average torque Mmean when the gripping portion 23 is pressing the work W0. The absolute value of the difference between the average torque Mmean and the maximum value Mmax and the absolute value of the difference between the average torque Mmean and the minimum value Mmin are the amplitudes of torque fluctuations. The maximum value Mmax is smaller than the maximum torque of the Z2-axis motor MZ2. By performing the torque control as shown in the graph G1, unless the foreign matter has entered between the gripping portion 23 of the back spindle 22 and the work W0, the Z position of the back spindle stock 21 is as shown in the graph G2. Changes to. Generally, when the maximum value Mmax of torque is applied to the Z2-axis motor MZ2, the rear headstock 21 is displaced in the +Z direction, and when the minimum value Mmin of torque is applied to the Z2-axis motor MZ2, the rear headstock 21 is moved in the -Z direction. Displace. The fluctuation range ΔZi shown in the graph G2 means the difference between the maximum value and the minimum value of the Z position of the back spindle stock 21, and is twice the amplitude representing the maximum displacement from the center value. The fluctuation range ΔZ1 to ΔZ6 for i=1 to 6 is shown in the graph G2, and these fluctuation ranges ΔZ1 to ΔZ6 are shown in the graph G3. When no foreign matter has entered between the grip portion 23 and the workpiece W0, each fluctuation width ΔZi has a relatively stable value.
 背面主軸22の把持部23とワークW0との間に異物が入り込んでいる場合、背面主軸台21のZ位置がグラフG4に示すように変化する。グラフG4に示される変動幅ΔZ1~ΔZ6は、グラフG5に示されている。把持部23とワークW0との間に異物が入り込んでいる場合、異物が入り込んでいない場合と比較して、把持部23とワークW0を含む系全体の剛性が低くなる。その結果、変動幅ΔZiは全体として大きくなり、各変動幅ΔZiは比較的ばらつきが多い値となる。 When a foreign matter enters between the grip 23 of the back spindle 22 and the work W0, the Z position of the back spindle stock 21 changes as shown in the graph G4. The fluctuation widths ΔZ1 to ΔZ6 shown in the graph G4 are shown in the graph G5. When a foreign matter enters between the grip 23 and the work W0, the rigidity of the entire system including the grip 23 and the work W0 becomes lower than when the foreign matter does not enter. As a result, the fluctuation range ΔZi becomes large as a whole, and each fluctuation range ΔZi has a value with relatively large variation.
 そこで、背面主軸22の把持部23とワークW0との間に異物が入り込んでいない場合のマスターデータD1に基づいて変動幅ΔZiの許容される上限値ΔZmaxを設定することにより、異物の有無を判別することができる。グラフG3に示すように変動幅ΔZiが上限値ΔZmax以下となる場合、把持部23とワークW0との間に異物が入り込んでいないと判別することができる。グラフG5に示すように変動幅ΔZiが上限値ΔZmaxを超える場合、把持部23とワークW0との間に異物が入り込んでいると判別することができる。 Therefore, the presence or absence of foreign matter is determined by setting the allowable upper limit value ΔZmax of the fluctuation range ΔZi based on the master data D1 when no foreign matter has entered between the gripping portion 23 of the back spindle 22 and the work W0. can do. When the fluctuation range ΔZi is less than or equal to the upper limit value ΔZmax as shown in the graph G3, it can be determined that no foreign matter has entered between the gripping portion 23 and the work W0. When the fluctuation range ΔZi exceeds the upper limit value ΔZmax as shown in the graph G5, it can be determined that a foreign matter has entered between the gripping portion 23 and the work W0.
 尚、Z2軸モーターMZ2に与えるトルク変動の振幅は、例えば、背面主軸22の把持部23とワークW0との間に異物が入り込んでいない場合に変動幅ΔZiが1~10μm程度となる振幅とすることができる。トルク変動の周波数f1は、例えば、1~1000Hz程度とすることができる。例えば、f1=500Hzである場合、変動幅ΔZiを0.1秒間に50回サンプリング可能である。サンプリングの回数が増えることにより、短時間で多くの変動幅ΔZiをサンプリングすることができ、異物の有無が精度良く判別される。また、異物の有無の判別する際、短時間で多くの変動幅ΔZiをサンプリングすることにより、突発的に発生する外乱要因の影響を少なくすることも可能となる。 The amplitude of the torque fluctuation applied to the Z2-axis motor MZ2 is, for example, such that the fluctuation width ΔZi is about 1 to 10 μm when no foreign matter enters between the gripping portion 23 of the back spindle 22 and the work W0. be able to. The frequency f1 of the torque fluctuation can be set to, for example, about 1 to 1000 Hz. For example, when f1=500 Hz, the fluctuation range ΔZi can be sampled 50 times in 0.1 second. By increasing the number of times of sampling, many fluctuation widths ΔZi can be sampled in a short time, and the presence or absence of foreign matter can be accurately determined. Further, when determining the presence or absence of foreign matter, by sampling a large amount of fluctuation range ΔZi in a short time, it is possible to reduce the influence of a disturbance factor that suddenly occurs.
(4)NC装置で行われるワーク受け取り処理の例:
 図6は、解釈実行プログラムP1を実行するNC装置70で行われるワーク受け取り処理を例示している。この処理は、加工プログラムP2に記述されたワーク受け取り指令をNC装置70が読み込んだ時に開始される。図5で示したようなトルク変動を実現させる加工プログラムをユーザーが作成するのは、容易ではない。そこで、解釈実行プログラムP1を実行するNC装置70がZ2軸モーターMZ2のトルク変動を実現させることにして、その例を図6に示している。ここで、ステップS102~S108の処理は、背面主軸22の把持部23とワークW0との間の異物を判別する異物判別処理の例である。
 以下、図2~5も参照して、図6に示すワーク受け取り処理を説明する。
(4) Example of work receiving process performed by the NC device:
FIG. 6 illustrates the work receiving process performed by the NC device 70 that executes the interpretation execution program P1. This processing is started when the NC device 70 reads the work receiving instruction described in the machining program P2. It is not easy for the user to create a machining program that realizes the torque fluctuation as shown in FIG. Therefore, the NC device 70 that executes the interpretation execution program P1 realizes the torque fluctuation of the Z2-axis motor MZ2, and an example thereof is shown in FIG. Here, the processing of steps S102 to S108 is an example of the foreign matter determination processing for determining the foreign matter between the grip portion 23 of the back spindle 22 and the work W0.
The work receiving process shown in FIG. 6 will be described below with reference to FIGS.
 ワーク受け取り処理が開始されると、NC装置70は、図2で示したアクチュエーター24を制御して背面主軸22の把持部23を開いた状態にしておき、且つ、Z2軸モーターMZ2を所定の低トルクに制限した状態でZ2軸モーターMZ2を駆動させて背面主軸台21を正面主軸台11の方へ移動させる(ステップS102)。正面主軸12に把持されているワークW0に把持部23が押し付けられると、Z2軸モーターMZ2が背面主軸台21を正面主軸台11の方へ移動させようとするので、Z2軸モーターMZ2の出力トルクが上昇する。 When the work receiving process is started, the NC device 70 controls the actuator 24 shown in FIG. 2 to keep the grip portion 23 of the back spindle 22 open and keeps the Z2-axis motor MZ2 at a predetermined low level. The Z2-axis motor MZ2 is driven while the torque is limited to move the rear headstock 21 toward the front headstock 11 (step S102). When the gripping portion 23 is pressed against the work W0 gripped by the front spindle 12, the Z2-axis motor MZ2 tries to move the rear spindle headstock 21 toward the front spindle headstock 11, so that the output torque of the Z2-axis motor MZ2. Rises.
 そこで、NC装置70は、Z2軸モーターMZ2から出力トルクの値と背面主軸台21のZ位置を取得し、出力トルクの値が規定のトルク幅に入っており、且つ、加工プログラムP2により指定されたZ位置の範囲内に背面主軸台21が入っているか否かを判断する(ステップS104)。加工プログラムP2により指定されたZ位置の範囲は、背面主軸22の把持部23がワークW0を把持する範囲である。むろん、把持部23がワークW0を把持する範囲は、加工プログラムP2により指定された目標のZ位置からNC装置70により求められてもよい。所定期間、出力トルクの値が規定のトルク幅に入っていて、指定範囲内に背面主軸台21が入っている場合、NC装置70は、処理をステップS106に進める。出力トルクの値が規定のトルク幅に入ったにも関わらずステップS104の条件が満たされない場合や、背面主軸台21が指定範囲内に入ったにも関わらずステップS104の条件が満たされない場合は、ステップS112に処理が進められる。
 尚、ステップS104の判断処理において外乱要因による出力トルクの突出値を除くために、NC装置70は、所定期間に得られる複数の出力トルク値から最大値、又は、大きい順から2以上の所定数の値を除いて規定のトルク幅に入っているか否かの判断を行ってもよい。
Therefore, the NC device 70 acquires the output torque value and the Z position of the rear headstock 21 from the Z2-axis motor MZ2, the output torque value is within the specified torque width, and is specified by the machining program P2. It is determined whether the rear headstock 21 is within the range of the Z position (step S104). The range of the Z position designated by the machining program P2 is a range in which the grip portion 23 of the back spindle 22 grips the work W0. Of course, the range in which the gripping portion 23 grips the work W0 may be obtained by the NC device 70 from the target Z position designated by the machining program P2. If the value of the output torque is within the specified torque width for the predetermined period and the rear headstock 21 is within the specified range, the NC device 70 advances the process to step S106. When the condition of step S104 is not satisfied even though the value of the output torque is within the specified torque range, or when the condition of step S104 is not satisfied despite that the rear headstock 21 is within the specified range. The process proceeds to step S112.
In the determination process of step S104, in order to eliminate the protrusion value of the output torque due to the disturbance factor, the NC device 70 determines the maximum value from a plurality of output torque values obtained in a predetermined period, or a predetermined number of 2 or more from the largest value. It may be possible to determine whether or not the torque width is within the specified torque range by excluding the value of.
 ステップS106において、NC装置70は、図5のグラフG1に示したような所定のトルク変動をZ2軸モーターMZ2に与えてZ2軸モーターMZ2から背面主軸台21のZ位置を取得し、背面主軸台21のZ位置の変動幅ΔZi、すなわち、Z位置の変化を求める。次に、NC装置70は、背面主軸台21のZ位置の変動幅が許容される上限値ΔZmax以下であるか否かを判断する(ステップS108)。上限値ΔZmaxと対比される変動幅は、変動幅ΔZiの最大値でもよいし、変動幅ΔZiから最大値、又は、大きい順から2以上の所定数の値を除いた最大値でもよいし、変動幅ΔZiの平均値でもよい。 In step S106, the NC device 70 gives a predetermined torque fluctuation as shown in the graph G1 of FIG. 5 to the Z2-axis motor MZ2 to acquire the Z position of the rear headstock 21 from the Z2-axis motor MZ2, and the rear headstock. The variation width ΔZi of the Z position of 21, that is, the change of the Z position is obtained. Next, the NC device 70 determines whether the fluctuation range of the Z position of the back spindle stock 21 is equal to or less than the allowable upper limit value ΔZmax (step S108). The fluctuation range to be compared with the upper limit value ΔZmax may be the maximum value of the fluctuation range ΔZi, the maximum value from the fluctuation range ΔZi, or the maximum value obtained by removing a predetermined number of 2 or more from the largest value. An average value of the width ΔZi may be used.
 図5のグラフG3に示したように変動幅が上限値ΔZmax以下である場合、背面主軸22の把持部23とワークW0との間に異物が無いと検出されたことになる。この場合、NC装置70は、背面主軸22の把持部23を閉じるようにアクチュエーター24を駆動させ、連続加工運転を続行させ(ステップS110)、ワーク受け取り処理を終了させる。  When the fluctuation range is equal to or less than the upper limit value ΔZmax as shown in the graph G3 of FIG. 5, it means that there is no foreign matter between the gripping portion 23 of the back spindle 22 and the work W0. In this case, the NC device 70 drives the actuator 24 so as to close the grip portion 23 of the back spindle 22, continues the continuous machining operation (step S110), and ends the work receiving process. ‥
 図5のグラフG5に示したように変動幅が上限値ΔZmaxを超えている場合、図4で示したように背面主軸22の把持部23とワークW0との間に異物800が有ると検出されたことになる。この場合、NC装置70は、処理をステップS112に進める。 When the fluctuation range exceeds the upper limit value ΔZmax as shown in the graph G5 of FIG. 5, it is detected that there is a foreign object 800 between the grip portion 23 of the back spindle 22 and the work W0 as shown in FIG. It will be. In this case, the NC device 70 advances the process to step S112.
 ステップS112の処理は、ステップS104,108で条件が不成立であった場合に行われる。ステップS112において、NC装置70は、ステップS102~S108の異物判別処理について加工プログラムP2により指定された回数のリトライを行ったか否かを判断する。むろん、リトライの回数は、加工プログラムP2によらず解釈実行プログラムP1等により決められた回数でもよい。リトライが指定回数に到達していない場合、NC装置70は、所定の清掃処理を行い(ステップS114)、処理をステップS102に戻す。リトライが指定回数に到達した場合、NC装置70は、ワークの連続加工運転を続けることができないことを示す警告を出力し、ワークの連続加工運転を停止させ(ステップS116)、ワーク受け取り処理を終了させる。警告の出力には、図2で示した表示部82に警告を表示すること、図示しない音声出力装置から警告音を出力すること、等が含まれる。 The process of step S112 is performed when the conditions are not satisfied in steps S104 and S108. In step S112, the NC device 70 determines whether or not the foreign matter determination processing in steps S102 to S108 has been retried the number of times specified by the machining program P2. Of course, the number of retries may be the number determined by the interpretation execution program P1 or the like instead of the processing program P2. When the number of retries has not reached the specified number, the NC device 70 performs a predetermined cleaning process (step S114) and returns the process to step S102. When the number of retries reaches the specified number, the NC device 70 outputs a warning indicating that the continuous machining operation of the work cannot be continued, stops the continuous machining operation of the work (step S116), and ends the workpiece receiving process. Let The output of the warning includes displaying the warning on the display unit 82 shown in FIG. 2, outputting a warning sound from a voice output device (not shown), and the like.
 図7は、ステップS114で行われる清掃処理を模式的に例示している。清掃処理が開始すると、NC装置70は、図2で示したZ2軸モーターMZ2を駆動させて背面主軸台21を正面主軸台11から遠ざかる方へ移動させる。背面主軸22の把持部23がノズル42の先となる位置まで背面主軸台21が退避すると、NC装置70は、一定期間、清掃装置40を駆動させ、ノズル41からワークW0に清掃用の流体を吐出し、ノズル42から把持部23に清掃用の流体を吐出する。この状態を図7に示している。流体がエアーである場合、ノズル41からワークW0にエアーが吹き当てられてワークW0から異物800がエアーにより吹き飛ばされ、ノズル42から把持部23にエアーが吹き当てられて把持部23から異物がエアーにより吹き飛ばされる。流体がクーラントである場合、ノズル41からワークW0にクーラントが浴びせられて異物800がクーラントにより洗い流され、ノズル42から把持部23にクーラントが浴びせられて異物がクーラントにより洗い流される。 FIG. 7 schematically illustrates the cleaning process performed in step S114. When the cleaning process is started, the NC device 70 drives the Z2-axis motor MZ2 shown in FIG. 2 to move the rear headstock 21 away from the front headstock 11. When the back spindle stock 21 is retracted to a position where the grip 23 of the back spindle 22 is ahead of the nozzle 42, the NC device 70 drives the cleaning device 40 for a certain period of time to supply the cleaning fluid from the nozzle 41 to the work W0. The cleaning fluid is discharged from the nozzle 42 to the grip portion 23. This state is shown in FIG. When the fluid is air, air is blown from the nozzle 41 to the work W0 and the foreign matter 800 is blown away from the work W0 by air, and air is blown from the nozzle 42 to the gripping portion 23 so that the foreign matter is aired from the gripping portion 23. Blown away by. When the fluid is coolant, the coolant is sprayed from the nozzle 41 onto the workpiece W0 to wash away the foreign matter 800 with the coolant, and the coolant is sprayed from the nozzle 42 onto the gripping portion 23 to wash away the foreign matter with the coolant.
 清掃処理が行われると、図6のステップS102~S108の異物判別処理が行われる。ステップS102において背面主軸台21が正面主軸台11の方へ移動すると、図8に例示するように背面主軸22の把持部23がワークW0に押し付けられる。ここで、異物800が除去されていると、把持部23がワークW0を把持するZ位置のずれΔErが少なくなる。また、図6のステップS106において取得される変動量ΔZiが全体として少なくなり、背面主軸台21のZ位置の変動量が上限値ΔZmax以下となって、連続加工運転が続行される。 When the cleaning process is performed, the foreign matter discrimination process in steps S102 to S108 of FIG. 6 is performed. When the rear headstock 21 moves toward the front headstock 11 in step S102, the gripping portion 23 of the rear headstock 22 is pressed against the work W0 as illustrated in FIG. Here, if the foreign matter 800 is removed, the deviation ΔEr of the Z position at which the grip portion 23 grips the work W0 becomes small. Further, the variation amount ΔZi acquired in step S106 of FIG. 6 is reduced as a whole, the variation amount of the Z position of the rear headstock 21 becomes the upper limit value ΔZmax or less, and the continuous machining operation is continued.
 以上説明したように、Z2軸モーターMZ2に所定のトルク変動を与えた状態で背面主軸台21について検出されるZ位置の変化に基づいて背面主軸22の把持部23とワークW0との間の異物の有無を判別することにより、様々な有用な効果が得られる。本具体例は、エアーギャップセンサーのような専用の構造を設ける必要が無いため、旋盤の大型化及びコストアップを抑制することができ、ワーク加工のサイクルタイムを短くすることもできる。また、衝撃等の外乱要因の影響を少なくすることができるため、把持部23とワークW0との間の異物の有無が精度良く判別される。従って、本具体例は、ワークの加工位置の精度を向上させ、製品の寸法精度を向上させることができる。 As described above, the foreign matter between the gripping portion 23 of the rear spindle 22 and the workpiece W0 is based on the change in the Z position detected on the rear spindle stock 21 while the Z2 axis motor MZ2 is subjected to a predetermined torque fluctuation. Various useful effects can be obtained by determining the presence or absence of. In this specific example, since it is not necessary to provide a dedicated structure such as an air gap sensor, it is possible to suppress an increase in the size and cost of the lathe, and it is possible to shorten the cycle time of work processing. Further, since the influence of disturbance factors such as impact can be reduced, the presence/absence of foreign matter between the grip portion 23 and the work W0 can be accurately determined. Therefore, the present specific example can improve the accuracy of the processing position of the work and the dimensional accuracy of the product.
(5)変形例:
 本発明は、種々の変形例が考えられる。
 例えば、本技術を適用可能な旋盤は、主軸移動型旋盤に限定されず、正面主軸が移動しない主軸固定型旋盤等でもよい。
(5) Modification:
Various modifications of the present invention are possible.
For example, the lathe to which the present technology can be applied is not limited to the main spindle moving type lathe, and may be a main spindle fixed type lathe in which the front main spindle does not move.
 上述した清掃装置40はワーク清掃用のノズル41と第二把持部清掃用のノズル42の両方を有していたが、ノズル41,42の一方を省略することも可能である。ノズル41,42の一方を省略しても、異物が除去される可能性があるので、本技術を適用可能である。むろん、ノズル41からエアーを吹き出してノズル42からクーラントを吐出してもよく、ノズル41からクーラントを吐出してノズル42からエアーを吹き出してもよい。尚、清掃装置40のノズル41,42は正面主軸12や背面主軸22の内部に組み込まれていても良い。 The above-described cleaning device 40 has both the nozzle 41 for cleaning the workpiece and the nozzle 42 for cleaning the second grip portion, but it is possible to omit one of the nozzles 41, 42. The foreign matter may be removed even if one of the nozzles 41 and 42 is omitted, and thus the present technology can be applied. Of course, the air may be blown from the nozzle 41 and the coolant may be discharged from the nozzle 42, or the coolant may be discharged from the nozzle 41 and the air may be blown from the nozzle 42. The nozzles 41 and 42 of the cleaning device 40 may be incorporated inside the front spindle 12 or the back spindle 22.
 図6のステップS108において背面主軸台21のZ位置の変動幅が上限値ΔZmax以下であるか否かを判断する処理は、変動幅ΔZiの移動平均を上限値ΔZmaxと対比する処理でもよいし、図5で示したマスターデータD1に対するパターンマッチングを利用する処理でもよい。 The process of determining whether or not the variation range of the Z position of the back spindle stock 21 in step S108 of FIG. 6 is less than or equal to the upper limit value ΔZmax may be a process of comparing the moving average of the variation range ΔZi with the upper limit value ΔZmax. A process using pattern matching for the master data D1 shown in FIG. 5 may be used.
 変動幅ΔZiの移動平均を上限値ΔZmaxと対比する場合、移動平均をとる数をN(Nは2以上の整数)として、以下のように変動幅のN個の移動平均が上限値ΔZmaxと対比される。
 最初に、変動幅ΔZ1,ΔZ2,…の順にN個の平均が上限値ΔZmaxと対比される。次に、変動幅ΔZ2,ΔZ3,…の順にN個の平均が上限値ΔZmaxと対比される。以下、一つずつ変動幅をずらしたN個の平均が上限値ΔZmaxと対比される。従って、各変動幅ΔZiのうち或る変動幅が衝撃等の外乱要因により大きく検出されても、連続した複数の変動幅ΔZiが平均されて上限値ΔZmaxと対比されるので、異物の有無の判別に対する外乱要因の影響が少なくなる。
When the moving average of the fluctuation range ΔZi is compared with the upper limit value ΔZmax, the number of moving averages is N (N is an integer of 2 or more), and the N moving averages of the fluctuation range are compared with the upper limit value ΔZmax as follows. To be done.
First, N averages are compared with the upper limit value ΔZmax in the order of fluctuation widths ΔZ1, ΔZ2,.... Next, the N averages are compared with the upper limit value ΔZmax in the order of the fluctuation widths ΔZ2, ΔZ3,.... Hereinafter, the N averages with the fluctuation widths shifted one by one are compared with the upper limit value ΔZmax. Therefore, even if a certain fluctuation width among the fluctuation widths ΔZi is detected largely due to a disturbance factor such as impact, a plurality of continuous fluctuation widths ΔZi are averaged and compared with the upper limit value ΔZmax. The influence of disturbance factors on
 マスターデータD1に対するパターンマッチングを利用する場合、マスターデータD1と背面主軸台21のZ位置の検出データ(例えば図5に示すデータD2)とを用いることにより、以下のように異物の有無を判別することができる。ここで、マスターデータD1と検出データD2との一致度(Cとする。)に対する閾値をTH(TH>0)とする。
 最初に、背面主軸22の把持部23がワークW0に押し付けられてZ2軸モーターMZ2に所定のトルク変動が与えられた状態にしておき、Z2軸モーターMZ2により背面主軸台21について検出されるZ位置の変化を表す検出データD2をNC装置70が取得する。次に、NC装置70は、マスターデータD1と検出データD2とのパターンマッチングを行い、マスターデータD1と検出データD2との一致度Cを求める。一致度Cが閾値TH以上である場合に異物が無いと判別することができ、一致度Cが閾値TH未満である場合に異物があると判別することができる。パターンマッチングには背面主軸台21のZ位置について多数の検出データD2が使用されるため、背面主軸台21のZ位置の或る検出値が外乱要因により異常値となっても全体としては僅かな違いとなり、異物の有無の判別に対する外乱要因の影響が少なくなる。
When the pattern matching for the master data D1 is used, the presence/absence of a foreign matter is determined as follows by using the master data D1 and the detection data of the Z position of the back spindle stock 21 (for example, the data D2 shown in FIG. 5). be able to. Here, the threshold value for the degree of coincidence (referred to as C) between the master data D1 and the detection data D2 is TH (TH>0).
First, the grip portion 23 of the back spindle 22 is pressed against the work W0 so that a predetermined torque fluctuation is applied to the Z2-axis motor MZ2, and the Z position detected for the back spindle stock 21 by the Z2-axis motor MZ2. The NC device 70 acquires the detection data D2 indicating the change of Next, the NC device 70 performs pattern matching between the master data D1 and the detection data D2, and obtains the degree of coincidence C between the master data D1 and the detection data D2. It can be determined that there is no foreign matter when the matching degree C is equal to or higher than the threshold TH, and it can be determined that there is a foreign matter when the matching degree C is less than the threshold TH. Since a large number of detection data D2 for the Z position of the rear headstock 21 are used for the pattern matching, even if a certain detected value of the Z position of the rear headstock 21 becomes an abnormal value due to a disturbance factor, it is small as a whole. As a result, the influence of disturbance factors on the determination of the presence or absence of foreign matter is reduced.
 さらに、ワーク受け取り処理において、Z2軸モーターMZ2にトルク変動を与え始めるタイミングは、背面主軸22の把持部23がワークW0に押し付けられる前でもよい。  Further, in the work receiving process, the timing at which torque fluctuation is started to be applied to the Z2-axis motor MZ2 may be before the grip 23 of the back spindle 22 is pressed against the work W0. ‥
 図9は、NC装置70で行われるワーク受け取り処理の別の例を示している。図9に示すワーク受け取り処理は、図6で示したワーク受け取り処理と比べて、ステップS104~S106がステップS202~S206に置き換わっている。
 NC装置70は、背面主軸22の把持部23を開いた状態にしてZ2軸モーターMZ2を所定の低トルクに制限した状態で背面主軸台21を正面主軸台11の方へ移動させると(ステップS102)、Z2軸モーターMZ2に所定のトルク変動を与える処理を開始させる(ステップS202)。ステップS202の処理を開始させるタイミングは、Z軸方向において把持部23がワークW0に押し当てられる前の所定位置まで背面主軸台21が移動したタイミングとしている。尚、Z軸方向において背面主軸台21の移動を開始させた直後にステップS202の処理を行うことも可能である。
FIG. 9 shows another example of the work receiving process performed by the NC device 70. In the work receiving process shown in FIG. 9, steps S104 to S106 are replaced with steps S202 to S206 as compared with the work receiving process shown in FIG.
When the NC device 70 moves the rear headstock 21 toward the front headstock 11 in a state where the grip portion 23 of the rear spindle 22 is opened and the Z2-axis motor MZ2 is limited to a predetermined low torque (step S102). ), the process of giving a predetermined torque fluctuation to the Z2-axis motor MZ2 is started (step S202). The timing of starting the processing of step S202 is the timing at which the rear headstock 21 is moved to a predetermined position before the grip 23 is pressed against the work W0 in the Z-axis direction. It is also possible to perform the processing of step S202 immediately after starting the movement of the back spindle stock 21 in the Z-axis direction.
 次に、NC装置70は、加工プログラムP2により指定されたZ位置の範囲内に背面主軸台21が入っているか否かを判断する(ステップS204)。所定期間、指定範囲内に背面主軸台21が入っている場合、NC装置70は、処理をステップS206に進める。ステップS204の条件が満たされない場合は、ステップS112に処理が進められる。  Next, the NC device 70 determines whether or not the rear headstock 21 is within the range of the Z position designated by the machining program P2 (step S204). When the rear headstock 21 is within the designated range for the predetermined period, the NC device 70 advances the process to step S206. If the condition of step S204 is not satisfied, the process proceeds to step S112. ‥
 ステップS206において、既に所定のトルク変動がZ2軸モーターMZ2に与えられているので、NC装置70は、Z2軸モーターMZ2から背面主軸台21のZ位置を取得し、背面主軸台21のZ位置の変動幅ΔZi、すなわち、Z位置の変化を求める。次に、NC装置70は、背面主軸台21のZ位置の変動幅が許容される上限値ΔZmax以下であるか否かを判断する(ステップS108)。変動幅が上限値ΔZmax以下である場合、NC装置70は、背面主軸22の把持部23を閉じるようにアクチュエーター24を駆動させ、連続加工運転を続行させ(ステップS110)、ワーク受け取り処理を終了させる。変動幅が上限値ΔZmaxを超えている場合、清掃処理を含む上述した処理が行われる(ステップS112~S116)。 In step S206, since the predetermined torque fluctuation has already been applied to the Z2-axis motor MZ2, the NC device 70 acquires the Z position of the rear headstock 21 from the Z2-axis motor MZ2 and determines the Z position of the rear headstock 21. The fluctuation range ΔZi, that is, the change in the Z position is obtained. Next, the NC device 70 determines whether the fluctuation range of the Z position of the back spindle stock 21 is equal to or less than the allowable upper limit value ΔZmax (step S108). When the fluctuation range is equal to or less than the upper limit value ΔZmax, the NC device 70 drives the actuator 24 so as to close the grip portion 23 of the back spindle 22, continues the continuous machining operation (step S110), and ends the work receiving process. .. When the fluctuation range exceeds the upper limit value ΔZmax, the above-described processing including the cleaning processing is performed (steps S112 to S116).
 図9に示すワーク受け取り処理が行われても、把持部23とワークW0との間の異物の有無が精度良く判別され、旋盤の大型化及びコストアップが抑制され、ワーク加工のサイクルタイムが短くなる。 Even if the work receiving process shown in FIG. 9 is performed, the presence/absence of foreign matter between the gripping portion 23 and the work W0 is accurately determined, the size of the lathe and the cost increase are suppressed, and the cycle time of work machining is short. Become.
(6)結び:
 以上説明したように、本発明によると、種々の態様により、製品の寸法精度を向上させることが可能な旋盤等の技術を提供することができる。むろん、独立請求項に係る構成要件のみからなる技術でも、上述した基本的な作用、効果が得られる。
 また、上述した例の中で開示した各構成を相互に置換したり組み合わせを変更したりした構成、公知技術及び上述した例の中で開示した各構成を相互に置換したり組み合わせを変更したりした構成、等も実施可能である。本発明は、これらの構成等も含まれる。
(6) Conclusion:
As described above, according to the present invention, a technique such as a lathe capable of improving the dimensional accuracy of a product can be provided according to various aspects. Of course, the basic operation and effect described above can be obtained even by the technology consisting only of the constituent elements according to the independent claims.
Further, the configurations disclosed in the above-described examples may be mutually replaced or the combinations may be changed, the configurations disclosed in the known art and the above-described examples may be mutually replaced, or the combinations may be changed. It is also possible to implement such a configuration. The present invention also includes these configurations and the like.
1…旋盤、11…正面主軸台(第一主軸台の例)、
12…正面主軸(第一主軸の例)、13…把持部、
14…アクチュエーター、15…回転モーター、18…ガイドブッシュ、
21…背面主軸台(第二主軸台の例)、22…背面主軸(第二主軸の例)、
23…把持部、24…アクチュエーター、25…回転モーター、
31…刃物台、40…清掃装置、41,42…ノズル、70…NC装置、
AX1,AX2…主軸中心線、EN…エンコーダー、
MZ2…Z2軸モーター(サーボ装置の例)、U1…制御部、
W0,W1,W2…ワーク。
1... lathe, 11... front headstock (example of first headstock),
12... Front spindle (example of first spindle), 13... Gripping portion,
14... Actuator, 15... Rotating motor, 18... Guide bush,
21... Rear spindle headstock (example of second spindle headstock), 22... Rear surface spindle head (example of second spindle headstock),
23... Gripping part, 24... Actuator, 25... Rotating motor,
31... Turret, 40... Cleaning device, 41, 42... Nozzle, 70... NC device,
AX1, AX2... Spindle center line, EN... Encoder,
MZ2...Z2 axis motor (example of servo device), U1... control unit,
W0, W1, W2... Work.

Claims (2)

  1.  ワークを把持する第一把持部を有する第一主軸を設けた第一主軸台と、
     前記第一主軸に対向して前記ワークを把持する第二把持部を有する第二主軸を設けた第二主軸台と、
     該第二主軸台を前記第二主軸の中心線方向へ移動させるサーボ装置と、
     前記第一把持部及び前記第二把持部の開閉動作、並びに、前記サーボ装置を介した前記第二主軸台の移動を制御する制御部と、を備え、
     前記制御部は、前記第二把持部を開いて前記サーボ装置を最大トルクよりも低いトルクに制限した状態で前記第二主軸台を前記第一主軸台の方へ移動させ、前記サーボ装置に所定のトルク変動を与えて前記中心線方向における前記第二主軸台の位置の変化を検出し、前記第二把持部が前記ワークを把持する範囲において検出した位置の変化に基づいて前記第二把持部と前記ワークとの間の異物の有無を判別する、旋盤。
    A first headstock provided with a first spindle having a first gripping portion for gripping a work;
    A second spindle stock provided with a second spindle having a second gripping portion that grips the work, facing the first spindle.
    A servo device for moving the second spindle stock in the direction of the center line of the second spindle;
    An opening/closing operation of the first grip portion and the second grip portion, and a control unit that controls the movement of the second headstock via the servo device,
    The controller moves the second headstock toward the first headstock in a state in which the second gripping part is opened and the servo device is limited to a torque lower than the maximum torque, and the servo device has a predetermined movement. The change in the position of the second headstock in the direction of the center line is detected, and the second gripper is based on the change in position detected in the range where the second gripper grips the workpiece. A lathe that determines the presence of foreign matter between the workpiece and the work.
  2.  本旋盤は、前記第一把持部に把持されている前記ワークと、該ワークから離れている前記第二把持部と、の少なくとも一方を清掃可能な清掃装置をさらに備え、
     前記制御部は、前記第二把持部と前記ワークとの間の異物の有無を判別する異物判別処理において前記第二把持部と前記ワークとの間に異物が有ると判別すると、前記第二主軸台を前記第一主軸台から遠ざかる方へ移動させて前記清掃装置に清掃を行わせ、再び前記異物判別処理を行う、請求項1に記載の旋盤。
    The lathe further comprises a cleaning device capable of cleaning at least one of the work held by the first grip and the second grip apart from the work,
    When the control unit determines that there is a foreign matter between the second gripping unit and the work in the foreign matter determining process for determining the presence or absence of a foreign matter between the second gripping unit and the work, the second spindle The lathe according to claim 1, wherein the table is moved away from the first spindle stock to cause the cleaning device to perform cleaning, and the foreign matter determination process is performed again.
PCT/JP2019/042463 2018-11-27 2019-10-30 Lathe WO2020110573A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-220812 2018-11-27
JP2018220812A JP7323759B2 (en) 2018-11-27 2018-11-27 lathe

Publications (1)

Publication Number Publication Date
WO2020110573A1 true WO2020110573A1 (en) 2020-06-04

Family

ID=70852370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042463 WO2020110573A1 (en) 2018-11-27 2019-10-30 Lathe

Country Status (3)

Country Link
JP (1) JP7323759B2 (en)
TW (1) TWI809223B (en)
WO (1) WO2020110573A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7480003B2 (en) 2020-09-14 2024-05-09 シチズン時計株式会社 Machine tool and method for controlling machine tool

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02218537A (en) * 1989-02-15 1990-08-31 Nissan Motor Co Ltd Malfunction diagnostic device for servo type transfer system
JPH0335902A (en) * 1989-06-30 1991-02-15 Okuma Mach Works Ltd Cutting-off tool protecting method for opposed spindle lathe
JPH03190601A (en) * 1989-12-15 1991-08-20 Fanuc Ltd Work changing method
JPH05111802A (en) * 1991-10-22 1993-05-07 Fuji Mach Mfg Co Ltd Main spindle facing type machine tool
JPH05245740A (en) * 1991-12-27 1993-09-24 Nakamuratome Seimitsu Kogyo Kk Axial force controller for headstock of lathe and operation control method
JPH0796402A (en) * 1993-09-27 1995-04-11 Murata Mach Ltd Cutting-off method in opposed two-spindle lathe
JPH09277136A (en) * 1996-04-11 1997-10-28 Alps Tool:Kk Rod material transfer amount detection device for rod material feeder
JP2015057308A (en) * 2014-12-26 2015-03-26 村田機械株式会社 Machine tool
JP2017131982A (en) * 2016-01-26 2017-08-03 中村留精密工業株式会社 Chuck opening/closing control apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63272401A (en) * 1987-04-28 1988-11-09 Yamazaki Mazak Corp Headstock drive structure of combination machining machine tool
TWM559214U (en) * 2017-12-28 2018-05-01 Jian Xue Yin CNC single-tower double spindle double processing efficiency processing machine

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02218537A (en) * 1989-02-15 1990-08-31 Nissan Motor Co Ltd Malfunction diagnostic device for servo type transfer system
JPH0335902A (en) * 1989-06-30 1991-02-15 Okuma Mach Works Ltd Cutting-off tool protecting method for opposed spindle lathe
JPH03190601A (en) * 1989-12-15 1991-08-20 Fanuc Ltd Work changing method
JPH05111802A (en) * 1991-10-22 1993-05-07 Fuji Mach Mfg Co Ltd Main spindle facing type machine tool
JPH05245740A (en) * 1991-12-27 1993-09-24 Nakamuratome Seimitsu Kogyo Kk Axial force controller for headstock of lathe and operation control method
JPH0796402A (en) * 1993-09-27 1995-04-11 Murata Mach Ltd Cutting-off method in opposed two-spindle lathe
JPH09277136A (en) * 1996-04-11 1997-10-28 Alps Tool:Kk Rod material transfer amount detection device for rod material feeder
JP2015057308A (en) * 2014-12-26 2015-03-26 村田機械株式会社 Machine tool
JP2017131982A (en) * 2016-01-26 2017-08-03 中村留精密工業株式会社 Chuck opening/closing control apparatus

Also Published As

Publication number Publication date
JP7323759B2 (en) 2023-08-09
TWI809223B (en) 2023-07-21
JP2020082276A (en) 2020-06-04
TW202023714A (en) 2020-07-01

Similar Documents

Publication Publication Date Title
CN107378612B (en) Machine tool
TWI491464B (en) Machine tool for precision micro-milling and/or drilling
CN107433493B (en) Workpiece machining method, spindle angle correction device, and compound lathe
US20210245257A1 (en) Lathe
KR20180055873A (en) Machining methods by machine tools and machine tools
WO2020110573A1 (en) Lathe
JPH0313020B2 (en)
JPH0895625A (en) Backlash measurement/correction device for machining of spherical or circular arc surface
JP2001030143A (en) Automatic measuring method and device for ball end mill tool
CN112689550B (en) Machine tool
WO2022244630A1 (en) Lathe
JP2553227B2 (en) Tool damage detection method for machine tools
JPH0716806B2 (en) Lathe machine tool
JP4484849B2 (en) Crankshaft mirror, its control device, and its operating method
JPH081403A (en) Method for deburring of screw end part by machine tool having nc device
JPH03222012A (en) Two main shaft confronting type cnc lathe and work processing method
JP2001277075A (en) Load detecting method and device for cutting tool in machine tool
JP3927381B2 (en) Work processing method of work processing machine
JP2024075831A (en) Machine Tools
JP2005288612A (en) Control method of nc machine tool having index table and nc machine tool
JP2023025474A (en) Lathe and method of detecting damage of cutting-off tool of the same
JPH11114771A (en) Method for correcting outline shape by nc system
JP2010115742A (en) Machine tool and error correction method in machine tool
JPH01289601A (en) Machining control method in facing spindle lathe
JPH11198003A (en) Shape measuring instrument for work after machining

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19891204

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19891204

Country of ref document: EP

Kind code of ref document: A1