WO2020110433A1 - Electrode production method, method for producing electricity storage device, and electrode production apparatus - Google Patents

Electrode production method, method for producing electricity storage device, and electrode production apparatus Download PDF

Info

Publication number
WO2020110433A1
WO2020110433A1 PCT/JP2019/036786 JP2019036786W WO2020110433A1 WO 2020110433 A1 WO2020110433 A1 WO 2020110433A1 JP 2019036786 W JP2019036786 W JP 2019036786W WO 2020110433 A1 WO2020110433 A1 WO 2020110433A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
active material
alkali metal
manufacturing
volume
Prior art date
Application number
PCT/JP2019/036786
Other languages
French (fr)
Japanese (ja)
Inventor
慎也 大谷
健二 南坂
慎太郎 青野
福永 浩一
相田 一成
Original Assignee
Jmエナジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jmエナジー株式会社 filed Critical Jmエナジー株式会社
Priority to CN201980077550.4A priority Critical patent/CN113169311A/en
Priority to KR1020217014682A priority patent/KR20210093893A/en
Priority to EP19888923.0A priority patent/EP3890064A4/en
Priority to JP2020558119A priority patent/JP7456936B2/en
Priority to US17/295,590 priority patent/US20220020538A1/en
Publication of WO2020110433A1 publication Critical patent/WO2020110433A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G13/00Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/008Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0459Electrochemical doping, intercalation, occlusion or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0459Electrochemical doping, intercalation, occlusion or alloying
    • H01M4/0461Electrochemical alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present disclosure relates to an electrode manufacturing method, a power storage device manufacturing method, and an electrode manufacturing apparatus.
  • non-aqueous electrolyte secondary batteries typified by lithium-ion secondary batteries
  • a lithium ion capacitor is known as an electricity storage device that can be used in applications requiring high energy density characteristics and high output characteristics.
  • sodium ion type batteries and capacitors using sodium which is lower in cost than lithium and rich in resources, are also known.
  • a process in which the electrode is preliminarily doped with an alkali metal is adopted for various purposes.
  • a method of pre-doping the electrode with an alkali metal there are, for example, a single-wafer method and a continuous method.
  • pre-doping is performed outside the power storage device.
  • pre-doping is performed in a state where the cut electrode plate and the alkali metal plate are placed in a dope solution via a separator.
  • the continuous method pre-doping is performed while transferring the strip-shaped electrode plate in the dope solution.
  • the single-wafer method is disclosed in Patent Documents 1 and 2.
  • the continuous method is disclosed in Patent Documents 3 to 6.
  • JP-A-9-293499 JP 2012-69894 A JP, 10-308212, A Japanese Patent Laid-Open No. 2008-77963 JP, 2012-49543, A JP, 2012-49544, A
  • the dope solution used in the single-wafer method and the continuous method is flammable. Further, in the single-wafer method and the continuous method, pre-doping is performed while applying a current to the electrodes. If the electrode breaks or sparks occur in the electrode transport unit, the dope solution may catch fire.
  • an electrode manufacturing method it is desirable to provide an electrode manufacturing method, an electric storage device manufacturing method, and an electrode manufacturing apparatus capable of suppressing ignition of a dope solution.
  • One aspect of the present disclosure is an electrode manufacturing method for manufacturing an electrode including an active material layer containing an active material doped with an alkali metal, wherein an oxygen concentration is 1 vol% or more and 18 vol% or less, It is an electrode manufacturing method in which the active material is doped with an alkali metal using a dope solution containing an alkali metal ion. According to the electrode manufacturing method of one aspect of the present disclosure, ignition of the dope solution can be suppressed.
  • Another aspect of the present disclosure is a method of manufacturing an electricity storage device including an electrode cell, wherein a dope solution containing an alkali metal ion is used in an atmosphere having an oxygen concentration of 1% by volume or more and 18% by volume or less, and a negative electrode included in the negative electrode.
  • Electric storage in which the negative electrode active material contained in the active material layer is doped with an alkali metal, and after the alkali metal is doped, the negative electrode, the separator, and an electrode different from the negative electrode are sequentially stacked to form the electrode cell. It is a device manufacturing method. According to the method for manufacturing an electricity storage device, which is another aspect of the present disclosure, it is possible to suppress ignition of the dope solution.
  • Another aspect of the present disclosure is an electrode manufacturing apparatus for manufacturing an electrode including an active material layer containing an active material doped with an alkali metal, wherein an atmosphere inside the electrode manufacturing apparatus has an oxygen concentration of 1 volume.
  • the electrode manufacturing apparatus includes an atmosphere setting unit configured to provide an atmosphere of not less than 18% and not more than 18% by volume. According to the electrode manufacturing apparatus which is another aspect of the present disclosure, ignition of the dope solution can be suppressed.
  • Electrode manufacturing apparatus 10... Chamber, 7, 203, 205, 207... Electrolyte bath, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 305, 307, 109, 311, 313, 315, 317, 119, 321, 323, 33, 35, 37, 39, 41, 43, 45... Conveying rollers, 47... Supply rolls, 49... Winding rolls, 51, 52, 54... Counter electrode unit, 53... Porous insulating member, 55... Support base, 57... Circulation filtration unit, 61, 62, 64... DC power supply, 63... Blower, 66... Power supply control unit, 67, 68, 70... Support rod, 69 Partition plate, 71... Space, 73... Electrode precursor, 75...
  • Electrode 77... Conductive base material, 79... Alkali metal containing plate, 81... Filter, 83... Pump, 85... Piping, 87, 89, 91, 93, 97, 99... Cable, 93... Current collector, 95... Active material layer, 101... CPU, 103... Cleaning tank, 105... Memory
  • the electrode manufacturing apparatus 1 includes a chamber 10, electrolytic solution tanks 203, 205, 7, 207, a cleaning tank 103, and conveyance rollers 9, 11, 13, 15, 17, 17, 19, 21,. 23, 25, 27, 29, 31, 305, 307, 109, 311, 313, 315, 317, 119, 321, 323, 33, 35, 37, 39, 41, 43, 45 (these will be collectively described below.
  • a conveyance roller group (Also referred to as a conveyance roller group), a supply roll 47, a winding roll 49, counter electrode units 51, 52, 54, a porous insulating member 53, a support 55, a circulation filtration unit 57, and 3 It is provided with one DC power supply 61, 62, 64, a blower 63, and a power supply control unit 66.
  • the chamber 10 includes electrolytic solution tanks 203, 205, 7, and 207, a cleaning tank 103, a conveyance roller group, a supply roll 47, a winding roll 49, counter electrode units 51, 52, 54, and a porous insulating member. 53, a support 55, a circulation filtration unit 57, and a blower 63 are housed inside.
  • the electrolytic solution tank 205 is a rectangular tank having an open top as shown in FIGS. 1 and 2.
  • the bottom surface of the electrolytic solution tank 205 has a substantially U-shaped cross-sectional shape.
  • a partition plate 69, four counter electrode units 51, four porous insulating members 53, and a transport roller 27 are present in the electrolytic solution tank 205.
  • the four porous insulating members 53 include 53a, 53b, 53c, and 53d.
  • the partition plate 69 is supported by a support rod 67 that penetrates the upper end of the partition plate 69.
  • the support rod 67 is fixed to a wall or the like (not shown).
  • the part of the partition plate 69 other than the upper end is inside the electrolytic solution tank 205.
  • the partition plate 69 extends in the vertical direction and divides the interior of the electrolytic solution tank 205 into two spaces.
  • the transport roller 27 is attached to the lower end of the partition plate 69.
  • the partition plate 69 and the transport roller 27 are supported by a support rod 68 that penetrates them.
  • the vicinity of the lower end of the partition plate 69 is cut out so as not to contact the transport roller 27.
  • a space exists between the transport roller 27 and the bottom surface of the electrolytic solution tank 205.
  • Each of the four counter electrode units 51 is supported by a support rod 70 that penetrates their upper ends, and extends in the vertical direction.
  • the support rod 70 is fixed to a wall or the like (not shown).
  • the part of the counter electrode unit 51 excluding the upper end is in the electrolytic solution tank 205.
  • Two of the four counter electrode units 51 are arranged so as to sandwich the partition plate 69 from both sides.
  • the remaining two counter electrode units 51 are arranged along the inner surface of the electrolytic solution tank 205.
  • the counter electrode unit 51 As shown in FIG. 1, there is a space 71 between the counter electrode unit 51 arranged on the partition plate 69 side and the counter electrode unit 51 arranged along the inner surface of the electrolytic solution tank 205.
  • the counter electrode unit 51 is connected to the positive electrode of the DC power supply 61. The detailed configuration of the counter electrode unit 51 will be described later.
  • a porous insulating member 53 is attached to the surface of each counter electrode unit 51 on the space 71 side. The detailed structure of the porous insulating member 53 will be described later.
  • the electrolytic solution tank 203 basically has the same configuration as the electrolytic solution tank 205. However, the electrolytic solution tank 203 does not include the counter electrode unit 51 and the porous insulating member 53. Further, the electrolytic solution tank 203 includes a transport roller 17 instead of the transport roller 27. The carrying roller 17 is similar to the carrying roller 27.
  • the electrolytic solution tank 7 has basically the same configuration as the electrolytic solution tank 205. However, the electrolytic solution tank 7 includes four counter electrode units 54 and the transport rollers 109 instead of the four counter electrode units 51 and the transport rollers 27. The four counter electrode units 54 are similar to the four counter electrode units 51. The carrying roller 109 is similar to the carrying roller 27. The counter electrode unit 54 is connected to the positive electrode of the DC power supply 62.
  • the electrolytic solution tank 207 has the same configuration as the electrolytic solution tank 205. However, the electrolytic solution tank 207 includes four counter electrode units 52 and the transport rollers 119 instead of the four counter electrode units 51 and the transport rollers 27. The four counter electrode units 52 are similar to the four counter electrode units 51. The transport roller 119 is similar to the transport roller 27. The counter electrode unit 52 is connected to the positive electrode of the DC power supply 64.
  • the cleaning tank 103 basically has the same configuration as the electrolytic solution tank 205. However, the cleaning tank 103 does not include the counter electrode unit 51 and the porous insulating member 53. Further, the cleaning tank 103 includes a transport roller 37 instead of the transport roller 27. The transport roller 37 is similar to the transport roller 27.
  • the transport rollers 25, 29, 307, 311, 317, 321 are made of a conductive material.
  • the other transport rollers of the transport roller group are made of elastomer except for the bearing portion.
  • the transport roller group transports an electrode precursor 73 described later along a constant path.
  • the route through which the transport roller group transports the electrode precursor 73 is from the supply roll 47 to the electrolytic solution tank 203, the electrolytic solution tank 205, the electrolytic solution tank 7, the electrolytic solution tank 207, and the cleaning tank. It is a path that sequentially passes through 103 to reach the winding roll 49.
  • a portion of the path that passes through the electrolytic solution tank 203 first moves downward between the inner surface of the electrolytic solution tank 203 and the partition plate 69, and then moves upward by the transport roller 17. Finally, the route is to move upward between the inner surface of the electrolytic solution tank 203 and the partition plate 69 facing it.
  • a portion passing through the inside of the electrolytic solution tank 205 includes a porous insulating member 53 attached along the inner surface of the electrolytic solution tank 205, and a porous plate on the partition plate 69 side facing the porous insulating member 53.
  • the space 71 between the porous insulating member 53 and the quality insulating member 53 is moved downward, then the moving direction is changed upward by the transport roller 27, and finally, the porous insulating attached along the inner surface of the electrolytic solution tank 205. It is a path of moving upward in the space 71 between the member 53 and the porous insulating member 53 on the side of the partition plate 69 facing the member 53.
  • a portion passing through the electrolytic solution tank 7 includes a porous insulating member 53 attached along the inner surface of the electrolytic solution tank 7 and a porous plate on the partition plate 69 side facing the porous insulating member 53. It moves downward in the space 71 with the quality insulating member 53, and then the transport roller 109 changes the direction of movement upward, and finally, the porous insulation attached along the inner surface of the electrolytic solution tank 7. It is a path of moving upward in the space 71 between the member 53 and the porous insulating member 53 on the side of the partition plate 69 facing the member 53.
  • the portion passing through the electrolytic solution tank 207 includes a porous insulating member 53 attached along the inner surface of the electrolytic solution tank 207, and a porous plate on the side of the partition plate 69 facing the porous insulating member 53. It moves downward in the space 71 between it and the quality insulating member 53, then the direction of movement is changed upward by the transport roller 119, and finally, the porous insulation attached along the inner surface of the electrolytic solution tank 207. It is a path of moving upward in the space 71 between the member 53 and the porous insulating member 53 on the side of the partition plate 69 facing the member 53.
  • a portion passing through the inside of the cleaning tank 103 first moves downward between the inner surface of the cleaning tank 103 and the partition plate 69, and then the moving direction by the transport roller 37.
  • the path is changed upward, and finally moves upward between the inner surface of the cleaning tank 103 and the partition plate 69.
  • the supply roll 47 has an electrode precursor 73 wound around the outer circumference thereof. That is, the supply roll 47 holds the electrode precursor 73 in a wound state.
  • the transport roller group pulls out and transports the electrode precursor 73 held by the supply roll 47.
  • the winding roll 49 winds up and stores the electrode 75 conveyed by the conveying roller group.
  • the electrode 75 is manufactured by subjecting the electrode precursor 73 to pre-doping with an alkali metal in the electrolytic solution tanks 205, 7, and 207.
  • the counter electrode units 51, 52, 54 have a plate shape. As shown in FIG. 4, the counter electrode units 51, 52, 54 have a configuration in which a conductive base material 77 and an alkali metal-containing plate 79 are laminated. Examples of the material of the conductive base material 77 include copper, stainless steel, nickel and the like.
  • the form of the alkali metal-containing plate 79 is not particularly limited, and examples thereof include an alkali metal plate and an alkali metal alloy plate.
  • the thickness of the alkali metal-containing plate 79 can be, for example, 0.03 to 3 mm.
  • the porous insulating member 53 has a plate shape. As shown in FIG. 4, the porous insulating member 53 is laminated on the alkali metal-containing plate 79 and attached to the surfaces of the counter electrode units 51, 52, 54.
  • the plate-like shape of the porous insulating member 53 is the shape when the porous insulating member 53 is attached to the surfaces of the counter electrode units 51, 52, 54.
  • the porous insulating member 53 may be a member that maintains a constant shape by itself, or may be a member that can be easily deformed, such as a net.
  • the shortest distance d from the surface of the porous insulating member 53 to the electrode precursor 73 is preferably in the range of 0.5 to 100 mm, and particularly preferably in the range of 1 to 10 mm.
  • the shortest distance d is the distance between the electrode precursor 73 and a point on the surface of the porous insulating member 53 that is closest to the electrode precursor 73.
  • the porous insulating member 53 is porous. Therefore, the dope solution described below can pass through the porous insulating member 53. As a result, the counter electrode units 51, 52, 54 can come into contact with the dope solution.
  • the porous insulating member 53 may be, for example, a resin mesh.
  • the resin include polyethylene, polypropylene, nylon, polyether ether ketone, polytetrafluoroethylene and the like.
  • the mesh opening can be appropriately set, and for example, can be set to 0.1 ⁇ m to 10 mm, but it is preferably within the range of 0.1 to 5 mm.
  • the thickness of the mesh can be set as appropriate, and can be, for example, 1 ⁇ m to 10 mm, but it is preferably within the range of 30 ⁇ m to 1 mm.
  • the mesh opening ratio can be appropriately set and can be set to, for example, 5 to 98%, preferably 5 to 95%, and more preferably 50 to 95%.
  • the entire porous insulating member 53 may be made of an insulating material, or a part thereof may be provided with an insulating layer.
  • the support base 55 supports the electrolytic solution tanks 203, 205, 7, 207 and the cleaning tank 103 from below.
  • the height of the support base 55 can be changed.
  • the electrolytic solution tank 205 can be moved downward relative to the unit 51 and the porous insulating member 53.
  • the support base 55 is raised, the electrolytic solution tank 205 can be moved upward relative to the partition plate 69, the counter electrode unit 51, and the porous insulating member 53.
  • the support base 55 that supports the electrolytic solution tanks 203, 7, 207 and the cleaning tank 103 also has the same function.
  • the circulation filtration unit 57 is provided in each of the electrolytic solution tanks 203, 205, 7, and 207.
  • the circulation filtration unit 57 includes a filter 81, a pump 83, and a pipe 85.
  • a pipe 85 is a circulating pipe that comes out of the electrolytic solution tank 203, sequentially passes through the pump 83 and the filter 81, and returns to the electrolytic solution tank 203.
  • the dope solution in the electrolytic solution tank 203 is circulated in the pipe 85 and the filter 81 by the driving force of the pump 83 and returns to the electrolytic solution tank 203 again.
  • foreign matters and the like in the dope solution are filtered by the filter 81. Examples of the foreign matter include foreign matter deposited from the dope solution and foreign matter generated from the electrode precursor 73.
  • the material of the filter 81 can be, for example, a resin such as polypropylene or polytetrafluoroethylene.
  • the pore diameter of the filter 81 can be set appropriately, and can be set to, for example, 30 to 50 ⁇ m.
  • the circulation filtration unit 57 provided in the electrolytic solution tanks 205, 7, and 207 also has the same configuration and has the same effect. 1 and 2, the description of the dope solution is omitted for convenience.
  • the negative terminal of the DC power supply 61 is connected to the transport rollers 25 and 29 via a cable 87, respectively. Further, the positive terminal of the DC power supply 61 is connected to a total of four counter electrode units 51 via the cable 89.
  • the electrode precursor 73 contacts the conductive transport rollers 25 and 29.
  • the electrode precursor 73 and the counter electrode unit 51 are in a dope solution which is an electrolytic solution. Therefore, the electrode precursor 73 and the counter electrode unit 51 are electrically connected.
  • the DC power supply 61 supplies a current to the counter electrode unit 51 via the cables 87 and 89 and the transport rollers 25 and 29.
  • the negative terminals of the DC power supply 62 are connected to the transport rollers 307 and 311 via the cable 91, respectively.
  • the positive terminal of the DC power supply 62 is connected to a total of four counter electrode units 54 via the cable 93.
  • the electrode precursor 73 contacts the conductive transport rollers 307 and 311.
  • the electrode precursor 73 and the counter electrode unit 54 are in a dope solution which is an electrolytic solution. Therefore, the electrode precursor 73 and the counter electrode unit 54 are electrically connected.
  • the DC power supply 62 supplies a current to the counter electrode unit 54 via the cables 91 and 93 and the transport rollers 307 and 311.
  • the negative terminal of the DC power supply 64 is connected to the transport rollers 317 and 321 via the cable 97. Further, the positive terminals of the DC power source 64 are respectively connected to a total of four counter electrode units 52 via the cable 99.
  • the electrode precursor 73 comes into contact with the conductive transport rollers 317 and 321.
  • the electrode precursor 73 and the counter electrode unit 52 are in a dope solution which is an electrolytic solution. Therefore, the electrode precursor 73 and the counter electrode unit 52 are electrically connected.
  • the DC power source 64 supplies a current to the counter electrode unit 52 via the cables 97 and 99 and the transport rollers 317 and 321.
  • the blower 63 blows gas to the electrode 75 coming out of the cleaning tank 103 to vaporize the cleaning liquid and dry the electrode 75.
  • the gas used is preferably a gas inert to the active material pre-doped with alkali metal. Examples of such a gas include helium gas, neon gas, argon gas, dehumidified air from which moisture has been removed, and the like.
  • the power supply control unit 66 is electrically connected to the DC power supplies 61, 62, 64.
  • the power supply control unit 66 is a microcomputer including the CPU 101 and a semiconductor memory such as a RAM or a ROM (hereinafter, referred to as a memory 105).
  • the structure of the electrode precursor 73 will be described with reference to FIGS. 5 and 6.
  • the electrode precursor 73 has a strip shape as shown in FIG.
  • the electrode precursor 73 includes a strip-shaped current collector 93 and active material layers 95 formed on both sides of the current collector 93.
  • the current collector 93 for example, a metal foil of copper, nickel, stainless steel or the like is preferable. Further, the current collector 93 may be one in which a conductive layer containing a carbon material as a main component is formed on the metal foil. The thickness of the current collector 93 can be, for example, 5 to 50 ⁇ m.
  • the active material layer 95 can be prepared, for example, by preparing a slurry containing the active material before being doped with an alkali metal, a binder and the like, applying this slurry on the current collector 93, and drying.
  • binder examples include rubber-based binders such as styrene-butadiene rubber (SBR) and NBR; fluororesins such as polytetrafluoroethylene and polyvinylidene fluoride; polypropylene, polyethylene; disclosed in JP 2009-246137A. Examples thereof include fluorine-modified (meth)acrylic binders.
  • the above slurry may contain other components in addition to the active material and the binder.
  • Other components include, for example, carbon black, graphite, vapor-grown carbon fibers, conductive agents such as metal powder; carboxymethyl cellulose, its Na salt or ammonium salt, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, hydroxypropyl cellulose, polyvinyl alcohol, Thickening agents such as oxidized starch, phosphorylated starch and casein can be mentioned.
  • the thickness of the active material layer 95 is not particularly limited, but is, for example, 5 to 500 ⁇ m, preferably 10 to 200 ⁇ m, and particularly preferably 10 to 100 ⁇ m.
  • the active material contained in the active material layer 95 is not particularly limited as long as it is an electrode active material applicable to a battery or a capacitor utilizing the insertion/desorption of alkali metal ions, and may be a negative electrode active material. It may be a positive electrode active material.
  • the negative electrode active material is not particularly limited, and examples thereof include carbon materials such as graphite, graphitizable carbon, non-graphitizable carbon, and composite carbon material in which graphite particles are coated with pitch or resin carbide; lithium and alloy Examples of the material include a metal or semimetal such as Si or Sn that can be converted into a metal, or a material containing an oxide thereof. Specific examples of the carbon material include the carbon materials described in JP2013-258392A. Specific examples of the material containing a metal or a semi-metal capable of alloying with lithium or an oxide thereof include the materials described in JP-A-2005-123175 and JP-A-2006-107795.
  • positive electrode active material examples include transition metal oxides such as activated carbon, cobalt oxide, nickel oxide, manganese oxide, and vanadium oxide; and sulfur-based active materials such as elemental sulfur and metal sulfide.
  • Both of the positive electrode active material and the negative electrode active material may be made of a single substance or may be a mixture of two or more types of substances.
  • the electrode manufacturing apparatus 1 of the present disclosure is suitable when the negative electrode active material is pre-doped with an alkali metal, and particularly, the negative electrode active material is preferably a carbon material or a material containing Si or an oxide thereof.
  • the alkali metal for predoping the active material lithium or sodium is preferable, and lithium is particularly preferable.
  • the density of the active material layer 95 is preferably 1.50 to 2.00 g/cc, particularly preferably 1.60 to 1. It is 90 g/cc.
  • a solution containing alkali metal ions (hereinafter referred to as a dope solution) is placed in each of the electrolytic solution tanks 203, 205, 7, and 207.
  • the dope solution contains an alkali metal ion and a solvent.
  • the solvent include organic solvents.
  • the organic solvent is preferably an aprotic organic solvent.
  • the aprotic organic solvent include ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, 1-fluoroethylene carbonate, ⁇ -butyrolactone, acetonitrile, dimethoxyethane, tetrahydrofuran, dioxolane, and chloride.
  • Examples thereof include methylene, sulfolane, diethylene glycol dimethyl ether (diglyme), diethylene glycol methyl ethyl ether, triethylene glycol dimethyl ether (triglyme), triethylene glycol butyl methyl ether, tetraethylene glycol dimethyl ether (tetraglyme) and the like.
  • an ionic liquid such as a quaternary imidazolium salt, a quaternary pyridinium salt, a quaternary pyrrolidinium salt or a quaternary piperidinium salt can be used.
  • the organic solvent may be composed of a single component, or may be a mixed solvent of two or more components.
  • the alkali metal ion contained in the dope solution is an ion that constitutes an alkali metal salt.
  • the alkali metal salt is preferably a lithium salt or a sodium salt.
  • the anion moiety constituting the alkali metal salt include phosphorus anions having a fluoro group such as PF 6 ⁇ , PF 3 (C 2 F 5 ) 3 ⁇ , PF 3 (CF 3 ) 3 ⁇ ; BF 4 ⁇ , BF 2 (CF) 2 ⁇ , BF 3 (CF 3 ) ⁇ , B(CN) 4 ⁇ and the like, a boron anion having a fluoro group or a cyano group; N(FSO 2 ) 2 ⁇ , N(CF 3 SO 2 ) 2 ⁇ , A sulfonylimide anion having a fluoro group such as N(C 2 F 5 SO 2 ) 2 ⁇ ; an organic sulfonate anion having a fluoro
  • the concentration of the alkali metal salt in the dope solution is preferably 0.1 mol/L or more, more preferably 0.5 to 1.5 mol/L. Within this range, alkali metal pre-doping proceeds efficiently.
  • the dope solution further contains additives such as vinylene carbonate, vinyl ethylene carbonate, 1-fluoroethylene carbonate, 1-(trifluoromethyl)ethylene carbonate, succinic anhydride, maleic anhydride, propane sultone and diethyl sulfone. be able to.
  • additives such as vinylene carbonate, vinyl ethylene carbonate, 1-fluoroethylene carbonate, 1-(trifluoromethyl)ethylene carbonate, succinic anhydride, maleic anhydride, propane sultone and diethyl sulfone.
  • the above dope solution may further contain a flame retardant such as a phosphazene compound.
  • a flame retardant such as a phosphazene compound.
  • the amount of the flame retardant added can be made smaller than in the conventional case.
  • the lower limit of the amount of the flame retardant is not particularly limited, from the viewpoint of effectively controlling the thermal runaway reaction when doping the alkali metal, the amount of the flame retardant is the dope solution. It is preferably 0.01 parts by mass or more, more preferably 0.03 parts by mass or more, and further preferably 0.05 parts by mass or more with respect to 100 parts by mass.
  • the amount of the flame retardant added can be 1 part by mass or less, more preferably 0.8 parts by mass or less, with respect to 100 parts by mass of the dope solution, from the viewpoint of obtaining a high-quality dope electrode. It is more preferably 0.5 part by mass or less.
  • the temperature of the dope solution is preferably 25° C. or higher and 50° C. or lower.
  • Electrode Manufacturing Apparatus 1 First, the following is performed as preparation for manufacturing the electrode 75.
  • the electrode precursor 73 is wound around the supply roll 47.
  • the electrode precursor 73 is pulled out from the supply roll 47 by the transport roller group, and the paper is passed to the winding roll 49 along the path described above.
  • the electrolytic solution tanks 203, 205, 7, 207 and the cleaning tank 103 are raised and set to the fixed positions shown in FIG.
  • the dope solution is stored in the electrolytic solution tanks 203, 205, 7, and 207.
  • the dope solution is as described in “3. Composition of dope solution” above.
  • a cleaning liquid is stored in the cleaning tank 103.
  • the cleaning liquid is an organic solvent.
  • the spaces 71 of the electrolytic solution tanks 203, 205, 7, and 207 are filled with the electrolytic solution.
  • the space 71 of the cleaning tank 103 is filled with the cleaning liquid.
  • the electrode precursor 73 passed from the supply roll 47 to the winding roll 49 is pulled out from the supply roll 47 toward the winding roll 49 by the conveyance roller group, and is conveyed along the above-described path.
  • the electrode precursor 73 passes through the electrolytic solution tanks 205, 7, and 207 the active material contained in the active material layer 95 is pre-doped with an alkali metal.
  • the oxygen concentration in the atmosphere in the chamber 10 is 1% by volume or more and 18% by volume or less. That is, in the chamber 10, the atmosphere in the chamber 10 has an oxygen concentration of 1 vol% or more and 18 vol% or less.
  • the atmosphere in the chamber 10 is the atmosphere of the electrolytic solution tanks 205, 7, 207.
  • the inside of the chamber 10 corresponds to the inside of the electrode manufacturing apparatus 1.
  • the chamber 10 corresponds to an atmosphere setting unit.
  • the oxygen concentration in the atmosphere inside the chamber 10 is preferably 3% by volume or more, and more preferably 5% by volume or more.
  • the oxygen concentration in the atmosphere in the chamber 10 is preferably 15% by volume or less, more preferably less than 12% by volume, and particularly preferably 11.5% by volume or less.
  • the nitrogen concentration in the atmosphere inside the chamber 10 is preferably 30% by volume or more, more preferably 40% by volume or more, and further preferably 50% by volume or more.
  • the nitrogen concentration in the atmosphere inside the chamber 10 is preferably 97% by volume or less, more preferably 95% by volume or less, and further preferably 88% by volume or less.
  • the atmosphere in the chamber 10 may further contain a rare gas such as helium gas or argon gas.
  • a rare gas such as helium gas or argon gas.
  • the rare gas concentration is preferably 10% by volume or more, more preferably 20% by volume or more, and further preferably 30% by volume or more.
  • the rare gas concentration in the atmosphere in the chamber 10 is preferably 80% by volume or less, more preferably 75% by volume or less, and further preferably 70% by volume or less.
  • the pressure of the atmosphere in the chamber 10 is preferably 0.1 ⁇ 10 5 N/m 2 or more and 5 ⁇ 10 5 N/m 2 or less.
  • the temperature of the dope solution contained in the electrolytic solution tanks 205, 7, 207 is preferably 25° C. or higher and 50° C. or lower.
  • the electrode precursor 73 becomes the electrode 75 by pre-doping the active material with an alkali metal.
  • the electrode 75 is cleaned by the cleaning tank 103 while being transported by the transport roller group. Finally, the electrode 75 is wound on the winding roll 49.
  • the electrode 75 manufactured using the electrode manufacturing apparatus 1 may be a positive electrode or a negative electrode.
  • the electrode manufacturing apparatus 1 dopes the positive electrode active material with an alkali metal
  • the electrode manufacturing apparatus 1 dopes the negative electrode active material with an alkali metal.
  • the amount of the alkali metal doped is preferably 70 to 95% of the theoretical capacity of the negative electrode active material when the negative electrode active material of the lithium ion capacitor is occluded with lithium, and lithium is used as the negative electrode active material of the lithium ion secondary battery.
  • occluding TiO2 it is preferably 10 to 30% with respect to the theoretical capacity of the negative electrode active material.
  • the electric storage device includes an electrode cell.
  • Examples of the electricity storage device include a capacitor and a battery.
  • the capacitor is not particularly limited as long as it is a capacitor that uses insertion/desorption of alkali metal ions, and examples thereof include a lithium ion capacitor and a sodium ion capacitor. Of these, lithium ion capacitors are preferable.
  • the basic configuration of the positive electrode that constitutes the capacitor can be a general configuration.
  • Activated carbon is preferably used as the positive electrode active material.
  • the form of the electrolyte that constitutes the capacitor is usually a liquid electrolyte.
  • the basic constitution of the electrolytic solution is the same as that of the above-mentioned dope solution.
  • the concentration of the alkali metal ion (alkali metal salt) in the electrolyte is preferably 0.1 mol/L or more, more preferably 0.5 to 1.5 mol/L.
  • the electrolyte may have a gel or solid form for the purpose of preventing liquid leakage.
  • the capacitor can include a separator between the positive electrode and the negative electrode for suppressing physical contact between them.
  • the separator include a nonwoven fabric or a porous film made of cellulose rayon, polyethylene, polypropylene, polyamide, polyester, polyimide or the like as a raw material.
  • the structure of the capacitor for example, three or more plate-shaped constitutional units including a positive electrode, a negative electrode, and a separator interposed therebetween are laminated to form a laminated body, and the laminated body is enclosed in an exterior film.
  • a laminated cell can be used.
  • a strip-shaped constituent unit composed of a positive electrode and a negative electrode and a separator interposed therebetween is wound to form a laminated body, and the laminated body is housed in a rectangular or cylindrical container.
  • the wound cell and the like are mentioned.
  • a capacitor can be manufactured, for example, by forming a basic structure including at least a negative electrode and a positive electrode and injecting an electrolyte into the basic structure.
  • the density of its active material layer is preferably 0.50 to 1.50 g/cc, and particularly preferably 0.70 to 1.20 g/cc.
  • the battery is not particularly limited as long as it is a battery that uses the insertion/desorption of alkali metal ions, and may be a primary battery or a secondary battery.
  • Examples of the battery include a lithium ion secondary battery, a sodium ion secondary battery, an air battery and the like. Of these, a lithium ion secondary battery is preferable.
  • the basic configuration of the positive electrode that constitutes the battery can be a general configuration.
  • an organic active material such as a nitroxy radical compound or oxygen can be used in addition to those exemplified above.
  • a battery can be manufactured, for example, by forming a basic structure including at least a negative electrode and a positive electrode, and injecting an electrolyte into the basic structure.
  • the negative electrode is manufactured by the method described in "4. Method of manufacturing electrode 75 using electrode manufacturing apparatus 1". Next, the negative electrode, the separator, and the electrode different from the negative electrode are sequentially laminated to form an electrode cell.
  • an active material is doped with an alkali metal using a dope solution containing an alkali metal ion in an atmosphere having an oxygen concentration of 1 vol% or more and 18 vol% or less. .. Therefore, it is difficult for the dope solution to catch fire.
  • the modification includes, for example, modification of doped lithium into lithium nitride.
  • an active material can be doped with an alkali metal using a dope solution containing an alkali metal ion in an atmosphere having an oxygen concentration of 3% by volume or more and 15% by volume or less.
  • the dope solution is less likely to catch fire. Further, it is possible to further suppress the modification of the alkali metal doped in the active material.
  • an active material can be doped with an alkali metal using a dope solution containing an alkali metal ion in an atmosphere having a nitrogen concentration of 30 vol% or more and 97 vol% or less.
  • the dope solution is less likely to catch fire. Further, it is possible to further suppress the modification of the alkali metal doped in the active material.
  • the temperature of the dope solution can be set to 25° C. or higher and 50° C. or lower. In this case, the dope solution is less likely to catch fire. Further, it is possible to further suppress the modification of the alkali metal doped in the active material.
  • the pressure of the atmosphere can be set to 0.1 ⁇ 10 5 N/m 2 or more and 5 ⁇ 10 5 N/m 2 or less. .. In this case, the dope solution is less likely to catch fire. Further, it is possible to further suppress the modification of the alkali metal doped in the active material.
  • Example 1-1) Production of Electrode 75
  • the size of the negative electrode current collector is 150 mm in width, 100 m in length, and 8 ⁇ m in thickness.
  • the surface roughness Ra of the negative electrode current collector is 0.1 ⁇ m.
  • the negative electrode current collector is made of copper foil.
  • negative electrode active material layers 95 were formed on both surfaces of the negative electrode current collector 93 to obtain an electrode precursor 73.
  • the thickness of the negative electrode active material layer 95 is 80 ⁇ m.
  • the negative electrode active material layer 95 is formed along the longitudinal direction of the negative electrode current collector 93.
  • the negative electrode active material layer 95 is formed over a width of 120 mm at the central portion of the negative electrode current collector 93 in the width direction.
  • the negative electrode active material layer-unformed portions at both ends in the width direction of the negative electrode current collector 93 are each 15 mm.
  • the negative electrode active material layer-unformed portion is a portion where the negative electrode active material layer 95 is not formed.
  • the negative electrode active material layer 95 contains graphite, carboxymethyl cellulose, acetylene black, a binder and a dispersant in a mass ratio of 88:3:5:3:1.
  • Graphite corresponds to the negative electrode active material and corresponds to the carbon-based material.
  • Acetylene black corresponds to a conductive agent.
  • the counter electrode unit 51 was manufactured as follows. First, a long copper plate having a thickness of 2 mm was prepared. A lithium metal plate was attached onto this copper plate. The size of the lithium metal plate is 120 mm wide ⁇ 800 mm long and 1 mm thick. The lithium metal plate is attached along the longitudinal direction of the copper plate. The copper plate to which the lithium metal plate is attached in this manner is used as the counter electrode unit 51. Eight sheets of the same counter electrode unit 51 were manufactured. The counter electrode unit 51 corresponds to a lithium electrode.
  • the electrode manufacturing apparatus 1 shown in FIG. 1 was prepared.
  • the electrode precursor 73 and the counter electrode unit 51 were housed in the chamber 10.
  • the electrolytic solution was supplied to the electrolytic solution tanks 203, 205, 7, and 207 of the electrode manufacturing apparatus 1.
  • the electrolytic solution is a solution containing 1.2 M LiPF 6 .
  • the solvent of the electrolytic solution is a mixed solvent containing ethylene carbonate, ethylmethyl carbonate, and dimethyl carbonate in a volume ratio of 3:4:3.
  • the electrode precursor 73 and the counter electrode unit 51 included in the electrode manufacturing apparatus 1 were connected to a direct current power source with a current/voltage monitor, and the electrode precursor 73 was conveyed at a speed of 0.16 m/min, and a current of 40 A was applied.
  • Energized The atmosphere in the chamber 10 when energized was adjusted to have an oxygen concentration of 10% by volume, a nitrogen concentration of 90% by volume, and a temperature of 25°C, and the temperature of the electrolytic solution was 40°C.
  • the energization time was set such that the lithium doping ratio in the negative electrode active material layer 95 was 70% of the negative electrode discharge capacity C2.
  • the irreversible capacity was estimated in advance by measuring the discharge capacity of the negative electrode after doping lithium. Through this step, the negative electrode active material in the negative electrode active material layer 95 was doped with lithium, and the electrode precursor 73 became the electrode 75.
  • the electrode 75 is a negative electrode for a lithium ion capacitor in this example and each example and each comparative example described later.
  • the electrode 75 was passed through the cleaning tank 103 containing EMC (ethyl methyl carbonate) at 25°C. After that, the electrode 75 was wound around the winding roll 49 and stored for 7 hours.
  • EMC ethyl methyl carbonate
  • the produced evaluation cell was subjected to a constant current with a current density of 0.1 mA/cm 2 and a negative electrode potential of 3.0 V vs. Discharge was performed until it became Li/Li+, and the discharge capacity was measured.
  • the evaluation results are shown in Table 1.
  • Examples 1-2 to 1-6, Comparative Examples 1-1 and 1-2 Manufacture and evaluation of electrodes in the same manner as in Example 1-1, except that the oxygen concentration, nitrogen concentration, and temperature of the atmosphere in the chamber 10 during energization and the temperature of the electrolytic solution were set to the values shown in Table 1. I went. The evaluation results are shown in Table 1.
  • the flammability was evaluated as follows.
  • the electrolytic solution was supplied into the container.
  • the electrolytic solution is a solution containing 1.2 M LiPF 6 .
  • the solvent of the electrolytic solution is a mixed solvent containing ethylene carbonate, ethylmethyl carbonate, and dimethyl carbonate in a volume ratio of 3:4:3.
  • the temperature of the electrolytic solution was adjusted to 40°C.
  • the atmosphere in the container had an oxygen concentration of 10% by volume and a nitrogen concentration of 90% by volume.
  • the temperature in the container was 25°C.
  • the container was ignited immediately after opening, and was evaluated as "A" when combustion was not observed, "B” when temporary combustion was observed, and "C” when combustion was observed.
  • the evaluation results are shown in Table 2.
  • Example 2-2 to 2-6 Comparative Example 2-1
  • the flammability was evaluated in the same manner as in Example 2-1 except that the oxygen concentration, the nitrogen concentration, and the temperature of the atmosphere in the container, and the temperature of the electrolytic solution were set to the values shown in Table 2.
  • the evaluation results are shown in Table 2.
  • pre-doping may be performed by a single wafer method.
  • the single-wafer method is a method of performing pre-doping in a state where the cut electrode plate and the alkali metal plate are placed in the electrolytic solution via a separator.
  • each of the above embodiments may be shared by a plurality of constituent elements, or the function of a plurality of constituent elements may be exerted by one constituent element. Moreover, you may omit a part of structure of each said embodiment. Further, at least a part of the configuration of each of the above-described embodiments may be added to or replaced with the configuration of the other above-described embodiments. Note that all aspects included in the technical idea specified by the wording of the claims are the embodiments of the present disclosure.
  • the present disclosure can be realized in various forms such as an electrode manufacturing apparatus, a system having the electrode manufacturing apparatus as a constituent element, and a pre-doping method.

Abstract

This electrode production method produces an electrode which is provided with an active material layer containing an active material that is doped with an alkali metal. In an atmosphere having an oxygen concentration of from 1% by volume to 18% by volume (inclusive), the active material is doped with an alkali metal with use of a dope solution that contains ions of the alkali metal. In a method for producing an electricity storage device according to the present invention, a negative electrode active material contained in a negative electrode active material layer of a negative electrode is doped with an alkali metal with use of a dope solution that contains ions of the alkali metal in an atmosphere having an oxygen concentration of from 1% by volume to 18% by volume (inclusive). After the doping of the alkali metal, the electrode cell is formed by sequentially stacking the negative electrode, a separator, and an electrode that is different from the negative electrode.

Description

電極製造方法、蓄電デバイスの製造方法、及び電極製造装置Electrode manufacturing method, power storage device manufacturing method, and electrode manufacturing apparatus 関連出願の相互参照Cross-reference of related applications
 本国際出願は、2018年11月28日に日本国特許庁に出願された日本国特許出願第2018-222469号に基づく優先権を主張するものであり、日本国特許出願第2018-222469号の全内容を本国際出願に参照により援用する。 This international application claims priority based on Japanese Patent Application No. 2018-222469 filed with the Japan Patent Office on November 28, 2018, and is based on Japanese Patent Application No. 2018-222469. The entire contents of this International Application are incorporated by reference.
 本開示は電極製造方法、蓄電デバイスの製造方法、及び電極製造装置に関する。 The present disclosure relates to an electrode manufacturing method, a power storage device manufacturing method, and an electrode manufacturing apparatus.
 近年、電子機器の小型化・軽量化は目覚ましく、それに伴い、当該電子機器の駆動用電源として用いられる電池に対しても小型化・軽量化の要求が一層高まっている。 In recent years, the size and weight of electronic devices have been remarkably reduced, and along with this, there is an increasing demand for size and weight reduction of batteries used as power sources for driving the electronic devices.
 このような小型化・軽量化の要求を満足するために、リチウムイオン二次電池に代表される非水電解質二次電池が開発されている。また、高エネルギー密度特性及び高出力特性を必要とする用途に対応する蓄電デバイスとして、リチウムイオンキャパシタが知られている。更に、リチウムより低コストで資源的に豊富なナトリウムを用いたナトリウムイオン型の電池やキャパシタも知られている。 To meet such demands for downsizing and weight reduction, non-aqueous electrolyte secondary batteries typified by lithium-ion secondary batteries have been developed. In addition, a lithium ion capacitor is known as an electricity storage device that can be used in applications requiring high energy density characteristics and high output characteristics. Furthermore, sodium ion type batteries and capacitors using sodium, which is lower in cost than lithium and rich in resources, are also known.
 このような電池やキャパシタにおいては、様々な目的のために、予めアルカリ金属を電極にドープするプロセス(一般にプレドープと呼ばれている)が採用されている。アルカリ金属を電極にプレドープする方法として、例えば、枚葉式の方法、連続式の方法がある。枚葉式の方法及び連続式の方法では、蓄電デバイスの外でプレドープを行う。枚葉式の方法では、切り取られた電極板とアルカリ金属板とを、セパレータを介してドープ溶液中に配置した状態でプレドープを行う。連続式の方法では、帯状の電極板をドープ溶液中で移送させながらプレドープを行う。枚葉式の方法は、特許文献1、2に開示されている。連続式の方法は、特許文献3~6に開示されている。 For such batteries and capacitors, a process (generally called pre-doping) in which the electrode is preliminarily doped with an alkali metal is adopted for various purposes. As a method of pre-doping the electrode with an alkali metal, there are, for example, a single-wafer method and a continuous method. In the single-wafer method and the continuous method, pre-doping is performed outside the power storage device. In the single-wafer method, pre-doping is performed in a state where the cut electrode plate and the alkali metal plate are placed in a dope solution via a separator. In the continuous method, pre-doping is performed while transferring the strip-shaped electrode plate in the dope solution. The single-wafer method is disclosed in Patent Documents 1 and 2. The continuous method is disclosed in Patent Documents 3 to 6.
特開平9-293499号公報JP-A-9-293499 特開2012-69894号公報JP 2012-69894 A 特開平10-308212号公報JP, 10-308212, A 特開2008-77963号公報Japanese Patent Laid-Open No. 2008-77963 特開2012-49543号公報JP, 2012-49543, A 特開2012-49544号公報JP, 2012-49544, A
 枚葉式の方法及び連続式の方法で使用するドープ溶液は可燃性である。また、枚葉式の方法及び連続式の方法では、電極に電流を流しながらプレドープを行う。電極が破断したり、電極の搬送ユニットでスパークが生じたりすると、ドープ溶液に引火するおそれがある。 The dope solution used in the single-wafer method and the continuous method is flammable. Further, in the single-wafer method and the continuous method, pre-doping is performed while applying a current to the electrodes. If the electrode breaks or sparks occur in the electrode transport unit, the dope solution may catch fire.
 本開示の1つの局面では、ドープ溶液への引火を抑制できる電極製造方法、蓄電デバイスの製造方法、及び電極製造装置を提供することが望ましい。 In one aspect of the present disclosure, it is desirable to provide an electrode manufacturing method, an electric storage device manufacturing method, and an electrode manufacturing apparatus capable of suppressing ignition of a dope solution.
 本開示の1つの局面は、アルカリ金属がドープされた活物質を含む活物質層を備えた電極を製造する電極製造方法であって、酸素濃度が1体積%以上18体積%以下の雰囲気において、アルカリ金属イオンを含むドープ溶液を用い、前記活物質にアルカリ金属をドープする電極製造方法である。本開示の1つの局面である電極製造方法によれば、ドープ溶液への引火を抑制できる。 One aspect of the present disclosure is an electrode manufacturing method for manufacturing an electrode including an active material layer containing an active material doped with an alkali metal, wherein an oxygen concentration is 1 vol% or more and 18 vol% or less, It is an electrode manufacturing method in which the active material is doped with an alkali metal using a dope solution containing an alkali metal ion. According to the electrode manufacturing method of one aspect of the present disclosure, ignition of the dope solution can be suppressed.
 本開示の別の局面は、電極セルを備える蓄電デバイスの製造方法であって、酸素濃度が1体積%以上18体積%以下の雰囲気において、アルカリ金属イオンを含むドープ溶液を用い、負極が備える負極活物質層に含まれる負極活物質にアルカリ金属をドープし、前記アルカリ金属のドープの後、前記負極と、セパレータと、前記負極とは異なる電極とを順次積層して前記電極セルを形成する蓄電デバイスの製造方法である。本開示の別の局面である蓄電デバイスの製造方法によれば、ドープ溶液への引火を抑制できる。 Another aspect of the present disclosure is a method of manufacturing an electricity storage device including an electrode cell, wherein a dope solution containing an alkali metal ion is used in an atmosphere having an oxygen concentration of 1% by volume or more and 18% by volume or less, and a negative electrode included in the negative electrode. Electric storage in which the negative electrode active material contained in the active material layer is doped with an alkali metal, and after the alkali metal is doped, the negative electrode, the separator, and an electrode different from the negative electrode are sequentially stacked to form the electrode cell. It is a device manufacturing method. According to the method for manufacturing an electricity storage device, which is another aspect of the present disclosure, it is possible to suppress ignition of the dope solution.
 本開示の別の局面は、アルカリ金属がドープされた活物質を含む活物質層を備えた電極を製造する電極製造装置であって、前記電極製造装置の内部の雰囲気を、酸素濃度が1体積%以上18体積%以下の雰囲気とするように構成された雰囲気設定ユニットを備える電極製造装置である。本開示の別の局面である電極製造装置によれば、ドープ溶液への引火を抑制できる。 Another aspect of the present disclosure is an electrode manufacturing apparatus for manufacturing an electrode including an active material layer containing an active material doped with an alkali metal, wherein an atmosphere inside the electrode manufacturing apparatus has an oxygen concentration of 1 volume. The electrode manufacturing apparatus includes an atmosphere setting unit configured to provide an atmosphere of not less than 18% and not more than 18% by volume. According to the electrode manufacturing apparatus which is another aspect of the present disclosure, ignition of the dope solution can be suppressed.
電極製造装置の構成を表す説明図である。It is explanatory drawing showing the structure of an electrode manufacturing apparatus. 電解液槽を下方に移動させた状態を表す説明図である。It is explanatory drawing showing the state which moved the electrolytic solution tank downward. 電極製造装置の電気的構成を表す説明図である。It is explanatory drawing showing the electric constitution of an electrode manufacturing apparatus. 対極ユニット及び多孔質絶縁部材の構成を表す側断面図である。It is a sectional side view showing composition of a counter electrode unit and a porous insulating member. 電極前駆体の構成を表す平面図である。It is a top view showing the structure of an electrode precursor. 図5におけるVI-VI断面での断面図である。It is sectional drawing in the VI-VI cross section in FIG.
1…電極製造装置、10…チャンバー、7、203、205、207…電解液槽、9、11、13、15、17、19、21、23、25、27、29、31、305、307、109、311、313、315、317、119、321、323、33、35、37、39、41、43、45…搬送ローラ、47…供給ロール、49…巻取ロール、51、52、54…対極ユニット、53…多孔質絶縁部材、55…支持台、57…循環濾過ユニット、61、62、64…直流電源、63…ブロア、66…電源制御ユニット、67、68、70…支持棒、69…仕切り板、71…空間、73…電極前駆体、75…電極、77…導電性基材、79…アルカリ金属含有板、81…フィルタ、83…ポンプ、85…配管、87、89、91、93、97、99…ケーブル、93…集電体、95…活物質層、101…CPU、103…洗浄槽、105…メモリ 1... Electrode manufacturing apparatus, 10... Chamber, 7, 203, 205, 207... Electrolyte bath, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 305, 307, 109, 311, 313, 315, 317, 119, 321, 323, 33, 35, 37, 39, 41, 43, 45... Conveying rollers, 47... Supply rolls, 49... Winding rolls, 51, 52, 54... Counter electrode unit, 53... Porous insulating member, 55... Support base, 57... Circulation filtration unit, 61, 62, 64... DC power supply, 63... Blower, 66... Power supply control unit, 67, 68, 70... Support rod, 69 Partition plate, 71... Space, 73... Electrode precursor, 75... Electrode, 77... Conductive base material, 79... Alkali metal containing plate, 81... Filter, 83... Pump, 85... Piping, 87, 89, 91, 93, 97, 99... Cable, 93... Current collector, 95... Active material layer, 101... CPU, 103... Cleaning tank, 105... Memory
 本開示の例示的な実施形態について図面を参照しながら説明する。
<第1実施形態>
 1.電極製造装置1の構成
 電極製造装置1の構成を、図1~図4に基づき説明する。図1に示すように、電極製造装置1は、チャンバー10と、電解液槽203、205、7、207と、洗浄槽103と、搬送ローラ9、11、13、15、17、19、21、23、25、27、29、31、305、307、109、311、313、315、317、119、321、323、33、35、37、39、41、43、45(以下ではこれらをまとめて搬送ローラ群と呼ぶこともある)と、供給ロール47と、巻取ロール49と、対極ユニット51、52、54と、多孔質絶縁部材53と、支持台55と、循環濾過ユニット57と、3つの直流電源61、62、64と、ブロア63と、電源制御ユニット66と、を備える。
An exemplary embodiment of the present disclosure will be described with reference to the drawings.
<First Embodiment>
1. Configuration of Electrode Manufacturing Apparatus 1 The configuration of the electrode manufacturing apparatus 1 will be described with reference to FIGS. 1 to 4. As shown in FIG. 1, the electrode manufacturing apparatus 1 includes a chamber 10, electrolytic solution tanks 203, 205, 7, 207, a cleaning tank 103, and conveyance rollers 9, 11, 13, 15, 17, 17, 19, 21,. 23, 25, 27, 29, 31, 305, 307, 109, 311, 313, 315, 317, 119, 321, 323, 33, 35, 37, 39, 41, 43, 45 (these will be collectively described below. (Also referred to as a conveyance roller group), a supply roll 47, a winding roll 49, counter electrode units 51, 52, 54, a porous insulating member 53, a support 55, a circulation filtration unit 57, and 3 It is provided with one DC power supply 61, 62, 64, a blower 63, and a power supply control unit 66.
 チャンバー10は、電解液槽203、205、7、207と、洗浄槽103と、搬送ローラ群と、供給ロール47と、巻取ロール49と、対極ユニット51、52、54と、多孔質絶縁部材53と、支持台55と、循環濾過ユニット57と、ブロア63とを内部に収容する。 The chamber 10 includes electrolytic solution tanks 203, 205, 7, and 207, a cleaning tank 103, a conveyance roller group, a supply roll 47, a winding roll 49, counter electrode units 51, 52, 54, and a porous insulating member. 53, a support 55, a circulation filtration unit 57, and a blower 63 are housed inside.
 電解液槽205は、図1及び図2に示すように、上方が開口した角型の槽である。電解液槽205の底面は、略U字型の断面形状を有する。電解液槽205内には、仕切り板69と、4個の対極ユニット51と、4個の多孔質絶縁部材53と、搬送ローラ27とが存在する。図2に示すように、4個の多孔質絶縁部材53には、53a、53b、53c、53dが含まれる。 The electrolytic solution tank 205 is a rectangular tank having an open top as shown in FIGS. 1 and 2. The bottom surface of the electrolytic solution tank 205 has a substantially U-shaped cross-sectional shape. A partition plate 69, four counter electrode units 51, four porous insulating members 53, and a transport roller 27 are present in the electrolytic solution tank 205. As shown in FIG. 2, the four porous insulating members 53 include 53a, 53b, 53c, and 53d.
 仕切り板69は、その上端を貫く支持棒67により支持されている。支持棒67は図示しない壁等に固定されている。仕切り板69のうち、上端を除く部分は、電解液槽205内にある。仕切り板69は上下方向に延び、電解液槽205の内部を2つの空間に分割している。仕切り板69の下端に、搬送ローラ27が取り付けられている。仕切り板69と搬送ローラ27とは、それらを貫く支持棒68により支持されている。なお、仕切り板69の下端付近は、搬送ローラ27と接触しないように切り欠かれている。搬送ローラ27と、電解液槽205の底面との間には空間が存在する。 The partition plate 69 is supported by a support rod 67 that penetrates the upper end of the partition plate 69. The support rod 67 is fixed to a wall or the like (not shown). The part of the partition plate 69 other than the upper end is inside the electrolytic solution tank 205. The partition plate 69 extends in the vertical direction and divides the interior of the electrolytic solution tank 205 into two spaces. The transport roller 27 is attached to the lower end of the partition plate 69. The partition plate 69 and the transport roller 27 are supported by a support rod 68 that penetrates them. The vicinity of the lower end of the partition plate 69 is cut out so as not to contact the transport roller 27. A space exists between the transport roller 27 and the bottom surface of the electrolytic solution tank 205.
 4個の対極ユニット51は、それぞれ、それらの上端を貫く支持棒70により支持され、上下方向に延びている。支持棒70は図示しない壁等に固定されている。対極ユニット51のうち、上端を除く部分は、電解液槽205内にある。4個の対極ユニット51のうち、2個は、仕切り板69を両側から挟むように配置されている。残りの2個の対極ユニット51は、電解液槽205の内側面に沿って配置されている。 Each of the four counter electrode units 51 is supported by a support rod 70 that penetrates their upper ends, and extends in the vertical direction. The support rod 70 is fixed to a wall or the like (not shown). The part of the counter electrode unit 51 excluding the upper end is in the electrolytic solution tank 205. Two of the four counter electrode units 51 are arranged so as to sandwich the partition plate 69 from both sides. The remaining two counter electrode units 51 are arranged along the inner surface of the electrolytic solution tank 205.
 図1に示すように、仕切り板69側に配置された対極ユニット51と、電解液槽205の内側面に沿って配置された対極ユニット51との間には空間71が存在する。対極ユニット51は、直流電源61のプラス極に接続される。対極ユニット51の詳しい構成は後述する。 As shown in FIG. 1, there is a space 71 between the counter electrode unit 51 arranged on the partition plate 69 side and the counter electrode unit 51 arranged along the inner surface of the electrolytic solution tank 205. The counter electrode unit 51 is connected to the positive electrode of the DC power supply 61. The detailed configuration of the counter electrode unit 51 will be described later.
 それぞれの対極ユニット51における空間71側の表面に、多孔質絶縁部材53が取り付けられている。多孔質絶縁部材53の詳しい構成は後述する。 A porous insulating member 53 is attached to the surface of each counter electrode unit 51 on the space 71 side. The detailed structure of the porous insulating member 53 will be described later.
 電解液槽203は、基本的には電解液槽205と同様の構成を有する。ただし、電解液槽203は、対極ユニット51及び多孔質絶縁部材53を備えない。また、電解液槽203は、搬送ローラ27に代えて、搬送ローラ17を備える。搬送ローラ17は、搬送ローラ27と同様のものである。 The electrolytic solution tank 203 basically has the same configuration as the electrolytic solution tank 205. However, the electrolytic solution tank 203 does not include the counter electrode unit 51 and the porous insulating member 53. Further, the electrolytic solution tank 203 includes a transport roller 17 instead of the transport roller 27. The carrying roller 17 is similar to the carrying roller 27.
 電解液槽7は、基本的には電解液槽205と同様の構成を有する。ただし、電解液槽7は、4個の対極ユニット51及び搬送ローラ27に代えて、4個の対極ユニット54及び搬送ローラ109を備える。4個の対極ユニット54は、4個の対極ユニット51と同様のものである。搬送ローラ109は、搬送ローラ27と同様のものである。対極ユニット54は、直流電源62のプラス極に接続される。 The electrolytic solution tank 7 has basically the same configuration as the electrolytic solution tank 205. However, the electrolytic solution tank 7 includes four counter electrode units 54 and the transport rollers 109 instead of the four counter electrode units 51 and the transport rollers 27. The four counter electrode units 54 are similar to the four counter electrode units 51. The carrying roller 109 is similar to the carrying roller 27. The counter electrode unit 54 is connected to the positive electrode of the DC power supply 62.
 電解液槽207は、電解液槽205と同様の構成を有する。ただし、電解液槽207は、4個の対極ユニット51及び搬送ローラ27に代えて、4個の対極ユニット52及び搬送ローラ119を備える。4個の対極ユニット52は、4個の対極ユニット51と同様のものである。搬送ローラ119は、搬送ローラ27と同様のものである。対極ユニット52は、直流電源64のプラス極に接続される。 The electrolytic solution tank 207 has the same configuration as the electrolytic solution tank 205. However, the electrolytic solution tank 207 includes four counter electrode units 52 and the transport rollers 119 instead of the four counter electrode units 51 and the transport rollers 27. The four counter electrode units 52 are similar to the four counter electrode units 51. The transport roller 119 is similar to the transport roller 27. The counter electrode unit 52 is connected to the positive electrode of the DC power supply 64.
 洗浄槽103は、基本的には電解液槽205と同様の構成を有する。ただし、洗浄槽103は、対極ユニット51及び多孔質絶縁部材53を備えない。また、洗浄槽103は、搬送ローラ27に代えて、搬送ローラ37を備える。搬送ローラ37は、搬送ローラ27と同様のものである。 The cleaning tank 103 basically has the same configuration as the electrolytic solution tank 205. However, the cleaning tank 103 does not include the counter electrode unit 51 and the porous insulating member 53. Further, the cleaning tank 103 includes a transport roller 37 instead of the transport roller 27. The transport roller 37 is similar to the transport roller 27.
 搬送ローラ25、29、307、311、317、321は、導電性の材料から成る。搬送ローラ群のうち、その他の搬送ローラは、軸受部分を除き、エラストマーから成る。搬送ローラ群は、後述する電極前駆体73を一定の経路に沿って搬送する。搬送ローラ群が電極前駆体73を搬送する経路は、供給ロール47から、電解液槽203の中、電解液槽205の中、電解液槽7の中、電解液槽207の中、及び洗浄槽103の中を順次通り、巻取ロール49に至る経路である。 The transport rollers 25, 29, 307, 311, 317, 321 are made of a conductive material. The other transport rollers of the transport roller group are made of elastomer except for the bearing portion. The transport roller group transports an electrode precursor 73 described later along a constant path. The route through which the transport roller group transports the electrode precursor 73 is from the supply roll 47 to the electrolytic solution tank 203, the electrolytic solution tank 205, the electrolytic solution tank 7, the electrolytic solution tank 207, and the cleaning tank. It is a path that sequentially passes through 103 to reach the winding roll 49.
 その経路のうち、電解液槽203の中を通る部分は、まず、電解液槽203の内側面と、仕切り板69との間を下方に移動し、次に、搬送ローラ17により移動方向を上向きに変えられ、最後に、電解液槽203の内側面と、それに対向する仕切り板69との間を上方に移動するという経路である。 A portion of the path that passes through the electrolytic solution tank 203 first moves downward between the inner surface of the electrolytic solution tank 203 and the partition plate 69, and then moves upward by the transport roller 17. Finally, the route is to move upward between the inner surface of the electrolytic solution tank 203 and the partition plate 69 facing it.
 また、上記の経路のうち、電解液槽205の中を通る部分は、まず、電解液槽205の内側面に沿って取り付けられた多孔質絶縁部材53と、それに対向する仕切り板69側の多孔質絶縁部材53との間の空間71を下方に移動し、次に、搬送ローラ27により移動方向を上向きに変えられ、最後に、電解液槽205の内側面に沿って取り付けられた多孔質絶縁部材53と、それに対向する仕切り板69側の多孔質絶縁部材53との間の空間71を上方に移動するという経路である。 Further, in the above-mentioned path, a portion passing through the inside of the electrolytic solution tank 205 includes a porous insulating member 53 attached along the inner surface of the electrolytic solution tank 205, and a porous plate on the partition plate 69 side facing the porous insulating member 53. The space 71 between the porous insulating member 53 and the quality insulating member 53 is moved downward, then the moving direction is changed upward by the transport roller 27, and finally, the porous insulating attached along the inner surface of the electrolytic solution tank 205. It is a path of moving upward in the space 71 between the member 53 and the porous insulating member 53 on the side of the partition plate 69 facing the member 53.
 また、上記の経路のうち、電解液槽7の中を通る部分は、まず、電解液槽7の内側面に沿って取り付けられた多孔質絶縁部材53と、それに対向する仕切り板69側の多孔質絶縁部材53との間の空間71を下方に移動し、次に、搬送ローラ109により移動方向を上向きに変えられ、最後に、電解液槽7の内側面に沿って取り付けられた多孔質絶縁部材53と、それに対向する仕切り板69側の多孔質絶縁部材53との間の空間71を上方に移動するという経路である。 Further, in the above-mentioned path, a portion passing through the electrolytic solution tank 7 includes a porous insulating member 53 attached along the inner surface of the electrolytic solution tank 7 and a porous plate on the partition plate 69 side facing the porous insulating member 53. It moves downward in the space 71 with the quality insulating member 53, and then the transport roller 109 changes the direction of movement upward, and finally, the porous insulation attached along the inner surface of the electrolytic solution tank 7. It is a path of moving upward in the space 71 between the member 53 and the porous insulating member 53 on the side of the partition plate 69 facing the member 53.
 また、上記の経路のうち、電解液槽207の中を通る部分は、まず、電解液槽207の内側面に沿って取り付けられた多孔質絶縁部材53と、それに対向する仕切り板69側の多孔質絶縁部材53との間の空間71を下方に移動し、次に、搬送ローラ119により移動方向を上向きに変えられ、最後に、電解液槽207の内側面に沿って取り付けられた多孔質絶縁部材53と、それに対向する仕切り板69側の多孔質絶縁部材53との間の空間71を上方に移動するという経路である。 Further, in the above-mentioned path, the portion passing through the electrolytic solution tank 207 includes a porous insulating member 53 attached along the inner surface of the electrolytic solution tank 207, and a porous plate on the side of the partition plate 69 facing the porous insulating member 53. It moves downward in the space 71 between it and the quality insulating member 53, then the direction of movement is changed upward by the transport roller 119, and finally, the porous insulation attached along the inner surface of the electrolytic solution tank 207. It is a path of moving upward in the space 71 between the member 53 and the porous insulating member 53 on the side of the partition plate 69 facing the member 53.
 また、上記の経路のうち、洗浄槽103の中を通る部分は、まず、洗浄槽103の内側面と、仕切り板69との間を下方に移動し、次に、搬送ローラ37により移動方向を上向きに変えられ、最後に、洗浄槽103の内側面と、仕切り板69との間を上方に移動するという経路である。 Further, in the above-mentioned path, a portion passing through the inside of the cleaning tank 103 first moves downward between the inner surface of the cleaning tank 103 and the partition plate 69, and then the moving direction by the transport roller 37. The path is changed upward, and finally moves upward between the inner surface of the cleaning tank 103 and the partition plate 69.
 供給ロール47は、その外周に電極前駆体73を巻き回している。すなわち、供給ロール47は、巻き取られた状態の電極前駆体73を保持している。搬送ローラ群は、供給ロール47に保持された電極前駆体73を引き出し、搬送する。 The supply roll 47 has an electrode precursor 73 wound around the outer circumference thereof. That is, the supply roll 47 holds the electrode precursor 73 in a wound state. The transport roller group pulls out and transports the electrode precursor 73 held by the supply roll 47.
 巻取ロール49は、搬送ローラ群により搬送されてきた電極75を巻き取り、保管する。なお、電極75は、電極前駆体73に対し、電解液槽205、7、207においてアルカリ金属のプレドープを行うことで製造されたものである。 The winding roll 49 winds up and stores the electrode 75 conveyed by the conveying roller group. The electrode 75 is manufactured by subjecting the electrode precursor 73 to pre-doping with an alkali metal in the electrolytic solution tanks 205, 7, and 207.
 対極ユニット51、52、54は、板状の形状を有する。図4に示すように、対極ユニット51、52、54は、導電性基材77と、アルカリ金属含有板79とを積層した構成を有する。導電性基材77の材質としては、例えば、銅、ステンレス、ニッケル等が挙げられる。アルカリ金属含有板79の形態は特に限定されず、例えば、アルカリ金属板、アルカリ金属の合金板等が挙げられる。アルカリ金属含有板79の厚さは、例えば、0.03~3mmとすることができる。 The counter electrode units 51, 52, 54 have a plate shape. As shown in FIG. 4, the counter electrode units 51, 52, 54 have a configuration in which a conductive base material 77 and an alkali metal-containing plate 79 are laminated. Examples of the material of the conductive base material 77 include copper, stainless steel, nickel and the like. The form of the alkali metal-containing plate 79 is not particularly limited, and examples thereof include an alkali metal plate and an alkali metal alloy plate. The thickness of the alkali metal-containing plate 79 can be, for example, 0.03 to 3 mm.
 多孔質絶縁部材53は、板状の形状を有する。多孔質絶縁部材53は、図4に示すように、アルカリ金属含有板79の上に積層され、対極ユニット51、52、54の表面に取り付けられている。多孔質絶縁部材53が有する板状の形状とは、多孔質絶縁部材53が対極ユニット51、52、54の表面に取り付けられている際の形状である。多孔質絶縁部材53は、それ自体で一定の形状を保つ部材であってもよいし、例えばネット等のように、容易に変形可能な部材であってもよい。 The porous insulating member 53 has a plate shape. As shown in FIG. 4, the porous insulating member 53 is laminated on the alkali metal-containing plate 79 and attached to the surfaces of the counter electrode units 51, 52, 54. The plate-like shape of the porous insulating member 53 is the shape when the porous insulating member 53 is attached to the surfaces of the counter electrode units 51, 52, 54. The porous insulating member 53 may be a member that maintains a constant shape by itself, or may be a member that can be easily deformed, such as a net.
 図4に示すように、多孔質絶縁部材53と、搬送ローラ群により搬送される電極前駆体73とは非接触である。多孔質絶縁部材53の表面から、電極前駆体73までの最短距離dは、0.5~100mmの範囲内であることが好ましく、1~10mmの範囲内であることが特に好ましい。最短距離dとは、多孔質絶縁部材53の表面のうち、電極前駆体73に最も近い点と、電極前駆体73との距離である。 As shown in FIG. 4, the porous insulating member 53 and the electrode precursor 73 transported by the transport roller group are not in contact with each other. The shortest distance d from the surface of the porous insulating member 53 to the electrode precursor 73 is preferably in the range of 0.5 to 100 mm, and particularly preferably in the range of 1 to 10 mm. The shortest distance d is the distance between the electrode precursor 73 and a point on the surface of the porous insulating member 53 that is closest to the electrode precursor 73.
 多孔質絶縁部材53は多孔質である。そのため、後述するドープ溶液は、多孔質絶縁部材53を通過することができる。そのことにより、対極ユニット51、52、54は、ドープ溶液に接触することができる。 The porous insulating member 53 is porous. Therefore, the dope solution described below can pass through the porous insulating member 53. As a result, the counter electrode units 51, 52, 54 can come into contact with the dope solution.
 多孔質絶縁部材53としては、例えば、樹脂製のメッシュ等が挙げられる。樹脂としては、例えば、ポリエチレン、ポリプロピレン、ナイロン、ポリエーテルエーテルケトン、ポリテトラフルオロエチレン等が挙げられる。メッシュの目開きは適宜設定でき、例えば、0.1μm~10mmとすることができるが、0.1~5mmの範囲内にあることが好ましい。メッシュの厚みは適宜設定でき、例えば、1μm~10mmとすることができるが、30μm~1mmの範囲内にあることが好ましい。メッシュの目開き率は適宜設定でき、例えば、5~98%とすることができるが、5~95%であることが好ましく、50~95%の範囲内にあることがさらに好ましい。 The porous insulating member 53 may be, for example, a resin mesh. Examples of the resin include polyethylene, polypropylene, nylon, polyether ether ketone, polytetrafluoroethylene and the like. The mesh opening can be appropriately set, and for example, can be set to 0.1 μm to 10 mm, but it is preferably within the range of 0.1 to 5 mm. The thickness of the mesh can be set as appropriate, and can be, for example, 1 μm to 10 mm, but it is preferably within the range of 30 μm to 1 mm. The mesh opening ratio can be appropriately set and can be set to, for example, 5 to 98%, preferably 5 to 95%, and more preferably 50 to 95%.
 多孔質絶縁部材53は、その全体が絶縁性の材料から成っていてもよいし、その一部に絶縁性の層を備えていてもよい。 The entire porous insulating member 53 may be made of an insulating material, or a part thereof may be provided with an insulating layer.
 支持台55は、電解液槽203、205、7、207及び洗浄槽103を下方から支持する。支持台55は、その高さを変えることができる。仕切り板69、対極ユニット51、及び多孔質絶縁部材53の上下方向における位置を維持したまま、電解液槽205を支持する支持台55を低くすると、図2に示すように、仕切り板69、対極ユニット51、及び多孔質絶縁部材53に対し、電解液槽205を相対的に下方に移動させることができる。また、支持台55高くすると、仕切り板69、対極ユニット51、及び多孔質絶縁部材53に対し、電解液槽205を相対的に上方に移動させることができる。電解液槽203、7、207及び洗浄槽103を支持する支持台55も同様の機能を有する。 The support base 55 supports the electrolytic solution tanks 203, 205, 7, 207 and the cleaning tank 103 from below. The height of the support base 55 can be changed. When the support base 55 that supports the electrolytic solution tank 205 is lowered while maintaining the positions of the partition plate 69, the counter electrode unit 51, and the porous insulating member 53 in the vertical direction, as shown in FIG. The electrolytic solution tank 205 can be moved downward relative to the unit 51 and the porous insulating member 53. Further, when the support base 55 is raised, the electrolytic solution tank 205 can be moved upward relative to the partition plate 69, the counter electrode unit 51, and the porous insulating member 53. The support base 55 that supports the electrolytic solution tanks 203, 7, 207 and the cleaning tank 103 also has the same function.
 循環濾過ユニット57は、電解液槽203、205、7、207にそれぞれ設けられている。循環濾過ユニット57は、フィルタ81と、ポンプ83と、配管85と、を備える。 The circulation filtration unit 57 is provided in each of the electrolytic solution tanks 203, 205, 7, and 207. The circulation filtration unit 57 includes a filter 81, a pump 83, and a pipe 85.
 電解液槽203に設けられた循環濾過ユニット57において、配管85は、電解液槽203から出て、ポンプ83、及びフィルタ81を順次通り、電解液槽203に戻る循環配管である。電解液槽203内のドープ溶液は、ポンプ83の駆動力により、配管85、及びフィルタ81内を循環し、再び電解液槽203に戻る。このとき、ドープ溶液中の異物等は、フィルタ81により濾過される。異物としては、ドープ溶液から析出した異物や、電極前駆体73から発生する異物等が挙げられる。フィルタ81の材質は、例えば、ポリプロピレン、ポリテトラフルオロエチレン等の樹脂とすることができる。フィルタ81の孔径は適宜設定でき、例えば、30~50μmとすることができる。 In the circulation filtration unit 57 provided in the electrolytic solution tank 203, a pipe 85 is a circulating pipe that comes out of the electrolytic solution tank 203, sequentially passes through the pump 83 and the filter 81, and returns to the electrolytic solution tank 203. The dope solution in the electrolytic solution tank 203 is circulated in the pipe 85 and the filter 81 by the driving force of the pump 83 and returns to the electrolytic solution tank 203 again. At this time, foreign matters and the like in the dope solution are filtered by the filter 81. Examples of the foreign matter include foreign matter deposited from the dope solution and foreign matter generated from the electrode precursor 73. The material of the filter 81 can be, for example, a resin such as polypropylene or polytetrafluoroethylene. The pore diameter of the filter 81 can be set appropriately, and can be set to, for example, 30 to 50 μm.
 電解液槽205、7、207に設けられた循環濾過ユニット57も、同様の構成を有し、同様の作用効果を奏する。なお、図1、図2において、ドープ溶液の記載は便宜上省略している。 The circulation filtration unit 57 provided in the electrolytic solution tanks 205, 7, and 207 also has the same configuration and has the same effect. 1 and 2, the description of the dope solution is omitted for convenience.
 図3に示すように、直流電源61におけるマイナス端子は、ケーブル87を介して、搬送ローラ25、29とそれぞれ接続する。また、直流電源61のプラス端子は、ケーブル89を介して、合計4個の対極ユニット51にそれぞれ接続する。電極前駆体73は、導電性の搬送ローラ25、29と接触する。電極前駆体73と対極ユニット51とは、電解液であるドープ溶液中にある。そのため、電極前駆体73と対極ユニット51とは電気的に接続する。 As shown in FIG. 3, the negative terminal of the DC power supply 61 is connected to the transport rollers 25 and 29 via a cable 87, respectively. Further, the positive terminal of the DC power supply 61 is connected to a total of four counter electrode units 51 via the cable 89. The electrode precursor 73 contacts the conductive transport rollers 25 and 29. The electrode precursor 73 and the counter electrode unit 51 are in a dope solution which is an electrolytic solution. Therefore, the electrode precursor 73 and the counter electrode unit 51 are electrically connected.
 直流電源61は、ケーブル87、89、及び搬送ローラ25、29を介して対極ユニット51に電流を流す。 The DC power supply 61 supplies a current to the counter electrode unit 51 via the cables 87 and 89 and the transport rollers 25 and 29.
 図3に示すように、直流電源62におけるマイナス端子は、ケーブル91を介して、搬送ローラ307、311とそれぞれ接続する。また、直流電源62のプラス端子は、ケーブル93を介して、合計4個の対極ユニット54にそれぞれ接続する。電極前駆体73は、導電性の搬送ローラ307、311と接触する。電極前駆体73と対極ユニット54とは、電解液であるドープ溶液中にある。そのため、電極前駆体73と対極ユニット54とは電気的に接続する。 As shown in FIG. 3, the negative terminals of the DC power supply 62 are connected to the transport rollers 307 and 311 via the cable 91, respectively. The positive terminal of the DC power supply 62 is connected to a total of four counter electrode units 54 via the cable 93. The electrode precursor 73 contacts the conductive transport rollers 307 and 311. The electrode precursor 73 and the counter electrode unit 54 are in a dope solution which is an electrolytic solution. Therefore, the electrode precursor 73 and the counter electrode unit 54 are electrically connected.
 直流電源62は、ケーブル91、93、及び搬送ローラ307、311を介して対極ユニット54に電流を流す。 The DC power supply 62 supplies a current to the counter electrode unit 54 via the cables 91 and 93 and the transport rollers 307 and 311.
 図3に示すように、直流電源64におけるマイナス端子は、ケーブル97を介して、搬送ローラ317、321とそれぞれ接続する。また、直流電源64のプラス端子は、ケーブル99を介して、合計4個の対極ユニット52にそれぞれ接続する。電極前駆体73は、導電性の搬送ローラ317、321と接触する。電極前駆体73と対極ユニット52とは、電解液であるドープ溶液中にある。そのため、電極前駆体73と対極ユニット52とは電気的に接続する。 As shown in FIG. 3, the negative terminal of the DC power supply 64 is connected to the transport rollers 317 and 321 via the cable 97. Further, the positive terminals of the DC power source 64 are respectively connected to a total of four counter electrode units 52 via the cable 99. The electrode precursor 73 comes into contact with the conductive transport rollers 317 and 321. The electrode precursor 73 and the counter electrode unit 52 are in a dope solution which is an electrolytic solution. Therefore, the electrode precursor 73 and the counter electrode unit 52 are electrically connected.
 直流電源64は、ケーブル97、99、及び搬送ローラ317、321を介して対極ユニット52に電流を流す。 The DC power source 64 supplies a current to the counter electrode unit 52 via the cables 97 and 99 and the transport rollers 317 and 321.
 ブロア63は、洗浄槽103から出てきた電極75にガスを吹きつけて洗浄液を気化させ、電極75を乾燥させる。使用するガスは、アルカリ金属がプレドープされた活物質に対して不活性なガスであることが好ましい。そのようなガスとして、例えば、ヘリウムガス、ネオンガス、アルゴンガス、水分が除去された除湿空気等が挙げられる。 The blower 63 blows gas to the electrode 75 coming out of the cleaning tank 103 to vaporize the cleaning liquid and dry the electrode 75. The gas used is preferably a gas inert to the active material pre-doped with alkali metal. Examples of such a gas include helium gas, neon gas, argon gas, dehumidified air from which moisture has been removed, and the like.
 図3に示すように、電源制御ユニット66は、直流電源61、62、64と電気的に接続している。電源制御ユニット66は、CPU101と、例えば、RAM又はROM等の半導体メモリ(以下、メモリ105とする)と、を有するマイクロコンピュータである。 As shown in FIG. 3, the power supply control unit 66 is electrically connected to the DC power supplies 61, 62, 64. The power supply control unit 66 is a microcomputer including the CPU 101 and a semiconductor memory such as a RAM or a ROM (hereinafter, referred to as a memory 105).
 2.電極前駆体73の構成
 電極前駆体73の構成を図5及び図6に基づき説明する。電極前駆体73は、図5に示すように、帯状の形状を有する。電極前駆体73は、図6に示すように、帯状の集電体93と、その両側に形成された活物質層95とを備える。
2. Structure of Electrode Precursor 73 The structure of the electrode precursor 73 will be described with reference to FIGS. 5 and 6. The electrode precursor 73 has a strip shape as shown in FIG. As shown in FIG. 6, the electrode precursor 73 includes a strip-shaped current collector 93 and active material layers 95 formed on both sides of the current collector 93.
 集電体93としては、例えば、銅、ニッケル、ステンレス等の金属箔が好ましい。また、集電体93は、上記金属箔上に炭素材料を主成分とする導電層が形成されたものであってもよい。集電体93の厚みは、例えば、5~50μmとすることができる。 As the current collector 93, for example, a metal foil of copper, nickel, stainless steel or the like is preferable. Further, the current collector 93 may be one in which a conductive layer containing a carbon material as a main component is formed on the metal foil. The thickness of the current collector 93 can be, for example, 5 to 50 μm.
 活物質層95は、例えば、アルカリ金属をドープする前の活物質及びバインダー等を含有するスラリーを調製し、このスラリーを集電体93上に塗布し、乾燥させることにより作製できる。 The active material layer 95 can be prepared, for example, by preparing a slurry containing the active material before being doped with an alkali metal, a binder and the like, applying this slurry on the current collector 93, and drying.
 上記バインダーとしては、例えば、スチレン-ブタジエンゴム(SBR)、NBR等のゴム系バインダー;ポリ四フッ化エチレン、ポリフッ化ビニリデン等のフッ素系樹脂;ポリプロピレン、ポリエチレン、特開2009-246137号公報に開示されているようなフッ素変性(メタ)アクリル系バインダー等が挙げられる。 Examples of the binder include rubber-based binders such as styrene-butadiene rubber (SBR) and NBR; fluororesins such as polytetrafluoroethylene and polyvinylidene fluoride; polypropylene, polyethylene; disclosed in JP 2009-246137A. Examples thereof include fluorine-modified (meth)acrylic binders.
 上記スラリーは、活物質及びバインダーに加えて、その他の成分を含んでいてもよい。その他の成分としては、例えば、カーボンブラック、黒鉛、気相成長炭素繊維、金属粉末等の導電剤;カルボキシルメチルセルロース、そのNa塩又はアンモニウム塩、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ヒドロキシプロピルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン等の増粘剤が挙げられる。 The above slurry may contain other components in addition to the active material and the binder. Other components include, for example, carbon black, graphite, vapor-grown carbon fibers, conductive agents such as metal powder; carboxymethyl cellulose, its Na salt or ammonium salt, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, hydroxypropyl cellulose, polyvinyl alcohol, Thickening agents such as oxidized starch, phosphorylated starch and casein can be mentioned.
 活物質層95の厚さは、特に限定されるものではないが、例えば、5~500μm、好ましくは10~200μm、特に好ましくは10~100μmである。 The thickness of the active material layer 95 is not particularly limited, but is, for example, 5 to 500 μm, preferably 10 to 200 μm, and particularly preferably 10 to 100 μm.
 活物質層95に含まれる活物質は、アルカリ金属イオンの挿入/脱離を利用する電池又はキャパシタに適用可能な電極活物質であれば特に限定されるものではなく、負極活物質であってもよいし、正極活物質であってもよい。 The active material contained in the active material layer 95 is not particularly limited as long as it is an electrode active material applicable to a battery or a capacitor utilizing the insertion/desorption of alkali metal ions, and may be a negative electrode active material. It may be a positive electrode active material.
 負極活物質は、特に限定されるものではないが、例えば、黒鉛、易黒鉛化炭素、難黒鉛化炭素、黒鉛粒子をピッチや樹脂の炭化物で被覆した複合炭素材料等の炭素材料;リチウムと合金化が可能なSi、Sn等の金属若しくは半金属又はこれらの酸化物を含む材料等が挙げられる。炭素材料の具体例としては、特開2013-258392号公報に記載の炭素材料が挙げられる。リチウムと合金化が可能な金属若しくは半金属又はこれらの酸化物を含む材料の具体例としては、特開2005-123175号公報、特開2006-107795号公報に記載の材料が挙げられる。 The negative electrode active material is not particularly limited, and examples thereof include carbon materials such as graphite, graphitizable carbon, non-graphitizable carbon, and composite carbon material in which graphite particles are coated with pitch or resin carbide; lithium and alloy Examples of the material include a metal or semimetal such as Si or Sn that can be converted into a metal, or a material containing an oxide thereof. Specific examples of the carbon material include the carbon materials described in JP2013-258392A. Specific examples of the material containing a metal or a semi-metal capable of alloying with lithium or an oxide thereof include the materials described in JP-A-2005-123175 and JP-A-2006-107795.
 正極活物質としては、例えば、活性炭、コバルト酸化物、ニッケル酸化物、マンガン酸化物、バナジウム酸化物等の遷移金属酸化物;硫黄単体、金属硫化物等の硫黄系活物質が挙げられる。 Examples of the positive electrode active material include transition metal oxides such as activated carbon, cobalt oxide, nickel oxide, manganese oxide, and vanadium oxide; and sulfur-based active materials such as elemental sulfur and metal sulfide.
 正極活物質、及び負極活物質のいずれにおいても、単一の物質から成るものであってもよいし、2種以上の物質を混合して成るものであってもよい。本開示の電極製造装置1は、負極活物質にアルカリ金属をプレドープする場合に適しており、特に、負極活物質が炭素材料又はSi若しくはその酸化物を含む材料であることが好ましい。 Both of the positive electrode active material and the negative electrode active material may be made of a single substance or may be a mixture of two or more types of substances. The electrode manufacturing apparatus 1 of the present disclosure is suitable when the negative electrode active material is pre-doped with an alkali metal, and particularly, the negative electrode active material is preferably a carbon material or a material containing Si or an oxide thereof.
 活物質にプレドープするアルカリ金属としては、リチウム又はナトリウムが好ましく、特にリチウムが好ましい。電極前駆体73を、リチウムイオン二次電池の電極の製造に用いる場合、活物質層95の密度は、好ましくは1.50~2.00g/ccであり、特に好ましくは1.60~1.90g/ccである。 As the alkali metal for predoping the active material, lithium or sodium is preferable, and lithium is particularly preferable. When the electrode precursor 73 is used for manufacturing an electrode of a lithium ion secondary battery, the density of the active material layer 95 is preferably 1.50 to 2.00 g/cc, particularly preferably 1.60 to 1. It is 90 g/cc.
 3.ドープ溶液の組成及び温度
 電極製造装置1を使用するとき、電解液槽203、205、7、207に、アルカリ金属イオンを含む溶液(以下ではドープ溶液とする)を収容する。
3. Composition and Temperature of Dope Solution When the electrode manufacturing apparatus 1 is used, a solution containing alkali metal ions (hereinafter referred to as a dope solution) is placed in each of the electrolytic solution tanks 203, 205, 7, and 207.
 ドープ溶液は、アルカリ金属イオンと、溶媒とを含む。溶媒として、例えば、有機溶媒が挙げられる。有機溶媒としては、非プロトン性の有機溶媒が好ましい。非プロトン性の有機溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、1-フルオロエチレンカーボネート、γ-ブチロラクトン、アセトニトリル、ジメトキシエタン、テトラヒドロフラン、ジオキソラン、塩化メチレン、スルホラン、ジエチレングリコールジメチルエーテル(ジグライム)、ジエチレングリコールメチルエチルエーテル、トリエチレングリコールジメチルエーテル(トリグライム)、トリエチレングリコールブチルメチルエーテル、テトラエチレングリコールジメチルエーテル(テトラグライム)等が挙げられる。 The dope solution contains an alkali metal ion and a solvent. Examples of the solvent include organic solvents. The organic solvent is preferably an aprotic organic solvent. Examples of the aprotic organic solvent include ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, 1-fluoroethylene carbonate, γ-butyrolactone, acetonitrile, dimethoxyethane, tetrahydrofuran, dioxolane, and chloride. Examples thereof include methylene, sulfolane, diethylene glycol dimethyl ether (diglyme), diethylene glycol methyl ethyl ether, triethylene glycol dimethyl ether (triglyme), triethylene glycol butyl methyl ether, tetraethylene glycol dimethyl ether (tetraglyme) and the like.
 また、上記有機溶媒として、第4級イミダゾリウム塩、第4級ピリジニウム塩、第4級ピロリジニウム塩、第4級ピペリジニウム塩等のイオン液体を使用することもできる。上記有機溶媒は、単一の成分から成るものであってもよいし、2種以上の成分の混合溶媒であってもよい。 Further, as the organic solvent, an ionic liquid such as a quaternary imidazolium salt, a quaternary pyridinium salt, a quaternary pyrrolidinium salt or a quaternary piperidinium salt can be used. The organic solvent may be composed of a single component, or may be a mixed solvent of two or more components.
 上記ドープ溶液に含まれるアルカリ金属イオンは、アルカリ金属塩を構成するイオンである。アルカリ金属塩は、好ましくはリチウム塩又はナトリウム塩である。アルカリ金属塩を構成するアニオン部としては、例えば、PF 、PF(C 、PF(CF 等のフルオロ基を有するリンアニオン;BF 、BF(CF) 、BF(CF、B(CN) 等のフルオロ基又はシアノ基を有するホウ素アニオン;N(FSO 、N(CFSO 、N(CSO 等のフルオロ基を有するスルホニルイミドアニオン;CFSO 等のフルオロ基を有する有機スルホン酸アニオンが挙げられる。 The alkali metal ion contained in the dope solution is an ion that constitutes an alkali metal salt. The alkali metal salt is preferably a lithium salt or a sodium salt. Examples of the anion moiety constituting the alkali metal salt include phosphorus anions having a fluoro group such as PF 6 , PF 3 (C 2 F 5 ) 3 , PF 3 (CF 3 ) 3 ; BF 4 , BF 2 (CF) 2 , BF 3 (CF 3 ) , B(CN) 4 − and the like, a boron anion having a fluoro group or a cyano group; N(FSO 2 ) 2 , N(CF 3 SO 2 ) 2 , A sulfonylimide anion having a fluoro group such as N(C 2 F 5 SO 2 ) 2 ; an organic sulfonate anion having a fluoro group such as CF 3 SO 3 .
 上記ドープ溶液におけるアルカリ金属塩の濃度は、好ましくは0.1モル/L以上であり、より好ましくは0.5~1.5モル/Lの範囲内である。この範囲内である場合、アルカリ金属のプレドープが効率よく進行する。 The concentration of the alkali metal salt in the dope solution is preferably 0.1 mol/L or more, more preferably 0.5 to 1.5 mol/L. Within this range, alkali metal pre-doping proceeds efficiently.
 上記ドープ溶液は、更に、ビニレンカーボネート、ビニルエチレンカーボネート、1-フルオロエチレンカーボネート、1-(トリフルオロメチル)エチレンカーボネート、無水コハク酸、無水マレイン酸、プロパンスルトン、ジエチルスルホン等の添加剤を含有することができる。 The dope solution further contains additives such as vinylene carbonate, vinyl ethylene carbonate, 1-fluoroethylene carbonate, 1-(trifluoromethyl)ethylene carbonate, succinic anhydride, maleic anhydride, propane sultone and diethyl sulfone. be able to.
 上記ドープ溶液は、ホスファゼン化合物等の難燃剤をさらに含有することができる。本開示の電極製造方法のように、特定の酸素濃度雰囲気において活物質にアルカリ金属をドープする場合には、難燃剤の添加量を従来よりも少なくすることが可能となる。難燃剤を添加する場合には、難燃剤の添加量の下限は特に限定されないが、アルカリ金属をドープする際の熱暴走反応を効果的に制御する観点から、難燃剤の添加量は、ドープ溶液100質量部に対して0.01質量部以上であることが好ましく、0.03質量部以上であることがより好ましく、0.05質量部以上であることがさらに好ましい。また、難燃剤の添加量は、高品質のドープ電極を得る観点から、ドープ溶液100質量部に対して1質量部以下とすることができ、0.8質量部以下であることがより好ましく、0.5質量部以下であることがさらに好ましい。プレドープを行うとき、ドープ溶液の温度は25℃以上50℃以下であることが好ましい。 The above dope solution may further contain a flame retardant such as a phosphazene compound. When the active material is doped with an alkali metal in a specific oxygen concentration atmosphere as in the electrode manufacturing method of the present disclosure, the amount of the flame retardant added can be made smaller than in the conventional case. When adding the flame retardant, the lower limit of the amount of the flame retardant is not particularly limited, from the viewpoint of effectively controlling the thermal runaway reaction when doping the alkali metal, the amount of the flame retardant is the dope solution. It is preferably 0.01 parts by mass or more, more preferably 0.03 parts by mass or more, and further preferably 0.05 parts by mass or more with respect to 100 parts by mass. Further, the amount of the flame retardant added can be 1 part by mass or less, more preferably 0.8 parts by mass or less, with respect to 100 parts by mass of the dope solution, from the viewpoint of obtaining a high-quality dope electrode. It is more preferably 0.5 part by mass or less. When performing pre-doping, the temperature of the dope solution is preferably 25° C. or higher and 50° C. or lower.
 4.電極製造装置1を用いた電極75の製造方法
 まず、電極75を製造するための準備として、以下のことを行う。電極前駆体73を供給ロール47に巻き回す。次に、搬送ローラ群により、電極前駆体73を供給ロール47から引き出し、上述した経路に沿って巻取ロール49まで通紙する。そして、電解液槽203、205、7、207、及び洗浄槽103を上昇させ、図1に示す定位置へセットする。電解液槽203、205、7、207にドープ溶液を収容する。ドープ溶液は、上記「3.ドープ溶液の組成」で述べたものである。洗浄槽103に洗浄液を収容する。洗浄液は有機溶剤である。その結果、電解液槽203、205、7、207の空間71は電解液で満たされる。洗浄槽103の空間71は洗浄液で満たされる。
4. Method for Manufacturing Electrode 75 Using Electrode Manufacturing Apparatus 1 First, the following is performed as preparation for manufacturing the electrode 75. The electrode precursor 73 is wound around the supply roll 47. Next, the electrode precursor 73 is pulled out from the supply roll 47 by the transport roller group, and the paper is passed to the winding roll 49 along the path described above. Then, the electrolytic solution tanks 203, 205, 7, 207 and the cleaning tank 103 are raised and set to the fixed positions shown in FIG. The dope solution is stored in the electrolytic solution tanks 203, 205, 7, and 207. The dope solution is as described in “3. Composition of dope solution” above. A cleaning liquid is stored in the cleaning tank 103. The cleaning liquid is an organic solvent. As a result, the spaces 71 of the electrolytic solution tanks 203, 205, 7, and 207 are filled with the electrolytic solution. The space 71 of the cleaning tank 103 is filled with the cleaning liquid.
 次に、搬送ローラ群により、供給ロール47から巻取ロール49まで通紙された電極前駆体73を供給ロール47から巻取ロール49に向かって、引き出し、上述した経路に沿って搬送する。電極前駆体73が電解液槽205、7、207内を通過するとき、活物質層95に含まれる活物質にアルカリ金属がプレドープされる。 Next, the electrode precursor 73 passed from the supply roll 47 to the winding roll 49 is pulled out from the supply roll 47 toward the winding roll 49 by the conveyance roller group, and is conveyed along the above-described path. When the electrode precursor 73 passes through the electrolytic solution tanks 205, 7, and 207, the active material contained in the active material layer 95 is pre-doped with an alkali metal.
 プレドープのとき、チャンバー10内の雰囲気における酸素濃度は、1体積%以上18体積%以下である。すなわち、チャンバー10は、チャンバー10内の雰囲気を、酸素濃度が1体積%以上18体積%以下の雰囲気とする。チャンバー10内の雰囲気は、電解液槽205、7、207の雰囲気である。チャンバー10内は、電極製造装置1の内部に対応する。チャンバー10は、雰囲気設定ユニットに対応する。 When pre-doping, the oxygen concentration in the atmosphere in the chamber 10 is 1% by volume or more and 18% by volume or less. That is, in the chamber 10, the atmosphere in the chamber 10 has an oxygen concentration of 1 vol% or more and 18 vol% or less. The atmosphere in the chamber 10 is the atmosphere of the electrolytic solution tanks 205, 7, 207. The inside of the chamber 10 corresponds to the inside of the electrode manufacturing apparatus 1. The chamber 10 corresponds to an atmosphere setting unit.
 チャンバー10内の雰囲気における酸素濃度は、3体積%以上であることが好ましく、5体積%以上であることがさらに好ましい。チャンバー10内の雰囲気における酸素濃度は、15体積%以下であることが好ましく、12体積%未満であることがさらに好ましく、11.5体積%以下であることが特に好ましい。チャンバー10内の雰囲気における酸素濃度を上記範囲内とすることで、ドープ溶液への引火性を低下させるとともに、アルカリ金属がドープされた電極の性能を向上させることができる。 The oxygen concentration in the atmosphere inside the chamber 10 is preferably 3% by volume or more, and more preferably 5% by volume or more. The oxygen concentration in the atmosphere in the chamber 10 is preferably 15% by volume or less, more preferably less than 12% by volume, and particularly preferably 11.5% by volume or less. By setting the oxygen concentration in the atmosphere in the chamber 10 within the above range, it is possible to reduce the flammability of the dope solution and improve the performance of the electrode doped with the alkali metal.
 また、チャンバー10内の雰囲気における窒素濃度は30体積%以上であることが好ましく、40体積%以上であることがより好ましく、50体積%以上であることがさらに好ましい。チャンバー10内の雰囲気における窒素濃度は97体積%以下であることが好ましく、95体積%以下であることがより好ましく、88体積%以下であることがさらに好ましい。チャンバー10内の雰囲気における窒素濃度を上記範囲内とすることで、アルカリ金属がドープされた電極の性能を向上させることができる。 The nitrogen concentration in the atmosphere inside the chamber 10 is preferably 30% by volume or more, more preferably 40% by volume or more, and further preferably 50% by volume or more. The nitrogen concentration in the atmosphere inside the chamber 10 is preferably 97% by volume or less, more preferably 95% by volume or less, and further preferably 88% by volume or less. By setting the nitrogen concentration in the atmosphere in the chamber 10 within the above range, the performance of the electrode doped with the alkali metal can be improved.
 また、チャンバー10内の雰囲気は、ヘリウムガス、アルゴンガス等の希ガスをさらに含むことができる。チャンバー10内の雰囲気が希ガスを含む場合、希ガス濃度は10体積%以上であることが好ましく、20体積%以上であることがより好ましく、30体積%以上であることがさらに好ましい。チャンバー10内の雰囲気における希ガス濃度は80体積%以下であることが好ましく、75体積%以下であることがより好ましく、70体積%以下であることがさらに好ましい。チャンバー10内の雰囲気における希ガス濃度を上記範囲内とすることで、アルカリ金属がドープされた電極の性能を向上させることができる。 The atmosphere in the chamber 10 may further contain a rare gas such as helium gas or argon gas. When the atmosphere in the chamber 10 contains a rare gas, the rare gas concentration is preferably 10% by volume or more, more preferably 20% by volume or more, and further preferably 30% by volume or more. The rare gas concentration in the atmosphere in the chamber 10 is preferably 80% by volume or less, more preferably 75% by volume or less, and further preferably 70% by volume or less. By setting the rare gas concentration in the atmosphere in the chamber 10 within the above range, the performance of the electrode doped with the alkali metal can be improved.
 また、チャンバー10内の雰囲気の圧力は0.1×10N/m以上5×10N/m以下であることが好ましい。チャンバー10内の雰囲気の圧力を上記範囲内とすることで、ドープ溶液への引火性を低下させるとともに、アルカリ金属がドープされた電極の性能を向上させることができる。 Further, the pressure of the atmosphere in the chamber 10 is preferably 0.1×10 5 N/m 2 or more and 5×10 5 N/m 2 or less. By setting the pressure of the atmosphere in the chamber 10 within the above range, it is possible to reduce the flammability of the dope solution and improve the performance of the electrode doped with an alkali metal.
 プレドープのとき、電解液槽205、7、207に収容されたドープ溶液の温度は、25℃以上50℃以下であることが好ましい。 During pre-doping, the temperature of the dope solution contained in the electrolytic solution tanks 205, 7, 207 is preferably 25° C. or higher and 50° C. or lower.
 活物質にアルカリ金属がプレドープされることにより、電極前駆体73が電極75となる。電極75は搬送ローラ群により搬送されながら、洗浄槽103で洗浄される。最後に、電極75は、巻取ロール49に巻き取られる。 The electrode precursor 73 becomes the electrode 75 by pre-doping the active material with an alkali metal. The electrode 75 is cleaned by the cleaning tank 103 while being transported by the transport roller group. Finally, the electrode 75 is wound on the winding roll 49.
 電極製造装置1を用いて製造する電極75は、正極であってもよいし、負極であってもよい。正極を製造する場合、電極製造装置1は、正極活物質にアルカリ金属をドープし、負極を製造する場合、電極製造装置1は、負極活物質にアルカリ金属をドープする。 The electrode 75 manufactured using the electrode manufacturing apparatus 1 may be a positive electrode or a negative electrode. When manufacturing a positive electrode, the electrode manufacturing apparatus 1 dopes the positive electrode active material with an alkali metal, and when manufacturing a negative electrode, the electrode manufacturing apparatus 1 dopes the negative electrode active material with an alkali metal.
 アルカリ金属のドープ量は、リチウムイオンキャパシタの負極活物質にリチウムを吸蔵させる場合、負極活物質の理論容量に対して好ましくは70~95%であり、リチウムイオン二次電池の負極活物質にリチウムを吸蔵させる場合、負極活物質の理論容量に対して好ましくは10~30%である。 The amount of the alkali metal doped is preferably 70 to 95% of the theoretical capacity of the negative electrode active material when the negative electrode active material of the lithium ion capacitor is occluded with lithium, and lithium is used as the negative electrode active material of the lithium ion secondary battery. In the case of occluding TiO2, it is preferably 10 to 30% with respect to the theoretical capacity of the negative electrode active material.
 5.蓄電デバイスの製造方法
 蓄電デバイスは電極セルを備える。蓄電デバイスとして、例えば、キャパシタ、電池等が挙げられる。キャパシタとしては、アルカリ金属イオンの挿入/脱離を利用するキャパシタであれば特に限定されるものではないが、例えば、リチウムイオンキャパシタ、ナトリウムイオンキャパシタ等が挙げられる。その中でもリチウムイオンキャパシタが好ましい。
5. Method for Manufacturing Electric Storage Device The electric storage device includes an electrode cell. Examples of the electricity storage device include a capacitor and a battery. The capacitor is not particularly limited as long as it is a capacitor that uses insertion/desorption of alkali metal ions, and examples thereof include a lithium ion capacitor and a sodium ion capacitor. Of these, lithium ion capacitors are preferable.
 キャパシタを構成する正極の基本的な構成は、一般的な構成とすることができる。正極活物質としては活性炭を使用することが好ましい。 The basic configuration of the positive electrode that constitutes the capacitor can be a general configuration. Activated carbon is preferably used as the positive electrode active material.
 キャパシタを構成する電解質の形態は、通常、液状の電解液である。電解液の基本的な構成は、上述したドープ溶液の構成と同様である。また、電解質におけるアルカリ金属イオン(アルカリ金属塩)の濃度は、好ましくは0.1モル/L以上であり、より好ましくは0.5~1.5モル/Lの範囲内である。電解質は、漏液を防止する目的で、ゲル状又は固体状の形態を有していてもよい。 The form of the electrolyte that constitutes the capacitor is usually a liquid electrolyte. The basic constitution of the electrolytic solution is the same as that of the above-mentioned dope solution. The concentration of the alkali metal ion (alkali metal salt) in the electrolyte is preferably 0.1 mol/L or more, more preferably 0.5 to 1.5 mol/L. The electrolyte may have a gel or solid form for the purpose of preventing liquid leakage.
 キャパシタは、正極と負極との間に、それらの物理的な接触を抑制するためのセパレータを備えることができる。セパレータとしては、例えば、セルロースレーヨン、ポリエチレン、ポリプロピレン、ポリアミド、ポリエステル、ポリイミド等を原料とする不織布又は多孔質フィルムを挙げることができる。 The capacitor can include a separator between the positive electrode and the negative electrode for suppressing physical contact between them. Examples of the separator include a nonwoven fabric or a porous film made of cellulose rayon, polyethylene, polypropylene, polyamide, polyester, polyimide or the like as a raw material.
 キャパシタの構造としては、例えば、正極及び負極と、それらを介するセパレータとから成る板状の構成単位が、3単位以上積層されて積層体を形成し、その積層体が外装フィルム内に封入された積層型セルが挙げられる。 As the structure of the capacitor, for example, three or more plate-shaped constitutional units including a positive electrode, a negative electrode, and a separator interposed therebetween are laminated to form a laminated body, and the laminated body is enclosed in an exterior film. A laminated cell can be used.
 また、キャパシタの構造としては、例えば、正極及び負極と、それらを介するセパレータとから成る帯状の構成単位が捲回されて積層体を形成し、その積層体が角型又は円筒型の容器に収納された捲回型セル等が挙げられる。 Further, as the structure of the capacitor, for example, a strip-shaped constituent unit composed of a positive electrode and a negative electrode and a separator interposed therebetween is wound to form a laminated body, and the laminated body is housed in a rectangular or cylindrical container. The wound cell and the like are mentioned.
 キャパシタは、例えば、少なくとも負極及び正極を含む基本構造を形成し、その基本構造に電解質を注入することにより製造できる。 A capacitor can be manufactured, for example, by forming a basic structure including at least a negative electrode and a positive electrode and injecting an electrolyte into the basic structure.
 リチウムイオンキャパシタの場合、その活物質層の密度は、好ましくは0.50~1.50g/ccであり、特に好ましくは0.70~1.20g/ccである。 In the case of a lithium ion capacitor, the density of its active material layer is preferably 0.50 to 1.50 g/cc, and particularly preferably 0.70 to 1.20 g/cc.
 電池としては、アルカリ金属イオンの挿入/脱離を利用する電池であれば特に限定されるものではなく、一次電池であっても二次電池であってもよい。電池としては、例えば、リチウムイオン二次電池、ナトリウムイオン二次電池、空気電池等が挙げられる。その中でもリチウムイオン二次電池が好ましい。 The battery is not particularly limited as long as it is a battery that uses the insertion/desorption of alkali metal ions, and may be a primary battery or a secondary battery. Examples of the battery include a lithium ion secondary battery, a sodium ion secondary battery, an air battery and the like. Of these, a lithium ion secondary battery is preferable.
 電池を構成する正極の基本的な構成は、一般的な構成とすることができる。正極活物質としては、既に例示したものの他、ニトロキシラジカル化合物等の有機活物質や酸素を使用することもできる。 The basic configuration of the positive electrode that constitutes the battery can be a general configuration. As the positive electrode active material, an organic active material such as a nitroxy radical compound or oxygen can be used in addition to those exemplified above.
 電池を構成する電解質の構成、電池自体の構成については、キャパシタの場合と同様である。電池は、例えば、少なくとも負極及び正極を含む基本構造を形成し、その基本構造に電解質を注入することにより製造できる。  The structure of the electrolyte that composes the battery and the structure of the battery itself are the same as in the case of the capacitor. A battery can be manufactured, for example, by forming a basic structure including at least a negative electrode and a positive electrode, and injecting an electrolyte into the basic structure.
 本開示の蓄電デバイスの製造方法では、まず、前記「4.電極製造装置1を用いた電極75の製造方法」に記載の方法で負極を製造する。次に、負極と、セパレータと、負極とは異なる電極とを順次積層して電極セルを形成する。 In the method of manufacturing the electricity storage device of the present disclosure, first, the negative electrode is manufactured by the method described in "4. Method of manufacturing electrode 75 using electrode manufacturing apparatus 1". Next, the negative electrode, the separator, and the electrode different from the negative electrode are sequentially laminated to form an electrode cell.
 6.電極製造方法が奏する効果
 (1A)本開示の電極製造方法では、酸素濃度が1体積%以上18体積%以下の雰囲気において、アルカリ金属イオンを含むドープ溶液を用い、活物質にアルカリ金属をドープする。そのため、ドープ溶液に引火し難い。また、活物質にドープされたアルカリ金属が変性することを抑制できる。変性として、例えば、ドープされたリチウムが窒化リチウムに変性することが挙げられる。
6. Effects of Electrode Manufacturing Method (1A) In the electrode manufacturing method of the present disclosure, an active material is doped with an alkali metal using a dope solution containing an alkali metal ion in an atmosphere having an oxygen concentration of 1 vol% or more and 18 vol% or less. .. Therefore, it is difficult for the dope solution to catch fire. In addition, it is possible to suppress the modification of the alkali metal doped in the active material. The modification includes, for example, modification of doped lithium into lithium nitride.
 (1B)本開示の電極製造方法では、酸素濃度が3体積%以上15体積%以下の雰囲気において、アルカリ金属イオンを含むドープ溶液を用い、活物質にアルカリ金属をドープすることができる。この場合、ドープ溶液に一層引火し難い。また、活物質にドープされたアルカリ金属が変性することを一層抑制できる。 (1B) In the electrode manufacturing method of the present disclosure, an active material can be doped with an alkali metal using a dope solution containing an alkali metal ion in an atmosphere having an oxygen concentration of 3% by volume or more and 15% by volume or less. In this case, the dope solution is less likely to catch fire. Further, it is possible to further suppress the modification of the alkali metal doped in the active material.
 (1C)本開示の電極製造方法では、窒素濃度が30体積%以上97体積%以下の雰囲気において、アルカリ金属イオンを含むドープ溶液を用い、活物質にアルカリ金属をドープすることができる。この場合、ドープ溶液に一層引火し難い。また、活物質にドープされたアルカリ金属が変性することを一層抑制できる。 (1C) In the electrode manufacturing method of the present disclosure, an active material can be doped with an alkali metal using a dope solution containing an alkali metal ion in an atmosphere having a nitrogen concentration of 30 vol% or more and 97 vol% or less. In this case, the dope solution is less likely to catch fire. Further, it is possible to further suppress the modification of the alkali metal doped in the active material.
 (1D)本開示の電極製造方法では、活物質にアルカリ金属をドープするとき、ドープ溶液の温度を、25℃以上50℃以下とすることができる。この場合、ドープ溶液に一層引火し難い。また、活物質にドープされたアルカリ金属が変性することを一層抑制できる。 (1D) In the electrode manufacturing method of the present disclosure, when the active material is doped with an alkali metal, the temperature of the dope solution can be set to 25° C. or higher and 50° C. or lower. In this case, the dope solution is less likely to catch fire. Further, it is possible to further suppress the modification of the alkali metal doped in the active material.
 (1E)本開示の電極製造方法では、活物質にアルカリ金属をドープするとき、雰囲気の圧力を0.1×10N/m以上5×10N/m以下とすることができる。この場合、ドープ溶液に一層引火し難い。また、活物質にドープされたアルカリ金属が変性することを一層抑制できる。 (1E) In the electrode manufacturing method of the present disclosure, when the active material is doped with an alkali metal, the pressure of the atmosphere can be set to 0.1×10 5 N/m 2 or more and 5×10 5 N/m 2 or less. .. In this case, the dope solution is less likely to catch fire. Further, it is possible to further suppress the modification of the alkali metal doped in the active material.
 (1F)本開示の蓄電デバイスの製造方法では、負極を製造するとき、酸素濃度が1体積%以上18体積%以下の雰囲気において、アルカリ金属イオンを含むドープ溶液を用い、負極活物質にアルカリ金属をドープする。そのため、ドープ溶液に引火し難い。また、負極活物質にドープされたアルカリ金属が変性することを抑制できる。 (1F) In the method for manufacturing an electricity storage device of the present disclosure, when a negative electrode is manufactured, a dope solution containing an alkali metal ion is used in an atmosphere having an oxygen concentration of 1 vol% or more and 18 vol% or less, and an alkali metal is used as a negative electrode active material. Dope Therefore, it is difficult for the dope solution to catch fire. Further, it is possible to suppress the modification of the alkali metal doped in the negative electrode active material.
 7.実施例
 本開示を以下の実施例および比較例を用いてさらに詳細に説明する。
7. Examples The present disclosure will be described in more detail using the following examples and comparative examples.
 (実施例1-1)
 (1-1A)電極75の製造
 長尺の帯状の負極集電体を用意した。負極集電体のサイズは、幅150mm、長さ100m、厚さ8μmである。負極集電体の表面粗さRaは0.1μmである。負極集電体は銅箔から成る。図6に示すように、負極集電体93の両面に、それぞれ負極活物質層95を形成し、電極前駆体73を得た。負極活物質層95の厚みは80μmである。負極活物質層95は、負極集電体93の長手方向に沿って形成されている。負極活物質層95は、負極集電体93の幅方向における中央部に、幅120mmにわたって形成されている。負極集電体93の幅方向の両端における負極活物質層未形成部はそれぞれ15mmである。負極活物質層未形成部とは、負極活物質層95が形成されていない部分である。
(Example 1-1)
(1-1A) Production of Electrode 75 A long strip-shaped negative electrode current collector was prepared. The size of the negative electrode current collector is 150 mm in width, 100 m in length, and 8 μm in thickness. The surface roughness Ra of the negative electrode current collector is 0.1 μm. The negative electrode current collector is made of copper foil. As shown in FIG. 6, negative electrode active material layers 95 were formed on both surfaces of the negative electrode current collector 93 to obtain an electrode precursor 73. The thickness of the negative electrode active material layer 95 is 80 μm. The negative electrode active material layer 95 is formed along the longitudinal direction of the negative electrode current collector 93. The negative electrode active material layer 95 is formed over a width of 120 mm at the central portion of the negative electrode current collector 93 in the width direction. The negative electrode active material layer-unformed portions at both ends in the width direction of the negative electrode current collector 93 are each 15 mm. The negative electrode active material layer-unformed portion is a portion where the negative electrode active material layer 95 is not formed.
 負極活物質層95は、黒鉛、カルボキシメチルセルロース、アセチレンブラック、バインダ及び分散剤を、質量比で88:3:5:3:1の比率で含む。黒鉛は負極活物質に対応し、炭素系材料に対応する。アセチレンブラックは導電剤に対応する。 The negative electrode active material layer 95 contains graphite, carboxymethyl cellulose, acetylene black, a binder and a dispersant in a mass ratio of 88:3:5:3:1. Graphite corresponds to the negative electrode active material and corresponds to the carbon-based material. Acetylene black corresponds to a conductive agent.
 次に、以下のようにして対極ユニット51を製造した。まず、厚さ2mmの長尺の銅板を用意した。この銅板上に、リチウム金属板を貼り付けた。リチウム金属板のサイズは、幅120mm×長さ800mm、厚さ1mmである。リチウム金属板は、銅板の長手方向に沿って貼り付けられている。このようにリチウム金属板を貼り付けた銅板を、対極ユニット51とする。同じ対極ユニット51を8枚製造した。対極ユニット51はリチウム極に対応する。 Next, the counter electrode unit 51 was manufactured as follows. First, a long copper plate having a thickness of 2 mm was prepared. A lithium metal plate was attached onto this copper plate. The size of the lithium metal plate is 120 mm wide×800 mm long and 1 mm thick. The lithium metal plate is attached along the longitudinal direction of the copper plate. The copper plate to which the lithium metal plate is attached in this manner is used as the counter electrode unit 51. Eight sheets of the same counter electrode unit 51 were manufactured. The counter electrode unit 51 corresponds to a lithium electrode.
 図1に示す電極製造装置1を用意した。電極前駆体73及び対極ユニット51をチャンバー10内に収容した。次に、電極製造装置1の電解液槽203、205、7、207に電解液を供給した。電解液は、1.2MのLiPFを含む溶液である。電解液の溶媒は、エチレンカーボネートと、エチルメチルカーボネートと、ジメチルカーボネートとを、3:4:3の体積比で含む混合溶媒である。 The electrode manufacturing apparatus 1 shown in FIG. 1 was prepared. The electrode precursor 73 and the counter electrode unit 51 were housed in the chamber 10. Next, the electrolytic solution was supplied to the electrolytic solution tanks 203, 205, 7, and 207 of the electrode manufacturing apparatus 1. The electrolytic solution is a solution containing 1.2 M LiPF 6 . The solvent of the electrolytic solution is a mixed solvent containing ethylene carbonate, ethylmethyl carbonate, and dimethyl carbonate in a volume ratio of 3:4:3.
 次に、電極製造装置1が備える電極前駆体73及び対極ユニット51を電流・電圧モニター付き直流電源に接続し、電極前駆体73を0.16m/minの速度で搬送しながら、40Aの電流を通電した。通電する際のチャンバー10内の雰囲気は、酸素濃度10体積%、窒素濃度90体積%、温度25℃に調整し、電解液の温度は40℃とした。通電時間は、不可逆容量を考慮した上、負極活物質層95におけるリチウムドープ割合が負極の放電容量C2の70%になる時間を設定した。なお、不可逆容量は、リチウムをドープした後の負極の放電容量を測定することにより予め見積もっておいた。この工程により、負極活物質層95中の負極活物質にリチウムがドープされ、電極前駆体73は電極75となった。なお、本実施例及び後述する各実施例及び各比較例において電極75はリチウムイオンキャパシタ用負極である。 Next, the electrode precursor 73 and the counter electrode unit 51 included in the electrode manufacturing apparatus 1 were connected to a direct current power source with a current/voltage monitor, and the electrode precursor 73 was conveyed at a speed of 0.16 m/min, and a current of 40 A was applied. Energized. The atmosphere in the chamber 10 when energized was adjusted to have an oxygen concentration of 10% by volume, a nitrogen concentration of 90% by volume, and a temperature of 25°C, and the temperature of the electrolytic solution was 40°C. In consideration of the irreversible capacity, the energization time was set such that the lithium doping ratio in the negative electrode active material layer 95 was 70% of the negative electrode discharge capacity C2. The irreversible capacity was estimated in advance by measuring the discharge capacity of the negative electrode after doping lithium. Through this step, the negative electrode active material in the negative electrode active material layer 95 was doped with lithium, and the electrode precursor 73 became the electrode 75. In addition, the electrode 75 is a negative electrode for a lithium ion capacitor in this example and each example and each comparative example described later.
 電極75を、25℃のEMC(エチルメチルカーボネート)を収容した洗浄槽103を通過させた。その後、電極75を巻取ロール49に巻き取り、7時間保管した。以上のようにして、電極75を製造した。 The electrode 75 was passed through the cleaning tank 103 containing EMC (ethyl methyl carbonate) at 25°C. After that, the electrode 75 was wound around the winding roll 49 and stored for 7 hours. The electrode 75 was manufactured as described above.
 (1-1B)電極75の外観評価の評価方法と評価結果
 上記(1-1A)で得られた電極75の外観を観察した。電極75において黒色への変色が観察されない場合は「A」、黒色への変色が電極75の一部の領域で観察された場合は「B」、黒色への変色が電極75の全面で観察された場合は「C」と評価した。評価結果を表1に示す。
(1-1B) Evaluation Method of Appearance of Electrode 75 and Evaluation Results The appearance of the electrode 75 obtained in (1-1A) above was observed. When no discoloration to black is observed on the electrode 75, “A” is observed. When discoloration to black is observed on a partial area of the electrode 75, “B” is observed, and discoloration to black is observed on the entire surface of the electrode 75. In the case of being evaluated, it was evaluated as "C". The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 (1-1C)負極放電容量の評価方法と評価結果
 上記(1-1A)で得られた電極75から打ち抜きの方法により、4.0cm×2.6cmの大きさ(ただし端子溶接部を除く)の負極を用意した。次に、前記のように作成した負極を作用極とし、リチウム金属を対極及び参照極とする3極セルを組み立てた。この3極セルに、電解液を注液した。電解液は、1.2MのLiPFを含む溶液である。電解液の溶媒は、エチレンカーボネートと、エチルメチルカーボネートと、ジメチルカーボネートとを、3:4:3の体積比で含む混合溶媒である。以上の工程により、評価用セルが完成した。
Figure JPOXMLDOC01-appb-T000001
(1-1C) Evaluation Method of Negative Electrode Discharge Capacity and Evaluation Results By a punching method from the electrode 75 obtained in (1-1A) above, a size of 4.0 cm×2.6 cm (excluding the terminal weld portion) The negative electrode of was prepared. Next, a three-electrode cell in which the negative electrode prepared as described above was used as a working electrode and lithium metal was used as a counter electrode and a reference electrode was assembled. The electrolytic solution was injected into this 3-electrode cell. The electrolytic solution is a solution containing 1.2 M LiPF 6 . The solvent of the electrolytic solution is a mixed solvent containing ethylene carbonate, ethylmethyl carbonate, and dimethyl carbonate in a volume ratio of 3:4:3. Through the above steps, the evaluation cell was completed.
 作製した評価用セルを、電流密度0.1mA/cmの定電流で負極電位が3.0Vvs. Li/Li+になるまで放電し、放電容量を測定した。評価結果を表1に示す。 The produced evaluation cell was subjected to a constant current with a current density of 0.1 mA/cm 2 and a negative electrode potential of 3.0 V vs. Discharge was performed until it became Li/Li+, and the discharge capacity was measured. The evaluation results are shown in Table 1.
 (実施例1-2~1-6、比較例1-1、1-2)
 通電の際のチャンバー10内の雰囲気の酸素濃度、窒素濃度、及び温度、並びに電解液の温度を表1に示す数値とした点以外は実施例1-1と同様にして、電極の製造及び評価を行った。評価結果を表1に示す。
(Examples 1-2 to 1-6, Comparative Examples 1-1 and 1-2)
Manufacture and evaluation of electrodes in the same manner as in Example 1-1, except that the oxygen concentration, nitrogen concentration, and temperature of the atmosphere in the chamber 10 during energization and the temperature of the electrolytic solution were set to the values shown in Table 1. I went. The evaluation results are shown in Table 1.
 (実施例2-1)
 以下のようにして引火性の評価を行った。容器内に電解液を供給した。電解液は、1.2MのLiPFを含む溶液である。電解液の溶媒は、エチレンカーボネートと、エチルメチルカーボネートと、ジメチルカーボネートとを、3:4:3の体積比で含む混合溶媒である。電解液を投入した後、電解液の温度を40℃に調整した。容器内の雰囲気は、酸素濃度10体積%、窒素濃度90体積%とした。容器内の温度は25℃であった。そして、容器を開けた後に直ちに着火し、燃焼が観察されない場合は「A」、一時的な燃焼が観察された場合は「B」、燃焼が観察された場合は「C」と評価した。評価結果を表2に示す。
(Example 2-1)
The flammability was evaluated as follows. The electrolytic solution was supplied into the container. The electrolytic solution is a solution containing 1.2 M LiPF 6 . The solvent of the electrolytic solution is a mixed solvent containing ethylene carbonate, ethylmethyl carbonate, and dimethyl carbonate in a volume ratio of 3:4:3. After charging the electrolytic solution, the temperature of the electrolytic solution was adjusted to 40°C. The atmosphere in the container had an oxygen concentration of 10% by volume and a nitrogen concentration of 90% by volume. The temperature in the container was 25°C. Then, the container was ignited immediately after opening, and was evaluated as "A" when combustion was not observed, "B" when temporary combustion was observed, and "C" when combustion was observed. The evaluation results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
 (実施例2-2~2-6、比較例2-1)
 容器内の雰囲気の酸素濃度、窒素濃度、及び温度、並びに電解液の温度を表2に示す数値とした点以外は実施例2-1と同様に引火性の評価を行った。評価結果を表2に示す。<他の実施形態>
 以上、本開示の実施形態について説明したが、本開示は上述の実施形態に限定されることなく、種々変形して実施することができる。
Figure JPOXMLDOC01-appb-T000002
(Examples 2-2 to 2-6, Comparative Example 2-1)
The flammability was evaluated in the same manner as in Example 2-1 except that the oxygen concentration, the nitrogen concentration, and the temperature of the atmosphere in the container, and the temperature of the electrolytic solution were set to the values shown in Table 2. The evaluation results are shown in Table 2. <Other Embodiments>
Although the embodiments of the present disclosure have been described above, the present disclosure is not limited to the above-described embodiments, and various modifications can be implemented.
 (1)第1実施形態において、枚葉式の方法でプレドープを行ってもよい。枚葉式とは、切り取られた電極板とアルカリ金属板とを、セパレータを介して電解液中に配置した状態でプレドープを行う方法である。 (1) In the first embodiment, pre-doping may be performed by a single wafer method. The single-wafer method is a method of performing pre-doping in a state where the cut electrode plate and the alkali metal plate are placed in the electrolytic solution via a separator.
 (2)上記各実施形態における1つの構成要素が有する機能を複数の構成要素に分担させたり、複数の構成要素が有する機能を1つの構成要素に発揮させたりしてもよい。また、上記各実施形態の構成の一部を省略してもよい。また、上記各実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加、置換等してもよい。なお、特許請求の範囲に記載の文言から特定される技術思想に含まれるあらゆる態様が本開示の実施形態である。 (2) The function of one constituent element in each of the above embodiments may be shared by a plurality of constituent elements, or the function of a plurality of constituent elements may be exerted by one constituent element. Moreover, you may omit a part of structure of each said embodiment. Further, at least a part of the configuration of each of the above-described embodiments may be added to or replaced with the configuration of the other above-described embodiments. Note that all aspects included in the technical idea specified by the wording of the claims are the embodiments of the present disclosure.
 (3)上述した電極製造方法の他、電極製造装置、当該電極製造装置を構成要素とするシステム、プレドープ方法等、種々の形態で本開示を実現することもできる。 (3) In addition to the above-described electrode manufacturing method, the present disclosure can be realized in various forms such as an electrode manufacturing apparatus, a system having the electrode manufacturing apparatus as a constituent element, and a pre-doping method.

Claims (7)

  1.  アルカリ金属がドープされた活物質を含む活物質層を備えた電極を製造する電極製造方法であって、
     酸素濃度が1体積%以上18体積%以下の雰囲気において、アルカリ金属イオンを含むドープ溶液を用い、前記活物質にアルカリ金属をドープする電極製造方法。
    An electrode manufacturing method for manufacturing an electrode comprising an active material layer containing an active material doped with an alkali metal,
    An electrode manufacturing method, wherein an active material is doped with an alkali metal using a dope solution containing an alkali metal ion in an atmosphere having an oxygen concentration of 1% by volume or more and 18% by volume or less.
  2.  請求項1に記載の電極製造方法であって、
     前記雰囲気における酸素濃度は3体積%以上15体積%以下である電極製造方法。
    The electrode manufacturing method according to claim 1, wherein
    The electrode manufacturing method, wherein the oxygen concentration in the atmosphere is 3% by volume or more and 15% by volume or less.
  3.  請求項2に記載の電極製造方法であって、
     前記雰囲気における窒素濃度は30体積%以上97体積%以下である電極製造方法。
    The electrode manufacturing method according to claim 2, wherein
    The method for producing an electrode, wherein the nitrogen concentration in the atmosphere is 30% by volume or more and 97% by volume or less.
  4.  請求項1~3のいずれか1項に記載の電極製造方法であって、
     前記活物質にアルカリ金属をドープするとき、前記ドープ溶液の温度は25℃以上50℃以下である電極製造方法。
    The electrode manufacturing method according to any one of claims 1 to 3,
    The method for manufacturing an electrode, wherein when the active material is doped with an alkali metal, the temperature of the dope solution is 25° C. or higher and 50° C. or lower.
  5.  請求項1~4のいずれか1項に記載の電極製造方法であって、
     前記雰囲気の圧力は0.1×10N/m以上5×10N/m以下である電極製造方法。
    The electrode manufacturing method according to any one of claims 1 to 4,
    The electrode manufacturing method, wherein the pressure of the atmosphere is 0.1×10 5 N/m 2 or more and 5×10 5 N/m 2 or less.
  6.  電極セルを備える蓄電デバイスの製造方法であって、
     請求項1~5のいずれか1項に記載の電極製造方法により、アルカリ金属がドープされた活物質を含む活物質層を備えた負極を製造し、
     前記負極と、セパレータと、前記負極とは異なる電極とを順次積層して前記電極セルを形成する蓄電デバイスの製造方法。
    A method of manufacturing an electricity storage device including an electrode cell, comprising:
    A negative electrode having an active material layer containing an active material doped with an alkali metal is manufactured by the method for manufacturing an electrode according to claim 1.
    A method of manufacturing an electricity storage device, wherein the negative electrode, a separator, and an electrode different from the negative electrode are sequentially laminated to form the electrode cell.
  7.  アルカリ金属がドープされた活物質を含む活物質層を備えた電極を製造する電極製造装置であって、
     前記電極製造装置の内部の雰囲気を、酸素濃度が1体積%以上18体積%以下の雰囲気とするように構成された雰囲気設定ユニットを備える電極製造装置。
    An electrode manufacturing apparatus for manufacturing an electrode comprising an active material layer containing an active material doped with an alkali metal,
    An electrode manufacturing apparatus comprising an atmosphere setting unit configured so that an atmosphere inside the electrode manufacturing apparatus has an oxygen concentration of 1% by volume or more and 18% by volume or less.
PCT/JP2019/036786 2018-11-28 2019-09-19 Electrode production method, method for producing electricity storage device, and electrode production apparatus WO2020110433A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980077550.4A CN113169311A (en) 2018-11-28 2019-09-19 Electrode manufacturing method, electricity storage device manufacturing method, and electrode manufacturing device
KR1020217014682A KR20210093893A (en) 2018-11-28 2019-09-19 Electrode manufacturing method, electrical storage device manufacturing method, and electrode manufacturing apparatus
EP19888923.0A EP3890064A4 (en) 2018-11-28 2019-09-19 Electrode production method, method for producing electricity storage device, and electrode production apparatus
JP2020558119A JP7456936B2 (en) 2018-11-28 2019-09-19 Electrode manufacturing method, electricity storage device manufacturing method, and electrode manufacturing apparatus
US17/295,590 US20220020538A1 (en) 2018-11-28 2019-09-19 Electrode manufacturing method, manufacturing method for power storage device, and electrode manufacturing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018222469 2018-11-28
JP2018-222469 2018-11-28

Publications (1)

Publication Number Publication Date
WO2020110433A1 true WO2020110433A1 (en) 2020-06-04

Family

ID=70851979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/036786 WO2020110433A1 (en) 2018-11-28 2019-09-19 Electrode production method, method for producing electricity storage device, and electrode production apparatus

Country Status (6)

Country Link
US (1) US20220020538A1 (en)
EP (1) EP3890064A4 (en)
JP (1) JP7456936B2 (en)
KR (1) KR20210093893A (en)
CN (1) CN113169311A (en)
WO (1) WO2020110433A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7185734B1 (en) 2021-07-12 2022-12-07 Ckd株式会社 doping system
WO2022270063A1 (en) * 2021-06-24 2022-12-29 武蔵エナジーソリューションズ株式会社 Method for manufacturing doped electrode

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09293499A (en) 1996-04-25 1997-11-11 Seiko Instr Kk Nonaqueous electrolyte secondary battery and manufacture thereof
JPH10308212A (en) 1997-05-06 1998-11-17 Ricoh Co Ltd Electrode plate processing device for secondary battery
JP2005123175A (en) 2003-09-26 2005-05-12 Jfe Chemical Corp Composite particle, manufacturing method of the same, negative electrode material and negative electrode for lithium-ion secondary battery, and the lithium-ion secondary battery
JP2006107795A (en) 2004-09-30 2006-04-20 Sony Corp Anode active material and battery using it
JP2007015870A (en) * 2005-07-05 2007-01-25 Nippon Oil Corp Activated carbon manufacturing apparatus
JP2008077963A (en) 2006-09-21 2008-04-03 Matsushita Electric Ind Co Ltd Method and device to store lithium ion in negative electrode precursor for non-aqueous electrolyte secondary battery
JP2009246137A (en) 2008-03-31 2009-10-22 Jsr Corp Lithium-ion capacitor
JP2012049544A (en) 2010-08-27 2012-03-08 Samsung Electro-Mechanics Co Ltd Doping apparatus for manufacturing electrode of energy storage device, and electrode manufacturing method using the apparatus
JP2012049543A (en) 2010-08-27 2012-03-08 Samsung Electro-Mechanics Co Ltd Doping apparatus for manufacturing electrode of energy storage device, and electrode manufacturing method using the apparatus
JP2012069894A (en) 2009-09-28 2012-04-05 Sumitomo Chemical Co Ltd Sodium-ion-type power storage device
JP2013258392A (en) 2012-05-18 2013-12-26 Jsr Corp Electrode active material, electrode, and power storage device
JP2017011068A (en) * 2015-06-19 2017-01-12 日本電気株式会社 Method of manufacturing electrode for power storage device and apparatus for manufacturing the electrode
WO2017146223A1 (en) * 2016-02-26 2017-08-31 Jsr株式会社 Doping system, and method for manufacturing electrodes, batteries and capacitors

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11217636A (en) * 1998-01-30 1999-08-10 Daihatsu Motor Co Ltd Method for purifying molten magnesium alloy
JP2001271262A (en) * 2000-03-23 2001-10-02 Tsukishima Kikai Co Ltd Method for producing water-absorbing sheet-like polymer member
CN105186038B (en) * 2005-10-20 2017-07-28 三菱化学株式会社 Lithium secondary battery and the nonaqueous electrolytic solution wherein used
JP2007226974A (en) * 2006-02-21 2007-09-06 Pionics Co Ltd Lithium-ion secondary battery
JP2008016199A (en) * 2006-06-30 2008-01-24 Mitsui Mining & Smelting Co Ltd Device of manufacturing anode for nonaqueous electrolyte secondary battery
CA2857491C (en) * 2011-12-01 2022-01-04 Robert W. Grant Method for alkaliating anodes
JP2017022172A (en) * 2015-07-07 2017-01-26 Jsr株式会社 Electrode manufacturing method and power storage device
TWI627648B (en) * 2016-01-22 2018-06-21 Asahi Chemical Ind Positive precursor
JP6734114B2 (en) * 2016-05-10 2020-08-05 日産自動車株式会社 Method for producing alkali metal-containing amorphous carbon active material and method for producing electrode using the same

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09293499A (en) 1996-04-25 1997-11-11 Seiko Instr Kk Nonaqueous electrolyte secondary battery and manufacture thereof
JPH10308212A (en) 1997-05-06 1998-11-17 Ricoh Co Ltd Electrode plate processing device for secondary battery
JP2005123175A (en) 2003-09-26 2005-05-12 Jfe Chemical Corp Composite particle, manufacturing method of the same, negative electrode material and negative electrode for lithium-ion secondary battery, and the lithium-ion secondary battery
JP2006107795A (en) 2004-09-30 2006-04-20 Sony Corp Anode active material and battery using it
JP2007015870A (en) * 2005-07-05 2007-01-25 Nippon Oil Corp Activated carbon manufacturing apparatus
JP2008077963A (en) 2006-09-21 2008-04-03 Matsushita Electric Ind Co Ltd Method and device to store lithium ion in negative electrode precursor for non-aqueous electrolyte secondary battery
JP2009246137A (en) 2008-03-31 2009-10-22 Jsr Corp Lithium-ion capacitor
JP2012069894A (en) 2009-09-28 2012-04-05 Sumitomo Chemical Co Ltd Sodium-ion-type power storage device
JP2012049544A (en) 2010-08-27 2012-03-08 Samsung Electro-Mechanics Co Ltd Doping apparatus for manufacturing electrode of energy storage device, and electrode manufacturing method using the apparatus
JP2012049543A (en) 2010-08-27 2012-03-08 Samsung Electro-Mechanics Co Ltd Doping apparatus for manufacturing electrode of energy storage device, and electrode manufacturing method using the apparatus
JP2013258392A (en) 2012-05-18 2013-12-26 Jsr Corp Electrode active material, electrode, and power storage device
JP2017011068A (en) * 2015-06-19 2017-01-12 日本電気株式会社 Method of manufacturing electrode for power storage device and apparatus for manufacturing the electrode
WO2017146223A1 (en) * 2016-02-26 2017-08-31 Jsr株式会社 Doping system, and method for manufacturing electrodes, batteries and capacitors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3890064A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022270063A1 (en) * 2021-06-24 2022-12-29 武蔵エナジーソリューションズ株式会社 Method for manufacturing doped electrode
JP7185734B1 (en) 2021-07-12 2022-12-07 Ckd株式会社 doping system
WO2023286433A1 (en) * 2021-07-12 2023-01-19 Ckd株式会社 Doping system
JP2023011107A (en) * 2021-07-12 2023-01-24 Ckd株式会社 doping system

Also Published As

Publication number Publication date
JPWO2020110433A1 (en) 2021-10-14
CN113169311A (en) 2021-07-23
EP3890064A4 (en) 2022-08-10
EP3890064A1 (en) 2021-10-06
KR20210093893A (en) 2021-07-28
US20220020538A1 (en) 2022-01-20
JP7456936B2 (en) 2024-03-27

Similar Documents

Publication Publication Date Title
JP7280281B2 (en) Electrode manufacturing equipment
US20160079006A1 (en) Electrode for power storage device, power storage device, and method for manufacturing electrode for power storage device
WO2020110433A1 (en) Electrode production method, method for producing electricity storage device, and electrode production apparatus
JP6853132B2 (en) Electrode manufacturing method, capacitor manufacturing method, battery manufacturing method, and electrode protection method
JP7307165B2 (en) Storage device and method for manufacturing lithium ion secondary battery
JP7170057B2 (en) Electrode manufacturing apparatus and electrode manufacturing method
JP7372315B2 (en) Electrode manufacturing method and electricity storage device manufacturing method
WO2022102381A1 (en) Manufacturing method for secondary battery and manufacturing method for doped electrode
JP7319306B2 (en) Electrode manufacturing system and electrode manufacturing method
WO2022270063A1 (en) Method for manufacturing doped electrode
US11811046B2 (en) Method for manufacturing electrode
WO2021157157A1 (en) Doping system, and method for manufacturing electrode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19888923

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020558119

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019888923

Country of ref document: EP

Effective date: 20210628