WO2023286433A1 - Doping system - Google Patents

Doping system Download PDF

Info

Publication number
WO2023286433A1
WO2023286433A1 PCT/JP2022/019939 JP2022019939W WO2023286433A1 WO 2023286433 A1 WO2023286433 A1 WO 2023286433A1 JP 2022019939 W JP2022019939 W JP 2022019939W WO 2023286433 A1 WO2023286433 A1 WO 2023286433A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
chamber
doping
electrode
winding
Prior art date
Application number
PCT/JP2022/019939
Other languages
French (fr)
Japanese (ja)
Inventor
彰浩 伊藤
康司 鈴木
紹元 小笠原
光祥 大▲崎▼
Original Assignee
Ckd株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ckd株式会社 filed Critical Ckd株式会社
Publication of WO2023286433A1 publication Critical patent/WO2023286433A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G13/00Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a doping system for doping lithium into an electrode precursor.
  • secondary batteries such as lithium ion batteries and electricity storage devices such as lithium ion capacitors include a positive electrode having a positive electrode active material on the surface, a negative electrode having a negative electrode active material on the surface, and a separator that insulates these electrodes. It has
  • a doping apparatus for manufacturing a doped electrode as a positive electrode or a negative electrode by doping (plating) an electrode precursor having an active material on its surface with an alkali metal such as lithium (for example, See Patent Document 1, etc.).
  • the doping apparatus includes, for example, supporting means (supply roll), doping tank (doping tank), conveying means (conveying roller group), counter electrode member (alkali metal-containing plate), and winding means (winding roll).
  • the support means supports the original fabric formed by winding the electrode precursor into a roll.
  • the dope tank contains an electrolytic solution containing alkali metal ions, a solvent, and the like.
  • the conveying means conveys the electrode precursor unwound from the original fabric through a route passing through the electrolytic solution in the doping tank.
  • the counter electrode member is made of a conductive metal or the like and accommodated in the dope tank.
  • the winding means winds up the doped electrode obtained through the dope tank.
  • the electrode precursor is doped with an alkali metal by passing an electric current between the electrode precursor and the counter electrode member while conveying the electrode precursor along a path passing through the electrolytic solution by the conveying means. .
  • flammable organic solvents such as dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), and ethylene carbonate (EC) may be used as solvents.
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • EC ethylene carbonate
  • such an electrolytic solution may generate heat and evaporate under the influence of current flowing between the electrode precursor and the counter electrode member. Therefore, by housing the doping tank (plating tank) and the like in the housing and filling the housing with an inert gas (nitrogen gas), the vaporized electrolyte is prevented from leaking out of the housing, and the vaporization It is conceivable to prevent the electrolyte solution from igniting (see, for example, Patent Document 2, etc.).
  • a doping device for doping lithium unlike a general plating device, it is necessary to control the oxygen concentration in the housing within a relatively narrow and appropriate range. This is because if the oxygen concentration exceeds the above range, the vaporized electrolyte may ignite. This is because the quality of the doped electrode may deteriorate.
  • Patent Document 2 by making the inside of the housing negative pressure with respect to the outside of the housing, it is possible to more reliably suppress the vaporized electrolytic solution from leaking out of the housing. If the inside is negative pressure, the air (oxygen) tends to flow into the housing, making it difficult to maintain the oxygen concentration in the housing within an appropriate range. On the other hand, if the pressure inside the housing is positive with respect to the outside of the housing, the vaporized electrolytic solution is likely to leak out of the housing, and the technical significance of providing the housing cannot be fully exhibited.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to more reliably prevent the vaporized electrolytic solution from leaking out of the housing, and to more easily control the oxygen concentration within an appropriate range. To provide a doping system that can be maintained.
  • a doping system for doping a strip-shaped electrode precursor with lithium to produce a doped electrode comprising: Supporting means for supporting the raw roll of the electrode precursor wound thereon, a doping tank containing an electrolytic solution containing at least a flammable solvent, and the doping tank containing the electrode precursor unwound from the raw roll a counter electrode member accommodated in the dope tank; and a winding means for winding the doped electrode obtained through the dope tank; a doping device capable of doping the electrode precursor with lithium by applying a current between the electrode precursor and the counter electrode member in a state where the electrode precursor is arranged; an inner housing comprising a main housing that accommodates at least the support means, the dope tank, the winding means, and the electrode precursor and the dope electrode located from the support means to the winding means; an outer housing covering the inner housing; oxygen supply means for supplying an oxygen-containing gas containing oxygen into the main housing; an inert gas supply means for supplying an inert gas containing nitrogen into the main
  • the doping system comprises an inner housing and an outer housing covering the inner housing. It has a main housing containing the positioned electrode precursor and doped electrodes.
  • the pressure inside the main housing can be made positive (the air pressure inside the main housing can be made higher than the pressure inside the outer housing) with respect to the inside of the outer housing (but outside the inner housing). Therefore, by making the inside of the main housing positive with respect to the inside of the outer housing, it is possible to suppress the inflow of gas such as oxygen from the inside of the outer housing into the inside of the main housing.
  • the oxygen concentration in the main housing can be adjusted to a relatively narrow range by using the oxygen supply means for supplying the oxygen-containing gas into the main housing and the inert gas supply means for supplying the inert gas into the main housing. Range can be more easily maintained.
  • the inside of the outer housing can be made to have a negative pressure with respect to the space outside the housing located around (outside) the outer housing (for example, the area where the outer housing is installed), gas flow from inside the outer housing to the space outside the housing. Leakage can be suppressed. As a result, it is possible to more reliably prevent the vaporized electrolytic solution from leaking out of the outer housing.
  • the inert gas supply means supplies gas containing nitrogen as the inert gas, it is advantageous in terms of cost. Incidentally, even in the configuration in which nitrogen is supplied into the main housing, by controlling the oxygen concentration in the main housing within an appropriate range, the nitrogen concentration in the main housing can be sufficiently lowered, and eventually nitrogen and Reaction of lithium can be suppressed.
  • the inner housing has an explosion-proof housing with an internal space separated from the inside of the main housing, The oxygen concentration in the explosion-proof housing is made lower than the oxygen concentration in the main housing, and the pressure inside the explosion-proof housing can be made positive with respect to the inside of the main housing.
  • Doping system according to measure 1.
  • non-explosion-proof devices comprising electric circuits provided with electric contacts
  • electromagnetic valve manifolds for driving valves flow control means to be described later
  • amplifiers of various sensors IOs of various switches, etc.
  • Means 3 oxygen concentration measuring means for measuring the oxygen concentration in the main housing; oxygen concentration control means for controlling the oxygen supply means and the inert gas supply means based on the oxygen concentration measured by the oxygen concentration measurement means, and for adjusting the oxygen concentration in the main housing.
  • the doping system according to means 1 or 2, wherein
  • the oxygen concentration control means can automatically and accurately maintain the oxygen concentration in the main housing within an appropriate range. As a result, ignition of the vaporized electrolytic solution can be more reliably prevented, and the reaction of the inert gas (nitrogen gas) and lithium can be more reliably suppressed.
  • Means 4. an internal/external communicating portion that communicates the inside of the main housing and the inside of the outer housing; a flow rate adjusting means provided in the internal/external communication portion and capable of adjusting a flow rate of gas flowing from inside the main housing to inside the outer housing; pressure measuring means for measuring the pressure in the main housing; and pressure control means capable of adjusting the pressure in the main housing with respect to the inside of the outer housing by controlling the flow rate adjusting means based on the pressure measured by the pressure measuring means. 4.
  • the doping system according to any one of 3.
  • the pressure control means can automatically make the inside of the main housing positive with respect to the inside of the outer housing. As a result, the inflow of gas such as oxygen from the outer housing into the main housing can be more reliably suppressed.
  • Means 5 The doping system according to any one of means 1 to 4, further comprising exhaust means for exhausting the gas inside the outer housing to the outside.
  • the dope device has a cleaning tank containing a combustible cleaning liquid
  • the conveying means is configured to convey the dope electrode obtained through the dope tank along a route passing through the cleaning tank, 6.
  • the doping system according to any one of means 1 to 5, wherein the main housing is configured to accommodate the cleaning tank therein.
  • the dope electrode can be cleaned using the cleaning liquid contained in the cleaning tank. As a result, the quality of the doped electrode can be improved.
  • the cleaning liquid is flammable, it is necessary to prevent the vaporized cleaning liquid from catching fire. Therefore, like the vaporized electrolyte, it is possible to more reliably prevent the vaporized cleaning liquid from leaking out of the outer housing.
  • the doping device has a pre-wet tank positioned upstream of the dope tank along the transport path of the electrode precursor by the transport means and containing an electrolytic solution containing at least a flammable solvent.
  • the conveying means is configured to convey the electrode precursor along a route passing through the pre-wet tank, 7.
  • the doping system according to any one of means 1 to 6, wherein the main housing is configured to accommodate the pre-wet bath inside.
  • the electrode precursor before doping can be wetted using the electrolytic solution contained in the pre-wetting tank. This makes it possible to more effectively dope the electrode precursor with lithium.
  • the main housing accommodates the pre-wet tank inside, even if the electrolyte in the pre-wet tank evaporates, the vaporized electrolyte will not leak from the outer housing to the space outside the housing. can be prevented more reliably.
  • FIG. 3 is a schematic plan view of an electrode precursor;
  • FIG. 2 is a schematic cross-sectional view taken along line JJ of FIG. 1;
  • It is a cross-sectional schematic diagram of a dope electrode.
  • 1 is a schematic perspective view of a doping system;
  • FIG. 5 is a schematic cross-sectional view taken along line KK of FIG. 4 for showing a schematic configuration of a doping device and the like;
  • 1 is a block diagram showing the configuration of a gas control system;
  • FIG. It is an expansion schematic diagram, such as a dope tank.
  • FIG. 5 is a schematic cross-sectional view along line LL in FIG. 4 for showing a schematic configuration of an inner housing and the like;
  • FIG. 10 is a schematic cross-sectional view showing the state of the valve associated with execution of manufacturing-adaptive control;
  • FIG. 10 is a schematic cross-sectional view showing the state of the valve when adjusting the oxygen concentration in the unloading-side original fabric chamber in supply-related control.
  • FIG. 10 is a schematic cross-sectional view showing the state of the valve when the oxygen concentration in the unloading-side original fabric chamber reaches an appropriate value in supply-related control;
  • FIG. 10 is a schematic cross-sectional view showing the state of the valve when adjusting the oxygen concentration in the take-up side original fabric chamber in the control corresponding to removal.
  • FIG. 10 is a schematic cross-sectional view showing the state of the valve associated with execution of manufacturing-adaptive control
  • FIG. 10 is a schematic cross-sectional view showing the state of the valve when adjusting the oxygen concentration in the unloading-side original fabric chamber in supply-related control.
  • FIG. 10 is a schematic cross-sectional view showing the state of the valve when adjusting the oxygen
  • FIG. 10 is a schematic cross-sectional view showing the state of the valve when the oxygen concentration in the take-up-side original fabric chamber reaches an appropriate value in the removal-response control; It is a flow chart of a supply correspondence process. It is a flow chart of a removal correspondence process.
  • Electrode precursor 100 As shown in FIG. 1, the electrode precursor 100 is strip-shaped. As shown in FIG. 2, the electrode precursor 100 includes a strip-shaped current collector 101 and active material layers 102 formed on the front and back surfaces of the current collector 101 .
  • the current collector 101 is made of, for example, metal foil made of a predetermined metal (eg, copper, nickel, stainless steel, etc.).
  • a conductive layer having a carbon material as a main component formed on the surface of the metal foil may be used.
  • the active material layer 102 contains an active material that can be applied to a battery or capacitor that utilizes insertion/extraction of lithium ions, and contains a negative electrode active material in this embodiment.
  • the negative electrode active material include graphite, graphitizable carbon, non-graphitizable carbon, and a carbon material obtained by coating graphite particles with a carbide such as a resin.
  • the negative electrode active material may consist of a single substance, or may consist of a mixture of a plurality of substances.
  • the active material layer 102 can be formed, for example, by applying a slurry containing a negative electrode active material and a binder on the current collector 101 and then drying the slurry.
  • binders include rubber binders such as styrene-butadiene rubber (SBR) and acrylonitrile-butadiene rubber (NBR).
  • the slurry may contain components other than the active material and the binder (for example, carbon black, graphite, a conductive material, a thickener, etc.).
  • the doped electrode 110 is formed by doping (plating) the electrode precursor 100 with lithium, and includes a lithium film 103, for example, as shown in FIG.
  • the doped electrode 110 is used as a negative electrode in a lithium ion battery or lithium ion capacitor.
  • the reason why the doped electrode 110 for such use is previously doped with lithium is as follows.
  • a wound or laminated positive electrode, a negative electrode and a separator are housed in a predetermined case, an electrolytic solution is housed in the case, and then initial charging and discharging are performed.
  • the positive electrode for example, a substrate made of aluminum or the like and coated with a positive electrode active material (for example, lithium manganate particles or the like) is used.
  • a lithium film containing lithium is formed on the surface of the negative electrode during the initial charge and discharge.
  • This lithium membrane is an irreversible membrane that cannot be decomposed. Therefore, as the lithium film is formed, the amount of lithium ions that can move between the two electrodes decreases, resulting in a decrease in battery capacity.
  • the doping system 1 is installed on a floor 202 in a predetermined dry room 201. As shown in FIG. The doping system 1 has a doping device 2, an inner housing 3, an outer housing 4 and a gas control system 5, as shown in FIGS.
  • the doping device 2 has a function of doping the electrode precursor 100 with lithium and is mainly responsible for manufacturing the doped electrode 110 .
  • the inner housing 3 and the outer housing 4 cover the doping device 2 and prevent the dry room 201 (more precisely, the space located outside the outer housing 4 in the dry room 201) from being affected by the operation of the doping device 2. By doing so, the atmosphere in the dry room 201 is maintained in an appropriate environment for workers and the like.
  • the gas control system 5 is for controlling gas conditions such as oxygen concentration and atmospheric pressure in the inner housing 3 and the outer housing 4 .
  • the doping device 2 includes a plurality of transport rolls 21 for transporting the electrode precursor 100 and the dope electrode 110 along a predetermined path.
  • the doping device 2 includes a supporting device 22, a terminal detection sensor 23, a prewetting tank 24, a doping tank 25, a cleaning tank 26, a drying A device 27 , a start end detection sensor 28 and a winding device 29 are provided.
  • the transport roll 21, the support device 22, and the winding device 29 constitute "transport means”.
  • the support device 22 constitutes "support means” and the winding device 29 constitutes "winding means”.
  • the transport roll 21 is freely rotatable and has the electrode precursor 100 or the doped electrode 110 hung thereon. Some of the plurality of transport rolls 21 can be arranged inside the pre-wetting tank 24 , the dope tank 25 or the cleaning tank 26 . It can be folded within ⁇ 26. Therefore, the electrode precursor 100 and the doped electrode 110 are conveyed after entering each of the tanks 24 to 26, via the conveying rolls 21 positioned in each of the tanks 24 to 26, and on the route exiting each of the tanks 24 to 26. can be done.
  • the plurality of transport rolls 21 arranged vertically above the dope tank 25 constitute power supply rolls 21a.
  • An electrode precursor 100 or a dope electrode 110 immediately before entering the dope tank 25 or immediately after exiting the dope tank 25 is hung on the feed roll 21a.
  • At least the portion of the power supply roll 21a on which the electrode precursor 100 or the doped electrode 110 is hung is made of a conductive material and is connected to the negative pole of a predetermined DC power source (not shown).
  • the transport path of the electrode precursor 100 corresponding to the dope tank 25 is made to be a multiple-fold path by the feeding roll 21 a and the transport roll 21 arranged in the dope tank 25 . Therefore, the electrode precursor 100 can be repeatedly moved in and out of the dope tank 25 .
  • a freely rotatable pressing roll 21b is provided at a position that sandwiches the electrode precursor 100 or the dope electrode 110 with the power supply roll 21a.
  • the pressing roll 21b presses the electrode precursor 100 or the doped electrode 110 toward the power feeding roll 21a. Thereby, it is possible to electrically connect the power supply roll 21a and the electrode precursor 100 or the dope electrode 110 in a more stable state.
  • the conveying roll 21 other than the power feeding roll 21a and the pressing roll 21b are made of a predetermined insulating material (for example, an insulating elastomer) except for the bearing portions.
  • the support device 22 supports a raw material 105 formed by winding the electrode precursor 100 into a roll, and the electrode precursor 100 unwound from this is transported through the path.
  • the support device 22 includes a support shaft 22a that supports the original fabric 105, and a delivery motor (not shown) for rotating the support shaft 22a.
  • the electrode precursor 100 is fed out from the raw roll 105 by driving the feeding motor.
  • the feed motor is housed in a predetermined case (not shown), and an inert gas supply device 58, which will be described later, of the gas control system 5 supplies gas, mainly nitrogen, to the inside of the case.
  • An inert gas is supplied.
  • the inside of the case can be made to have a positive pressure with respect to the outside of the case, so that the inflow of oxygen, vaporized electrolytic solution, etc. into the case can be prevented.
  • the end detection sensor 23 is for detecting the end of the electrode precursor 100 fed out from the original fabric 105 .
  • This terminal end serves as a target for connecting the starting end of the electrode precursor 100 in the new raw material 105 when the new raw material 105 is supplied to the supporting device 22 .
  • the end detection sensor 23 is configured by a sensor capable of grasping the winding diameter (outer diameter) of the raw fabric 105 supported by the support device 22 . When the winding diameter becomes equal to or less than a preset value, the end detection sensor 23 sends a signal indicating that the end has been detected to the controller 59, which will be described later.
  • the pre-wet tank 24 is a tank with an open top and contains an electrolytic solution inside.
  • the electrolytic solution will be described later.
  • the pre-wet tank 24 can be vertically moved by a predetermined lifting device 24a.
  • the transport path of the electrode precursor 100 is positioned in the electrolytic solution contained in the pre-wetting tank 24, and the electrode precursor 100 is transported.
  • the electrode precursor 100 is passed through the electrolyte.
  • the electrode precursor 100 is wetted with the electrolyte by passing the electrode precursor 100 through the electrolyte.
  • the transport path of the electrode precursor 100 is positioned outside the electrolyte contained in the pre-wet tank 24. .
  • the electrolyte contains lithium ions and a flammable solvent (solvent).
  • Lithium ions are the ions that make up lithium salts.
  • the anion part constituting the lithium salt include phosphorus anions having a fluoro group such as hexafluorophosphate anion (PF6-), PF3(C2F5)3-, and PF3(CF3)3-.
  • PF6- and the like indicate chemical formulas.
  • numbers are strictly subscript numbers, and "-" is actually a superscript symbol, but for the sake of convenience, they are shown without subscript numbers and superscript symbols.
  • the concentration of the lithium salt in the electrolytic solution is preferably 0.1 mol/L or more.
  • the concentration of the lithium salt in the electrolytic solution is set to 0.8 to 1.5 mol/L in order to efficiently dope lithium.
  • an organic solvent can be mentioned, and as the organic solvent, an aprotic organic solvent can be mentioned.
  • Aprotic organic solvents include, for example, dimethyl carbonate (DMC), ethylmethyl carbonate (EMC), ethylene carbonate (EC), propylene carbonate, butylene carbonate, diethyl carbonate, 1-fluoroethylene carbonate, ⁇ -butyrolactane and the like.
  • the organic solvent may consist of a single component, or may consist of a mixture of a plurality of components.
  • the solvent (solvent) of the electrolytic solution is a mixture of equal amounts of DMC, EMC and EC.
  • the electrolytic solution may contain additives such as vinylene carbonate, vinylethylene carbonate, 1-(trifluoromethyl)ethylene carbonate, succinic anhydride, maleic anhydride, propanesultone, and diethylsulfone.
  • the electrolytic solution may contain a flame retardant such as a phosphazene compound.
  • the dope tank 25 is a tank whose top is open and contains an electrolytic solution.
  • the electrolyte contained in the dope tank 25 is the same as the electrolyte contained in the pre-wet tank 24 .
  • the dope tank 25 can be vertically moved by a predetermined elevating device 25a.
  • the transport path of the electrode precursor 100 is positioned in the electrolytic solution contained in the dope tank 25, and the electrode precursor is transported. Body 100 passes through the electrolyte.
  • the dope tank 25 is placed at a predetermined lower position by the elevating device 25a, the conveying path of the electrode precursor 100 and the dope electrode 110 is positioned outside the electrolyte contained in the dope tank 25. becomes.
  • the dope tank 25 is provided with a filtration circulation device (not shown).
  • the filter circulation device is provided with a circuit having a pump and a filter.
  • the electrolytic solution in the dope tank 25 is pumped by the pump, circulated through the filter, and finally returned to the dope tank 25 .
  • impurities contained in the electrolytic solution are removed.
  • the filter can be made of resin such as polypropylene or polytetrafluoroethylene.
  • the filtration circulation device may be provided in the pre-wet tank 24 or the cleaning tank 26 .
  • the counter electrode unit 251 includes a conductive substrate 251a and a counter electrode member 251b (see FIG. 7).
  • the conductive base material 251a is a plate-shaped member made of a conductive metal such as copper, stainless steel, or nickel.
  • the conductive base material 251a is supported by a support rod (not shown) that penetrates the upper end of the conductive base material 251a in the direction perpendicular to the plane of FIG. It is arranged at a fixed height position.
  • the counter electrode member 251b is a plate-shaped member having a predetermined thickness (for example, about 0.03 to 3 mm), and is made of a metal containing lithium (for example, an alloy mainly containing lithium).
  • the counter electrode member 251b is fixed to the side surface of the conductive substrate 251a.
  • the counter electrode members 251b face each other with a predetermined gap therebetween, and the electrode precursor 100 is conveyed through this gap. ing.
  • the distance between the counter electrode member 251b and (the transport path of) the electrode precursor 100 is set to a size that can prevent the contact of the electrode precursor 100 with the counter electrode member 251b.
  • each counter electrode unit 251 (for example, the upper end of the conductive substrate 251a) is connected to the positive electrode of the DC power supply. Therefore, it is possible to generate a potential difference between the electrode precursor 100 and the counter electrode member 251b in contact with the power supply roll 21a. Using this potential difference, the electrode precursor 100 is doped with lithium by causing a current to flow between the electrode precursor 100 and the counter electrode member 251b in the electrolytic solution in the doping tank 25 . A doped electrode 110 is obtained by doping the electrode precursor 100 with lithium.
  • the doping of lithium may be a mode in which lithium is intercalated in the active material in the form of ions, a mode in which a lithium alloy is formed, or a mode in which lithium ions are added to the SEI. It may be consumed as a film.
  • the cleaning tank 26 is a tank with an open top, and contains a combustible solvent (solvent) inside.
  • solvent contained in the cleaning tank 26 include the solvent constituting the electrolytic solution described above.
  • the washing tank 26 can be vertically moved by a predetermined lifting device 26a.
  • the transport path of the dope electrode 110 is positioned in the solvent contained in the cleaning tank 26, and the dope electrode 110 being transported is positioned in the solvent. Pass through the solvent. By passing the dope electrode 110 through the solvent, impurities adhering to the surface of the dope electrode 110 are removed, and the dope electrode 110 is cleaned.
  • the washing tank 26 is placed at a predetermined lower position by the elevating device 26a, the conveying path of the dope electrode 110 is positioned outside the solvent contained in the washing tank 26.
  • the drying device 27 evaporates the solvent adhering to the dope electrode 110 and dries the dope electrode 110 .
  • the drying device 27 has a plurality of outlets provided along the conveying path of the doped electrode 110. By blowing an inert gas mainly composed of nitrogen from these outlets toward the doped electrode 110, The doped electrode 110 is dried.
  • the inert gas for drying the dope electrode 110 is supplied from an inert gas supply device 58, which will be described later.
  • the starting end detection sensor 28 is for detecting the starting end of the electrode precursor 100 (doped electrode 110) related to the new raw material 105 to be wound next by the winding device 29. This starting end is fixed with respect to the winding device 29 .
  • the leading end detection sensor 28 is configured by a sensor capable of grasping the winding diameter (outer diameter) of the dope electrode 110 wound by the winding device 29 . When the winding diameter becomes equal to or greater than a predetermined value, the start edge detection sensor 28 sends a signal indicating that the start edge has been detected to the controller 59, which will be described later.
  • the winding device 29 is a device for winding the dope electrode 110 obtained through the dope tank 25, and includes a winding shaft 29a and a winding motor (not shown) for rotating the winding shaft 29a. I have.
  • the take-up shaft 29a is provided with means, for example a chuck, for fixing the beginning of the electrode precursor 100 (the doped electrode 110) on the new stock 105 to itself.
  • the dope electrode 110 is wound by driving the winding motor to rotate the winding shaft 29a with the start end fixed to the winding shaft 29a.
  • the winding motor like the unwinding motor, is housed in a predetermined case (not shown).
  • an inert gas is supplied from an inert gas supply device 58, which will be described later.
  • a separate device for supplying inert gas to each case housing the unwinding motor or the winding motor may be provided.
  • the inner housing 3 is a housing that covers the doping device 2 inside the outer housing 4 and accommodates the doping device 2 inside. That is, the inner chamber 3 s, which is the space inside the inner housing 3 , functions as a space for arranging the doping device 2 .
  • the inner housing 3 includes a main housing 31 and an explosion-proof housing 32 (see FIGS. 8 and 9). Note that FIG. 9 shows the doping apparatus 2 in a simplified manner.
  • the main housing 31 accommodates the main devices in the doping device 2 and the electrode precursor 100 and the doping electrode 110 to be processed by the device. That is, the main housing 31 includes at least the support device 22, the pre-wetting tank 24, the dope tank 25, the cleaning tank 26, the drying device 27, the winding device 29, and the electrode precursor positioned from the supporting device 22 to the winding device 29. 100 and doped electrode 110 are housed inside.
  • the main housing 31 includes, in order from the upstream side along the conveying path of the electrode precursor 100 and the doping electrode 110, an unloading side housing 311, a first intermediate housing 312, a doping processing housing 313, a second intermediate housing 314, and a winding side.
  • a housing 315 is provided.
  • the unloading-side housing 311 is a housing provided corresponding to the position where the electrode precursor 100 is unloaded.
  • the unloading-side housing 311 accommodates therein at least the supporting device 22 and the original fabric 105 supported by the supporting device 22 .
  • a delivery side inside/outside communication portion 311a is formed at a predetermined portion (for example, a ceiling portion) of the delivery side housing 311 .
  • the unloading-side inside/outside communicating portion 311a is an opening ( space).
  • a predetermined portion (for example, a wall portion located on the side opposite to the dope processing housing 313) of the withdrawal side housing 311 is provided with an entrance and a door (not shown) capable of sealing the entrance.
  • This doorway communicates between the unloading-side material fabric chamber 311s and the inside of a first component 41, which will be described later, and is used for workers to enter and exit the unloading-side material fabric chamber 311s and to carry in the material fabric 105. be.
  • the first intermediate housing 312 is a housing provided between the withdrawal side housing 311 and the doping housing 313 .
  • the electrode precursor 100 drawn out from the support device 22 is conveyed to the dope tank 25 side through the first intermediate communication chamber 312 s, which is the internal space of the first intermediate housing 312 .
  • a first internal/external communication portion 312a is formed at a predetermined portion (for example, a ceiling portion) of the first intermediate housing 312 .
  • the first inside/outside communicating portion 312a is an opening (space) that communicates between the inside of the first intermediate housing 312 (first intermediate communicating chamber 312s) and the inside of the third component 43 (third intermediate chamber 43s) described later.
  • the doping processing housing 313 is a housing provided corresponding to the position where the doping processing is performed.
  • the doping housing 313 in this embodiment houses at least the pre-wet bath 24 , the doping bath 25 , the cleaning bath 26 and the drying device 27 inside.
  • the doping chamber 313s, which is the inner space of the doping housing 313, is different from the inside of the unloading side housing 311 (unloading side web chamber 311s) and the winding side housing 315 (winding side web chamber 315s described below). partitioned separately.
  • a central inside/outside communicating portion 313a is formed at a predetermined portion (for example, a ceiling portion) of the doping processing housing 313 .
  • the central inside/outside communicating portion 313a is an opening (space) that communicates between the doping processing chamber 313s and the inside of the third component 43 (third intermediate chamber 43s) described later.
  • a plurality (for example, three or more) of the central inside/outside communicating portions 313a are provided.
  • the central inside/outside communicating portion 313a corresponds to the "inside/outside communicating portion".
  • the second intermediate housing 314 is a housing provided between the doping housing 313 and the take-up housing 315 .
  • the dope electrode 110 obtained through the dope tank 25 is transported to the winding device 29 side through the second intermediate communication chamber 314 s, which is the internal space of the second intermediate housing 314 .
  • a second inside/outside communication portion 314a is formed at a predetermined portion (for example, a ceiling portion) of the second intermediate housing 314. As shown in FIG.
  • the second internal/external communication portion 314a is an opening (space) that communicates between the inside of the second intermediate housing 314 (second intermediate communication chamber 314s) and the inside of the third component 43 (third intermediate chamber 43s), which will be described later.
  • the winding-side housing 315 is a housing provided corresponding to a portion where the dope electrode 110 is wound.
  • the winding-side housing 315 accommodates therein at least the winding device 29 and the dope electrode 110 wound by the winding device 29 .
  • a winding-side inside/outside communication portion 315a is formed at a predetermined portion (for example, a ceiling portion) of the winding-side housing 315. As shown in FIG.
  • the winding-side inside/outside communication portion 315a is an opening (space ).
  • a predetermined wall portion (for example, a wall portion located on the opposite side of the doping housing 313) of the take-up side housing 315 has an entrance and a door ( (not shown) are provided.
  • This entrance/exit communicates between the take-up side fabric chamber 315s and the inside of the second component 42 (second intervening chamber 42s) described later, and allows a worker to enter/exit the take-up side fabric chamber 315s and perform the winding operation. It is used for carrying out the doped electrode 110 that has been removed.
  • the inner space of the main housing 31 is formed by the unloading-side web chamber 311s, the first intermediate communication chamber 312s, the doping processing chamber 313s, the second intermediate communication chamber 314s, and the winding-side web chamber 315s.
  • a certain main room 31s is configured.
  • the inner chamber 3s is composed of the main chamber 31s and the inner space of the explosion-proof housing 32 (explosion-proof chamber 32s, which will be described later).
  • the explosion-proof housing 32 is a housing for housing "a non-explosion-proof device having an electric circuit provided with an electric contact" and various wirings in the doping device 2 in the inner housing 3 .
  • An explosion-proof chamber 32s (see FIGS. 8 and 9), which is an internal space of the explosion-proof housing 32, contains, for example, an electromagnetic valve manifold for driving various valves constituting valve groups 51 to 53 to be described later, and an oxygen concentration measuring sensor to be described later. Devices such as amplifiers for each sensor constituting the group 55 and the pressure measurement sensor group 56 and IO for various switches are arranged. These devices are non-explosion-proof devices, as described above, in order to reduce cost and size. It should be noted that, in FIG. 9, the illustration of devices and the like arranged in the explosion-proof room 32s is omitted.
  • wiring related to valves, sensors, etc. is reduced in the explosion-proof room 32s.
  • the wiring is processed in the explosion-proof room 32s so that the number of wires going out from the explosion-proof room 32s is less than the number of wires entering the explosion-proof room 32s from the main room 31s.
  • the explosion-proof housing 32 is provided from the lateral position of the unloading side housing 311 to the lateral position of the winding side housing 315 (see FIG. 8).
  • the explosion-proof room 32s is provided with a space adjacent to the unloading side material chamber 311s, a space adjacent to the doping chamber 313s, and a space adjacent to the winding side material chamber 315s through the walls, respectively. These spaces are continuous. Therefore, it is necessary to simplify the structure related to introduction of wiring from the unloading-side material fabric chamber 311s, the doping chamber 313s, and the winding-side material fabric chamber 315s to the explosion-proof room 32s, and to improve the convenience related to wiring saving. is possible.
  • an explosion-proof side inside/outside communicating portion 32a is formed at a predetermined portion (for example, a ceiling portion) of the explosion-proof housing 32 (see FIG. 9).
  • the explosion-proof side inside/outside communication portion 32a is an opening (space) that communicates between the inside of the explosion-proof housing 32 (explosion-proof room 32s) and the inside of the first component 41 (first intervening room 41s) described later.
  • the inside of the explosion-proof housing 32 is configured to be in a state of being spatially separated from the inside of the main housing 31 .
  • the inside of the explosion-proof housing 32 is completely spatially separated from the inside of the main housing 31 due to the influence of the holes for passing the wires, which are provided in the walls common to both housings 31 and 32 . It doesn't mean that That is, a state is created in which a slight movement of gas can occur between the inside of the main housing 31 and the inside of the explosion-proof housing 32 .
  • the outer housing 4 is a housing that covers the inner housing 3 and accommodates the inner housing 3 therein.
  • the outer room 4 s which is the space inside the outer housing 4 , has a role of spatially isolating the inner room 3 s (internal space of the inner housing 3 ) and the dry room 201 .
  • the outer housing 4 comprises a first component 41 , a second component and a third component 43 .
  • the first component 41 covers the withdrawal side housing 311 and accommodates the withdrawal side housing 311 inside.
  • the first intervening chamber 41s which is the internal space of the first component 41, and the unloading-side fabric chamber 311s (internal space of the unloading-side housing 311) are spatially separated except for the unloading-side inside/outside communication portion 311a. state.
  • the second component 42 covers the winding-side housing 315 and accommodates the winding-side housing 315 inside.
  • the second intermediate chamber 42s which is the internal space of the second component 42, and the winding-side material fabric chamber 315s (internal space of the winding-side housing 315) are spatially separated except for the winding-side inside/outside communication portion 315a. state.
  • the third component 43 is located between the first component 41 and the second component 42.
  • the third component 43 covers the doping housing 313 and contains the doping housing 313 therein.
  • a third intervening chamber 43s which is an internal space of the third component 43, is partitioned separately from the first intervening chamber 41s and the second intervening chamber 42s. Also, the third intermediate chamber 43s and the doping processing chamber 313s (internal space of the doping processing housing 313) are in a state of being spatially separated except for the central inside/outside communicating portion 313a.
  • the intervening chambers 41 s, 42 s, 43 s more precisely, refer to spaces located outside the inner housing 3 among the internal spaces of the components 41 , 42 , 43 .
  • the outer room 4s is composed of a first intervening room 41s, a second intervening room 42s and a third intervening room 43. As shown in FIG.
  • the outer housing 4 includes a first outer chamber partition wall portion 44 between the inside of the first component 41 (first intervening chamber 41s) and the inside of the third component 43 (third intervening chamber 43s).
  • a first outer chamber communicating portion 44a is formed at a predetermined portion of the first outer chamber partition wall portion 44 (for example, a portion positioned between the ceiling portions of both housings 3 and 4).
  • the first outer chamber communicating portion 44a is an opening (space) that communicates between the inside of the first component 41 (the first intervening chamber 41s) and the inside of the third component 43 (the third intervening chamber 43s). Note that both intervening chambers 41s and 43s are in a state of being spatially separated except for the first outer chamber communicating portion 44a.
  • the outer housing 4 has a second outer chamber partition wall portion 45 between the inside of the second component 42 (the second intervening chamber 42s) and the inside of the third component 43 (the third intervening chamber 43s).
  • a second outer room communicating portion 45a is formed at a predetermined portion of the second outer chamber partition wall portion 45 (for example, a portion positioned between the ceiling portions of both housings 3 and 4).
  • the second outer chamber communicating portion 45a is an opening (space) that communicates between the inside of the second component 42 (second intervening chamber 42s) and the third component 43 (third intervening chamber 43s). Both intervening chambers 42s and 43s are in a state of being spatially separated except for the second outer chamber communicating portion 45a.
  • an exhaust opening 43a is formed in a predetermined portion (for example, a ceiling portion) of the outer housing 4 (third component 43).
  • the exhaust opening 43 a communicates with the outside (inside the inner housing 3 , the inside of the outer housing 4 , and a space different from the dry room 201 , such as the outdoors, for example) through the internal space of a predetermined duct 46 . Thereby, the gas in the third intermediate chamber 43s can be discharged to the outside.
  • the gas control system 5 includes an inner room valve group 51, an inside/outside valve group 52, an outer room valve group 53, an exhaust device 54, an oxygen concentration measurement sensor group 55, a pressure measurement sensor group 56, An oxygen supply device 57 , an inert gas supply device 58 and a control device 59 are provided.
  • the exhaust device 54 constitutes the “exhaust means”
  • the oxygen concentration measurement sensor group 55 constitutes the "oxygen concentration measurement means”
  • the pressure measurement sensor group 56 constitutes the "pressure measurement means”
  • oxygen supply constitutes the "oxygen supply means”
  • the inert gas supply device 58 constitutes the "inert gas supply means”.
  • the inner room corresponding valve group 51 is for controlling the inflow and outflow of gas between the respective chambers 311s, 312s, 313s, 314s, and 315s that constitute the main chamber 31s.
  • the inner chamber corresponding valve group 51 is provided along the transport path of the electrode precursor 100 and the doped electrode 110, and as shown in FIG. 513 and a second downstream valve 514 .
  • the first upstream valve 511 is provided in the opening of the first intermediate communication chamber 312s on the side of the unloading side housing 311, and is connected to the inside of the unloading side housing 311 (unloading side fabric chamber 311s) and the first intermediate housing 312. It has a function of switching between communication and non-communication with (first intermediate communication chamber 312s).
  • the second upstream valve 512 is provided at the opening of the first intermediate communication chamber 312s on the side of the doping processing housing 313, and connects the inside of the doping processing housing 313 (doping processing chamber 313s) and the first intermediate housing 312 (first intermediate communication It has a function of switching between communication and non-communication with the chamber 312s).
  • these upstream valves 511 and 512 enable switching between communication and non-communication between the inside of the withdrawal side housing 311 and the inside of the doping processing housing 313 in the first intermediate communication chamber 312s.
  • the first downstream valve 513 is provided in the opening of the second intermediate communication chamber 314 s on the side of the winding-side housing 315 , and the inside of the winding-side housing 315 (winding-side material fabric chamber 315 s) and the inside of the second intermediate housing 314 are connected. It has a function of switching between communication and non-communication with (second intermediate communication chamber 314s).
  • the second downstream valve 514 is provided in the opening of the second intermediate communication chamber 314s on the side of the doping processing housing 313, and connects the inside of the doping processing housing 313 (doping processing chamber 313s) and the inside of the second intermediate housing 314 (second intermediate communication 314s) is switched between communication and non-communication.
  • these downstream valves 513 and 514 are capable of switching between communication and non-communication between the inside of the dope processing housing 313 and the inside of the take-up housing 315 .
  • valves 511 to 514 sandwich the electrode precursor 100 or the doped electrode 110 from above and below along the thickness direction, thereby making it possible to disconnect the spaces.
  • the inside/outside corresponding valve group 52 controls the entry and exit of gas between the inner room 3s and the outer room 4s.
  • the internal/external corresponding valve group 52 includes an unloading side internal/external valve 521, a first intermediate internal/external valve 522, a central internal/external valve 523, a second intermediate internal/external valve 524, a winding-side internal/external valve 525, and an explosion-proof side internal/external valve 526 (see FIG. 9). ).
  • the unloading side inside/outside valve 521 is provided in the unloading side inside/outside communicating portion 311a, and is located inside the unloading side housing 311 (unloading side fabric chamber 311s) and in the first component 41 in the unloading side inside/outside communicating portion 311a. It is possible to switch between communication and non-communication with (the first intervention chamber 41s).
  • the draw-out side inside/outside valve 521 is configured so that the degree of opening can be adjusted, and the gas flow (flow rate, etc.) from inside the draw-out side housing 311 into the first component 41 in the draw-out side inside/outside communication portion 311a. It has the ability to adjust the
  • the first intermediate inside/outside valve 522 is provided in the first inside/outside communication portion 312a, and is provided in the first inside/outside communication portion 312a inside the first intermediate housing 312 (first intermediate communication chamber 312s) and inside the third component 43 (third It has a function of switching between communication and non-communication with the intervention chamber 43s).
  • a plurality of center-side inside/outside valves 523 are provided, and each is installed in the center-side inside/outside communicating portion 313a. These center-side inside/outside valves 523 can switch between communication and non-communication between the doping chamber 313s and the third intervening chamber 43s in the center-side inside/outside communicating portion 313a.
  • the center side inside/outside valve 523 is configured to be able to adjust the degree of opening, so that the gas flow (flow rate, etc.) from the dope processing chamber 313s to the third intervention chamber 43s can be adjusted.
  • the central inside/outside valve 523 constitutes a “flow rate adjusting means” capable of adjusting the flow rate of the gas flowing from inside the main housing 31 (main chamber 31s) to inside the outer housing 4 (outside chamber 4s).
  • the second intermediate inside/outside valve 524 is provided in the second inside/outside communication portion 314a, and is provided in the second inside/outside communication portion 314a inside the second intermediate housing 314 (second intermediate communication chamber 314s) and inside the third component 43 (third Communication and non-communication with the intervention chamber 43s) can be switched.
  • the winding-side inside/outside valve 525 is provided in the winding-side inside/outside communicating portion 315a, and is provided in the winding-side inside/outside communicating portion 315a inside the winding-side housing 315 (winding-side raw fabric chamber 315s) and inside the second component 42. (Second intervention chamber 42s) can be switched between communication and non-communication.
  • the winding-side inside/outside valve 525 is configured to be able to adjust the degree of opening, and the gas flow (flow rate, etc.) from the inside of the winding-side housing 315 to the inside of the second component 42 in the winding-side inside/outside communication portion 315a. It has the ability to adjust the
  • the explosion-proof side inside/outside valve 526 is provided in the explosion-proof side inside/outside communication portion 32a, and communicates the inside of the explosion-proof housing 32 (explosion-proof room 32s) and the inside of the first component 41 (first intermediate chamber 41s) in the explosion-proof side inside/outside communication portion 32a. , has the function of switching non-communication.
  • the outer room corresponding valve group 53 controls the inflow and outflow of gas between the intervening chambers 41s to 43s that constitute the outer room 4s.
  • the outer room corresponding valve group 53 includes a first outer room valve 531 and a second outer room valve 532 .
  • the first outer chamber valve 531 is provided in the first outer chamber communication portion 44a, and is connected to the inside of the first component 41 (first intervening chamber 41s) and the third component 43 (third chamber 41s) in the first outer chamber communication portion 44a. It switches between communication and non-communication with the intervention chamber 43s).
  • the second outer chamber valve 532 is provided in the second outer chamber communication portion 45a, and is connected inside the second component 42 (second intervening chamber 42s) and in the third component 43 (third chamber 42s) in the second outer chamber communication portion 45a. Communication and non-communication with the intervention chamber 43s) can be switched.
  • valves that make up the valve groups 51 to 53 described above are air operated valves that operate using air as a drive source.
  • the exhaust device 54 includes a predetermined fan and the like, and is provided in the exhaust opening 43a. By driving the exhaust device 54, it is possible to exhaust the gas inside the outer housing 4 (inside the third component 43) to the outside (for example, outside the building where the doping system 1 is installed).
  • the oxygen concentration measuring sensor group 55 is for measuring the oxygen concentration at various locations inside the main housing 31 .
  • the oxygen concentration measuring sensor group 55 includes a feed-side concentration measuring sensor 551, a processing-side concentration measuring sensor 552, a winding-side concentration measuring sensor 553, and an explosion-proof side concentration measuring sensor 554 (see FIG. 9).
  • the delivery-side concentration measurement sensor 551 is provided inside the delivery-side housing 311 (delivery-side fabric chamber 311s) and measures the oxygen concentration in the delivery-side fabric chamber 311s.
  • the processing-side concentration measurement sensor 552 is provided inside the doping processing housing 313 (doping processing chamber 313s) and measures the oxygen concentration in the doping processing chamber 313s.
  • the winding-side concentration measuring sensor 553 is provided inside the winding-side housing 315 (winding-side material chamber 315s) and measures the oxygen concentration in the winding-side material chamber 315s.
  • the explosion-proof side concentration measurement sensor 554 is provided inside the explosion-proof housing 32 (explosion-proof room 32s) and measures the oxygen concentration in the explosion-proof room 32s. Information relating to the oxygen concentration measured by each concentration measuring sensor 551 to 554 is sent to the control device 59 .
  • sensors for measuring each oxygen concentration in the first intermediate communication chamber 312s and the second intermediate communication chamber 314s may be provided.
  • the pressure measurement sensor group 56 is for measuring the air pressure at various locations inside the main housing 31 .
  • the pressure measurement sensor group 56 includes a delivery side pressure measurement sensor 561, a processing side pressure measurement sensor 562, a winding side pressure measurement sensor 563, and an explosion-proof side pressure measurement sensor 564 (see FIG. 9).
  • the unloading-side pressure measuring sensor 561 is for measuring the air pressure in the unloading-side housing 311 (unloading-side fabric chamber 311s). It consists of a sensor that measures differential pressure (air pressure difference).
  • the processing-side pressure measurement sensor 562 is for measuring the atmospheric pressure inside the doping processing housing 313 (doping processing chamber 313s), and is configured by a sensor that measures the pressure difference between the atmospheric pressure in the doping processing chamber 313s and the atmospheric pressure, for example. It is
  • the winding-side pressure measuring sensor 563 is for measuring the air pressure inside the winding-side housing 315 (winding-side fabric chamber 315s). It consists of a sensor that measures differential pressure.
  • the explosion-proof side pressure measurement sensor 564 is for measuring the atmospheric pressure inside the explosion-proof housing 32 (explosion-proof room 32s), and is composed of, for example, a sensor that measures the differential pressure between the atmospheric pressure in the explosion-proof room 32s and the atmospheric pressure. . Information relating to the atmospheric pressure measured by each pressure measuring sensor 561 to 564 is sent to the control device 59 .
  • sensors for measuring the pressures of the first intermediate communication chamber 312s and the second intermediate communication chamber 314s may be provided.
  • the oxygen supply device 57 supplies oxygen-containing gas into the inner housing 3 .
  • the oxygen supply device 57 can individually supply oxygen-containing gas to the unloading-side fabric chamber 311s, the doping chamber 313s, the winding-side fabric chamber 315s, and the explosion-proof chamber 32s.
  • clean dry air (CDA) is used as the oxygen-containing gas.
  • a plurality of oxygen supply devices are provided, and each oxygen supply device is configured to individually supply oxygen to the unloading-side fabric chamber 311s, the doping processing chamber 313s, the winding-side fabric chamber 315s, or the explosion-proof chamber 32s. You may
  • the inert gas supply device 58 supplies inert gas containing nitrogen into the inner housing 3 .
  • the inert gas supply device 58 can individually supply inert gas to the unloading side fabric chamber 311s, the doping chamber 313s, the take-up side fabric chamber 315s, and the explosion-proof chamber 32s.
  • nitrogen gas having a nitrogen concentration of approximately 100% is used as the inert gas.
  • a plurality of inert gas supply devices are provided, and each inert gas supply device 58 supplies the inert gas to the unwinding side film chamber 311s, the doping chamber 313s, the winding side film chamber 315s, or the explosion-proof chamber 32s. may be configured to be performed individually.
  • the inert gas is not limited to nitrogen gas, and may be argon gas, for example.
  • control device 59 controls each device in the doping system 1 (eg, the doping device 2, various valves constituting the valve groups 51 to 53, the oxygen supply device 57, the inert gas supply device 58, etc.).
  • the control device 59 includes a CPU as a computing device, a ROM for storing various programs, a RAM for temporarily storing various data such as computation data and input/output data, and a storage medium for long-term storage of data. It is composed of a computer system.
  • the control device 59 switches between transportation and transportation of the electrode precursor 100 and the doped electrode 110, switches between energization and discontinuation of the electrode precursor 100 and the like, and adjusts the oxygen concentration and air pressure in the inner chamber 3s and the outer chamber 4s. It is possible to In this embodiment, the control device 59 constitutes "oxygen concentration control means” and "pressure control means”.
  • the control device 59 can control the operations of various valves, the oxygen supply device 57, and the inert gas supply device 58, which constitute the valve groups 51 to 53, as described above. Regarding these controls, the control device 59 performs control corresponding to the manufacture of the doped electrode 110 (manufacturing control), control corresponding to the supply of the new raw material 105 to the supporting device 22 (supply control), and winding control. It is possible to perform control corresponding to removal of the doped electrode 110 from the winding device 29 (removal control) and control corresponding to the explosion-proof room 32s (explosion-proof control). Next, these controls will be explained.
  • Manufacturing compliant control is executed by inputting commands to the controller 59 via an input device (not shown) such as a keyboard.
  • the input device is installed in a dry room 201 outside the outer housing 4, for example.
  • Manufacturing-ready control is executed as follows.
  • the control device 59 controls the inner room corresponding valve group 51 so that the respective chambers 311s to 315s constituting the main chamber 31s are in communication.
  • the control device 59 controls the valves 511 to 511 so that the openings of the first intermediate communication chamber 312s on the housing 311, 313 side and the openings of the second intermediate communication chamber 314s on the housing 313, 315 side are opened. 514.
  • control device 59 controls the inside/outside corresponding valve group 52 so that the main room 31s and the outside room 4s are separated by air except for the central inside/outside communication part 313a. That is, the control device 59 controls the valves 521, 522, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 525. In this embodiment, the control device 59 controls
  • control device 59 controls the outer chamber corresponding valve group 53 so that the intervening chambers 41s to 43s are in a state of communication. That is, the control device 59 controls the valves 531 and 532 so that the outer chamber communication portions 44a and 45a are opened.
  • the main chamber 31s and the outer chamber 4s are spatially separated except for a part of the central inside/outside communicating portion 313a, while the main chamber 31s are communicated with each other, and the intervening chambers 41s-43s constituting the outer chamber 4s are communicated with each other.
  • closed valves are shown in black and open valves are shown in white. Only half of valves whose opening is adjusted are shown in black.
  • the control device 59 controls the oxygen concentration so that the oxygen concentration in the main room 31s (inside the main housing 31) is within a preset range. It controls the supply device 57 and the inert gas supply device 58 .
  • the upper limit of the predetermined range can be determined, for example, from the viewpoint of preventing ignition of the vaporized electrolytic solution.
  • the lower limit of the predetermined range can be determined, for example, from the viewpoint of inhibition of reaction between lithium and oxygen.
  • the control device 59 makes the main room 31s (inside the main housing 31) positive pressure with respect to the outside room 4s (inside the outer housing 4), and the outside room 4s (inside the dry room 201).
  • the opening degree of the center side inner/outer valve 523 is controlled so that the inside of the housing 4) becomes negative pressure.
  • the control of the center side inner/outer valve 523 is performed based on the information about the atmospheric pressure sent from each pressure measuring sensor 561 to 563 and the information about the amount of gas supplied from the oxygen supply device 57 and the inert gas supply device 58.
  • control device 59 controls the central inside/outside valve 523 so that the air pressure in the main room 31s is, for example, 5 to 10 Pa (gauge pressure).
  • the air pressure in the outer room 4s can be made sufficiently lower than the air pressure in the main room 31s (for example, -25 Pa (gauge pressure)) by the exhaust device .
  • control device 59 starts (resumes) transportation of the electrode precursor 100 and the doped electrode 110, and energizes the electrode precursor 100 and the like. Then, the production of the doped electrode 110 is restarted (started). Thereby, the manufacture of the doped electrode 110 is restarted (started) under an appropriate atmosphere.
  • the supply correspondence control is executed when the end detection sensor 23 detects the end of the electrode precursor 100 fed from the original roll 105 .
  • the supply response control is automatically executed when a signal indicating that the termination has been detected is input from the termination detection sensor 23 to the controller 59 .
  • Supply response control is executed as follows. That is, the control device 59 temporarily suspends the manufacture of the doped electrode 110 by stopping transportation of the electrode precursor 100 and the doped electrode 110, or by stopping energization of the electrode precursor 100 and the like. At this time, the transportation of the electrode precursor 100 and the dope electrode 110 is stopped in a state in which the end of the electrode precursor 100 in the raw fabric 105 is positioned in the feeding-side raw fabric chamber 311s.
  • control device 59 controls the inner chamber corresponding valve group 51 so that the unloading-side original fabric chamber 311s and the doping processing chamber 313s are spatially separated from each other. More specifically, the controller 59 controls the upstream valves 511 and 512 so that the openings of the first intermediate communication chamber 312s on the side of the housings 311 and 313 are closed. As a result, in the first intermediate communication chamber 312s, communication between the draw-out side material chamber 311s and the doping processing chamber 313s becomes non-communication.
  • control device 59 controls the withdrawal side inside/outside valve 521 and the first outside chamber valve 531 so that the withdrawal side inside/outside communication portion 311a and the first outside chamber communication portion 44a are opened.
  • the unloading-side material fabric chamber 311s, the first intervening chamber 41s, and the third intervening chamber 43s form a continuous space.
  • control device 59 controls the first intermediate inside/outside valve 522 so that the first inside/outside communication portion 312a is opened.
  • the first intermediate communication chamber 312s and the third intermediate chamber 43s are communicated with each other.
  • the feed-side web chamber 311s and the doping chamber 313s are spatially separated from each other in the first intermediate communication chamber 312s, while the outer chamber 4s and the first intermediate communication chamber 312s are separated from each other. 312 s of chambers will be in the state which communicated.
  • the control device 59 supplies oxygen so that the oxygen concentration in the unloading side fabric chamber 311s becomes an appropriate value higher than the upper limit of the predetermined range.
  • Device 57 and inert gas supply 58 are controlled.
  • This appropriate value is, for example, a value of 18% or more, and indicates an oxygen concentration that is preferable for workers (persons).
  • control device 59 also controls the pressure measured by the unloading side pressure measuring sensor 561 to prevent the air pressure in the unloading side fabric chamber 311s from becoming excessively high.
  • the opening degree of the draw-out side inner/outer valve 521 is controlled so as to be close to atmospheric pressure.
  • the control device 59 at the stage when the oxygen concentration in the delivery-side fabric chamber 311s reaches the appropriate value, the control device 59, at the stage when the oxygen concentration in the delivery-side fabric chamber 311s reaches the appropriate value, the first outer chamber valve 531 is controlled so that the communicating portion 44a is closed.
  • the first intervening chamber 41s and the unwinding side web chamber 311s are spatially separated from the third intervening chamber 43s (see FIG. 12). Since the first inside/outside communication portion 312a is open, the atmosphere in the first intermediate communication chamber 312s becomes the same as the atmosphere in the third intermediate chamber 43s as the first outside chamber communication portion 44a is closed.
  • the control device 59 maintains the oxygen concentration at the appropriate value in the unloading-side raw fabric chamber 311s and the first intermediate chamber 41s, and prevents the pressure from becoming excessively high.
  • the oxygen supply device 57, the inert gas supply device 58, etc. are controlled so as not to become a thing.
  • the feed-out side material chamber 311s and the first intervention chamber 41s are maintained in an environment suitable for the operator.
  • control device 59 performs the same control as the production-related control as the control related to the oxygen concentration and air pressure for the doping chamber 313s and the winding-side film chamber 315s even when the supply-related control is executed.
  • the removal control is executed by detecting the leading edge of the electrode precursor 100 (doped electrode 110) related to the new raw sheet 105 by the leading edge detection sensor 28 .
  • the removal control is automatically executed when a signal indicating that the leading edge has been detected is input from the leading edge detection sensor 28 to the control device 59 .
  • the removal control is executed as follows. That is, the control device 59 temporarily interrupts the manufacture of the doped electrode 110 by stopping the transportation of the electrode precursor 100 and the doped electrode 110, as in the case of executing the supply-related control. At this time, transportation of the electrode precursor 100 and the doped electrode 110 is stopped in a state in which the leading end of the electrode precursor 100 in the new raw fabric 105 is positioned in the take-up side raw fabric chamber 315s.
  • control device 59 controls the inner chamber corresponding valve group 51 so that the winding-side film chamber 315s and the doping chamber 313s are spatially separated from each other. More specifically, the controller 59 controls the downstream valves 513, 514 so that the openings of the second intermediate communication chamber 314s on the housings 313, 315 side are closed. As a result, in the second intermediate communication chamber 314s, communication between the winding-side film chamber 315s and the doping processing chamber 313s becomes non-communication.
  • control device 59 controls the winding-side inside/outside valve 525 and the second outer chamber valve 532 so that the winding-side inside/outside communicating portion 315a and the second outer chamber communicating portion 45a are opened.
  • the winding-side material chamber 315s, the second intermediate chamber 42s, and the third intermediate chamber 43s are in continuous communication.
  • control device 59 controls the second intermediate inside/outside valve 524 so that the second inside/outside communication portion 314a is opened.
  • the second intermediate communication chamber 314s and the third intermediate chamber 43s are brought into communication.
  • the doping chamber 313s and the take-up side web chamber 315s are spatially separated from each other in the second intermediate communication chamber 314s, while the outer chamber 4s and the second intermediate communication chamber 314s are separated from each other. 314 s of chambers will be in the state which communicated.
  • control device 59 controls the oxygen supply device so that the oxygen concentration in the winding-side fabric chamber 315s reaches the appropriate value. 57 and the inert gas supply device 58 are controlled.
  • control device 59 also controls the pressure measured by the winding-side pressure measuring sensor 563 to prevent the air pressure in the winding-side fabric chamber 315s from becoming excessively high.
  • the opening of the take-up side inner/outer valve 525 is controlled so as to be close to atmospheric pressure.
  • the control device 59 closes the second outer chamber communicating portion 45a at the stage when the oxygen concentration in the winding-side fabric chamber 315s reaches the appropriate value.
  • the second outer chamber valve 532 is controlled so that As a result, the second intermediate chamber 42s and the take-up side web chamber 315s are spatially separated from the third intermediate chamber 43s (see FIG. 14). Since the second inside/outside communication portion 314a is open, the atmosphere in the second intermediate communication chamber 314s becomes the same as the atmosphere in the third intervention chamber 43s when the second outside chamber communication portion 45a is closed.
  • the control device 59 maintains the oxygen concentration at the appropriate value in the winding-side material chamber 315s and the second intermediate chamber 42s, and prevents the pressure from becoming excessively high.
  • the oxygen supply device 57, the inert gas supply device 58, etc. are controlled so as not to become a thing. As a result, the winding-side material chamber 315s and the second intermediate chamber 42s are maintained in an environment suitable for the operator.
  • control device 59 performs the same control as the production-ready control as the control related to the oxygen concentration and air pressure in the doping chamber 313s and the unloading-side web chamber 311s even when the removal-ready control is executed.
  • the explosion-proof control is control that is always performed for the explosion-proof room 32s. Explosion-proof control is performed as follows. That is, the control device 59 determines that the oxygen concentration in the explosion-proof housing 32 (explosion-proof room 32s) is lower than the oxygen concentration in the main housing 31 (main room 31s) based on the oxygen concentration measured by the explosion-proof side concentration measuring sensor 554. The oxygen supply device 57 and the inert gas supply device 58 are controlled so as to be zero (for example, approximately 0%).
  • control device 59 controls the inside of the explosion-proof housing 32 (explosion-proof room) relative to the inside of the main housing 31 (main room 31s) based on the information related to the atmospheric pressure measured by the explosion-proof side pressure measurement sensor 564. 32s) is controlled to have a positive pressure.
  • the explosion-proof inside/outside valve 526 is controlled as necessary so that the air pressure in the explosion-proof room 32s does not become excessive.
  • the oxygen concentration in the explosion-proof room 32s is maintained at, for example, approximately 0%, and the air pressure in the explosion-proof room 32s is maintained at, for example, 30 to 45 Pa (gauge pressure) by executing the explosion-proof control.
  • step S11 it is determined whether or not the end of the electrode precursor 100 fed out from the original roll 105 has been detected by the end detection sensor 23 . This determination is repeated until the end is detected.
  • step S12 When the end of the electrode precursor 100 is detected, the above-described supply control is executed in step S12. By executing the supply control, the process of stopping when the end is detected in step S121, the closing process on the withdrawal side in step S122, and the oxygen concentration adjusting process on the withdrawal side in step S123 are performed in this order.
  • the transport of the electrode precursor 100 and the dope electrode 110 is stopped in a state where the end of the electrode precursor 100 is positioned inside the feed-side housing 311 (the feed-side fabric chamber 311s).
  • the supply of electricity to the electrode precursor 100 and the like is also stopped, and as a result, the production of the doped electrode 110 is temporarily stopped.
  • the upstream valves 511 and 512 make the inside of the unloading-side housing 311 (unloading-side raw fabric chamber 311s) and the dope processing housing 313 (doping processing chamber 313s) non-communication.
  • the above-described control for the valves 521, 522, and 531 is also performed.
  • the oxygen concentration in the feeding-side housing 311 (the feeding-side raw fabric chamber 311s) and the first intermediate chamber 41s is appropriately adjusted by the control device 59.
  • the unloading-side original fabric chamber 311s and the first intervention chamber 41s become a safe environment for the operator.
  • step S13 the raw fabric supply process is executed.
  • a new original fabric 105 is supplied to the support device 22 and the original fabric 105 is supported by the support device 22 .
  • both ends connection process is executed.
  • the terminal end of the electrode precursor 100 of the previous raw fabric 105 and the leading end of the electrode precursor 100 of the new raw fabric 105 are connected in the unloading-side housing 311 (unloading-side raw fabric chamber 311s). Connected.
  • the electrode precursor 100 is connected using, for example, a tape-shaped connecting member.
  • the raw fabric supply step and both ends connecting step are manually performed by an operator who has entered the unloading-side raw fabric chamber 311s through the first intervening chamber 41s.
  • the supply handling step is completed.
  • the air pressure and oxygen concentration in the inner chamber 3s and the outer chamber 4s are appropriately adjusted, and then the manufacture of the doped electrode 110 can be resumed. can.
  • step S21 it is determined whether or not the leading edge of the electrode precursor 100 (doped electrode 110) on the new raw sheet 105 has been detected by the leading edge detection sensor . This determination is repeated until the start edge is detected.
  • step S22 When the leading edge of the electrode precursor 100 (doped electrode 110) is detected, the above-described removal control is executed in step S22.
  • the removal control By executing the removal control, the start end detection stopping process of step S221, the winding side closing process of step S222, and the winding side oxygen concentration adjusting process of step S223 are performed in this order.
  • the transport of the electrode precursor 100 and the doped electrode 110 is stopped in a state where the start end of the electrode precursor 100 is positioned inside the winding-side housing 315 (winding-side material chamber 315s).
  • the supply of electricity to the electrode precursor 100 and the like is also stopped, and as a result, the production of the doped electrode 110 is temporarily stopped.
  • the downstream valves 513 and 514 disconnect the inside of the winding-side housing 315 (winding-side raw fabric chamber 315s) and the inside of the doping processing housing 313 (doping processing chamber 313s). .
  • the above-described control for the valves 524, 525, and 532 is also performed.
  • the control device 59 appropriately adjusts the oxygen concentration in the winding-side housing 315 (winding-side raw fabric chamber 315s) and the second intermediate chamber 42s.
  • the winding-side original fabric chamber 315s and the second intermediate chamber 42s become a safe environment for the operator.
  • step S23 the roll removing process is executed.
  • the roll removal process for example, after separating the leading end and the terminal end of the electrode precursor 100 (dope electrode 110) connected in the both ends connection process, the wound dope electrode 110 is removed from the winding device 29.
  • a start end fixing step is executed.
  • the starting end of the electrode precursor 100 of the new raw material 105 is fixed to the winding shaft 29a of the winding device 29 from which the dope electrode 110 has been removed.
  • the electrode precursor 100 can be fixed to the winding device 29 using means (not shown) for fixing the electrode precursor 100 provided on the winding shaft 29a.
  • other means may be used to fix the electrode precursor 100 to the winding device 29 .
  • the roll removing process and the start end fixing process are manually performed by an operator who has entered the take-up side fabric chamber 315s through the second intervening chamber 42s.
  • the removal handling process is completed.
  • the air pressure and oxygen concentration in the inner room 3s and the outer room 4s are appropriately adjusted, and then the manufacture of the doped electrode 110 is restarted. can be done.
  • the electrode precursor 100 When a new raw sheet 105 is supplied or when the wound dope electrode 110 is removed, the electrode precursor 100 remains submerged in the electrolytic solution in the dope tank 25. , the electrode precursor 100 is not doped. As the production of the doped electrode 110 resumes, the electrode precursor 100 that has been in the electrolyte is also appropriately doped.
  • the inside of the main housing 31 positive with respect to the inside of the outer housing 4, the inflow of gases such as oxygen from the inside of the outer housing 4 into the inside of the main housing 31 is suppressed. be able to. As a result, the oxygen concentration in the main housing 31 can be more easily maintained within a relatively narrow appropriate range using the oxygen supply device 57 and the inert gas supply device 58 .
  • the inside of the outer housing 4 has a negative pressure with respect to the dry room 201, leakage of gas from the inside of the outer housing 4 to the dry room 201 can be suppressed. As a result, leakage of the vaporized electrolytic solution to the outside of the outer housing 4 can be prevented more reliably.
  • the inert gas supply device 58 supplies gas containing nitrogen as the inert gas, it is advantageous in terms of cost. Even with the configuration in which nitrogen is supplied into the main housing 31, the nitrogen concentration in the main housing 31 can be sufficiently lowered by controlling the oxygen concentration in the main housing 31 within an appropriate range. As a result, the reaction of nitrogen and lithium can be suppressed.
  • the pressure inside the explosion-proof housing 32 is positive with respect to the inside of the main housing 31, it is possible to more reliably prevent the vaporized electrolytic solution from flowing into the explosion-proof housing 32 from inside the main housing 31. .
  • the oxygen concentration in the explosion-proof housing 32 is made smaller than the oxygen concentration in the main housing 31, the inside of the explosion-proof housing 32 is vaporized in an atmosphere with a sufficiently low oxygen concentration. It can be an environment with very little electrolyte. Therefore, "a non-explosion-proof device comprising an electric circuit provided with an electrical contact" can be safely accommodated in the explosion-proof housing 32 . Further, it is possible to safely perform wiring saving of wiring related to valves, sensors, and the like in the explosion-proof housing 32 and only a small number of wirings to go out of the housings 3 and 4 .
  • control device 59 can automatically and accurately maintain the oxygen concentration in the main housing 31 within an appropriate range. As a result, ignition of the vaporized electrolytic solution or the like can be more reliably prevented, and the reaction of the inert gas (nitrogen gas) and lithium can be more reliably suppressed.
  • the pressure inside the main housing 31 can be automatically made positive with respect to the inside of the outer housing 4 by the control device 59 .
  • the inflow of gas such as oxygen from the outer housing 4 into the main housing 31 can be more reliably suppressed.
  • the dope electrode 110 can be cleaned using the cleaning liquid contained in the cleaning tank 26 . Thereby, quality improvement of the dope electrode 110 can be aimed at.
  • the cleaning liquid is flammable, it is necessary to prevent the vaporized cleaning liquid from catching fire. Therefore, it is possible to more reliably prevent the vaporized cleaning liquid from leaking out of the outer housing 4 in the same manner as the vaporized electrolyte.
  • the electrolyte contained in the pre-wet tank 24 can be used to wet the electrode precursor 100 before doping. This makes it possible to more effectively dope the electrode precursor 100 with lithium.
  • the main housing 31 accommodates the pre-wet tank 24 inside, even if the electrolyte in the pre-wet tank 24 vaporizes, the vaporized electrolyte will flow from the outer housing 4 into the dry room 201. Leakage can be prevented more reliably.
  • the end detection sensor 23 as the end detection means and the start end detection sensor 28 as the start end detection means detect the winding diameter of the electrode precursor 100 or the doped electrode 110, thereby detecting the electrode precursor 100.
  • the doped electrode 110 is configured to detect the end or start.
  • an encoder capable of grasping the rotation speed of the support device 22 or the winding device 29 and a device for detecting the start edge or the end edge based on the rotation speed grasped by the encoder are used to detect the end detection means or the start end. means may be configured.
  • the start or end of the electrode precursor 100 may be detected by detecting a mark (for example, a hole) provided in advance on the electrode precursor 100 (doped electrode 110).
  • a mark for example, a hole
  • the installation positions of the starting end detecting means and the terminal end detecting means may be changed as appropriate.
  • the first intermediate housing 312 is provided between the unloading side housing 311 and the doping housing 313, and the internal space of the first intermediate housing 312 (first intermediate communication chamber 312s) allows the unloading side housing Communication between the inside 311 and the inside of the doping processing housing 313 is enabled.
  • a hole (opening) is formed in the common wall portion that constitutes the discharge side housing 311 and the doping housing 313, and the discharge side housing It may be configured to allow communication between the interior of 311 and the interior of the doping housing 313 .
  • the second intermediate housing 314 is provided between the winding-side housing 315 and the doping housing 313, and the winding-side housing 315 is provided in the internal space of the second intermediate housing 314 (second intermediate communication chamber 314s). Communication between the inside and the inside of the doping processing housing 313 is enabled.
  • a hole (opening) is formed in the common wall constituting the winding-side housing 315 and the doping housing 313, and the winding-side housing is provided at this hole (opening). Communication may be provided between the interior of 315 and the doping housing 313 .
  • the inner housing 3 includes the explosion-proof housing 32, but the explosion-proof housing 32 may not be provided.
  • the detection of the end by the end detection sensor 23 triggers automatic supply control
  • the detection of the start edge by the start edge detection sensor 28 triggers the automatic removal control.
  • an operator may input a command to the control device 59, so that the control corresponding to supply or the control corresponding to removal may be executed.
  • the doping apparatus 2 produces the doped electrode 110 that is used as the negative electrode of a lithium ion battery or a lithium ion capacitor. It is not limited to those used as a negative electrode. Thus, for example, the doping device 2 may produce doped electrodes that are used as positive electrodes in batteries and capacitors.
  • the electrode precursor 100 has the active material layer 102 on its surface, but the electrode precursor 100 may not have the active material layer 102 .

Abstract

Provided is a doping system capable of reliably preventing a vaporized electrolyte from leaking to the outside of a housing and capable of more easily maintaining the concentration of oxygen in an appropriate range. A doping system 1 comprises: a doping device 2 that dopes an electrode precursor 100 with lithium; an inner housing 3 that is provided with a main housing 31 for housing a doping tank 25 and the electrode precursor 100 therein; and an outer housing 4 that covers the inner housing 3. It is made possible to keep the inside of the main housing 31 at a positive pressure with respect to the inside of the outer housing 4, and keep the inside of the outer housing 4 at a negative pressure with respect to a dry room 201. Consequently, the leakage of a vaporized electrolyte to the dry room 201 outside the outer housing 4 can be more reliably prevented, and the concentration of oxygen in the main housing 31 can be more easily maintained in an appropriate range by an oxygen supply device 57 and an inert gas supply device 58.

Description

ドーピングシステムdoping system
 本発明は、電極前駆体に対しリチウムをドーピングするためのドーピングシステムに関する。 The present invention relates to a doping system for doping lithium into an electrode precursor.
 例えば、リチウムイオン電池等の二次電池やリチウムイオンキャパシタなどの蓄電デバイスは、表面に正極活物質を有する正電極、表面に負極活物質を有する負電極、及び、これら両電極を絶縁するセパレータ等を備えている。 For example, secondary batteries such as lithium ion batteries and electricity storage devices such as lithium ion capacitors include a positive electrode having a positive electrode active material on the surface, a negative electrode having a negative electrode active material on the surface, and a separator that insulates these electrodes. It has
 また近年では、表面に活物質を有する電極前駆体に対しリチウムなどのアルカリ金属をドーピング(メッキ)して、正電極又は負電極としてのドープ電極を製造するドープ装置が提案されている(例えば、特許文献1等参照)。ドープ装置は、例えば、支持手段(供給ロール)、ドープ槽(ドーピング槽)、搬送手段(搬送ローラ群)、対極部材(アルカリ金属含有板)及び巻取手段(巻取ロール)などを備えている。支持手段は、電極前駆体がロール状に巻回されてなる原反を支持する。ドープ槽は、アルカリ金属イオンや溶剤などを含んでなる電解液を収容する。搬送手段は、前記原反から繰り出された電極前駆体をドープ槽内の電解液中を通る経路で搬送する。対極部材は、導電性金属などからなり、ドープ槽内に収容される。巻取手段は、ドープ槽を経て得られたドープ電極を巻取る。このようなドープ装置では、搬送手段によって電極前駆体を前記電解液中を通る経路で搬送しながら、電極前駆体及び対極部材間に電流を流すことで、電極前駆体にアルカリ金属がドーピングされる。 In recent years, a doping apparatus has been proposed for manufacturing a doped electrode as a positive electrode or a negative electrode by doping (plating) an electrode precursor having an active material on its surface with an alkali metal such as lithium (for example, See Patent Document 1, etc.). The doping apparatus includes, for example, supporting means (supply roll), doping tank (doping tank), conveying means (conveying roller group), counter electrode member (alkali metal-containing plate), and winding means (winding roll). . The support means supports the original fabric formed by winding the electrode precursor into a roll. The dope tank contains an electrolytic solution containing alkali metal ions, a solvent, and the like. The conveying means conveys the electrode precursor unwound from the original fabric through a route passing through the electrolytic solution in the doping tank. The counter electrode member is made of a conductive metal or the like and accommodated in the dope tank. The winding means winds up the doped electrode obtained through the dope tank. In such a doping apparatus, the electrode precursor is doped with an alkali metal by passing an electric current between the electrode precursor and the counter electrode member while conveying the electrode precursor along a path passing through the electrolytic solution by the conveying means. .
 また、ドープ槽に収容される電解液においては、例えば、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC),エチレンカーボネート(EC)などの可燃性を有する有機溶媒が溶剤として用いられることがある。しかしながら、このような電解液は、電極前駆体及び対極部材間に流れる電流の影響などにより、発熱して気化するおそれがある。そこで、ドープ槽(メッキ槽)などをハウジングの内部に収容するとともに、ハウジング内を不活性ガス(窒素ガス)で満たすことにより、気化した電解液がハウジング外へ漏出することを防止しつつ、気化した電解液への引火を防止することが考えられる(例えば、特許文献2等参照)。 In addition, in the electrolytic solution contained in the dope tank, flammable organic solvents such as dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), and ethylene carbonate (EC) may be used as solvents. However, such an electrolytic solution may generate heat and evaporate under the influence of current flowing between the electrode precursor and the counter electrode member. Therefore, by housing the doping tank (plating tank) and the like in the housing and filling the housing with an inert gas (nitrogen gas), the vaporized electrolyte is prevented from leaking out of the housing, and the vaporization It is conceivable to prevent the electrolyte solution from igniting (see, for example, Patent Document 2, etc.).
国際公開第2020/084949号WO2020/084949 特開昭49-41239号公報JP-A-49-41239
 ところで、リチウムをドーピングするドープ装置においては、一般のメッキ装置と異なり、ハウジング内の酸素濃度を比較的狭い適切な範囲で制御する必要がある。これは、酸素濃度が前記範囲を超えると、気化した電解液へと引火するおそれがあり、一方、酸素濃度が前記範囲を下回ると、不活性ガス(窒素ガス)及びリチウムが反応しやすくなり、ドープ電極の品質低下を招き得るためである。 By the way, in a doping device for doping lithium, unlike a general plating device, it is necessary to control the oxygen concentration in the housing within a relatively narrow and appropriate range. This is because if the oxygen concentration exceeds the above range, the vaporized electrolyte may ignite. This is because the quality of the doped electrode may deteriorate.
 この点、上記特許文献2に係る技術によれば、ハウジング外に対しハウジング内を負圧とすることで、ハウジング外への気化した電解液の漏れ出しをより確実に抑えることができるが、ハウジング内を負圧とすれば、ハウジング内に大気(酸素)が流入しやすくなって、ハウジング内の酸素濃度を適切な範囲内で維持することが難しくなる。これに対し、ハウジング外に対しハウジング内を正圧とすれば、ハウジング外へと気化した電解液が漏出しやすくなって、ハウジングを設ける技術的意義が十分に発揮されなくなる。 In this respect, according to the technique disclosed in Patent Document 2, by making the inside of the housing negative pressure with respect to the outside of the housing, it is possible to more reliably suppress the vaporized electrolytic solution from leaking out of the housing. If the inside is negative pressure, the air (oxygen) tends to flow into the housing, making it difficult to maintain the oxygen concentration in the housing within an appropriate range. On the other hand, if the pressure inside the housing is positive with respect to the outside of the housing, the vaporized electrolytic solution is likely to leak out of the housing, and the technical significance of providing the housing cannot be fully exhibited.
 本発明は、上記事情に鑑みてなされたものであり、その目的は、ハウジング外への気化した電解液の漏出をより確実に防止することができるとともに、酸素濃度を適切な範囲でより容易に維持可能なドーピングシステムを提供することにある。 SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to more reliably prevent the vaporized electrolytic solution from leaking out of the housing, and to more easily control the oxygen concentration within an appropriate range. To provide a doping system that can be maintained.
 以下、上記目的を解決するのに適した各手段につき、項分けして説明する。なお、必要に応じて対応する手段に特有の作用効果を付記する。 Below, each means suitable for solving the above purpose will be explained separately. It should be noted that actions and effects peculiar to the corresponding means will be added as necessary.
 手段1.帯状の電極前駆体に対しリチウムをドーピングしてドープ電極を製造するためのドーピングシステムであって、
 前記電極前駆体が巻回されてなる原反を支持する支持手段、少なくとも可燃性の溶剤を含んでなる電解液を収容するドープ槽、前記原反から繰り出された前記電極前駆体を前記ドープ槽内を通る経路で搬送する搬送手段、前記ドープ槽内に収容される対極部材、及び、前記ドープ槽を経て得られた前記ドープ電極を巻取る巻取手段を有し、前記電解液中に前記電極前駆体を配置した状態で該電極前駆体及び前記対極部材間に電流を流すことにより該電極前駆体に対しリチウムをドーピングすることが可能なドープ装置と、
 少なくとも前記支持手段、前記ドープ槽及び前記巻取手段、並びに、前記支持手段から前記巻取手段にかけて位置する前記電極前駆体及び前記ドープ電極を内部に収容するメインハウジングを具備するインナーハウジングと、
 前記インナーハウジングを覆うアウターハウジングと、
 前記メインハウジング内に酸素を含む酸素含有ガスを供給する酸素供給手段と、
 前記メインハウジング内に窒素を含む不活性ガスを供給する不活性ガス供給手段とを備え、
 前記アウターハウジング内に対し前記メインハウジング内を正圧とし、前記アウターハウジングの周囲に位置するハウジング外空間に対し前記アウターハウジング内を負圧とすることが可能に構成されていることを特徴とするドーピングシステム。
Means 1. A doping system for doping a strip-shaped electrode precursor with lithium to produce a doped electrode, comprising:
Supporting means for supporting the raw roll of the electrode precursor wound thereon, a doping tank containing an electrolytic solution containing at least a flammable solvent, and the doping tank containing the electrode precursor unwound from the raw roll a counter electrode member accommodated in the dope tank; and a winding means for winding the doped electrode obtained through the dope tank; a doping device capable of doping the electrode precursor with lithium by applying a current between the electrode precursor and the counter electrode member in a state where the electrode precursor is arranged;
an inner housing comprising a main housing that accommodates at least the support means, the dope tank, the winding means, and the electrode precursor and the dope electrode located from the support means to the winding means;
an outer housing covering the inner housing;
oxygen supply means for supplying an oxygen-containing gas containing oxygen into the main housing;
an inert gas supply means for supplying an inert gas containing nitrogen into the main housing;
The inside of the main housing can be set to a positive pressure with respect to the inside of the outer housing, and the inside of the outer housing can be set to a negative pressure with respect to a space outside the housing located around the outer housing. doping system.
 上記手段1によれば、ドーピングシステムはインナーハウジングと該インナーハウジングを覆うアウターハウジングとを備えており、インナーハウジングは、少なくとも支持手段、ドープ槽、巻取手段、並びに、支持手段から巻取手段にかけて位置する電極前駆体及びドープ電極を収容するメインハウジングを具備している。そして、アウターハウジング内(但し、インナーハウジング外)に対しメインハウジング内を正圧とする(メインハウジング内の気圧をアウターハウジング内の気圧よりも大きなものとする)ことが可能に構成されている。そのため、アウターハウジング内に対しメインハウジング内を正圧とすることで、アウターハウジング内からメインハウジング内に対する酸素などの気体の流入を抑えることができる。これにより、メインハウジング内に酸素含有ガスを供給する酸素供給手段と、メインハウジング内に不活性ガスを供給する不活性ガス供給手段とを用いて、メインハウジング内の酸素濃度を比較的狭い適切な範囲でより容易に維持することができる。 According to the above means 1, the doping system comprises an inner housing and an outer housing covering the inner housing. It has a main housing containing the positioned electrode precursor and doped electrodes. The pressure inside the main housing can be made positive (the air pressure inside the main housing can be made higher than the pressure inside the outer housing) with respect to the inside of the outer housing (but outside the inner housing). Therefore, by making the inside of the main housing positive with respect to the inside of the outer housing, it is possible to suppress the inflow of gas such as oxygen from the inside of the outer housing into the inside of the main housing. As a result, the oxygen concentration in the main housing can be adjusted to a relatively narrow range by using the oxygen supply means for supplying the oxygen-containing gas into the main housing and the inert gas supply means for supplying the inert gas into the main housing. Range can be more easily maintained.
 また、アウターハウジングの周囲(外)に位置するハウジング外空間(例えばアウターハウジングの設置されるエリア)に対しアウターハウジング内を負圧とすることができるため、アウターハウジング内からハウジング外空間に対する気体の漏出を抑えることができる。その結果、アウターハウジング外への気化した電解液の漏出をより確実に防止することができる。 In addition, since the inside of the outer housing can be made to have a negative pressure with respect to the space outside the housing located around (outside) the outer housing (for example, the area where the outer housing is installed), gas flow from inside the outer housing to the space outside the housing. Leakage can be suppressed. As a result, it is possible to more reliably prevent the vaporized electrolytic solution from leaking out of the outer housing.
 加えて、不活性ガス供給手段は、不活性ガスとして窒素を含むガスを供給するため、コスト面で有利となる。尚、メインハウジング内に窒素を供給する構成であっても、メインハウジング内の酸素濃度を適切な範囲に制御することで、メインハウジング内の窒素濃度を十分に低くすることができ、ひいては窒素及びリチウムの反応を抑制することができる。 In addition, since the inert gas supply means supplies gas containing nitrogen as the inert gas, it is advantageous in terms of cost. Incidentally, even in the configuration in which nitrogen is supplied into the main housing, by controlling the oxygen concentration in the main housing within an appropriate range, the nitrogen concentration in the main housing can be sufficiently lowered, and eventually nitrogen and Reaction of lithium can be suppressed.
 手段2.前記インナーハウジングは、内部空間が前記メインハウジング内とは別に区画された防爆ハウジングを有し、
 前記防爆ハウジング内の酸素濃度を前記メインハウジング内の酸素濃度よりも小さくし、かつ、前記メインハウジング内に対し前記防爆ハウジング内を正圧とすることが可能に構成されていることを特徴とする手段1に記載のドーピングシステム。
Means 2. The inner housing has an explosion-proof housing with an internal space separated from the inside of the main housing,
The oxygen concentration in the explosion-proof housing is made lower than the oxygen concentration in the main housing, and the pressure inside the explosion-proof housing can be made positive with respect to the inside of the main housing. Doping system according to measure 1.
 上記手段2によれば、メインハウジング内に対し防爆ハウジング内を正圧とすることが可能とされている。そのため、メインハウジング内から防爆ハウジング内に対し、気化した電解液が流入することをより確実に防止することができる。 According to the above means 2, it is possible to make the inside of the explosion-proof housing positive pressure with respect to the inside of the main housing. Therefore, it is possible to more reliably prevent the vaporized electrolytic solution from flowing from the main housing into the explosion-proof housing.
 加えて、上記手段2によれば、防爆ハウジング内の酸素濃度をメインハウジング内の酸素濃度よりも小さくすることが可能とされている。そのため、上記作用効果と相まって、防爆ハウジング内を、酸素濃度が十分に低い雰囲気であって、気化した電解液が非常に少ない環境とすることができる。従って、バルブ(後述する流量調節手段など)を駆動するための電磁弁マニホールド、各種センサのアンプ、各種スイッチのIO等といった「電気的接点が設けられた電気回路を備えてなる非防爆機器」の収納空間として防爆ハウジング内を利用することが可能となる。さらに、システムの煩雑化防止などを図るために、防爆ハウジング内においてバルブやセンサなどに係る配線の省配線を行い、少ない配線のみをインナーハウジングの外へと出すといったことも可能となる。 In addition, according to the above means 2, it is possible to make the oxygen concentration in the explosion-proof housing lower than the oxygen concentration in the main housing. Therefore, together with the above effects, the inside of the explosion-proof housing can be made into an atmosphere with a sufficiently low oxygen concentration and an environment with very little vaporized electrolytic solution. Therefore, "non-explosion-proof devices comprising electric circuits provided with electric contacts" such as electromagnetic valve manifolds for driving valves (flow control means to be described later), amplifiers of various sensors, IOs of various switches, etc. It becomes possible to use the inside of the explosion-proof housing as a storage space. Furthermore, in order to prevent the system from becoming complicated, it is possible to save wiring for valves, sensors, and the like in the explosion-proof housing and extend only a small number of wirings to the outside of the inner housing.
 手段3.前記メインハウジング内の酸素濃度を計測する酸素濃度計測手段と、
 前記酸素濃度計測手段により計測された酸素濃度に基づき、前記酸素供給手段及び前記不活性ガス供給手段を制御し、前記メインハウジング内の酸素濃度を調節可能な酸素濃度制御手段とを備えることを特徴とする手段1又は2に記載のドーピングシステム。
Means 3. oxygen concentration measuring means for measuring the oxygen concentration in the main housing;
oxygen concentration control means for controlling the oxygen supply means and the inert gas supply means based on the oxygen concentration measured by the oxygen concentration measurement means, and for adjusting the oxygen concentration in the main housing. The doping system according to means 1 or 2, wherein
 上記手段3によれば、酸素濃度制御手段によって、メインハウジング内の酸素濃度を自動的かつ精度よく適切な範囲で維持することができる。これにより、気化した電解液への引火を一層確実に防止することができるとともに、不活性ガス(窒素ガス)及びリチウムの反応抑制をより確実に図ることができる。 According to the above means 3, the oxygen concentration control means can automatically and accurately maintain the oxygen concentration in the main housing within an appropriate range. As a result, ignition of the vaporized electrolytic solution can be more reliably prevented, and the reaction of the inert gas (nitrogen gas) and lithium can be more reliably suppressed.
 手段4.前記メインハウジング内及び前記アウターハウジング内を連通する内外連通部と、
 前記内外連通部に設けられ、前記メインハウジング内から前記アウターハウジング内へと流れる気体の流量を調節可能な流量調節手段と、
 前記メインハウジング内の圧力を計測する圧力計測手段と、
 前記圧力計測手段により計測された圧力に基づき前記流量調節手段を制御することで、前記アウターハウジング内に対する前記メインハウジング内の圧力を調節可能な圧力制御手段とを備えることを特徴とする手段1乃至3のいずれかに記載のドーピングシステム。
Means 4. an internal/external communicating portion that communicates the inside of the main housing and the inside of the outer housing;
a flow rate adjusting means provided in the internal/external communication portion and capable of adjusting a flow rate of gas flowing from inside the main housing to inside the outer housing;
pressure measuring means for measuring the pressure in the main housing;
and pressure control means capable of adjusting the pressure in the main housing with respect to the inside of the outer housing by controlling the flow rate adjusting means based on the pressure measured by the pressure measuring means. 4. The doping system according to any one of 3.
 上記手段4によれば、圧力制御手段によって、自動的にアウターハウジング内に対しメインハウジング内を正圧とすることができる。これにより、アウターハウジング内からメインハウジング内に対する酸素などの気体の流入をより確実に抑えることができる。 According to the above means 4, the pressure control means can automatically make the inside of the main housing positive with respect to the inside of the outer housing. As a result, the inflow of gas such as oxygen from the outer housing into the main housing can be more reliably suppressed.
 手段5.前記アウターハウジング内のガスを外部に排気する排気手段を備えることを特徴とする手段1乃至4のいずれかに記載のドーピングシステム。 Means 5. 5. The doping system according to any one of means 1 to 4, further comprising exhaust means for exhausting the gas inside the outer housing to the outside.
 上記手段5によれば、排気手段によってアウターハウジング内のガスを外部(例えば、建物の外)に排出することで、ハウジング外空間に対しアウターハウジング内を負圧とすることがより確実に可能となる。 According to the above means 5, by discharging the gas in the outer housing to the outside (for example, outside the building) by the exhaust means, it is possible to make the inside of the outer housing negative pressure with respect to the space outside the housing. Become.
 手段6.前記ドープ装置は、可燃性の洗浄液を収容する洗浄槽を有し、
 前記搬送手段は、前記ドープ槽内を経て得られた前記ドープ電極を前記洗浄槽内を通る経路で搬送するように構成されており、
 前記メインハウジングは、前記洗浄槽を内部に収容するように構成されていることを特徴とする手段1乃至5のいずれかに記載のドーピングシステム。
Means 6. The dope device has a cleaning tank containing a combustible cleaning liquid,
The conveying means is configured to convey the dope electrode obtained through the dope tank along a route passing through the cleaning tank,
6. The doping system according to any one of means 1 to 5, wherein the main housing is configured to accommodate the cleaning tank therein.
 上記手段6によれば、洗浄槽に収容された洗浄液を用いてドープ電極を洗浄することができる。これにより、ドープ電極の品質向上を図ることができる。 According to the above means 6, the dope electrode can be cleaned using the cleaning liquid contained in the cleaning tank. As a result, the quality of the doped electrode can be improved.
 一方、洗浄液は可燃性であるため、気化した洗浄液への引火防止を図るべきであるところ、上記手段6によれば、メインハウジングは洗浄槽を内部に収容した状態とされている。従って、気化した電解液と同様、気化した洗浄液がアウターハウジング外へと漏出することをより確実に抑制できる。 On the other hand, since the cleaning liquid is flammable, it is necessary to prevent the vaporized cleaning liquid from catching fire. Therefore, like the vaporized electrolyte, it is possible to more reliably prevent the vaporized cleaning liquid from leaking out of the outer housing.
 手段7.前記ドープ装置は、前記搬送手段による前記電極前駆体の搬送経路に沿って前記ドープ槽よりも上流に位置するとともに、少なくとも可燃性の溶剤を含んでなる電解液を収容するプリウェット槽を有し、
 前記搬送手段は、前記電極前駆体を前記プリウェット槽内を通る経路で搬送するように構成されており、
 前記メインハウジングは、前記プリウェット槽を内部に収容するように構成されていることを特徴とする手段1乃至6のいずれかに記載のドーピングシステム。
Means 7. The doping device has a pre-wet tank positioned upstream of the dope tank along the transport path of the electrode precursor by the transport means and containing an electrolytic solution containing at least a flammable solvent. ,
The conveying means is configured to convey the electrode precursor along a route passing through the pre-wet tank,
7. The doping system according to any one of means 1 to 6, wherein the main housing is configured to accommodate the pre-wet bath inside.
 上記手段7によれば、プリウェット槽に収容された電解液を用いて、ドーピング前の電極前駆体を湿潤させることができる。これにより、電極前駆体に対するリチウムのドーピングをより効果的に行うことができる。 According to the above means 7, the electrode precursor before doping can be wetted using the electrolytic solution contained in the pre-wetting tank. This makes it possible to more effectively dope the electrode precursor with lithium.
 また、メインハウジングはプリウェット槽を内部に収容した状態とされているため、プリウェット槽の電解液が気化したとしても、この気化した電解液がアウターハウジング内からハウジング外空間に漏出することをより確実に防止できる。 In addition, since the main housing accommodates the pre-wet tank inside, even if the electrolyte in the pre-wet tank evaporates, the vaporized electrolyte will not leak from the outer housing to the space outside the housing. can be prevented more reliably.
電極前駆体の平面模式図である。FIG. 3 is a schematic plan view of an electrode precursor; 図1のJ-J線断面模式図である。FIG. 2 is a schematic cross-sectional view taken along line JJ of FIG. 1; ドープ電極の断面模式図である。It is a cross-sectional schematic diagram of a dope electrode. ドーピングシステムの斜視模式図である。1 is a schematic perspective view of a doping system; FIG. ドープ装置などの概略構成を示すための図4のK-K線断面模式図である。FIG. 5 is a schematic cross-sectional view taken along line KK of FIG. 4 for showing a schematic configuration of a doping device and the like; 気体制御システムの構成を示すブロック図である。1 is a block diagram showing the configuration of a gas control system; FIG. ドープ槽などの拡大模式図である。It is an expansion schematic diagram, such as a dope tank. インナーハウジングの斜視模式図である。It is a perspective schematic diagram of an inner housing. インナーハウジングなどの概略構成を示すための図4のL-L線断面模式図である。FIG. 5 is a schematic cross-sectional view along line LL in FIG. 4 for showing a schematic configuration of an inner housing and the like; 製造対応制御の実行に伴うバルブの状態を示す断面模式図である。FIG. 10 is a schematic cross-sectional view showing the state of the valve associated with execution of manufacturing-adaptive control; 供給対応制御において操出側原反室の酸素濃度を調節するときのバルブの状態を示す断面模式図である。FIG. 10 is a schematic cross-sectional view showing the state of the valve when adjusting the oxygen concentration in the unloading-side original fabric chamber in supply-related control. 供給対応制御において操出側原反室の酸素濃度が適正値になったときのバルブの状態を示す断面模式図である。FIG. 10 is a schematic cross-sectional view showing the state of the valve when the oxygen concentration in the unloading-side original fabric chamber reaches an appropriate value in supply-related control; 取外対応制御において巻取側原反室の酸素濃度を調節するときのバルブの状態を示す断面模式図である。FIG. 10 is a schematic cross-sectional view showing the state of the valve when adjusting the oxygen concentration in the take-up side original fabric chamber in the control corresponding to removal. 取外対応制御において巻取側原反室の酸素濃度が適正値になったときのバルブの状態を示す断面模式図である。FIG. 10 is a schematic cross-sectional view showing the state of the valve when the oxygen concentration in the take-up-side original fabric chamber reaches an appropriate value in the removal-response control; 供給対応工程のフローチャートである。It is a flow chart of a supply correspondence process. 取外対応工程のフローチャートである。It is a flow chart of a removal correspondence process.
 以下、一実施形態について図面を参照しつつ説明する。まず、ドープ装置によってリチウムがドーピングされる対象である電極前駆体について説明する。 An embodiment will be described below with reference to the drawings. First, the electrode precursor to be doped with lithium by the doping apparatus will be described.
 〔1.電極前駆体100〕
 図1に示すように、電極前駆体100は帯状をなしている。電極前駆体100は、図2に示すように、帯状の集電体101と、該集電体101の表面及び裏面に形成された活物質層102とを備えている。
[1. Electrode precursor 100]
As shown in FIG. 1, the electrode precursor 100 is strip-shaped. As shown in FIG. 2, the electrode precursor 100 includes a strip-shaped current collector 101 and active material layers 102 formed on the front and back surfaces of the current collector 101 .
 集電体101は、例えば所定の金属(例えば、銅、ニッケル、ステンレス等)からなる金属箔により構成されている。尚、集電体101として、前記金属箔の表面に炭素材料を主成分とする導電層が形成されたものを用いてもよい。 The current collector 101 is made of, for example, metal foil made of a predetermined metal (eg, copper, nickel, stainless steel, etc.). Incidentally, as the current collector 101, a conductive layer having a carbon material as a main component formed on the surface of the metal foil may be used.
 活物質層102は、リチウムイオンの挿入/離脱を利用する電池又はキャパシタに適用可能な活物質を含んでおり、本実施形態では負極活物質を含んでいる。負極活物質としては、例えば、黒鉛、易黒鉛化性炭素、難黒鉛化性炭素、黒鉛粒子を樹脂等の炭化物で被覆してなる炭素材料などを挙げることができる。負極活物質は、単一の物質からなるものであってもよいし、複数の物質を混合してなるものであってもよい。 The active material layer 102 contains an active material that can be applied to a battery or capacitor that utilizes insertion/extraction of lithium ions, and contains a negative electrode active material in this embodiment. Examples of the negative electrode active material include graphite, graphitizable carbon, non-graphitizable carbon, and a carbon material obtained by coating graphite particles with a carbide such as a resin. The negative electrode active material may consist of a single substance, or may consist of a mixture of a plurality of substances.
 活物質層102は、例えば、負極活物質及びバインダーなどを含むスラリーを集電体101上に塗布した上で、該スラリーを乾燥させることにより形成することができる。尚、バインダーとしては、例えば、スチレン-ブタジエンゴム(SBR)、アクリロニトリル-ブタジエンゴム(NBR)などのゴム系バインダー等を挙げることができる。また、前記スラリーは、活物質及びバインダー以外の成分(例えば、カーボンブラック、黒鉛、導電材、増粘剤など)を含むものであってもよい。 The active material layer 102 can be formed, for example, by applying a slurry containing a negative electrode active material and a binder on the current collector 101 and then drying the slurry. Examples of binders include rubber binders such as styrene-butadiene rubber (SBR) and acrylonitrile-butadiene rubber (NBR). Moreover, the slurry may contain components other than the active material and the binder (for example, carbon black, graphite, a conductive material, a thickener, etc.).
 〔2.ドープ電極〕
 次に、電極前駆体100にリチウムをドーピングしてなるドープ電極について説明する。
[2. Dope electrode]
Next, a doped electrode obtained by doping the electrode precursor 100 with lithium will be described.
 ドープ電極110は、電極前駆体100にリチウムをドーピング(めっき)することで形成されるものであり、例えば、図3に示すように、リチウム被膜103を備えている。本実施形態において、ドープ電極110は、リチウムイオン電池又はリチウムイオンキャパシタにおける負電極として用いられものである。このような用途のドープ電極110において、リチウムを予めドーピングしておくのは次の理由による。 The doped electrode 110 is formed by doping (plating) the electrode precursor 100 with lithium, and includes a lithium film 103, for example, as shown in FIG. In this embodiment, the doped electrode 110 is used as a negative electrode in a lithium ion battery or lithium ion capacitor. The reason why the doped electrode 110 for such use is previously doped with lithium is as follows.
 すなわち、リチウムイオン電池及びリチウムイオンキャパシタは、巻回又は積層された正電極、負電極及びセパレータを所定のケースに収容した上で、該ケース内に電解液を収納し、その後、初期充放電を行うことで製造される。尚、正電極としては、例えば、アルミニウム等からなる基材に対し正極活物質(例えば、マンガン酸リチウム粒子等)を塗布したものが用いられる。 That is, in lithium ion batteries and lithium ion capacitors, a wound or laminated positive electrode, a negative electrode and a separator are housed in a predetermined case, an electrolytic solution is housed in the case, and then initial charging and discharging are performed. Manufactured by doing. As the positive electrode, for example, a substrate made of aluminum or the like and coated with a positive electrode active material (for example, lithium manganate particles or the like) is used.
 ここで、リチウムがドーピングされてない負電極を用いた場合には、初回充放電に伴い、負電極の表面に、リチウムを含むリチウム膜が形成される。このリチウム膜は、分解不能な不可逆膜である。そのため、リチウム膜の形成に伴い両電極間を移動可能なリチウムイオンが減少し、電池容量の低下を招く。 Here, when a negative electrode not doped with lithium is used, a lithium film containing lithium is formed on the surface of the negative electrode during the initial charge and discharge. This lithium membrane is an irreversible membrane that cannot be decomposed. Therefore, as the lithium film is formed, the amount of lithium ions that can move between the two electrodes decreases, resulting in a decrease in battery capacity.
 これに対し、予めリチウムをドーピングしてなる負電極を用いた場合には、初回充放電に伴う前記リチウム膜の形成が防止され、初回電池容量の低下が抑制される。また、予めドーピングを行うことで、電池容量の急速な低下が生じるまでの充放電サイクル数が増大し、電池やキャパシタの長寿命化が図られる。このような有利な効果を得るべく、リチウムのドーピングが予め行われる。 On the other hand, when a negative electrode doped with lithium in advance is used, the formation of the lithium film accompanying the initial charge/discharge is prevented, and the decrease in the initial battery capacity is suppressed. In addition, by performing doping in advance, the number of charge/discharge cycles until the battery capacity rapidly decreases is increased, and the service life of the battery and the capacitor is extended. In order to obtain such an advantageous effect, lithium doping is performed in advance.
 〔3.ドーピングシステム〕
 次いで、電極前駆体100に対しリチウムをドーピングしてドープ電極110を製造するためのドーピングシステムについて説明する。図4に示すように、ドーピングシステム1は、所定のドライルーム201における床部202上に設置されている。ドーピングシステム1は、図5,6に示すように、ドープ装置2、インナーハウジング3、アウターハウジング4及び気体制御システム5を有している。
[3. doping system]
Next, a doping system for doping the electrode precursor 100 with lithium to manufacture the doped electrode 110 will be described. As shown in FIG. 4, the doping system 1 is installed on a floor 202 in a predetermined dry room 201. As shown in FIG. The doping system 1 has a doping device 2, an inner housing 3, an outer housing 4 and a gas control system 5, as shown in FIGS.
 ドープ装置2は、電極前駆体100に対しリチウムをドーピングする機能を有し、ドープ電極110の製造を主に担う装置である。インナーハウジング3及びアウターハウジング4は、ドープ装置2を覆い、ドープ装置2の稼働による影響がドライルーム201(正確にはドライルーム201のうちアウターハウジング4の外に位置する空間)に及ぶことを防止して、該ドライルーム201における雰囲気を作業者などにとって適切な環境で維持するためのものである。気体制御システム5は、インナーハウジング3内及びアウターハウジング4内における酸素濃度や気圧といった気体に係る状態をコントロールするためのものである。 The doping device 2 has a function of doping the electrode precursor 100 with lithium and is mainly responsible for manufacturing the doped electrode 110 . The inner housing 3 and the outer housing 4 cover the doping device 2 and prevent the dry room 201 (more precisely, the space located outside the outer housing 4 in the dry room 201) from being affected by the operation of the doping device 2. By doing so, the atmosphere in the dry room 201 is maintained in an appropriate environment for workers and the like. The gas control system 5 is for controlling gas conditions such as oxygen concentration and atmospheric pressure in the inner housing 3 and the outer housing 4 .
 〔4.ドープ装置2〕
 まず、図5を参照してドープ装置2について説明する。ドープ装置2は、所定経路を通るように電極前駆体100及びドープ電極110を搬送するための複数の搬送ロール21を備えている。また、ドープ装置2は、電極前駆体100及びドープ電極110の搬送経路に沿って、上流側から順に、支持装置22、終端検出センサ23、プリウェット槽24、ドープ槽25、洗浄槽26、乾燥装置27、始端検出センサ28及び巻取装置29を備えている。本実施形態では、搬送ロール21、支持装置22及び巻取装置29が「搬送手段」を構成する。また、支持装置22が「支持手段」を構成し、巻取装置29が「巻取手段」をそれぞれ構成する。
[4. Doping device 2]
First, the doping device 2 will be described with reference to FIG. The doping device 2 includes a plurality of transport rolls 21 for transporting the electrode precursor 100 and the dope electrode 110 along a predetermined path. Along the conveying path of the electrode precursor 100 and the doping electrode 110, the doping device 2 includes a supporting device 22, a terminal detection sensor 23, a prewetting tank 24, a doping tank 25, a cleaning tank 26, a drying A device 27 , a start end detection sensor 28 and a winding device 29 are provided. In this embodiment, the transport roll 21, the support device 22, and the winding device 29 constitute "transport means". Further, the support device 22 constitutes "support means" and the winding device 29 constitutes "winding means".
 搬送ロール21は、自由回転可能であって電極前駆体100又はドープ電極110が掛装されている。複数の搬送ロール21のうちの一部は、プリウェット槽24、ドープ槽25又は洗浄槽26の内部に配置可能であり、この搬送ロール21によって、電極前駆体100及びドープ電極110を各槽24~26内にて折り返し可能である。そのため、電極前駆体100及びドープ電極110を、各槽24~26内に入った後、各槽24~26内に位置する搬送ロール21を経て、各槽24~26から出る経路で搬送することができる。 The transport roll 21 is freely rotatable and has the electrode precursor 100 or the doped electrode 110 hung thereon. Some of the plurality of transport rolls 21 can be arranged inside the pre-wetting tank 24 , the dope tank 25 or the cleaning tank 26 . It can be folded within ~26. Therefore, the electrode precursor 100 and the doped electrode 110 are conveyed after entering each of the tanks 24 to 26, via the conveying rolls 21 positioned in each of the tanks 24 to 26, and on the route exiting each of the tanks 24 to 26. can be done.
 また、ドープ槽25の鉛直上方に配置される複数の搬送ロール21は、給電ロール21aを構成している。給電ロール21aには、ドープ槽25に入る直前又はドープ槽25を出た直後の電極前駆体100又はドープ電極110が掛装されている。そして、給電ロール21aのうち少なくとも電極前駆体100又はドープ電極110が掛装される部位は、導電性の材料により構成されるとともに、所定の直流電源(不図示)のマイナス極と接続されている。尚、給電ロール21aとドープ槽25内に配置された搬送ロール21とによって、ドープ槽25に対応する電極前駆体100の搬送経路は、複数回折り返された経路とされている。従って、電極前駆体100は、ドープ槽25内に繰り返し出入り可能である。 Further, the plurality of transport rolls 21 arranged vertically above the dope tank 25 constitute power supply rolls 21a. An electrode precursor 100 or a dope electrode 110 immediately before entering the dope tank 25 or immediately after exiting the dope tank 25 is hung on the feed roll 21a. At least the portion of the power supply roll 21a on which the electrode precursor 100 or the doped electrode 110 is hung is made of a conductive material and is connected to the negative pole of a predetermined DC power source (not shown). . The transport path of the electrode precursor 100 corresponding to the dope tank 25 is made to be a multiple-fold path by the feeding roll 21 a and the transport roll 21 arranged in the dope tank 25 . Therefore, the electrode precursor 100 can be repeatedly moved in and out of the dope tank 25 .
 さらに、給電ロール21aとの間で電極前駆体100又はドープ電極110を挟む位置には、自由回転可能な押圧ロール21bが設けられている。押圧ロール21bは、電極前駆体100又はドープ電極110を給電ロール21a側へと押圧する。これにより、給電ロール21aと電極前駆体100又はドープ電極110とをより安定した状態で電気的に接続することが可能となっている。尚、給電ロール21a以外の搬送ロール21と押圧ロール21bとは、軸受部分を除き、所定の絶縁性材料(例えば絶縁性エラストマーなど)により形成されている。 Furthermore, a freely rotatable pressing roll 21b is provided at a position that sandwiches the electrode precursor 100 or the dope electrode 110 with the power supply roll 21a. The pressing roll 21b presses the electrode precursor 100 or the doped electrode 110 toward the power feeding roll 21a. Thereby, it is possible to electrically connect the power supply roll 21a and the electrode precursor 100 or the dope electrode 110 in a more stable state. The conveying roll 21 other than the power feeding roll 21a and the pressing roll 21b are made of a predetermined insulating material (for example, an insulating elastomer) except for the bearing portions.
 支持装置22は、電極前駆体100がロール状に巻回されてなる原反105を支持しており、ここから繰り出された電極前駆体100が前記経路を通って搬送される。支持装置22は、原反105を支持する支持軸22aと、該支持軸22aを回転させるための繰出モータ(不図示)とを備えている。本実施形態では、前記繰出モータの駆動により原反105から電極前駆体100が繰り出される。 The support device 22 supports a raw material 105 formed by winding the electrode precursor 100 into a roll, and the electrode precursor 100 unwound from this is transported through the path. The support device 22 includes a support shaft 22a that supports the original fabric 105, and a delivery motor (not shown) for rotating the support shaft 22a. In this embodiment, the electrode precursor 100 is fed out from the raw roll 105 by driving the feeding motor.
 また、本実施形態において、前記繰出モータは所定のケース(図示せず)に収容されており、該ケース内に対し、気体制御システム5の後述する不活性ガス供給装置58から、主に窒素からなる不活性ガスが供給されている。この不活性ガスの供給により、ケース外に対しケース内を正圧とすることができ、ひいてはケース内への酸素や気化した電解液などの流入を防止可能となっている。 Further, in this embodiment, the feed motor is housed in a predetermined case (not shown), and an inert gas supply device 58, which will be described later, of the gas control system 5 supplies gas, mainly nitrogen, to the inside of the case. An inert gas is supplied. By supplying this inert gas, the inside of the case can be made to have a positive pressure with respect to the outside of the case, so that the inflow of oxygen, vaporized electrolytic solution, etc. into the case can be prevented.
 終端検出センサ23は、原反105から繰り出される電極前駆体100の終端を検出するためのものである。この終端は、支持装置22へと新たな原反105を供給する際に、該原反105における電極前駆体100の始端を接続する対象となる。本実施形態において、終端検出センサ23は、支持装置22により支持された原反105の巻き径(外径)を把握可能なセンサにより構成されている。この巻き径が予め設定された所定値以下となったときに、終端検出センサ23から後述する制御装置59に対し前記終端を検出した旨の信号が送られる。 The end detection sensor 23 is for detecting the end of the electrode precursor 100 fed out from the original fabric 105 . This terminal end serves as a target for connecting the starting end of the electrode precursor 100 in the new raw material 105 when the new raw material 105 is supplied to the supporting device 22 . In the present embodiment, the end detection sensor 23 is configured by a sensor capable of grasping the winding diameter (outer diameter) of the raw fabric 105 supported by the support device 22 . When the winding diameter becomes equal to or less than a preset value, the end detection sensor 23 sends a signal indicating that the end has been detected to the controller 59, which will be described later.
 プリウェット槽24は、上部が開口した槽であり、内部に電解液を収容している。電解液については後述する。プリウェット槽24は、所定の昇降装置24aによって上下動可能とされている。 The pre-wet tank 24 is a tank with an open top and contains an electrolytic solution inside. The electrolytic solution will be described later. The pre-wet tank 24 can be vertically moved by a predetermined lifting device 24a.
 前記昇降装置24aによりプリウェット槽24が所定の上方位置に配置された状態においては、プリウェット槽24に収容された電解液中に電極前駆体100の搬送経路が位置する状態となり、搬送される電極前駆体100は電解液中を通過する。電解液中を電極前駆体100が通過することで、電極前駆体100が電解液で湿潤される。一方、前記昇降装置24aによりプリウェット槽24が所定の下方位置に配置された状態においては、プリウェット槽24に収容された電解液の外に電極前駆体100の搬送経路が位置した状態となる。 In the state where the pre-wetting tank 24 is arranged at a predetermined upper position by the lifting device 24a, the transport path of the electrode precursor 100 is positioned in the electrolytic solution contained in the pre-wetting tank 24, and the electrode precursor 100 is transported. The electrode precursor 100 is passed through the electrolyte. The electrode precursor 100 is wetted with the electrolyte by passing the electrode precursor 100 through the electrolyte. On the other hand, when the pre-wet tank 24 is placed at a predetermined lower position by the lifting device 24a, the transport path of the electrode precursor 100 is positioned outside the electrolyte contained in the pre-wet tank 24. .
 電解液は、リチウムイオン及び可燃性の溶剤(溶媒)を含む。リチウムイオンは、リチウム塩を構成するイオンである。リチウム塩を構成するアニオン部としては、六フッ化リン酸アニオン(PF6-)、PF3(C2F5)3-、PF3(CF3)3-などのフルオロ基を有するリンアニオンなどを挙げることができる。尚、PF6-などは化学式を示すものである。また、各化学式において、数字は正確には下付き数字であり、“-”は正確には上付き記号であるが、便宜上、下付き数字及び上付き記号とはせずに示している。 The electrolyte contains lithium ions and a flammable solvent (solvent). Lithium ions are the ions that make up lithium salts. Examples of the anion part constituting the lithium salt include phosphorus anions having a fluoro group such as hexafluorophosphate anion (PF6-), PF3(C2F5)3-, and PF3(CF3)3-. Incidentally, PF6- and the like indicate chemical formulas. In addition, in each chemical formula, numbers are strictly subscript numbers, and "-" is actually a superscript symbol, but for the sake of convenience, they are shown without subscript numbers and superscript symbols.
 また、電解液におけるリチウム塩の濃度は、0.1モル/L以上であることが好ましい。本実施形態においては、リチウムのドーピングを効率よく行うべく、電解液におけるリチウム塩の濃度は0.8~1.5モル/Lとされている。 Also, the concentration of the lithium salt in the electrolytic solution is preferably 0.1 mol/L or more. In this embodiment, the concentration of the lithium salt in the electrolytic solution is set to 0.8 to 1.5 mol/L in order to efficiently dope lithium.
 さらに、電解液を構成する溶剤(溶媒)としては、有機溶媒を挙げることができ、有機溶媒としては、非プロトン性の有機溶媒を挙げることができる。非プロトン性の有機溶媒としては、例えば、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC),エチレンカーボネート(EC)、プロピレンカーボネート、ブチレンカーボネート、ジエチルカーボネート、1-フルオロエチレンカーボネート、γ-ブチロラクタンなどを挙げることができる。尚、有機溶媒は、単一の成分からなるものであってもよいし、複数成分を混合してなるものであってもよい。本実施形態において、電解液の溶剤(溶媒)は、DMC、EMC及びECがそれぞれ同量ずつ混合されてなる。 Furthermore, as the solvent (solvent) that constitutes the electrolytic solution, an organic solvent can be mentioned, and as the organic solvent, an aprotic organic solvent can be mentioned. Aprotic organic solvents include, for example, dimethyl carbonate (DMC), ethylmethyl carbonate (EMC), ethylene carbonate (EC), propylene carbonate, butylene carbonate, diethyl carbonate, 1-fluoroethylene carbonate, γ-butyrolactane and the like. can be mentioned. The organic solvent may consist of a single component, or may consist of a mixture of a plurality of components. In this embodiment, the solvent (solvent) of the electrolytic solution is a mixture of equal amounts of DMC, EMC and EC.
 尚、電解液は、ビニレンカーボネート、ビニルエチレンカーボネート、1-(トリフルオロメチル)エチレンカーボネート、無水コハク酸、無水マレイン酸、プロパンスルトン、ジエチルスルホン等の添加物を含有するものであってもよい。また、電解液は、ホスファゼン化合物などの難燃剤を含有するものであってもよい。 The electrolytic solution may contain additives such as vinylene carbonate, vinylethylene carbonate, 1-(trifluoromethyl)ethylene carbonate, succinic anhydride, maleic anhydride, propanesultone, and diethylsulfone. Moreover, the electrolytic solution may contain a flame retardant such as a phosphazene compound.
 ドープ槽25は、上部が開口した槽であり、内部に電解液を収容している。ドープ槽25に収容される電解液は、プリウェット槽24に収容される電解液と同一である。ドープ槽25は、プリウェット槽24と同様に、所定の昇降装置25aによって上下動可能とされている。 The dope tank 25 is a tank whose top is open and contains an electrolytic solution. The electrolyte contained in the dope tank 25 is the same as the electrolyte contained in the pre-wet tank 24 . Like the pre-wet tank 24, the dope tank 25 can be vertically moved by a predetermined elevating device 25a.
 前記昇降装置25aによってドープ槽25が所定の上方位置に配置された状態においては、ドープ槽25に収容された電解液中に電極前駆体100の搬送経路が位置した状態となり、搬送される電極前駆体100が電解液中を通過する。一方、前記昇降装置25aによってドープ槽25が所定の下方位置に配置された状態においては、ドープ槽25に収容された電解液の外に電極前駆体100及びドープ電極110の搬送経路が位置した状態となる。 When the dope tank 25 is placed at a predetermined upper position by the elevating device 25a, the transport path of the electrode precursor 100 is positioned in the electrolytic solution contained in the dope tank 25, and the electrode precursor is transported. Body 100 passes through the electrolyte. On the other hand, when the dope tank 25 is placed at a predetermined lower position by the elevating device 25a, the conveying path of the electrode precursor 100 and the dope electrode 110 is positioned outside the electrolyte contained in the dope tank 25. becomes.
 また、ドープ槽25には、ろ過循環装置(不図示)が設けられている。該ろ過循環装置には、ポンプ及びフィルタを有する循環路が設けられている。そして、ドープ槽25内の電解液は、前記ポンプにより圧送されて前記フィルタを通るように循環し、最終的にドープ槽25内に戻るようになっている。これにより、電解液に含まれる不純物の除去がなされている。尚、前記フィルタは、例えば、ポリプロピレン、ポリテトラフルオロエチレンなどの樹脂により形成することができる。また、上記ろ過循環装置を、プリウェット槽24や洗浄槽26に設けることとしてもよい。 In addition, the dope tank 25 is provided with a filtration circulation device (not shown). The filter circulation device is provided with a circuit having a pump and a filter. The electrolytic solution in the dope tank 25 is pumped by the pump, circulated through the filter, and finally returned to the dope tank 25 . As a result, impurities contained in the electrolytic solution are removed. The filter can be made of resin such as polypropylene or polytetrafluoroethylene. Further, the filtration circulation device may be provided in the pre-wet tank 24 or the cleaning tank 26 .
 加えて、ドープ槽25に対応して複数の対極ユニット251が設けられている。対極ユニット251は、導電性基材251a及び対極部材251bを備えている(図7参照)。 In addition, a plurality of counter electrode units 251 are provided corresponding to the dope tanks 25 . The counter electrode unit 251 includes a conductive substrate 251a and a counter electrode member 251b (see FIG. 7).
 導電性基材251aは、銅、ステンレス、ニッケルなどの導電性金属により構成された板状部材である。導電性基材251aは、自身の上端部を図7の紙面直交方向に貫く支持棒(不図示)によって支持されており、その結果、対極ユニット251は、ドープ槽25の上下位置によることなく常に一定の高さ位置に配置されるようになっている。 The conductive base material 251a is a plate-shaped member made of a conductive metal such as copper, stainless steel, or nickel. The conductive base material 251a is supported by a support rod (not shown) that penetrates the upper end of the conductive base material 251a in the direction perpendicular to the plane of FIG. It is arranged at a fixed height position.
 対極部材251bは、所定厚さ(例えば0.03~3mm程度)を有する板状部材であり、リチウムを含む金属(例えばリチウムを主として含む合金など)により形成されている。対極部材251bは、導電性基材251aの側面に固定されている。 The counter electrode member 251b is a plate-shaped member having a predetermined thickness (for example, about 0.03 to 3 mm), and is made of a metal containing lithium (for example, an alloy mainly containing lithium). The counter electrode member 251b is fixed to the side surface of the conductive substrate 251a.
 また、1組(2つ)の対極ユニット251において、対極部材251b同士は、所定の隙間をあけた状態で相対向しており、この隙間を通って電極前駆体100が搬送されるようになっている。対極部材251bと電極前駆体100(の搬送経路)との間の距離は、対極部材251bに対する電極前駆体100の接触を防止可能な大きさに設定される。 In one set (two) of the counter electrode units 251, the counter electrode members 251b face each other with a predetermined gap therebetween, and the electrode precursor 100 is conveyed through this gap. ing. The distance between the counter electrode member 251b and (the transport path of) the electrode precursor 100 is set to a size that can prevent the contact of the electrode precursor 100 with the counter electrode member 251b.
 加えて、各対極ユニット251の所定部位(例えば導電性基材251aの上端部)は、前記直流電源のプラス極に接続されている。そのため、給電ロール21aに接する電極前駆体100と対極部材251bとの間に電位差を発生させることが可能となっている。そして、この電位差を利用し、ドープ槽25内の電解液中で電極前駆体100及び対極部材251b間に電流を流すことにより、電極前駆体100に対しリチウムがドーピングされる。電極前駆体100にリチウムがドーピングされることで、ドープ電極110が得られる。 In addition, a predetermined portion of each counter electrode unit 251 (for example, the upper end of the conductive substrate 251a) is connected to the positive electrode of the DC power supply. Therefore, it is possible to generate a potential difference between the electrode precursor 100 and the counter electrode member 251b in contact with the power supply roll 21a. Using this potential difference, the electrode precursor 100 is doped with lithium by causing a current to flow between the electrode precursor 100 and the counter electrode member 251b in the electrolytic solution in the doping tank 25 . A doped electrode 110 is obtained by doping the electrode precursor 100 with lithium.
 尚、リチウムのドーピングの態様としては、リチウムをイオンの状態で活物質にインターカレーションさせる態様であってもよいし、リチウムの合金が形成される態様であってもよいし、リチウムイオンがSEI被膜となって消費される態様であってもよい。 The doping of lithium may be a mode in which lithium is intercalated in the active material in the form of ions, a mode in which a lithium alloy is formed, or a mode in which lithium ions are added to the SEI. It may be consumed as a film.
 洗浄槽26は、上部が開口した槽であり、内部に可燃性の溶剤(溶媒)を収容している。洗浄槽26に収容される溶剤としては、上述した、電解液を構成する溶剤を挙げることができる。洗浄槽26は、ドープ槽25などと同様に、所定の昇降装置26aによって上下動可能とされている。 The cleaning tank 26 is a tank with an open top, and contains a combustible solvent (solvent) inside. Examples of the solvent contained in the cleaning tank 26 include the solvent constituting the electrolytic solution described above. As with the dope tank 25, the washing tank 26 can be vertically moved by a predetermined lifting device 26a.
 前記昇降装置26aにより洗浄槽26が所定の上方位置に配置された状態においては、洗浄槽26に収容された溶剤中にドープ電極110の搬送経路が位置した状態となり、搬送されるドープ電極110が溶剤中を通過する。溶剤中をドープ電極110が通過することで、ドープ電極110の表面に付着した不純物の除去等がなされ、ドープ電極110が洗浄される。一方、前記昇降装置26aによって洗浄槽26が所定の下方位置に配置された状態においては、洗浄槽26に収容された溶剤の外にドープ電極110の搬送経路が位置した状態となる。 When the cleaning tank 26 is placed at a predetermined upper position by the elevating device 26a, the transport path of the dope electrode 110 is positioned in the solvent contained in the cleaning tank 26, and the dope electrode 110 being transported is positioned in the solvent. Pass through the solvent. By passing the dope electrode 110 through the solvent, impurities adhering to the surface of the dope electrode 110 are removed, and the dope electrode 110 is cleaned. On the other hand, when the washing tank 26 is placed at a predetermined lower position by the elevating device 26a, the conveying path of the dope electrode 110 is positioned outside the solvent contained in the washing tank 26. FIG.
 乾燥装置27は、ドープ電極110に付着した溶剤を気化させて、ドープ電極110を乾燥させる。乾燥装置27は、ドープ電極110の搬送経路に沿って設けられた複数の吹き出し口を備えており、これら吹き出し口から、主に窒素からなる不活性ガスをドープ電極110に向けて吹き付けることで、ドープ電極110を乾燥させる。尚、ドープ電極110を乾燥させるための不活性ガスは、後述する不活性ガス供給装置58から供給される。 The drying device 27 evaporates the solvent adhering to the dope electrode 110 and dries the dope electrode 110 . The drying device 27 has a plurality of outlets provided along the conveying path of the doped electrode 110. By blowing an inert gas mainly composed of nitrogen from these outlets toward the doped electrode 110, The doped electrode 110 is dried. The inert gas for drying the dope electrode 110 is supplied from an inert gas supply device 58, which will be described later.
 始端検出センサ28は、巻取装置29によって次に巻取られる新たな原反105に係る電極前駆体100(ドープ電極110)の始端を検出するためのものである。この始端は、巻取装置29に対して固定される。始端検出センサ28は、巻取装置29により巻取られたドープ電極110の巻き径(外径)を把握可能なセンサにより構成されている。この巻き径が予め設定された所定値以上となったときに、始端検出センサ28から後述する制御装置59に対し前記始端を検出した旨の信号が送られる。 The starting end detection sensor 28 is for detecting the starting end of the electrode precursor 100 (doped electrode 110) related to the new raw material 105 to be wound next by the winding device 29. This starting end is fixed with respect to the winding device 29 . The leading end detection sensor 28 is configured by a sensor capable of grasping the winding diameter (outer diameter) of the dope electrode 110 wound by the winding device 29 . When the winding diameter becomes equal to or greater than a predetermined value, the start edge detection sensor 28 sends a signal indicating that the start edge has been detected to the controller 59, which will be described later.
 巻取装置29は、ドープ槽25を経て得られたドープ電極110を巻取るための装置であり、巻取軸29aと該巻取軸29aを回転させるための巻取モータ(不図示)とを備えている。巻取軸29aは、例えば、チャックなど、新たな原反105における電極前駆体100(ドープ電極110)の始端を自身へと固定するための手段を備えている。そして、巻取軸29aに前記始端を固定した状態で前記巻取モータの駆動により巻取軸29aが回転することによって、ドープ電極110が巻取られるようになっている。 The winding device 29 is a device for winding the dope electrode 110 obtained through the dope tank 25, and includes a winding shaft 29a and a winding motor (not shown) for rotating the winding shaft 29a. I have. The take-up shaft 29a is provided with means, for example a chuck, for fixing the beginning of the electrode precursor 100 (the doped electrode 110) on the new stock 105 to itself. The dope electrode 110 is wound by driving the winding motor to rotate the winding shaft 29a with the start end fixed to the winding shaft 29a.
 また、前記巻取モータは、前記操出モータと同様に、所定のケース(図示せず)に収容されており、該ケース内に対する気化した電解液の流入などを防止すべく、該ケース内に対し、後述する不活性ガス供給装置58から不活性ガスが供給されている。尚、不活性ガス供給装置58とは別に、前記操出モータ又は前記巻取モータを収容する各ケースに対し不活性ガスを供給する装置を別途設けてもよい。 The winding motor, like the unwinding motor, is housed in a predetermined case (not shown). On the other hand, an inert gas is supplied from an inert gas supply device 58, which will be described later. In addition to the inert gas supply device 58, a separate device for supplying inert gas to each case housing the unwinding motor or the winding motor may be provided.
 〔5.インナーハウジング3〕
 次に、インナーハウジング3について説明する。インナーハウジング3は、アウターハウジング4よりも内側においてドープ装置2を覆い、内部にドープ装置2を収容するハウジングである。つまり、インナーハウジング3内の空間である内部屋3sは、ドープ装置2の配置空間として機能する。インナーハウジング3は、メインハウジング31及び防爆ハウジング32(図8,9参照)を備えている。尚、図9では、ドープ装置2を簡略化して示している。
[5. Inner housing 3]
Next, the inner housing 3 will be explained. The inner housing 3 is a housing that covers the doping device 2 inside the outer housing 4 and accommodates the doping device 2 inside. That is, the inner chamber 3 s, which is the space inside the inner housing 3 , functions as a space for arranging the doping device 2 . The inner housing 3 includes a main housing 31 and an explosion-proof housing 32 (see FIGS. 8 and 9). Note that FIG. 9 shows the doping apparatus 2 in a simplified manner.
 〔5-1.メインハウジング31〕
 メインハウジング31は、ドープ装置2における主要な装置と、該装置による処理の対象となる電極前駆体100及びドープ電極110とを内部に収容する。つまり、メインハウジング31は、少なくとも支持装置22、プリウェット槽24、ドープ槽25、洗浄槽26、乾燥装置27及び巻取装置29、並びに、支持装置22から巻取装置29にかけて位置する電極前駆体100及びドープ電極110を内部に収容する。メインハウジング31は、電極前駆体100及びドープ電極110の搬送経路に沿って上流側から順に、操出側ハウジング311、第一中間ハウジング312、ドープ処理ハウジング313、第二中間ハウジング314及び巻取側ハウジング315を備えている。
[5-1. Main housing 31]
The main housing 31 accommodates the main devices in the doping device 2 and the electrode precursor 100 and the doping electrode 110 to be processed by the device. That is, the main housing 31 includes at least the support device 22, the pre-wetting tank 24, the dope tank 25, the cleaning tank 26, the drying device 27, the winding device 29, and the electrode precursor positioned from the supporting device 22 to the winding device 29. 100 and doped electrode 110 are housed inside. The main housing 31 includes, in order from the upstream side along the conveying path of the electrode precursor 100 and the doping electrode 110, an unloading side housing 311, a first intermediate housing 312, a doping processing housing 313, a second intermediate housing 314, and a winding side. A housing 315 is provided.
 操出側ハウジング311は、電極前駆体100の操り出しが行われる位置に対応して設けられたハウジングである。操出側ハウジング311は、少なくとも支持装置22及び該支持装置22により支持された原反105を内部に収容する。 The unloading-side housing 311 is a housing provided corresponding to the position where the electrode precursor 100 is unloaded. The unloading-side housing 311 accommodates therein at least the supporting device 22 and the original fabric 105 supported by the supporting device 22 .
 また、操出側ハウジング311における所定部位(例えば、天井部分)には、操出側内外連通部311aが形成されている。操出側内外連通部311aは、操出側ハウジング311の内部空間である操出側原反室311sと、後述する第一コンポーネント41内(第一介在室41s)との間を連通する開口(空間)である。 In addition, a delivery side inside/outside communication portion 311a is formed at a predetermined portion (for example, a ceiling portion) of the delivery side housing 311 . The unloading-side inside/outside communicating portion 311a is an opening ( space).
 さらに、操出側ハウジング311における所定部位(例えばドープ処理ハウジング313とは反対側に位置する壁部)には、出入口及び該出入口を密閉可能な扉(それぞれ不図示)が設けられている。この出入口は、操出側原反室311sと後述する第一コンポーネント41内との間を連通しており、操出側原反室311sに対する作業者の出入りや原反105の搬入などに利用される。 Furthermore, a predetermined portion (for example, a wall portion located on the side opposite to the dope processing housing 313) of the withdrawal side housing 311 is provided with an entrance and a door (not shown) capable of sealing the entrance. This doorway communicates between the unloading-side material fabric chamber 311s and the inside of a first component 41, which will be described later, and is used for workers to enter and exit the unloading-side material fabric chamber 311s and to carry in the material fabric 105. be.
 第一中間ハウジング312は、操出側ハウジング311とドープ処理ハウジング313との間に設けられたハウジングである。支持装置22から繰り出された電極前駆体100は、第一中間ハウジング312の内部空間である第一中間連通室312sを通ってドープ槽25側へと搬送される。 The first intermediate housing 312 is a housing provided between the withdrawal side housing 311 and the doping housing 313 . The electrode precursor 100 drawn out from the support device 22 is conveyed to the dope tank 25 side through the first intermediate communication chamber 312 s, which is the internal space of the first intermediate housing 312 .
 また、第一中間ハウジング312における所定部位(例えば、天井部分)には、第一内外連通部312aが形成されている。第一内外連通部312aは、第一中間ハウジング312内(第一中間連通室312s)と後述する第三コンポーネント43内(第三介在室43s)との間を連通する開口(空間)である。 Also, a first internal/external communication portion 312a is formed at a predetermined portion (for example, a ceiling portion) of the first intermediate housing 312 . The first inside/outside communicating portion 312a is an opening (space) that communicates between the inside of the first intermediate housing 312 (first intermediate communicating chamber 312s) and the inside of the third component 43 (third intermediate chamber 43s) described later.
 ドープ処理ハウジング313は、ドーピング処理が行われる位置に対応して設けられるハウジングである。本実施形態におけるドープ処理ハウジング313は、少なくともプリウェット槽24、ドープ槽25、洗浄槽26及び乾燥装置27を内部に収容する。ドープ処理ハウジング313の内部空間であるドープ処理室313sは、操出側ハウジング311内(操出側原反室311s)及び巻取側ハウジング315内(後述する巻取側原反室315s)とは別に区画されている。 The doping processing housing 313 is a housing provided corresponding to the position where the doping processing is performed. The doping housing 313 in this embodiment houses at least the pre-wet bath 24 , the doping bath 25 , the cleaning bath 26 and the drying device 27 inside. The doping chamber 313s, which is the inner space of the doping housing 313, is different from the inside of the unloading side housing 311 (unloading side web chamber 311s) and the winding side housing 315 (winding side web chamber 315s described below). partitioned separately.
 また、ドープ処理ハウジング313における所定部位(例えば、天井部分)には、中央側内外連通部313aが形成されている。中央側内外連通部313aは、ドープ処理室313sと後述する第三コンポーネント43内(第三介在室43s)との間を連通する開口(空間)である。本実施形態において、中央側内外連通部313aは複数(例えば3つ以上)設けられている。本実施形態では、中央側内外連通部313aが「内外連通部」に相当する。 In addition, a central inside/outside communicating portion 313a is formed at a predetermined portion (for example, a ceiling portion) of the doping processing housing 313 . The central inside/outside communicating portion 313a is an opening (space) that communicates between the doping processing chamber 313s and the inside of the third component 43 (third intermediate chamber 43s) described later. In this embodiment, a plurality (for example, three or more) of the central inside/outside communicating portions 313a are provided. In this embodiment, the central inside/outside communicating portion 313a corresponds to the "inside/outside communicating portion".
 第二中間ハウジング314は、ドープ処理ハウジング313及び巻取側ハウジング315間に設けられたハウジングである。ドープ槽25を経て得られたドープ電極110は、第二中間ハウジング314の内部空間である第二中間連通室314sを通って巻取装置29側へと搬送される。 The second intermediate housing 314 is a housing provided between the doping housing 313 and the take-up housing 315 . The dope electrode 110 obtained through the dope tank 25 is transported to the winding device 29 side through the second intermediate communication chamber 314 s, which is the internal space of the second intermediate housing 314 .
 また、第二中間ハウジング314における所定部位(例えば、天井部分)には、第二内外連通部314aが形成されている。第二内外連通部314aは、第二中間ハウジング314内(第二中間連通室314s)と後述する第三コンポーネント43内(第三介在室43s)との間を連通する開口(空間)である。 A second inside/outside communication portion 314a is formed at a predetermined portion (for example, a ceiling portion) of the second intermediate housing 314. As shown in FIG. The second internal/external communication portion 314a is an opening (space) that communicates between the inside of the second intermediate housing 314 (second intermediate communication chamber 314s) and the inside of the third component 43 (third intermediate chamber 43s), which will be described later.
 巻取側ハウジング315は、ドープ電極110の巻取りが行われる箇所に対応して設けられたハウジングである。巻取側ハウジング315は、少なくとも巻取装置29及び該巻取装置29により巻取られたドープ電極110を内部に収容する。 The winding-side housing 315 is a housing provided corresponding to a portion where the dope electrode 110 is wound. The winding-side housing 315 accommodates therein at least the winding device 29 and the dope electrode 110 wound by the winding device 29 .
 また、巻取側ハウジング315における所定部位(例えば、天井部分)には、巻取側内外連通部315aが形成されている。巻取側内外連通部315aは、巻取側ハウジング315の内部空間である巻取側原反室315sと後述する第二コンポーネント42内(第二介在室42s)との間を連通する開口(空間)である。 In addition, a winding-side inside/outside communication portion 315a is formed at a predetermined portion (for example, a ceiling portion) of the winding-side housing 315. As shown in FIG. The winding-side inside/outside communication portion 315a is an opening (space ).
 さらに、巻取側ハウジング315における所定の壁部(例えばドープ処理ハウジング313とは反対側に位置する壁部)には、操出側ハウジング311と同様に、出入口及び該出入口を密閉可能な扉(それぞれ不図示)が設けられている。この出入口は、巻取側原反室315sと後述する第二コンポーネント42内(第二介在室42s)との間を連通しており、巻取側原反室315sに対する作業者の出入りや巻取られたドープ電極110の搬出などに利用される。 Further, a predetermined wall portion (for example, a wall portion located on the opposite side of the doping housing 313) of the take-up side housing 315 has an entrance and a door ( (not shown) are provided. This entrance/exit communicates between the take-up side fabric chamber 315s and the inside of the second component 42 (second intervening chamber 42s) described later, and allows a worker to enter/exit the take-up side fabric chamber 315s and perform the winding operation. It is used for carrying out the doped electrode 110 that has been removed.
 尚、本実施形態では、操出側原反室311s、第一中間連通室312s、ドープ処理室313s、第二中間連通室314s及び巻取側原反室315sによって、メインハウジング31の内部空間であるメイン部屋31sが構成されている。そして、メイン部屋31s及び防爆ハウジング32の内部空間(後述する防爆部屋32s)によって前記内部屋3sが構成されている。 In the present embodiment, the inner space of the main housing 31 is formed by the unloading-side web chamber 311s, the first intermediate communication chamber 312s, the doping processing chamber 313s, the second intermediate communication chamber 314s, and the winding-side web chamber 315s. A certain main room 31s is configured. The inner chamber 3s is composed of the main chamber 31s and the inner space of the explosion-proof housing 32 (explosion-proof chamber 32s, which will be described later).
 〔5-2.防爆ハウジング32〕
 防爆ハウジング32は、インナーハウジング3のうち、ドープ装置2における「電気的接点が設けられた電気回路を備えてなる非防爆機器」や各種配線などを内部に収容するためのハウジングである。防爆ハウジング32の内部空間である防爆部屋32s(図8,9参照)には、例えば、後述するバルブ群51~53を構成する各種バルブを駆動するための電磁弁マニホールド、後述する酸素濃度計測センサ群55や圧力計測センサ群56を構成する各センサのアンプ、各種スイッチのIO等の機器が配置されている。これら機器は、コスト低減や小型化などを図るべく、上記の通り非防爆機器である。尚、図9では、防爆部屋32sに配置される機器などの図示を省略している。
[5-2. Explosion-proof housing 32]
The explosion-proof housing 32 is a housing for housing "a non-explosion-proof device having an electric circuit provided with an electric contact" and various wirings in the doping device 2 in the inner housing 3 . An explosion-proof chamber 32s (see FIGS. 8 and 9), which is an internal space of the explosion-proof housing 32, contains, for example, an electromagnetic valve manifold for driving various valves constituting valve groups 51 to 53 to be described later, and an oxygen concentration measuring sensor to be described later. Devices such as amplifiers for each sensor constituting the group 55 and the pressure measurement sensor group 56 and IO for various switches are arranged. These devices are non-explosion-proof devices, as described above, in order to reduce cost and size. It should be noted that, in FIG. 9, the illustration of devices and the like arranged in the explosion-proof room 32s is omitted.
 さらに、システムの煩雑化防止などを図るために、防爆部屋32sではバルブやセンサなどに係る配線の省配線がなされている。つまり、メイン部屋31sから防爆部屋32sに入る配線の数よりも、防爆部屋32sからその外に出る配線の数が少なくなるように、防爆部屋32sにて配線に係る処理がなされている。 Furthermore, in order to prevent the system from becoming complicated, wiring related to valves, sensors, etc. is reduced in the explosion-proof room 32s. In other words, the wiring is processed in the explosion-proof room 32s so that the number of wires going out from the explosion-proof room 32s is less than the number of wires entering the explosion-proof room 32s from the main room 31s.
 また、本実施形態において、防爆ハウジング32は、操出側ハウジング311の側方位置から巻取側ハウジング315の側方位置にかけて設けられている(図8参照)。これにより、防爆部屋32sは、それぞれ壁部を介して操出側原反室311sに隣接する空間、ドープ処理室313sに隣接する空間及び巻取側原反室315sに隣接する空間を備えるとともに、これら空間が連続した状態となっている。従って、操出側原反室311s、ドープ処理室313s及び巻取側原反室315sから防爆部屋32sに対する配線の導入に係る構造の簡素化や、省配線に係る利便性の向上などを図ることが可能である。 In addition, in this embodiment, the explosion-proof housing 32 is provided from the lateral position of the unloading side housing 311 to the lateral position of the winding side housing 315 (see FIG. 8). As a result, the explosion-proof room 32s is provided with a space adjacent to the unloading side material chamber 311s, a space adjacent to the doping chamber 313s, and a space adjacent to the winding side material chamber 315s through the walls, respectively. These spaces are continuous. Therefore, it is necessary to simplify the structure related to introduction of wiring from the unloading-side material fabric chamber 311s, the doping chamber 313s, and the winding-side material fabric chamber 315s to the explosion-proof room 32s, and to improve the convenience related to wiring saving. is possible.
 加えて、防爆ハウジング32における所定部位(例えば、天井部分)には、防爆側内外連通部32aが形成されている(図9参照)。防爆側内外連通部32aは、防爆ハウジング32内(防爆部屋32s)と後述する第一コンポーネント41内(第一介在室41s)との間を連通する開口(空間)である。 In addition, an explosion-proof side inside/outside communicating portion 32a is formed at a predetermined portion (for example, a ceiling portion) of the explosion-proof housing 32 (see FIG. 9). The explosion-proof side inside/outside communication portion 32a is an opening (space) that communicates between the inside of the explosion-proof housing 32 (explosion-proof room 32s) and the inside of the first component 41 (first intervening room 41s) described later.
 尚、本実施形態において、基本的には、防爆ハウジング32内がメインハウジング31内から空間的に隔てられた状態となるように構成されている。但し、両ハウジング31,32に共通する壁部に設けられた、前記配線を通すための孔などの影響により、防爆ハウジング32内がメインハウジング31内から完全に空間的に隔てられた状態となっている訳ではない。すなわち、メインハウジング31内と防爆ハウジング32内との間において、気体の移動が僅かに生じ得る状態となっている。 In addition, in this embodiment, basically, the inside of the explosion-proof housing 32 is configured to be in a state of being spatially separated from the inside of the main housing 31 . However, the inside of the explosion-proof housing 32 is completely spatially separated from the inside of the main housing 31 due to the influence of the holes for passing the wires, which are provided in the walls common to both housings 31 and 32 . It doesn't mean that That is, a state is created in which a slight movement of gas can occur between the inside of the main housing 31 and the inside of the explosion-proof housing 32 .
 〔6.アウターハウジング4〕
 次いで、アウターハウジング4について説明する。アウターハウジング4は、インナーハウジング3を覆い、内部にインナーハウジング3を収容するハウジングである。アウターハウジング4内の空間である外部屋4sは、内部屋3s(インナーハウジング3の内部空間)とドライルーム201とを空間的に隔離する役割を有する。アウターハウジング4は、第一コンポーネント41、第二コンポーネント及び第三コンポーネント43を備えている。
[6. Outer housing 4]
Next, the outer housing 4 will be explained. The outer housing 4 is a housing that covers the inner housing 3 and accommodates the inner housing 3 therein. The outer room 4 s, which is the space inside the outer housing 4 , has a role of spatially isolating the inner room 3 s (internal space of the inner housing 3 ) and the dry room 201 . The outer housing 4 comprises a first component 41 , a second component and a third component 43 .
 第一コンポーネント41は、操出側ハウジング311を覆い、該操出側ハウジング311を内部に収容している。第一コンポーネント41の内部空間である第一介在室41sと操出側原反室311s(操出側ハウジング311の内部空間)とは、操出側内外連通部311aを除き空間的に隔てられた状態となっている。 The first component 41 covers the withdrawal side housing 311 and accommodates the withdrawal side housing 311 inside. The first intervening chamber 41s, which is the internal space of the first component 41, and the unloading-side fabric chamber 311s (internal space of the unloading-side housing 311) are spatially separated except for the unloading-side inside/outside communication portion 311a. state.
 第二コンポーネント42は、巻取側ハウジング315を覆い、巻取側ハウジング315を内部に収容している。第二コンポーネント42の内部空間である第二介在室42sと巻取側原反室315s(巻取側ハウジング315の内部空間)とは、巻取側内外連通部315aを除き空間的に隔てられた状態となっている。 The second component 42 covers the winding-side housing 315 and accommodates the winding-side housing 315 inside. The second intermediate chamber 42s, which is the internal space of the second component 42, and the winding-side material fabric chamber 315s (internal space of the winding-side housing 315) are spatially separated except for the winding-side inside/outside communication portion 315a. state.
 第三コンポーネント43は、第一コンポーネント41及び第二コンポーネント42間に位置する。第三コンポーネント43は、ドープ処理ハウジング313を覆い、ドープ処理ハウジング313を内部に収容している。 The third component 43 is located between the first component 41 and the second component 42. The third component 43 covers the doping housing 313 and contains the doping housing 313 therein.
 第三コンポーネント43の内部空間である第三介在室43sは、第一介在室41s及び第二介在室42sとは別に区画されている。また、第三介在室43sとドープ処理室313s(ドープ処理ハウジング313の内部空間)とは、中央側内外連通部313aを除き空間的に隔てられた状態となっている。尚、各介在室41s,42s,43sとは、より正確には、コンポーネント41,42,43の内部空間のうちインナーハウジング3よりも外に位置する空間をいう。また、前記外部屋4sは第一介在室41s、第二介在室42s及び第三介在室43によって構成されている。 A third intervening chamber 43s, which is an internal space of the third component 43, is partitioned separately from the first intervening chamber 41s and the second intervening chamber 42s. Also, the third intermediate chamber 43s and the doping processing chamber 313s (internal space of the doping processing housing 313) are in a state of being spatially separated except for the central inside/outside communicating portion 313a. The intervening chambers 41 s, 42 s, 43 s, more precisely, refer to spaces located outside the inner housing 3 among the internal spaces of the components 41 , 42 , 43 . The outer room 4s is composed of a first intervening room 41s, a second intervening room 42s and a third intervening room 43. As shown in FIG.
 さらに、アウターハウジング4は、第一コンポーネント41内(第一介在室41s)と第三コンポーネント43内(第三介在室43s)との間に、第一外部屋隔壁部44を備えている。そして、第一外部屋隔壁部44における所定部位(例えば両ハウジング3,4の各天井部分の間に位置する部位)には、第一外部屋連通部44aが形成されている。第一外部屋連通部44aは、第一コンポーネント41内(第一介在室41s)と第三コンポーネント43内(第三介在室43s)との間を連通する開口(空間)である。尚、両介在室41s,43sは、第一外部屋連通部44aを除いて空間的に隔てられた状態となっている。 Furthermore, the outer housing 4 includes a first outer chamber partition wall portion 44 between the inside of the first component 41 (first intervening chamber 41s) and the inside of the third component 43 (third intervening chamber 43s). A first outer chamber communicating portion 44a is formed at a predetermined portion of the first outer chamber partition wall portion 44 (for example, a portion positioned between the ceiling portions of both housings 3 and 4). The first outer chamber communicating portion 44a is an opening (space) that communicates between the inside of the first component 41 (the first intervening chamber 41s) and the inside of the third component 43 (the third intervening chamber 43s). Note that both intervening chambers 41s and 43s are in a state of being spatially separated except for the first outer chamber communicating portion 44a.
 さらに、アウターハウジング4は、第二コンポーネント42内(第二介在室42s)と第三コンポーネント43内(第三介在室43s)との間に、第二外部屋隔壁部45を備えている。そして、第二外部屋隔壁部45における所定部位(例えば両ハウジング3,4の各天井部分の間に位置する部位)には、第二外部屋連通部45aが形成されている。第二外部屋連通部45aは、第二コンポーネント42内(第二介在室42s)と第三コンポーネント43(第三介在室43s)との間を連通する開口(空間)である。両介在室42s,43sは、第二外部屋連通部45aを除いて空間的に隔てられた状態となっている。 Furthermore, the outer housing 4 has a second outer chamber partition wall portion 45 between the inside of the second component 42 (the second intervening chamber 42s) and the inside of the third component 43 (the third intervening chamber 43s). A second outer room communicating portion 45a is formed at a predetermined portion of the second outer chamber partition wall portion 45 (for example, a portion positioned between the ceiling portions of both housings 3 and 4). The second outer chamber communicating portion 45a is an opening (space) that communicates between the inside of the second component 42 (second intervening chamber 42s) and the third component 43 (third intervening chamber 43s). Both intervening chambers 42s and 43s are in a state of being spatially separated except for the second outer chamber communicating portion 45a.
 加えて、アウターハウジング4(第三コンポーネント43)における所定部位(例えば天井部分)には、排気用開口43aが形成されている。排気用開口43aは、所定のダクト46の内部空間を介して外部(インナーハウジング3内、アウターハウジング4内及びドライルーム201とは異なる空間であって、例えば屋外など)に通じている。これにより、第三介在室43sの気体を外部に排出可能となっている。 In addition, an exhaust opening 43a is formed in a predetermined portion (for example, a ceiling portion) of the outer housing 4 (third component 43). The exhaust opening 43 a communicates with the outside (inside the inner housing 3 , the inside of the outer housing 4 , and a space different from the dry room 201 , such as the outdoors, for example) through the internal space of a predetermined duct 46 . Thereby, the gas in the third intermediate chamber 43s can be discharged to the outside.
 〔7.気体制御システム5〕
 次いで、気体制御システム5について説明する。図6に示すように、気体制御システム5は、内部屋対応バルブ群51、内外対応バルブ群52、外部屋対応バルブ群53、排気装置54、酸素濃度計測センサ群55、圧力計測センサ群56、酸素供給装置57、不活性ガス供給装置58及び制御装置59を備えている。本実施形態では、排気装置54が「排気手段」を構成し、同様に、酸素濃度計測センサ群55が「酸素濃度計測手段」を、圧力計測センサ群56が「圧力計測手段」を、酸素供給装置57が「酸素供給手段」を、不活性ガス供給装置58が「不活性ガス供給手段」をそれぞれ構成する。
[7. gas control system 5]
Next, the gas control system 5 will be explained. As shown in FIG. 6, the gas control system 5 includes an inner room valve group 51, an inside/outside valve group 52, an outer room valve group 53, an exhaust device 54, an oxygen concentration measurement sensor group 55, a pressure measurement sensor group 56, An oxygen supply device 57 , an inert gas supply device 58 and a control device 59 are provided. In this embodiment, the exhaust device 54 constitutes the "exhaust means", and similarly, the oxygen concentration measurement sensor group 55 constitutes the "oxygen concentration measurement means", the pressure measurement sensor group 56 constitutes the "pressure measurement means", and oxygen supply. The device 57 constitutes the "oxygen supply means" and the inert gas supply device 58 constitutes the "inert gas supply means".
 〔7-1.内部屋対応バルブ群51〕
 内部屋対応バルブ群51は、メイン部屋31sを構成する各室311s,312s,313s,314s,315s間における気体の出入りを制御するためのものである。内部屋対応バルブ群51は、電極前駆体100及びドープ電極110の搬送経路に沿って設けられており、図5に示すように、第一上流バルブ511、第二上流バルブ512、第一下流バルブ513及び第二下流バルブ514を備えている。
[7-1. Inner room corresponding valve group 51]
The inner room corresponding valve group 51 is for controlling the inflow and outflow of gas between the respective chambers 311s, 312s, 313s, 314s, and 315s that constitute the main chamber 31s. The inner chamber corresponding valve group 51 is provided along the transport path of the electrode precursor 100 and the doped electrode 110, and as shown in FIG. 513 and a second downstream valve 514 .
 第一上流バルブ511は、第一中間連通室312sにおける操出側ハウジング311側の開口に設けられており、操出側ハウジング311内(操出側原反室311s)と第一中間ハウジング312内(第一中間連通室312s)との間の連通、非連通を切換える機能を有する。第二上流バルブ512は、第一中間連通室312sにおけるドープ処理ハウジング313側の開口に設けられており、ドープ処理ハウジング313内(ドープ処理室313s)と第一中間ハウジング312内(第一中間連通室312s)との間の連通、非連通を切換える機能を有する。また、これら上流バルブ511,512によって、第一中間連通室312sにおける操出側ハウジング311内とドープ処理ハウジング313内との間の連通、非連通が切換可能とされている。 The first upstream valve 511 is provided in the opening of the first intermediate communication chamber 312s on the side of the unloading side housing 311, and is connected to the inside of the unloading side housing 311 (unloading side fabric chamber 311s) and the first intermediate housing 312. It has a function of switching between communication and non-communication with (first intermediate communication chamber 312s). The second upstream valve 512 is provided at the opening of the first intermediate communication chamber 312s on the side of the doping processing housing 313, and connects the inside of the doping processing housing 313 (doping processing chamber 313s) and the first intermediate housing 312 (first intermediate communication It has a function of switching between communication and non-communication with the chamber 312s). In addition, these upstream valves 511 and 512 enable switching between communication and non-communication between the inside of the withdrawal side housing 311 and the inside of the doping processing housing 313 in the first intermediate communication chamber 312s.
 第一下流バルブ513は、第二中間連通室314sにおける巻取側ハウジング315側の開口に設けられており、巻取側ハウジング315内(巻取側原反室315s)と第二中間ハウジング314内(第二中間連通室314s)との間の連通、非連通を切換える機能を有する。第二下流バルブ514は、第二中間連通室314sにおけるドープ処理ハウジング313側の開口に設けられており、ドープ処理ハウジング313内(ドープ処理室313s)と第二中間ハウジング314内(第二中間連通室314s)との間の連通、非連通を切換える。また、これら下流バルブ513,514によって、ドープ処理ハウジング313内と巻取側ハウジング315内との間の連通、非連通を切換可能となっている。 The first downstream valve 513 is provided in the opening of the second intermediate communication chamber 314 s on the side of the winding-side housing 315 , and the inside of the winding-side housing 315 (winding-side material fabric chamber 315 s) and the inside of the second intermediate housing 314 are connected. It has a function of switching between communication and non-communication with (second intermediate communication chamber 314s). The second downstream valve 514 is provided in the opening of the second intermediate communication chamber 314s on the side of the doping processing housing 313, and connects the inside of the doping processing housing 313 (doping processing chamber 313s) and the inside of the second intermediate housing 314 (second intermediate communication 314s) is switched between communication and non-communication. In addition, these downstream valves 513 and 514 are capable of switching between communication and non-communication between the inside of the dope processing housing 313 and the inside of the take-up housing 315 .
 尚、各バルブ511~514は、電極前駆体100又はドープ電極110をその厚さ方向に沿って上下から挟むことで、空間同士を非連通とすることが可能に構成されている。 The valves 511 to 514 sandwich the electrode precursor 100 or the doped electrode 110 from above and below along the thickness direction, thereby making it possible to disconnect the spaces.
 〔7-2.内外対応バルブ群52〕
 内外対応バルブ群52は、内部屋3sと外部屋4sとの間における気体の出入りを制御する。内外対応バルブ群52は、操出側内外バルブ521、第一中間内外バルブ522、中央側内外バルブ523、第二中間内外バルブ524、巻取側内外バルブ525及び防爆側内外バルブ526(図9参照)を備えている。
[7-2. Internal/external corresponding valve group 52]
The inside/outside corresponding valve group 52 controls the entry and exit of gas between the inner room 3s and the outer room 4s. The internal/external corresponding valve group 52 includes an unloading side internal/external valve 521, a first intermediate internal/external valve 522, a central internal/external valve 523, a second intermediate internal/external valve 524, a winding-side internal/external valve 525, and an explosion-proof side internal/external valve 526 (see FIG. 9). ).
 操出側内外バルブ521は、操出側内外連通部311aに設けられており、操出側内外連通部311aにおける操出側ハウジング311内(操出側原反室311s)と第一コンポーネント41内(第一介在室41s)との連通、非連通を切換可能とされている。また、操出側内外バルブ521は、開度を調節可能に構成されており、操出側内外連通部311aにおける操出側ハウジング311内から第一コンポーネント41内への気体の流れ(流量など)を調節する機能を備えている。 The unloading side inside/outside valve 521 is provided in the unloading side inside/outside communicating portion 311a, and is located inside the unloading side housing 311 (unloading side fabric chamber 311s) and in the first component 41 in the unloading side inside/outside communicating portion 311a. It is possible to switch between communication and non-communication with (the first intervention chamber 41s). In addition, the draw-out side inside/outside valve 521 is configured so that the degree of opening can be adjusted, and the gas flow (flow rate, etc.) from inside the draw-out side housing 311 into the first component 41 in the draw-out side inside/outside communication portion 311a. It has the ability to adjust the
 第一中間内外バルブ522は、第一内外連通部312aに設けられており、第一内外連通部312aにおける第一中間ハウジング312内(第一中間連通室312s)と第三コンポーネント43内(第三介在室43s)との間の連通、非連通を切換える機能を有する。 The first intermediate inside/outside valve 522 is provided in the first inside/outside communication portion 312a, and is provided in the first inside/outside communication portion 312a inside the first intermediate housing 312 (first intermediate communication chamber 312s) and inside the third component 43 (third It has a function of switching between communication and non-communication with the intervention chamber 43s).
 中央側内外バルブ523は、複数設けられており、それぞれ中央側内外連通部313aに設置されている。これら中央側内外バルブ523によって、中央側内外連通部313aにおけるドープ処理室313sと第三介在室43sとの間の連通、非連通を切換可能である。また、中央側内外バルブ523は、開度を調節可能に構成されており、ドープ処理室313sから第三介在室43sへの気体の流れ(流量など)を調節可能となっている。本実施形態では、中央側内外バルブ523によって、メインハウジング31内(メイン部屋31s)からアウターハウジング4内(外部屋4s)へと流れる気体の流量を調節可能な「流量調節手段」が構成されている。 A plurality of center-side inside/outside valves 523 are provided, and each is installed in the center-side inside/outside communicating portion 313a. These center-side inside/outside valves 523 can switch between communication and non-communication between the doping chamber 313s and the third intervening chamber 43s in the center-side inside/outside communicating portion 313a. In addition, the center side inside/outside valve 523 is configured to be able to adjust the degree of opening, so that the gas flow (flow rate, etc.) from the dope processing chamber 313s to the third intervention chamber 43s can be adjusted. In this embodiment, the central inside/outside valve 523 constitutes a “flow rate adjusting means” capable of adjusting the flow rate of the gas flowing from inside the main housing 31 (main chamber 31s) to inside the outer housing 4 (outside chamber 4s). there is
 第二中間内外バルブ524は、第二内外連通部314aに設けられており、第二内外連通部314aにおける第二中間ハウジング314内(第二中間連通室314s)と第三コンポーネント43内(第三介在室43s)との間の連通、非連通を切換可能とされている。 The second intermediate inside/outside valve 524 is provided in the second inside/outside communication portion 314a, and is provided in the second inside/outside communication portion 314a inside the second intermediate housing 314 (second intermediate communication chamber 314s) and inside the third component 43 (third Communication and non-communication with the intervention chamber 43s) can be switched.
 巻取側内外バルブ525は、巻取側内外連通部315aに設けられており、巻取側内外連通部315aにおける巻取側ハウジング315内(巻取側原反室315s)と第二コンポーネント42内(第二介在室42s)との間の連通、非連通を切換可能である。また、巻取側内外バルブ525は、開度を調節可能に構成されており、巻取側内外連通部315aにおける巻取側ハウジング315内から第二コンポーネント42内への気体の流れ(流量など)を調節する機能を備えている。 The winding-side inside/outside valve 525 is provided in the winding-side inside/outside communicating portion 315a, and is provided in the winding-side inside/outside communicating portion 315a inside the winding-side housing 315 (winding-side raw fabric chamber 315s) and inside the second component 42. (Second intervention chamber 42s) can be switched between communication and non-communication. In addition, the winding-side inside/outside valve 525 is configured to be able to adjust the degree of opening, and the gas flow (flow rate, etc.) from the inside of the winding-side housing 315 to the inside of the second component 42 in the winding-side inside/outside communication portion 315a. It has the ability to adjust the
 防爆側内外バルブ526は、防爆側内外連通部32aに設けられており、防爆側内外連通部32aにおける防爆ハウジング32内(防爆部屋32s)と第一コンポーネント41内(第一介在室41s)の連通、非連通を切換える機能を有する。 The explosion-proof side inside/outside valve 526 is provided in the explosion-proof side inside/outside communication portion 32a, and communicates the inside of the explosion-proof housing 32 (explosion-proof room 32s) and the inside of the first component 41 (first intermediate chamber 41s) in the explosion-proof side inside/outside communication portion 32a. , has the function of switching non-communication.
 〔7-3.外部屋対応バルブ群53〕
 外部屋対応バルブ群53は、外部屋4sを構成する各介在室41s~43s間における気体の出入りを制御する。外部屋対応バルブ群53は、第一外部屋バルブ531及び第二外部屋バルブ532を備えている。
[7-3. Outer room corresponding valve group 53]
The outer room corresponding valve group 53 controls the inflow and outflow of gas between the intervening chambers 41s to 43s that constitute the outer room 4s. The outer room corresponding valve group 53 includes a first outer room valve 531 and a second outer room valve 532 .
 第一外部屋バルブ531は、第一外部屋連通部44aに設けられており、第一外部屋連通部44aにおける第一コンポーネント41内(第一介在室41s)と第三コンポーネント43内(第三介在室43s)との間の連通、非連通を切換える。 The first outer chamber valve 531 is provided in the first outer chamber communication portion 44a, and is connected to the inside of the first component 41 (first intervening chamber 41s) and the third component 43 (third chamber 41s) in the first outer chamber communication portion 44a. It switches between communication and non-communication with the intervention chamber 43s).
 第二外部屋バルブ532は、第二外部屋連通部45aに設けられており、第二外部屋連通部45aにおける第二コンポーネント42内(第二介在室42s)と第三コンポーネント43内(第三介在室43s)との間の連通、非連通を切換可能とされている。 The second outer chamber valve 532 is provided in the second outer chamber communication portion 45a, and is connected inside the second component 42 (second intervening chamber 42s) and in the third component 43 (third chamber 42s) in the second outer chamber communication portion 45a. Communication and non-communication with the intervention chamber 43s) can be switched.
 尚、上述したバルブ群51~53を構成する各種バルブは、防爆の観点から、エアを駆動源として動作するエアオペレートバルブによって構成されている。 From the viewpoint of explosion protection, the various valves that make up the valve groups 51 to 53 described above are air operated valves that operate using air as a drive source.
 〔7-4.排気装置54〕
 排気装置54は、所定のファンなどを備えており、排気用開口43aに設けられている。排気装置54が駆動することで、アウターハウジング4内(第三コンポーネント43内)のガスを外部(例えばドーピングシステム1の設置される建物の外)に排出することが可能である。
[7-4. Exhaust device 54]
The exhaust device 54 includes a predetermined fan and the like, and is provided in the exhaust opening 43a. By driving the exhaust device 54, it is possible to exhaust the gas inside the outer housing 4 (inside the third component 43) to the outside (for example, outside the building where the doping system 1 is installed).
 〔7-5.酸素濃度計測センサ群55〕
 酸素濃度計測センサ群55は、メインハウジング31内の各所における酸素濃度を計測するためのものである。酸素濃度計測センサ群55は、操出側濃度計測センサ551、処理側濃度計測センサ552、巻取側濃度計測センサ553及び防爆側濃度計測センサ554(図9参照)を備えている。
[7-5. Oxygen concentration measurement sensor group 55]
The oxygen concentration measuring sensor group 55 is for measuring the oxygen concentration at various locations inside the main housing 31 . The oxygen concentration measuring sensor group 55 includes a feed-side concentration measuring sensor 551, a processing-side concentration measuring sensor 552, a winding-side concentration measuring sensor 553, and an explosion-proof side concentration measuring sensor 554 (see FIG. 9).
 操出側濃度計測センサ551は、操出側ハウジング311内(操出側原反室311s)に設けられており、操出側原反室311sの酸素濃度を計測する。 The delivery-side concentration measurement sensor 551 is provided inside the delivery-side housing 311 (delivery-side fabric chamber 311s) and measures the oxygen concentration in the delivery-side fabric chamber 311s.
 処理側濃度計測センサ552は、ドープ処理ハウジング313内(ドープ処理室313s)に設けられており、ドープ処理室313sの酸素濃度を計測する。 The processing-side concentration measurement sensor 552 is provided inside the doping processing housing 313 (doping processing chamber 313s) and measures the oxygen concentration in the doping processing chamber 313s.
 巻取側濃度計測センサ553は、巻取側ハウジング315内(巻取側原反室315s)に設けられており、巻取側原反室315sの酸素濃度を計測する。 The winding-side concentration measuring sensor 553 is provided inside the winding-side housing 315 (winding-side material chamber 315s) and measures the oxygen concentration in the winding-side material chamber 315s.
 防爆側濃度計測センサ554は、防爆ハウジング32内(防爆部屋32s)に設けられており、防爆部屋32sの酸素濃度を計測する。各濃度計測センサ551~554により計測された酸素濃度に係る情報は、制御装置59へと送られる。 The explosion-proof side concentration measurement sensor 554 is provided inside the explosion-proof housing 32 (explosion-proof room 32s) and measures the oxygen concentration in the explosion-proof room 32s. Information relating to the oxygen concentration measured by each concentration measuring sensor 551 to 554 is sent to the control device 59 .
 尚、上記各濃度計測センサ551~554に加えて、第一中間連通室312s及び第二中間連通室314sにおける各酸素濃度を計測するためのセンサを設けてもよい。 In addition to the concentration measurement sensors 551 to 554 described above, sensors for measuring each oxygen concentration in the first intermediate communication chamber 312s and the second intermediate communication chamber 314s may be provided.
 〔7-6.圧力計測センサ群56〕
 圧力計測センサ群56は、メインハウジング31内の各所における気圧を計測するためのものである。圧力計測センサ群56は、操出側圧力計測センサ561、処理側圧力計測センサ562、巻取側圧力計測センサ563及び防爆側圧力計測センサ564(図9参照)を備えている。
[7-6. pressure measurement sensor group 56]
The pressure measurement sensor group 56 is for measuring the air pressure at various locations inside the main housing 31 . The pressure measurement sensor group 56 includes a delivery side pressure measurement sensor 561, a processing side pressure measurement sensor 562, a winding side pressure measurement sensor 563, and an explosion-proof side pressure measurement sensor 564 (see FIG. 9).
 操出側圧力計測センサ561は、操出側ハウジング311内(操出側原反室311s)の気圧を計測するためのものであり、例えば操出側原反室311sの気圧と大気圧との差圧(気圧差)を計測するセンサによって構成されている。 The unloading-side pressure measuring sensor 561 is for measuring the air pressure in the unloading-side housing 311 (unloading-side fabric chamber 311s). It consists of a sensor that measures differential pressure (air pressure difference).
 処理側圧力計測センサ562は、ドープ処理ハウジング313内(ドープ処理室313s)の気圧を計測するためのものであり、例えばドープ処理室313sの気圧と大気圧との差圧を計測するセンサによって構成されている。 The processing-side pressure measurement sensor 562 is for measuring the atmospheric pressure inside the doping processing housing 313 (doping processing chamber 313s), and is configured by a sensor that measures the pressure difference between the atmospheric pressure in the doping processing chamber 313s and the atmospheric pressure, for example. It is
 巻取側圧力計測センサ563は、巻取側ハウジング315内(巻取側原反室315s)の気圧を計測するためのものであり、例えば巻取側原反室315sの気圧と大気圧との差圧を計測するセンサによって構成されている。 The winding-side pressure measuring sensor 563 is for measuring the air pressure inside the winding-side housing 315 (winding-side fabric chamber 315s). It consists of a sensor that measures differential pressure.
 防爆側圧力計測センサ564は、防爆ハウジング32内(防爆部屋32s)の気圧を計測するためのものであり、例えば防爆部屋32sの気圧と大気圧との差圧を計測するセンサにより構成されている。各圧力計測センサ561~564により計測された気圧に係る情報は、制御装置59へと送られる。 The explosion-proof side pressure measurement sensor 564 is for measuring the atmospheric pressure inside the explosion-proof housing 32 (explosion-proof room 32s), and is composed of, for example, a sensor that measures the differential pressure between the atmospheric pressure in the explosion-proof room 32s and the atmospheric pressure. . Information relating to the atmospheric pressure measured by each pressure measuring sensor 561 to 564 is sent to the control device 59 .
 尚、上記圧力計測センサ561~564に加えて、第一中間連通室312s及び第二中間連通室314sの各気圧を計測するためのセンサを設けてもよい。 In addition to the pressure measurement sensors 561 to 564, sensors for measuring the pressures of the first intermediate communication chamber 312s and the second intermediate communication chamber 314s may be provided.
 〔7-7.酸素供給装置57〕
 酸素供給装置57は、インナーハウジング3内に、酸素を含む酸素含有ガスを供給するものである。酸素供給装置57は、操出側原反室311s、ドープ処理室313s、巻取側原反室315s及び防爆部屋32sに対し酸素含有ガスを個別に供給可能とされている。本実施形態では、酸素含有ガスとしてクリーンドライエア(CDA)が用いられている。尚、酸素供給装置を複数設け、各酸素供給装置が、操出側原反室311s、ドープ処理室313s、巻取側原反室315s又は防爆部屋32sに対する酸素の供給を個別に行うように構成してもよい。
[7-7. oxygen supply device 57]
The oxygen supply device 57 supplies oxygen-containing gas into the inner housing 3 . The oxygen supply device 57 can individually supply oxygen-containing gas to the unloading-side fabric chamber 311s, the doping chamber 313s, the winding-side fabric chamber 315s, and the explosion-proof chamber 32s. In this embodiment, clean dry air (CDA) is used as the oxygen-containing gas. A plurality of oxygen supply devices are provided, and each oxygen supply device is configured to individually supply oxygen to the unloading-side fabric chamber 311s, the doping processing chamber 313s, the winding-side fabric chamber 315s, or the explosion-proof chamber 32s. You may
 〔7-8.不活性ガス供給装置58〕
 不活性ガス供給装置58は、インナーハウジング3内に、窒素を含む不活性ガスを供給するものである。不活性ガス供給装置58は、操出側原反室311s、ドープ処理室313s、巻取側原反室315s及び防爆部屋32sに対し不活性ガスを個別に供給可能とされている。本実施形態では、不活性ガスとして窒素濃度がほぼ100%の窒素ガスが用いられている。尚、不活性ガス供給装置を複数設け、各不活性ガス供給装置58が、操出側原反室311s、ドープ処理室313s、巻取側原反室315s又は防爆部屋32sに対する不活性ガスの供給を個別に行うように構成してもよい。また、不活性ガスは、窒素ガスに限定されず、例えばアルゴンガスなどであってもよい。
[7-8. inert gas supply device 58]
The inert gas supply device 58 supplies inert gas containing nitrogen into the inner housing 3 . The inert gas supply device 58 can individually supply inert gas to the unloading side fabric chamber 311s, the doping chamber 313s, the take-up side fabric chamber 315s, and the explosion-proof chamber 32s. In this embodiment, nitrogen gas having a nitrogen concentration of approximately 100% is used as the inert gas. A plurality of inert gas supply devices are provided, and each inert gas supply device 58 supplies the inert gas to the unwinding side film chamber 311s, the doping chamber 313s, the winding side film chamber 315s, or the explosion-proof chamber 32s. may be configured to be performed individually. Also, the inert gas is not limited to nitrogen gas, and may be argon gas, for example.
 〔7-9.制御装置59〕
 制御装置59は、ドーピングシステム1における各装置(例えばドープ装置2や各バルブ群51~53を構成する各種バルブ、酸素供給装置57、不活性ガス供給装置58など)の制御を担う。制御装置59は、演算装置としてのCPUや、各種プログラムを記憶するROM、演算データや入出力データなどの各種データを一時的に記憶するRAM、データを長期保存するための記憶媒体などを備えてなるコンピュータシステムにより構成されている。制御装置59によって、電極前駆体100及びドープ電極110の搬送又は搬送停止を切換えたり、電極前駆体100等に対する通電又は通電停止を切換えたり、内部屋3s及び外部屋4sにおける酸素濃度及び気圧を調節したりすることが可能である。本実施形態において、制御装置59は、「酸素濃度制御手段」及び「圧力制御手段」を構成する。
[7-9. control device 59]
The control device 59 controls each device in the doping system 1 (eg, the doping device 2, various valves constituting the valve groups 51 to 53, the oxygen supply device 57, the inert gas supply device 58, etc.). The control device 59 includes a CPU as a computing device, a ROM for storing various programs, a RAM for temporarily storing various data such as computation data and input/output data, and a storage medium for long-term storage of data. It is composed of a computer system. The control device 59 switches between transportation and transportation of the electrode precursor 100 and the doped electrode 110, switches between energization and discontinuation of the electrode precursor 100 and the like, and adjusts the oxygen concentration and air pressure in the inner chamber 3s and the outer chamber 4s. It is possible to In this embodiment, the control device 59 constitutes "oxygen concentration control means" and "pressure control means".
 制御装置59は、上記の通り、各バルブ群51~53を構成する各種バルブ、酸素供給装置57及び不活性ガス供給装置58の動作を制御可能である。制御装置59は、これらの制御に関し、ドープ電極110の製造に対応する制御(製造対応制御)と、支持装置22に対する新たな原反105の供給に対応する制御(供給対応制御)と、巻取られたドープ電極110の巻取装置29からの取外しに対応する制御(取外対応制御)と、防爆部屋32sに対応する制御(防爆対応制御)とをそれぞれ実行可能である。次に、これら制御について説明する。 The control device 59 can control the operations of various valves, the oxygen supply device 57, and the inert gas supply device 58, which constitute the valve groups 51 to 53, as described above. Regarding these controls, the control device 59 performs control corresponding to the manufacture of the doped electrode 110 (manufacturing control), control corresponding to the supply of the new raw material 105 to the supporting device 22 (supply control), and winding control. It is possible to perform control corresponding to removal of the doped electrode 110 from the winding device 29 (removal control) and control corresponding to the explosion-proof room 32s (explosion-proof control). Next, these controls will be explained.
 〔A.製造対応制御〕
 製造対応制御は、例えばキーボードなどの入力装置(不図示)を介して、制御装置59に対し命令を入力することにより実行される。入力装置は、例えばアウターハウジング4外のドライルーム201に設置される。
[A. Control for manufacturing]
Manufacturing compliant control is executed by inputting commands to the controller 59 via an input device (not shown) such as a keyboard. The input device is installed in a dry room 201 outside the outer housing 4, for example.
 製造対応制御は次のように実行される。すなわち、制御装置59は、メイン部屋31sを構成する各室311s~315sが連通した状態となるように内部屋対応バルブ群51を制御する。換言すると、制御装置59は、第一中間連通室312sにおけるハウジング311,313側の各開口及び第二中間連通室314sにおけるハウジング313,315側の各開口が開放されるように、各バルブ511~514を制御する。  Manufacturing-ready control is executed as follows. In other words, the control device 59 controls the inner room corresponding valve group 51 so that the respective chambers 311s to 315s constituting the main chamber 31s are in communication. In other words, the control device 59 controls the valves 511 to 511 so that the openings of the first intermediate communication chamber 312s on the housing 311, 313 side and the openings of the second intermediate communication chamber 314s on the housing 313, 315 side are opened. 514.
 さらに、制御装置59は、中央側内外連通部313aを除いてメイン部屋31s及び外部屋4sが気体的に隔てられた状態となるように内外対応バルブ群52を制御する。すなわち、制御装置59は、操出側内外連通部311a、第一内外連通部312a、第二内外連通部314a及び巻取側内外連通部315aが閉鎖されるように各バルブ521,522,524,525を制御する。尚、本実施形態において、制御装置59は、複数の中央側内外連通部313aのうちの一部が閉鎖されるように中央側内外バルブ523を制御する。 Furthermore, the control device 59 controls the inside/outside corresponding valve group 52 so that the main room 31s and the outside room 4s are separated by air except for the central inside/outside communication part 313a. That is, the control device 59 controls the valves 521, 522, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 524, 525. In this embodiment, the control device 59 controls the center side inside/outside valve 523 so that a part of the plurality of center side inside/outside communicating portions 313a is closed.
 また、制御装置59は、各介在室41s~43sが連通した状態となるように外部屋対応バルブ群53を制御する。すなわち、制御装置59は、各外部屋連通部44a,45aが開放されるように各バルブ531,532を制御する。 In addition, the control device 59 controls the outer chamber corresponding valve group 53 so that the intervening chambers 41s to 43s are in a state of communication. That is, the control device 59 controls the valves 531 and 532 so that the outer chamber communication portions 44a and 45a are opened.
 上記各バルブ群51~53に対する制御の結果、図10に示すように、中央側内外連通部313aの一部のみを除いてメイン部屋31s及び外部屋4sが空間的に隔てられる一方、メイン部屋31sを構成する各室311s~315sが連通し、また、外部屋4sを構成する各介在室41s~43sが連通した状態となる。尚、図10~14では、閉鎖されたバルブを黒塗りで示し、開放されたバルブを白塗りで示す。また、開度が調節されるバルブについては、半分のみを黒塗りとして示す。 As a result of controlling the respective valve groups 51 to 53, as shown in FIG. 10, the main chamber 31s and the outer chamber 4s are spatially separated except for a part of the central inside/outside communicating portion 313a, while the main chamber 31s are communicated with each other, and the intervening chambers 41s-43s constituting the outer chamber 4s are communicated with each other. 10-14, closed valves are shown in black and open valves are shown in white. Only half of valves whose opening is adjusted are shown in black.
 その上で、制御装置59は、各濃度計測センサ551~553により計測された酸素濃度に基づき、メイン部屋31s(メインハウジング31内)の酸素濃度が予め設定された所定範囲内となるように酸素供給装置57及び不活性ガス供給装置58を制御する。尚、前記所定範囲の上限は、例えば気化した電解液などへの引火防止の点から定めることができる。一方、前記所定範囲の下限は、例えばリチウム及び酸素の反応抑止の点から定めることができる。 Based on the oxygen concentration measured by each of the concentration measuring sensors 551 to 553, the control device 59 controls the oxygen concentration so that the oxygen concentration in the main room 31s (inside the main housing 31) is within a preset range. It controls the supply device 57 and the inert gas supply device 58 . The upper limit of the predetermined range can be determined, for example, from the viewpoint of preventing ignition of the vaporized electrolytic solution. On the other hand, the lower limit of the predetermined range can be determined, for example, from the viewpoint of inhibition of reaction between lithium and oxygen.
 さらに、制御装置59は、酸素濃度の制御に加えて、外部屋4s(アウターハウジング4内)に対しメイン部屋31s(メインハウジング31内)が正圧となり、ドライルーム201に対し外部屋4s(アウターハウジング4内)が負圧となるように、中央側内外バルブ523の開度を制御する。中央側内外バルブ523の制御は、各圧力計測センサ561~563から送られた気圧に係る情報や、酸素供給装置57及び不活性ガス供給装置58から供給されるガスの量に係る情報に基づき行われる。本実施形態において、制御装置59は、メイン部屋31sの気圧が例えば5~10Pa(ゲージ圧)となるように中央側内外バルブ523を制御する。尚、排気装置54によって、外部屋4sの気圧をメイン部屋31sの気圧よりも十分に低いもの〔例えば-25Pa(ゲージ圧)〕とすることができる。 Furthermore, in addition to controlling the oxygen concentration, the control device 59 makes the main room 31s (inside the main housing 31) positive pressure with respect to the outside room 4s (inside the outer housing 4), and the outside room 4s (inside the dry room 201). The opening degree of the center side inner/outer valve 523 is controlled so that the inside of the housing 4) becomes negative pressure. The control of the center side inner/outer valve 523 is performed based on the information about the atmospheric pressure sent from each pressure measuring sensor 561 to 563 and the information about the amount of gas supplied from the oxygen supply device 57 and the inert gas supply device 58. will be In this embodiment, the control device 59 controls the central inside/outside valve 523 so that the air pressure in the main room 31s is, for example, 5 to 10 Pa (gauge pressure). The air pressure in the outer room 4s can be made sufficiently lower than the air pressure in the main room 31s (for example, -25 Pa (gauge pressure)) by the exhaust device .
 上記のようなメイン部屋31s等に係る気体の制御が完了した後、制御装置59は、電極前駆体100及びドープ電極110の搬送を開始(再開)したり、電極前駆体100等に対する通電を実行したりすること等により、ドープ電極110の製造を再開(開始)する。これにより、適切な雰囲気下でドープ電極110の製造が再開(開始)されることとなる。 After the control of the gases related to the main chamber 31s and the like as described above is completed, the control device 59 starts (resumes) transportation of the electrode precursor 100 and the doped electrode 110, and energizes the electrode precursor 100 and the like. Then, the production of the doped electrode 110 is restarted (started). Thereby, the manufacture of the doped electrode 110 is restarted (started) under an appropriate atmosphere.
 〔B.供給対応制御〕
 供給対応制御は、終端検出センサ23によって、原反105から繰り出される電極前駆体100における終端が検出されたときに実行される。つまり、供給対応制御は、終端検出センサ23から制御装置59へと前記終端を検出した旨の信号が入力されたことを契機として自動的に実行される。
[B. supply control]
The supply correspondence control is executed when the end detection sensor 23 detects the end of the electrode precursor 100 fed from the original roll 105 . In other words, the supply response control is automatically executed when a signal indicating that the termination has been detected is input from the termination detection sensor 23 to the controller 59 .
 供給対応制御は、次のように実行される。すなわち、制御装置59は、電極前駆体100及びドープ電極110の搬送を停止したり、電極前駆体100等に対する通電を停止したりすること等により、ドープ電極110の製造を一時的に中断する。このとき、原反105における電極前駆体100の終端が操出側原反室311sに位置した状態で電極前駆体100及びドープ電極110の搬送が停止される。  Supply response control is executed as follows. That is, the control device 59 temporarily suspends the manufacture of the doped electrode 110 by stopping transportation of the electrode precursor 100 and the doped electrode 110, or by stopping energization of the electrode precursor 100 and the like. At this time, the transportation of the electrode precursor 100 and the dope electrode 110 is stopped in a state in which the end of the electrode precursor 100 in the raw fabric 105 is positioned in the feeding-side raw fabric chamber 311s.
 その上で、制御装置59は、操出側原反室311s及びドープ処理室313sが空間的に隔てられた状態となるように内部屋対応バルブ群51を制御する。より詳しくは、制御装置59は、第一中間連通室312sにおけるハウジング311,313側の各開口が閉鎖されるように各上流バルブ511,512を制御する。これにより、第一中間連通室312sにおいて操出側原反室311sとドープ処理室313sとの間が非連通となる。 Further, the control device 59 controls the inner chamber corresponding valve group 51 so that the unloading-side original fabric chamber 311s and the doping processing chamber 313s are spatially separated from each other. More specifically, the controller 59 controls the upstream valves 511 and 512 so that the openings of the first intermediate communication chamber 312s on the side of the housings 311 and 313 are closed. As a result, in the first intermediate communication chamber 312s, communication between the draw-out side material chamber 311s and the doping processing chamber 313s becomes non-communication.
 さらに、制御装置59は、操出側内外連通部311a及び第一外部屋連通部44aが開放されるように操出側内外バルブ521及び第一外部屋バルブ531を制御する。これにより、操出側原反室311s、第一介在室41s及び第三介在室43sは、一続きに連通した空間となる。 Further, the control device 59 controls the withdrawal side inside/outside valve 521 and the first outside chamber valve 531 so that the withdrawal side inside/outside communication portion 311a and the first outside chamber communication portion 44a are opened. As a result, the unloading-side material fabric chamber 311s, the first intervening chamber 41s, and the third intervening chamber 43s form a continuous space.
 加えて、制御装置59は、第一内外連通部312aが開放されるように第一中間内外バルブ522を制御する。これにより、第一中間連通室312sと第三介在室43sとの間が連通した状態となる。 In addition, the control device 59 controls the first intermediate inside/outside valve 522 so that the first inside/outside communication portion 312a is opened. As a result, the first intermediate communication chamber 312s and the third intermediate chamber 43s are communicated with each other.
 上記のような制御の結果、図11に示すように、第一中間連通室312sにおいて操出側原反室311s及びドープ処理室313sが空間的に隔てられる一方、外部屋4s及び第一中間連通室312sが連通した状態となる。 As a result of the above control, as shown in FIG. 11, the feed-side web chamber 311s and the doping chamber 313s are spatially separated from each other in the first intermediate communication chamber 312s, while the outer chamber 4s and the first intermediate communication chamber 312s are separated from each other. 312 s of chambers will be in the state which communicated.
 その上で、制御装置59は、操出側濃度計測センサ551からの情報に基づき、操出側原反室311sの酸素濃度が前記所定範囲の上限よりも大きな適正値となるように、酸素供給装置57及び不活性ガス供給装置58を制御する。この適正値は、例えば18%以上の値であり、作業者(人)にとって好ましい酸素濃度を示す。 Then, based on the information from the unloading side concentration measuring sensor 551, the control device 59 supplies oxygen so that the oxygen concentration in the unloading side fabric chamber 311s becomes an appropriate value higher than the upper limit of the predetermined range. Device 57 and inert gas supply 58 are controlled. This appropriate value is, for example, a value of 18% or more, and indicates an oxygen concentration that is preferable for workers (persons).
 さらに、制御装置59は、酸素濃度の制御に加えて、操出側圧力計測センサ561により計測された圧力に基づき、操出側原反室311sの気圧が過度に大きなものとならず、例えば大気圧と近いものとなるように操出側内外バルブ521の開度を制御する。 Furthermore, in addition to controlling the oxygen concentration, the control device 59 also controls the pressure measured by the unloading side pressure measuring sensor 561 to prevent the air pressure in the unloading side fabric chamber 311s from becoming excessively high. The opening degree of the draw-out side inner/outer valve 521 is controlled so as to be close to atmospheric pressure.
 そして、制御装置59は、操出側濃度計測センサ551により計測された酸素濃度に係る情報に基づき、操出側原反室311sの酸素濃度が前記適正値となった段階で、第一外部屋連通部44aが閉鎖されるように第一外部屋バルブ531を制御する。これにより、第一介在室41s及び操出側原反室311sは、第三介在室43sから空間的に隔てられた状態となる(図12参照)。尚、第一内外連通部312aが開放されているため、第一外部屋連通部44aの閉鎖に伴い、第一中間連通室312sの雰囲気は第三介在室43sの雰囲気と同一となる。 Then, based on the information related to the oxygen concentration measured by the delivery-side concentration measuring sensor 551, the control device 59, at the stage when the oxygen concentration in the delivery-side fabric chamber 311s reaches the appropriate value, The first outer chamber valve 531 is controlled so that the communicating portion 44a is closed. As a result, the first intervening chamber 41s and the unwinding side web chamber 311s are spatially separated from the third intervening chamber 43s (see FIG. 12). Since the first inside/outside communication portion 312a is open, the atmosphere in the first intermediate communication chamber 312s becomes the same as the atmosphere in the third intermediate chamber 43s as the first outside chamber communication portion 44a is closed.
 さらに、制御装置59は、第一外部屋連通部44aの閉鎖後、操出側原反室311s及び第一介在室41sにおいて、酸素濃度が前記適正値で維持されるとともに、気圧が過度に大きなものとならないように酸素供給装置57及び不活性ガス供給装置58などを制御する。これにより、操出側原反室311s及び第一介在室41sは、作業者にとって適切な環境で維持される。 Furthermore, after the first outer chamber communicating portion 44a is closed, the control device 59 maintains the oxygen concentration at the appropriate value in the unloading-side raw fabric chamber 311s and the first intermediate chamber 41s, and prevents the pressure from becoming excessively high. The oxygen supply device 57, the inert gas supply device 58, etc. are controlled so as not to become a thing. As a result, the feed-out side material chamber 311s and the first intervention chamber 41s are maintained in an environment suitable for the operator.
 尚、制御装置59は、供給対応制御の実行時においても、ドープ処理室313sや巻取側原反室315sに対する酸素濃度や気圧に係る制御として、製造対応制御と同様の制御を行う。 It should be noted that the control device 59 performs the same control as the production-related control as the control related to the oxygen concentration and air pressure for the doping chamber 313s and the winding-side film chamber 315s even when the supply-related control is executed.
 〔C.取外対応制御〕
 取外対応制御は、始端検出センサ28によって、新たな原反105に係る電極前駆体100(ドープ電極110)の始端が検出されることで実行される。つまり、取外対応制御は、始端検出センサ28から制御装置59へと前記始端を検出した旨の信号が入力されたことを契機として自動的に実行される。
[C. Control for removal]
The removal control is executed by detecting the leading edge of the electrode precursor 100 (doped electrode 110) related to the new raw sheet 105 by the leading edge detection sensor 28 . In other words, the removal control is automatically executed when a signal indicating that the leading edge has been detected is input from the leading edge detection sensor 28 to the control device 59 .
 取外対応制御は次のように実行される。すなわち、制御装置59は、供給対応制御の実行時と同様、電極前駆体100及びドープ電極110の搬送を停止すること等により、ドープ電極110の製造を一時的に中断する。このとき、新たな原反105における電極前駆体100の始端が巻取側原反室315sに位置した状態で電極前駆体100及びドープ電極110の搬送が停止される。 The removal control is executed as follows. That is, the control device 59 temporarily interrupts the manufacture of the doped electrode 110 by stopping the transportation of the electrode precursor 100 and the doped electrode 110, as in the case of executing the supply-related control. At this time, transportation of the electrode precursor 100 and the doped electrode 110 is stopped in a state in which the leading end of the electrode precursor 100 in the new raw fabric 105 is positioned in the take-up side raw fabric chamber 315s.
 その上で、制御装置59は、巻取側原反室315s及びドープ処理室313sが空間的に隔てられた状態となるように内部屋対応バルブ群51を制御する。より詳しくは、制御装置59は、第二中間連通室314sにおける各ハウジング313,315側の各開口が閉鎖されるように各下流バルブ513,514を制御する。これにより、第二中間連通室314sにおいて巻取側原反室315sとドープ処理室313sとの間が非連通となる。 Further, the control device 59 controls the inner chamber corresponding valve group 51 so that the winding-side film chamber 315s and the doping chamber 313s are spatially separated from each other. More specifically, the controller 59 controls the downstream valves 513, 514 so that the openings of the second intermediate communication chamber 314s on the housings 313, 315 side are closed. As a result, in the second intermediate communication chamber 314s, communication between the winding-side film chamber 315s and the doping processing chamber 313s becomes non-communication.
 さらに、制御装置59は、巻取側内外連通部315a及び第二外部屋連通部45aが開放されるように巻取側内外バルブ525及び第二外部屋バルブ532を制御する。これにより、巻取側原反室315s、第二介在室42s及び第三介在室43sが一続きに連通した状態となる。さらに、制御装置59は、第二内外連通部314aが開放されるように第二中間内外バルブ524を制御する。これにより、第二中間連通室314s及び第三介在室43sが連通した状態となる。 Furthermore, the control device 59 controls the winding-side inside/outside valve 525 and the second outer chamber valve 532 so that the winding-side inside/outside communicating portion 315a and the second outer chamber communicating portion 45a are opened. As a result, the winding-side material chamber 315s, the second intermediate chamber 42s, and the third intermediate chamber 43s are in continuous communication. Further, the control device 59 controls the second intermediate inside/outside valve 524 so that the second inside/outside communication portion 314a is opened. As a result, the second intermediate communication chamber 314s and the third intermediate chamber 43s are brought into communication.
 上記のような制御の結果、図13に示すように、第二中間連通室314sにおいてドープ処理室313s及び巻取側原反室315sが空間的に隔てられる一方、外部屋4s及び第二中間連通室314sが連通した状態となる。 As a result of the control described above, as shown in FIG. 13, the doping chamber 313s and the take-up side web chamber 315s are spatially separated from each other in the second intermediate communication chamber 314s, while the outer chamber 4s and the second intermediate communication chamber 314s are separated from each other. 314 s of chambers will be in the state which communicated.
 その上で、制御装置59は、巻取側濃度計測センサ553により計測された酸素濃度に係る情報に基づき、巻取側原反室315sの酸素濃度が前記適正値となるように、酸素供給装置57及び不活性ガス供給装置58を制御する。 Then, based on the oxygen concentration information measured by the winding-side concentration measuring sensor 553, the control device 59 controls the oxygen supply device so that the oxygen concentration in the winding-side fabric chamber 315s reaches the appropriate value. 57 and the inert gas supply device 58 are controlled.
 さらに、制御装置59は、酸素濃度の制御に加えて、巻取側圧力計測センサ563により計測された圧力に基づき、巻取側原反室315sの気圧が過度に大きなものとならず、例えば大気圧と近いものとなるように巻取側内外バルブ525の開度を制御する。 Furthermore, in addition to controlling the oxygen concentration, the control device 59 also controls the pressure measured by the winding-side pressure measuring sensor 563 to prevent the air pressure in the winding-side fabric chamber 315s from becoming excessively high. The opening of the take-up side inner/outer valve 525 is controlled so as to be close to atmospheric pressure.
 そして、制御装置59は、巻取側濃度計測センサ553からの情報に基づき、巻取側原反室315sの酸素濃度が前記適正値となった段階で、第二外部屋連通部45aが閉鎖されるように第二外部屋バルブ532を制御する。これにより、第二介在室42s及び巻取側原反室315sは、第三介在室43sから空間的に隔てられた状態となる(図14参照)。尚、第二内外連通部314aが開放されているため、第二外部屋連通部45aの閉鎖に伴い、第二中間連通室314sの雰囲気は、第三介在室43sの雰囲気と同一となる。 Then, based on the information from the winding-side concentration measuring sensor 553, the control device 59 closes the second outer chamber communicating portion 45a at the stage when the oxygen concentration in the winding-side fabric chamber 315s reaches the appropriate value. The second outer chamber valve 532 is controlled so that As a result, the second intermediate chamber 42s and the take-up side web chamber 315s are spatially separated from the third intermediate chamber 43s (see FIG. 14). Since the second inside/outside communication portion 314a is open, the atmosphere in the second intermediate communication chamber 314s becomes the same as the atmosphere in the third intervention chamber 43s when the second outside chamber communication portion 45a is closed.
 また、制御装置59は、第二外部屋連通部45aの閉鎖後、巻取側原反室315s及び第二介在室42sにおいて、酸素濃度が前記適正値で維持されるとともに、気圧が過度に大きなものとならないように酸素供給装置57及び不活性ガス供給装置58などを制御する。これにより、巻取側原反室315s及び第二介在室42sは、作業者にとって適切な環境で維持される。 In addition, after the second outer chamber communicating portion 45a is closed, the control device 59 maintains the oxygen concentration at the appropriate value in the winding-side material chamber 315s and the second intermediate chamber 42s, and prevents the pressure from becoming excessively high. The oxygen supply device 57, the inert gas supply device 58, etc. are controlled so as not to become a thing. As a result, the winding-side material chamber 315s and the second intermediate chamber 42s are maintained in an environment suitable for the operator.
 尚、制御装置59は、取外対応制御の実行時においても、ドープ処理室313sや操出側原反室311sにおける酸素濃度や気圧に係る制御として、製造対応制御と同様の制御を行う。 It should be noted that the control device 59 performs the same control as the production-ready control as the control related to the oxygen concentration and air pressure in the doping chamber 313s and the unloading-side web chamber 311s even when the removal-ready control is executed.
 〔D.防爆対応制御〕
 防爆対応制御は、常時、防爆部屋32sを対象として行われる制御である。防爆対応制御は、次のように行われる。すなわち、制御装置59は、防爆側濃度計測センサ554により計測された酸素濃度に基づき、防爆ハウジング32内(防爆部屋32s)の酸素濃度がメインハウジング31内(メイン部屋31s)の酸素濃度よりも小さなもの(例えばほぼ0%)となるように酸素供給装置57及び不活性ガス供給装置58を制御する。
[D. Explosion-proof control]
The explosion-proof control is control that is always performed for the explosion-proof room 32s. Explosion-proof control is performed as follows. That is, the control device 59 determines that the oxygen concentration in the explosion-proof housing 32 (explosion-proof room 32s) is lower than the oxygen concentration in the main housing 31 (main room 31s) based on the oxygen concentration measured by the explosion-proof side concentration measuring sensor 554. The oxygen supply device 57 and the inert gas supply device 58 are controlled so as to be zero (for example, approximately 0%).
 また、制御装置59は、酸素濃度の制御に加えて、防爆側圧力計測センサ564により計測された気圧に係る情報に基づき、メインハウジング31内(メイン部屋31s)に対し防爆ハウジング32内(防爆部屋32s)が正圧となるように、酸素供給装置57及び不活性ガス供給装置58を制御する。尚、防爆対応制御では、防爆部屋32sの気圧が過大とならないように、必要に応じて防爆側内外バルブ526が制御される。 In addition to controlling the oxygen concentration, the control device 59 controls the inside of the explosion-proof housing 32 (explosion-proof room) relative to the inside of the main housing 31 (main room 31s) based on the information related to the atmospheric pressure measured by the explosion-proof side pressure measurement sensor 564. 32s) is controlled to have a positive pressure. In the explosion-proof control, the explosion-proof inside/outside valve 526 is controlled as necessary so that the air pressure in the explosion-proof room 32s does not become excessive.
 本実施形態では、防爆対応制御の実行により、防爆部屋32sの酸素濃度は例えばほぼ0%で維持され、防爆部屋32sの気圧は例えば30~45Pa(ゲージ圧)で維持される。 In this embodiment, the oxygen concentration in the explosion-proof room 32s is maintained at, for example, approximately 0%, and the air pressure in the explosion-proof room 32s is maintained at, for example, 30 to 45 Pa (gauge pressure) by executing the explosion-proof control.
 〔8.ドープ電極の製造方法〕
 次いで、上記ドーピングシステム1を用いたドープ電極110の製造方法のうち、特に支持装置22に対する新たな原反105の供給に係る工程(供給対応工程)、及び、巻取られたドープ電極110の取外しに係る工程(取外対応工程)について説明する。
[8. Manufacturing method of doped electrode]
Next, in the method of manufacturing the doped electrode 110 using the doping system 1, a process (supply corresponding process) related to supplying a new raw material 105 to the support device 22, and removing the wound doped electrode 110 (Removal process) will be described.
 〔8-1.供給対応工程〕
 まず、図15を参照して供給対応工程について説明する。供給対応工程では、まずステップS11において、終端検出センサ23によって、原反105から繰り出されている電極前駆体100の終端が検出されたか否かを判定する。この判定は、前記終端が検出されるまで繰り返し行われる。
[8-1. Supply correspondence process]
First, the supply handling process will be described with reference to FIG. In the supply corresponding step, first, in step S11, it is determined whether or not the end of the electrode precursor 100 fed out from the original roll 105 has been detected by the end detection sensor 23 . This determination is repeated until the end is detected.
 電極前駆体100の終端が検出された場合、ステップS12にて、上述した供給対応制御を実行する。供給対応制御の実行により、ステップS121の終端検出時停止工程と、ステップS122の操出側閉鎖工程と、ステップS123の操出側酸素濃度調節工程とがこの順序で行われる。 When the end of the electrode precursor 100 is detected, the above-described supply control is executed in step S12. By executing the supply control, the process of stopping when the end is detected in step S121, the closing process on the withdrawal side in step S122, and the oxygen concentration adjusting process on the withdrawal side in step S123 are performed in this order.
 終端検出時停止工程では、電極前駆体100の終端が操出側ハウジング311内(操出側原反室311s)に位置した状態で、電極前駆体100及びドープ電極110の搬送が停止される。尚、この工程では、電極前駆体100等に対する通電停止などが合わせて行われ、その結果、ドープ電極110の製造が一時停止される。 In the end detection stop step, the transport of the electrode precursor 100 and the dope electrode 110 is stopped in a state where the end of the electrode precursor 100 is positioned inside the feed-side housing 311 (the feed-side fabric chamber 311s). In this step, the supply of electricity to the electrode precursor 100 and the like is also stopped, and as a result, the production of the doped electrode 110 is temporarily stopped.
 操出側閉鎖工程では、各上流バルブ511,512により操出側ハウジング311内(繰出側原反室311s)とドープ処理ハウジング313(ドープ処理室313s)との間が非連通とされる。尚、この工程では、バルブ521,522,531を対象とした上述の制御も行われる。 In the unloading-side closing process, the upstream valves 511 and 512 make the inside of the unloading-side housing 311 (unloading-side raw fabric chamber 311s) and the dope processing housing 313 (doping processing chamber 313s) non-communication. In this process, the above-described control for the valves 521, 522, and 531 is also performed.
 操出側酸素濃度調節工程では、制御装置59によって操出側ハウジング311内(操出側原反室311s)及び第一介在室41sの酸素濃度が適切に調節される。尚、供給対応制御の実行により、操出側原反室311s及び第一介在室41sは作業者にとって安全な環境となる。 In the feeding-side oxygen concentration adjustment step, the oxygen concentration in the feeding-side housing 311 (the feeding-side raw fabric chamber 311s) and the first intermediate chamber 41s is appropriately adjusted by the control device 59. By executing the supply control, the unloading-side original fabric chamber 311s and the first intervention chamber 41s become a safe environment for the operator.
 その後、ステップS13にて、原反供給工程を実行する。原反供給工程では、支持装置22に対し新たな原反105を供給するとともに、該支持装置22によって該原反105を支持した状態とする。 After that, in step S13, the raw fabric supply process is executed. In the original fabric supply step, a new original fabric 105 is supplied to the support device 22 and the original fabric 105 is supported by the support device 22 .
 さらに、ステップS14にて、両端接続工程を実行する。両端接続工程では、操出側ハウジング311内(操出側原反室311s)にて、先の原反105における電極前駆体100の終端と新たな原反105における電極前駆体100の始端とが接続される。両端接続工程において、電極前駆体100は、例えばテープ状の接続用部材などを用いて接続される。 Further, in step S14, both ends connection process is executed. In the both-ends connecting step, the terminal end of the electrode precursor 100 of the previous raw fabric 105 and the leading end of the electrode precursor 100 of the new raw fabric 105 are connected in the unloading-side housing 311 (unloading-side raw fabric chamber 311s). Connected. In the step of connecting both ends, the electrode precursor 100 is connected using, for example, a tape-shaped connecting member.
 尚、本実施形態において、原反供給工程及び両端接続工程は、第一介在室41sを通って操出側原反室311sに入った作業者によって手作業で行われる。原反供給工程及び両端接続工程の実行により、供給対応工程が完了する。また、供給対応工程の後に上述の製造対応制御が実行されることで、内部屋3s及び外部屋4sの気圧や酸素濃度が適切に調節された上で、ドープ電極110の製造を再開することができる。 Incidentally, in the present embodiment, the raw fabric supply step and both ends connecting step are manually performed by an operator who has entered the unloading-side raw fabric chamber 311s through the first intervening chamber 41s. By executing the raw fabric supply step and the both-ends connection step, the supply handling step is completed. In addition, by executing the above-described manufacturing corresponding control after the supply corresponding process, the air pressure and oxygen concentration in the inner chamber 3s and the outer chamber 4s are appropriately adjusted, and then the manufacture of the doped electrode 110 can be resumed. can.
 〔8-2.取外対応工程〕
 次いで、図16を参照して取外対応工程について説明する。取外対応工程では、まずステップS21において、始端検出センサ28によって、新たな原反105における電極前駆体100(ドープ電極110)の始端が検出されたか否かを判定する。この判定は、前記始端が検出されるまで繰り返し行われる。
[8-2. Removal process]
Next, the removal handling process will be described with reference to FIG. In the removal-handling process, first, in step S21, it is determined whether or not the leading edge of the electrode precursor 100 (doped electrode 110) on the new raw sheet 105 has been detected by the leading edge detection sensor . This determination is repeated until the start edge is detected.
 電極前駆体100(ドープ電極110)の始端が検出された場合、ステップS22にて、上述した取外対応制御を実行する。取外対応制御の実行により、ステップS221の始端検出時停止工程と、ステップS222の巻取側閉鎖工程と、ステップS223の巻取側酸素濃度調節工程とがこの順序で行われる。 When the leading edge of the electrode precursor 100 (doped electrode 110) is detected, the above-described removal control is executed in step S22. By executing the removal control, the start end detection stopping process of step S221, the winding side closing process of step S222, and the winding side oxygen concentration adjusting process of step S223 are performed in this order.
 始端検出時停止工程では、電極前駆体100の始端が巻取側ハウジング315内(巻取側原反室315s)に位置した状態で、電極前駆体100及びドープ電極110の搬送を停止する。尚、この工程では、電極前駆体100等に対する通電停止などが合わせて行われ、その結果、ドープ電極110の製造が一時停止される。 In the start end detection stop step, the transport of the electrode precursor 100 and the doped electrode 110 is stopped in a state where the start end of the electrode precursor 100 is positioned inside the winding-side housing 315 (winding-side material chamber 315s). In this step, the supply of electricity to the electrode precursor 100 and the like is also stopped, and as a result, the production of the doped electrode 110 is temporarily stopped.
 巻取側閉鎖工程では、各下流バルブ513,514により巻取側ハウジング315内(巻取側原反室315s)とドープ処理ハウジング313内(ドープ処理室313s)との間が非連通とされる。尚、この工程では、バルブ524,525,532を対象とした上述の制御も行われる。 In the winding-side closing step, the downstream valves 513 and 514 disconnect the inside of the winding-side housing 315 (winding-side raw fabric chamber 315s) and the inside of the doping processing housing 313 (doping processing chamber 313s). . In this process, the above-described control for the valves 524, 525, and 532 is also performed.
 巻取側酸素濃度調節工程では、制御装置59によって巻取側ハウジング315内(巻取側原反室315s)及び第二介在室42sの酸素濃度が適切に調節される。取外対応制御の実行により、巻取側原反室315s及び第二介在室42sは作業者にとって安全な環境となる。 In the winding-side oxygen concentration adjustment step, the control device 59 appropriately adjusts the oxygen concentration in the winding-side housing 315 (winding-side raw fabric chamber 315s) and the second intermediate chamber 42s. By executing the removal control, the winding-side original fabric chamber 315s and the second intermediate chamber 42s become a safe environment for the operator.
 その後、ステップS23にて、ロール取外工程を実行する。ロール取外工程では、例えば前記両端接続工程にて接続された電極前駆体100(ドープ電極110)の始端及び終端を分離した上で、巻取られたドープ電極110を巻取装置29から取り外す。 After that, in step S23, the roll removing process is executed. In the roll removal process, for example, after separating the leading end and the terminal end of the electrode precursor 100 (dope electrode 110) connected in the both ends connection process, the wound dope electrode 110 is removed from the winding device 29.
 さらに、ステップS24において、始端固定工程を実行する。始端固定工程では、ドープ電極110が取外された巻取装置29の巻取軸29aに対し、新たな原反105における電極前駆体100の始端を固定する。始端固定工程において、巻取装置29に対する電極前駆体100の固定は、巻取軸29aに設けられた、電極前駆体100を固定するための手段(不図示)を用いて行うことができる。勿論、その他の手段により、巻取装置29に対し電極前駆体100を固定するようにしてもよい。 Furthermore, in step S24, a start end fixing step is executed. In the starting end fixing step, the starting end of the electrode precursor 100 of the new raw material 105 is fixed to the winding shaft 29a of the winding device 29 from which the dope electrode 110 has been removed. In the starting end fixing step, the electrode precursor 100 can be fixed to the winding device 29 using means (not shown) for fixing the electrode precursor 100 provided on the winding shaft 29a. Of course, other means may be used to fix the electrode precursor 100 to the winding device 29 .
 尚、本実施形態において、ロール取外工程及び始端固定工程は、第二介在室42sを通って巻取側原反室315sに入った作業者によって手作業で行われる。ロール取外工程及び始端固定工程の実行により、取外対応工程が完了する。また、取外対応工程の後に上述の製造対応制御が実行されることで、内部屋3s及び外部屋4sの気圧や酸素濃度が適切に調節された上で、ドープ電極110の製造を再開することができる。 Incidentally, in this embodiment, the roll removing process and the start end fixing process are manually performed by an operator who has entered the take-up side fabric chamber 315s through the second intervening chamber 42s. By executing the roll removal process and the start end fixing process, the removal handling process is completed. In addition, by executing the above-described manufacturing corresponding control after the removal corresponding process, the air pressure and oxygen concentration in the inner room 3s and the outer room 4s are appropriately adjusted, and then the manufacture of the doped electrode 110 is restarted. can be done.
 尚、新たな原反105の供給時や巻取られたドープ電極110の取外時には、電極前駆体100がドープ槽25の電解液中につかったままの状態となるが、電極前駆体100などに対する通電が停止されるため、電極前駆体100に対しドーピングは行われない。そして、ドープ電極110の製造再開に伴い、電解液中に位置していた電極前駆体100に対しても適切なドーピングが行われることとなる。 When a new raw sheet 105 is supplied or when the wound dope electrode 110 is removed, the electrode precursor 100 remains submerged in the electrolytic solution in the dope tank 25. , the electrode precursor 100 is not doped. As the production of the doped electrode 110 resumes, the electrode precursor 100 that has been in the electrolyte is also appropriately doped.
 以上詳述したように、本実施形態によれば、アウターハウジング4内に対しメインハウジング31内を正圧とすることで、アウターハウジング4内からメインハウジング31内に対する酸素などの気体の流入を抑えることができる。これにより、酸素供給装置57及び不活性ガス供給装置58を用いて、メインハウジング31内の酸素濃度を比較的狭い適切な範囲でより容易に維持することができる。 As described in detail above, according to the present embodiment, by making the inside of the main housing 31 positive with respect to the inside of the outer housing 4, the inflow of gases such as oxygen from the inside of the outer housing 4 into the inside of the main housing 31 is suppressed. be able to. As a result, the oxygen concentration in the main housing 31 can be more easily maintained within a relatively narrow appropriate range using the oxygen supply device 57 and the inert gas supply device 58 .
 また、ドライルーム201に対しアウターハウジング4内が負圧とされることで、アウターハウジング4内からドライルーム201に対する気体の漏出を抑えることができる。その結果、アウターハウジング4外への気化した電解液の漏出をより確実に防止することができる。 In addition, by making the inside of the outer housing 4 have a negative pressure with respect to the dry room 201, leakage of gas from the inside of the outer housing 4 to the dry room 201 can be suppressed. As a result, leakage of the vaporized electrolytic solution to the outside of the outer housing 4 can be prevented more reliably.
 加えて、不活性ガス供給装置58は、不活性ガスとして窒素を含むガスを供給するため、コスト面で有利となる。尚、メインハウジング31内に窒素を供給する構成であっても、メインハウジング31内の酸素濃度を適切な範囲に制御することで、メインハウジング31内の窒素濃度を十分に低くすることができ、ひいては窒素及びリチウムの反応を抑制することができる。 In addition, since the inert gas supply device 58 supplies gas containing nitrogen as the inert gas, it is advantageous in terms of cost. Even with the configuration in which nitrogen is supplied into the main housing 31, the nitrogen concentration in the main housing 31 can be sufficiently lowered by controlling the oxygen concentration in the main housing 31 within an appropriate range. As a result, the reaction of nitrogen and lithium can be suppressed.
 加えて、メインハウジング31内に対し防爆ハウジング32内が正圧とされるため、メインハウジング31内から防爆ハウジング32内に対し、気化した電解液が流入することをより確実に防止することができる。 In addition, since the pressure inside the explosion-proof housing 32 is positive with respect to the inside of the main housing 31, it is possible to more reliably prevent the vaporized electrolytic solution from flowing into the explosion-proof housing 32 from inside the main housing 31. .
 また、防爆ハウジング32内の酸素濃度がメインハウジング31内の酸素濃度よりも小さくされることで、上記作用効果と相まって、防爆ハウジング32内を、酸素濃度が十分に低い雰囲気であって、気化した電解液が非常に少ない環境とすることができる。従って、防爆ハウジング32内において、「電気的接点が設けられた電気回路を備えてなる非防爆機器」を安全に収容することができる。さらに、防爆ハウジング32内においてバルブやセンサなどに係る配線の省配線を行い、少ない配線のみをハウジング3,4の外へと出すといったことを安全に行うことができる。 In addition, since the oxygen concentration in the explosion-proof housing 32 is made smaller than the oxygen concentration in the main housing 31, the inside of the explosion-proof housing 32 is vaporized in an atmosphere with a sufficiently low oxygen concentration. It can be an environment with very little electrolyte. Therefore, "a non-explosion-proof device comprising an electric circuit provided with an electrical contact" can be safely accommodated in the explosion-proof housing 32 . Further, it is possible to safely perform wiring saving of wiring related to valves, sensors, and the like in the explosion-proof housing 32 and only a small number of wirings to go out of the housings 3 and 4 .
 さらに、制御装置59によって、メインハウジング31内の酸素濃度を自動的かつ精度よく適切な範囲で維持することができる。これにより、気化した電解液などへの引火を一層確実に防止することができるとともに、不活性ガス(窒素ガス)及びリチウムの反応抑制をより確実に図ることができる。 Furthermore, the control device 59 can automatically and accurately maintain the oxygen concentration in the main housing 31 within an appropriate range. As a result, ignition of the vaporized electrolytic solution or the like can be more reliably prevented, and the reaction of the inert gas (nitrogen gas) and lithium can be more reliably suppressed.
 加えて、制御装置59によって、自動的にアウターハウジング4内に対しメインハウジング31内を正圧とすることができる。これにより、アウターハウジング4内からメインハウジング31内に対する酸素などの気体の流入をより確実に抑えることができる。 In addition, the pressure inside the main housing 31 can be automatically made positive with respect to the inside of the outer housing 4 by the control device 59 . As a result, the inflow of gas such as oxygen from the outer housing 4 into the main housing 31 can be more reliably suppressed.
 併せて、排気装置54によってアウターハウジング4内のガスを外部に排出することで、ドライルーム201に対しアウターハウジング4内を負圧とすることがより確実に可能となる。 At the same time, by discharging the gas inside the outer housing 4 to the outside by the exhaust device 54, it is possible to make the inside of the outer housing 4 negative pressure with respect to the dry room 201 more reliably.
 また、洗浄槽26に収容された洗浄液を用いてドープ電極110を洗浄することができる。これにより、ドープ電極110の品質向上を図ることができる。一方、洗浄液は可燃性であるため、気化した洗浄液への引火防止を図るべきであるところ、本実施形態において、メインハウジング31は洗浄槽26を内部に収容している。従って、気化した電解液と同様、気化した洗浄液がアウターハウジング4外へと漏出することをより確実に抑制できる。 Also, the dope electrode 110 can be cleaned using the cleaning liquid contained in the cleaning tank 26 . Thereby, quality improvement of the dope electrode 110 can be aimed at. On the other hand, since the cleaning liquid is flammable, it is necessary to prevent the vaporized cleaning liquid from catching fire. Therefore, it is possible to more reliably prevent the vaporized cleaning liquid from leaking out of the outer housing 4 in the same manner as the vaporized electrolyte.
 さらに、プリウェット槽24に収容された電解液を用いて、ドーピング前の電極前駆体100を湿潤させることができる。これにより、電極前駆体100に対するリチウムのドーピングをより効果的に行うことができる。 Furthermore, the electrolyte contained in the pre-wet tank 24 can be used to wet the electrode precursor 100 before doping. This makes it possible to more effectively dope the electrode precursor 100 with lithium.
 また、メインハウジング31はプリウェット槽24を内部に収容した状態とされているため、プリウェット槽24の電解液が気化したとしても、この気化した電解液がアウターハウジング4内からドライルーム201に漏出することをより確実に防止できる。 Further, since the main housing 31 accommodates the pre-wet tank 24 inside, even if the electrolyte in the pre-wet tank 24 vaporizes, the vaporized electrolyte will flow from the outer housing 4 into the dry room 201. Leakage can be prevented more reliably.
 尚、上記実施形態の記載内容に限定されず、例えば次のように実施してもよい。勿論、以下において例示しない他の応用例、変更例も当然可能である。 It should be noted that it is not limited to the contents described in the above embodiment, and may be implemented as follows, for example. Of course, other applications and modifications not exemplified below are naturally possible.
 (a)上記実施形態において、終端検出手段としての終端検出センサ23及び始端検出手段としての始端検出センサ28は、電極前駆体100又はドープ電極110の巻き径を把握することで、電極前駆体100(ドープ電極110)の終端又は始端を検出するように構成されている。これに対し、支持装置22又は巻取装置29の回転数を把握可能なエンコーダと、該エンコーダにより把握された回転数に基づき前記始端又は前記終端を検出する装置とによって、終端検出手段又は始端検出手段を構成してもよい。 (a) In the above embodiment, the end detection sensor 23 as the end detection means and the start end detection sensor 28 as the start end detection means detect the winding diameter of the electrode precursor 100 or the doped electrode 110, thereby detecting the electrode precursor 100. (the doped electrode 110) is configured to detect the end or start. On the other hand, an encoder capable of grasping the rotation speed of the support device 22 or the winding device 29 and a device for detecting the start edge or the end edge based on the rotation speed grasped by the encoder are used to detect the end detection means or the start end. means may be configured.
 また、電極前駆体100(ドープ電極110)に予め設けられたマーク(例えば孔)などを検出することで、電極前駆体100(ドープ電極110)の始端又は終端を検出するようにしてもよい。尚、始端検出手段や終端検出手段の設置位置については適宜変更してもよい。 Alternatively, the start or end of the electrode precursor 100 (doped electrode 110) may be detected by detecting a mark (for example, a hole) provided in advance on the electrode precursor 100 (doped electrode 110). Incidentally, the installation positions of the starting end detecting means and the terminal end detecting means may be changed as appropriate.
 (b)上記実施形態では、操出側ハウジング311及びドープ処理ハウジング313間に第一中間ハウジング312が設けられ、第一中間ハウジング312の内部空間(第一中間連通室312s)において操出側ハウジング311内とドープ処理ハウジング313内との間が連通可能とされている。これに対し、第一中間ハウジング312を設けることなく、操出側ハウジング311及びドープ処理ハウジング313を構成する共通の壁部に孔(開口)を形成し、この孔(開口)において操出側ハウジング311内とドープ処理ハウジング313内との間が連通可能となるように構成してもよい。 (b) In the above embodiment, the first intermediate housing 312 is provided between the unloading side housing 311 and the doping housing 313, and the internal space of the first intermediate housing 312 (first intermediate communication chamber 312s) allows the unloading side housing Communication between the inside 311 and the inside of the doping processing housing 313 is enabled. On the other hand, without providing the first intermediate housing 312, a hole (opening) is formed in the common wall portion that constitutes the discharge side housing 311 and the doping housing 313, and the discharge side housing It may be configured to allow communication between the interior of 311 and the interior of the doping housing 313 .
 また、上記実施形態では、巻取側ハウジング315及びドープ処理ハウジング313間に第二中間ハウジング314が設けられ、第二中間ハウジング314の内部空間(第二中間連通室314s)において巻取側ハウジング315内とドープ処理ハウジング313内との間が連通可能とされている。これに対し、第二中間ハウジング314を設けることなく、巻取側ハウジング315及びドープ処理ハウジング313を構成する共通の壁部に孔(開口)を形成し、この孔(開口)において巻取側ハウジング315内とドープ処理ハウジング313内との間が連通可能となるように構成してもよい。 Further, in the above-described embodiment, the second intermediate housing 314 is provided between the winding-side housing 315 and the doping housing 313, and the winding-side housing 315 is provided in the internal space of the second intermediate housing 314 (second intermediate communication chamber 314s). Communication between the inside and the inside of the doping processing housing 313 is enabled. On the other hand, without providing the second intermediate housing 314, a hole (opening) is formed in the common wall constituting the winding-side housing 315 and the doping housing 313, and the winding-side housing is provided at this hole (opening). Communication may be provided between the interior of 315 and the doping housing 313 .
 (c)上記実施形態において、インナーハウジング3は防爆ハウジング32を備えているが、防爆ハウジング32を備えないものであってもよい。 (c) In the above embodiment, the inner housing 3 includes the explosion-proof housing 32, but the explosion-proof housing 32 may not be provided.
 (d)上記実施形態では、終端検出センサ23による終端の検出を契機として供給対応制御が自動的に実行され、始端検出センサ28による始端の検出を契機として取外対応制御が自動的に実行されるように構成されている。これに対し、例えば作業者が制御装置59に対し命令を入力することで、供給対応制御又は取外対応制御が実行されるように構成してもよい。 (d) In the above embodiment, the detection of the end by the end detection sensor 23 triggers automatic supply control, and the detection of the start edge by the start edge detection sensor 28 triggers the automatic removal control. is configured as follows. On the other hand, for example, an operator may input a command to the control device 59, so that the control corresponding to supply or the control corresponding to removal may be executed.
 (e)上記実施形態において、ドープ装置2は、リチウムイオン電池又はリチウムイオンキャパシタの負電極として用いられるドープ電極110を製造しているが、ドープ装置2によって製造可能なドープ電極110は、このような負電極として用いられるものに限られない。従って、例えば、ドープ装置2によって電池やキャパシタの正電極として用いられるドープ電極を製造してもよい。 (e) In the above embodiments, the doping apparatus 2 produces the doped electrode 110 that is used as the negative electrode of a lithium ion battery or a lithium ion capacitor. It is not limited to those used as a negative electrode. Thus, for example, the doping device 2 may produce doped electrodes that are used as positive electrodes in batteries and capacitors.
 (f)上記実施形態において、電極前駆体100は、表面に活物質層102を備えたものとされているが、活物質層102を具備しないものであってもよい。 (f) In the above embodiment, the electrode precursor 100 has the active material layer 102 on its surface, but the electrode precursor 100 may not have the active material layer 102 .
 1…ドーピングシステム、2…ドープ装置、3…インナーハウジング、4…アウターハウジング、21…搬送ロール(搬送手段)、22…支持装置(支持手段、搬送手段)、24…プリウェット槽、25…ドープ槽、26…洗浄槽、29…巻取装置(巻取手段、搬送手段)、31…メインハウジング、32…防爆ハウジング、54…排気装置(排気手段)、55…酸素濃度計測センサ群(酸素濃度計測手段)、56…圧力計測センサ群(圧力計測手段)、57…酸素供給装置(酸素供給手段)、58…不活性ガス供給装置(不活性ガス供給手段)、59…制御装置(酸素濃度制御手段、圧力制御手段)100…電極前駆体、110…ドープ電極、201…ドライルーム(ハウジング外空間)、251b…対極部材、313a…中央側内外連通部(内外連通部)、523…中央側内外バルブ(流量調節手段)。 DESCRIPTION OF SYMBOLS 1... Doping system, 2... Doping apparatus, 3... Inner housing, 4... Outer housing, 21... Conveying roll (conveying means), 22... Supporting device (supporting means, conveying means), 24... Pre-wetting tank, 25... Dope Tank 26 Cleaning tank 29 Winding device (winding means, conveying means) 31 Main housing 32 Explosion-proof housing 54 Exhaust device (exhaust means) 55 Oxygen concentration measuring sensor group (oxygen concentration Measurement means), 56 Pressure measurement sensor group (pressure measurement means), 57 Oxygen supply device (oxygen supply means), 58 Inactive gas supply device (inert gas supply means), 59 Control device (oxygen concentration control means, pressure control means) 100... Electrode precursor, 110... Dope electrode, 201... Dry room (outside space of housing), 251b... Counter electrode member, 313a... Center side inside/outside communicating portion (inside/outside communicating portion), 523... Center side inside/outside Valve (flow control means).

Claims (7)

  1.  帯状の電極前駆体に対しリチウムをドーピングしてドープ電極を製造するためのドーピングシステムであって、
     前記電極前駆体が巻回されてなる原反を支持する支持手段、少なくとも可燃性の溶剤を含んでなる電解液を収容するドープ槽、前記原反から繰り出された前記電極前駆体を前記ドープ槽内を通る経路で搬送する搬送手段、前記ドープ槽内に収容される対極部材、及び、前記ドープ槽を経て得られた前記ドープ電極を巻取る巻取手段を有し、前記電解液中に前記電極前駆体を配置した状態で該電極前駆体及び前記対極部材間に電流を流すことにより該電極前駆体に対しリチウムをドーピングすることが可能なドープ装置と、
     少なくとも前記支持手段、前記ドープ槽及び前記巻取手段、並びに、前記支持手段から前記巻取手段にかけて位置する前記電極前駆体及び前記ドープ電極を内部に収容するメインハウジングを具備するインナーハウジングと、
     前記インナーハウジングを覆うアウターハウジングと、
     前記メインハウジング内に酸素を含む酸素含有ガスを供給する酸素供給手段と、
     前記メインハウジング内に窒素を含む不活性ガスを供給する不活性ガス供給手段とを備え、
     前記アウターハウジング内に対し前記メインハウジング内を正圧とし、前記アウターハウジングの周囲に位置するハウジング外空間に対し前記アウターハウジング内を負圧とすることが可能に構成されていることを特徴とするドーピングシステム。
    A doping system for doping a strip-shaped electrode precursor with lithium to produce a doped electrode, comprising:
    Supporting means for supporting the raw roll of the electrode precursor wound thereon, a doping tank containing an electrolytic solution containing at least a flammable solvent, and the doping tank containing the electrode precursor unwound from the raw roll a counter electrode member accommodated in the dope tank; and a winding means for winding the doped electrode obtained through the dope tank; a doping device capable of doping the electrode precursor with lithium by applying a current between the electrode precursor and the counter electrode member in a state where the electrode precursor is arranged;
    an inner housing comprising a main housing that accommodates at least the support means, the dope tank, the winding means, and the electrode precursor and the dope electrode located from the support means to the winding means;
    an outer housing covering the inner housing;
    oxygen supply means for supplying an oxygen-containing gas containing oxygen into the main housing;
    an inert gas supply means for supplying an inert gas containing nitrogen into the main housing;
    The inside of the main housing can be set to a positive pressure with respect to the inside of the outer housing, and the inside of the outer housing can be set to a negative pressure with respect to a space outside the housing located around the outer housing. doping system.
  2.  前記インナーハウジングは、内部空間が前記メインハウジング内とは別に区画された防爆ハウジングを有し、
     前記防爆ハウジング内の酸素濃度を前記メインハウジング内の酸素濃度よりも小さくし、かつ、前記メインハウジング内に対し前記防爆ハウジング内を正圧とすることが可能に構成されていることを特徴とする請求項1に記載のドーピングシステム。
    The inner housing has an explosion-proof housing with an internal space separated from the inside of the main housing,
    The oxygen concentration in the explosion-proof housing is made lower than the oxygen concentration in the main housing, and the pressure inside the explosion-proof housing can be made positive with respect to the inside of the main housing. A doping system according to claim 1 .
  3.  前記メインハウジング内の酸素濃度を計測する酸素濃度計測手段と、
     前記酸素濃度計測手段により計測された酸素濃度に基づき、前記酸素供給手段及び前記不活性ガス供給手段を制御し、前記メインハウジング内の酸素濃度を調節可能な酸素濃度制御手段とを備えることを特徴とする請求項1又は2に記載のドーピングシステム。
    oxygen concentration measuring means for measuring the oxygen concentration in the main housing;
    oxygen concentration control means for controlling the oxygen supply means and the inert gas supply means based on the oxygen concentration measured by the oxygen concentration measurement means, and for adjusting the oxygen concentration in the main housing. 3. The doping system according to claim 1 or 2, wherein
  4.  前記メインハウジング内及び前記アウターハウジング内を連通する内外連通部と、
     前記内外連通部に設けられ、前記メインハウジング内から前記アウターハウジング内へと流れる気体の流量を調節可能な流量調節手段と、
     前記メインハウジング内の圧力を計測する圧力計測手段と、
     前記圧力計測手段により計測された圧力に基づき前記流量調節手段を制御することで、前記アウターハウジング内に対する前記メインハウジング内の圧力を調節可能な圧力制御手段とを備えることを特徴とする請求項1乃至3のいずれか1項に記載のドーピングシステム。
    an internal/external communicating portion that communicates the inside of the main housing and the inside of the outer housing;
    a flow rate adjusting means provided in the internal/external communication portion and capable of adjusting a flow rate of gas flowing from inside the main housing to inside the outer housing;
    pressure measuring means for measuring the pressure in the main housing;
    and pressure control means capable of adjusting the pressure in the main housing with respect to the inside of the outer housing by controlling the flow rate adjusting means based on the pressure measured by the pressure measuring means. 4. A doping system according to any one of claims 1 to 3.
  5.  前記アウターハウジング内のガスを外部に排気する排気手段を備えることを特徴とする請求項1乃至4のいずれか1項に記載のドーピングシステム。 The doping system according to any one of claims 1 to 4, further comprising exhaust means for exhausting the gas inside the outer housing to the outside.
  6.  前記ドープ装置は、可燃性の洗浄液を収容する洗浄槽を有し、
     前記搬送手段は、前記ドープ槽内を経て得られた前記ドープ電極を前記洗浄槽内を通る経路で搬送するように構成されており、
     前記メインハウジングは、前記洗浄槽を内部に収容するように構成されていることを特徴とする請求項1乃至5のいずれか1項に記載のドーピングシステム。
    The dope device has a cleaning tank containing a combustible cleaning liquid,
    The conveying means is configured to convey the dope electrode obtained through the dope tank along a route passing through the cleaning tank,
    6. The doping system according to any one of claims 1 to 5, wherein the main housing is configured to accommodate the cleaning tank therein.
  7.  前記ドープ装置は、前記搬送手段による前記電極前駆体の搬送経路に沿って前記ドープ槽よりも上流に位置するとともに、少なくとも可燃性の溶剤を含んでなる電解液を収容するプリウェット槽を有し、
     前記搬送手段は、前記電極前駆体を前記プリウェット槽内を通る経路で搬送するように構成されており、
     前記メインハウジングは、前記プリウェット槽を内部に収容するように構成されていることを特徴とする請求項1乃至6のいずれか1項に記載のドーピングシステム。
    The doping device has a pre-wet tank positioned upstream of the dope tank along the transport path of the electrode precursor by the transport means and containing an electrolytic solution containing at least a flammable solvent. ,
    The conveying means is configured to convey the electrode precursor along a route passing through the pre-wet tank,
    7. The doping system of any one of claims 1-6, wherein the main housing is configured to accommodate the pre-wet reservoir therein.
PCT/JP2022/019939 2021-07-12 2022-05-11 Doping system WO2023286433A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-114728 2021-07-12
JP2021114728A JP7185734B1 (en) 2021-07-12 2021-07-12 doping system

Publications (1)

Publication Number Publication Date
WO2023286433A1 true WO2023286433A1 (en) 2023-01-19

Family

ID=84357691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019939 WO2023286433A1 (en) 2021-07-12 2022-05-11 Doping system

Country Status (2)

Country Link
JP (1) JP7185734B1 (en)
WO (1) WO2023286433A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017146223A1 (en) * 2016-02-26 2017-08-31 Jsr株式会社 Doping system, and method for manufacturing electrodes, batteries and capacitors
WO2020110433A1 (en) * 2018-11-28 2020-06-04 Jmエナジー株式会社 Electrode production method, method for producing electricity storage device, and electrode production apparatus
US20210062318A1 (en) * 2019-08-30 2021-03-04 Micromaterials Llc Apparatus and methods for depositing molten metal onto a foil substrate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017146223A1 (en) * 2016-02-26 2017-08-31 Jsr株式会社 Doping system, and method for manufacturing electrodes, batteries and capacitors
WO2020110433A1 (en) * 2018-11-28 2020-06-04 Jmエナジー株式会社 Electrode production method, method for producing electricity storage device, and electrode production apparatus
US20210062318A1 (en) * 2019-08-30 2021-03-04 Micromaterials Llc Apparatus and methods for depositing molten metal onto a foil substrate

Also Published As

Publication number Publication date
JP7185734B1 (en) 2022-12-07
JP2023011107A (en) 2023-01-24

Similar Documents

Publication Publication Date Title
JP6369643B2 (en) Doping system, and method for manufacturing electrode, battery, and capacitor
TW560100B (en) Secondary cell, secondary cell fabricating method and device for fabricating the secondary cell
CN103017496B (en) Lithium ion power cell pole flakes drying device and method
JP2015515736A (en) Automatic air supply flow control device for electrode drying oven for secondary battery manufacturing
WO2003005480A1 (en) Secondary battery, manufacturing method for secondary battery, and manufacturing apparatus for secondary battery
CN107342394A (en) A kind of two-sided continuous coating apparatus of lithium ion battery and its coating method
WO2023286433A1 (en) Doping system
JP2012212873A (en) Electrode manufacturing device, electrode manufacturing method, program and computer storage medium
JP7185735B1 (en) doping system
JP2016036761A (en) Coating device, coating method, and electrode manufacturing method
KR102277230B1 (en) Device for Drying Electrode Comprising Un-winder and Re-winder
CN210224168U (en) Lithium ion battery pole piece prelithiation device
KR20060111848A (en) Method of coating electrode materials for secondary battery
WO2023246220A1 (en) Electrode plate drying apparatus, battery production device, and electrode plate drying method
CN111108640B (en) Processing chamber, method for forming ceramic layer of element of electrochemical energy storage device, and evaporation source
WO2021140888A1 (en) Coating device, partition member, and coating method
JP2015044132A (en) Coating film forming device
KR102550569B1 (en) Methods and processing systems for forming components of electrochemical energy storage devices, and oxidation chambers
KR102461087B1 (en) Method of Forming Alumina for an Electrochemical Cell Using a Plasma Ionization Process
CN214013005U (en) Substrate dip-coating device
CN220380172U (en) Folding type tape running drying device
US20230417483A1 (en) Electrode sheet oven drying apparatus, battery production device, and electrode sheet oven drying method
CN211530051U (en) Novel lithium battery diaphragm spraying coating production equipment
WO2023105195A1 (en) Apparatus for manufacturing a catalyst coated membrane
CN116936725A (en) Pole piece processing system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22841780

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE