JP2007015870A - Activated carbon manufacturing apparatus - Google Patents

Activated carbon manufacturing apparatus Download PDF

Info

Publication number
JP2007015870A
JP2007015870A JP2005196122A JP2005196122A JP2007015870A JP 2007015870 A JP2007015870 A JP 2007015870A JP 2005196122 A JP2005196122 A JP 2005196122A JP 2005196122 A JP2005196122 A JP 2005196122A JP 2007015870 A JP2007015870 A JP 2007015870A
Authority
JP
Japan
Prior art keywords
activated carbon
temperature
inert gas
tunnel furnace
reaction vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005196122A
Other languages
Japanese (ja)
Other versions
JP4728711B2 (en
Inventor
Kiwamu Takeshita
究 竹下
Tatsuji Maruyama
辰治 丸山
Katsuo Hasegawa
勝雄 長谷川
Keizo Igai
慶三 猪飼
Hideki Ono
秀樹 尾野
Takashi Oyama
隆 大山
Tamotsu Tano
保 田野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP2005196122A priority Critical patent/JP4728711B2/en
Publication of JP2007015870A publication Critical patent/JP2007015870A/en
Application granted granted Critical
Publication of JP4728711B2 publication Critical patent/JP4728711B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To provide an activated carbon manufacturing apparatus which can obtain activated carbon homogenously activated and specially, capable of obtaining an electric double layer capacitor having high capacitance and high durability, when it is used as a carbon material for the electric double layer capacitor, and which can safely capture a metal vapor generated, and can safely and efficiently manufacture high grade activated carbon with an industrial scale. <P>SOLUTION: The activated carbon manufacturing apparatus producing activated carbon by heating a carbon material and a metal hydroxide, is provided with a transporting means for transporting a reaction container housing the carbon material and the metal hydroxide; a tunnel kiln of which the inside is provided with an atmosphere substitution chamber at the carrying-in opening, held in an inert gas atmosphere, heated up to an activating temperature in the longitudinal direction, and which has a temperature adjusting means to lower the temperature from the activating temperature; a trap chamber provided at a carrying-out opening of the tunnel kiln and capturing metals with carbon dioxide; and a cooling room provided on the downstream from the trap chamber. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、活性炭製造装置に関し、より詳しくは、電気二重層キャパシタ電極用として極めて大きな静電容量が得られる高品位な活性炭を効率よく、しかも安全に工業的生産を行なうことができる活性炭製造装置に関する。   TECHNICAL FIELD The present invention relates to an activated carbon production apparatus, and more specifically, an activated carbon production apparatus capable of efficiently and safely industrially producing high-grade activated carbon capable of obtaining extremely large capacitance for an electric double layer capacitor electrode. About.

従来から、表面積の大きい多孔質の導体の活性炭は、吸着剤や触媒担体、電気二重層キャパシタなどに多用されている。活性炭はコークス、ヤシがらなどの炭素材を炭化し、水蒸気による高温処理あるいは塩化亜鉛などの水溶液の含浸と高温焼成して賦活して製造している。   Conventionally, activated carbon, which is a porous conductor having a large surface area, has been widely used in adsorbents, catalyst carriers, electric double layer capacitors and the like. Activated carbon is produced by carbonizing carbon materials such as coke and coconut, and activated by high-temperature treatment with water vapor or impregnation with an aqueous solution such as zinc chloride and high-temperature firing.

近年、電気二重層キャパシタにおいて静電容量を増大するために、微細孔が効果的に形成された活性炭が求められている。電気二重層キャパシタに使用可能な活性炭の工業生産としては、コークスなどの炭素材と水酸化アルカリ金属などのアルカリ金属化合物とを高温処理して、アルカリ金属を黒鉛結晶層間に侵入させ反応させることにより、炭素材の比表面積を高くする賦活方法が挙げられる。かかる水酸化アルカリ金属を用いた炭素材の賦活においては、炭素材と水酸化アルカリ金属を加熱炉で加熱する際、アルカリ金属の蒸気や、水素ガスが発生するため、爆発の危険を伴い、製造上での安全性を図ると共に、加熱炉の腐食を抑制することに腐心がされている。このような活性炭の製造装置としては、バッチ式の反応炉を用いたもの(特許文献1)や、プッシャー式のトンネル炉を用いた焼成炉(特許文献2)や、トンネル炉を用いた高表面積活性炭の製造装置(特許文献3)などが報告されている。   In recent years, there has been a demand for activated carbon in which micropores are effectively formed in order to increase the capacitance in an electric double layer capacitor. As an industrial production of activated carbon that can be used for electric double layer capacitors, carbon materials such as coke and alkali metal compounds such as alkali metal hydroxides are treated at high temperatures, and alkali metals are allowed to penetrate between graphite crystal layers to react. And an activation method for increasing the specific surface area of the carbon material. In the activation of carbon materials using such alkali metal hydroxides, when carbon materials and alkali metal hydroxides are heated in a heating furnace, alkali metal vapor and hydrogen gas are generated, which is associated with the risk of explosion, Attempts are made to ensure the above safety and to suppress the corrosion of the heating furnace. As an apparatus for producing such activated carbon, one using a batch type reactor (Patent Document 1), a firing furnace using a pusher type tunnel furnace (Patent Document 2), or a high surface area using a tunnel furnace. An apparatus for producing activated carbon (Patent Document 3) has been reported.

しかしながら、特許文献1、2記載の焼成炉では、安定して効率のよい工業的な製造を行えるものではなく、特許文献3記載の焼成炉では、バッチ処理でありながら量産性を備え工業的生産を可能とするものであるが、近年その需要が急増している電気二重層キャパシタの炭素材として、微細孔を多数形成し、更なる高い静電容量を有し耐久性が高く、均質な活性炭を、一定して、より安全に製造できる活性炭の製造装置の要請が高い。
特開平2−97414号公報 特開平3−294780号公報 特開平4−140066号公報
However, the firing furnaces described in Patent Documents 1 and 2 are not capable of stable and efficient industrial production, and the firing furnace described in Patent Document 3 is an industrial production that is mass-produced while being batch processed. As a carbon material for electric double layer capacitors, the demand for which has been increasing rapidly in recent years, a large number of micropores, higher electrostatic capacity, high durability, and uniform activated carbon Therefore, there is a high demand for an apparatus for producing activated carbon that can be produced more stably and stably.
Japanese Patent Laid-Open No. 2-97414 JP-A-3-294780 JP-A-4-140066

本発明の課題は、効果的な微細孔を有し、特に電気二重層キャパシタの炭素材として用いたとき高い静電容量を有し耐久性が高い電気二重層キャパシタを得ることができ、均質に賦活された活性炭を得ることができ、発生する金属蒸気を捕集し、安全に、且つ効率よく高品位の活性炭を連続して製造し、工業的規模で生産することができる活性炭製造装置を提供することにある。   An object of the present invention is to obtain an electric double layer capacitor having effective micropores and having a high electrostatic capacity and high durability, particularly when used as a carbon material of an electric double layer capacitor, and homogeneously. Provide activated carbon production equipment that can obtain activated activated carbon, collect generated metal vapor, continuously produce high quality activated carbon safely and efficiently, and produce it on an industrial scale There is to do.

本発明者らは、炭素材とアルカリ金属化合物との加熱に、内部を不活性ガス雰囲気に保持し長手方向において賦活温度まで昇温し、賦活温度から降温する温度調整手段を有するトンネル炉を用いることにより、アルカリ金属を黒鉛結晶層間に侵入させ反応させることにより、微細孔を多数形成し、均質に賦活された活性炭を得ることができ、これにより、電気二重層キャパシタの炭素材として用いた場合、高い静電容量で耐久性が高い電気二重層キャパシタとすることができ、また、トンネル炉の搬出口に二酸化炭素により遊離金属を捕集するトラップ室を設けることにより、発生する金属蒸気を安全に捕集し、安全に、且つ効率よく高品位の活性炭の製造を行うことができることの知見を得て、これらの知見に基づき本発明を完成するに至った。   The present inventors use a tunnel furnace having temperature adjusting means for heating the carbon material and the alkali metal compound while maintaining the inside in an inert gas atmosphere, raising the temperature to the activation temperature in the longitudinal direction, and lowering the temperature from the activation temperature. By allowing alkali metal to penetrate between graphite crystal layers and reacting, a large number of micropores can be formed and homogeneously activated activated carbon can be obtained, which can be used as a carbon material for electric double layer capacitors. It can be an electric double layer capacitor with high electrostatic capacity and high durability, and the trapping chamber that collects free metal by carbon dioxide is provided at the exit of the tunnel furnace, so that the generated metal vapor can be safely To obtain the knowledge that high-quality activated carbon can be produced safely and efficiently, and the present invention has been completed based on these knowledge. It was.

すなわち、本発明は、炭素材とアルカリ金属化合物とを加熱して活性炭を生成する活性炭製造装置において、炭素材とアルカリ金属化合物とを収納した反応容器を搬送する搬送手段と、搬入口に雰囲気置換室を備えた内部を不活性ガス雰囲気に保持し長手方向において賦活温度まで昇温し、賦活温度から降温する温度調整手段を有するトンネル炉と、該トンネル炉の搬出口に設けられる二酸化炭素により金属を捕集するトラップ室と、該トラップ室の下流に設けられる冷却室とを備えたことを特徴とする活性炭製造装置に関する。   That is, the present invention relates to an activated carbon production apparatus that generates activated carbon by heating a carbon material and an alkali metal compound, and transporting means for transporting a reaction vessel containing the carbon material and the alkali metal compound, and replacing the atmosphere at the inlet. A tunnel furnace having a temperature adjusting means for maintaining the interior of the chamber in an inert gas atmosphere, raising the temperature to the activation temperature in the longitudinal direction, and lowering the temperature from the activation temperature, and carbon dioxide provided at the carry-out port of the tunnel furnace The present invention relates to an activated carbon production apparatus comprising a trap chamber for collecting water and a cooling chamber provided downstream of the trap chamber.

本発明の活性炭製造装置は、微細孔を有し高表面積で均質に賦活された活性炭を得ることができ、特に電気二重層キャパシタの炭素材として用いたとき高い静電容量を有し耐久性が高い電気二重層キャパシタを得ることができ、発生する金属蒸気を安全に捕集し、安全に、且つ効率よく高品位の活性炭を連続して製造することができ、工業的規模で生産することができる。   The activated carbon production apparatus of the present invention can obtain activated carbon that has fine pores and is uniformly activated with a high surface area, especially when used as a carbon material for electric double layer capacitors and has high capacitance and durability. A high electric double layer capacitor can be obtained, the generated metal vapor can be collected safely, and high-grade activated carbon can be continuously produced safely and efficiently, and can be produced on an industrial scale. it can.

本発明の活性炭製造装置は、炭素材とアルカリ金属化合物とを加熱して活性炭を生成する活性炭製造装置において、炭素材とアルカリ金属化合物とを収納した反応容器を搬送する搬送手段と、搬入口に雰囲気置換室を備えた内部を不活性ガス雰囲気に保持し長手方向において賦活温度まで昇温し、賦活温度から降温する温度調整手段を有するトンネル炉と、該トンネル炉の搬出口に設けられる二酸化炭素により金属を捕集するトラップ室と、該トラップ室の下流に設けられる冷却室とを備えたものであれば、特に制限されるものではない。   The activated carbon production apparatus of the present invention is an activated carbon production apparatus that generates activated carbon by heating a carbon material and an alkali metal compound, a conveyance means for conveying a reaction container containing the carbon material and the alkali metal compound, A tunnel furnace having temperature adjusting means for maintaining the inside of the atmosphere replacement chamber in an inert gas atmosphere, raising the temperature in the longitudinal direction to the activation temperature, and lowering the temperature from the activation temperature, and carbon dioxide provided at the exit of the tunnel furnace There is no particular limitation as long as it has a trap chamber for collecting metal and a cooling chamber provided downstream of the trap chamber.

本発明の活性炭製造装置において用いられる炭素材としては、特に制限されるものではないが、例えば、石炭コークス、石油コークス、植物の炭化物などを挙げることができる。   Although it does not restrict | limit especially as a carbon material used in the activated carbon manufacturing apparatus of this invention, For example, coal coke, petroleum coke, a plant carbide, etc. can be mentioned.

また、本発明の活性炭製造装置において用いられるアルカリ金属化合物としては、特に制限されるものではないが、具体的に、水酸化カリウム、水酸化ナトリウム、水酸化リチウムなどアルカリ金属の水酸化物を挙げることができ、これらを組み合わせて用いることもできる。これらのうち、水酸化カリウムが電気二重層キャパシタ炭素材用として好適な活性炭が得られるため好ましい。   Further, the alkali metal compound used in the activated carbon production apparatus of the present invention is not particularly limited, and specific examples thereof include alkali metal hydroxides such as potassium hydroxide, sodium hydroxide, lithium hydroxide and the like. These can be used in combination. Of these, potassium hydroxide is preferable because activated carbon suitable for an electric double layer capacitor carbon material can be obtained.

上記炭素材およびアルカリ金属化合物の使用量としては、質量比で、炭素材/金属水酸化物として、1/0.5〜1/10とすることができ、好ましくは1/1〜1/5である。 また、上記炭素材とアルカリ金属化合物の他、炭素材の賦活の原料として水などを含有させることもできる。   The amount of the carbon material and alkali metal compound used can be 1 / 0.5 to 1/10, and preferably 1/1 to 1/5, as a carbon material / metal hydroxide in mass ratio. It is. In addition to the carbon material and the alkali metal compound, water or the like can be contained as a raw material for activating the carbon material.

本発明の活性炭製造装置において、上記炭素材とアルカリ金属化合物を収納する反応容器としては、賦活温度に加熱された上記炭素材と金属水酸化物に対して耐久性を有するものが好ましく、原料の流出を抑制するため、蓋を有することが好ましい。反応容器の本体や蓋の外周面に金属捕集材を有することが、炉内で加熱され容器から流出したアルカリ金属化合物や金属蒸気を捕集できるため、好ましい。   In the activated carbon production apparatus of the present invention, as the reaction vessel containing the carbon material and the alkali metal compound, those having durability against the carbon material and metal hydroxide heated to the activation temperature are preferable, In order to suppress outflow, it is preferable to have a lid. It is preferable to have a metal collecting material on the outer peripheral surface of the main body of the reaction vessel or the lid, because an alkali metal compound or metal vapor heated in the furnace and flowing out of the vessel can be collected.

本発明の活性炭製造装置において、上記反応容器を搬送する搬送手段としては、搬送方向に対して直交方向に複数が並列して設けられたローラー群を備え、かかるローラー群により原料を収納した反応容器を支持し、ローラーが回転することによりかかる反応容器を一定速度で搬送できるものが好ましい。並列したローラー群により構成される搬送路が、トンネル炉内の搬送路を含め高低差がない直線状となっていることが、温度調整が容易であり、効率のよい製造を行なう点で好ましい。   In the activated carbon production apparatus of the present invention, as a transport means for transporting the reaction container, a reaction container including a plurality of rollers arranged in parallel in a direction orthogonal to the transport direction and containing raw materials by the roller group. It is preferable that the reaction vessel can be transported at a constant speed by supporting the substrate and rotating the roller. It is preferable in terms of easy temperature adjustment and efficient production that the conveyance path constituted by the group of rollers arranged in parallel has no difference in height including the conveyance path in the tunnel furnace.

本発明の活性炭製造装置におけるトンネル炉は、上記反応容器をその内部を移動させ、反応容器に収納した炭素材とアルカリ金属化合物とを所定温度で加熱するための直線状の加熱炉であり、その内部に反応容器が通過可能な貫通した搬送路が設けられたものが好ましい。トンネル炉とすることにより、長手方向において所定の温度勾配に変化をもたせた昇温、降温を有する加熱温度を高精度に調整することが容易であり、反応容器が一方向に搬送される間に、反応容器内の原料に対して所定の変化を有する高精度に調整した所望の温度処理を行なうことができるため、好ましい。トンネル炉は、炭素材からの二酸化炭素生成を抑制し、アルカリ金属化合物、例えば、アルカリ金属水酸化物から発生する水素ガスとの爆発的反応を防止する必要から、炉内の酸素を除去して不活性ガス雰囲気とするため内部を気密に保持できるものである。トンネル炉の反応容器の搬入口には、反応容器の搬入出時にトンネル炉内への外気の流入を防止するための雰囲気置換室が設けられる。雰囲気置換室には内部を気密に保持可能なゲートが設けられ、雰囲気置換室へ容器を搬入する際はトンネル炉側のゲートを閉成し、搬入口側雰囲気置換室に容器を搬入後、雰囲気置換室へ不活性ガスを導入して雰囲気置換室内の空気を不活性ガスに置換し、その後、トンネル炉側のゲートを開成してトンネル炉内へ容器を搬入することにより、トンネル炉内への外気の流入を防止することができる。トンネル炉の搬出口においては、雰囲気置換室と同様の機能を有する後述トラップ室が設けられ、搬出口から反応容器を搬出する際、トンネル炉内の不活性ガス雰囲気に保持することができるようになっている。かかる不活性ガスとしては、窒素ガスなどを使用することができる。   The tunnel furnace in the activated carbon production apparatus of the present invention is a linear heating furnace for moving the inside of the reaction vessel and heating the carbon material and the alkali metal compound stored in the reaction vessel at a predetermined temperature. It is preferable to provide a through-passage passage through which the reaction vessel can pass. By using a tunnel furnace, it is easy to accurately adjust the heating temperature having a predetermined temperature gradient in the longitudinal direction, and the heating temperature having a temperature decrease, while the reaction vessel is transported in one direction. It is preferable because a desired temperature process having a predetermined change can be performed on the raw material in the reaction vessel with high accuracy. Tunnel furnaces need to suppress the production of carbon dioxide from carbon materials and prevent explosive reaction with hydrogen gas generated from alkali metal compounds, for example, alkali metal hydroxides. The inside can be kept airtight for an inert gas atmosphere. At the inlet of the reaction vessel of the tunnel furnace, an atmosphere replacement chamber is provided for preventing the flow of outside air into the tunnel furnace when the reaction vessel is carried in and out. The atmosphere replacement chamber is equipped with a gate that can keep the inside airtight. When loading a container into the atmosphere replacement chamber, the gate on the tunnel furnace side is closed, and after the container is loaded into the inlet-side atmosphere replacement chamber, the atmosphere Introducing an inert gas into the replacement chamber to replace the air in the atmosphere replacement chamber with an inert gas, then opening the gate on the tunnel furnace side and carrying the container into the tunnel furnace, Inflow of outside air can be prevented. At the exit of the tunnel furnace, a trap chamber having a function similar to that of the atmosphere replacement chamber is provided, so that when the reaction vessel is unloaded from the exit, it can be maintained in an inert gas atmosphere in the tunnel furnace. It has become. As such an inert gas, nitrogen gas or the like can be used.

トンネル炉には、長手方向において賦活温度まで昇温し、賦活温度から降温する温度調整手段が設けられる。温度調整手段としては、内部空間の上下にそれぞれ設けられる上部棒状ヒーター、下部棒状ヒーターと、底面の長手方向の複数の位置にそれぞれ複数設けられる不活性ガスを導入する不活性ガス導入口と、天井の長手方向の複数の位置に設けられる排気口とを有する。不活性ガス導入口が、下部棒状ヒーター側に設けられ、このような構成により、炉内において高温側から低温側へ向かう不活性ガス流を形成することができる。更に、下流側から上流側に向かう不活性ガス流を形成する手段を有するものが好ましい。また、温度調整手段には、トンネル炉の搬出口側に設けられる不加熱領域を有することが好ましい。不加熱領域には、不活性ガス導入口と、排気口のみを設け、ヒーターを設けないことが好ましい。   The tunnel furnace is provided with temperature adjusting means for raising the temperature to the activation temperature in the longitudinal direction and lowering the temperature from the activation temperature. As temperature adjusting means, there are an upper bar heater and a lower bar heater respectively provided above and below the internal space, an inert gas inlet for introducing a plurality of inert gases at a plurality of positions in the longitudinal direction of the bottom surface, and a ceiling And an exhaust port provided at a plurality of positions in the longitudinal direction. An inert gas inlet is provided on the lower bar heater side, and with such a configuration, an inert gas flow from the high temperature side to the low temperature side can be formed in the furnace. Furthermore, what has a means to form the inert gas flow which goes to the upstream from the downstream is preferable. Moreover, it is preferable that the temperature adjusting means has an unheated region provided on the exit side of the tunnel furnace. In the non-heating region, it is preferable to provide only an inert gas inlet and an exhaust port, and no heater.

このような温度調整手段によりトンネル炉内を、賦活温度まで昇温し、賦活温度から降温するような温度調整を行なうことが可能となる。賦活温度としては、500〜1000℃であり、好ましくは600〜800℃を挙げることができる。温度調整手段による加熱温度としては、賦活温度までの昇温は、初期と終期には温度勾配を大きく、中間においては温度勾配を小さくすることが好ましく、例えば、漸進の昇温を180分とする場合、初期の50分は300℃、中間期の100分は100℃、終期の30分は300℃などとすることができる。賦活温度での加熱は60分、賦活温度からの降温は、一定の温度勾配で、例えば、100分で600℃などとすることができる。このような温度による加熱処理により、均質に微細孔を形成した活性炭を得ることができ、電気二重層キャパシタの炭素材として高静電容量の高品位の活性炭を得ることができる。   With such temperature adjusting means, it is possible to perform temperature adjustment such that the temperature in the tunnel furnace is raised to the activation temperature and lowered from the activation temperature. As activation temperature, it is 500-1000 degreeC, Preferably 600-800 degreeC can be mentioned. As the heating temperature by the temperature adjusting means, it is preferable that the temperature rise to the activation temperature has a large temperature gradient in the initial and final stages and a small temperature gradient in the middle. For example, the gradual temperature rise is 180 minutes. In this case, the initial 50 minutes may be 300 ° C., the intermediate period 100 minutes may be 100 ° C., and the final 30 minutes may be 300 ° C. The heating at the activation temperature can be 60 minutes, and the temperature drop from the activation temperature can be a constant temperature gradient, for example, 600 ° C. in 100 minutes. By the heat treatment at such a temperature, it is possible to obtain activated carbon in which fine pores are uniformly formed, and it is possible to obtain high-grade activated carbon having a high capacitance as a carbon material for an electric double layer capacitor.

また、トンネル炉の搬出口に設けられるトラップ室は、不活性ガスの導入口と二酸化炭素導入口と排気口とを有し、トンネル炉から反応容器を搬出する際は、不活性ガス導入口から不活性ガスを導入してトラップ室内を不活性ガス雰囲気にした後、反応容器を搬出し反応容器を搬出後、二酸化炭素導入口から二酸化炭素を導入し、二酸化炭素により遊離金属とを反応させ、遊離金属を安全に捕集することができるため、危険な反応を回避して、安全性の高い活性炭の製造を行うことができる。   The trap chamber provided at the tunnel furnace outlet has an inert gas inlet, a carbon dioxide inlet, and an exhaust outlet. When the reaction vessel is unloaded from the tunnel furnace, the inert gas inlet After introducing an inert gas to make the trap chamber an inert gas atmosphere, the reaction vessel is taken out, the reaction vessel is taken out, carbon dioxide is introduced from the carbon dioxide inlet, and the free metal reacts with carbon dioxide, Since free metals can be collected safely, dangerous reactions can be avoided and highly safe activated carbon can be produced.

更に、トラップ室の下流に設けられる冷却室はガスの導入口と排気口とを有し、適宜ガス流を形成して、反応容器を冷却し、安全性の高い活性炭の製造を行うことができる。   Furthermore, the cooling chamber provided downstream of the trap chamber has a gas inlet and an exhaust port, and can form a gas flow as appropriate to cool the reaction vessel and produce highly safe activated carbon. .

以下、本発明の活性炭製造装置の一例を、図面を参照して説明する。   Hereinafter, an example of the activated carbon production apparatus of the present invention will be described with reference to the drawings.

図1の概略側断面図に示すように、本発明の活性炭製造装置は、搬入口に設けられる雰囲気置換室1を備えたトンネル炉3と、トラップ室2と、冷却室4とを直線状に接続して設け、その内部に炭素材とアルカリ金属化合物、例えば、水酸化カリウムとを収納した反応容器5が直線状に移動できる貫通した搬送路6(搬送手段)を有するものである。   As shown in the schematic cross-sectional side view of FIG. 1, the activated carbon production apparatus of the present invention includes a tunnel furnace 3 provided with an atmosphere replacement chamber 1 provided at a carry-in entrance, a trap chamber 2, and a cooling chamber 4 in a straight line. The reaction container 5 which is provided connected and contains a carbon material and an alkali metal compound, for example, potassium hydroxide, has a through-conveying path 6 (conveying means) through which the container can move linearly.

炭素材と金属水酸化物とを収納する反応容器5の材質としては、例えば、純ニッケルやニッケル合金、または、シリカや酸化アルミニウムの焼成物などの金属酸化物の焼成物などセラミックが、賦活温度に加熱されたアルカリ金属化合物に対して耐腐食性を有するため好ましい。この反応容器5は、収納したアルカリ金属化合物と炭素材とが流出するのを抑制できるように、蓋を有するものが好ましい。更に、この反応容器本体や蓋はその外周面に反応容器と蓋の間隙から外部へ流出した金属蒸気などを吸着する、例えば、安価な活性炭やグラスウールなどの金属捕集材を有することが、加熱炉内の腐食を抑制し、排気ガス中の金属蒸気の含有量を低減できるため、好ましい。   Examples of the material of the reaction vessel 5 containing the carbon material and the metal hydroxide include ceramics such as pure nickel, nickel alloy, or a fired product of metal oxide such as a fired product of silica or aluminum oxide. Since it has corrosion resistance with respect to the alkali metal compound heated at high temperature, it is preferable. The reaction vessel 5 preferably has a lid so that the stored alkali metal compound and carbon material can be prevented from flowing out. Furthermore, the reaction vessel main body and lid adsorb metal vapor that flows out from the gap between the reaction vessel and the lid to the outer peripheral surface thereof, for example, it has an inexpensive metal collector such as activated carbon or glass wool. This is preferable because corrosion in the furnace can be suppressed and the content of metal vapor in the exhaust gas can be reduced.

反応容器の大きさとしては、特に制限されるものではないが、内部に炭素材およびアルカリ金属化合物を収納したときの取扱いが容易な重量や、大きさを有することが好ましく、具体的には、例えば、3mm厚さの410mm×300mm×100mmなどとすることができる。   The size of the reaction vessel is not particularly limited, but preferably has a weight and size that are easy to handle when containing a carbon material and an alkali metal compound inside, specifically, For example, it can be 410 mm × 300 mm × 100 mm with a thickness of 3 mm.

搬送路6は上記反応容器5の搬送方向と直交方向に配置されるローラー61の複数が並列したローラー群により構成される。反応容器5の搬送路をローラー群で構成することにより、炉の底部から導入する後述する不活性ガス流が反応容器5に充分に接触し均一な加熱が可能となる。ローラー群を構成する各ローラー61はその回転速度が、反応容器5が収納する原料に対して所望の加熱処理が行なわれるような搬送速度で搬送されるように調整可能となっている。ローラーの材質としては、上記炭素材およびアルカリ金属化合物を収納した反応容器の重量を支持できる強度を備え、アルカリ金属化合物や遊離金属に接触した場合であっても耐久性を有するようにアルカリ金属化合物に対する耐腐食性を有するものが好ましい。具体的には、シリカや、酸化アルミニウムの焼成物、アルミナ・シリカセラミックなどのセラミックなどが好ましい。ローラーの形状としては、原料を収納した反応容器の重量により適宜選択することができ、原料を収納した反応容器の重量が例えば5〜20kgのものを2列で搬送する場合、口径30〜50mmを挙げることができ、その配置は、例えば60〜100mm間隔を挙げることができる。   The conveyance path 6 is composed of a roller group in which a plurality of rollers 61 arranged in a direction orthogonal to the conveyance direction of the reaction vessel 5 are arranged in parallel. By configuring the transport path of the reaction vessel 5 with a group of rollers, an inert gas flow, which will be described later, introduced from the bottom of the furnace sufficiently comes into contact with the reaction vessel 5 and enables uniform heating. The rotation speed of each roller 61 constituting the roller group can be adjusted so that the raw material stored in the reaction vessel 5 is transported at a transport speed at which a desired heat treatment is performed. As the material of the roller, the alkali metal compound has a strength capable of supporting the weight of the reaction vessel containing the carbon material and the alkali metal compound, and has durability even when it comes into contact with the alkali metal compound or the free metal. What has the corrosion resistance with respect to is preferable. Specifically, silica, a fired product of aluminum oxide, ceramic such as alumina / silica ceramic, and the like are preferable. The shape of the roller can be appropriately selected depending on the weight of the reaction vessel containing the raw material. When the reaction vessel containing the raw material has a weight of, for example, 5 to 20 kg and is transported in two rows, the diameter is 30 to 50 mm. The arrangement | positioning can mention the 60-100 mm space | interval, for example.

トンネル炉の反応容器の搬入口に設けられる搬入口側雰囲気置換室1には、内部を気密に保持可能なゲート11、12が設けられ、雰囲気置換室へ窒素ガスなどの不活性ガスを導入する不活性ガス導入口13がその底部に、排気口14がその天井に設けられ、トンネル炉側のゲートを閉成して容器を搬入し、雰囲気置換室内の空気を不活性ガスに置換した後、トンネル炉側のゲートを開成してトンネル炉内へ容器を搬入することにより、トンネル炉内への外気の流入を防止することができるようになっている。かかるゲートの材質としては、金属水酸化物や、遊離金属に接触するため、耐腐食性を有するものが好ましく、例えば、アルミナ・シリカなどのセラミックを挙げることができ、気密性を高めるため、ゲートを二重に設けてもよい。   The inlet side atmosphere replacement chamber 1 provided at the inlet of the reaction vessel of the tunnel furnace is provided with gates 11 and 12 capable of keeping the inside airtight, and introduces an inert gas such as nitrogen gas into the atmosphere replacement chamber. After the inert gas inlet 13 is provided at the bottom and the exhaust port 14 is provided at the ceiling, the gate on the tunnel furnace side is closed, the container is carried in, and the air in the atmosphere replacement chamber is replaced with the inert gas. By opening the gate on the tunnel furnace side and carrying the container into the tunnel furnace, the inflow of outside air into the tunnel furnace can be prevented. As a material of such a gate, it is preferable to have a corrosion resistance because it is in contact with a metal hydroxide or a free metal. For example, a ceramic such as alumina or silica can be used. May be provided twice.

また、雰囲気置換室1の外壁には透明窓15を介して光センサ16を設け、通過してトンネル炉3へ搬入される容器を検知して、炉内の容器の搬送状態を検出できるものとしてもよい。   In addition, an optical sensor 16 is provided on the outer wall of the atmosphere replacement chamber 1 through a transparent window 15 to detect a container that passes through and is carried into the tunnel furnace 3, and can detect a conveyance state of the container in the furnace Also good.

直線状のトンネル炉3は、内部を気密に保持できるものであり、トンネル炉には内部空間を覆うアルミナ・シリカレンガなどの耐熱レンガの断熱壁35が設けられ、その外周に、更にSS400などで形成される外壁36が設けられ、内部空間のヒーターによる熱を有効に利用し、炉内の長手方向において変化する温度を高精度に調整することができるようになっている。トンネル炉長は原料の必要な加熱時間などとの関連により定められ、例えば、加熱時間として4〜6時間のとき、6〜15mなどとすることができる。   The linear tunnel furnace 3 can keep the inside airtight, and the tunnel furnace is provided with a heat-insulating wall 35 of heat-resistant brick such as alumina / silica brick covering the inner space. An outer wall 36 to be formed is provided, and the temperature changing in the longitudinal direction in the furnace can be adjusted with high accuracy by effectively using the heat from the heater in the inner space. The length of the tunnel furnace is determined in relation to the necessary heating time of the raw material, and can be 6 to 15 m when the heating time is 4 to 6 hours, for example.

トンネル炉内には温度調整手段が設けられ、温度調整手段を構成する上部棒状ヒーター31、下部棒状ヒーター32がその内部空間の上下に設けられ、これらのヒーターがトンネル炉内の空間に設けられることにより、放射熱を利用することができ、炉内の温度分布を均等にすることができる。上部棒状ヒーター31、下部棒状ヒーター32は別個に温度調整可能となっており、下部棒状ヒーター32は上部棒状ヒーター31より高温に設定してもよい。また、各上部棒状ヒーター31、下部棒状ヒーター32はそれぞれ長手方向において温度調整可能となっている。これらのヒーターの材質としては、炭化ケイ素や、更に、これにシリカや酸化アルミニウムの焼成物などのセラミックを外層に設けたものなどを用いることができる。   Temperature adjusting means is provided in the tunnel furnace, and an upper bar heater 31 and a lower bar heater 32 constituting the temperature adjusting means are provided above and below the internal space, and these heaters are provided in the space in the tunnel furnace. Thus, radiant heat can be used and the temperature distribution in the furnace can be made uniform. The temperature of the upper bar heater 31 and the lower bar heater 32 can be adjusted separately, and the lower bar heater 32 may be set at a higher temperature than the upper bar heater 31. Each upper bar heater 31 and lower bar heater 32 can be adjusted in temperature in the longitudinal direction. As a material of these heaters, silicon carbide, and further, ceramics such as a fired product of silica or aluminum oxide provided on the outer layer can be used.

また、トンネル炉に設けられる温度調整手段には、窒素ガスなどの不活性ガスを導入する不活性ガス導入口33がその底面の長手方向の複数の位置に設けられ、更に、搬送方向に直交するトンネル炉の概略横断面図(図2)に示すように、長手方向の複数の位置においてそれぞれ2〜6口などに分岐した複数口が設けられ、排気口34がその天井の長手方向の複数の位置に設けられ、不活性ガスの流れがトンネル炉内の高温側から低温側へ形成されるようになっている。不活性ガス導入口33や排気口34は、上部棒状ヒーター31、下部棒状ヒーター32の配置や設定温度との関連において、炉内の温度が、上流から下流に向かって賦活温度まで昇温し、賦活温度から降温する、例えば、図3に示すような所望の温度構成となるように、トンネル炉の長手方向において、その複数が相互に等間隔でない位置に配置されることを選択することができる。更に、不活性ガス導入口33や排気口34は、図4のトンネル炉の概略側断面図に示すように、断熱壁35中を屈曲して設けられ、炉内への開口と外壁に設けられる開口が長手方向において異なる位置に設けられていることが、低温の不活性ガスが炉内に直接導入されることによる温度の不均一の発生を抑制することができ、また、炉内の熱の放射による温度の不均一の発生を抑制することができ、また、異物の混入を防止することができるため、好ましい。また、トンネル炉内には、下流側から上流側への不活性ガス流(図中、矢印で示す。)を形成するため、例えば、不活性ガス導入口33の炉内への開口33aから導入された不活性ガスがそれより上流側の排気口34の炉内への開口34aへ、不活性ガス導入口33の炉内への開口33bから排気口34の炉内への開口34bへ、不活性ガス導入口33の炉内への開口33cから排気口34の炉内への開口34cへ、不活性ガス導入口33の炉内への開口33dから排気口34の炉内への開口34dへの流れ、・・・を形成するように、開口近傍の断熱壁35から反応容器5方向へ突出する仕切壁36が、それぞれ開口33aと開口34aを包囲するように、開口33bと開口34bを包囲するように、開口33cと開口34cを包囲するように、開口33dと開口34dを包囲するように、・・・設けられる。更に、トンネル炉の天井を湾曲形状に形成し、湾曲部の中央部に排気口34を設け、不活性ガスを滞留させず、ローラー61上の反応容器の底面や側面に接触させ、湾曲天井の中央の排気口へ流れるようにガス流を形成することが好ましい。このような温度調整手段により炉内を、横断面方向においては均一に、長手方向においては図3に示すように賦活温度に昇温し、賦活温度から降温する温度構成を高精度に行なうことができるようになっている。   In addition, the temperature adjusting means provided in the tunnel furnace is provided with an inert gas inlet 33 for introducing an inert gas such as nitrogen gas at a plurality of positions in the longitudinal direction of the bottom surface, and is further orthogonal to the transport direction. As shown in a schematic cross-sectional view of the tunnel furnace (FIG. 2), a plurality of ports branched into 2 to 6 ports are provided at a plurality of positions in the longitudinal direction, and a plurality of exhaust ports 34 are arranged in the longitudinal direction of the ceiling. The inert gas flow is formed from the high temperature side to the low temperature side in the tunnel furnace. The inert gas introduction port 33 and the exhaust port 34 raise the temperature in the furnace from the upstream to the downstream to the activation temperature in relation to the arrangement of the upper bar heater 31 and the lower bar heater 32 and the set temperature, The temperature can be lowered from the activation temperature, for example, it can be selected that the plurality are arranged at positions that are not equidistant from each other in the longitudinal direction of the tunnel furnace so as to have a desired temperature configuration as shown in FIG. . Further, as shown in the schematic sectional side view of the tunnel furnace in FIG. 4, the inert gas introduction port 33 and the exhaust port 34 are provided by being bent in the heat insulating wall 35 and provided in the opening and the outer wall in the furnace. Since the openings are provided at different positions in the longitudinal direction, it is possible to suppress the occurrence of uneven temperature due to the introduction of the low-temperature inert gas directly into the furnace. This is preferable because generation of non-uniform temperature due to radiation can be suppressed and contamination of foreign matters can be prevented. Further, in order to form an inert gas flow (indicated by an arrow in the figure) from the downstream side to the upstream side in the tunnel furnace, for example, it is introduced from the opening 33a of the inert gas inlet 33 into the furnace. The inert gas thus discharged does not pass into the opening 34a into the furnace of the exhaust port 34 on the upstream side, and from the opening 33b into the furnace of the inert gas introduction port 33 into the opening 34b into the furnace of the exhaust port 34. From the opening 33c of the active gas inlet 33 into the furnace to the opening 34c of the exhaust outlet 34 into the furnace, from the opening 33d of the inert gas inlet 33 into the furnace to the opening 34d of the exhaust outlet 34 into the furnace. A partition wall 36 protruding in the direction of the reaction vessel 5 from the heat insulating wall 35 in the vicinity of the opening surrounds the opening 33b and the opening 34b so as to surround the opening 33a and the opening 34a, respectively. So as to surround the opening 33c and the opening 34c. In, so as to surround the opening 33d and the opening 34d, it is provided... Furthermore, the ceiling of the tunnel furnace is formed in a curved shape, and an exhaust port 34 is provided in the central portion of the curved portion so that the inert gas does not stay and is brought into contact with the bottom and side surfaces of the reaction vessel on the roller 61, The gas flow is preferably formed so as to flow to the central exhaust port. By such a temperature adjusting means, the temperature inside the furnace can be increased in temperature in the cross-sectional direction uniformly and in the longitudinal direction to the activation temperature as shown in FIG. It can be done.

更に、トンネル炉の搬出口側には、上部棒状ヒーター31、下部棒状ヒーター32を設置しない不加熱領域37が設けられることが好ましい。不加熱領域37において、不活性ガス導入口33から導入される不活性ガス流と相俟って反応容器の冷却効果を促進させた温度降下を得ることができる。   Furthermore, it is preferable that an unheated region 37 in which the upper bar heater 31 and the lower bar heater 32 are not installed is provided on the exit side of the tunnel furnace. In the non-heating region 37, a temperature drop that promotes the cooling effect of the reaction vessel in combination with the inert gas flow introduced from the inert gas inlet 33 can be obtained.

このようなトンネル炉の搬出口に設けられるトラップ室2は、ゲート22を介してトンネル炉の搬出口に設けられ、内部を気密に保持できるようになっている。トラップ室2の底部には、二酸化炭素と不活性ガスとを切り替えて導入するガス導入口23と、天井には、排気口42とが設けられ、ゲート22が開成されてトンネル炉の搬出口から反応容器がトラップ室に搬送される際、トラップ室2が不活性ガスで置換され、反応容器がトラップ室に搬送されゲート22が閉成された後、トラップ室2内へ二酸化炭素が導入され、金属を捕集できるようになっている。ゲートの材質としては、金属水酸化物の遊離金属に接触するため、耐腐食性を有するものが好ましく、例えば、アルミナ・シリカなどのセラミックを挙げることができる。   The trap chamber 2 provided at the exit of the tunnel furnace is provided at the exit of the tunnel furnace via the gate 22 so that the inside can be kept airtight. A gas inlet 23 for switching between carbon dioxide and inert gas is provided at the bottom of the trap chamber 2, and an exhaust outlet 42 is provided at the ceiling. When the reaction vessel is transferred to the trap chamber, the trap chamber 2 is replaced with an inert gas, and after the reaction vessel is transferred to the trap chamber and the gate 22 is closed, carbon dioxide is introduced into the trap chamber 2, Metal can be collected. As the material of the gate, a material having corrosion resistance is preferable because it comes into contact with a free metal hydroxide, and examples thereof include ceramics such as alumina and silica.

また、トラップ室2の外壁には透明窓25を介して光センサ26を設け、トンネル炉3から搬出された容器を検知して、炉内の容器の搬送状態を検出できるものとしてもよい。   In addition, an optical sensor 26 may be provided on the outer wall of the trap chamber 2 through a transparent window 25 to detect the container carried out from the tunnel furnace 3 and detect the transport state of the container in the furnace.

更に、トラップ室2の下流にはゲート21を介して冷却室4が設けられ、冷却室4から反応容器を搬出する搬出口には内部を気密に保持できるゲート43が設けられ、底部には冷却ガス導入口41と、天井には排気口42とが設けられる。   Further, a cooling chamber 4 is provided downstream of the trap chamber 2 via a gate 21, and a gate 43 that can keep the inside airtight is provided at an outlet for carrying out the reaction vessel from the cooling chamber 4. A gas introduction port 41 and an exhaust port 42 are provided on the ceiling.

このような本発明の活性炭製造装置の作用を説明する。   The operation of the activated carbon production apparatus of the present invention will be described.

ローラー群の各ローラー61の回転速度を、原料を収納した反応容器5の搬送速度が、例えば、10〜40mm/分、好ましくは20〜30mm/分などとなるように調整した搬送路6に、原料を収納した反応容器5を、例えば、各列2個2列で合計4個を1バッチとして載置する。雰囲気置換室1のトンネル炉3側のゲート12を閉成し、ゲート11を開成し、雰囲気置換室1に容器を搬入する。1バッチの容器が雰囲気置換室1に搬入された後、ゲート11を閉成し、排気口14から排気すると共に、不活性ガス導入口13から不活性ガス、例えば、窒素ガスを所定時間導入し、内部の空気を窒素ガスに置換する。雰囲気置換室1内が窒素に置換された後、内部を不活性ガスで置換されたトンネル炉側のゲート12を開成し、1バッチの反応容器1をトンネル炉へ搬送する。このとき、光センサ16により搬送された反応容器数を検出し、トンネル炉内の反応容器の数を検出する。1バッチの反応容器をトンネル炉に搬送した後、ゲート12を閉成し、次の1バッチの反応容器の搬入に備える。   In the conveyance path 6 in which the rotation speed of each roller 61 of the roller group is adjusted so that the conveyance speed of the reaction vessel 5 containing the raw material is, for example, 10 to 40 mm / min, preferably 20 to 30 mm / min. For example, the reaction containers 5 containing the raw materials are placed in two batches of 2 rows for a total of 4 batches. The gate 12 on the tunnel furnace 3 side of the atmosphere replacement chamber 1 is closed, the gate 11 is opened, and the container is carried into the atmosphere replacement chamber 1. After one batch of containers is carried into the atmosphere replacement chamber 1, the gate 11 is closed, exhausted from the exhaust port 14, and an inert gas such as nitrogen gas is introduced from the inert gas inlet 13 for a predetermined time. The inside air is replaced with nitrogen gas. After the atmosphere replacement chamber 1 is replaced with nitrogen, the tunnel furnace-side gate 12 whose interior is replaced with an inert gas is opened, and one batch of the reaction vessel 1 is transferred to the tunnel furnace. At this time, the number of reaction vessels conveyed by the optical sensor 16 is detected, and the number of reaction vessels in the tunnel furnace is detected. After the batch of reaction vessels is transferred to the tunnel furnace, the gate 12 is closed to prepare for the next batch of reaction vessels.

トンネル炉内は、不活性ガス導入口から不活性ガス、例えば窒素ガスを導入すると共に排気口から排気を行ない、内部の酸素濃度を、例えば、100ppm以下に保持すると共に、内部の圧力を、例えば、10Pa程度の正圧に保持する。下部棒状ヒーター32、上部棒状ヒーター31の加熱温度をそれぞれ所定の温度に設定する。底面に設けられる不活性ガス導入口33の開口33a、・・・から、不活性ガスを、長手方向における異なる位置において、それぞれ導入量を変化させて、例えば、1〜10m3/hを導入する。開口33aから導入した不活性ガスは開口34aから、開口33bから導入した不活性ガスは開口34b、・・・からそれぞれ排気され、不活性ガス流が、図4に示すように、下流から上流に向かって形成され、かつ、図2に示すように、反応容器5の底面から側面を覆うように形成され、所定温度に設定された下部棒状ヒーター32および上部棒状ヒーター31及び冷却ゾーン37と相俟って、トンネル炉内の温度は、横断面においては均一な温度に、長手方向においては図3に示すように、賦活温度まで昇温し、賦活温度から降温する所望の温度に調整される。このため、炭素材とアルカリ金属化合物を収納した反応容器5がトンネル炉の搬入口から搬入されローラー群により搬送される間に、炭素材とアルカリ金属化合物に対して、図3に示すように、賦活温度まで加熱され、賦活温度で所定時間加熱され、賦活温度から降温されて加熱処理が行なわれる。このような加熱処理により、炭素材の黒鉛層間にアルカリ金属が進入し反応することにより多孔質となり、均質な活性炭が形成される。 In the tunnel furnace, an inert gas such as nitrogen gas is introduced from the inert gas introduction port and exhaust is performed from the exhaust port to maintain the internal oxygen concentration at, for example, 100 ppm or less, and the internal pressure is set to, for example, A positive pressure of about 10 Pa is maintained. The heating temperatures of the lower bar heater 32 and the upper bar heater 31 are respectively set to predetermined temperatures. For example, 1 to 10 m 3 / h is introduced from the opening 33a of the inert gas introduction port 33 provided on the bottom surface by changing the introduction amount of the inert gas at different positions in the longitudinal direction. . The inert gas introduced from the opening 33a is exhausted from the opening 34a, the inert gas introduced from the opening 33b is exhausted from the opening 34b,..., And the inert gas flow is from downstream to upstream as shown in FIG. As shown in FIG. 2, the bottom bar heater 32, the top bar heater 31 and the cooling zone 37, which are formed so as to cover the side surface from the bottom surface of the reaction vessel 5 and set to a predetermined temperature, are compatible with each other. Thus, the temperature in the tunnel furnace is adjusted to a uniform temperature in the transverse section and to a desired temperature that is raised to the activation temperature and lowered from the activation temperature as shown in FIG. 3 in the longitudinal direction. For this reason, while the reaction vessel 5 containing the carbon material and the alkali metal compound is carried from the entrance of the tunnel furnace and conveyed by the roller group, as shown in FIG. It is heated to the activation temperature, heated for a predetermined time at the activation temperature, lowered from the activation temperature, and subjected to heat treatment. By such heat treatment, the alkali metal enters between the graphite layers of the carbon material and reacts to form a porous material, thereby forming a homogeneous activated carbon.

その後、ゲート21を閉成し排気口24から排気をすると共に、ガス導入口23から導入した不活性ガス、例えば窒素ガスに置換したトラップ室2に反応容器を搬送し、ここで光センサ26により搬出された反応容器数が検出され、トンネル炉内の反応容器の数を検出する。ゲート22を閉成した後、トラップ室2に二酸化炭素を、例えば10m3/h導入し、トラップ室2内を二酸化炭素で置換した状態とし、反応容器を所定時間二酸化炭素に暴露して、遊離金属を二酸化炭素と反応させ、遊離金属を捕集する。その後、搬出口に設けられるゲート43を閉成した状態の冷却室4へ、反応容器5を搬送し、冷却ガス導入口41から、例えば、不活性ガスまたは二酸化炭素などの冷却ガス流を導入し、排気口42から排気して冷却ガス流を形成し、所定時間、反応容器を冷却ガスに暴露して、所定温度まで冷却する。ゲート21を閉成し、ゲート43を開成して反応容器を搬出する。その後、必要に応じて、反応容器を水槽に浸漬し、反応容器中の生成物である活性炭の冷却と、反応容器中に残留する遊離金属の捕集を行うことができる。 Thereafter, the gate 21 is closed and exhausted from the exhaust port 24, and the reaction vessel is transported to the trap chamber 2 replaced with an inert gas such as nitrogen gas introduced from the gas introduction port 23. The number of reaction vessels carried out is detected, and the number of reaction vessels in the tunnel furnace is detected. After closing the gate 22, carbon dioxide is introduced into the trap chamber 2, for example, 10 m 3 / h, the inside of the trap chamber 2 is replaced with carbon dioxide, and the reaction vessel is exposed to carbon dioxide for a predetermined time to be released. The metal is reacted with carbon dioxide and free metal is collected. Thereafter, the reaction vessel 5 is transferred to the cooling chamber 4 in a state where the gate 43 provided at the carry-out port is closed, and a cooling gas flow such as an inert gas or carbon dioxide is introduced from the cooling gas inlet 41. Then, the exhaust gas is exhausted from the exhaust port 42 to form a cooling gas flow, and the reaction vessel is exposed to the cooling gas for a predetermined time to be cooled to a predetermined temperature. The gate 21 is closed, the gate 43 is opened, and the reaction vessel is carried out. Thereafter, if necessary, the reaction vessel can be immersed in a water tank to cool the activated carbon, which is a product in the reaction vessel, and to collect free metal remaining in the reaction vessel.

次に本発明について実施例より詳細に説明するが、本発明の技術的範囲はこれらの実施例に限定されるものではない。   EXAMPLES Next, although this invention is demonstrated in detail from an Example, the technical scope of this invention is not limited to these Examples.

反応容器として、410mm×300mm×100mmの純ニッケル製容器を使用し、石油コークス300g、水酸化カリウム600gを収納したものを、2列、2個を1組として、27mm/分で搬送し、炉長8100mmのトンネル炉において、図3に示す温度により加熱処理を行なった。トンネル炉への窒素ガスの導入量は50m3/hとした。1組で得られた活性炭は950gであった。得られた活性炭の比表面積は2000m2/gであった。 A 410 mm x 300 mm x 100 mm pure nickel container was used as the reaction vessel, and two tanks containing 600 g of petroleum coke and 600 g of potassium hydroxide were transported at a rate of 27 mm / min. In a tunnel furnace having a length of 8100 mm, heat treatment was performed at the temperature shown in FIG. The amount of nitrogen gas introduced into the tunnel furnace was 50 m 3 / h. The activated carbon obtained in one set was 950 g. The specific surface area of the resulting activated carbon was 2000 m 2 / g.

本発明の活性炭製造装置の一例の概略側断面図を示す図である。It is a figure which shows the schematic sectional side view of an example of the activated carbon manufacturing apparatus of this invention. 本発明の活性炭製造装置の一例のトンネル炉の概略横断面図を示す図である。It is a figure which shows the schematic cross-sectional view of the tunnel furnace of an example of the activated carbon manufacturing apparatus of this invention. 本発明の活性炭製造装置の一例のトンネル炉における長手方向の温度を示す図である。It is a figure which shows the temperature of the longitudinal direction in the tunnel furnace of an example of the activated carbon manufacturing apparatus of this invention. 本発明の活性炭製造装置の一例のトンネル炉の概略側断面図を示す図である。It is a figure which shows the schematic sectional side view of the tunnel furnace of an example of the activated carbon manufacturing apparatus of this invention.

符号の説明Explanation of symbols

1 雰囲気置換室
2 トラップ室
3 トンネル炉
4 冷却室
5 反応容器
6 搬送路(搬送手段)
31 上部棒状ヒーター
32 下部棒状ヒーター
33 不活性ガス導入口
34 排気口
1 Atmosphere replacement chamber 2 Trap chamber 3 Tunnel furnace 4 Cooling chamber 5 Reaction vessel 6 Transport path (transport means)
31 Upper bar heater 32 Lower bar heater 33 Inert gas inlet 34 Exhaust port

Claims (7)

炭素材とアルカリ金属化合物とを加熱して活性炭を生成する活性炭製造装置において、炭素材とアルカリ金属化合物とを収納した反応容器を搬送する搬送手段と、搬入口に雰囲気置換室を備えた内部を不活性ガス雰囲気に保持し長手方向において賦活温度まで昇温し、賦活温度から降温する温度調整手段を有するトンネル炉と、該トンネル炉の搬出口に設けられる二酸化炭素により金属を捕集するトラップ室と、該トラップ室の下流に設けられる冷却室とを備えたことを特徴とする活性炭製造装置。   In an activated carbon production apparatus for producing activated carbon by heating a carbon material and an alkali metal compound, a transport means for transporting a reaction vessel containing the carbon material and the alkali metal compound, and an interior having an atmosphere replacement chamber at a transport inlet A tunnel furnace having a temperature adjusting means for maintaining in an inert gas atmosphere, raising the temperature to the activation temperature in the longitudinal direction, and lowering the temperature from the activation temperature, and a trap chamber for collecting metal by carbon dioxide provided at the outlet of the tunnel furnace And a cooling chamber provided downstream of the trap chamber. トンネル炉内に設けられる温度調整手段が、内部空間の上下にそれぞれ設けられる上部棒状ヒーター、下部棒状ヒーターと、底面の長手方向の複数の位置にそれぞれ複数設けられる不活性ガスを導入する不活性ガス導入口と、天井の長手方向の複数の位置に設けられる排気口とを有し、不活性ガス導入口が、下部棒状ヒーター側に設けられ、下流側から上流側に向かうガス流を形成する手段であることを特徴とする請求項1記載の活性炭製造装置。   The temperature adjusting means provided in the tunnel furnace includes an upper bar heater and a lower bar heater respectively provided above and below the internal space, and an inert gas that introduces a plurality of inert gases provided at a plurality of positions in the longitudinal direction of the bottom surface. Means for forming a gas flow from the downstream side to the upstream side, having an introduction port and exhaust ports provided at a plurality of positions in the longitudinal direction of the ceiling, wherein the inert gas introduction port is provided on the lower bar heater side The activated carbon production apparatus according to claim 1, wherein: 炭素材とアルカリ金属化合物とを収納した反応容器を搬送する搬送手段が、搬送方向と直交方向に複数が並列して設けられるローラー群を備えたことを特徴とする請求項1または2記載の活性炭製造装置。   The activated carbon according to claim 1 or 2, wherein the conveying means for conveying the reaction vessel containing the carbon material and the alkali metal compound includes a roller group provided in parallel with a direction orthogonal to the conveying direction. Manufacturing equipment. 炭素材とアルカリ金属化合物とを収納した反応容器が、外周面に金属捕集材を有することを特徴とする請求項1〜3のいずれか記載の活性炭製造装置。   The activated carbon production apparatus according to any one of claims 1 to 3, wherein the reaction vessel containing the carbon material and the alkali metal compound has a metal collecting material on the outer peripheral surface. アルカリ金属化合物が水酸化カリウムであり、トンネル炉に導入する不活性ガスが窒素ガスであることを特徴とする請求項1〜4のいずれか記載の活性炭製造装置。   The activated carbon production apparatus according to any one of claims 1 to 4, wherein the alkali metal compound is potassium hydroxide and the inert gas introduced into the tunnel furnace is nitrogen gas. 炭素材が石油コークスであることを特徴とする請求項1〜5のいずれか記載の活性炭製造装置。   The activated carbon production apparatus according to any one of claims 1 to 5, wherein the carbon material is petroleum coke. 活性炭が、電気二重層キャパシタ用であることを特徴とする請求項1〜6のいずれか記載の活性炭製造装置。   The activated carbon production apparatus according to claim 1, wherein the activated carbon is for an electric double layer capacitor.
JP2005196122A 2005-07-05 2005-07-05 Activated carbon production equipment Active JP4728711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005196122A JP4728711B2 (en) 2005-07-05 2005-07-05 Activated carbon production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005196122A JP4728711B2 (en) 2005-07-05 2005-07-05 Activated carbon production equipment

Publications (2)

Publication Number Publication Date
JP2007015870A true JP2007015870A (en) 2007-01-25
JP4728711B2 JP4728711B2 (en) 2011-07-20

Family

ID=37753359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005196122A Active JP4728711B2 (en) 2005-07-05 2005-07-05 Activated carbon production equipment

Country Status (1)

Country Link
JP (1) JP4728711B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014084261A (en) * 2012-10-25 2014-05-12 Nankai Kogyo Kk Activating device for granular carbide of cellulose acetate
JP2014084262A (en) * 2012-10-25 2014-05-12 Nankai Kogyo Kk Method for producing active carbon
WO2016014460A1 (en) * 2014-07-23 2016-01-28 Corning Incorporated Apparatus and method of making alkali activated carbon
WO2020110433A1 (en) * 2018-11-28 2020-06-04 Jmエナジー株式会社 Electrode production method, method for producing electricity storage device, and electrode production apparatus

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03294780A (en) * 1990-04-10 1991-12-25 Tokai Konetsu Kogyo Co Ltd Baking furnace
JPH05306109A (en) * 1992-05-01 1993-11-19 Kansai Coke & Chem Co Ltd Production device of activated carbon with high surface area
JPH063057A (en) * 1992-06-16 1994-01-11 Toshiba Ceramics Co Ltd Roller hearth furnace
JPH085255A (en) * 1994-06-17 1996-01-12 Inax Corp Continuous kiln
JP2001163612A (en) * 1999-12-13 2001-06-19 Kuraray Chem Corp Method and device for manufacturing activated carbon
JP2003105340A (en) * 2001-09-27 2003-04-09 Een Machinery:Kk Continuous carbon raw material production device
JP2004018292A (en) * 2002-06-13 2004-01-22 Kashima Oil Co Ltd Method of manufacturing activated carbon
JP2005132702A (en) * 2003-10-31 2005-05-26 Jfe Chemical Corp Method and apparatus for producing activated carbon

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03294780A (en) * 1990-04-10 1991-12-25 Tokai Konetsu Kogyo Co Ltd Baking furnace
JPH05306109A (en) * 1992-05-01 1993-11-19 Kansai Coke & Chem Co Ltd Production device of activated carbon with high surface area
JPH063057A (en) * 1992-06-16 1994-01-11 Toshiba Ceramics Co Ltd Roller hearth furnace
JPH085255A (en) * 1994-06-17 1996-01-12 Inax Corp Continuous kiln
JP2001163612A (en) * 1999-12-13 2001-06-19 Kuraray Chem Corp Method and device for manufacturing activated carbon
JP2003105340A (en) * 2001-09-27 2003-04-09 Een Machinery:Kk Continuous carbon raw material production device
JP2004018292A (en) * 2002-06-13 2004-01-22 Kashima Oil Co Ltd Method of manufacturing activated carbon
JP2005132702A (en) * 2003-10-31 2005-05-26 Jfe Chemical Corp Method and apparatus for producing activated carbon

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014084261A (en) * 2012-10-25 2014-05-12 Nankai Kogyo Kk Activating device for granular carbide of cellulose acetate
JP2014084262A (en) * 2012-10-25 2014-05-12 Nankai Kogyo Kk Method for producing active carbon
WO2016014460A1 (en) * 2014-07-23 2016-01-28 Corning Incorporated Apparatus and method of making alkali activated carbon
WO2020110433A1 (en) * 2018-11-28 2020-06-04 Jmエナジー株式会社 Electrode production method, method for producing electricity storage device, and electrode production apparatus
CN113169311A (en) * 2018-11-28 2021-07-23 武藏能源解决方案有限公司 Electrode manufacturing method, electricity storage device manufacturing method, and electrode manufacturing device
JPWO2020110433A1 (en) * 2018-11-28 2021-10-14 武蔵エナジーソリューションズ株式会社 Electrode manufacturing method, power storage device manufacturing method, and electrode manufacturing equipment
JP7456936B2 (en) 2018-11-28 2024-03-27 武蔵エナジーソリューションズ株式会社 Electrode manufacturing method, electricity storage device manufacturing method, and electrode manufacturing apparatus

Also Published As

Publication number Publication date
JP4728711B2 (en) 2011-07-20

Similar Documents

Publication Publication Date Title
EP1388891B1 (en) System for heat treating semiconductor
EP1160838B1 (en) Heat treatment system and method
JP7144617B2 (en) Vacuum degreasing sintering furnace and its usage
JP5647977B2 (en) Processing equipment for specifically processing stacked objects to be processed
JP4728711B2 (en) Activated carbon production equipment
US10508058B2 (en) Heat-permeable tube containing ceramic matrix composite
TWI583442B (en) B2f4 manufacturing process
KR20150002556A (en) Substrate processing apparatus, method for manufacturing solar battery and method for manufacturing substrate
JP2005225690A (en) METHOD AND APPARATUS FOR MANUFACTURING SiO
JP2023040307A (en) Heat treatment furnace and method for producing inorganic material using heat treatment furnace
KR100732516B1 (en) Apparatus and method for collection carbon nano tube
JP2023507663A (en) Secondary battery positive electrode material firing equipment
KR100976372B1 (en) Reaction equipment for hi nitrogen monoxide production
CN114829860B (en) Vertical secondary battery positive electrode material calcining device
KR100745481B1 (en) Apparatus and method for collection carbon nano tube
JP5979664B2 (en) Silicon crystal casting furnace
US20240044045A1 (en) Method and Device for Producing a SiC Solid Material
JP7245219B2 (en) Heat treatment equipment
JP2014189432A (en) Manufacturing installation of fibrous carbon material and manufacturing method
KR20110129195A (en) Heating furnace for pipe heater
RU63794U1 (en) DEVICE FOR PRODUCING SILICON CARBIDE OF SUNGIT
KR20230153477A (en) Method for producing semiconductor wafers with epitaxial layers in the chamber of a deposition reactor
US20100127421A1 (en) Bi-directional flow for processing shaped bodies
JP2022074158A (en) Thermal treatment device
JP2022184226A (en) Device and method for producing hydrogen sulfide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110415

R150 Certificate of patent or registration of utility model

Ref document number: 4728711

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250