JP2008077963A - Method and device to store lithium ion in negative electrode precursor for non-aqueous electrolyte secondary battery - Google Patents

Method and device to store lithium ion in negative electrode precursor for non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2008077963A
JP2008077963A JP2006255597A JP2006255597A JP2008077963A JP 2008077963 A JP2008077963 A JP 2008077963A JP 2006255597 A JP2006255597 A JP 2006255597A JP 2006255597 A JP2006255597 A JP 2006255597A JP 2008077963 A JP2008077963 A JP 2008077963A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
material layer
electrode precursor
lithium ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006255597A
Other languages
Japanese (ja)
Other versions
JP5045044B2 (en
Inventor
Hideji Takesawa
秀治 武澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006255597A priority Critical patent/JP5045044B2/en
Priority to US11/856,760 priority patent/US8133374B2/en
Publication of JP2008077963A publication Critical patent/JP2008077963A/en
Application granted granted Critical
Publication of JP5045044B2 publication Critical patent/JP5045044B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To supply lithium ion of a quantity necessary for only supplementing an irreversible capacity of a negative electrode active material to the negative electrode active material, while suppressing precipitation of lithium metal with high reactivity at a core material exposure part used for electrical connection of the negative electrode and an external terminal. <P>SOLUTION: In a storage method of lithium ion, lithium ions are made to be stored in a negative electrode active material layer by electrolysis in a non-aqueous electrolytic liquid 25. In that case, precipitation of lithium metal at the core material exposure part is suppressed by measuring electrical potential of a portion immersed into the non-aqueous electrolytic liquid 25 to detect the core material exposure part and controlling charging current. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、高容量密度の負極活物質を用いた非水電解質二次電池用負極を製造する過程において、その前駆体にリチウムイオンを吸蔵させることによって、負極活物質の不可逆容量を補う方法とその装置に関する。   The present invention relates to a method for supplementing the irreversible capacity of a negative electrode active material by occluding lithium ions in the precursor in the process of manufacturing a negative electrode for a non-aqueous electrolyte secondary battery using a high capacity density negative electrode active material, and It relates to the device.

電子機器のポータブル化、コードレス化が進むにつれて、小型・軽量で、かつ高エネルギー密度を有する非水電解質二次電池への期待はより一層高まっている。現在、黒鉛などの炭素材料が非水電解質二次電池の負極活物質として実用化されている。しかしながらその理論容量密度は372mAh/gである。そこで、さらに非水電解質二次電池を高エネルギー密度化するために、炭素材料より理論容量密度の大きいケイ素(Si)、スズ(Sn)、ゲルマニウム(Ge)やこれらの酸化物および合金などが検討されている。特にSi粒子や酸化ケイ素粒子などの含ケイ素粒子は安価なため、幅広く検討されている。   As electronic devices become more portable and cordless, expectations for non-aqueous electrolyte secondary batteries that are small and light and have a high energy density are increasing. Currently, carbon materials such as graphite are put into practical use as negative electrode active materials for non-aqueous electrolyte secondary batteries. However, its theoretical capacity density is 372 mAh / g. Therefore, silicon (Si), tin (Sn), germanium (Ge), and their oxides and alloys, whose theoretical capacity density is higher than that of carbon materials, are studied to further increase the energy density of nonaqueous electrolyte secondary batteries. Has been. In particular, silicon-containing particles such as Si particles and silicon oxide particles are widely studied because they are inexpensive.

上記のような負極活物質は、特に処理しない限りリチウムイオンを含まない状態で電池に組み込まれる。電池容量に寄与するリチウムイオンは正極活物質のみに由来するが、予め処理をしない負極活物質を用いた電池は初回充電時の不可逆容量が大きい。そのため、初回放電以降に利用可能なリチウムイオンが減少し、電池容量が低下する。このように、負極活物質の高容量密度を活かしきれない。   The negative electrode active material as described above is incorporated into the battery without containing lithium ions unless otherwise treated. Lithium ions that contribute to the battery capacity are derived only from the positive electrode active material, but a battery using a negative electrode active material that has not been treated in advance has a large irreversible capacity during the initial charge. Therefore, the lithium ions that can be used after the first discharge are reduced, and the battery capacity is reduced. Thus, the high capacity density of the negative electrode active material cannot be fully utilized.

そこでこの不可逆容量を補うため、予め負極の表面にリチウム金属箔を貼り付けたり、真空蒸着法やイオンプレーティング法などの乾式成膜法により負極の表面にリチウム金属の層を形成したりすることが提案されている(例えば、特許文献1、2)。
国際公開第96/27910号パンフレット 特開2005−038720号公報
Therefore, in order to compensate for this irreversible capacity, a lithium metal foil is pasted on the negative electrode surface in advance, or a lithium metal layer is formed on the negative electrode surface by a dry film-forming method such as vacuum deposition or ion plating. Has been proposed (for example, Patent Documents 1 and 2).
International Publication No. 96/27910 Pamphlet JP 2005-038720 A

しかしながら不可逆容量に相当する量のリチウム金属はごくわずかであるため、リチウム箔を負極表面に貼り付ける場合、極めて薄い箔を作製して貼り付ける必要がある。このような金属箔を製造することは難しく、このような金属箔の取り扱いは困難である。またそのため負極の製造工程が煩雑になる。また比較的厚めのリチウム箔を負極に疎らに貼り付けると、負極活物質のリチウム吸蔵量が極板面内で大きくばらつく。大容量密度の負極活物質は一般的に充電に伴い膨張するため、このようにリチウム箔を貼り付けると、負極に凹凸が生じ、充放電反応が不均一になり、その結果、例えばサイクル特性が低下する。また過剰なリチウム金属箔を貼り付けると負極活物質に吸蔵されきれないリチウム金属が負極表面に残り、充電時にはその部位にデンドライドが発生する可能性があり、熱安定性や安全性の面で課題が残る。   However, since the amount of lithium metal corresponding to the irreversible capacity is very small, when a lithium foil is attached to the negative electrode surface, it is necessary to produce and attach an extremely thin foil. It is difficult to manufacture such a metal foil, and it is difficult to handle such a metal foil. This also complicates the negative electrode manufacturing process. Moreover, when a relatively thick lithium foil is loosely attached to the negative electrode, the lithium occlusion amount of the negative electrode active material greatly varies in the plane of the electrode plate. Since a negative electrode active material having a large capacity density generally expands as it is charged, when a lithium foil is applied in this way, irregularities are formed on the negative electrode, resulting in uneven charge / discharge reaction. descend. In addition, if excessive lithium metal foil is applied, lithium metal that cannot be absorbed by the negative electrode active material may remain on the negative electrode surface, and dendrites may be generated at the time of charging, which is a problem in terms of thermal stability and safety. Remains.

一方、乾式成膜法により負極の表面にリチウム金属の層を形成する場合には負極の温度が上昇するため、負極活物質層を形成するための結着剤の強度に影響する。結着剤の強度が低下すると充放電時の負極活物質の体積変化に伴う応力変化により、活物質同士の導電ネットワークが維持できず充放電サイクル特性が低下する。特に上述のように高容量密度の負極活物質は一般的に充放電に伴い体積変化する。そのため、このような負極活物質を用いた場合、負極活物質層が崩壊しやすくなる。   On the other hand, when a lithium metal layer is formed on the surface of the negative electrode by a dry film forming method, the temperature of the negative electrode increases, which affects the strength of the binder for forming the negative electrode active material layer. When the strength of the binder decreases, the conductive network between the active materials cannot be maintained due to the stress change accompanying the volume change of the negative electrode active material during charge / discharge, and the charge / discharge cycle characteristics deteriorate. In particular, as described above, a negative electrode active material having a high capacity density generally changes in volume with charge / discharge. Therefore, when such a negative electrode active material is used, the negative electrode active material layer tends to collapse.

本発明は、上記の課題を解決するものであり、負極活物質の不可逆容量を補充して非水電解質二次電池用負極の高容量密度化を実現しつつ、充放電サイクル特性に優れた非水電解質二次電池を実現するために、非水電解質二次電池用負極前駆体にリチウムイオンを吸蔵させる方法と装置を提供することを目的とする。   The present invention solves the above-mentioned problems, and replenishes the irreversible capacity of the negative electrode active material to realize a high capacity density of the negative electrode for nonaqueous electrolyte secondary batteries, while also being excellent in charge / discharge cycle characteristics. In order to realize a water electrolyte secondary battery, an object is to provide a method and apparatus for occluding lithium ions in a negative electrode precursor for a non-aqueous electrolyte secondary battery.

上記目的を達成するために本発明では、導体からなる芯材とこの芯材上に形成された活物質層とを有し、芯材の一部を露出させた芯材露出部を形成した非水電解質二次電池用負極前駆体にリチウムイオンを吸蔵させる。この方法は、次の5つのステップを含む。   In order to achieve the above object, the present invention has a core material made of a conductor and an active material layer formed on the core material, and a non-core material exposed portion in which a part of the core material is exposed is formed. Lithium ions are occluded in the negative electrode precursor for a water electrolyte secondary battery. This method includes the following five steps.

巻き取られた負極前駆体を引き出すAステップ。   A step of drawing out the wound negative electrode precursor.

引き出された負極前駆体を、リチウムイオンを含有させた非水電解液に挿入するBステップ。   B step of inserting the drawn negative electrode precursor into a non-aqueous electrolyte containing lithium ions.

非水電解液内に設けられた参照電極を用い、負極前駆体における、非水電解液に浸った部分の参照電極近傍の電位を測定するCステップ。   C step of measuring a potential in the vicinity of the reference electrode of a portion of the negative electrode precursor immersed in the non-aqueous electrolyte using a reference electrode provided in the non-aqueous electrolyte.

測定された電位に基づき、負極前駆体と非水電解液中で活物質層に対向するように設置した電極との間に流す電流を制御することにより活物質層へのリチウムイオンの吸蔵量を制御するDステップ。   Based on the measured potential, the amount of lithium ions occluded in the active material layer is controlled by controlling the current that flows between the negative electrode precursor and the electrode placed so as to face the active material layer in the non-aqueous electrolyte. D step to control.

リチウムイオンを吸蔵処理した負極前駆体を巻き取るEステップ。   E step of winding up the negative electrode precursor that has been occluded with lithium ions.

このように、本発明による方法では、非水電解液中で電気化学的に負極前駆体にリチウムイオンを吸蔵させる。これによって負極活物質の不可逆容量を補充するのに必要な量だけのリチウムイオンを負極活物質に供給することができる。これにより負極活物質の大容量密度を活かすことができる。またその際、負極と外部端子との電気的接続に用いる芯材露出部に反応性の高いリチウム金属が析出することを抑制することができる。これにより、芯材露出部を溶接する際にリチウム金属への着火などの不具合が生じない。そのため生産性が向上する。   Thus, in the method according to the present invention, lithium ions are occluded electrochemically in the negative electrode precursor in a non-aqueous electrolyte. As a result, only the amount of lithium ions required to replenish the irreversible capacity of the negative electrode active material can be supplied to the negative electrode active material. Thereby, the large capacity density of the negative electrode active material can be utilized. Further, at that time, it is possible to suppress the deposition of highly reactive lithium metal in the exposed core material used for electrical connection between the negative electrode and the external terminal. Thereby, when welding a core material exposure part, malfunctions, such as ignition to a lithium metal, do not arise. Therefore, productivity is improved.

本発明の非水電解質二次電池用負極前駆体にリチウムイオンを吸蔵させる方法を用いれば、高容量で生産性の高い非水電解質二次電池を提供することができる。   If the method of occluding lithium ions in the negative electrode precursor for a non-aqueous electrolyte secondary battery of the present invention is used, a non-aqueous electrolyte secondary battery with high capacity and high productivity can be provided.

本発明の第1の発明は、導体からなる芯材とこの芯材上に形成された活物質層とを有し、芯材の一部を露出させた芯材露出部を形成した非水電解質二次電池用負極前駆体にリチウムイオンを吸蔵させる方法である。この方法は、次の5つのステップを含む。巻き取られた負極前駆体を引き出すAステップ、引き出された負極前駆体を、リチウムイオンを含有させた非水電解液に挿入するBステップ、非水電解液内に設けられた第1参照電極を用い、負極前駆体における、非水電解液に浸った部分の第1参照電極近傍の電位を測定するCステップ、測定された電位に基づき、負極前駆体と非水電解液中で活物質層に対向するように設置した第1電極との間に流す電流を制御することにより活物質層へのリチウムイオンの吸蔵量を制御するDステップ、リチウムイオンを吸蔵処理した負極前駆体を巻き取るEステップ。この方法では、非水電解液中で電気化学的に負極前駆体にリチウムイオンを吸蔵させる。これによって負極活物質の不可逆容量を補充するのに必要な量だけのリチウムイオンを負極活物質に供給することができる。これにより負極活物質の大容量密度を活かすことができる。またその際、負極と外部端子との電気的接続に用いる芯材露出部に反応性の高いリチウム金属が析出することを抑制することができる。これにより、芯材露出部を溶接する際にリチウム金属への着火などの不具合が生じない。そのため生産性が向上する。   1st invention of this invention has the core material which consists of a conductor, and the active material layer formed on this core material, The non-aqueous electrolyte which formed the core material exposure part which exposed a part of core material In this method, lithium ions are occluded in the negative electrode precursor for secondary batteries. This method includes the following five steps. A step for extracting the wound negative electrode precursor, B step for inserting the extracted negative electrode precursor into a non-aqueous electrolyte containing lithium ions, and a first reference electrode provided in the non-aqueous electrolyte. C step of measuring the potential in the vicinity of the first reference electrode of the negative electrode precursor in the non-aqueous electrolyte, based on the measured potential, the active material layer in the negative electrode precursor and the non-aqueous electrolyte D step for controlling the amount of lithium ions occluded in the active material layer by controlling the current flowing between the first electrodes arranged so as to face each other, and E step for winding the negative electrode precursor that has been subjected to the occlusion treatment of lithium ions . In this method, lithium ions are occluded in the negative electrode precursor electrochemically in a non-aqueous electrolyte. As a result, only the amount of lithium ions required to replenish the irreversible capacity of the negative electrode active material can be supplied to the negative electrode active material. Thereby, the large capacity density of the negative electrode active material can be utilized. Further, at that time, it is possible to suppress the deposition of highly reactive lithium metal in the exposed core material used for electrical connection between the negative electrode and the external terminal. Thereby, when welding a core material exposure part, malfunctions, such as ignition to a lithium metal, do not arise. Therefore, productivity is improved.

本発明の第2の発明は、第1の発明のBステップにおいて、負極前駆体を非水電解液に挿入する部分の負極前駆体の移動方向における長さを、負極前駆体の移動方向における芯材露出部の長さ以上とした、負極前駆体にリチウムイオンを吸蔵させる方法である。このようにすることで、芯材露出部のみが非水電解液に浸る状態が生じ、第1参照電極近傍の電位がより明確に変化するため、負極前駆体と第1電極との間に流す電流の制御がやりやすくなる。   According to a second aspect of the present invention, in the step B of the first aspect, the length in the moving direction of the negative electrode precursor at the portion where the negative electrode precursor is inserted into the non-aqueous electrolyte is set as the core in the moving direction of the negative electrode precursor. This is a method in which lithium ions are occluded in the negative electrode precursor, which is not less than the length of the exposed material portion. By doing so, a state in which only the core exposed portion is immersed in the non-aqueous electrolyte occurs, and the potential in the vicinity of the first reference electrode changes more clearly, and therefore flows between the negative electrode precursor and the first electrode. It becomes easier to control the current.

本発明の第3の発明は、第1の発明において負極前駆体が芯材の両面に活物質層を有し、Dステップより後に未処理の活物質層を第1電極に対向させ、BステップからDステップと同様の処理を行い裏面の活物質層にリチウムイオンを吸蔵させた後、Eステップを行う、負極前駆体にリチウムイオンを吸蔵させる方法である。このように、負極前駆体が芯材の両面に活物質層を有する場合は、両面にリチウムイオンを吸蔵させることが好ましい。これによって長尺な正極、負極を捲回して電池を構成する円筒形電池や角形電池の負極前駆体全体に含まれる負極活物質の不可逆容量を補充することができる。   According to a third aspect of the present invention, in the first aspect, the negative electrode precursor has active material layers on both sides of the core, and after the D step, the untreated active material layer is opposed to the first electrode, and the B step To the D step, the lithium ion is occluded in the active material layer on the back surface, and then the E step is performed to occlude lithium ions in the negative electrode precursor. Thus, when a negative electrode precursor has an active material layer on both surfaces of a core material, it is preferable to occlude lithium ions on both surfaces. As a result, the irreversible capacity of the negative electrode active material contained in the whole negative electrode precursor of the cylindrical battery or the rectangular battery constituting the battery by winding the long positive electrode and the negative electrode can be supplemented.

本発明の第4の発明は、第3の発明においてDステップの後、負極前駆体を非水電解液から取り出し、負極前駆体を裏返したあとBステップからDステップと同様の処理を行う、負極前駆体にリチウムイオンを吸蔵させる方法である。これにより1つの装置で負極前駆体の両面を処理することができる。あるいは、リチウムイオンを吸蔵させる場を2ヶ所設けることで連続的に負極前駆体の両面を処理することができる。   According to a fourth aspect of the present invention, in the third aspect, after the D step, the negative electrode precursor is taken out from the non-aqueous electrolyte, and after the negative electrode precursor is turned over, the negative electrode precursor is turned over and the same processing as the B step is performed. In this method, lithium ions are occluded in the precursor. Thereby, both surfaces of a negative electrode precursor can be processed with one apparatus. Alternatively, it is possible to continuously treat both surfaces of the negative electrode precursor by providing two places for occluding lithium ions.

本発明の第5の発明は、第1の発明において負極前駆体が芯材の両面に活物質層を有し、非水電解液中に第1電極と同様の第2電極が負極前駆体に対して反対側に配置され、第1参照電極と同様の第2参照電極が負極前駆体の近傍に配置され、Dステップの後に未処理の活物質層を第2電極に対向させるFステップと、Fステップに続いて第2電極と第2参照電極とを用いてBステップからDステップと同様の処理を行うことで両面の活物質層に連続的にリチウムイオンを吸蔵させた後、Eステップを行う、負極前駆体にリチウムイオンを吸蔵させる方法である。このように参照電極と対極(第1電極、第2電極)とを2組設けることで、負極前駆体の両面の活物質層を連続的に処理することができる。   According to a fifth aspect of the present invention, in the first aspect, the negative electrode precursor has active material layers on both sides of the core material, and a second electrode similar to the first electrode in the non-aqueous electrolyte serves as the negative electrode precursor. A second reference electrode disposed on the opposite side, similar to the first reference electrode, disposed in the vicinity of the negative electrode precursor, and after the D step, the unprocessed active material layer is opposed to the second electrode; After the F step, the lithium electrode is continuously occluded in the active material layers on both sides by performing the same process as the B step to the D step using the second electrode and the second reference electrode, and then the E step is performed. In this method, lithium ions are occluded in the negative electrode precursor. Thus, by providing two sets of reference electrodes and counter electrodes (first electrode, second electrode), the active material layers on both sides of the negative electrode precursor can be processed continuously.

本発明の第6の発明は、第1の発明のDステップにおいて電位が貴にシフトすると電流を停止し、電位が卑にシフトすると電流を流す、負極前駆体にリチウムイオンを吸蔵させる方法である。電位が貴にシフトするということはリチウムイオンを吸蔵しない芯材露出部が電位測定対象として増加していることを意味し、電位が卑にシフトするということはリチウムイオンを吸蔵する活物質層が電位測定対象として増加していることを意味する。したがってこのように電流を制御することにより、活物質層にリチウムイオンを吸蔵させるとともに、芯材露出部にリチウムが析出することを防止できる。   The sixth invention of the present invention is a method of occluding lithium ions in the negative electrode precursor, in which the current is stopped when the potential is shifted preciously in the D step of the first invention, and the current is flowed when the potential is shifted to the base. . The fact that the potential is shifted preciously means that the exposed portion of the core material that does not occlude lithium ions is increasing as potential measurement objects, and that the potential is shifted to the base means that the active material layer that occludes lithium ions is It means that it is increasing as a potential measurement object. Therefore, by controlling the current in this way, it is possible to occlude lithium ions in the active material layer and to prevent lithium from precipitating on the exposed core material.

本発明の第7の発明は、第1の発明のDステップにおいて電位が貴にシフトすると電流を低減し、電位が卑にシフトすると電流を増加させる、負極前駆体にリチウムイオンを吸蔵させる方法である。この方法では、特に芯材露出部と活物質層との界面においてできるだけ活物質層にリチウムイオンを吸蔵させるとともに、芯材露出部でのリチウム析出を減少させることができる。   The seventh aspect of the present invention is a method of occluding lithium ions in a negative electrode precursor that reduces the current when the potential shifts noblely in step D of the first invention and increases the current when the potential shifts to the base. is there. In this method, lithium ions can be occluded in the active material layer as much as possible at the interface between the core material exposed portion and the active material layer, and lithium precipitation in the core material exposed portion can be reduced.

本発明の第8から第13の発明の発明は、第1、第2、第3から第7の方法を具現化する、負極前駆体にリチウムイオンを吸蔵させる装置である。   The eighth to thirteenth inventions of the present invention are devices for occluding lithium ions in a negative electrode precursor, embodying the first, second, third to seventh methods.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、本発明は、本明細書に記載された基本的な特徴に基づく限り、以下に記載の内容に限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the contents described below as long as it is based on the basic characteristics described in this specification.

(実施の形態1)
図1は、本発明の実施の形態1による非水電解質二次電池の一部切欠斜視図、図2は同非水電解質二次電池の分解斜視図である。この角形電池は、負極1と、負極1に対向し放電時にリチウムイオンを還元する正極2と、負極1と正極2との間に介在し負極1と正極2の直接接触を防ぐセパレータ3とを有する。負極1および正極2は、セパレータ3とともに、捲回されて電極体9を形成している。電極体9は、図示しない非水電解液とともにケース6内に収納されている。電極体9の上部には、電極体9と蓋体5とを隔離するとともにリード11とケース6とを隔離する樹脂製の枠体4が配置されている。
(Embodiment 1)
FIG. 1 is a partially cutaway perspective view of a nonaqueous electrolyte secondary battery according to Embodiment 1 of the present invention, and FIG. 2 is an exploded perspective view of the nonaqueous electrolyte secondary battery. This rectangular battery includes a negative electrode 1, a positive electrode 2 that faces the negative electrode 1 and reduces lithium ions during discharge, and a separator 3 that is interposed between the negative electrode 1 and the positive electrode 2 and prevents direct contact between the negative electrode 1 and the positive electrode 2. Have. The negative electrode 1 and the positive electrode 2 are wound together with the separator 3 to form an electrode body 9. The electrode body 9 is accommodated in the case 6 together with a non-aqueous electrolyte (not shown). A resin frame 4 that isolates the electrode body 9 and the lid body 5 and isolates the lead 11 and the case 6 is disposed on the electrode body 9.

負極1は負極芯材とその表面に設けられた負極活物質層とを有し、負極芯材にはリード11が溶接などにより取り付けられている。リード11の他端は蓋体5に設けられた端子13に接続されている。なお負極芯材の両面に負極活物質層が形成されている。   The negative electrode 1 has a negative electrode core material and a negative electrode active material layer provided on the surface thereof, and a lead 11 is attached to the negative electrode core material by welding or the like. The other end of the lead 11 is connected to a terminal 13 provided on the lid 5. A negative electrode active material layer is formed on both sides of the negative electrode core.

正極2は芯材と正極活物質を含む正極活物質層とを有し、正極芯材にはリード14が取り付けられている。リード14の他端は正極端子を兼ねるケース6に接続されている。なお正極芯材の両面に正極活物質層が形成されている。   The positive electrode 2 has a core material and a positive electrode active material layer containing a positive electrode active material, and a lead 14 is attached to the positive electrode core material. The other end of the lead 14 is connected to the case 6 that also serves as a positive terminal. A positive electrode active material layer is formed on both surfaces of the positive electrode core material.

負極活物質層は少なくともリチウムイオンの吸蔵放出が可能な活物質を含む。この活物質としては、グラファイトや非晶質カーボンのような炭素材料を用いることができる。あるいはケイ素(Si)やスズ(Sn)などのように正極活物質よりも卑な電位でリチウムイオンを大量に吸蔵放出可能な材料を用いることができる。このような材料であれば、単体、合金、化合物、固溶体および含ケイ素材料や含スズ材料を含む複合活物質のいずれであっても、本発明の効果を発揮させることは可能である。特に含ケイ素材料は容量密度が大きく安価であるため好ましい。すなわち、含ケイ素材料として、Si、SiO(0.05<x<1.95)、またはこれらのいずれかにB、Mg、Ni、Ti、Mo、Co、Ca、Cr、Cu、Fe、Mn、Nb、Ta、V、W、Zn、C、N、Snからなる群から選択される少なくとも1つ以上の元素でSiの一部を置換した合金や化合物、または固溶体などを用いることができる。含スズ材料としてはNiSn、MgSn、SnO(0<x<2)、SnO、SnSiO、LiSnOなどを適用できる。 The negative electrode active material layer includes at least an active material capable of occluding and releasing lithium ions. As this active material, a carbon material such as graphite or amorphous carbon can be used. Alternatively, a material such as silicon (Si) or tin (Sn) that can occlude and release a large amount of lithium ions at a lower potential than the positive electrode active material can be used. With such a material, the effect of the present invention can be exhibited with any of a simple substance, an alloy, a compound, a solid solution, and a composite active material containing a silicon-containing material and a tin-containing material. In particular, a silicon-containing material is preferable because it has a large capacity density and is inexpensive. That is, as a silicon-containing material, Si, SiO x (0.05 <x <1.95), or any of these, B, Mg, Ni, Ti, Mo, Co, Ca, Cr, Cu, Fe, Mn An alloy, a compound, a solid solution, or the like in which a part of Si is substituted with at least one element selected from the group consisting of Nb, Ta, V, W, Zn, C, N, and Sn can be used. As the tin-containing material, Ni 2 Sn 4 , Mg 2 Sn, SnO x (0 <x <2), SnO 2 , SnSiO 3 , LiSnO, or the like can be applied.

これらの材料は単独で負極活物質を構成してもよく、また複数種の材料により構成してもよい。上記複数種の材料により負極活物質を構成する例として、Siと酸素と窒素とを含む化合物やSiと酸素とを含み、Siと酸素との構成比率が異なる複数の化合物の複合物などが挙げられる。この中でもSiO(0.3≦x≦1.3)は、放電容量密度が大きく、かつ充電時の膨張率がSi単体より小さいため好ましい。 These materials may constitute the negative electrode active material alone, or may be composed of a plurality of types of materials. Examples of constituting the negative electrode active material by the plurality of types of materials include a compound containing Si, oxygen and nitrogen, and a composite of a plurality of compounds containing Si and oxygen and having different constituent ratios of Si and oxygen. It is done. Among these, SiO x (0.3 ≦ x ≦ 1.3) is preferable because it has a large discharge capacity density and an expansion coefficient lower than that of Si.

負極活物質層はさらに結着剤を含む。結着剤としては、例えばポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、アラミド樹脂、ポリアミド、ポリイミド、ポリアミドイミド、ポリアクリルニトリル、ポリアクリル酸、ポリアクリル酸メチルエステル、ポリアクリル酸エチルエステル、ポリアクリル酸ヘキシルエステル、ポリメタクリル酸、ポリメタクリル酸メチルエステル、ポリメタクリル酸エチルエステル、ポリメタクリル酸ヘキシルエステル、ポリ酢酸ビニル、ポリビニルピロリドン、ポリエーテル、ポリエーテルサルフォン、ヘキサフルオロポリプロピレン、スチレンブタジエンゴム、カルボキシメチルセルロースなどが使用可能である。また、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロアルキルビニルエーテル、フッ化ビニリデン、クロロトリフルオロエチレン、エチレン、プロピレン、ペンタフルオロプロピレン、フルオロメチルビニルエーテル、アクリル酸、ヘキサジエンより選択された2種以上の材料の共重合体を用いてもよい。   The negative electrode active material layer further includes a binder. Examples of the binder include polyvinylidene fluoride (PVDF), polytetrafluoroethylene, polyethylene, polypropylene, aramid resin, polyamide, polyimide, polyamideimide, polyacrylonitrile, polyacrylic acid, polyacrylic acid methyl ester, and polyacrylic acid. Ethyl ester, polyacrylic acid hexyl ester, polymethacrylic acid, polymethacrylic acid methyl ester, polymethacrylic acid ethyl ester, polymethacrylic acid hexyl ester, polyvinyl acetate, polyvinyl pyrrolidone, polyether, polyether sulfone, hexafluoropolypropylene, Styrene butadiene rubber, carboxymethyl cellulose and the like can be used. Two types selected from tetrafluoroethylene, hexafluoroethylene, hexafluoropropylene, perfluoroalkyl vinyl ether, vinylidene fluoride, chlorotrifluoroethylene, ethylene, propylene, pentafluoropropylene, fluoromethyl vinyl ether, acrylic acid, and hexadiene A copolymer of the above materials may be used.

また、必要に応じて鱗片状黒鉛などの天然黒鉛、人造黒鉛、膨張黒鉛などのグラファイト類、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラック類、炭素繊維、金属繊維などの導電性繊維類、銅やニッケルなどの金属粉末類、ポリフェニレン誘導体などの有機導電性材料などの導電剤を負極活物質層に混入させてもよい。特に、繊維状の炭素材料を負極活物質の粒子に付着させ、負極活物質の粒子同士の導電ネットワークを形成することがさらに好ましい。   If necessary, natural graphite such as flake graphite, graphite such as artificial graphite and expanded graphite, carbon blacks such as acetylene black, ketjen black, channel black, furnace black, lamp black and thermal black, carbon fiber Conductive agents such as conductive fibers such as metal fibers, metal powders such as copper and nickel, and organic conductive materials such as polyphenylene derivatives may be mixed in the negative electrode active material layer. In particular, it is more preferable to attach a fibrous carbon material to the negative electrode active material particles to form a conductive network between the negative electrode active material particles.

負極芯材やリード11、端子13には、ステンレス鋼、ニッケル、銅、チタンなどの金属箔、炭素や導電性樹脂の薄膜などが利用可能である。さらに、カーボン、ニッケル、チタンなどで表面処理を施してもよい。   For the negative electrode core member, the lead 11 and the terminal 13, a metal foil such as stainless steel, nickel, copper and titanium, a thin film of carbon or conductive resin, or the like can be used. Further, surface treatment may be performed with carbon, nickel, titanium or the like.

正極活物質層はLiCoOやLiNiO、LiMnまたはこれらの混合あるいは複合化合物などのような含リチウム複合酸化物を正極活物質として含む。特にLi1−y(式中、MおよびNは、Co、Ni、Mn、Cr、Fe、Mg、Al、およびZnからなる群より選択される少なくとも1種で少なくともNiを含み、M≠Nであり、0.98≦x≦1.10、0<y<1)は容量密度が大きいため好ましい。 The positive electrode active material layer includes a lithium-containing composite oxide such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4, a mixture thereof, or a composite compound as a positive electrode active material. In particular, Li x M y N 1-y O 2 (wherein M and N are at least one selected from the group consisting of Co, Ni, Mn, Cr, Fe, Mg, Al, and Zn). In addition, M ≠ N, and 0.98 ≦ x ≦ 1.10 and 0 <y <1) are preferable because the capacity density is large.

正極活物質としては上記以外に、LiMPO(M=V、Fe、Ni、Mn)の一般式で表されるオリビン型リン酸リチウム、LiMPOF(M=V、Fe、Ni、Mn)の一般式で表されるフルオロリン酸リチウムなども利用可能である。さらにこれら含リチウム化合物の一部を異種元素で置換してもよい。金属酸化物、リチウム酸化物、導電剤などで表面処理してもよく、表面を疎水化処理してもよい。 In addition to the above, as the positive electrode active material, olivine type lithium phosphate represented by the general formula of LiMPO 4 (M = V, Fe, Ni, Mn), Li 2 MPO 4 F (M = V, Fe, Ni, Mn) ) Lithium fluorophosphate represented by the general formula can also be used. Further, a part of these lithium-containing compounds may be substituted with a different element. Surface treatment may be performed with a metal oxide, lithium oxide, a conductive agent, or the like, or the surface may be subjected to a hydrophobic treatment.

正極活物質層はさらに導電剤と結着剤とを含む。導電剤としては、天然黒鉛や人造黒鉛のグラファイト類、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラック類、炭素繊維や金属繊維などの導電性繊維類、アルミニウムなどの金属粉末類、酸化亜鉛やチタン酸カリウムなどの導電性ウィスカー類、酸化チタンなどの導電性金属酸化物、フェニレン誘導体などの有機導電性材料を用いることができる。   The positive electrode active material layer further includes a conductive agent and a binder. As the conductive agent, natural graphite and artificial graphite graphite, acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black and other carbon black, conductive fibers such as carbon fiber and metal fiber, Metal powders such as aluminum, conductive whiskers such as zinc oxide and potassium titanate, conductive metal oxides such as titanium oxide, and organic conductive materials such as phenylene derivatives can be used.

また結着剤としては、PVDF、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、アラミド樹脂、ポリアミド、ポリイミド、ポリアミドイミド、ポリアクリルニトリル、ポリアクリル酸、ポリアクリル酸メチルエステル、ポリアクリル酸エチルエステル、ポリアクリル酸ヘキシルエステル、ポリメタクリル酸、ポリメタクリル酸メチルエステル、ポリメタクリル酸エチルエステル、ポリメタクリル酸ヘキシルエステル、ポリ酢酸ビニル、ポリビニルピロリドン、ポリエーテル、ポリエーテルサルフォン、ヘキサフルオロポリプロピレン、スチレンブタジエンゴム、カルボキシメチルセルロースなどが使用可能である。また、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロアルキルビニルエーテル、フッ化ビニリデン、クロロトリフルオロエチレン、エチレン、プロピレン、ペンタフルオロプロピレン、フルオロメチルビニルエーテル、アクリル酸、ヘキサジエンより選択された2種以上の材料の共重合体を用いてもよい。またこれらのうちから選択された2種以上を混合して用いてもよい。   Also, binders include PVDF, polytetrafluoroethylene, polyethylene, polypropylene, aramid resin, polyamide, polyimide, polyamideimide, polyacrylonitrile, polyacrylic acid, polyacrylic acid methyl ester, polyacrylic acid ethyl ester, polyacrylic. Acid hexyl ester, polymethacrylic acid, polymethacrylic acid methyl ester, polymethacrylic acid ethyl ester, polymethacrylic acid hexyl ester, polyvinyl acetate, polyvinylpyrrolidone, polyether, polyethersulfone, hexafluoropolypropylene, styrene butadiene rubber, carboxy Methyl cellulose or the like can be used. Two types selected from tetrafluoroethylene, hexafluoroethylene, hexafluoropropylene, perfluoroalkyl vinyl ether, vinylidene fluoride, chlorotrifluoroethylene, ethylene, propylene, pentafluoropropylene, fluoromethyl vinyl ether, acrylic acid, and hexadiene A copolymer of the above materials may be used. Two or more selected from these may be mixed and used.

正極芯材やリード14、ケース6としては、アルミニウム(Al)、炭素、導電性樹脂などが使用可能である。またこのいずれかの材料に、カーボンなどで表面処理したものを用いてもよい。   Aluminum (Al), carbon, conductive resin, or the like can be used as the positive electrode core member, the lead 14, and the case 6. Further, any of these materials may be surface-treated with carbon or the like.

非水電解質には有機溶媒に溶質を溶解した非水溶液系の電解質溶液や、これらを含み高分子で非流動化されたいわゆるポリマー電解質層が適用可能である。少なくとも電解質溶液を用いる場合には正極2と負極1との間にポリエチレン、ポリプロピレン、アラミド樹脂、アミドイミド、ポリフェニレンサルファイド、ポリイミドなどからなる不織布や微多孔膜などのセパレータ3を用い、これに電解質溶液を含浸させるのが好ましい。   As the non-aqueous electrolyte, a non-aqueous electrolyte solution in which a solute is dissolved in an organic solvent, or a so-called polymer electrolyte layer containing these and non-fluidized with a polymer can be applied. When using at least an electrolyte solution, a separator 3 such as a nonwoven fabric or a microporous membrane made of polyethylene, polypropylene, aramid resin, amideimide, polyphenylene sulfide, polyimide, etc. is used between the positive electrode 2 and the negative electrode 1, and the electrolyte solution is used for this. It is preferable to impregnate.

非水電解質の材料は、活物質の酸化還元電位などを基に選択される。非水電解質に用いるのが好ましい溶質としては、LiPF、LiBF、LiClO、LiAlCl、LiSbF、LiSCN、LiCFSO、LiN(CFCO、LiN(CFSO、LiAsF、LiB10Cl10、低級脂肪族カルボン酸リチウム、LiF、LiCl、LiBr、LiI、クロロボランリチウム、ビス(1,2−ベンゼンジオレート(2−)−O,O’)ホウ酸リチウム、ビス(2,3−ナフタレンジオレート(2−)−O,O’)ホウ酸リチウム、ビス(2,2’−ビフェニルジオレート(2−)−O,O’)ホウ酸リチウム、ビス(5−フルオロ−2−オレート−1−ベンゼンスルホン酸−O,O’)ホウ酸リチウムなどのホウ酸塩類、テトラフェニルホウ酸リチウムなど、一般にリチウム電池で使用されている塩類を適用できる。 The nonaqueous electrolyte material is selected based on the redox potential of the active material. Solutes preferably used for the non-aqueous electrolyte include LiPF 6 , LiBF 4 , LiClO 4 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCF 3 SO 3 , LiN (CF 3 CO 2 ) 2 , LiN (CF 3 SO 2 ). 2 , LiAsF 6 , LiB 10 Cl 10 , lower aliphatic lithium carboxylate, LiF, LiCl, LiBr, LiI, chloroborane lithium, bis (1,2-benzenediolate (2-)-O, O ′) boric acid Lithium, bis (2,3-naphthalenedioleate (2-)-O, O ') lithium borate, bis (2,2'-biphenyldiolate (2-)-O, O') lithium borate, bis (5-Fluoro-2-olate-1-benzenesulfonic acid-O, O ′) borate salts such as lithium borate, lithium tetraphenylborate Salts generally used in lithium batteries can be applied.

さらに上記塩を溶解させる有機溶媒には、エチレンカーボネート(EC)、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、ジメチルカーボネート(DMC)、ジエチルカーボネート、エチルメチルカーボネート(EMC)、ジプロピルカーボネート、ギ酸メチル、酢酸メチル、プロピオン酸メチル、プロピオン酸エチル、ジメトキシメタン、γ−ブチロールクトン、γ−バレロールクトン、1,2−ジエトキシエタン、1,2−ジメトキシエタン、エトキシメトキシエタン、トリメトキシメタン、テトラヒドロフラン、2−メチルテトラヒドロフランなどのテトラヒドロフラン誘導体、ジメチルスルホキシド、1,3−ジオキソラン、4−メチル−1,3−ジオキソランなどのジオキソラン誘導体、ホルムアミド、アセトアミド、ジメチルホルムアミド、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、酢酸エステル、プロピオン酸エステル、スルホラン、3−メチルスルホラン、1,3−ジメチル−2−イミダゾリジノン、3−メチル−2−オキサゾリジノン、プロピレンカーボネート誘導体、エチルエーテル、ジエチルエーテル、1,3−プロパンサルトン、アニソール、フルオロベンゼンなどの1種またはそれ以上の混合物など、一般にリチウム電池で使用されているような溶媒を適用できる。   Further, the organic solvent for dissolving the salt includes ethylene carbonate (EC), propylene carbonate, butylene carbonate, vinylene carbonate, dimethyl carbonate (DMC), diethyl carbonate, ethyl methyl carbonate (EMC), dipropyl carbonate, methyl formate, acetic acid. Methyl, methyl propionate, ethyl propionate, dimethoxymethane, γ-butyrolol kuton, γ-valerol kuton, 1,2-diethoxyethane, 1,2-dimethoxyethane, ethoxymethoxyethane, trimethoxymethane, tetrahydrofuran, Tetrahydrofuran derivatives such as 2-methyltetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, dioxolane derivatives such as 4-methyl-1,3-dioxolane, formamide, Acetamide, dimethylformamide, acetonitrile, propylnitrile, nitromethane, ethyl monoglyme, phosphate triester, acetate ester, propionate ester, sulfolane, 3-methylsulfolane, 1,3-dimethyl-2-imidazolidinone, 3-methyl 2-Oxazolidinone, propylene carbonate derivatives, ethyl ether, diethyl ether, 1,3-propane sultone, anisole, mixtures of one or more such as fluorobenzene, and the like solvents commonly used in lithium batteries Applicable.

さらに、ビニレンカーボネート、シクロヘキシルベンゼン、ビフェニル、ジフェニルエーテル、ビニルエチレンカーボネート、ジビニルエチレンカーボネート、フェニルエチレンカーボネート、ジアリルカーボネート、フルオロエチレンカーボネート、カテコールカーボネート、酢酸ビニル、エチレンサルファイト、プロパンサルトン、トリフルオロプロピレンカーボネート、ジベンゾフラン、2,4−ジフルオロアニソール、o−ターフェニル、m−ターフェニルなどの添加剤を含んでいてもよい。   Furthermore, vinylene carbonate, cyclohexyl benzene, biphenyl, diphenyl ether, vinyl ethylene carbonate, divinyl ethylene carbonate, phenyl ethylene carbonate, diallyl carbonate, fluoroethylene carbonate, catechol carbonate, vinyl acetate, ethylene sulfite, propane sultone, trifluoropropylene carbonate, Additives such as dibenzofuran, 2,4-difluoroanisole, o-terphenyl, m-terphenyl and the like may be contained.

なお、非水電解質は、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリホスファゼン、ポリアジリジン、ポリエチレンスルフィド、ポリビニルアルコール、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレンなどの高分子材料の1種またはそれ以上の混合物などに上記溶質を混合して、固体電解質として用いてもよい。また、上記有機溶媒と混合してゲル状で用いてもよい。さらに、リチウム窒化物、リチウムハロゲン化物、リチウム酸素酸塩、LiSiO、LiSiO−LiI−LiOH、LiPO−LiSiO、LiSiS、LiPO−LiS−SiS、硫化リン化合物などの無機材料を固体電解質として用いてもよい。 The non-aqueous electrolyte is composed of one or more kinds of polymer materials such as polyethylene oxide, polypropylene oxide, polyphosphazene, polyaziridine, polyethylene sulfide, polyvinyl alcohol, polyvinylidene fluoride, polyhexafluoropropylene, and the like. May be used as a solid electrolyte. Moreover, you may mix with the said organic solvent and use it in a gel form. Further, lithium nitride, lithium halide, lithium oxyacid salt, Li 4 SiO 4, Li 4 SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 4 SiO 4, Li 2 SiS 3, Li 3 PO 4 -Li Inorganic materials such as 2 S—SiS 2 and phosphorus sulfide compounds may be used as the solid electrolyte.

次に正極2の製造方法について簡単に説明する。所定の粒度に分級した粉状の正極活物質を、結着剤、導電剤、および適量の分散媒とともに攪拌し、正極合剤ペーストを調製する。このペーストを正極芯材の両面に塗布し、乾燥させた後、ロールプレスする。このようにして正極芯材の両面に正極活物質層を形成する。その後、角形のケース6に挿入可能な幅にスリットする。また正極活物質層の一部を剥離して正極芯材にリード14を接続する。このようにして正極2が作製される。   Next, a method for manufacturing the positive electrode 2 will be briefly described. The powdery positive electrode active material classified into a predetermined particle size is stirred together with a binder, a conductive agent, and an appropriate amount of dispersion medium to prepare a positive electrode mixture paste. This paste is applied to both sides of the positive electrode core material, dried, and then roll-pressed. In this way, the positive electrode active material layer is formed on both surfaces of the positive electrode core material. Then, it is slit to a width that can be inserted into the rectangular case 6. Further, a part of the positive electrode active material layer is peeled off and the lead 14 is connected to the positive electrode core material. In this way, the positive electrode 2 is produced.

次に負極1の製造方法について説明する。所定の粒度に分級した粉状の負極活物質を、結着剤、導電剤、および適量の分散媒とともに攪拌し、負極合剤ペーストを調製する。このペーストを負極芯材の両面に塗布し、乾燥させる。この際、リード11を接続するため、負極合剤ペーストを間欠塗工する。その後、必要に応じてロールプレスする。このようにして負極芯材の両面に負極活物質層を形成し、負極前駆体を作製する。その後、負極活物質層に含まれる負極活物質に、不可逆容量に相当するリチウムイオンを吸蔵させる。そして角形のケース6に挿入可能で、かつ正極2より広い幅にスリットする。また露出している負極芯材にリード11を接続する。このようにして負極1が作製される。   Next, the manufacturing method of the negative electrode 1 is demonstrated. A powdery negative electrode active material classified to a predetermined particle size is stirred together with a binder, a conductive agent, and an appropriate amount of a dispersion medium to prepare a negative electrode mixture paste. This paste is applied to both sides of the negative electrode core and dried. At this time, in order to connect the lead 11, the negative electrode mixture paste is intermittently applied. Then, it roll-presses as needed. In this way, negative electrode active material layers are formed on both sides of the negative electrode core material, and a negative electrode precursor is produced. Thereafter, lithium ions corresponding to irreversible capacity are occluded in the negative electrode active material included in the negative electrode active material layer. The slit can be inserted into the rectangular case 6 and wider than the positive electrode 2. Further, the lead 11 is connected to the exposed negative electrode core material. In this way, the negative electrode 1 is produced.

これ以外に、負極芯材に気相法を用いて負極活物質を堆積させて負極前駆体を作製してもよい。   In addition, a negative electrode precursor may be produced by depositing a negative electrode active material on the negative electrode core material using a vapor phase method.

次に図3、図4を用いて、負極前駆体の負極活物質層にリチウムイオンを吸蔵させる装置について説明する。図3は負極前駆体の負極活物質層にリチウムイオンを吸蔵させる装置の概略構成図である。図4はその要部拡大図である。   Next, an apparatus for occluding lithium ions in the negative electrode active material layer of the negative electrode precursor will be described with reference to FIGS. FIG. 3 is a schematic configuration diagram of an apparatus for occluding lithium ions in the negative electrode active material layer of the negative electrode precursor. FIG. 4 is an enlarged view of the main part.

上述のようにして作製された負極前駆体20は、芯材20Aとその表面(両面)に形成された負極活物質層(以下、活物質層と称す)20Bとを有する。負極前駆体20は、供給ロール21に捲回された状態で供給される。供給ロール21は、巻き取られた負極前駆体20を引き出す巻出部である。   The negative electrode precursor 20 produced as described above has a core material 20A and a negative electrode active material layer (hereinafter referred to as an active material layer) 20B formed on the surface (both sides) thereof. The negative electrode precursor 20 is supplied in a state of being wound around the supply roll 21. The supply roll 21 is an unwinding part that pulls out the wound negative electrode precursor 20.

この装置は、供給ロール21と、電解槽24と、電源部28と、第1参照電極26と、第1電極27と、第1電位センサ29と、リチウム吸蔵制御部40と、巻取ロール22とを有する。電解槽24は、リチウムイオンを含有する非水電解液25を保持している。引き出された負極前駆体20は非水電解液25に浸漬される。第1電極27は金属リチウムまたはリチウムを含む合金で構成され、非水電解液25中に設置されている。電源部28は第1電極27と負極前駆体20との間に電流を流し、活物質層20Bの第1電極27に面した側(第1活物質層)にリチウムイオンを吸蔵させる。そのため、第1電極27は処理に伴い消耗するので定期的に交換する必要がある。   This apparatus includes a supply roll 21, an electrolytic cell 24, a power supply unit 28, a first reference electrode 26, a first electrode 27, a first potential sensor 29, a lithium occlusion control unit 40, and a winding roll 22. And have. The electrolytic cell 24 holds a nonaqueous electrolytic solution 25 containing lithium ions. The extracted negative electrode precursor 20 is immersed in the nonaqueous electrolytic solution 25. The first electrode 27 is made of metallic lithium or an alloy containing lithium, and is installed in the nonaqueous electrolytic solution 25. The power supply unit 28 causes a current to flow between the first electrode 27 and the negative electrode precursor 20 and occludes lithium ions on the side of the active material layer 20B facing the first electrode 27 (first active material layer). For this reason, the first electrode 27 is consumed during processing, and thus needs to be replaced periodically.

第1参照電極26は、負極前駆体20の、非水電解液25に浸った部分の近傍に配置されている。第1電位センサ29は第1参照電極26に対する非水電解液25に浸った部分の電位を測定する。リチウム吸蔵制御部40は、測定された電位に基づき、負極前駆体20と第1電極27との間に流す電流を制御することにより活物質層20Bの第1電極27に面した側へのリチウムイオンの吸蔵量を制御する。巻取り部である巻取ロール22は、リチウムイオンを吸蔵処理した負極前駆体20を巻き取る。   The first reference electrode 26 is disposed in the vicinity of the portion of the negative electrode precursor 20 that is immersed in the non-aqueous electrolyte 25. The first potential sensor 29 measures the potential of the portion immersed in the non-aqueous electrolyte 25 with respect to the first reference electrode 26. The lithium occlusion control unit 40 controls the current flowing between the negative electrode precursor 20 and the first electrode 27 based on the measured potential, so that the lithium on the side facing the first electrode 27 of the active material layer 20B is controlled. Control the amount of ion storage. The winding roll 22 which is a winding part winds up the negative electrode precursor 20 which occluded lithium ions.

この装置を用いて負極前駆体20の活物質層20Bにリチウムイオンを吸蔵させる方法を説明する。まず巻き取られた負極前駆体20を供給ロール21から引き出す。次に引き出された負極前駆体20を、非水電解液25に挿入する。負極前駆体20は浸漬ロール23に沿って非水電解液25に浸漬され、また浸漬ロール23に沿って非水電解液25から引き出される。   A method of occluding lithium ions in the active material layer 20B of the negative electrode precursor 20 using this apparatus will be described. First, the wound negative electrode precursor 20 is pulled out from the supply roll 21. Next, the extracted negative electrode precursor 20 is inserted into the nonaqueous electrolytic solution 25. The negative electrode precursor 20 is immersed in the nonaqueous electrolytic solution 25 along the immersion roll 23, and is drawn out from the nonaqueous electrolytic solution 25 along the immersion roll 23.

第1電位センサ29は、第1参照電極26を用いて負極前駆体20における非水電解液25に浸った部分の第1参照電極26近傍の電位を測定する。この測定結果は逐次リチウム吸蔵制御部40に送られる。リチウム吸蔵制御部40は、測定された電位に基づき電源部28が負極前駆体20と第1電極27との間に流す電流を制御する。すなわちリチウム吸蔵制御部40は、活物質層20Bの第1電極27に面した側へのリチウムイオンの吸蔵量を制御する。最後に巻取ロール22は、リチウムイオンを吸蔵処理した負極前駆体20を巻き取る。   The first potential sensor 29 uses the first reference electrode 26 to measure the potential in the vicinity of the first reference electrode 26 in the portion of the negative electrode precursor 20 that is immersed in the non-aqueous electrolyte 25. The measurement results are sequentially sent to the lithium occlusion control unit 40. The lithium occlusion control unit 40 controls the current that the power supply unit 28 passes between the negative electrode precursor 20 and the first electrode 27 based on the measured potential. That is, the lithium occlusion control unit 40 controls the occlusion amount of lithium ions to the side facing the first electrode 27 of the active material layer 20B. Finally, the winding roll 22 winds up the negative electrode precursor 20 in which lithium ions are occluded.

次に図5、図6を用いて第1電位センサ29の測定電位の変化と負極前駆体20へのリチウム供給について説明する。図5は第1電位センサ29の測定電位の時間変化を模式的に示すグラフ、図6は負極前駆体20へのリチウムイオンの供給状態と芯材露出部31へのリチウム析出状態を示す模式断面図である。   Next, changes in the measured potential of the first potential sensor 29 and supply of lithium to the negative electrode precursor 20 will be described with reference to FIGS. 5 and 6. FIG. 5 is a graph schematically showing the time change of the measured potential of the first potential sensor 29, and FIG. 6 is a schematic cross section showing the supply state of lithium ions to the negative electrode precursor 20 and the lithium deposition state on the core material exposed portion 31. FIG.

電源部28から電流を流さず、供給ロール21から巻取ロール22へ負極前駆体20を一定速度で送ると、芯材露出部31が非水電解液25を通過するときに第1電位センサ29の測定電位は一点鎖線のように変化する。すなわち、リチウムイオンを吸蔵できる活物質層20Bが第1参照電極26の測定箇所にあるとき、電位は点A1点のように低い状態(V)にある。そして芯材露出部31が非水電解液25に挿入されると、点B1点のように電位が上昇し始め貴な方へ変化する。これは芯材20Aの自然電位が負極前駆体20の活物質層20Bが形成された部分よりも高いためである。そして非水電解液25に浸漬されている部位の中で芯材露出部31の占める割合が大きくなるにつれてさらに電位は上昇する。そして点D点のように、芯材露出部31のみが非水電解液25に浸っている状態で最も電位が貴になる(V)。さらに負極前駆体20を送ると点E点のように、活物質層20Bが非水電解液25に浸漬され始める。そのため電位は徐々に低下し卑な方へ変化する。そして芯材露出部31が非水電解液25に浸っておらず、活物質層20Bが形成された部位のみが非水電解液25に浸っている状態になると点G1のように電位はVに戻る。 When the negative electrode precursor 20 is sent from the supply roll 21 to the take-up roll 22 at a constant speed without passing a current from the power supply unit 28, the first potential sensor 29 is generated when the core material exposed part 31 passes through the non-aqueous electrolyte 25. The measured potential changes as shown by the alternate long and short dash line. That is, when the active material layer 20B capable of occluding lithium ions is present at the measurement location of the first reference electrode 26, the potential is as low as the point A1 (V 1 ). When the core material exposed portion 31 is inserted into the non-aqueous electrolyte solution 25, the potential starts to rise like point B1 and changes to a noble one. This is because the natural potential of the core material 20A is higher than that of the portion where the active material layer 20B of the negative electrode precursor 20 is formed. The potential further increases as the proportion of the core exposed portion 31 in the portion immersed in the non-aqueous electrolyte 25 increases. The potential becomes the highest (V 2 ) when only the core material exposed portion 31 is immersed in the non-aqueous electrolyte solution 25 as indicated by the point D. When the negative electrode precursor 20 is further fed, the active material layer 20B begins to be immersed in the non-aqueous electrolyte solution 25 as indicated by point E. As a result, the potential gradually decreases and changes to the lower side. When the core material exposed portion 31 is not immersed in the non-aqueous electrolyte 25 and only the portion where the active material layer 20B is formed is immersed in the non-aqueous electrolyte 25, the potential is V 1 as indicated by a point G1. Return to.

このような電位プロファイルを基に、リチウム吸蔵制御部40は電源部28を制御する。図5における実線はリチウム吸蔵制御部40で電源部28を制御した際の第1電位センサ29の測定電位の変化を示す。点A2で示すように、リチウムイオンを吸蔵できる活物質層20Bが形成された部位のみが非水電解液25に浸っている状態において、電源部28は第1電極27を正極、浸漬ロール23に接している負極前駆体20を負極として電流を流す。このようにして活物質層20Bにリチウムイオンが吸蔵される。あるいは電源部28の負極側は供給ロール21に接続し、さらに芯材20Aと供給ロール21が接触するように負極前駆体20の巻き終わり部分に充分長い芯材露出部を設けてもよい。このようにすれば電子伝導性の比較的低い状態で活物質層20Bが形成されている場合でも確実に活物質層20Bにリチウムイオンを吸蔵することができる。   Based on such a potential profile, the lithium occlusion control unit 40 controls the power supply unit 28. A solid line in FIG. 5 indicates a change in the measured potential of the first potential sensor 29 when the power storage unit 28 is controlled by the lithium occlusion control unit 40. As indicated by a point A2, in a state where only the portion where the active material layer 20B capable of occluding lithium ions is immersed in the non-aqueous electrolyte 25, the power supply unit 28 uses the first electrode 27 as the positive electrode and the immersion roll 23. A current is passed using the negative electrode precursor 20 in contact as a negative electrode. In this way, lithium ions are occluded in the active material layer 20B. Alternatively, the negative electrode side of the power supply unit 28 may be connected to the supply roll 21, and a sufficiently long core material exposed portion may be provided at the end of winding of the negative electrode precursor 20 so that the core material 20 </ b> A and the supply roll 21 are in contact with each other. In this way, even when the active material layer 20B is formed with a relatively low electronic conductivity, lithium ions can be reliably occluded in the active material layer 20B.

点A2における電位Vは、点A1における電位Vより低い。これは、充電する電流による分極と、リチウムイオンを吸蔵した部位が非水電解液25に浸っていることによる。そして芯材露出部31が非水電解液25に挿入されると、点B2点のように電位が上昇し始める。リチウム吸蔵制御部40はこの電位変化を検知して電源部28による電解電流を停止する(点C)。すると電流による分極がなくなるため電位がステップ状に上昇する。さらに非水電解液25に浸漬されている部位の中で芯材露出部31の占める割合が大きくなるにつれてさらに電位は上昇する。電流が流れていない状態では、一点鎖線の場合と同様に点Dを経て点Eに至る。そして電位がVになった点Fにて、リチウム吸蔵制御部40は芯材露出部31が完全に非水電解液25から出たと判断し、電源部28は第1電極27を正極、負極前駆体20を負極として電流を流す。これにより電位はさらに低下し、最終的は点G2のようにVに至る。 Potential V 3 at the point A2 is lower than the potential V 1 at point A1. This is due to the polarization due to the electric current to be charged and the fact that the portion where lithium ions are occluded is immersed in the non-aqueous electrolyte 25. When the core material exposed portion 31 is inserted into the nonaqueous electrolytic solution 25, the potential starts to rise as at the point B2. The lithium occlusion control unit 40 detects this potential change and stops the electrolytic current from the power supply unit 28 (point C). Then, since the polarization due to current disappears, the potential rises stepwise. Furthermore, the potential further increases as the ratio of the core material exposed portion 31 to the portion immersed in the non-aqueous electrolyte 25 increases. In the state where no current flows, the point E is reached via the point D as in the case of the one-dot chain line. Then, at the point F at which the potential becomes V 1 , the lithium occlusion control unit 40 determines that the core material exposed part 31 has completely come out of the non-aqueous electrolyte 25, and the power supply unit 28 sets the first electrode 27 as the positive electrode and the negative electrode A current is passed using the precursor 20 as a negative electrode. Thus potential further decreases, eventually leading to V 3 as the point G2.

以上のように制御すれば、芯材露出部31にリチウムが析出することなく活物質層20Bにリチウムイオンが吸蔵される。この場合、活物質層20Bのうち芯材露出部31に隣接する部分はリチウムイオン吸蔵量がやや少なくなる。そこで、負極前駆体20の移動方向(送り方向)において、負極前駆体20を非水電解液25に挿入する部分の長さに対し、第1電極27の長さを短くし、負極前駆体20の送り速度を考慮して電源部28のオン・オフのタイミングを点B2、点Eの検知より遅らせるように制御してもよい。このようにリチウム吸蔵制御部40が電源部28を制御することで活物質層20Bのうち芯材露出部31に隣接する部分まで充分にリチウムイオンを吸蔵させることができる。   By controlling as described above, lithium ions are occluded in the active material layer 20 </ b> B without lithium being precipitated in the core material exposed portion 31. In this case, a portion of the active material layer 20B adjacent to the core material exposed portion 31 has a slightly reduced lithium ion storage amount. Therefore, in the moving direction (feeding direction) of the negative electrode precursor 20, the length of the first electrode 27 is made shorter than the length of the portion where the negative electrode precursor 20 is inserted into the non-aqueous electrolyte solution 25. The on / off timing of the power supply unit 28 may be controlled so as to be delayed from the detection of the point B2 and the point E in consideration of the feed rate. As described above, the lithium occlusion control unit 40 controls the power supply unit 28, so that lithium ions can be sufficiently occluded up to a portion adjacent to the core material exposed portion 31 in the active material layer 20B.

また、負極前駆体20の送り方向において、負極前駆体20を非水電解液25に挿入する部分の長さを、芯材露出部31の長さ以上とすることが好ましい。このようにすることで、芯材露出部31のみが非水電解液25に浸る状態が生じ、第1参照電極26近傍の電位がより明確に変化するため、負極前駆体20と第1電極27との間に流す電流の制御がやりやすくなる。   In the feeding direction of the negative electrode precursor 20, the length of the portion where the negative electrode precursor 20 is inserted into the non-aqueous electrolyte solution 25 is preferably equal to or longer than the length of the core material exposed portion 31. By doing so, a state in which only the core material exposed portion 31 is immersed in the non-aqueous electrolyte solution 25 occurs, and the potential in the vicinity of the first reference electrode 26 changes more clearly, and thus the negative electrode precursor 20 and the first electrode 27 are changed. It becomes easier to control the current flowing between the two.

このように負極前駆体20の移動方向において、負極前駆体20を非水電解液25に挿入する部分の長さと、芯材露出部31の長さと、第1電極27の長さ、負極前駆体20の送り速度とを考慮してリチウム吸蔵制御部40は電源部28を適切に制御する必要がある。特に、上述のように負極前駆体20の送り方向において、負極前駆体20を非水電解液25に挿入する部分の長さよりも第1電極27の長さを短くし、負極前駆体20の送り速度を考慮して電源部28のオン・オフのタイミングを点B2、点Eの検知より遅らせる制御を行う場合にはリチウムイオン吸蔵の境界がばらつく可能性がある。この様子を、図6を用いて説明する。図6では便宜上、負極活物質層20Bへ吸蔵されるリチウムイオンを吸蔵部分30Aとして示している。   Thus, in the moving direction of the negative electrode precursor 20, the length of the portion where the negative electrode precursor 20 is inserted into the non-aqueous electrolyte 25, the length of the core material exposed portion 31, the length of the first electrode 27, the negative electrode precursor The lithium occlusion control unit 40 needs to appropriately control the power supply unit 28 in consideration of the 20 feeding speed. In particular, in the feed direction of the negative electrode precursor 20 as described above, the length of the first electrode 27 is made shorter than the length of the portion where the negative electrode precursor 20 is inserted into the non-aqueous electrolyte solution 25, and the feed of the negative electrode precursor 20 is made. Considering the speed, when the control of delaying the ON / OFF timing of the power supply unit 28 from the detection of the points B2 and E is performed, there is a possibility that the boundary of the lithium ion occlusion varies. This will be described with reference to FIG. In FIG. 6, for convenience, lithium ions occluded in the negative electrode active material layer 20B are shown as occluded portions 30A.

電位が上昇し始めた点B2では、第1参照電極26の測定部位である非水電解液25への入口側に芯材露出部31が浸漬し始める時点である。この時点では芯材露出部31には第1電極27は対向していない。この時点で電流を停止すると、芯材露出部31にリチウムが析出しないが、図6(a)に示すように活物質層20Bの芯材露出部31との境界に近い部分にリチウムイオンが吸蔵されない、または吸蔵量が少ない部分ができる。   The point B2 at which the potential starts to rise is the time point when the core material exposed portion 31 starts to be immersed in the inlet side to the non-aqueous electrolyte 25 that is the measurement site of the first reference electrode 26. At this time, the first electrode 27 does not face the core material exposed portion 31. If the current is stopped at this point, lithium does not precipitate in the core material exposed portion 31, but lithium ions are occluded in a portion near the boundary with the core material exposed portion 31 of the active material layer 20 </ b> B as shown in FIG. A part with little occlusion is formed.

一方、電流の停止タイミングが遅れると、芯材露出部31が非水電解液25に浸漬して以降もリチウムイオンが供給され、場合によっては図6(b)に示すように芯材露出部31上にリチウム30Bが析出する。なお、図6(c)は電流を停止しない場合に芯材露出部31全体にリチウム30Bが析出する様子を示している。負極前駆体20の送り速度の精度や芯材露出部31の寸法精度を向上させれば、図6(d)に示すように芯材露出部31にリチウムが析出せず、かつ活物質層20B全体にリチウムイオンを吸蔵させることも理論的に可能である。   On the other hand, when the current stop timing is delayed, lithium ions are supplied even after the core material exposed portion 31 is immersed in the non-aqueous electrolyte 25. In some cases, as shown in FIG. 6B, the core material exposed portion 31 is supplied. Lithium 30B is deposited on top. FIG. 6C shows a state in which lithium 30B is deposited on the entire core exposed portion 31 when the current is not stopped. If the feed rate accuracy of the negative electrode precursor 20 and the dimensional accuracy of the core material exposed portion 31 are improved, lithium does not precipitate on the core material exposed portion 31 and the active material layer 20B as shown in FIG. It is theoretically possible to occlude lithium ions throughout.

そこで電流を電位の閾値でオン・オフするのではなく、電位が貴にシフトすると電流を低減してゆき、電位が卑にシフトすると電流を増加させるようにしてもよい。このようにすれば、特に芯材露出部31と活物質層20Bとの界面においてできるだけ活物質層20Bにリチウムイオンを吸蔵させるとともに、芯材露出部31でのリチウム析出を減少させることができる。   Therefore, instead of turning the current on / off with the threshold value of the potential, the current may be reduced when the potential is shifted preciously, and the current may be increased when the potential is shifted to the base. In this way, lithium ions can be occluded in the active material layer 20B as much as possible at the interface between the core material exposed portion 31 and the active material layer 20B, and lithium deposition in the core material exposed portion 31 can be reduced.

非水電解液25には電池に用いる非水電解液と同様の材料を用いることができる。また図示していないが、電解槽24から引き出された負極前駆体20を巻取ロール22に巻き取る前に、非水電解液25に含まれる溶質を溶解する非水溶媒に通して溶質を除去することが好ましい。これによって溶質が析出して巻き取った負極前駆体20同士が貼りついてしまったり、過剰な溶質が電池に入ったりすることが防止される。   The non-aqueous electrolyte 25 can be made of the same material as the non-aqueous electrolyte used for the battery. Although not shown, before the negative electrode precursor 20 drawn out from the electrolytic cell 24 is wound on the winding roll 22, the solute is removed by passing it through a nonaqueous solvent that dissolves the solute contained in the nonaqueous electrolytic solution 25. It is preferable to do. This prevents the negative electrode precursors 20 that have been deposited and wound up from adhering to each other, and prevents excessive solutes from entering the battery.

なお図4に示すように、負極前駆体20が両面に活物質層20Bを有する場合、すなわち、上述のようにリチウムイオンを吸蔵させた第1活物質層の裏側にも第2活物質層が設けられている場合、この第2活物質層にもリチウムイオンを吸蔵させる必要がある。そこで、巻取ロール22に巻き取った負極前駆体20を再び供給ロール21にセットし、裏側の活物質層20B(第2活物質層)にリチウムイオンを吸蔵させる。   As shown in FIG. 4, when the negative electrode precursor 20 has the active material layer 20B on both sides, that is, the second active material layer is also provided on the back side of the first active material layer in which lithium ions are occluded as described above. When provided, it is necessary to occlude lithium ions in the second active material layer. Therefore, the negative electrode precursor 20 wound around the winding roll 22 is set again on the supply roll 21, and lithium ions are occluded in the active material layer 20 </ b> B (second active material layer) on the back side.

あるいは図3に示す浸漬ロール23、非水電解液25、第1電極27、第1参照電極26、電源部28、第1電位センサ29、リチウム吸蔵制御部40のセットをもう1組用意する。そして片面側の活物質層20B(第1活物質層)にリチウムイオンを吸蔵させた後、図7に示すように複数のロールで構成された反転部50で負極前駆体20を裏返し、第2の浸漬ロール23A、第2の電解槽24Aなどを用いて裏側の活物質層20B(第2活物質層)にリチウムイオンを吸蔵させる。その後、巻取ロール22で負極前駆体20を巻き取る。このようにすれば連続的に両面の活物質層20Bを処理することができる。   Alternatively, another set of the immersion roll 23, the non-aqueous electrolyte 25, the first electrode 27, the first reference electrode 26, the power supply unit 28, the first potential sensor 29, and the lithium occlusion control unit 40 shown in FIG. 3 is prepared. Then, after lithium ions are occluded in the active material layer 20B (first active material layer) on one side, the negative electrode precursor 20 is turned over by the reversing unit 50 formed of a plurality of rolls as shown in FIG. The lithium ion is occluded in the active material layer 20B (second active material layer) on the back side by using the dipping roll 23A, the second electrolytic cell 24A, and the like. Thereafter, the negative electrode precursor 20 is wound up by the winding roll 22. In this way, the active material layers 20B on both sides can be processed continuously.

以上のように、負極前駆体20が芯材20Aの両面に活物質層20Bを有する場合は、両面にリチウムイオンを吸蔵させることが好ましい。これによって長尺な正極、負極を捲回して電池を構成する円筒形電池や角形電池の負極前駆体全体に含まれる負極活物質の不可逆容量を補充することができる。   As described above, when the negative electrode precursor 20 has the active material layer 20B on both surfaces of the core material 20A, it is preferable to occlude lithium ions on both surfaces. As a result, the irreversible capacity of the negative electrode active material contained in the whole negative electrode precursor of the cylindrical battery or the rectangular battery constituting the battery by winding the long positive electrode and the negative electrode can be supplemented.

以下、具体的な例を用いて本実施の形態の効果を説明する。   Hereinafter, the effect of this embodiment will be described using a specific example.

(1)負極の作製
負極前駆体20は、図8に示す製造装置を用いて作製した。この製造装置では巻き出しロール41から成膜ロール44A、44Bを経て巻取ロール45へと芯材20Aが送られる。これらのロールと蒸着ユニット43は真空容器46の中に設けられている。真空容器46内は真空ポンプ47により減圧される。蒸着ユニット43では蒸着ソース、るつぼ、電子ビーム発生装置がユニット化されている。
(1) Production of negative electrode The negative electrode precursor 20 was produced using the production apparatus shown in FIG. In this manufacturing apparatus, the core material 20A is sent from the unwinding roll 41 to the winding roll 45 through the film forming rolls 44A and 44B. These rolls and vapor deposition unit 43 are provided in a vacuum vessel 46. The inside of the vacuum vessel 46 is depressurized by a vacuum pump 47. In the vapor deposition unit 43, a vapor deposition source, a crucible, and an electron beam generator are unitized.

芯材20Aとしては、電解メッキによりRa=2.0μmの凹凸を設けた厚さ30μmの電解銅箔を用いた。真空容器46の内部は、圧力3.5Paのアルゴン雰囲気とした。蒸着時には、電子ビーム発生装置により発生させた電子ビームを偏光ヨークにより偏光させ、蒸着ソースに照射した。蒸着ソースには半導体ウェハを形成する際に生じる端材(スクラップシリコン:純度99.999%)を用いた。一方、純度99.7%の酸素ガスを基板近傍に配置した酸素ノズル48から真空容器46内に導入した。なおマスク42の開口部の形状を調整することで、蒸着ユニット43から発生したケイ素蒸気が芯材20Aの面に垂直に入射しないようにしている。またケイ素蒸気の入射方向と酸素ノズル48からの酸素の入射方向とのなす角ωを65°に設定した。このような条件で、活物質層20Bを約20nm/secの成膜速度で形成した。このようにして芯材20Aの凸部に厚さ21μmのSiO0.7からなる柱状体で構成された活物質層20Bを形成した。成膜ロール44Aにて片面に活物質層20Bを形成した後、芯材20Aを成膜ロール44Bに送り、もう一方の面にも活物質層20Bを形成した。 As the core material 20A, an electrolytic copper foil with a thickness of 30 μm provided with unevenness of Ra = 2.0 μm by electrolytic plating was used. The inside of the vacuum vessel 46 was an argon atmosphere with a pressure of 3.5 Pa. At the time of vapor deposition, the electron beam generated by the electron beam generator was polarized by the polarization yoke and irradiated to the vapor deposition source. An end material (scrap silicon: purity 99.999%) generated when forming a semiconductor wafer was used as a deposition source. On the other hand, oxygen gas having a purity of 99.7% was introduced into the vacuum vessel 46 from an oxygen nozzle 48 disposed in the vicinity of the substrate. By adjusting the shape of the opening of the mask 42, the silicon vapor generated from the vapor deposition unit 43 is prevented from being perpendicularly incident on the surface of the core member 20A. The angle ω formed by the incident direction of silicon vapor and the incident direction of oxygen from the oxygen nozzle 48 was set to 65 °. Under such conditions, the active material layer 20B was formed at a deposition rate of about 20 nm / sec. In this way, an active material layer 20B composed of a columnar body made of SiO 2 0.7 having a thickness of 21 μm was formed on the convex portion of the core material 20A. After forming the active material layer 20B on one side by the film forming roll 44A, the core material 20A was sent to the film forming roll 44B, and the active material layer 20B was also formed on the other side.

なお30mmの芯材露出部31を設けるために、芯材20Aの両面に予め等間隔に耐熱テープを貼り付けておく。成膜後このテープを剥離することによって芯材露出部31を形成した。   In addition, in order to provide the core material exposed part 31 of 30 mm, a heat resistant tape is affixed on both surfaces of the core material 20A at equal intervals in advance. The core material exposed portion 31 was formed by peeling the tape after film formation.

その後、実施の形態に従って、負極前駆体20に電気化学的にリチウムイオンを吸蔵させた。具体的には、第1電極27の電流密度を5mAh/cmとし、負極前駆体20の送り速度を5m/minとした。また浸漬ロール23に沿って負極前駆体20が非水電解液25に浸漬される投影寸法を芯材露出部31とほぼ同じにした。そして図5における点B2、点Fを検知直後に電源部28をオン、オフ制御した。実施例(a)では、負極前駆体20の送り方向における第1電極27の寸法を、負極前駆体20が非水電解液25に浸漬される投影寸法より大きくした。実施例(b)では負極前駆体20が非水電解液25に浸漬される投影寸法とほぼ同じにした。実施例(c)では負極前駆体20が非水電解液25に浸漬される投影寸法より小さくした。なお比較例(a)として電位制御せずに連続的にリチウムイオン吸蔵処理した負極前駆体20を作製した。また比較例(b)として電位測定を行わず、芯材露出部31の幅と形成間隔と、負極前駆体20の送り速度とから、芯材露出部31に相当する時間の長さだけ、所定の間隔でリチウムイオン吸蔵の電流を停止しながらリチウムイオン吸蔵処理した負極前駆体20を作製した。このようにしてリチウムイオン吸蔵処理後、負極前駆体20を所定の寸法に切断後、電池構成時に内周になる側にニッケル製のリード11を溶接した。この際、比較例(a)による負極ではリード11の溶接に伴い、析出した金属リチウムが過熱したため、それ以上の作業を行わず、電池を作製しなかった。 Thereafter, according to the embodiment, the negative electrode precursor 20 was electrochemically occluded with lithium ions. Specifically, the current density of the first electrode 27 was 5 mAh / cm 2 and the feed rate of the negative electrode precursor 20 was 5 m / min. In addition, the projected dimension in which the negative electrode precursor 20 was immersed in the non-aqueous electrolyte 25 along the immersion roll 23 was made substantially the same as that of the core material exposed portion 31. Then, immediately after detecting the points B2 and F in FIG. In Example (a), the dimension of the 1st electrode 27 in the feed direction of the negative electrode precursor 20 was made larger than the projection dimension where the negative electrode precursor 20 is immersed in the non-aqueous electrolyte 25. In the example (b), the projected dimensions in which the negative electrode precursor 20 was immersed in the nonaqueous electrolytic solution 25 were made substantially the same. In Example (c), the negative electrode precursor 20 was made smaller than the projected dimension in which it was immersed in the nonaqueous electrolytic solution 25. Note that, as a comparative example (a), a negative electrode precursor 20 that was continuously subjected to lithium ion storage treatment without potential control was prepared. Further, as a comparative example (b), the potential measurement is not performed, and a predetermined length of time corresponding to the core material exposed portion 31 is determined from the width and formation interval of the core material exposed portion 31 and the feed rate of the negative electrode precursor 20. Thus, the negative electrode precursor 20 subjected to the lithium ion storage treatment was prepared while stopping the lithium ion storage current at intervals of. In this way, after the lithium ion occlusion treatment, the negative electrode precursor 20 was cut into a predetermined size, and a nickel lead 11 was welded to the inner circumference side when the battery was constructed. At this time, in the negative electrode according to the comparative example (a), the deposited metal lithium was overheated as the lead 11 was welded, so no further work was performed and no battery was produced.

(2)正極の作製
リチウムイオンを吸蔵・放出可能な正極活物質を有する正極2を、以下の方法で作製した。
(2) Production of positive electrode A positive electrode 2 having a positive electrode active material capable of inserting and extracting lithium ions was produced by the following method.

まず、正極活物質であるLiCoO粉末を94重量部と、導電剤であるアセチレンブラックを3重量部とを混合した。得られた粉末に結着剤であるPVDFのN−メチル−2−ピロリドン(NMP)溶液を、PVDFの重量が4重量部となるように混合した。得られた混合物に適量のNMPを加えて、正極合剤用ペーストを調製した。得られた正極合剤用ペーストをアルミニウム(Al)箔からなる正極芯材(厚さ15μm)上にドクターブレード法を用いて正極芯材の両面に塗布、85℃で充分に乾燥した。さらに正極合剤層の密度が3.6g/cm、厚さ170μmとなるように圧延した。これを裁断して正極2を得た。正極2の内周側に負極1と対向しないAl箔に露出部を設け、Al製のリード11を溶接した。 First, 94 parts by weight of LiCoO 2 powder as a positive electrode active material and 3 parts by weight of acetylene black as a conductive agent were mixed. An N-methyl-2-pyrrolidone (NMP) solution of PVDF as a binder was mixed with the obtained powder so that the weight of PVDF was 4 parts by weight. An appropriate amount of NMP was added to the obtained mixture to prepare a positive electrode mixture paste. The obtained paste for positive electrode mixture was applied onto both surfaces of the positive electrode core material by using a doctor blade method on a positive electrode core material (thickness 15 μm) made of aluminum (Al) foil, and sufficiently dried at 85 ° C. Further, the positive electrode mixture layer was rolled so that the density was 3.6 g / cm 3 and the thickness was 170 μm. This was cut to obtain the positive electrode 2. An exposed portion was provided on an Al foil not facing the negative electrode 1 on the inner peripheral side of the positive electrode 2, and an Al lead 11 was welded.

(3)電池の作製と評価
上記のようにして作製した負極1と正極2を、厚さが20μmの多孔質ポリプロピレンからなるセパレータ3を介して捲回して電極体9を構成した。そして、得られた電極体9を、電解液としてLiPFのエチレンカーボネート/エチルメチルカーボネート(体積比1:2)混合溶液とをケース6に収容し、ケース6の開口部を蓋体5と枠体4で封止して、高さ50mm、幅34mm、厚さ5mmの角型電池を作製した。なお、電池の設計容量は1100mAhとした。
(3) Production and Evaluation of Battery The negative electrode 1 and the positive electrode 2 produced as described above were wound through a separator 3 made of porous polypropylene having a thickness of 20 μm to form an electrode body 9. Then, the obtained electrode body 9 is accommodated in a case 6 with a mixed solution of ethylene carbonate / ethyl methyl carbonate (volume ratio 1: 2) of LiPF 6 as an electrolytic solution, and the opening of the case 6 is formed with a lid 5 and a frame. Sealed with the body 4 to produce a square battery having a height of 50 mm, a width of 34 mm, and a thickness of 5 mm. The design capacity of the battery was 1100 mAh.

このようにして作製した電池を、25℃環境温度において以下の条件で充放電した。まず、設計容量(1100mAh)に対し、時間率1.0C(1100mA)の定電流で電池電圧が4.2Vになるまで充電し、4.2Vの定電圧で時間率0.05C(55mA)の電流値に減衰させる定電圧充電を行った。その後、30分間休止した。その後、時間率1.0C(1100mA)の電流値で、電池電圧が2.5Vに低下するまで定電流で放電した。そして、上記の充放電を1サイクルとして、3サイクル目の放電容量を電池容量とし設計容量に対する電池容量の比率(%)を求めた。また3サイクル終了後の放電状態での電池厚みを測定し、組みたて後の厚みとの差を電池膨れとした。   The battery thus produced was charged and discharged under the following conditions at 25 ° C. environmental temperature. First, with respect to the design capacity (1100 mAh), the battery is charged at a constant current of 1.0 C (1100 mA) with a constant current until the battery voltage reaches 4.2 V, and at a constant voltage of 4.2 V, the time ratio is 0.05 C (55 mA). Constant voltage charging was performed to attenuate the current value. Then, it rested for 30 minutes. Thereafter, the battery was discharged at a constant current at a current value of 1.0C (1100 mA) at a time rate until the battery voltage dropped to 2.5V. The charge / discharge was set as one cycle, the discharge capacity at the third cycle was set as the battery capacity, and the ratio (%) of the battery capacity to the design capacity was determined. Further, the thickness of the battery in the discharged state after the end of three cycles was measured, and the difference from the thickness after assembling was defined as battery swelling.

評価結果を(表1)に示す。   The evaluation results are shown in (Table 1).

Figure 2008077963
Figure 2008077963

実施例(a)では図6(b)のように芯材露出部31に若干の金属リチウムが析出し、実施例(b)では図6(d)のように芯材露出部31近傍を含め活物質層20Bのほぼ全体にリチウムイオン吸蔵処理がなされた。実施例(c)では図6(a)のように芯材露出部31近傍に一部リチウムイオン吸蔵処理されない部分が残った。それでも(表1)に示すように、実施例(a)〜(c)では不可逆容量の大きい活物質であるSiO0.7を負極活物質に用いているのにも関わらず、設計容量に近い電池容量が得られた。 In the embodiment (a), some metallic lithium is deposited on the exposed core material 31 as shown in FIG. 6B. In the embodiment (b), the vicinity of the exposed core material 31 is included as shown in FIG. 6D. Lithium ion storage treatment was performed on almost the entire active material layer 20B. In Example (c), as shown in FIG. 6A, a portion that was not partially subjected to the lithium ion storage treatment remained in the vicinity of the core material exposed portion 31. Nevertheless, as shown in Table 1, in Examples (a) to (c), SiO 0.7 , which is an active material having a large irreversible capacity, is used as the negative electrode active material, but is close to the designed capacity. Battery capacity was obtained.

ただし実施例(a)では芯材露出部31に析出した金属リチウムと非水電解液との反応によると考えられるガス発生により電池がやや膨れている。ただこの程度ではあまり問題にならない。   However, in Example (a), the battery is slightly swollen due to gas generation that is considered to be caused by the reaction between the lithium metal deposited on the core exposed portion 31 and the non-aqueous electrolyte. However, this level is not a problem.

一方、比較例(b)では芯材露出部31に金属リチウムが析出するのを防ぐために、電流停止の時間のマージンが大きいために芯材露出部31周辺でリチウムイオン吸蔵処理されていない活物質層20Bが大きくなった。そのために不可逆容量が大きくなり電池容量が低下した。   On the other hand, in the comparative example (b), in order to prevent metallic lithium from precipitating on the core material exposed portion 31, the active material that has not been subjected to lithium ion occlusion treatment around the core material exposed portion 31 due to a large margin of current stop time. Layer 20B became larger. As a result, the irreversible capacity increased and the battery capacity decreased.

第1電極27は金属リチウムなどで構成されている。そのため使用時間に応じて電極の大きさが小さくなる。すなわち、実施例(a)のような大きさの第1電極27を用いても徐々に実施例(b)の状態を経て実施例(c)の状態になる。しかしながら表1に示すように、このように多少第1電極27の大きさが変化しても電池容量は大きく変化しない。   The first electrode 27 is made of metallic lithium or the like. Therefore, the size of the electrode is reduced according to the usage time. That is, even when the first electrode 27 having the size as in the embodiment (a) is used, the state of the embodiment (c) is gradually reached after the state of the embodiment (b). However, as shown in Table 1, the battery capacity does not change greatly even if the size of the first electrode 27 slightly changes as described above.

(実施の形態2)
図9は本発明の実施の形態2における、負極前駆体の負極活物質層にリチウムイオンを吸蔵させる装置の概略構成図である。本実施の形態では、非水電解液25の中に第1支持ロール33A、第2支持ロール33Bを設け、これらの間で負極前駆体20を張り、そこで、負極前駆体20の両面の活物質層20Bに連続的にリチウムイオンを吸蔵させる。
(Embodiment 2)
FIG. 9 is a schematic configuration diagram of an apparatus for occluding lithium ions in the negative electrode active material layer of the negative electrode precursor according to Embodiment 2 of the present invention. In the present embodiment, the first support roll 33A and the second support roll 33B are provided in the non-aqueous electrolyte 25, and the negative electrode precursor 20 is stretched between them, where the active materials on both sides of the negative electrode precursor 20 are provided. The layer 20B is made to occlude lithium ions continuously.

具体的には、非水電解液25中に第1電極27Aと第1参照電極26Aとの組と、第1電極27Aと同様の第2電極27Bと第1参照電極26Aと同様の第2参照電極26Bとの組が設けられている。第1電極27Aと第2電極27Bとはそれぞれ負極前駆体20に対して反対側に配置されている。第2参照電極26Bは負極前駆体20の近傍に配置されている。第1電位ロール35Aは負極前駆体20に関して第1電極27Aに対向する位置で負極前駆体20に接している。第1電位センサ29Aは第1参照電極26Aと第1電位ロール35Aとの間の電圧を測定することにより、負極前駆体20の、第1電極27Aに対向する位置の電位を測定する。同様に、第2電位ロール35Bは負極前駆体20に関して第2電極27Bに対向する位置で負極前駆体20に接している。第2電位センサ29Bは第2参照電極26Bと第2電位ロール35Bとの間の電圧を測定することにより、負極前駆体20の、第2電極27Bに対向する位置の電位を測定する。   Specifically, a set of the first electrode 27A and the first reference electrode 26A in the non-aqueous electrolyte 25, and a second reference similar to the second electrode 27B and the first reference electrode 26A similar to the first electrode 27A. A pair with the electrode 26B is provided. The first electrode 27 </ b> A and the second electrode 27 </ b> B are disposed on the opposite sides with respect to the negative electrode precursor 20. The second reference electrode 26 </ b> B is disposed in the vicinity of the negative electrode precursor 20. The first potential roll 35 </ b> A is in contact with the negative electrode precursor 20 at a position facing the first electrode 27 </ b> A with respect to the negative electrode precursor 20. The first potential sensor 29A measures the voltage between the first reference electrode 26A and the first potential roll 35A, thereby measuring the potential of the negative electrode precursor 20 at a position facing the first electrode 27A. Similarly, the second potential roll 35B is in contact with the negative electrode precursor 20 at a position facing the second electrode 27B with respect to the negative electrode precursor 20. The second potential sensor 29B measures the voltage between the second reference electrode 26B and the second potential roll 35B, thereby measuring the potential of the negative electrode precursor 20 at a position facing the second electrode 27B.

一方、第1電解ロール34Aは第1支持ロール33Aとともに負極前駆体20をはさんでいる。これにより第1電解ロール34Aは負極前駆体20との間で電気抵抗が小さくなるように密着している。第1電源28Aは第1電位センサ29Aの検出結果を基にした図示しないリチウム吸蔵制御部に制御されて、第1電極27Aと第1電解ロール34Aとの間に電流を流す。これによって図面中下側の負極前駆体20の活物質層20B(第1活物質層)にリチウムイオンを吸蔵させる。同様に、第2電解ロール34Bは第2支持ロール33Bとともに負極前駆体20をはさんでいる。第2電源28Bは第2電位センサ29Bの検出結果を基にした図示しないリチウム吸蔵制御部に制御されて、第2電極27Bと第2電解ロール34Bとの間に電流を流す。これによって図面中上側の負極前駆体20の活物質層20B(第2活物質層)にリチウムイオンを吸蔵させる。   On the other hand, the first electrolytic roll 34A sandwiches the negative electrode precursor 20 together with the first support roll 33A. As a result, the first electrolytic roll 34 </ b> A is in close contact with the negative electrode precursor 20 so as to reduce the electrical resistance. The first power supply 28A is controlled by a lithium occlusion control unit (not shown) based on the detection result of the first potential sensor 29A, and causes a current to flow between the first electrode 27A and the first electrolytic roll 34A. Thus, lithium ions are occluded in the active material layer 20B (first active material layer) of the negative electrode precursor 20 on the lower side in the drawing. Similarly, the second electrolytic roll 34B sandwiches the negative electrode precursor 20 together with the second support roll 33B. The second power supply 28B is controlled by a lithium occlusion control unit (not shown) based on the detection result of the second potential sensor 29B, and causes a current to flow between the second electrode 27B and the second electrolytic roll 34B. Thus, lithium ions are occluded in the active material layer 20B (second active material layer) of the negative electrode precursor 20 on the upper side in the drawing.

すなわち、第1活物質層にリチウムイオンを吸蔵させ後、未処理の第2活物質層を第2電極27Bに対向させ、第2電極27Bと第2参照電極26Bとを用いて第2活物質層にリチウムイオンを吸蔵させる。このようにして両面の活物質層20Bに連続的にリチウムイオンを吸蔵させる。このように参照電極と対極(第1電極、第2電極)とを2組設けることで、負極前駆体20の両面の活物質層20Bを連続的に処理することができる。   That is, after occluding lithium ions in the first active material layer, the untreated second active material layer is opposed to the second electrode 27B, and the second active material is formed using the second electrode 27B and the second reference electrode 26B. The layer occludes lithium ions. In this way, lithium ions are continuously stored in the active material layers 20B on both sides. Thus, by providing two sets of reference electrodes and counter electrodes (first electrode, second electrode), the active material layers 20B on both surfaces of the negative electrode precursor 20 can be continuously processed.

なお、リチウム吸蔵制御部における制御は実施の形態1と同様なので説明を省略する。またリチウム吸蔵制御部は第1電源部28A用と第2電源部28B用にそれぞれ別個に設けてもよい。   Note that the control in the lithium occlusion control unit is the same as that in the first embodiment, and a description thereof is omitted. The lithium occlusion control unit may be provided separately for the first power supply unit 28A and the second power supply unit 28B.

本発明によれば、非水電解液中で電気化学的に負極前駆体にリチウムイオンを吸蔵させることで負極活物質の不可逆容量を補充するのに必要な量だけのリチウムイオンを負極活物質に供給することができる。これにより負極活物質の高容量密度を活かすことができる。またその際、負極と外部端子との電気的接続に用いる芯材露出部に反応性の高いリチウム金属が析出することを抑制することができる。そのため生産性が向上する。本発明は、特に不可逆容量の大きい負極活物質を用いたリチウム二次電池に有用である。   According to the present invention, an amount of lithium ions required to replenish the irreversible capacity of the negative electrode active material by electrochemically occluding lithium ions in the negative electrode precursor in a non-aqueous electrolyte is added to the negative electrode active material. Can be supplied. Thereby, the high capacity density of the negative electrode active material can be utilized. Further, at that time, it is possible to suppress the deposition of highly reactive lithium metal in the exposed core material used for electrical connection between the negative electrode and the external terminal. Therefore, productivity is improved. The present invention is particularly useful for a lithium secondary battery using a negative electrode active material having a large irreversible capacity.

本発明の実施の形態1による非水電解質二次電池の一部切欠斜視図1 is a partially cutaway perspective view of a nonaqueous electrolyte secondary battery according to Embodiment 1 of the present invention. 同非水電解質二次電池の分解斜視図Exploded perspective view of the non-aqueous electrolyte secondary battery 本発明の実施の形態1における、負極前駆体の負極活物質層にリチウムイオンを吸蔵させる装置の概略構成図The schematic block diagram of the apparatus which occludes lithium ion in the negative electrode active material layer of the negative electrode precursor in Embodiment 1 of this invention. 同要部拡大図Enlarged view of the main part 本発明の実施の形態1における第1電位センサの測定電位の時間変化を模式的に示すグラフThe graph which shows typically the time change of the measured electric potential of the 1st electric potential sensor in Embodiment 1 of this invention. 負極前駆体へのリチウムイオンの供給状態と芯材露出部へのリチウム析出状態を示す模式断面図Schematic cross-sectional view showing the supply state of lithium ions to the negative electrode precursor and the lithium deposition state on the exposed core material 本発明の実施の形態1における反転部を示す模式図The schematic diagram which shows the inversion part in Embodiment 1 of this invention 本発明の実施の形態1における負極前駆体を作製するための装置の概略構成図Schematic configuration diagram of an apparatus for producing a negative electrode precursor in Embodiment 1 of the present invention 本発明の実施の形態2における、負極前駆体の負極活物質層にリチウムイオンを吸蔵させる装置の概略構成図The schematic block diagram of the apparatus which occludes lithium ion in the negative electrode active material layer of the negative electrode precursor in Embodiment 2 of this invention

符号の説明Explanation of symbols

1 負極
2 正極
3 セパレータ
4 枠体
5 蓋体
6 ケース
9 電極体
11,14 リード
13 端子
20 負極前駆体
20A 芯材
20B 負極活物質層
21 供給ロール
22 巻取ロール
23 浸漬ロール
23A 第2の浸漬ロール
24 電解槽
24A 第2の電解槽
25 非水電解液
26,26A 第1参照電極
26B 第2参照電極
27,27A 第1電極
27B 第2電極
28 電源部
28A 第1電源部
28B 第2電源部
29,29A 第1電位センサ
29B 第2電位センサ
30A 吸蔵部分
30B リチウム
31 芯材露出部
33A 第1支持ロール
33B 第2支持ロール
34A 第1電解ロール
34B 第2電解ロール
35A 第1電位ロール
35B 第2電位ロール
40 リチウム吸蔵制御部
41 巻き出しロール
42 マスク
43 蒸着ユニット
44A,44B 成膜ロール
45 巻取ロール
46 真空容器
47 真空ポンプ
48 酸素ノズル
50 反転部
DESCRIPTION OF SYMBOLS 1 Negative electrode 2 Positive electrode 3 Separator 4 Frame body 5 Cover body 6 Case 9 Electrode body 11,14 Lead 13 Terminal 20 Negative electrode precursor 20A Core material 20B Negative electrode active material layer 21 Supply roll 22 Winding roll 23 Immersion roll 23A 2nd immersion Roll 24 Electrolytic cell 24A Second electrolytic cell 25 Nonaqueous electrolytic solution 26, 26A First reference electrode 26B Second reference electrode 27, 27A First electrode 27B Second electrode 28 Power supply unit 28A First power supply unit 28B Second power supply unit 29, 29A 1st electric potential sensor 29B 2nd electric potential sensor 30A occlusion part 30B lithium 31 core material exposure part 33A 1st support roll 33B 2nd support roll 34A 1st electrolysis roll 34B 2nd electrolysis roll 35A 1st electric potential roll 35B 2nd Potential roll 40 Lithium occlusion controller 41 Unwind roll 42 Mask 43 Deposition unit DOO 44A, 44B film-forming roll 45 winding roll 46 vacuum vessel 47 vacuum pump 48 oxygen nozzle 50 reversed portion

Claims (13)

導体からなる芯材と前記芯材上に形成された第1活物質層とを有し、前記芯材の一部を露出させた芯材露出部を形成した非水電解質二次電池用負極前駆体にリチウムイオンを吸蔵させる方法であって、
巻き取られた前記負極前駆体を引き出すAステップと、
引き出された前記負極前駆体を、リチウムイオンを含有させた非水電解液に挿入するBステップと、
前記非水電解液内に設けられた第1参照電極を用い、前記負極前駆体における、前記非水電解液に浸った部分の前記第1参照電極近傍の電位を測定するCステップと、
測定された前記電位に基づき、前記負極前駆体と前記非水電解液中で前記第1活物質層に対向するように設置した第1電極との間に流す電流を制御することにより前記第1活物質層へのリチウムイオンの吸蔵量を制御するDステップと、
リチウムイオンを吸蔵処理した前記負極前駆体を巻き取るEステップと、を備えたリチウムイオンを吸蔵させる方法。
A negative electrode precursor for a non-aqueous electrolyte secondary battery having a core material made of a conductor and a first active material layer formed on the core material, wherein a core material exposed portion in which a part of the core material is exposed is formed. A method of occluding lithium ions in the body,
A step of pulling out the wound negative electrode precursor;
B step of inserting the extracted negative electrode precursor into a non-aqueous electrolyte containing lithium ions;
C step of measuring a potential in the vicinity of the first reference electrode of a portion of the negative electrode precursor immersed in the non-aqueous electrolyte, using the first reference electrode provided in the non-aqueous electrolyte;
Based on the measured potential, the first current is controlled by controlling a current flowing between the negative electrode precursor and a first electrode disposed in the non-aqueous electrolyte so as to face the first active material layer. D step for controlling the amount of occlusion of lithium ions in the active material layer;
E step of winding up the negative electrode precursor that has been subjected to occlusion treatment of lithium ions, and a method for occlusion of lithium ions.
前記Bステップにおいて、前記負極前駆体を前記非水電解液に挿入する部分の前記負極前駆体の移動方向における長さは、前記負極前駆体の移動方向における前記芯材露出部の長さ以上とした請求項1記載のリチウムイオンを吸蔵させる方法。 In the B step, the length of the portion where the negative electrode precursor is inserted into the non-aqueous electrolyte in the moving direction of the negative electrode precursor is equal to or longer than the length of the core material exposed portion in the moving direction of the negative electrode precursor. The method of occluding lithium ions according to claim 1. 前記負極前駆体は前記芯材における前記第1活物質層を形成した面と反対の面に形成した第2活物質層を有し、
前記Dステップの後に前記第2活物質層を前記第1電極に対向させるFステップと、
前記Fステップに続いて前記Bステップから前記Dステップと同様の処理を行い前記第2活物質層にリチウムイオンを吸蔵させた後、前記Eステップを行う請求項1記載のリチウムイオンを吸蔵させる方法。
The negative electrode precursor has a second active material layer formed on a surface opposite to the surface on which the first active material layer is formed in the core material,
An F step in which the second active material layer is opposed to the first electrode after the D step;
2. The method of occluding lithium ions according to claim 1, wherein after the F step, the same process as the B step to the D step is performed to occlude lithium ions in the second active material layer, and then the E step is performed. .
前記Dステップの後、前記負極前駆体を前記非水電解液から取り出し、前記負極前駆体を裏返し、前記Fステップを行う請求項3記載のリチウムイオンを吸蔵させる方法。 4. The method of occluding lithium ions according to claim 3, wherein after the D step, the negative electrode precursor is removed from the non-aqueous electrolyte, the negative electrode precursor is turned over, and the F step is performed. 前記負極前駆体は前記芯材における前記第1活物質層を形成した面と反対の面に形成した第2活物質層を有し、
前記非水電解液中に前記第1電極と同様の第2電極が前記負極前駆体に対して前記第1電極と反対側に配置され、前記第1参照電極と同様の第2参照電極が前記負極前駆体近傍に配置され、
前記Dステップの後に前記第2活物質層を前記第2電極に対向させるFステップと、
前記Fステップに続いて前記第2電極と前記第2参照電極とを用いて前記Bステップから前記Dステップと同様の処理を行うことで前記第1活物質層と前記第2活物質層に連続的にリチウムイオンを吸蔵させた後、前記Eステップを行う請求項1記載のリチウムイオンを吸蔵させる方法。
The negative electrode precursor has a second active material layer formed on a surface opposite to the surface on which the first active material layer is formed in the core material,
In the non-aqueous electrolyte, a second electrode similar to the first electrode is disposed on the opposite side to the first electrode with respect to the negative electrode precursor, and a second reference electrode similar to the first reference electrode is Arranged near the negative electrode precursor,
An F step in which the second active material layer is opposed to the second electrode after the D step;
Subsequent to the F step, using the second electrode and the second reference electrode, the same process as the B step to the D step is performed to continuously connect the first active material layer and the second active material layer. The method of occluding lithium ions according to claim 1, wherein the E step is performed after occluding lithium ions.
前記Dステップにおいて前記電位が貴にシフトすると電流を停止し、前記電位が卑にシフトすると電流を流す請求項1記載のリチウムイオンを吸蔵させる方法。 The method of occluding lithium ions according to claim 1, wherein the current is stopped when the potential is shifted preciously in the step D, and the current is flowed when the potential is shifted to the base. 前記Dステップにおいて前記電位が貴にシフトすると電流を低減し、前記電位が卑にシフトすると電流を増加する請求項1記載のリチウムイオンを吸蔵させる方法。 The method of occluding lithium ions according to claim 1, wherein the current is reduced when the potential is shifted preciously in the step D, and the current is increased when the potential is shifted basely. 導体からなる芯材と前記芯材上に形成された第1活物質層とを有し、前記芯材の一部を露出させた芯材露出部を形成した非水電解質二次電池用負極前駆体にリチウムイオンを吸蔵させる装置であって、
巻き取られた前記負極前駆体を引き出す巻出部と、
リチウムイオンを含有させた非水電解液を保持し、引き出された前記負極前駆体を前記非水電解液に浸漬するための電解槽と、
前記非水電解液中に設置された第1電極と、
前記第1電極と前記負極前駆体との間に電流を流し、前記第1活物質層にリチウムイオンを吸蔵させる電源部と、
前記負極前駆体の、前記非水電解液に浸った部分の近傍に配置された第1参照電極と、
前記第1参照電極に対する前記負極前駆体の、前記非水電解液に浸った部分の電位を測定する第1電位センサと、
前記第1電位センサが測定した前記電位に基づき、前記負極前駆体と前記第1電極との間に流す電流を制御することにより前記第1活物質層へのリチウムイオンの吸蔵量を制御するリチウム吸蔵制御部と、
リチウムイオンを吸蔵処理した前記負極前駆体を巻き取る巻取り部と、を備えた装置。
A negative electrode precursor for a non-aqueous electrolyte secondary battery having a core material made of a conductor and a first active material layer formed on the core material, wherein a core material exposed portion in which a part of the core material is exposed is formed. A device that occludes lithium ions in the body,
An unwinding part for pulling out the wound negative electrode precursor;
An electrolytic cell for holding a non-aqueous electrolyte containing lithium ions and immersing the extracted negative electrode precursor in the non-aqueous electrolyte;
A first electrode installed in the non-aqueous electrolyte;
A power source that allows current to flow between the first electrode and the negative electrode precursor, and occludes lithium ions in the first active material layer;
A first reference electrode disposed in the vicinity of a portion of the negative electrode precursor immersed in the non-aqueous electrolyte;
A first potential sensor for measuring a potential of a portion of the negative electrode precursor immersed in the non-aqueous electrolyte with respect to the first reference electrode;
Lithium that controls the amount of lithium ions occluded in the first active material layer by controlling the current that flows between the negative electrode precursor and the first electrode based on the potential measured by the first potential sensor. An occlusion control unit;
A winding unit that winds up the negative electrode precursor that has been subjected to occlusion treatment of lithium ions.
前記電解槽において、前記負極前駆体を前記非水電解液に挿入する部分の前記負極前駆体の移動方向における長さを、前記負極前駆体の移動方向における前記芯材露出部の長さ以上に設定する浸漬ロールをさらに備え、前記負極前駆体を前記浸漬ロールに沿った状態で前記非水電解液に挿入する請求項8記載の装置。 In the electrolytic cell, the length of the portion where the negative electrode precursor is inserted into the non-aqueous electrolyte is longer than the length of the core exposed portion in the movement direction of the negative electrode precursor. The apparatus according to claim 8, further comprising a dipping roll to be set, wherein the negative electrode precursor is inserted into the non-aqueous electrolyte in a state along the dipping roll. 前記負極前駆体は前記芯材における前記第1活物質層を形成した面と反対の面に形成した第2活物質層を有し、
前記第1活物質層にリチウムイオンを吸蔵させた前記負極前駆体を裏返す反転部をさらに備え、
前記第1活物質層にリチウムイオンを吸蔵させた前記負極前駆体を前記非水電解液から取り出し、前記第2活物質層にリチウムイオンを吸蔵させる請求項8記載の装置。
The negative electrode precursor has a second active material layer formed on a surface opposite to the surface on which the first active material layer is formed in the core material,
An inversion part for turning over the negative electrode precursor in which lithium ions are occluded in the first active material layer;
The apparatus according to claim 8, wherein the negative electrode precursor in which lithium ions are occluded in the first active material layer is taken out from the non-aqueous electrolyte solution, and lithium ions are occluded in the second active material layer.
前記負極前駆体は前記芯材における前記第1活物質層を形成した面と反対の面に形成した第2活物質層を有し、
前記非水電解液中の前記負極前駆体に対して反対側に配置された前記第1電極と同様の第2電極と、前記非水電解液中の前記負極前駆体の近傍に配置された前記第1参照電極と同様の第2参照電極と、前記第2参照電極に対する前記負極前駆体の、前記非水電解液に浸った部分の電位を測定する第2電位センサと、をさらに備え、
前記第1活物質層にリチウムイオンを吸蔵させた後、連続して前記第2活物質層にリチウムイオンを吸蔵させる請求項8記載の装置。
The negative electrode precursor has a second active material layer formed on a surface opposite to the surface on which the first active material layer is formed in the core material,
A second electrode similar to the first electrode disposed on the opposite side to the negative electrode precursor in the non-aqueous electrolyte, and the second electrode disposed in the vicinity of the negative electrode precursor in the non-aqueous electrolyte A second reference electrode similar to the first reference electrode; and a second potential sensor that measures a potential of a portion of the negative electrode precursor immersed in the non-aqueous electrolyte with respect to the second reference electrode,
The apparatus according to claim 8, wherein after the first active material layer occludes lithium ions, the second active material layer continuously occludes lithium ions.
前記リチウム吸蔵制御部は、前記電位が貴にシフトすると電流を低減させ、前記電位が卑になると電流を増加させる請求項8記載の装置。 The apparatus according to claim 8, wherein the lithium occlusion control unit reduces the current when the potential is shifted preciously and increases the current when the potential is low. 前記リチウム吸蔵制御部は、前記電位が貴にシフトすると電流を停止させ、前記電位が卑にシフトすると電流を流す請求項8記載の装置。 The apparatus according to claim 8, wherein the lithium occlusion control unit stops the current when the potential is shifted preciously and allows the current to flow when the potential is shifted basely.
JP2006255597A 2006-09-21 2006-09-21 Method and apparatus for occluding lithium ion in negative electrode precursor for non-aqueous electrolyte secondary battery Expired - Fee Related JP5045044B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006255597A JP5045044B2 (en) 2006-09-21 2006-09-21 Method and apparatus for occluding lithium ion in negative electrode precursor for non-aqueous electrolyte secondary battery
US11/856,760 US8133374B2 (en) 2006-09-21 2007-09-18 Method and apparatus for manufacturing negative electrode for non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006255597A JP5045044B2 (en) 2006-09-21 2006-09-21 Method and apparatus for occluding lithium ion in negative electrode precursor for non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2008077963A true JP2008077963A (en) 2008-04-03
JP5045044B2 JP5045044B2 (en) 2012-10-10

Family

ID=39349810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006255597A Expired - Fee Related JP5045044B2 (en) 2006-09-21 2006-09-21 Method and apparatus for occluding lithium ion in negative electrode precursor for non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5045044B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140106645A (en) * 2011-12-01 2014-09-03 나노스캐일 컴포넌츠, 인코포레이티드 Method for alkaliating anodes
KR20180114063A (en) 2016-02-26 2018-10-17 제이에스알 가부시끼가이샤 Doping system, and method of manufacturing electrodes, batteries and capacitors
JP2018537823A (en) * 2015-12-09 2018-12-20 ナノスケール コンポーネンツ,インコーポレイテッド Method for alkalizing a roll negative electrode
WO2020059225A1 (en) 2018-09-19 2020-03-26 Jsr株式会社 Electrode-manufacturing device
WO2020084949A1 (en) 2018-10-24 2020-04-30 Jmエナジー株式会社 Electrode manufacturing device and electrode manufacturing method
WO2020110433A1 (en) 2018-11-28 2020-06-04 Jmエナジー株式会社 Electrode production method, method for producing electricity storage device, and electrode production apparatus
WO2020152986A1 (en) 2019-01-23 2020-07-30 Jmエナジー株式会社 Doping system and doping method
WO2020152980A1 (en) 2019-01-23 2020-07-30 Jmエナジー株式会社 Electrode production system and electrode production method
WO2020170607A1 (en) 2019-02-20 2020-08-27 Jmエナジー株式会社 Electrode manufacturing system, cleaning unit, and electrode manufacturing method
WO2020208965A1 (en) 2019-04-10 2020-10-15 Jmエナジー株式会社 Electrode production method and method for producing electricity storage device
WO2021039085A1 (en) 2019-08-30 2021-03-04 Jmエナジー株式会社 Method for manufacturing doped electrode, and method for manufacturing power storage device
WO2021106286A1 (en) 2019-11-28 2021-06-03 Jmエナジー株式会社 Method for producing electrode
WO2021131124A1 (en) 2019-12-26 2021-07-01 Jmエナジー株式会社 Method for manufacturing electrode, method for manufacturing power storage device, and electrode manufacturing device
WO2021157157A1 (en) 2020-02-04 2021-08-12 武蔵エナジーソリューションズ株式会社 Doping system, and method for manufacturing electrode
CN113964295A (en) * 2021-10-19 2022-01-21 远景动力技术(江苏)有限公司 Lithium supplementing device and method for lithium ion battery negative pole piece
WO2022102381A1 (en) 2020-11-10 2022-05-19 武蔵エナジーソリューションズ株式会社 Manufacturing method for secondary battery and manufacturing method for doped electrode
US11380879B2 (en) 2017-07-10 2022-07-05 Nanoscale Components, Inc. Method for forming an SEI layer on an anode
WO2022270063A1 (en) 2021-06-24 2022-12-29 武蔵エナジーソリューションズ株式会社 Method for manufacturing doped electrode
WO2023276314A1 (en) 2021-06-28 2023-01-05 武蔵エナジーソリューションズ株式会社 Doped electrode manufacturing method and doped electrode manufacturing system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0541249A (en) * 1991-08-01 1993-02-19 Toyo Takasago Kandenchi Kk Lithium secondary battery and method of pouring lithium ion into negative electrode structure for use in lithium battery
JPH07235330A (en) * 1994-02-24 1995-09-05 Sony Corp Manufacture of nonaqueous electrolyte secondary battery
JPH0922690A (en) * 1995-07-03 1997-01-21 General Motors Corp <Gm> Preparation of secondary lithium ion battery
JPH10308212A (en) * 1997-05-06 1998-11-17 Ricoh Co Ltd Electrode plate processing device for secondary battery
JPH1131531A (en) * 1997-07-11 1999-02-02 Japan Storage Battery Co Ltd Manufacture of nonaqueous electrolyte secondary battery
JP2000048808A (en) * 1998-07-27 2000-02-18 Furukawa Electric Co Ltd:The Lithium ion secondary battery and manufacture method thereof
JP2002083589A (en) * 2000-09-08 2002-03-22 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2006107760A (en) * 2004-09-30 2006-04-20 Gs Yuasa Corporation:Kk Anode active material for nonaqueous electrolyte electrochemical cell and nonaqueous electrolyte electrochemical cell using it

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0541249A (en) * 1991-08-01 1993-02-19 Toyo Takasago Kandenchi Kk Lithium secondary battery and method of pouring lithium ion into negative electrode structure for use in lithium battery
JPH07235330A (en) * 1994-02-24 1995-09-05 Sony Corp Manufacture of nonaqueous electrolyte secondary battery
JPH0922690A (en) * 1995-07-03 1997-01-21 General Motors Corp <Gm> Preparation of secondary lithium ion battery
JPH10308212A (en) * 1997-05-06 1998-11-17 Ricoh Co Ltd Electrode plate processing device for secondary battery
JPH1131531A (en) * 1997-07-11 1999-02-02 Japan Storage Battery Co Ltd Manufacture of nonaqueous electrolyte secondary battery
JP2000048808A (en) * 1998-07-27 2000-02-18 Furukawa Electric Co Ltd:The Lithium ion secondary battery and manufacture method thereof
JP2002083589A (en) * 2000-09-08 2002-03-22 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2006107760A (en) * 2004-09-30 2006-04-20 Gs Yuasa Corporation:Kk Anode active material for nonaqueous electrolyte electrochemical cell and nonaqueous electrolyte electrochemical cell using it

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102005984B1 (en) 2011-12-01 2019-07-31 나노스캐일 컴포넌츠, 인코포레이티드 Method for alkaliating anodes
KR20140106645A (en) * 2011-12-01 2014-09-03 나노스캐일 컴포넌츠, 인코포레이티드 Method for alkaliating anodes
JP2018537823A (en) * 2015-12-09 2018-12-20 ナノスケール コンポーネンツ,インコーポレイテッド Method for alkalizing a roll negative electrode
JP7045314B2 (en) 2015-12-09 2022-03-31 ナノスケール コンポーネンツ,インコーポレイテッド Method for alkalizing the roll negative electrode
US11916217B2 (en) 2015-12-09 2024-02-27 Nanoscale Components, Inc. Methods for alkaliating roll anodes
KR20180114063A (en) 2016-02-26 2018-10-17 제이에스알 가부시끼가이샤 Doping system, and method of manufacturing electrodes, batteries and capacitors
CN108701553A (en) * 2016-02-26 2018-10-23 Jsr株式会社 The manufacturing method of doped system and electrode, battery and capacitor
EP3422377A4 (en) * 2016-02-26 2019-10-23 JSR Corporation Doping system, and method for manufacturing electrodes, batteries and capacitors
US11170947B2 (en) 2016-02-26 2021-11-09 Musashi Energy Solutions Co., Ltd. Doping system, and method for manufacturing electrodes, batteries and capacitors
US11380879B2 (en) 2017-07-10 2022-07-05 Nanoscale Components, Inc. Method for forming an SEI layer on an anode
KR20210058830A (en) 2018-09-19 2021-05-24 무사시 에너지 솔루션즈 가부시키가이샤 Electrode manufacturing device
CN112805850A (en) * 2018-09-19 2021-05-14 武藏能源解决方案有限公司 Electrode manufacturing apparatus
WO2020059225A1 (en) 2018-09-19 2020-03-26 Jsr株式会社 Electrode-manufacturing device
EP3872895A4 (en) * 2018-10-24 2022-08-03 Musashi Energy Solutions Co., Ltd. Electrode manufacturing device and electrode manufacturing method
JP7170057B2 (en) 2018-10-24 2022-11-11 武蔵エナジーソリューションズ株式会社 Electrode manufacturing apparatus and electrode manufacturing method
WO2020084949A1 (en) 2018-10-24 2020-04-30 Jmエナジー株式会社 Electrode manufacturing device and electrode manufacturing method
CN112913047A (en) * 2018-10-24 2021-06-04 武藏能源解决方案有限公司 Electrode manufacturing apparatus and electrode manufacturing method
KR20210078493A (en) 2018-10-24 2021-06-28 무사시 에너지 솔루션즈 가부시키가이샤 Electrode manufacturing apparatus and electrode manufacturing method
JPWO2020084949A1 (en) * 2018-10-24 2021-10-14 武蔵エナジーソリューションズ株式会社 Electrode manufacturing equipment and electrode manufacturing method
WO2020110433A1 (en) 2018-11-28 2020-06-04 Jmエナジー株式会社 Electrode production method, method for producing electricity storage device, and electrode production apparatus
KR20210093893A (en) 2018-11-28 2021-07-28 무사시 에너지 솔루션즈 가부시키가이샤 Electrode manufacturing method, electrical storage device manufacturing method, and electrode manufacturing apparatus
KR20210116586A (en) 2019-01-23 2021-09-27 무사시 에너지 솔루션즈 가부시키가이샤 Electrode manufacturing system and electrode manufacturing method
KR20210115019A (en) 2019-01-23 2021-09-24 무사시 에너지 솔루션즈 가부시키가이샤 Doping system and doping method
WO2020152986A1 (en) 2019-01-23 2020-07-30 Jmエナジー株式会社 Doping system and doping method
WO2020152980A1 (en) 2019-01-23 2020-07-30 Jmエナジー株式会社 Electrode production system and electrode production method
CN113383442A (en) * 2019-01-23 2021-09-10 武藏能源解决方案有限公司 Electrode manufacturing system and electrode manufacturing method
KR20210126728A (en) 2019-02-20 2021-10-20 무사시 에너지 솔루션즈 가부시키가이샤 Electrode manufacturing system, cleaning unit and electrode manufacturing method
WO2020170607A1 (en) 2019-02-20 2020-08-27 Jmエナジー株式会社 Electrode manufacturing system, cleaning unit, and electrode manufacturing method
WO2020208965A1 (en) 2019-04-10 2020-10-15 Jmエナジー株式会社 Electrode production method and method for producing electricity storage device
KR20210150489A (en) 2019-04-10 2021-12-10 무사시 에너지 솔루션즈 가부시키가이샤 Electrode manufacturing method and power storage device manufacturing method
WO2021039085A1 (en) 2019-08-30 2021-03-04 Jmエナジー株式会社 Method for manufacturing doped electrode, and method for manufacturing power storage device
KR20220057548A (en) 2019-08-30 2022-05-09 무사시 에너지 솔루션즈 가부시키가이샤 The manufacturing method of a dope electrode, and the manufacturing method of an electrical storage device
CN114747048A (en) * 2019-11-28 2022-07-12 武藏能源解决方案有限公司 Electrode manufacturing method
US11811046B2 (en) 2019-11-28 2023-11-07 Musashi Energy Solutions Co., Ltd. Method for manufacturing electrode
CN114747048B (en) * 2019-11-28 2024-03-15 武藏能源解决方案有限公司 Electrode manufacturing method
KR20220106994A (en) 2019-11-28 2022-08-01 무사시 에너지 솔루션즈 가부시키가이샤 Electrode manufacturing method
WO2021106286A1 (en) 2019-11-28 2021-06-03 Jmエナジー株式会社 Method for producing electrode
WO2021131124A1 (en) 2019-12-26 2021-07-01 Jmエナジー株式会社 Method for manufacturing electrode, method for manufacturing power storage device, and electrode manufacturing device
KR20220122660A (en) 2019-12-26 2022-09-02 무사시 에너지 솔루션즈 가부시키가이샤 Electrode manufacturing method, electrical storage device manufacturing method, and electrode manufacturing apparatus
KR20220136393A (en) 2020-02-04 2022-10-07 무사시 에너지 솔루션즈 가부시키가이샤 Doping system and method of manufacturing electrode
WO2021157157A1 (en) 2020-02-04 2021-08-12 武蔵エナジーソリューションズ株式会社 Doping system, and method for manufacturing electrode
WO2022102381A1 (en) 2020-11-10 2022-05-19 武蔵エナジーソリューションズ株式会社 Manufacturing method for secondary battery and manufacturing method for doped electrode
KR20230104673A (en) 2020-11-10 2023-07-10 무사시 에너지 솔루션즈 가부시키가이샤 Manufacturing method of secondary battery and manufacturing method of doped electrode
WO2022270063A1 (en) 2021-06-24 2022-12-29 武蔵エナジーソリューションズ株式会社 Method for manufacturing doped electrode
KR20240023611A (en) 2021-06-24 2024-02-22 무사시 에너지 솔루션즈 가부시키가이샤 Method for manufacturing doped electrodes
WO2023276314A1 (en) 2021-06-28 2023-01-05 武蔵エナジーソリューションズ株式会社 Doped electrode manufacturing method and doped electrode manufacturing system
KR20240025000A (en) 2021-06-28 2024-02-26 무사시 에너지 솔루션즈 가부시키가이샤 Manufacturing method of doped electrode and manufacturing system of doped electrode
CN113964295A (en) * 2021-10-19 2022-01-21 远景动力技术(江苏)有限公司 Lithium supplementing device and method for lithium ion battery negative pole piece

Also Published As

Publication number Publication date
JP5045044B2 (en) 2012-10-10

Similar Documents

Publication Publication Date Title
JP5045044B2 (en) Method and apparatus for occluding lithium ion in negative electrode precursor for non-aqueous electrolyte secondary battery
JP4831075B2 (en) Nonaqueous electrolyte secondary battery
US8133374B2 (en) Method and apparatus for manufacturing negative electrode for non-aqueous electrolyte secondary battery
KR101162794B1 (en) Method of producing a negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
JP6370885B2 (en) Electrode including a coating layer for preventing reaction with electrolyte
US8389156B2 (en) Negative electrode for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
US20100136393A1 (en) Lithium ion secondary battery
TWI605633B (en) Negative active material for rechargeable lithium battery, method for preparing same, and rechargeable lithium battery comprising same
JP2008171802A (en) Negative electrode for nonaqueous electrolyte secondary battery and its manufacturing method, and nonaqueous electrolyte secondary battery using the same
EP2824740B1 (en) Negative pole active material for lithium secondary battery and lithium secondary battery comprising same
JP6563923B2 (en) Negative electrode active material for lithium secondary battery, method for producing the same, negative electrode for lithium secondary battery including the same, and lithium secondary battery
KR20130134239A (en) Negative active material for lithium battery and battery comprising the same
JP2007280926A (en) Manufacturing method of negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using it
US20160240848A1 (en) Positive electrode material and lithium ion battery
JP5003088B2 (en) Method and apparatus for occluding lithium ion in negative electrode precursor for non-aqueous electrolyte secondary battery
JP2008117758A (en) Nonaqueous electrolyte secondary battery and method of manufacturing negative electrode thereof
JP2019121597A (en) Organic electrolyte solution and lithium battery including the same
JP5145693B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP2008198462A (en) Non-aqueous electrolyte secondary battery
US8148018B2 (en) Method and apparatus of manufacturing negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the negative electrode
JP2008282798A (en) Manufacturing method of electrochemical device and its electrode, as well as treatment device of electrode of electrochemical device
JP5506663B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
CN107925069B (en) Negative electrode active material for secondary battery and secondary battery comprising same
JP2010010093A (en) Manufacturing method of secondary battery electrode group and secondary battery
JP5768219B2 (en) battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090825

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120702

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees