WO2020105406A1 - 缶用鋼板およびその製造方法 - Google Patents

缶用鋼板およびその製造方法

Info

Publication number
WO2020105406A1
WO2020105406A1 PCT/JP2019/043178 JP2019043178W WO2020105406A1 WO 2020105406 A1 WO2020105406 A1 WO 2020105406A1 JP 2019043178 W JP2019043178 W JP 2019043178W WO 2020105406 A1 WO2020105406 A1 WO 2020105406A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
content
rolling
elongation
Prior art date
Application number
PCT/JP2019/043178
Other languages
English (en)
French (fr)
Inventor
勇人 齋藤
房亮 假屋
克己 小島
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to US17/294,531 priority Critical patent/US20220018003A1/en
Priority to EP19886227.8A priority patent/EP3885457A4/en
Priority to CN201980076638.4A priority patent/CN113166835B/zh
Priority to MYPI2021002559A priority patent/MY195955A/en
Priority to MX2021005983A priority patent/MX2021005983A/es
Priority to JP2020514631A priority patent/JP6806284B2/ja
Priority to AU2019384752A priority patent/AU2019384752A1/en
Publication of WO2020105406A1 publication Critical patent/WO2020105406A1/ja
Priority to PH12021550823A priority patent/PH12021550823A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/041Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0463Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0081Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Definitions

  • the present invention relates to a steel sheet for cans and a manufacturing method thereof.
  • the present invention particularly relates to a can steel sheet and a manufacturing method thereof suitable for being applied to a material for a can container used for food cans, beverage cans, and the like, and above all, a steel plate for cans excellent in strength and workability and the production thereof. Regarding the method.
  • a steel sheet conventionally called a DR (Double Reduced) material may be used as a high-strength steel sheet for cans.
  • the DR material is a steel sheet manufactured by performing cold rolling (secondary rolling) again after annealing. Although the DR material has high strength, it has a low elongation and is inferior in workability, so that it cannot be necessarily applied to a can body processed can that requires high workability and an easy open end that requires rivet processing.
  • Patent Documents 1 and 2 propose a high-strength SR material having workability.
  • Patent Document 1 C: 0.03 to 0.13%, Si: 0.03% or less, Mn: 0.3 to 0.6%, P: 0.02% or less, and Al: 0.1% or less, N: 0.012% or less, and further Nb: 0.005 to 0.05%, Ti: 0.005 to 0.05%, B: 0.0005 to 0.005%. It has a composition that contains at least one kind and the balance is iron and unavoidable impurities, and has a ferrite structure with a cementite ratio of 0.5% or more, and the average grain size of ferrite is 7 ⁇ m or less, and after coating baking treatment.
  • a steel sheet for cans having a tensile strength of 450 to 550 MPa, a total elongation of 20% or more and a yield elongation of 5% or less has been proposed.
  • Patent Document 2 by weight ratio, C: 0.020 to 0.150%, Si: 0.05% or less, Mn: 1.00% or less, P: 0.050% or less, S: 0.010. %, N: 0.0100% or less, Al: 0.100% or less, Nb: 0.005 to 0.025%, the balance consisting of unavoidable impurities and iron, and a substantial ferrite single-phase structure And a yield strength of 40 kgf / mm 2 or more, an average crystal grain size of 10 ⁇ m or less, and a plate thickness of 0.300 mm or less.
  • a steel sheet for can manufacturing which has excellent surface properties after the can and has sufficient can strength.
  • Patent Document 1 can be applied only to a steel plate having a tensile strength of up to 550 MPa, and cannot cope with further thinning. Further, the uniform elongation required for rivet workability is insufficient. Furthermore, the technique described in Patent Document 2 has a problem that it is not possible to achieve both high tensile strength of 550 MPa or more and sufficient elongation.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a steel sheet for cans having high strength and excellent workability, and a method for manufacturing the same.
  • the present invention has the following gist.
  • C 0.085% or more and 0.130% or less, Si: 0.04% or less, Mn: 0.10% or more and 0.60% or less, P: 0.02% or less, S: more than 0.010% and 0.020% or less, Al: 0.02% or more and 0.10% or less, N: 0.0005% or more and 0.0040% or less, Nb: 0.007% or more and 0.030% or less, B: contains 0.0010% or more and 0.0050% or less, B / N, which is the ratio of the content (% by mass) of B to the content (% by mass) of N, is 0.80 or more, and the balance is a component composition consisting of Fe and inevitable impurities, Has a ferrite structure containing pearlite in an area fraction of 1.0% or more, A steel sheet for cans having a yield stress of 500 MPa or more, a tensile strength of 550 MPa or
  • a pickling step of pickling the hot rolled plate after the winding step, A cold rolling step of cold rolling the hot rolled sheet after the pickling step under conditions of a rolling ratio of 85% or more,
  • a method of manufacturing a steel sheet for cans
  • the steel sheet for cans of the present invention has high strength and excellent workability. According to the present invention, it is possible to further reduce the thickness of a steel plate used for food cans, beverage cans, and the like, thereby achieving resource saving and cost reduction.
  • composition of the can steel sheet of the present invention will be described.
  • % indicating the content of each component means mass%.
  • the can steel plate of the present invention is also simply referred to as a steel plate.
  • C 0.085% or more and 0.130% or less C is an important element that contributes to the improvement of yield stress and tensile strength and the reduction of yield elongation and the improvement of uniform elongation due to the formation of pearlite.
  • the C content is 0.085% or more
  • the area fraction of pearlite in the steel sheet structure can be 1.0% or more
  • the yield stress of the steel sheet can be 500 MPa or more
  • the tensile strength can be 550 MPa or more. ..
  • the C content is preferably 0.100% or more.
  • the C content exceeds 0.130%, the solid solution C increases, so that the yield elongation increases and the uniform elongation also decreases. Therefore, the C content needs to be 0.130% or less.
  • the C content is preferably 0.125% or less.
  • Si 0.04% or less
  • the content is required to be 0.04% or less.
  • the Si content is preferably 0.03% or less.
  • Si contributes to the improvement of the yield stress and the tensile strength, so it is preferable to add Si in an amount of 0.01% or more.
  • Mn 0.10% or more and 0.60% or less Mn not only contributes to the improvement of yield stress and tensile strength by solid solution strengthening, but also promotes the formation of pearlite. As a result, work hardening is promoted, and in addition to tensile strength of 550 MPa or more, yield elongation of 5.0% or less and uniform elongation of 10% or more can be obtained. In order to obtain such an effect, the Mn content needs to be 0.10% or more. The Mn content is preferably 0.30% or more. On the other hand, when the Mn content exceeds 0.60%, not only the contribution to the formation of pearlite is saturated, but also the uniform elongation decreases due to excessive solid solution strengthening. Therefore, the upper limit of the Mn content needs to be 0.60%. The Mn content is preferably 0.55% or less.
  • P 0.02% or less
  • the upper limit of the P content is 0.02%.
  • P contributes to the improvement of yield stress and tensile strength, so the P content is preferably 0.005% or more.
  • the P content is more preferably 0.010% or more.
  • S More than 0.010% and 0.020% or less S forms sulfides in steel and reduces hot rollability. Therefore, the S content is 0.020% or less. If the S content is 0.010% or less, pitting corrosion may occur depending on the contents of the can. Therefore, the S content needs to exceed 0.010%.
  • Al 0.02% or more and 0.10% or less
  • Al is useful as a deoxidizing element, and contributes to the reduction of yield elongation by forming a nitride. Therefore, Al needs to be contained at 0.02% or more.
  • the Al content is preferably 0.03% or more.
  • the Al content is preferably 0.08% or less.
  • N 0.0005% or more and 0.0040% or less
  • the N content is preferably 0.0035% or less.
  • the lower limit of the N content is 0.0005%.
  • Nb 0.007% or more and 0.030% or less
  • Nb is an important element that improves yield stress and tensile strength by refining ferrite crystal grains and forming carbides, and in order to obtain such effects.
  • the Nb content needs to be 0.007% or more.
  • the Nb content is preferably 0.010% or more.
  • the upper limit of the Nb content needs to be 0.030%.
  • the Nb content is preferably 0.026% or less.
  • B 0.0010% or more and 0.0050% or less
  • B / N 0.80 or more
  • B has the effect of forming BN with N to reduce the solid solution N and lowering the yield elongation.
  • the B content needs to be 0.0010% or more.
  • the B content is preferably more than 0.0020%.
  • the ratio of the contents of B and N [content of B relative to content of N (mass%) (mass%) %)]]]] Is required to be 0.80 or more.
  • B / N is preferably 1.00 or more, more preferably 1.20 or more.
  • B / N is preferably 5.00 or less, and more preferably 3.00 or less, from the viewpoint of easily exhibiting better tensile properties. Further, even if B is contained excessively, not only the above effect is saturated, but also the uniform elongation is lowered, and the anisotropy is deteriorated to lower the workability. Therefore, the upper limit of the B content is It is necessary to set it to 0.0050%.
  • the B content is preferably 0.0040% or less.
  • the steel sheet for a can of the present invention may have a composition containing the above components and the balance being Fe and inevitable impurities.
  • the steel sheet for a can of the present invention is, in addition to the above component composition, one or more selected from Ti: 0.005% to 0.030% and Mo: 0.01% to 0.05%. It is preferable to contain
  • Ti 0.005% or more and 0.030% or less Ti has the effect of fixing N as TiN and lowering the yield elongation. Further, by preferentially producing TiN, the production of BN is suppressed, and by ensuring the solid solution B, the ferrite crystal grains are miniaturized to contribute to the improvement of the yield stress and the tensile strength. Further, the formation of fine carbide also contributes to the improvement of yield stress and tensile strength. Therefore, when Ti is contained, it is preferable to contain Ti in an amount of 0.005% or more. The Ti content is more preferably 0.010% or more.
  • the Ti content of Ti exceeds 0.030%, the recrystallization temperature becomes excessively high, and it becomes difficult to achieve both tensile strength and uniform elongation. Therefore, when Ti is contained, the Ti content is preferably 0.030% or less. The Ti content is more preferably 0.020% or less.
  • Mo 0.01% or more and 0.05% or less Mo contributes to the improvement of yield stress and tensile strength by refining ferrite crystal grains and forming carbides. Therefore, when Mo is contained, it is preferable to contain 0.01% or more of Mo.
  • the Mo content is more preferably 0.02% or more.
  • Mo when Mo is contained in excess of 0.05%, such effects are saturated and, in addition, grain boundary segregation becomes excessive and uniform elongation decreases. Therefore, when Mo is contained, the upper limit of the Mo content is preferably 0.05%.
  • the structure of the steel sheet for a can of the present invention has a ferrite structure as a main phase, and the rest other than the pearlite has a ferrite structure (ferrite phase).
  • the ferrite structure may include granular cementite.
  • the sample used for observing the steel sheet structure is cut out from the steel sheet and embedded in resin so that the vertical cross section parallel to the rolling direction of the steel sheet can be observed.
  • the structure was exposed by corroding with Nital, and the structure of the steel plate at 1/2 position of the plate thickness was photographed with a scanning electron microscope, and the area fraction of pearlite was image-processed.
  • a steel sheet structure was photographed with a scanning electron microscope at a magnification of 3000 times in three randomly selected fields of view, and the area fraction of pearlite was measured by image processing from each SEM image, and the average value thereof was measured. Ask for.
  • Yield stress 500 MPa or more, tensile strength: 550 MPa or more, yield elongation: 5.0% or less, uniform elongation: 10% or more
  • the yield stress of steel sheet Of 500 MPa or more and the tensile strength of 550 MPa or more is preferably 510 MPa or more.
  • the tensile strength is preferably 570 MPa or more.
  • the upper limit of the yield stress is not particularly limited, but the yield stress is preferably 590 MPa or less from the viewpoint of the curl workability of the lid.
  • the upper limit of the tensile strength is not particularly limited, but the tensile strength is preferably 650 MPa or less from the viewpoint of easy open end can openability. In order to prevent stretcher strain during can making or lid making, it is necessary to make the yield elongation 5.0% or less. The yield elongation is preferably 4.0% or less. In order to secure the neck / flange processability of the can body and the rivet processability of the easy open end, it is necessary to set the uniform elongation to 10% or more. The uniform elongation is preferably 12% or more. In addition, the elongation at break (EL) is preferably 15% or more. The elongation at break is more preferably 18% or more.
  • the yield stress, tensile strength, uniform elongation, yield elongation, and elongation at break are measured according to JIS Z 2241 after taking JIS No. 5 tensile test pieces from the rolling direction and subjecting them to aging heat treatment at 210 ° C. for 20 minutes. evaluate.
  • the yield stress is evaluated by the upper yield stress when there is an upper yield point, and by the 0.2% proof stress when there is no upper yield point.
  • the uniform elongation is evaluated by the total elongation at the maximum test according to JIS Z2241.
  • the plate thickness of the steel plate for a can of the present invention is not particularly limited, but 0.40 mm or less is preferable. Since the steel plate for a can of the present invention can be made extremely thin, it is more preferable to set the plate thickness to 0.25 mm or less from the viewpoint of resource saving and cost reduction.
  • the plate thickness is preferably 0.10 mm or more.
  • the steel plate for a can can be manufactured under the conditions described below.
  • the steel plate for a can manufactured by the following manufacturing method may be appropriately subjected to a plating process such as Sn plating, Ni plating, and Cr plating, a chemical conversion treatment process, and a resin film coating process such as laminating.
  • Heating temperature 1100 ° C or higher
  • a steel slab having the above-mentioned composition is heated at a heating temperature of 1100 ° C or higher (heating step). If the heating temperature of the steel slab before hot rolling is too low, coarse nitrides may be generated and workability may deteriorate, so the heating temperature of the steel slab is set to 1100 ° C or higher.
  • the heating temperature of the steel slab is preferably 1150 ° C. or higher. When Ti is contained, the heating temperature of the steel slab is more preferably 1200 ° C or higher. Further, the heating temperature of the steel slab is preferably 1280 ° C. or lower from the viewpoint of obtaining a better surface condition.
  • the steel slab after the heating process is hot-rolled at a hot rolling finishing temperature of 830 ° C. or more and 940 ° C. or less (hot rolling process).
  • hot rolling finishing temperature When the finishing temperature of hot rolling (hot rolling finishing temperature) becomes higher than 940 ° C, the ferrite crystal grains in the hot rolled sheet become coarse and the ferrite crystal grains after cold rolling, annealing and temper rolling become coarse. As a result, the yield stress and tensile strength decrease. In addition, the generation of scale may be promoted and the surface quality may deteriorate. Therefore, the upper limit of the hot rolling finishing temperature is 940 ° C.
  • the upper limit of the hot rolling finishing temperature is preferably 920 ° C.
  • the finishing temperature of the hot rolling is less than 830 ° C.
  • coarse Nb carbide is formed during the hot rolling, and the yield stress and the tensile strength decrease. Therefore, the lower limit of the hot rolling finish temperature is set to 830 ° C.
  • the preferable lower limit of the hot rolling finishing temperature is 850 ° C.
  • Winding temperature 400 ° C. or more and less than 550 ° C.
  • the hot rolled sheet obtained in the hot rolling step is wound at a winding temperature of 400 ° C. or more and less than 550 ° C. (winding step).
  • the coiling temperature is 550 ° C. or higher
  • cementite in the hot-rolled sheet is coarsened and stabilized, remains undissolved during annealing, and the pearlite fraction decreases.
  • alloy carbides such as Nb carbides are coarsened to lower the yield stress and tensile strength. Therefore, the winding temperature needs to be lower than 550 ° C.
  • the winding temperature is preferably 530 ° C or lower.
  • the lower limit of the winding temperature is set to 400 ° C.
  • the winding temperature is preferably 470 ° C. or higher.
  • Rolling ratio 85% or more Cold rolling is performed on the hot-rolled sheet after the pickling process under conditions of a rolling ratio of 85% or more (cold rolling process).
  • cold rolling By cold rolling, ferrite crystal grains after annealing are refined, and yield stress and tensile strength are improved.
  • the rolling rate of cold rolling is set to 85% or more.
  • the rolling rate is preferably 87% or more.
  • the upper limit of the rolling rate of cold rolling is not particularly limited, but from the viewpoint of obtaining better workability, the rolling rate of cold rolling is preferably 93% or less.
  • Annealing temperature 720 ° C. or more and 780 ° C. or less Annealing is performed on the cold-rolled sheet obtained in the cold rolling process under conditions of an annealing temperature of 720 ° C. or more and 780 ° C. or less (annealing process). It is important to form pearlite during the annealing process in order to obtain high tensile strength, large uniform elongation, and small yield elongation. Therefore, it is necessary to set the annealing temperature to 720 ° C or higher.
  • the annealing temperature is preferably 730 ° C. or higher.
  • the annealing temperature exceeds 780 ° C.
  • alloy carbides such as Nb carbides are coarsened, and ferrite crystal grains are also coarsened to lower the yield stress and the tensile strength. Therefore, it is necessary to set the upper limit of the annealing temperature to 780 ° C.
  • the annealing temperature is preferably 760 ° C or lower.
  • the continuous annealing is preferable as the annealing method from the viewpoint of material uniformity.
  • the annealing time is not particularly limited, it is preferably 15 s or more.
  • the annealing time is preferably 60 s or less from the viewpoint of making the ferrite crystal grains fine.
  • Elongation rate of temper rolling 0.5% or more and 5.0% or less
  • the annealed plate obtained in the annealing step is rolled under the condition of an elongation rate of 0.5% or more and 5.0% or less (temper rolling step). ).
  • the surface roughness is adjusted and the plate shape is corrected, and the strain is introduced into the steel plate to improve the yield stress and reduce the yield elongation.
  • the lower limit of the rolling rate (stretching rate) of temper rolling is set to 0.5%.
  • the elongation rate is preferably 1.2% or more.
  • the upper limit of the elongation rate is set to 5.0%.
  • the elongation rate is preferably 3.0% or less.
  • JIS No. 5 tensile test pieces were taken from the steel sheet for cans along the rolling direction, and after aging heat treatment at 210 ° C. for 20 minutes, yield stress, tensile strength, uniform elongation, yield elongation, and break elongation were measured according to JIS Z 2241. evaluated. The evaluation results are shown in Table 3.
  • the sample used for observing the steel plate structure is cut out from the steel plate for a can and embedded in a resin so that a vertical cross section parallel to the rolling direction of the steel plate can be observed, and the observation surface of the sample is polished and then corroded with a nital structure Appeared.
  • the steel plate structure was photographed with a scanning electron microscope at a magnification of 3,000 times in three randomly selected visual fields at the 1/2 position of the plate thickness, and the area fraction of pearlite was measured by image processing from each SEM image. The average value was calculated. The measurement results are shown in Table 3.
  • the yield stress is 500 MPa or more
  • the tensile strength is 550 MPa or more
  • the uniform elongation is 10% or more
  • the yield elongation is 5.0% or less. Therefore, it is a high-strength can steel sheet with high uniform elongation and low yield elongation.
  • one or more of the yield stress, the tensile strength, the uniform elongation, and the yield elongation was inferior.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

高強度及び優れた加工性を有する缶用鋼板及びその製造方法を提供することを目的とする。 質量%で、C:0.085%以上0.130%以下、Si:0.04%以下、Mn:0.10%以上0.60%以下、P:0.02%以下、S:0.010%超え0.020%以下、Al:0.02%以上0.10%以下、N:0.0005%以上0.0040%以下、Nb:0.007%以上0.030%以下、B:0.0010%以上0.0050%以下を含有し、Nの含有量(質量%)に対するBの含有量(質量%)の比であるB/Nが0.80以上であり、残部はFe及び不可避的不純物からなる成分組成と、パーライトを面積分率で1.0%以上含むフェライト組織を有し、降伏応力が500MPa以上、引張強さが550MPa以上、均一伸びが10%以上、降伏伸びが5.0%以下である、缶用鋼板。

Description

缶用鋼板およびその製造方法
 本発明は、缶用鋼板およびその製造方法に関する。本発明は、特に、食品缶、飲料缶等に用いられる缶容器用材料に適用して好適な缶用鋼板及びその製造方法に関し、なかでも、強度と加工性に優れた缶用鋼板及びその製造方法に関する。
 近年における環境負荷低減およびコスト削減の観点から食品缶や飲料缶に用いられる鋼板の使用量削減が求められており、2ピース缶、3ピース缶に関わらず鋼板の薄肉化が進行している。また、缶胴部のみならずイージーオープンエンドのような缶蓋部や缶底部での薄肉化の要求が強くなっている。
 鋼板を薄肉化すると缶体強度が低下するため、高強度の鋼板を使用する必要がある。高強度の缶用鋼板として、従来からDR(Double Reduced)材と呼ばれる鋼板が用いられる場合がある。DR材とは焼鈍の後に再度、冷間圧延(二次圧延)を行って製造された鋼板である。DR材は高強度であるものの、伸びが低く加工性に劣るため、高い加工性が要求される缶胴加工缶や、リベット加工が必要なイージーオープンエンドには必ずしも適用することが出来なかった。
 このような課題に対応するため、焼鈍後に調質圧延のみを行うSR(Single Reduced)材において、高強度かつ加工性に優れた缶用鋼板が必要とされている。例えば、加工性を備えた高強度のSR材が特許文献1、2で提案されている。
 特許文献1には、質量%で、C:0.03~0.13%、Si:0.03%以下、Mn:0.3~0.6%、P:0.02%以下、Al:0.1%以下、N:0.012%以下であり、さらにNb:0.005~0.05%、Ti:0.005~0.05%、B:0.0005~0.005%の1種以上を含有し、残部が鉄および不可避的不純物からなる組成と、セメンタイト率:0.5%以上であるフェライト組織を有し、フェライト平均結晶粒径が7μm以下であり、塗装焼付け処理後の引張強度が450~550MPa、全伸びが20%以上、降伏伸びが5%以下を特徴とする缶用鋼板が提案されている。
 特許文献2には、重量比で、C:0.020~0.150%、Si:0.05%以下、Mn:1.00%以下、P:0.050%以下、S:0.010%以下、N:0.0100%以下、Al:0.100%以下、Nb:0.005~0.025%を含有し、残部が不可避的不純物と鉄からなり、実質的なフェライト単相組織であり、降伏強さが40kgf/mm以上、平均結晶粒径が10μm以下、板厚が0.300mm以下であることを特徴とする、製缶時の深絞り性及びフランジ加工性と、製缶後の表面性状とに優れ、十分な缶強度を有する製缶用鋼板が提案されている。
特開2008-274332号公報 特開平8-325670号公報
 しかし、上記従来技術には下記に示す問題が挙げられる。
特許文献1に記載された技術は、引張強さが550MPaまでの鋼板にしか適用できず、更なる薄肉化に対応できない。また、リベット加工性として要求される均一伸びが不十分である。さらに、特許文献2に記載された技術では、引張強さ550MPa以上の高強度化と十分な伸びの両立が出来ないという課題があった。
 本発明はかかる事情に鑑みなされたもので、高強度及び優れた加工性を有する缶用鋼板及びその製造方法を提供することを目的とする。
 上記の目的を達成するために、本発明は、下記を要旨とする。
(1)質量%で、
C:0.085%以上0.130%以下、
Si:0.04%以下、
Mn:0.10%以上0.60%以下、
P:0.02%以下、
S:0.010%超え0.020%以下、
Al:0.02%以上0.10%以下、
N:0.0005%以上0.0040%以下、
Nb:0.007%以上0.030%以下、
B:0.0010%以上0.0050%以下を含有し、
Nの含有量(質量%)に対するBの含有量(質量%)の比であるB/Nが0.80以上であり、残部はFe及び不可避的不純物からなる成分組成と、
パーライトを面積分率で1.0%以上含むフェライト組織を有し、
降伏応力が500MPa以上、引張強さが550MPa以上、均一伸びが10%以上、降伏伸びが5.0%以下である、缶用鋼板。
(2)Bの含有量が、質量%で、0.0020%超え0.0050%以下である、(1)に記載の缶用鋼板。
(3)前記成分組成に加えてさらに、質量%で、
Ti:0.005%以上0.030%以下、
Mo:0.01%以上0.05%以下のうちから選ばれる一種以上を含有する、(1)または(2)に記載の缶用鋼板。
(4)前記(1)~(3)のいずれかに記載の缶用鋼板の製造方法であって、
前記成分組成を有する鋼スラブを加熱温度1100℃以上にて加熱する加熱工程と、
前記加熱工程後の鋼スラブを熱延仕上げ温度830℃以上940℃以下の条件で熱間圧延する熱間圧延工程と、
前記熱間圧延工程で得られた熱延板を巻取り温度400℃以上550℃未満にて巻き取る巻取り工程と、
前記巻取り工程後の熱延板を酸洗する酸洗工程と、
前記酸洗工程後の熱延板を圧延率85%以上の条件で冷間圧延する冷間圧延工程と、
前記冷間圧延工程で得られた冷延板を焼鈍温度720℃以上780℃以下の条件で焼鈍する焼鈍工程と、
前記焼鈍工程で得られた焼鈍板を伸長率0.5%以上5.0%以下の条件で圧延する調質圧延工程と、
を含む、缶用鋼板の製造方法。
 本発明の缶用鋼板は高強度及び優れた加工性を有する。本発明によれば、食品缶や飲料缶等に使用される鋼板の更なる薄肉化が可能になり、省資源化および低コスト化を達成することができる。
 以下、本発明の缶用鋼板の成分組成、鋼板組織、鋼板特性、製造方法について順に説明する。なお、本発明は以下の実施形態に限定されない。
 まず、本発明の缶用鋼板の成分組成について説明する。成分組成の説明において、各成分の含有量を示す%は質量%を意味する。なお、本発明の缶用鋼板を、単に、鋼板ともいう。
 C:0.085%以上0.130%以下
 Cは、降伏応力と引張強さの向上に加え、パーライトの形成により降伏伸びの低減と均一伸びの向上に寄与する重要な元素である。C含有量を0.085%以上とすることで、鋼板組織中のパーライトの面積分率を1.0%以上とし、鋼板の降伏応力を500MPa以上、引張強さを550MPa以上とすることが出来る。C含有量は、好ましくは0.100%以上である。一方、C含有量が0.130%超となると、固溶Cが増加することによって、降伏伸びが増大し、均一伸びも低下する。このため、C含有量は0.130%以下とする必要がある。C含有量は、好ましくは0.125%以下である。
 Si:0.04%以下
 Siは、多量に添加すると、表面濃化により表面処理性が劣化し、耐食性が低下するため、含有量を0.04%以下とする必要がある。Si含有量は、好ましくは0.03%以下である。一方、Siは降伏応力や引張強さの向上に寄与するので0.01%以上添加することが好ましい。
 Mn:0.10%以上0.60%以下
 Mnは、固溶強化により降伏応力、引張強さの向上に寄与するだけではなく、パーライトの生成を促進する。これにより、加工硬化が促進され、550MPa以上の引張強さに加えて、5.0%以下の降伏伸びと、10%以上の均一伸びを得ることができる。このような効果を得るためにはMn含有量を0.10%以上とする必要がある。Mn含有量は、好ましくは0.30%以上である。一方、Mnの含有量が0.60%を超えるとパーライト生成への寄与が飽和するだけでは無く、過剰な固溶強化により均一伸びが低下する。このため、Mn含有量の上限は0.60%とする必要がある。Mn含有量は、好ましくは0.55%以下である。
 P:0.02%以下
 Pを多量に含有すると、過剰な硬質化や中央偏析により加工性が低下し、また、耐食性が低下する。このため、P含有量の上限は0.02%とする。一方、Pは降伏応力や引張強さの向上に寄与するので、P含有量は0.005%以上とすることが好ましい。P含有量は、より好ましくは0.010%以上である。
 S:0.010%超え0.020%以下
 Sは、鋼中で硫化物を形成して熱間圧延性を低下させる。よって、S含有量は0.020%以下とする。S含有量が0.010%以下である場合、缶の内容物によっては孔食の可能性があるため、S含有量は0.010%超えとする必要がある。
 Al:0.02%以上0.10%以下
 Alは、脱酸元素として有用であり、窒化物を形成することにより降伏伸びの低減に寄与する。このため、Alは0.02%以上含有する必要がある。Al含有量は、好ましくは0.03%以上である。一方、過剰にAlを含有するとアルミナが多量に発生して鋼板内に残存して加工性を低下させるため、Al含有量は0.10%以下とする必要がある。Al含有量は、好ましくは0.08%以下である。
 N:0.0005%以上0.0040%以下
 Nは、固溶Nとして存在すると、降伏伸びが増加し加工性が低下するため、N含有量は0.0040%以下とする必要がある。N含有量は、好ましくは0.0035%以下である。一方、Nの含有量を安定して0.0005%未満とするのは難しく、製造コストも上昇するため、N含有量の下限は0.0005%とする。
 Nb:0.007%以上0.030%以下
 Nbは、フェライト結晶粒の微細化や炭化物の形成により、降伏応力と引張強さを向上させる重要な元素であり、このような効果を得るためにはNb含有量は0.007%以上とする必要がある。Nb含有量は、好ましくは0.010%以上である。一方、Nbを0.030%を超えて含有した場合、再結晶温度が過剰に高くなり、引張強さと均一伸びの両立が困難になる。このため、Nb含有量の上限は0.030%とする必要がある。Nb含有量は、好ましくは0.026%以下である。
 B:0.0010%以上0.0050%以下、B/N:0.80以上
 Bは、NとBNを形成して固溶Nを減少させて、降伏伸びを低下させる効果がある。それに加え、固溶Bとして存在することで、フェライト結晶粒を微細化し降伏応力の向上に寄与するため、B含有量は0.0010%以上とする必要がある。B含有量は、好ましくは0.0020%超えである。加えて、BはNに対して一定以上含有されなければ、このような効果が得られないため、BとNの含有量の比[Nの含有量(質量%)に対するBの含有量(質量%)の比]であるB/Nは0.80以上にする必要がある。B/Nは、好ましくは1.00以上、更に好ましくは1.20以上である。特にB/Nの上限は定めないが、より良好な引張特性を発揮させやすくなる点から、B/Nは、5.00以下とすることが好ましく、3.00以下とすることがより好ましい。また、Bを過剰に含有しても、上記の効果が飽和するだけではなく、均一伸びが低下するのに加えて異方性が劣化して加工性が低下するため、B含有量の上限は0.0050%とする必要がある。B含有量は、好ましくは0.0040%以下である。
 本発明の缶用鋼板は、上記成分を含有し、残部がFeおよび不可避的不純物からなる成分組成とすることができる。
 また、本発明の缶用鋼板は、上記成分組成に加えてさらに、Ti:0.005%以上0.030%以下、Mo:0.01%以上0.05%以下のうちから選ばれる一種以上を含有することが好ましい。
 Ti:0.005%以上0.030%以下
 Tiは、NをTiNとして固定して、降伏伸びを低下させる効果がある。また、優先的にTiNを生成することでBNの生成を抑制し、固溶Bを確保することによりフェライト結晶粒を微細化して降伏応力、引張強さの向上に寄与する。さらに、微細な炭化物を形成することによっても、降伏応力と引張強さの向上に寄与する。そのため、Tiを含有する場合には、Tiを0.005%以上含有させることが好適である。Ti含有量は、さらに好ましくは0.010%以上である。一方、Tiを0.030%超えで含有すると、再結晶温度が過剰に高くなり、引張強さと均一伸びの両立が困難になる。このため、Tiを含有する場合には、Ti含有量は0.030%以下とすることが好ましい。Ti含有量は、より好ましくは0.020%以下である。
 Mo:0.01%以上0.05%以下
 Moは、フェライト結晶粒の微細化や炭化物の形成により降伏応力と引張強さの向上に寄与する。そのため、Moを含有する場合には、Moを0.01%以上含有することが好ましい。Mo含有量は、より好ましくは0.02%以上である。一方、Moを0.05%超えで含有すると、このような効果が飽和するのに加え、粒界偏析が過剰になり、均一伸びが低下する。そのため、Moを含有する場合には、Mo含有量の上限は0.05%とすることが好ましい。
 次に、本発明の缶用鋼板の鋼板組織について説明する。
 パーライトの面積分率:1.0%以上
 パーライトを鋼板組織内に分散させて含ませることにより、加工硬化が促進され、これによって、550MPa以上の引張強さに加えて、5.0%以下の降伏伸びと、10%以上の均一伸びが得られ、良好な加工性が得られる。このような効果を得るため、鋼板組織におけるパーライトの面積分率を1.0%以上とする必要がある。パーライトの面積分率は好ましくは1.5%以上、更に好ましくは2.0%以上である。また、パーライトの面積分率は、好ましくは10%以下であり、より好ましくは5.0%以下である。本発明の缶用鋼板の組織は、フェライト組織を主相とし、前記パーライト以外の残部は、フェライト組織(フェライト相)である。フェライト組織には、粒状のセメンタイトが含まれても良い。
 鋼板組織の観察に用いるサンプルは、鋼板の圧延方向に平行な垂直断面を観察できるように鋼板から切り出して樹脂に埋め込む。サンプルの観察面を研磨後、ナイタールにて腐食して組織を現出したのち、走査型電子顕微鏡にて板厚の1/2位置の鋼板組織を撮影し、画像処理にてパーライトの面積分率を測定する。より詳細には、走査型電子顕微鏡にて倍率3000倍で無作為に選んだ3視野にて鋼板組織を撮影し、各SEM像から画像処理にてパーライトの面積分率を測定し、その平均値を求める。
 次に、本発明の缶用鋼板の鋼板特性について説明する。
 降伏応力:500MPa以上、引張強さ:550MPa以上、降伏伸び:5.0%以下、均一伸び:10%以上
 薄肉化した缶体で十分な缶体強度を確保するためには、鋼板の降伏応力を500MPa以上、引張強さを550MPa以上とする必要がある。降伏応力は、510MPa以上が好ましい。引張強さは、570MPa以上が好ましい。降伏応力の上限は、特に限定されないが、蓋のカール加工性の点からは、降伏応力は590MPa以下が好ましい。引張強さの上限は、特に限定されないが、イージーオープンエンドの開缶性の点からは、引張強さは650MPa以下が好ましい。
製缶時または製蓋時のストレッチャーストレインを防止するため、降伏伸びを5.0%以下とする必要がある。降伏伸びは、4.0%以下が好ましい。
缶胴のネック・フランジ加工性やイージーオープンエンドのリベット加工性を確保するため、均一伸びを10%以上とする必要がある。均一伸びは、12%以上が好ましい。
加えて破断伸び(EL)を15%以上とすることが好ましい。破断伸びは18%以上とすることがより好ましい。
 本発明において、降伏応力、引張強さ、均一伸び、降伏伸び、及び破断伸びは、圧延方向からJIS5号引張試験片を採取し210℃で20分の時効熱処理を加えた後、JIS Z 2241に従い評価する。降伏応力には、上降伏点がある場合は上降伏応力にて評価し、上降伏点が無い場合には0.2%耐力にて評価する。均一伸びはJIS Z 2241における最大試験時全伸びにて評価する。
 本発明の缶用鋼板の板厚は特に限定されないが、0.40mm以下が好ましい。本発明の缶用鋼板は極薄のゲージダウンが可能であるので、省資源化および低コスト化の観点から、板厚を0.25mm以下とすることがより好ましい。また、板厚は0.10mm以上が好ましい。
 次に本発明の缶用鋼板の製造方法について説明する。以下に記載の条件で缶用鋼板を製造することができる。なお、以下の製造方法で製造した缶用鋼板には、Snめっき、Niめっき、Crめっき等を施すめっき工程、化成処理工程、ラミネート等の樹脂膜被覆工程等の工程を適宜行ってもよい。
 加熱温度:1100℃以上
 上記の成分組成を有する鋼スラブを加熱温度1100℃以上にて加熱する(加熱工程)。熱間圧延前の鋼スラブ加熱温度が低すぎると、粗大な窒化物が生成し加工性が低下するおそれがあるため、鋼スラブの加熱温度を1100℃以上とする。鋼スラブの加熱温度は、好ましくは1150℃以上である。Tiを含有する場合は鋼スラブの加熱温度は1200℃以上がさらに好ましい。また、鋼スラブの加熱温度は、より良い表面状態を得る点からは、好ましくは1280℃以下である。
 仕上げ温度:830℃以上940℃以下
 前記加熱工程後の鋼スラブに対し、熱延仕上げ温度830℃以上940℃以下の条件で熱間圧延を施す(熱間圧延工程)。熱間圧延の仕上げ温度(熱延仕上げ温度)が940℃よりも高くなると、熱延板でのフェライト結晶粒が粗大化して、冷間圧延・焼鈍・調質圧延後のフェライト結晶粒が粗大化して、降伏応力と引張強さが低下する。加えてスケールの生成が促進され表面性状が悪化するおそれがある。このため、熱延仕上げ温度の上限を940℃とする。熱延仕上げ温度の上限は好ましくは920℃である。一方、熱間圧延の仕上げ温度が830℃未満となると熱間圧延中に粗大なNb炭化物が形成されてしまい、降伏応力、引張強さが低下する。このため、熱延仕上げ温度の下限を830℃とする。熱延仕上げ温度の好ましい下限は850℃である。
 巻取り温度:400℃以上550℃未満
 前記熱間圧延工程で得られた熱延板を巻取り温度400℃以上550℃未満にて巻き取る(巻取り工程)。巻取り温度が550℃以上では、熱延板中のセメンタイトが粗大化して安定化し、焼鈍時に未溶解で残存してパーライト分率が低下する。また、Nb炭化物等の合金炭化物が粗大化して降伏応力、及び、引張強さが低下する。このため、巻取り温度は550℃未満とする必要がある。巻取り温度は、好ましくは530℃以下である。一方、巻取り温度が400℃未満では、Nb等の合金炭化物の析出が抑制され降伏応力と引張強さが低下するため、巻取り温度の下限を400℃とする。巻取り温度は、好ましくは470℃以上である。その後、巻取り工程後の熱延板を酸洗する(酸洗工程)。酸洗条件は特に限定されない。
 圧延率:85%以上
 前記酸洗工程後の熱延板に圧延率85%以上の条件で冷間圧延を施す(冷間圧延工程)。冷間圧延により、焼鈍後のフェライト結晶粒が微細化し、降伏応力と引張強さが向上する。この効果を得るために冷間圧延の圧延率を85%以上とする。前記圧延率は、好ましくは87%以上である。冷間圧延の圧延率の上限は、特に限定されないが、より良好な加工性を得る点からは、冷間圧延の圧延率は93%以下とすることが好ましい。
 焼鈍温度:720℃以上780℃以下
 前記冷間圧延工程で得られた冷延板に焼鈍温度720℃以上780℃以下の条件で焼鈍を施す(焼鈍工程)。高い引張強さ、大きい均一伸び、と小さい降伏伸びを得るため、焼鈍過程においてパーライトを生成させることが重要である。そのため焼鈍温度を720℃以上とすることが必要である。焼鈍温度は、好ましくは730℃以上である。一方、焼鈍温度が780℃を超えるとNb炭化物等の合金炭化物が粗大化するのに加え、フェライト結晶粒も粗大化して降伏応力と引張強さが低下する。そのため、焼鈍温度の上限を780℃とする必要がある。焼鈍温度は、好ましくは760℃以下である。焼鈍方法は材質の均一性の観点から連続焼鈍が好ましい。焼鈍時間は特に限定されないが15s以上とすることが好ましい。焼鈍時間は、フェライト結晶粒の細粒化の観点から、好ましくは60s以下である。
 調質圧延の伸長率:0.5%以上5.0%以下
 前記焼鈍工程で得られた焼鈍板に伸長率0.5%以上5.0%以下の条件で圧延を施す(調質圧延工程)。焼鈍後の調質圧延により、表面粗さの調整や板形状の矯正を行うとともに、鋼板に歪みを導入することで降伏応力を向上させ、降伏伸びを低減させる。このような効果を得るため、調質圧延の圧延率(伸長率)の下限を0.5%とする。伸長率は、1.2%以上が好ましい。一方、伸長率が5.0%を超えると歪みが過剰に導入され、均一伸びが低下するため、伸長率の上限を5.0%とする。伸長率は、3.0%以下が好ましい。
 以下、本発明の実施例を説明する。本発明の技術的範囲は以下の実施例に限定されない。
 表1に示す鋼No1~41の成分を含有し、残部がFe及び不可避的不純物からなる鋼を溶製し、鋼スラブを得た。得られた鋼スラブを表2に示す条件にて、加熱後、熱間圧延し、巻き取り、酸洗にてスケールを除去した後、冷間圧延し、連続焼鈍炉にて焼鈍し、調質圧延を行い、缶用鋼板(鋼板No1~49)を得た。
 (降伏応力、引張強さ、均一伸び、降伏伸び、破断伸びの評価)
 前記缶用鋼板から、圧延方向に沿ってJIS5号引張試験片を採取し、210℃で20分の時効熱処理後にJIS Z 2241に従い、降伏応力、引張強さ、均一伸び、降伏伸び、破断伸びを評価した。評価結果は表3に記載した。
 (パーライトの面積分率の測定)
 鋼板組織の観察に用いるサンプルは、鋼板の圧延方向に平行な垂直断面を観察できるように、前記缶用鋼板から切り出して樹脂に埋め込み、サンプルの観察面を研磨後、ナイタールにて腐食して組織を現出した。走査型電子顕微鏡にて倍率3000倍で板厚の1/2位置で無作為に選んだ3視野にて鋼板組織を撮影し、各SEM像から画像処理にてパーライトの面積分率を測定し、その平均値を求めた。測定結果は表3に記載した。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
 
 発明例は、いずれも降伏応力が500MPa以上で、引張強さが550MPa以上で、均一伸びが10%以上、降伏伸びが5.0%以下である。よって均一伸びが高く降伏伸びが低い高強度の缶用鋼板である。
 一方、比較例では、降伏応力、引張強さ、均一伸び、降伏伸びのいずれか一つ以上が劣っていた。

Claims (4)

  1.  質量%で、
    C:0.085%以上0.130%以下、
    Si:0.04%以下、
    Mn:0.10%以上0.60%以下、
    P:0.02%以下、
    S:0.010%超え0.020%以下、
    Al:0.02%以上0.10%以下、
    N:0.0005%以上0.0040%以下、
    Nb:0.007%以上0.030%以下、
    B:0.0010%以上0.0050%以下を含有し、
    Nの含有量(質量%)に対するBの含有量(質量%)の比であるB/Nが0.80以上であり、残部はFe及び不可避的不純物からなる成分組成と、
    パーライトを面積分率で1.0%以上含むフェライト組織を有し、
    降伏応力が500MPa以上、引張強さが550MPa以上、均一伸びが10%以上、降伏伸びが5.0%以下である、缶用鋼板。
  2.  Bの含有量が、質量%で、0.0020%超え0.0050%以下である、請求項1に記載の缶用鋼板。
  3.  前記成分組成に加えてさらに、質量%で、
    Ti:0.005%以上0.030%以下、
    Mo:0.01%以上0.05%以下のうちから選ばれる一種以上を含有する、請求項1または2に記載の缶用鋼板。
  4.  請求項1~3のいずれかに記載の缶用鋼板の製造方法であって、
    前記成分組成を有する鋼スラブを加熱温度1100℃以上にて加熱する加熱工程と、
    前記加熱工程後の鋼スラブを熱延仕上げ温度830℃以上940℃以下の条件で熱間圧延する熱間圧延工程と、
    前記熱間圧延工程で得られた熱延板を巻取り温度400℃以上550℃未満にて巻き取る巻取り工程と、
    前記巻取り工程後の熱延板を酸洗する酸洗工程と、
    前記酸洗工程後の熱延板を圧延率85%以上の条件で冷間圧延する冷間圧延工程と、
    前記冷間圧延工程で得られた冷延板を焼鈍温度720℃以上780℃以下の条件で焼鈍する焼鈍工程と、
    前記焼鈍工程で得られた焼鈍板を伸長率0.5%以上5.0%以下の条件で圧延する調質圧延工程と、
    を含む、缶用鋼板の製造方法。
PCT/JP2019/043178 2018-11-21 2019-11-05 缶用鋼板およびその製造方法 WO2020105406A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US17/294,531 US20220018003A1 (en) 2018-11-21 2019-11-05 Steel sheet for cans and method for manufacturing the same
EP19886227.8A EP3885457A4 (en) 2018-11-21 2019-11-05 STEEL SHEET FOR CANS AND METHOD FOR MAKING IT
CN201980076638.4A CN113166835B (zh) 2018-11-21 2019-11-05 罐用钢板及其制造方法
MYPI2021002559A MY195955A (en) 2018-11-21 2019-11-05 Steel Sheet for Cans and Method for Manufacturing the Same
MX2021005983A MX2021005983A (es) 2018-11-21 2019-11-05 Lamina de acero para latas y metodo para la fabricacion de la misma.
JP2020514631A JP6806284B2 (ja) 2018-11-21 2019-11-05 缶用鋼板およびその製造方法
AU2019384752A AU2019384752A1 (en) 2018-11-21 2019-11-05 Steel sheet for cans and method for manufacturing same
PH12021550823A PH12021550823A1 (en) 2018-11-21 2021-04-13 Steel sheet for cans and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018217823 2018-11-21
JP2018-217823 2018-11-21

Publications (1)

Publication Number Publication Date
WO2020105406A1 true WO2020105406A1 (ja) 2020-05-28

Family

ID=70774004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/043178 WO2020105406A1 (ja) 2018-11-21 2019-11-05 缶用鋼板およびその製造方法

Country Status (10)

Country Link
US (1) US20220018003A1 (ja)
EP (1) EP3885457A4 (ja)
JP (1) JP6806284B2 (ja)
CN (1) CN113166835B (ja)
AU (1) AU2019384752A1 (ja)
MX (1) MX2021005983A (ja)
MY (1) MY195955A (ja)
PH (1) PH12021550823A1 (ja)
TW (1) TWI717098B (ja)
WO (1) WO2020105406A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021167023A1 (ja) * 2020-02-21 2021-08-26 Jfeスチール株式会社 鋼板および鋼板の製造方法
JP2022127628A (ja) * 2021-02-19 2022-08-31 Jfeスチール株式会社

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08325670A (ja) 1995-03-29 1996-12-10 Kawasaki Steel Corp 製缶時の深絞り性及びフランジ加工性と、製缶後の表面性状とに優れ、十分な缶強度を有する製缶用鋼板及びその製造方法
JP2008274332A (ja) 2007-04-26 2008-11-13 Jfe Steel Kk 缶用鋼板およびその製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3369658B2 (ja) * 1993-08-26 2003-01-20 川崎製鉄株式会社 焼付け硬化性、耐時効性およびノンイヤリング性に優れた高強度高加工性製缶用鋼板およびその製造方法
DE69937481T2 (de) * 1998-04-08 2008-08-21 Jfe Steel Corp. Stahlblech für eine dose und herstellungsverfahren dafür
JP3931455B2 (ja) * 1998-11-25 2007-06-13 Jfeスチール株式会社 缶用鋼板およびその製造方法
JP4525450B2 (ja) * 2004-04-27 2010-08-18 Jfeスチール株式会社 高強度高延性な缶用鋼板およびその製造方法
JP5335179B2 (ja) * 2006-03-03 2013-11-06 新日鐵住金株式会社 熱延コイル及びその製造方法
JP4653039B2 (ja) * 2006-08-21 2011-03-16 株式会社神戸製鋼所 高張力厚鋼板およびその製造方法
WO2011099408A1 (ja) * 2010-02-15 2011-08-18 新日本製鐵株式会社 厚鋼板の製造方法
JP5825082B2 (ja) * 2011-12-12 2015-12-02 Jfeスチール株式会社 伸び及び伸びフランジ性に優れた高降伏比高強度冷延鋼板とその製造方法
WO2016031234A1 (ja) * 2014-08-29 2016-03-03 Jfeスチール株式会社 缶用鋼板及びその製造方法
CN106795609B (zh) * 2014-10-17 2018-12-04 新日铁住金株式会社 拉深罐用钢板及其制造方法
KR20160052865A (ko) * 2014-10-29 2016-05-13 주식회사 포스코 가공성이 우수한 고강도 주석도금원판 및 그 제조방법
US10494693B2 (en) * 2015-03-25 2019-12-03 Jfe Steel Corporation High-strength steel sheet and method for producing the same
JP6137436B2 (ja) * 2015-03-27 2017-05-31 Jfeスチール株式会社 缶用鋼板およびその製造方法
CN106086643B (zh) * 2016-06-23 2018-03-30 宝山钢铁股份有限公司 一种高强高延伸率的镀锡原板及其二次冷轧方法
KR102268800B1 (ko) * 2017-03-27 2021-06-23 제이에프이 스틸 가부시키가이샤 2피스 캔용 강판 및 그의 제조 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08325670A (ja) 1995-03-29 1996-12-10 Kawasaki Steel Corp 製缶時の深絞り性及びフランジ加工性と、製缶後の表面性状とに優れ、十分な缶強度を有する製缶用鋼板及びその製造方法
JP2008274332A (ja) 2007-04-26 2008-11-13 Jfe Steel Kk 缶用鋼板およびその製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021167023A1 (ja) * 2020-02-21 2021-08-26 Jfeスチール株式会社 鋼板および鋼板の製造方法
JPWO2021167023A1 (ja) * 2020-02-21 2021-08-26
JP7014341B2 (ja) 2020-02-21 2022-02-01 Jfeスチール株式会社 鋼板および鋼板の製造方法
JP2022127628A (ja) * 2021-02-19 2022-08-31 Jfeスチール株式会社
JP7400846B2 (ja) 2021-02-19 2023-12-19 Jfeスチール株式会社

Also Published As

Publication number Publication date
EP3885457A4 (en) 2022-01-19
PH12021550823A1 (en) 2021-10-04
TWI717098B (zh) 2021-01-21
TW202028491A (zh) 2020-08-01
EP3885457A1 (en) 2021-09-29
MX2021005983A (es) 2021-07-06
MY195955A (en) 2023-02-27
CN113166835A (zh) 2021-07-23
AU2019384752A1 (en) 2021-05-13
US20220018003A1 (en) 2022-01-20
JPWO2020105406A1 (ja) 2021-02-15
JP6806284B2 (ja) 2021-01-06
CN113166835B (zh) 2023-08-18

Similar Documents

Publication Publication Date Title
JP5983895B2 (ja) 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法
JP5453884B2 (ja) 高強度容器用鋼板およびその製造方法
JP5907315B1 (ja) 高強度鋼板及びその製造方法
WO2010119971A1 (ja) 時効性および焼付け硬化性に優れた冷延鋼板およびその製造方法
JP6048618B2 (ja) 缶用鋼板及び缶用鋼板の製造方法
JP6028884B1 (ja) 缶用鋼板及び缶用鋼板の製造方法
KR101923839B1 (ko) 캔용 강판 및 그 제조 방법
JP5272714B2 (ja) 製缶用鋼板の製造方法
JP6806284B2 (ja) 缶用鋼板およびその製造方法
JPWO2008133175A1 (ja) 軟質ブリキ鋼板及びその製造方法
JP5540580B2 (ja) 高強度高加工性缶用鋼板およびその製造方法
JP6819838B1 (ja) 缶用鋼板およびその製造方法
JP5919812B2 (ja) 成形性に優れた高強度薄鋼板およびその製造方法
TW201923098A (zh) 高強度鋼板及其製造方法
JP2021155849A (ja) 缶用鋼板およびその製造方法
JP2017025352A (ja) 缶用鋼板およびその製造方法
JP3680004B2 (ja) 加工性に優れた薄肉化深絞りしごき缶用鋼板

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020514631

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19886227

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019384752

Country of ref document: AU

Date of ref document: 20191105

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019886227

Country of ref document: EP

Effective date: 20210621