WO2010119971A1 - 時効性および焼付け硬化性に優れた冷延鋼板およびその製造方法 - Google Patents

時効性および焼付け硬化性に優れた冷延鋼板およびその製造方法 Download PDF

Info

Publication number
WO2010119971A1
WO2010119971A1 PCT/JP2010/056895 JP2010056895W WO2010119971A1 WO 2010119971 A1 WO2010119971 A1 WO 2010119971A1 JP 2010056895 W JP2010056895 W JP 2010056895W WO 2010119971 A1 WO2010119971 A1 WO 2010119971A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
cold
steel sheet
rolled
temperature
Prior art date
Application number
PCT/JP2010/056895
Other languages
English (en)
French (fr)
Inventor
安原英子
花澤和浩
吉田元太郎
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020117024271A priority Critical patent/KR101402365B1/ko
Priority to CN201080016714.1A priority patent/CN102395695B/zh
Publication of WO2010119971A1 publication Critical patent/WO2010119971A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese

Definitions

  • the present invention relates to a cold-rolled steel sheet suitable for building materials and home appliances and a method for producing the same, and more particularly to an improvement in the bake hardenability of a member formed by relatively mild processing represented by bending or shallow overhanging.
  • the “steel plate” here includes a steel plate and a steel strip.
  • the “cold-rolled steel sheet” includes a cold-rolled steel sheet and a cold-rolled steel sheet obtained by subjecting the cold-rolled steel sheet to a surface treatment such as electrogalvanizing or hot dip galvanizing. Further, it includes a steel sheet having a chemical conversion coating on the surface of a cold-rolled steel sheet, or on the surface of a cold-rolled steel sheet further subjected to surface treatment such as electrogalvanizing or hot dip galvanizing.
  • Patent Document 1 discloses that, by weight, C: 0.002 to 0.008%, Si: 0.5% or less, Mn: 0.05 to 1.2%, P: 0.10% or less, A hot rolled steel sheet containing Al: 0.01 to 0.08% and N% ⁇ 8 or more, Nb: C% ⁇ 3 or more, (C% ⁇ 8 or less + 0.02%) or less, a reduction ratio of 60% or more.
  • the steel is cold-rolled at 750 to 900 ° C. for 10 seconds or more, and then cooled at an average cooling rate of 10 ° C./s or more to at least 650 ° C. in the cooling process.
  • a method for producing a cold-rolled steel sheet is described. Since the steel sheet manufactured by the technique described in Patent Document 1 is an extremely low carbon type, it has a soft and high workability at the time of forming, and dislocations introduced at the time of forming by chemical conversion treatment or paint baking treatment after forming. Solid solution carbon and solid solution nitrogen adhere to and harden to increase the strength. Such a steel plate has a tensile strength of about 340 MPa to 390 MPa, and is often used as a BH (bake hardening) steel plate for automobile outer plates.
  • BH bake hardening
  • Patent Document 2 describes a method for producing a cold-rolled steel sheet excellent in strength increasing ability by heat treatment after forming.
  • C 0.15% or less
  • Si 0.005 to 1.0%
  • Mn 0.01 to 3.0%
  • Al 0.005 to 0.02%
  • N 0
  • the winding temperature when [Mn%] ⁇ [Si%] is 1.0 or less, the winding temperature ⁇ 700 ° C., whereas when [Mn%] ⁇ [Si%] is larger than 1.0
  • the recrystallization annealing step when [Mn%] ⁇ [Si%] is 1.0 or less, the annealing temperature is set to 650.
  • [Mn%] ⁇ [Si%] is greater than 1.0 when the temperature is set to ⁇ 950 ° C., 950 ⁇ 300 / ([Mn%] ⁇ [Si%]) ⁇ annealing temperature ⁇ 950 is satisfied.
  • temperature performing annealing method for producing a cold-rolled steel sheet is described.
  • a cold-rolled steel sheet having a product of precipitated Mn% and precipitated Si% in the steel of 0.00010% or less, containing solute N of 0.0015% or more and having a ferrite phase or a ferrite-based structure is obtained. It is said.
  • the tensile strength is increased by 60 MPa or more by the heat treatment after forming due to the interaction between the solid solution N and the dislocations introduced during forming.
  • the BH steel sheet for automobiles described in Patent Document 1 requires a heat treatment such as 2% or more straining and baking coating treatment, and an increase in strength of about 30 MPa is recognized. Further, the steel sheet for automobiles described in Patent Document 2 also requires a strain of 5% or more and a heat treatment at a low temperature range of 120 to 200 ° C., thereby increasing the tensile strength TS by 60 MPa or more. Strengthening is obtained.
  • members in building materials, home appliances, and the like often have relatively mild processing of 2% or less. Alternatively, there are some that are hardly processed and used in a flat state.
  • Al is usually added to deoxidize, ie to reduce the oxygen in the steel as Al 2 O 3 . If the amount of Al is small, deoxidation becomes insufficient, the amount of oxygen remaining in the steel increases, the cleanliness decreases, cracks occur during cold rolling, and surface defects are likely to occur. .
  • the present invention can prevent wrinkles due to aging, can ensure a high bake hardening amount with relatively low strain application of about 2% or less, has excellent aging properties, and also has bake hardenability. It aims at proposing the outstanding cold-rolled steel plate and its manufacturing method.
  • “excellent bake hardenability” means that a pre-strain of less than 2.0% (including 0%) was applied, and a heat treatment equivalent to a coating baking process of 100 to 200 ° C. ⁇ 5 to 60 min was performed.
  • excellent in aging refers to the case where the yield elongation YEl after holding for 3 months in a normal temperature atmosphere of 25 ° C. or less is 2% or less in the rolling direction.
  • the present inventors diligently studied the influence of alloy elements on bake hardenability. As a result, in order to provide high bake hardenability even with a low strain amount, the inventors have come up with effective use of solid solution N. Moreover, in order not to generate wrinkles due to aging, it has been found that it is important that C exists as a precipitate as much as possible. In order to reduce solute C as much as possible by further research by the present inventors, the coiling temperature in hot rolling is adjusted appropriately to refine the crystal grains and precipitate carbides in the crystal grains.
  • the present invention has been completed based on such findings and further studies. That is, the gist of the present invention is as follows. (1) By mass%, C: 0.020 to 0.070%, Si: 0.05% or less, Mn: 0.1 to 0.5%, P: 0.05% or less, S: 0.02 %, Al: 0.02 to 0.08%, N: 0.005 to 0.02%, the solid solution N is 0.0010% or more, the composition consisting of the balance Fe and inevitable impurities, A ferrite phase having an average crystal grain size of 7 ⁇ m or less is contained in an area ratio of 80% or more, and precipitates having an average equivalent circle diameter of 0.05 to 5 ⁇ m are deposited and dispersed in the ferrite phase crystal grains. A cold-rolled steel sheet characterized by having a structure.
  • the precipitate has a precipitation density of 1 to 100 pieces / 0.01 mm 2 .
  • it is further selected by mass% from Ti: 0.01% or less, Nb: 0.01% or less, B: 0.005% or less
  • a steel material is subjected to a hot rolling step, a cold rolling step, an annealing step, and a temper rolling step in order to obtain a cold rolled steel sheet.
  • rough rolling is performed to obtain a sheet bar, and then the sheet bar is subjected to finish rolling at a finish rolling finish temperature of 850 ° C.
  • the hot rolled sheet is then expressed by the following formula (1) [(Al /28)/(N/14)]/CT ⁇ 5.5 ⁇ 10 ⁇ 3 (1)
  • Formula (1) where Al, N: content of each element (Mass%), CT: winding at a winding temperature CT satisfying a winding temperature (° C.), and after the cold rolling step has pickled the hot rolled plate, Rate: 60% to 90% cold rolling to form a cold-rolled sheet, and the annealing process is a process of annealing the cold-rolled sheet to form a cold-rolled annealed sheet, and the annealing process is annealed.
  • the temperature An is expressed by the following formula (2): 1.0 ⁇ ⁇ [(Al / 28) / (N / 14)] / CT ⁇ / ⁇ [(Al / 28) / (N / 14)] / An ⁇ ⁇ 1. 5 (2) Formula (where, Al, N: content of each element (% by mass), CT: coiling temperature (° C.), An: annealing temperature (° C.)) The heating rate in the temperature range from 300 ° C. to (annealing temperature ⁇ 20 ° C.) is 1 to 30 ° C./s, and the temperature range from (annealing temperature ⁇ 20 ° C.) to (annealing temperature).
  • a method for producing a cold-rolled steel sheet according to (6) characterized by performing soaking for 150 s or less at the annealing temperature and then cooling.
  • the manufacturing method of the cold-rolled steel plate characterized by containing 1 type, or 2 or more types.
  • projection can be provided at low cost.
  • the steel sheet of the present invention can be used, for example, as a member for office use such as a top board for office desks, a member for household appliances such as a vending machine, a refrigerator panel, an air conditioner outdoor unit, and a member for building materials.
  • the steel sheet of the present invention contributes to reducing the weight of products, reducing costs, and the like, and has industrially effective effects.
  • C 0.020 to 0.070%
  • C is an element that dissolves to increase the strength of the steel, but a large amount has an adverse effect of reducing formability (workability).
  • a large amount has an adverse effect of reducing formability (workability).
  • C is precipitated as a precipitate such as cementite to reduce the solid solution C as much as possible.
  • C is set to 0.020% or more.
  • C is less than 0.020%, the degree of supersaturation for carbide precipitation is small, and C does not sufficiently precipitate as carbide.
  • it contains exceeding 0.070% workability will fall remarkably. For this reason, C is limited to the range of 0.020 to 0.070%.
  • Si 0.05% or less
  • Si is an element that dissolves to increase the strength of the steel, but if contained in a large amount, the steel becomes hard and the workability decreases.
  • an adverse effect such as generation of Si oxide during annealing and inhibition of plating properties is caused.
  • Si is an element that has a strong tendency to stabilize ferrite. For example, during hot rolling, the transformation temperature from austenite ( ⁇ ) to ferrite ( ⁇ ) increases, making it difficult to complete rolling in the austenite region. There is a case. For these reasons, Si is limited to 0.05% or less.
  • the effect of increasing the strength of the steel is obtained when the Si content is 0.001% or more.
  • Mn 0.1 to 0.5%
  • Mn has an effect of increasing the strength of steel by solid solution, and forming MnS to detoxify harmful S that has a detrimental effect such as inducing hot cracking and remarkably deteriorating the surface properties. It is.
  • the content 0.1% or more is required.
  • Mn was limited to the range of 0.1 to 0.5%.
  • Preferably it is 0.3% or less.
  • P 0.05% or less
  • P is an element that contributes to an increase in strength, but segregates at the grain boundaries and has an adverse effect on reducing ductility and toughness. For this reason, it is desirable to reduce as much as possible, especially when it is not necessary to use the increase in strength due to P. However, if it is about 0.05% or less, the above-described adverse effects are acceptable. For this reason, P was limited to 0.05% or less. In addition, Preferably it is 0.03% or less.
  • S 0.02% or less S induces hot cracking and significantly deteriorates the surface properties. Furthermore, S is mostly present as inclusions in steel and hardly contributes to strength, but also forms coarse MnS and lowers ductility. For this reason, it is desirable to reduce S as an impurity as much as possible. However, if it is 0.02% or less, the above-described adverse effects are acceptable. For this reason, S was limited to 0.02% or less.
  • Al 0.02 to 0.08%
  • Al is an important element in the present invention.
  • Al is an element that acts as a deoxidizer, and in order to obtain this effect sufficiently, it needs to be contained in an amount of 0.02% or more. More preferably, it is over 0.02%.
  • Al has an action of binding N and fixing N as AlN.
  • Al is adjusted to an appropriate range in order to stably secure solid solution N that contributes to an increase in bake hardenability within a desired range.
  • the precipitation of AlN is affected by temperature. For this reason, in order to ensure a desired solid solution N amount stably, the Al content is expressed by the equation (1) in relation to the coiling temperature, and further in the relationship between the coiling temperature and the annealing temperature (2). Adjust to satisfy the equation. In order to satisfy the expressions (1) and (2), at least 0.02% Al content is required. On the other hand, since a large amount of Al increases the transformation point of the ⁇ ⁇ ⁇ transformation during hot rolling, it is difficult to complete the rolling in the austenite region. For these reasons, Al is limited to 0.02 to 0.08%. In addition, Preferably it is 0.060% or less.
  • N 0.005 to 0.02%
  • N is an element that increases the strength of steel by solid solution, and in the present invention, solid solution N is utilized for improving bake hardenability.
  • solid solution N is utilized for improving bake hardenability.
  • the content exceeds 0.02%, the tendency of slab cracking to increase and surface defects may occur. For this reason, N was limited to the range of 0.005 to 0.02%.
  • the content is 0.007 to 0.015%.
  • Solid solution N 0.0010% or more Solid solution N adheres to dislocations introduced by applying strain during coating baking, and increases the strength of the steel sheet.
  • the solid solution N amount is set to 0.0010% or more in the present invention.
  • the solute N amount is adjusted by optimizing the coiling temperature and the annealing temperature after containing the Al content within the above-described range. Note that the amount of solid solution N is preferably 0.0020% or more. More preferably, it is 0.0040% or more.
  • the above-described components are basic components.
  • Ti: 0.01% or less, Nb: 0.01% or less, B: 0.005, as required, depending on the desired strength. % Or less, and / or Mo: 0.01% or less, Ni: 0.01% or less, Cr: 0.01% or less, Cu: 0.01% or less 1 type (s) or 2 or more types selected from among them can be contained.
  • One or more selected from Ti: 0.01% or less, Nb: 0.01% or less, B: 0.005% or less Ti, Nb, and B are all ferrite of cold-rolled steel sheet. It is an element which has the effect
  • Ti 0.001% or more, Nb: 0.001% or more, and B: 0.0005% or more, respectively.
  • the amount is reduced and the bake hardenability is lowered. For this reason, when it contains, it limits to Ti: 0.01% or less, Nb: 0.01% or less, and B: 0.005% or less, respectively.
  • Mo 0.01% or less, Ni: 0.01% or less, Cr: 0.01% or less, Cu: 0.01% or less Mo, Ni, Cr, Cu
  • Mo 0.01% or less
  • Mo, Ni, Cr, Cu 0.01% or less
  • Mo, Ni, Cr, Cu 0.01% or less
  • Mo 0.001% or more
  • Ni: 0.001% or more, Cr: 0.001% or more, and Cu 0.001% or more, respectively.
  • excessive inclusion leads to a decrease in ductility, so that it is limited to Mo: 0.01% or less, Ni: 0.01% or less, Cr: 0.01% or less, and Cu: 0.01% or less, respectively.
  • the cold-rolled steel sheet of the present invention has a structure containing a ferrite phase with an area ratio of 80% or more from the viewpoint of ensuring ductility and improving workability.
  • the second phase other than the ferrite phase include pearlite, martensite, bainite, and retained austenite.
  • the ferrite phase is less than 80% in area ratio, the structure fraction of the second phase increases and the workability decreases. From the viewpoint of formability, the ferrite phase is preferably 85 to 95% in terms of area ratio.
  • the average crystal grain size of the ferrite phase is 7 ⁇ m or less. If the average crystal grain size exceeds 7 ⁇ m, the distribution of strain introduced by temper rolling becomes uneven, and the introduced strain cannot be effectively applied to the entire steel sheet.
  • the thickness is preferably 4 to 7 ⁇ m.
  • the average crystal grain size of ferrite is observed with 20 or more fields of view with an optical microscope (magnification: 200 to 1000 times), and a value calculated by a cutting method or image analysis based on the JIS method is used.
  • the size of the precipitate is 0.05 to 5 ⁇ m in terms of an average equivalent circle diameter. Since the bake hardening amount ( ⁇ YS) is greatly influenced by the particle size of the precipitate, the bake hardening amount of ⁇ YS: 50 MPa or more can be stably secured by making an appropriate amount of the precipitate having such a magnitude. If the average size of the precipitate is less than 0.05 ⁇ m, the bake hardening amount is small, and ⁇ YS: 50 MPa or more cannot be secured stably. On the other hand, if the average is larger than 5 ⁇ m, the amount of bake-hardening is small even if distortion is applied, and desired characteristics cannot be obtained.
  • the precipitates having the above-described size are preferably present at a precipitation density of 1 to 100 / 0.01 mm 2 .
  • the precipitation density is less than 1 piece / 0.01 mm 2 , the bake hardening amount is small, and ⁇ YS: 50 MPa or more cannot be secured stably.
  • ⁇ YS: 50 MPa or more cannot be secured stably.
  • the workability deteriorates.
  • a hot-rolling process, a cold-rolling process, an annealing process, and a temper rolling process are sequentially performed on the steel material to obtain a cold-rolled steel sheet.
  • the manufacturing method of the steel material in mass%, C: 0.020 to 0.070%, Si: 0.05% or less, Mn: 0.1 to 0.5%, P: 0.05% or less, S : 0.02% or less, Al: 0.02 to 0.08%, N: 0.005 to 0.02%, and a steel material having a composition composed of the balance Fe and inevitable impurities may be obtained.
  • the molten steel having the above composition is melted by a conventional melting method such as a converter method and an electric furnace method, and a steel material such as a slab by a conventional casting method such as a continuous casting method. It is preferable to do.
  • the steel material casting method is desirably an intermittent casting method in order to prevent macro segregation of components, but there is no problem with the ingot casting method or the thin slab casting method.
  • the obtained steel material is then subjected to a hot rolling process, but the heating for hot rolling is performed by cooling to room temperature and then reheating, without cooling to room temperature.
  • An energy saving process such as direct feed rolling, in which the steel is charged in the heating furnace as it is, or is rolled immediately after performing a slight heat retention, can be applied without any problem.
  • the hot rolling process is a process in which a steel material is heated at a predetermined temperature, subjected to hot rolling including rough rolling and finish rolling to form a hot rolled sheet, and then wound.
  • the heating temperature is preferably 1150 ° C. or higher.
  • the heating temperature of hot rolling it is necessary to temporarily dissolve carbonitrides such as AlN and Fe 3 C during heating and to precipitate only carbides after winding. For this reason, it is preferable to limit the heating temperature of hot rolling to 1150 ° C. or higher. If heating temperature is less than 1150 degreeC, the solid solution of carbonitride is inadequate and it cannot be set as the precipitate of a suitable magnitude
  • the upper limit of the heating temperature is not particularly limited, but is preferably 1300 ° C. or lower from the viewpoint of crystal grain coarsening, scale loss due to oxidation, and the like.
  • the heated steel material is roughly rolled into a sheet bar having a predetermined size and shape.
  • the rough rolling condition is not particularly limited as long as the predetermined size and shape can be secured.
  • the sheet bar is finish-rolled to obtain a hot-rolled sheet.
  • the finish rolling finish temperature of finish rolling is preferably 850 ° C. or higher.
  • finish rolling is preferably performed in the austenite ( ⁇ ) region. In finish rolling, if the temperature of the steel sheet changes from the ⁇ region to the ferrite ( ⁇ ) region, the rolling load decreases rapidly, making it difficult to control the rolling mill load, and the risk of troubles during sheet passing such as breakage. There is sex.
  • the obtained hot rolled sheet is then wound into a coil.
  • the cooling rate until winding is not particularly limited, and a cooling rate higher than air cooling is sufficient.
  • the coiling temperature CT is expressed by the following formula (1) [(Al / 28) / (N / 14)] / CT ⁇ 5.5 ⁇ 10 ⁇ 3 (1) in relation to the Al and N contents.
  • the coiling temperature CT is adjusted so as to satisfy the expression (1) related to the Al amount and the N amount. To do.
  • the desired amount of dissolved N cannot be secured in the hot-rolled sheet, and the desired excellent bake hardenability cannot be secured in the cold-rolled sheet.
  • the solid solution C precipitates as a carbide
  • the hot rolled sheet is then subjected to a cold rolling process.
  • the hot-rolled sheet is pickled and then cold-rolled at a cold rolling reduction ratio of 60 to 90% to obtain a cold-rolled sheet.
  • the cold rolling reduction ratio after pickling the hot rolled sheet is preferably determined by the thickness of the hot rolled sheet and the product sheet.
  • the cold rolling reduction ratio is 60% or more, there is no particular problem in workability and sheet thickness accuracy.
  • the cold rolling reduction ratio exceeds 90%, the load on the cold rolling mill becomes too large, and the operation becomes difficult. For this reason, the cold rolling reduction ratio is preferably limited to a range of 60 to 90%.
  • An annealing process is a process of giving an annealing process to a cold-rolled sheet, and setting it as a cold-rolled annealed sheet.
  • the annealing temperature An is set to the following formula (2): 1.0 ⁇ ⁇ [(Al / 28) / (N / 14)] / CT ⁇ / ⁇ [(Al / 28) / (N / 14)] /An ⁇ 1.5 (2)
  • the annealing temperature An is adjusted to a temperature satisfying the expression (2).
  • the amount of solid solution N depends on the amount of Al, the amount of N, the coiling temperature, and the annealing temperature. Therefore, in order to secure the desired amount of solid solution N, the annealing temperature is set to the amount of Al, the amount of N, and the winding. It is important to adjust so as to satisfy the equation (2) which is a relational expression between the temperature and the annealing temperature. When the annealing temperature does not satisfy the formula (2), it becomes difficult to secure a desired amount of dissolved N.
  • the heating up to the annealing temperature An described above is heating in which the heating rate is changed in two stages. By changing the heating rate up to the annealing temperature in two stages, the size of the precipitates (carbides) in the grains and the amount of precipitation can be set to a desired distribution state.
  • the first stage heating is heating in a temperature range from 300 ° C. to (annealing temperature ⁇ 20 ° C.), and the heating rate is 1 to 30 ° C./s. When the heating rate in this temperature range is less than 1 ° C./s, the carbide generated in the hot-rolled sheet is dissolved and the amount of solute C increases.
  • the heating rate in this temperature range is limited to the range of 1 to 30 ° C./s.
  • the second stage heating is heating in a temperature range from (annealing temperature -20 ° C) to (annealing temperature), and the heating rate is 0.5 to 5 ° C / s. If the heating rate in this temperature range is less than 0.5 ° C./s, the carbide is dissolved, the amount of solute C increases, and the yield elongation cannot be reduced after the strain imparting-paint baking process. On the other hand, when it exceeds 5 ° C./s, precipitation of carbide or the like in the ferrite phase grains becomes insufficient, the amount of solute C increases, and the yield elongation cannot be reduced after the strain imparting-paint baking process. For this reason, the heating rate in this temperature range is limited to the range of 0.5 to 5 ° C./s.
  • the soaking time at the annealing temperature An is 0 s, that is, includes the case where the cooling is started immediately after reaching the annealing temperature An.
  • the cooling rate after soaking is less than 5 ° C./s, the coarsening of the precipitates in the ferrite phase grains becomes remarkable, it becomes difficult to secure the desired precipitate size, and the desired bake hardening amount cannot be ensured. .
  • the cooling stop temperature exceeds 500 ° C., coarsening of the carbide proceeds by subsequent cooling. For this reason, after soaking, it is preferable to cool to 500 ° C. or less at a cooling rate of 5 ° C./s or more.
  • the cooling rate in the region lower than 500 ° C. need not be particularly limited. Further, a heat history such as holding during cooling may be taken.
  • a galvanizing treatment process for forming a galvanized layer on the steel sheet surface such as hot dip galvanizing and electrogalvanizing, to improve corrosion resistance after the annealing process is performed before the temper rolling process.
  • a hot dip galvanizing treatment step in which a hot dip galvanizing treatment is performed in the vicinity of 480 ° C. may be performed.
  • the hot dip galvanizing process preferably, after the annealing process, the cold-rolled sheet is cooled to a predetermined temperature of 500 ° C. or lower, preferably about 450 ° C., at a cooling rate of 5 ° C./s or higher.
  • a hot dip galvanizing bath maintained at a temperature close to 480 ° C. to form a hot dip galvanized layer on the surface of the steel sheet, or a further formed hot dip galvanized layer is preferably 450 ° C. It is preferable to heat the alloy to 550 ° C. or less to form an iron / zinc alloy layer and to perform an alloying treatment for alloying the plating layer.
  • the temper rolling step is a step of subjecting the cold-rolled annealed sheet to temper rolling with an elongation of 0.5 to 5%.
  • the cold-rolled annealed sheet can be subjected to temper rolling to correct the shape, and an appropriate strain can be applied to the steel sheet (surface) to suppress the occurrence of wrinkles due to aging in the cold-rolled steel sheet.
  • the amount of strain applied in the temper rolling is important.
  • the elongation in temper rolling is limited to a range of 0.5 to 5%. If the elongation in temper rolling is less than 0.5%, it is difficult to ensure a desired bake hardening amount, especially in the case of light processing with a small amount of processing on the member. On the other hand, if the elongation exceeds 5%, the strength of the steel sheet increases due to work hardening and the formability decreases, so that the shape often becomes defective after processing.
  • the elongation is preferably 3% or less.
  • a steel material (slab) having the composition shown in Table 1 is used as a starting material, and subjected to a hot rolling process, a cold rolling process, an annealing process, and a temper rolling process under the conditions shown in Table 2, and the cold thickness of the sheet shown in Table 2
  • a rolled steel sheet was used.
  • the test method was as follows. (1) Measurement of solid solution N amount A test piece for electrolytic extraction was collected from the obtained cold-rolled steel sheet, and the N amount in the electrolytic extract extracted by the potentiostatic electrolysis method in the acetylacetone-based electrolytic solution was analyzed. The amount. The obtained amount of precipitated N was subtracted from the total amount of N in the steel to obtain a solid solution N amount.
  • the number (precipitation density) was measured.
  • the average crystal grain size of the ferrite phase was calculated by a cutting method in accordance with JIS G 0552-1998. Further, the size of the precipitate is obtained by calculating the area of each precipitate, calculating the equivalent circle diameter of each precipitate from the area, calculating the arithmetic average of the obtained values, and displaying the average equivalent circle diameter. did.
  • a structure in which a ferrite phase having an average particle diameter of 7 ⁇ m or less is 80% or more in area ratio and precipitates having an equivalent circle diameter (average) of 0.005 to 5 ⁇ m dispersed in ferrite grains is recognized. It was. In addition, pearlite, bainite, etc. were recognized as 2nd phases other than a ferrite.
  • All of the examples of the present invention have a tensile strength TS: strength of 340 MPa or more, excellent workability, excellent aging property, and further applying strain of less than 2.0%, equivalent to pre-strain processing-paint baking process
  • the amount of increase in yield strength by heat treatment is 50 MPa or more, and a cold-rolled steel sheet excellent in bake hardenability is obtained, which can obtain a large bake hardening amount even if subjected to light processing.
  • a comparative example outside the scope of the present invention has a low elongation and low workability, a large aging of YEl, or a small amount of bake hardening, and a cold-rolled steel sheet having desired characteristics can be obtained. Not. [Example 2]
  • a part of the steel material (slab) having the composition shown in Table 1 is subjected to a hot rolling process, a cold rolling process, an annealing process, a hot dip galvanizing process, and a temper rolling process under the conditions shown in Table 4.
  • Table 4 It was set as the cold rolled steel plate (plated steel plate) which has the plating layer of the board thickness shown to.
  • a hot dip galvanizing process in which the steel is immersed in a hot dip galvanizing bath (bath temperature: 480 to 520 ° C.) is performed.
  • a hot-dip galvanized layer having the adhesion amount shown was formed.
  • heating was further performed at 480 to 530 ° C., and an alloying treatment was performed by alloying the plated layer to form an alloyed hot dip galvanized layer.
  • the obtained cold-rolled steel sheet (plated steel sheet) was examined for the amount of solute N, structure, tensile properties, bake hardenability, and aging.
  • the test method was the same as in (Example 1). Furthermore, about the obtained cold-rolled steel plate (plated steel plate), the surface was observed visually and the presence or absence of non-plating was investigated. The results obtained are shown in Table 5.
  • All of the examples of the present invention are non-plated, have excellent surface properties, and have a tensile strength of TS: 340 MPa or more even after plating, have excellent workability, excellent aging properties, and light processing. It is a cold-rolled steel plate (plated steel plate) excellent in bake hardenability that can obtain a large bake-hardening amount even if it is applied. On the other hand, a comparative example outside the scope of the present invention is not a cold-rolled steel sheet (plated steel sheet) having desired characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Coating With Molten Metal (AREA)

Abstract

 質量%で、C:0.020~0.070%、Si:0.05%以下、Mn:0.1~0.5%、P:0.05%以下、S:0.02%以下、Al:0.02~0.08%、N:0.005~0.02%を含む組成の鋼素材に、1150℃以上で加熱し、仕上圧延終了温度:850℃以上とする仕上圧延を施し熱延板とし、AlとN量との特定な関係式を満足する巻取温度で巻取り、ついで圧下率:60~90%の冷延と、加熱速度を二段階として、Al量、N量、巻取温度との特定な関係式を満足する焼鈍温度まで加熱、均熱し、5℃/s以上の冷却速度で500℃以下まで冷却することで、時効によるしわの発生を防止でき、かつ2.0%未満の比較的低い歪付与-塗装焼付相当熱処理後に50MPa以上の焼付硬化量を確保できる冷延鋼板を得る。

Description

時効性および焼付け硬化性に優れた冷延鋼板およびその製造方法
 本発明は、建材、家電製品向けとして好適な冷延鋼板およびその製造方法に係り、とくに、曲げや浅い張り出しに代表される比較的軽度な加工で成形された部材の焼付け硬化能の向上に関する。ここでいう「鋼板」には、鋼板、鋼帯を含むものとする。また、「冷延鋼板」には、冷延鋼板と、前記冷延鋼板に電気亜鉛めっきや溶融亜鉛めっきなどの表面処理を施した冷延鋼板をも含む。さらには、冷延鋼板の表面、あるいはさらに電気亜鉛めっきや溶融亜鉛めっきなどの表面処理を施した冷延鋼板の表面に化成処理皮膜を有する鋼板をも含む。
 近年、建材や家電製品においては、製造コストの低減が強く要求され、とくに素材費の低減のために、使用する素材の薄肉化が急速に進み、使用する鋼板の高強度化が望まれている。建材、家電製品用部材で要求されている使用鋼板の高強度化は、引張強さで440MPaレベルまでである。しかも、曲げや浅い張り出し等の比較的軽度の加工が施される部材向けが主である。
 このような素材の薄肉化要求に伴う使用鋼板の高強度化は、建材や家電製品用部材に限らず、自動車用部材にも求められている。1989年のCAFE規制以降、自動車燃費向上のため、自動車車体の軽量化が熱望され、使用する鋼板の高強度化が進められてきた。このような背景のもと、自動車用として、P、Si、Mnなどを適量添加した高強度鋼板が、次々と開発され使用されているが、自動車用として開発された高強度鋼板は、引張強さTSが590MPa以上の鋼板が多い。これらの高強度鋼板を、建材、家電製品向けとして適用することは、困難である。というのは、このような高強度鋼板は強度が高すぎるため、加工機の能力を超えて加工が困難であるか又は加工できたとしても製品の寸法精度が低下するなどの問題があるためである。また、このような高強度鋼板は、添加する合金元素が多く、高価となる場合が多く、素材コストの低減効果を期待できない。
 また、自動車の外板用として、焼付硬化型の軟質鋼板が多く提案され、使用されている。例えば、特許文献1には、重量%で、C:0.002~0.008%、Si:0.5%以下、Mn:0.05~1.2%、P:0.10%以下、Al:0.01~0.08%でN%×8以上、Nb:C%×3以上、(C%×8以下+0.02%)以下を含む熱延鋼板を、60%以上の圧下率で冷延し、750~900℃、10s間以上の条件で連続焼鈍を行ったのち、冷却過程で少なくとも650℃までを平均冷却速度10℃/s以上の冷却を施す、焼付き硬化性に優れる冷延鋼板の製造方法が記載されている。特許文献1に記載された技術で製造された鋼板は、極低炭素系としているため、成形時には軟質で高加工性を有し、成形後に化成処理や塗装焼付処理により、成形時に導入された転位に固溶炭素や固溶窒素が固着して、硬化し、高強度化する。このような鋼板は、引張強さが340MPaから390MPa程度であり、BH(焼付け硬化)鋼板として自動車外板用に多く使用されている。
 また、特許文献2には、成形後の熱処理による強度上昇能に優れた冷延鋼板の製造方法が記載されている。特許文献2には、C:0.15%以下、Si:0.005~1.0%、Mn:0.01~3.0%、Al:0.005~0.02%、N:0.006~0.020%、およびP:0.002~0.10%をN(%)/Al(%)≧0.3を満足する範囲で含有する組成の鋼スラブを熱間圧延し、巻取る際に、[Mn%]×[Si%]が1.0以下の場合には巻取り温度≦700℃、一方、[Mn%]×[Si%]が1.0より大きい場合には、巻取り温度≦300+400/([Mn%]×[Si%])とし、再結晶焼鈍工程においては、[Mn%]×[Si%]が1.0以下の場合には、焼鈍温度を650~950℃とし、[Mn%]×[Si%]が1.0より大きい場合には、950−300/([Mn%]×[Si%])≦焼鈍温度≦950 を満足する温度で焼鈍を行う、冷延鋼板の製造方法が記載されている。これにより、鋼中の析出Mn%と析出Si%の積が0.00010%以下で、固溶Nを0.0015%以上含有し、フェライト相またはフェライト主体の組織を有する冷延鋼板が得られるとしている。特許文献2に記載された技術で製造された鋼板では、固溶Nと成形時に導入された転位との相互作用により、成形後熱処理により引張強さが60MPa以上増加するとしている。
特公昭60−17004号公報 特開2002−226937号公報
 特許文献1に記載されたような自動車向けのBH鋼板では、2%以上の歪付与と焼付け塗装処理等の熱処理を必要とし、これにより30MPa程度の強度上昇が認められる。また、特許文献2に記載されたような自動車向け鋼板でも、5%以上の歪付与と120~200℃の低温域での熱処理を必要とし、これにより引張強さTSが60MPa以上増加する、高強度化が得られる。しかし、建材や家電製品等における部材では2%以下の比較的軽度の加工が多い。あるいは、ほとんど加工されず平板状態で使用されるものもある。このため、特許文献1、特許文献2に記載されたような自動車向けの鋼板を、建材や家電製品用部材向けとして使用した場合には、付与される歪量が少なく、その後の焼付け塗装処理等の熱処理を施しても、強度上昇が小さく、所望の高強度化を達成できないという問題がある。また、特許文献1に記載されたような自動車向けのBH鋼板では、長時間の放置により時効硬化し、成形時にはストレッチャーストレインと呼ばれるしわが発生し、製品の外観を著しく損なうという問題もある。また、特許文献2に記載された技術では、所定の固溶N量を確保するために、Al含有量の上限を0.02%としている。Alは、通常、脱酸、すなわち鋼中の酸素をAlとして低減するために添加される。Al量が少ないと、脱酸が不十分となり、鋼中の酸素残存量が多くなり、清浄度が低下し、冷間圧延時に割れが発生したり、表面欠陥が発生しやすくなるという問題がある。
 本発明は、かかる従来技術の問題に鑑み、時効によるしわの発生を防止でき、2%以下程度という比較的低い歪付与で高い焼付硬化量を確保できる、時効性に優れ、焼付硬化性にも優れた冷延鋼板およびその製造方法を提案することを目的とする。
 ここで、「焼付硬化性に優れた」とは、2.0%未満(0%を含む)の予歪を付与し、100~200℃×5~60minの塗装焼付処理相当の熱処理を施した後の降伏強さYSHTと、予歪付与時の応力YSPSとの差ΔYS(=YSHT−YSPS)が50MPa以上である場合をいうものとする。 また、「時効性に優れた」とは、25℃以下の常温雰囲気中で3ヶ月間保持した後の降伏伸びYElが、圧延方向で2%以下である場合をいうものとする。
 本発明者らは、上記した目的を達成するため、焼付硬化性に及ぼす合金元素の影響について鋭意研究した。その結果、低歪量付与でも高い焼付硬化性を付与するために、固溶Nの有効活用に思い至った。また、時効によるしわを発生させないためには、Cは極力析出物として存在させることが重要であることを知見した。
 本発明者らの更なる研究により、固溶Cを極力低減するためには、熱間圧延における巻取温度を適正に調整して、結晶粒を微細化するとともに結晶粒内に炭化物を析出させ、さらに残留している固溶Cを、冷間圧延後の焼鈍における加熱速度および焼鈍温度を適正に調整して炭化物として析出させることが肝要であることを知見した。また、適正量の固溶Nを確保するためには、Nと結合し析出物となるAl含有量を適正に調整するとともに、熱間圧延における巻取温度、焼鈍温度を適正化することが重要であることを知見した。またさらに、冷間圧延後に調質圧延を施すことも、時効によるしわの発生を抑制することに有効に寄与することを知見した。
 本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は次のとおりである。
 (1)質量%で、C:0.020~0.070%、Si:0.05%以下、Mn:0.1~0.5%、P:0.05%以下、S:0.02%以下、Al:0.02~0.08%、N:0.005~0.02%を含み、固溶Nが0.0010%以上であり、残部Feおよび不可避的不純物からなる組成と、平均結晶粒径が7μm以下のフェライト相を面積率で80%以上含み、前記フェライト相の結晶粒内に、平均の円相当径で0.05~5μmの大きさの析出物が析出、分散した組織と、を有することを特徴とする冷延鋼板。
 (2)(1)において、前記析出物の析出密度が1~100個/0.01mmであることを特徴とする冷延鋼板。
 (3)(1)または(2)において、前記組成に加えてさらに、質量%で、Ti:0.01%以下、Nb:0.01%以下、B:0.005%以下のうちから選ばれた1種または2種以上含有することを特徴とする冷延鋼板。
 (4)(1)ないし(3)のいずれかにおいて、前記組成に加えてさらに、質量%で、Mo:0.01%以下、Ni:0.01%以下、Cr:0.01%以下、Cu:0.01%以下のうちから選ばれた1種または2種以上含有することを特徴とする冷延鋼板。
 (5)(1)ないし(4)のいずれかにおいて、表面に亜鉛めっき層を有することを特徴とする冷延鋼板。
 (6)鋼素材に、熱延工程と、冷延工程と、焼鈍工程と、調質圧延工程を順次施して、冷延鋼板とするにあたり、前記鋼素材を、質量%で、C:0.020~0.070%、Si:0.05%以下、Mn:0.1~0.5%、P:0.05%以下、S:0.02%以下、Al:0.02~0.08%、N:0.005~0.02%を含み、残部Feおよび不可避的不純物からなる組成の鋼素材とし、前記熱延工程が、前記鋼素材に加熱温度:1150℃以上とする加熱を施したのち、粗圧延してシートバーとし、ついで前記シートバーに仕上圧延終了温度:850℃以上とする仕上圧延を施し熱延板とし、ついで前記熱延板を次(1)式
[(Al/28)/(N/14)]/CT ≦ 5.5×10−3      (1)式
(ここで、Al、N:各元素の含有量(質量%)、CT:巻取温度(℃))を満足する巻取温度CTで巻取る工程であり、前記冷延工程が、前記熱延板に酸洗処理を施したのち、冷延圧下率:60~90%とする冷間圧延を施し冷延板とする工程であり、前記焼鈍工程が、前記冷延板に焼鈍処理を施し冷延焼鈍板とする工程で、前記焼鈍処理が焼鈍温度Anを次(2)式
1.0 ≦ {[(Al/28)/(N/14)]/CT}/{[(Al/28)/(N/14)]/An} ≦ 1.5  (2)式
(ここで、Al、N:各元素の含有量(質量%)、CT:巻取温度(℃)、An:焼鈍温度(℃))
を満足する温度とし、300℃~(焼鈍温度−20℃)までの温度域での加熱速度を1~30℃/s、(焼鈍温度−20℃)~(焼鈍温度)までの温度域での加熱速度を0.5~5℃/s、として前記焼鈍温度まで加熱し、その後、5℃/s以上の冷却速度で500℃以下まで冷却する焼鈍処理であり、前記調質圧延工程が、前記冷延焼鈍板に伸び率:0.5~5%の調質圧延を施す工程である、ことを特徴とする冷延鋼板の製造方法。
 (7)(6)において、前記焼鈍温度で150s以下の均熱を行い、その後冷却することを特徴とする冷延鋼板の製造方法。
 (8)(6)または(7)において、前記組成に加えてさらに、質量%で、Ti:0.01%以下、Nb:0.01%以下、B:0.005%以下のうちから選ばれた1種または2種以上含有することを特徴とする冷延鋼板の製造方法。
 (9)(6)ないし(8)のいずれかにおいて、前記組成に加えてさらに、質量%で、Mo:0.01%以下、Ni:0.01%以下、Cr:0.01%以下、Cu:0.01%以下のうちから選ばれた1種または2種以上含有することを特徴とする冷延鋼板の製造方法。
 (10)(6)ないし(9)のいずれかにおいて、前記焼鈍工程後で、前記調質圧延工程前に、鋼板表面に亜鉛めっき層を形成する亜鉛めっき処理工程を施すことを特徴とする冷延鋼板の製造方法。
 (11)(10)において、前記焼鈍工程で前記冷延板を前記5℃/s以上の冷却速度で500℃以下まで冷却したのち、前記亜鉛めっき処理工程として、引き続き、溶融亜鉛めっき浴に浸漬し、鋼板表面に溶融亜鉛めっき層を形成する溶融亜鉛めっき処理、あるいはさらに前記溶融亜鉛めっき層を合金化する合金化処理、を施す溶融亜鉛めっき処理工程を施すことを特徴とする冷延鋼板の製造方法。
 本発明によれば、時効性を抑制し、低い歪付加でも高い焼付硬化性を示す、時効性および焼付硬化性に優れる冷延鋼板を容易に、しかも安価に提供でき、産業上格段の効果を奏する。本発明によれば、曲げや浅い張り出しに代表されるような、比較的軽度な加工で成形される鋼材を安価に提供できる。本発明鋼板は、例えば事務デスク用天板などの事務用部材や、自動販売機、冷蔵庫のパネル、エアコン室外機などの家電製品用部材や、さらには建材用部材向け鋼材として使用できる。本発明鋼板は、製品の軽量化、コスト低減等に寄与し、産業上有効な効果がある。
 まず、本発明冷延鋼板の組成限定理由について説明する。以下、とくに断わらない限り質量%は、単に%で記す。
 C:0.020~0.070%
 Cは、固溶して鋼の強度を増加させる元素であるが、多量の含有は成形性(加工性)を低下させるという悪影響を及ぼす。とくに固溶C量が多くなると、時効性が助長され、成形時にしわを発生させるなどの悪影響を与えるため、本発明では固溶C量をできるだけ低減することが望ましい。本発明では、巻取時や焼鈍時に、Cをセメンタイトなどの析出物として析出させて、固溶Cを極力低減する。この方法では、予め適量のCを含有させておくことが必要となるため、Cは0.020%以上とした。Cが0.020%未満では、炭化物析出のための過飽和度が小さく、Cが炭化物として十分に析出しない。一方、0.070%を超えて含有すると、加工性が著しく低下する。このため、Cは0.020~0.070%の範囲に限定した。
 Si:0.05%以下
 Siは、固溶して鋼の強度を増加させる元素であるが、多量に含有すると鋼が硬質化し、加工性が低下する。また、Siを多量に含有すると、とくに焼鈍時にSi酸化物を生成し、メッキ性を阻害するなどの悪影響を及ぼす。また、Siは、フェライト安定化傾向の強い元素であり、例えば熱間圧延時には、オーステナイト(γ)からフェライト(α)への変態温度が上昇し、オーステナイト域で圧延を完了させることが困難となる場合がある。このようなことから、Siは0.05%以下に限定した。なお、Siの含有量が0.001%以上で鋼の強度を増加させる効果が得られる。
 Mn:0.1~0.5%
 Mnは、固溶して鋼の強度を増加させる作用を有するとともに、MnSを形成して、熱間割れを誘発し表面性状を著しく劣化させるなどの悪影響を及ぼす有害なSを、無害化する元素である。このような効果を得るためには、0.1%以上の含有を必要とする。一方、0.5%を超えて含有すると、硬質化し加工性が低下したり、さらに焼鈍時のフェライトの再結晶を抑制するなどの悪影響が顕著となる。このため、Mnは0.1~0.5%の範囲に限定した。なお、好ましくは0.3%以下である。
 P:0.05%以下
 Pは、強度増加に寄与する元素であるが、粒界に偏析して、延性や靭性を低下させる悪影響を及ぼす。このため、とくにPによる強度増加を利用する必要がない場合には、できるだけ低減することが望ましいが、0.05%程度以下であれば、上記した悪影響は許容できる。このため、Pは0.05%以下に限定した。なお、好ましくは0.03%以下である。
 S:0.02%以下
 Sは、熱間割れを誘発し表面性状を著しく劣化させる。またさらに、Sは、鋼中ではほとんどが介在物として存在し強度にほとんど寄与しないばかりか、粗大なMnSを形成し、延性を低下させる。このようなことから、Sは不純物として、できるだけ低減することが望ましいが、0.02%以下であれば、上記した悪影響は許容できる。このため、Sは0.02%以下に限定した。
 Al:0.02~0.08%
 Alは、本発明において重要な元素である。Alは、脱酸剤として作用する元素であり、この効果を十分に得るためには0.02%以上の含有を必要とする。なお、より好ましくは0.02%超である。また、Alは、Nと結合してAlNとして、Nを固定する作用を有する。本発明では、焼付硬化性の増加に寄与する固溶Nを所望の範囲内で安定して確保するために、Alを適正範囲に調整する。
 AlNの析出は、温度に影響される。このため、所望の固溶N量を安定して確保するために、Al含有量を、巻取温度との関係で(1)式を、さらに巻取温度と焼鈍温度との関係で(2)式を満足するように調整する。(1)式、(2)式を満足させるためには、少なくとも0.02%以上のAl含有を必要とする。一方、Alの多量含有は、熱間圧延時における、γ→α変態の変態点を上昇させるため、オーステナイト域で圧延を完了させることが困難になる。このようなことから、Alは0.02~0.08%に限定した。なお、好ましくは0.060%以下である。
 N:0.005~0.02%
 Nは、固溶して鋼の強度を増加させる元素であり、本発明では焼付硬化性の向上のために、固溶Nを活用する。所望の優れた焼付硬化性を確保するために、固溶Nとして、0.0010%以上確保する必要があり、Nは、少なくとも0.005%の含有を必要とする。一方、0.02%を超える含有は、スラブ割れの発生傾向が強まり、表面疵が発生する恐れがある。このため、Nは0.005~0.02%の範囲に限定した。なお、好ましくは0.007~0.015%である。
 固溶N:0.0010%以上
 固溶Nは、歪付与により導入された転位に、塗装焼付処理時に固着し、鋼板強度を増加させる。所望のΔYS(歪付与時の応力に対する塗装焼付処理後の降伏応力の増加量)を確保するためには、本発明では固溶N量は0.0010%以上とする。なお、固溶N量は、Al含有量を上記したような範囲内で含有した上で、さらに、巻取温度、焼鈍温度を適正化することにより調整する。なお、固溶N量は、0.0020%以上とすることが好ましい。より好ましくは0.0040%以上である。
 上記した成分が基本の成分であり、所望の強度に応じて、基本組成に加えてさらに、必要に応じて、Ti:0.01%以下、Nb:0.01%以下、B:0.005%以下のうちから選ばれた1種または2種以上、および/または、Mo:0.01%以下、Ni:0.01%以下、Cr:0.01%以下、Cu:0.01%以下のうちから選ばれた1種または2種以上、を含有できる。
 Ti:0.01%以下、Nb:0.01%以下、B:0.005%以下のうちから選ばれた1種または2種以上
 Ti、Nb、Bはいずれも、冷延鋼板のフェライトを微細化する作用を有する元素であり、必要に応じて選択して1種または2種以上を含有できる。このような効果を得るためには、それぞれTi:0.001%以上、Nb:0.001%以上、B:0.0005%以上、とすることが望ましいが、過剰の含有は、固溶N量が低減し、焼付け硬化性が低下する。このため、含有する場合には、それぞれTi:0.01%以下、Nb:0.01%以下、B:0.005%以下に限定する。
 Mo:0.01%以下、Ni:0.01%以下、Cr:0.01%以下、Cu:0.01%以下のうちから選ばれた1種または2種以上
 Mo、Ni、Cr、Cuはいずれも、固溶強化により鋼板強度を増加させる作用を有する元素であり、必要に応じて選択して1種または2種以上を含有できる。このような効果を得るためには、それぞれMo:0.001%以上、Ni:0.001%以上、Cr:0.001%以上、Cu:0.001%以上とすることが望ましい。一方、過剰の含有は、延性の低下を招くため、それぞれMo:0.01%以下、Ni:0.01%以下、Cr:0.01%以下、Cu:0.01%以下に限定する。
 上記した成分以外の残部は、Feおよび不可避的不純物からなる。
 つぎに、本発明冷延鋼板の組織限定理由について説明する。
 本発明冷延鋼板は、延性を確保して加工性を良好とする観点から、面積率で80%以上のフェライト相を含む組織を有する。フェライト相以外の第二相としては、パーライト、マルテンサイト、ベイナイト、残留オーステナイト等が例示できる。フェライト相が面積率で80%未満では、第二相の組織分率が増加し、加工性が低下する。なお、成形性の観点から、フェライト相は面積率で85~95%とすることが好ましい。
 フェライト相の平均結晶粒径は、7μm以下とする。平均結晶粒径が7μmを超えて大きくなると、調質圧延で導入される歪の分布が不均一となり、導入される歪を効果的に鋼板全体に付与できなくなる。なお、好ましくは4~7μmである。なお、フェライトの平均結晶粒径は、光学顕微鏡(倍率:200~1000倍)で20視野以上観察し、JIS法に準拠した切断法や画像解析により算出する値を用いるものとする。
 また、フェライト相粒内には、炭化物を主体とする析出物を析出、分散させる。これにより固溶Cを可能な限り低減でき、時効による降伏伸びの出現を抑制できる。析出物の大きさは、平均の円相当径で0.05~5μmとする。焼付硬化量(ΔYS)は析出物の粒径に大きく影響されるため、この程度の大きさの析出物を適正量存在させることにより、ΔYS:50MPa以上の焼付硬化量を安定して確保できる。析出物の大きさが平均で0.05μm未満では、焼付硬化量が小さく、ΔYS:50MPa以上を安定して確保できない。一方、平均で5μmを超えて大きい場合には、歪みを付与しても焼付硬化量が小さく、所望の特性を得ることができない。
 なお、上記した大きさの析出物は、1~100個/0.01mmの析出密度で存在させることが好ましい。析出密度が1個/0.01mmと未満では、焼付硬化量が小さく、ΔYS:50MPa以上を安定して確保できない。一方、100個/0.01mmを超えると加工性が低下する。
 本発明冷延鋼板の製造方法では、鋼素材に、熱延工程と、冷延工程と、焼鈍工程と、さらに調質圧延工程を順次施して、冷延鋼板とする。
 つぎに、本発明冷延鋼板の好ましい製造方法について説明する。
 鋼素材の製造方法では、質量%で、C:0.020~0.070%、Si:0.05%以下、Mn:0.1~0.5%、P:0.05%以下、S:0.02%以下、Al:0.02~0.08%、N:0.005~0.02%を含み、残部Feおよび不可避的不純物からなる組成の鋼素材が得られればよく、とくに限定する必要がないが、上記した組成の溶鋼を、転炉法、電炉法等の常用の溶製方法で、溶製し、連続鋳造法等の、常用の鋳造方法でスラブ等の鋼素材とすることが好ましい。鋼素材の鋳造方法は、成分のマクロな偏析を防止すべく違続鋳造法とすることが望ましいが、造塊法、薄スラブ鋳造法によってもなんら問題はない。
 得られた鋼素材はついで、熱延工程を施されるが、熱間圧延のための加熱は、いったん室温まで冷却し、その後再加熱する方法に加えて、室温まで冷却しないで、温片のままで加熱炉に装入する、あるいはわずかの保熱を行った後に直ちに圧延する直送圧延などの省エネルギープロセスも問題なく適用できる。
 熱延工程は、鋼素材に、所定温度で加熱し、粗圧延と仕上圧延とからなる熱間圧延を施し熱延板とし、ついで巻き取る工程とする。
 加熱温度は1150℃以上とすることが好ましい。
 熱間圧延における加熱では、加熱中にAlN、FeCなどの炭窒化物を一旦固溶させ、巻取り後に炭化物のみを析出させる必要がある。このため、熱間圧延の加熱温度は1150℃以上に限定することが好ましい。加熱温度が1150℃未満では、炭窒化物の固溶が不十分で、巻取り後に適正な大きさの析出物とすることができない。加熱温度の上限はとくに限定する必要はないが、結晶粒粗大化、酸化によるスケールロス等の観点から1300℃以下とすることが好ましい。
 加熱された鋼素材は、粗圧延され所定寸法形状のシートバーとされるが、粗圧延の条件については、所定寸法形状を確保できればよく、とくに限定する必要はない。ついで、シートバーに仕上圧延を施し熱延板とする。
 仕上圧延の仕上圧延終了温度は850℃以上とすることが好ましい。
 本発明では、仕上圧延はオーステナイト(γ)域で行うことが好ましい。仕上圧延において、鋼板の温度が、γ域からフェライト(α)域になると、圧延荷重が急激に低下し、圧延機の荷重制御が困難になり、破断などの通板中のトラブルが発生する危険性がある。一方、このような危険は、鋼板温度を入側から、α域の温度として通板すれば回避できるが、圧延温度が低下して、熱延板の組織が未再結晶フェライトとなる。その後の工程である冷間圧延時に圧延荷重が増大してしまうという問題が生じる。このようなことから、仕上圧延はγ域で終了させることとし、本発明の鋼組成範囲であれば、850℃以上とすることが好ましい。一方、仕上圧延終了温度の上限はとくに限定する必要はないが、高くなりすぎると、結晶粒が粗大化し、冷延板の加工性が低下するという問題があるため、概ね950℃程度以下とすることが好ましい。
 得られた熱延板は、ついでコイル状に巻き取られる。巻取りまでの冷却速度は、特に規定する必要はなく、空冷以上の冷却速度があれば十分である。なお、必要に応じて、強制冷却、例えば100℃/s以上の急冷をおこなってもよい。
 本発明では巻取温度CTは、Al、N含有量との関係で、次(1)式
[(Al/28)/(N/14)]/CT ≦ 5.5×10−3      (1)式
(ここで、Al、N:各元素の含有量(質量%)、CT:巻取温度(℃))
を満足するように調整する。
 本発明では、AlNの析出を抑制し、熱延板において所望の固溶N量を確保するため、巻取温度CTを、Al量、N量に関係する(1)式を満足するように調整する。巻取温度CTが上記(1)式を満足しない場合には、熱延板において所望の固溶N量を確保できなくなり、冷延鋼板で、所望の優れた焼付硬化性を確保できなくなる。なお、上記した条件で熱延板を巻き取ることにより、固溶Cは炭化物として析出するとともに、フェライト相の結晶粒径が微細化する。
 熱延板はついで、冷延工程を施される。冷延工程では、熱延板に酸洗処理を施したのち、冷延圧下率:60~90%とする冷間圧延を施し冷延板とする。
 熱延板を酸洗した後の冷延圧下率は、熱延板と製品板の板厚によって決定することが好ましい。通常、冷延圧下率:60%以上であれば、加工性、板厚精度においてとくに問題ない。一方、冷延圧下率が90%を超えると、冷間圧延機への負荷が大きくなりすぎて、操業が困難となる。このため、冷延圧下率は60~90%の範囲に限定することが好ましい。
 冷延板はついで、焼鈍工程を施される。
 焼鈍工程は、冷延板に焼鈍処理を施し冷延焼鈍板とする工程である。焼鈍処理においては、焼鈍温度Anを次(2)式
1.0 ≦ {[(Al/28)/(N/14)]/CT}/{[(Al/28)/(N/14)]/An} ≦ 1.5  (2)式
(ここで、Al、N:各元素の含有量(質量%)、CT:巻取温度(℃)、An:焼鈍温度(℃))
を満足する温度とする。本発明の焼鈍処理においては、所望の固溶N量を確保し、所望の焼付硬化性を得るために、まず、焼鈍温度Anを、(2)式を満足する温度に調整する。固溶N量は、Al量、N量、および、巻取温度、焼鈍温度に依存するため、所望の固溶N量を確保には、焼鈍温度を、Al量、N量、および、巻取温度、焼鈍温度の関係式である(2)式を満足させるように調整することが重要となる。焼鈍温度が、(2)式を満足しない場合には、所望の固溶N量を確保することが難しくなる。
 上記した焼鈍温度Anまでの加熱は、加熱速度を二段階に変化させた加熱とする。焼鈍温度までの加熱速度を二段階に変化させることにより、粒内の析出物(炭化物)の大きさ、析出量を所望の分布状態とすることができる。
 第一段の加熱は、300℃~(焼鈍温度−20℃)までの温度域での加熱であり、加熱速度を1~30℃/sとする。この温度域での加熱速度が、1℃/s未満では、熱延板で生成した炭化物が溶解し、固溶C量が増加する。一方、30℃/sを超えて大きくなると、フェライト相粒内への炭化物等の析出が不十分となり、固溶C量が多くなり、歪付与−塗装焼付処理後に降伏伸びを低減できない。このようなことから、この温度域での加熱速度は1~30℃/sの範囲内に限定する。
 また第二段の加熱は、(焼鈍温度−20℃)~(焼鈍温度)までの温度域での加熱であり、加熱速度を0.5~5℃/sとする。この温度域での加熱速度が0.5℃/s未満では、炭化物が溶解し、固溶C量が増加し、歪付与−塗装焼付処理後に降伏伸びを低減できない。一方、5℃/sを超えると、フェライト相粒内への炭化物等の析出が不十分となり、固溶C量が多くなり、歪付与−塗装焼付処理後に降伏伸びを低減できない。このようなことから、この温度域での加熱速度は0.5~5℃/sの範囲内に限定する。
 上記した二段階の加熱により、焼鈍温度Anまで加熱したのち、焼鈍温度Anで150s以下の均熱を行うことが好ましい。均熱時間が150sを超えて長時間となると、粒が成長し粗大粒となるため、加工時に肌荒れの原因となり、表面性状が低下する。このため、焼鈍温度Anでの均熱時間は150s以下の範囲内に限定することが好ましい。なお、本発明では、焼鈍温度Anでの均熱時間は0s、すなわち、前記焼鈍温度Anに到達後直ちに冷却を開始する場合、をも含むものとする。なお、15s未満では、再結晶が完了しないか、完了しても粒成長が抑制され、延性(伸び)が低下する場合があり、より好ましくは15s以上である。均熱後の冷却は、5℃/s以上の冷却速度で500℃以下まで冷却する。
 均熱後の冷却速度が5℃/s未満では、フェライト相粒内の析出物の粗大化が著しくなり、所望の析出物の大きさを確保できにくくなり、所望の焼付硬化量を確保できなくなる。冷却の停止温度が500℃超では、その後の冷却により、炭化物の粗大化が進行する。このため、均熱後には、5℃/s以上の冷却速度で500℃以下まで冷却することが好ましいとした。なお、500℃より低い領域での冷却速度はとくに限定する必要はない。また、冷却途中で保持を行うなどの熱履歴をとってもよい。
 また、必要に応じて、焼鈍工程後に、耐腐食性を向上させるために溶融亜鉛めっきや電気亜鉛めっきなどの、亜鉛めっき層を鋼板表面に形成する亜鉛めっき処理工程を、調質圧延工程前に行ってもよい。例えば、焼鈍工程の後に、引き続き、480℃近傍で溶融亜鉛めっき処理を施す、溶融亜鉛めっき処理工程を施してもよい。溶融亜鉛めっき処理工程では、好ましくは、上記した焼鈍処理で冷延板を5℃/s以上の冷却速度で500℃以下の所定の温度、好ましくは450℃程度の温度まで冷却する焼鈍工程ののち、引き続き、480℃近傍の温度に保持された溶融亜鉛めっき浴に浸漬し、鋼板表面に溶融亜鉛めっき層を形成する溶融亜鉛めっき処理、あるいはさらに形成された溶融亜鉛めっき層を、好ましくは450℃以上550℃以下に加熱し、鉄・亜鉛合金層とする、めっき層を合金化する合金化処理を施すことが好ましい。
 焼鈍工程後、あるいは焼鈍工程、溶融亜鉛めっき工程あるいは亜鉛めっき工程後には、調質圧延工程を施す。調質圧延工程は、冷延焼鈍板に伸び率:0.5~5%の調質圧延を施す工程とする。
 冷延焼鈍板に、調質圧延を施して形状を矯正するとともに、鋼板(表面)に適正な歪みを付与して、冷延鋼板における時効によるしわの発生を抑制することができる。部材への加工時に鋼板に付加される加工量が少ない軽加工である場合にはとくに、加工−塗装焼付処理後に所望の焼付け硬化量を確保するために、調質圧延における歪付加量が重要となる。本発明では、調質圧延における伸び率は0.5~5%の範囲に限定する。
 調質圧延での伸び率が0.5%未満では、部材への加工量が少ない軽加工である場合にはとくに、所望の焼付け硬化量を確保することが困難となる。一方、伸び率が5%を超えて大きくなると、加工硬化により鋼板強度が高くなり、成形性が低下するため、加工後に形状不良となる場合が多発する。なお、伸び率は、好ましくは3%以下である。
 以下に、実施例に基づきさらに、本発明について詳細に説明する。
[実施例1]
 表1に示す組成の鋼素材(スラブ)を出発素材とし、表2に示す条件で、熱延工程、冷延工程、焼鈍工程、さらに調質圧延工程を施し、表2に示す板厚の冷延鋼板とした。
 得られた冷延鋼板について、固溶N量、組織、引張特性、焼付硬化性、時効性を調査した。試験方法はつぎのとおりとした。
 (1)固溶N量測定
 得られた冷延鋼板から電解抽出用試験片を採取し、アセチルアセトン系電解液中で定電位電解法により抽出した電解抽出物中のN量を分析し、析出N量とした。得られた析出N量を鋼中の全N量から差し引き、固溶N量とした。
 (2)組織観察試験
 得られた冷延鋼板から組織観察用試験片を採取し、圧延方向断面を研磨し、腐食(ナイタール液)して、板厚の1/4から3/4の位置について、光学顕微鏡(倍率:200~1000倍)または走査型電子顕微鏡(倍率:500~2000倍)で視野数:20視野以上を観察し、撮像して組織を同定するとともに、画像解析装置を用いてフェライト相の平均結晶粒径、および各相の組織分率を求めた。また、走査型電子顕微鏡(倍率:2000~5000倍)または透過型電子顕微鏡(倍率:2000~5000倍)を用いて、フェライト粒内に析出した析出物の大きさ、および単位面積あたりの析出物個数(析出密度)を測定した。ここで、フェライト相の平均結晶粒径は、JIS G 0552−1998の規定に準拠した切断法で算出した。また、析出物の大きさは、各々の析出物の面積を求め、前記面積から各々の析出物の円相当径を算出し、得られた値の算術平均を求め、平均の円相当径として表示した。
 (3)引張試験
 得られた冷延鋼板から、圧延方向が引張方向となるようにJIS5号引張試験片を採取し、引張速度:10mm/minで引張試験を行い、引張特性(降伏強さYS、引張強さTS、伸びEl)を求めた。
 (4)焼付硬化性試験
 得られた冷延鋼板から、圧延方向が引張方向となるようにJIS5号引張試験片を採取し、引張試験で表3に示す予歪を付加し、予歪加工時の降伏強さYSPSを求めた(予歪加工)。そして、予歪加工後、表3に示す条件の塗装焼付処理相当の熱処理(塗装焼付相当熱処理)を施した。予歪加工−熱処理後、引張試験を行い、降伏強さYSHT、降伏伸び(ElHTを求めた。焼付硬化性として、熱処理前後の降伏強さ上昇量ΔYS(=降伏強さYSHT−予歪加工時の応力YSPS)を算出した。
 (5)時効性
 得られた冷延鋼板を25℃で3ヶ月間保管したのち、圧延方向が引張方向となるようにJIS5号引張試験片を採取し、引張試験を実施し、降伏伸びYElを求め、時効性を評価した。YElが2%以下である場合に、時効性に優れると評価した。
 得られた結果を表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 本発明例はいずれも、平均粒径が7μm以下のフェライト相が面積率で80%以上で、フェライト粒内に円相当径(平均)が0.005~5μmの析出物が分散した組織が認められた。
なお、パーライト、ベイナイトなどがフェライト以外の第二相として認められた。本発明例はいずれも、引張強さTS:340MPa以上の強度を有し、加工性に優れ、時効性に優れ、さらに2.0%未満の歪を付加する、予歪加工−塗装焼付処理相当熱処理による降伏強さの増加量が、50MPa以上となり、軽加工を施されても大きい焼付硬化量が得られる、焼付硬化性に優れた冷延鋼板となっている。一方、本発明範囲を外れる比較例は、伸びが低く加工性が低下しているか、YElが大きく時効するか、あるいは焼付硬化量が少ないか、であり所望の特性を有する冷延鋼板が得られていない。
[実施例2]
 表1に示す組成の鋼素材(スラブ)の一部を、表4に示す条件で、熱延工程、冷延工程、焼鈍工程、さらに溶融亜鉛めっき処理工程、調質圧延工程を施し、表4に示す板厚のめっき層を有する冷延鋼板(めっき鋼板)とした。なお、溶融亜鉛めっき処理工程では、焼鈍工程の冷却途中で440℃まで冷却したのち、引き続き、溶融亜鉛めっき浴(浴温:480~520℃)に浸漬する溶融亜鉛めっき処理を施し、表4に示す付着量の溶融亜鉛めっき層を形成した。一部の溶融亜鉛めっき処理工程では、溶融亜鉛めっき処理に加えて、さらに480~530℃に加熱し、めっき層を合金化し合金化溶融亜鉛めっき層とする合金化処理を施した。
 得られた冷延鋼板(めっき鋼板)について、固溶N量、組織、引張特性、焼付硬化性、時効性を調査した。試験方法は(実施例1)と同様とした。さらに、得られた冷延鋼板(めっき鋼板)について、表面を目視で観察し、不めっきの有無を調査した。
 得られた結果を表5に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 本発明例はいずれも、不めっきもなく、表面性状に優れ、かつめっき処理後においても、引張強さTS:340MPa以上の強度を有し、加工性に優れ、時効性に優れ、さらに軽加工を施されても大きい焼付硬化量が得られる、焼付硬化性に優れた冷延鋼板(めっき鋼板)となっている。一方、本発明の範囲を外れる比較例は、所望の特性を有する冷延鋼板(めっき鋼板)とはなっていない。

Claims (11)

  1.  質量%で、
    C:0.020~0.070%、     Si:0.05%以下、
    Mn:0.1~0.5%、         P:0.05%以下、
    S:0.02%以下、          Al:0.02~0.08%、
    N:0.005~0.02%
    を含み、固溶Nが0.0010%以上であり、残部Feおよび不可避的不純物からなる組成と、平均結晶粒径が7μm以下のフェライト相を面積率で80%以上含み、前記フェライト相の結晶粒内に、平均の円相当径で0.05~5μmの大きさの析出物が析出、分散した組織と、を有することを特徴とする冷延鋼板。
  2.  前記析出物の析出密度が1~100個/0.01mmであることを特徴とする請求項1に記載の冷延鋼板。
  3.  前記組成に加えてさらに、質量%で、Ti:0.01%以下、Nb:0.01%以下、B:0.005%以下のうちから選ばれた1種または2種以上含有することを特徴とする請求項1または2に記載の冷延鋼板。
  4.  前記組成に加えてさらに、質量%で、Mo:0.01%以下、Ni:0.01%以下、Cr:0.01%以下、Cu:0.01%以下のうちから選ばれた1種または2種以上含有することを特徴とする請求項1ないし3のいずれかに記載の冷延鋼板。
  5.  表面に亜鉛めっき層を有することを特徴とする請求項1ないし4のいずれかに記載の冷延鋼板。
  6.  鋼素材に、熱延工程と、冷延工程と、焼鈍工程と、調質圧延工程を順次施して、冷延鋼板とするにあたり、前記鋼素材を、質量%で、
    C:0.020~0.070%、     Si:0.05%以下、
    Mn:0.1~0.5%、         P:0.05%以下、
    S:0.02%以下、          Al:0.02~0.08%、
    N:0.005~0.02%
    を含み、残部Feおよび不可避的不純物からなる組成の鋼素材とし、
    前記熱延工程が、前記鋼素材に加熱温度:1150℃以上とする加熱を施したのち、粗圧延してシートバーとし、ついで前記シートバーに仕上圧延終了温度:850℃以上とする仕上圧延を施し熱延板とし、ついで前記熱延板を下記(1)式を満足する巻取温度CTで巻取る工程であり、前記冷延工程が、前記熱延板に酸洗処理を施したのち、冷延圧下率:60~90%とする冷間圧延を施し冷延板とする工程であり、前記焼鈍工程が、前記冷延板に焼鈍処理を施し冷延焼鈍板とする工程で、前記焼鈍処理が焼鈍温度Anを下記(2)式を満足する温度とし、300℃~(焼鈍温度−20℃)までの温度域での加熱速度を1~30℃/s、(焼鈍温度−20℃)~(焼鈍温度)までの温度域での加熱速度を0.5~5℃/s、として前記焼鈍温度まで加熱し、その後、5℃/s以上の冷却速度で500℃以下まで冷却する焼鈍処理であり、前記調質圧延工程が、前記冷延焼鈍板に伸び率:0.5~5%の調質圧延を施す工程である、ことを特徴とする冷延鋼板の製造方法。
       記
    [(Al/28)/(N/14)]/CT ≦ 5.5×10−3      (1)式
    1.0 ≦ {[(Al/28)/(N/14)]/CT}/{[(Al/28)/(N/14)]/An} ≦ 1.5  (2)式
    ここで、Al、N:各元素の含有量(質量%)、
    CT:巻取温度(℃)、
    An:焼鈍温度(℃)。
  7.  前記焼鈍温度で150s以下の均熱を行い、その後冷却することを特徴とする請求項6に記載の冷延鋼板の製造方法。
  8.  前記組成に加えてさらに、質量%で、Ti:0.01%以下、Nb:0.01%以下、B:0.005%以下のうちから選ばれた1種または2種以上含有することを特徴とする請求項6または7に記載の冷延鋼板の製造方法。
  9.  前記組成に加えてさらに、質量%で、Mo:0.01%以下、Ni:0.01%以下、Cr:0.01%以下、Cu:0.01%以下のうちから選ばれた1種または2種以上含有することを特徴とする請求項6ないし8のいずれかに記載の冷延鋼板の製造方法。
  10.  前記焼鈍工程後で、前記調質圧延工程前に、鋼板表面に亜鉛めっき層を形成する亜鉛めっき処理工程を施すことを特徴とする請求項5ないし9のいずれかに記載の冷延鋼板の製造方法。
  11.  前記焼鈍工程で前記冷延板を前記5℃/s以上の冷却速度で500℃以下の所定の温度まで冷却したのち、前記亜鉛めっき処理工程として、引き続き、溶融亜鉛めっき浴に浸漬し、鋼板表面に溶融亜鉛めっき層を形成する溶融亜鉛めっき処理、あるいはさらに前記溶融亜鉛めっき層を合金化する合金化処理、を施す溶融亜鉛めっき処理工程を施すことを特徴とする請求項10に記載の冷延鋼板の製造方法。
PCT/JP2010/056895 2009-04-13 2010-04-13 時効性および焼付け硬化性に優れた冷延鋼板およびその製造方法 WO2010119971A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020117024271A KR101402365B1 (ko) 2009-04-13 2010-04-13 시효성 및 베이킹 경화성이 우수한 냉연 강판 및 그 제조 방법
CN201080016714.1A CN102395695B (zh) 2009-04-13 2010-04-13 时效性和烧结硬化性优良的冷轧钢板及其制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-096733 2009-04-13
JP2009096733 2009-04-13
JP2010069962A JP5549307B2 (ja) 2009-04-13 2010-03-25 時効性および焼付け硬化性に優れた冷延鋼板およびその製造方法
JP2010-069962 2010-03-25

Publications (1)

Publication Number Publication Date
WO2010119971A1 true WO2010119971A1 (ja) 2010-10-21

Family

ID=42982627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056895 WO2010119971A1 (ja) 2009-04-13 2010-04-13 時効性および焼付け硬化性に優れた冷延鋼板およびその製造方法

Country Status (5)

Country Link
JP (1) JP5549307B2 (ja)
KR (1) KR101402365B1 (ja)
CN (1) CN102395695B (ja)
MY (1) MY157318A (ja)
WO (1) WO2010119971A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102816986A (zh) * 2011-06-10 2012-12-12 宝山钢铁股份有限公司 一种带钢连续热镀锌方法
WO2017036260A1 (zh) * 2015-08-28 2017-03-09 宝山钢铁股份有限公司 屈服强度500MPa级高延伸率热镀铝锌及彩涂钢板及其制造方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5018900B2 (ja) * 2010-01-15 2012-09-05 Jfeスチール株式会社 時効後の成形性及び形状凍結性に優れた冷延鋼板およびその製造方法
CN102703808B (zh) * 2012-06-12 2014-05-14 武汉钢铁(集团)公司 一种300MPa级汽车结构件用钢及其生产方法
CN102719736B (zh) * 2012-06-12 2014-07-09 武汉钢铁(集团)公司 一种屈强比≥0.9的超细晶粒滑道用钢及其生产方法
CN102732780B (zh) * 2012-06-18 2013-12-25 首钢总公司 冰箱外板用热镀锌板及其生产方法
KR101597411B1 (ko) * 2013-08-30 2016-02-25 현대제철 주식회사 강판 및 그 제조 방법
KR101505293B1 (ko) * 2013-05-31 2015-03-23 현대제철 주식회사 강판
JP6065884B2 (ja) * 2013-07-31 2017-01-25 Jfeスチール株式会社 切断端面の耐食性に優れた鋼板およびその製造方法
CN103498101B (zh) * 2013-10-22 2016-04-13 武汉钢铁(集团)公司 低成本耐时效家电彩涂板及其生产方法
KR101523966B1 (ko) * 2014-10-22 2015-05-29 현대제철 주식회사 강판 제조 방법
MX2017012196A (es) * 2015-03-25 2017-12-15 Jfe Steel Corp Lamina de acero de alta resistencia y metodo para la produccion de la misma.
CN106191682B (zh) * 2015-04-30 2018-03-27 上海梅山钢铁股份有限公司 一种易开盖拉环用冷轧热浸镀锌钢板及其生产方法
CN105331887B (zh) * 2015-11-25 2017-03-22 武汉钢铁(集团)公司 一种320MPa级厚规格热镀锌钢及其生产方法
KR101988773B1 (ko) * 2017-12-26 2019-06-12 주식회사 포스코 내시효성 및 가공성이 우수한 냉연강판 및 그 제조방법
CN111763876A (zh) * 2019-04-02 2020-10-13 上海梅山钢铁股份有限公司 一种机动车消音片用冷轧钢板及其生产方法
CN110684929B (zh) * 2019-10-13 2021-06-08 唐山钢铁集团有限责任公司 一种地下管廊波纹管用超厚镀层热镀锌钢带及其生产方法
JP7131596B2 (ja) * 2019-12-04 2022-09-06 Jfeスチール株式会社 高強度缶用鋼板およびその製造方法
KR102326110B1 (ko) * 2019-12-20 2021-11-16 주식회사 포스코 소부경화성 및 상온내시효성이 우수한 냉연강판 및 도금강판, 그리고 이들의 제조방법
DE102020200326A1 (de) * 2020-01-13 2021-07-15 Thyssenkrupp Steel Europe Ag Verfahren zur Herstellung eines oberflächenveredelten und oberflächenkonditionierten Stahlblechs

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004211126A (ja) * 2002-12-27 2004-07-29 Jfe Steel Kk 超微細粒組織を有し伸びフランジ性に優れる溶融亜鉛めっき冷延鋼板およびその製造方法
JP2007077510A (ja) * 2006-11-16 2007-03-29 Jfe Steel Kk 耐時効性に優れた高強度高延性亜鉛めっき鋼板およびその製造方法
JP2008190032A (ja) * 2007-01-10 2008-08-21 Nippon Steel Corp 加工性及び耐衝突特性に優れた高強度冷延鋼板及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2380377C (en) * 2000-05-31 2007-01-09 Kawasaki Steel Corporation Cold-rolled steel sheets with superior strain-aging hardenability
JP5194878B2 (ja) * 2007-04-13 2013-05-08 Jfeスチール株式会社 加工性および溶接性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法
JP5135868B2 (ja) * 2007-04-26 2013-02-06 Jfeスチール株式会社 缶用鋼板およびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004211126A (ja) * 2002-12-27 2004-07-29 Jfe Steel Kk 超微細粒組織を有し伸びフランジ性に優れる溶融亜鉛めっき冷延鋼板およびその製造方法
JP2007077510A (ja) * 2006-11-16 2007-03-29 Jfe Steel Kk 耐時効性に優れた高強度高延性亜鉛めっき鋼板およびその製造方法
JP2008190032A (ja) * 2007-01-10 2008-08-21 Nippon Steel Corp 加工性及び耐衝突特性に優れた高強度冷延鋼板及びその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102816986A (zh) * 2011-06-10 2012-12-12 宝山钢铁股份有限公司 一种带钢连续热镀锌方法
WO2017036260A1 (zh) * 2015-08-28 2017-03-09 宝山钢铁股份有限公司 屈服强度500MPa级高延伸率热镀铝锌及彩涂钢板及其制造方法
US10982296B2 (en) 2015-08-28 2021-04-20 Baoshan Iron & Steel Co., Ltd. 500 MPA yield strength-graded, high-stretchability hot-dip aluminum-zinc and color-coated steel plate and manufacturing method therefore

Also Published As

Publication number Publication date
CN102395695B (zh) 2013-12-25
JP2010265545A (ja) 2010-11-25
JP5549307B2 (ja) 2014-07-16
KR101402365B1 (ko) 2014-06-03
KR20120008033A (ko) 2012-01-25
CN102395695A (zh) 2012-03-28
MY157318A (en) 2016-05-31

Similar Documents

Publication Publication Date Title
JP5549307B2 (ja) 時効性および焼付け硬化性に優れた冷延鋼板およびその製造方法
JP5884714B2 (ja) 溶融亜鉛めっき鋼板およびその製造方法
JP5532188B2 (ja) 加工性に優れた高強度鋼板の製造方法
JP5003785B2 (ja) 延性に優れた高張力鋼板およびその製造方法
JP6123957B1 (ja) 高強度鋼板およびその製造方法
KR101607041B1 (ko) 내시효성과 베이킹 경화성이 우수한 고강도 냉연 강판의 제조 방법
JP5569657B2 (ja) 耐時効性に優れた鋼板およびその製造方法
JP2011017060A (ja) 高強度鋼板およびその製造方法
WO2011118421A1 (ja) 深絞り性に優れた高強度鋼板の製造方法
WO2016152135A1 (ja) 高強度鋼板およびその製造方法
JP4752522B2 (ja) 深絞り用高強度複合組織型冷延鋼板の製造方法
JP2013064169A (ja) 焼付硬化性及び成形性に優れた高強度薄鋼板、めっき薄鋼板並びにそれらの製造方法
CN110629000A (zh) 屈服强度280MPa级冷轧热镀锌钢板及其制造方法
JP5338257B2 (ja) 延性に優れた高降伏比超高張力鋼板およびその製造方法
JP6123958B1 (ja) 高強度鋼板およびその製造方法
JP2013076132A (ja) 焼付硬化性と成形性に優れた高強度薄鋼板およびその製造方法
JP5397263B2 (ja) 高張力冷延鋼板およびその製造方法
JP5151390B2 (ja) 高張力冷延鋼板、高張力亜鉛めっき鋼板およびそれらの製造方法
JP5310920B2 (ja) 耐時効性と焼付き硬化性に優れた高強度冷延鋼板
JP5660291B2 (ja) 成形性に優れた高強度冷延薄鋼板およびその製造方法
JP5903884B2 (ja) 耐腰折れ性に優れた高強度薄鋼板の製造方法
JP2002226937A (ja) 成形後の熱処理による強度上昇能に優れた冷延鋼板およびめっき鋼板ならびに冷延鋼板の製造方法
JP5668361B2 (ja) 高張力冷延鋼板およびその製造方法
JP2006274288A (ja) 表面外観に優れた高強度溶融亜鉛系めっき鋼板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080016714.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10764553

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 4016/KOLNP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117024271

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10764553

Country of ref document: EP

Kind code of ref document: A1