WO2020103141A1 - 植保机械设备控制方法及植保机械设备 - Google Patents

植保机械设备控制方法及植保机械设备

Info

Publication number
WO2020103141A1
WO2020103141A1 PCT/CN2018/117247 CN2018117247W WO2020103141A1 WO 2020103141 A1 WO2020103141 A1 WO 2020103141A1 CN 2018117247 W CN2018117247 W CN 2018117247W WO 2020103141 A1 WO2020103141 A1 WO 2020103141A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant protection
working
mechanical equipment
rate
work
Prior art date
Application number
PCT/CN2018/117247
Other languages
English (en)
French (fr)
Inventor
潘国秀
常子敬
闫光
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2018/117247 priority Critical patent/WO2020103141A1/zh
Priority to CN201880072754.4A priority patent/CN111448136A/zh
Publication of WO2020103141A1 publication Critical patent/WO2020103141A1/zh
Priority to US17/327,383 priority patent/US20210274774A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M7/00Special adaptations or arrangements of liquid-spraying apparatus for purposes covered by this subclass
    • A01M7/0089Regulating or controlling systems
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M7/00Special adaptations or arrangements of liquid-spraying apparatus for purposes covered by this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D1/00Dropping, ejecting, releasing, or receiving articles, liquids, or the like, in flight
    • B64D1/16Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting
    • B64D1/18Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting by spraying, e.g. insecticides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/40UAVs specially adapted for particular uses or applications for agriculture or forestry operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/45UAVs specially adapted for particular uses or applications for releasing liquids or powders in-flight, e.g. crop-dusting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports

Definitions

  • the embodiments of the present invention relate to the technical field of electronic equipment, and in particular, to a plant protection machinery equipment control method and plant protection machinery equipment.
  • plant protection machinery and equipment In order to improve work efficiency, plant protection machinery and equipment usually use multiple working parts at the same time, such as multiple sprinklers or multiple discharge ports, for tasks such as pesticide spraying, fertilization, and seeding.
  • Each working part operates at the same rate, that is, multiple spraying heads perform spraying at the same spraying rate, or multiple discharge ports operate at the same discharging rate. Therefore, when the plant protection machinery and equipment is turning during the operation, the phenomenon of re-spraying and re-spraying will occur on the inside of the turn, and the phenomenon of leaking spray and leakage will occur on the outside of the turn, which will result in uneven operation of the plant protection machinery and equipment during the turn and poor operation effect .
  • Embodiments of the present invention provide a plant protection machinery equipment control method and plant protection machinery equipment, to solve the problem that the existing plant protection machinery equipment has uneven operation and poor operation effect when turning.
  • an embodiment of the present invention provides a plant protection machinery equipment control method, the plant protection machinery equipment is provided with a plurality of working components, and the plurality of work components are compared to a direction perpendicular to the moving direction of the plant protection machinery equipment
  • the above are located in different locations, including:
  • each of the work components is controlled to perform work.
  • an embodiment of the present invention provides a plant protection machinery equipment control method, the plant protection machinery equipment is provided with a plurality of working parts, and the plurality of work members are compared with a direction perpendicular to the moving direction of the plant protection machinery equipment
  • the above are located in different locations, including:
  • each of the work components is controlled to work at the respective work rate.
  • an embodiment of the present invention provides a plant protection machinery device, including a processor and multiple working components;
  • the plurality of working parts are respectively located at different positions compared to the direction perpendicular to the moving direction of the plant protection mechanical equipment;
  • the processor is used to obtain the linear speed of each working component of the plant protection mechanical equipment when the plant protection mechanical equipment moves in a curve; according to the linear speed of each of the working components, determine the operating speed of each of the working components; According to the operation rate of each of the work components, each of the work components is controlled to perform work.
  • an embodiment of the present invention provides a plant protection machinery device, including a processor and multiple working components;
  • the plurality of working parts are respectively located at different positions compared to the direction perpendicular to the moving direction of the plant protection mechanical equipment;
  • the processor is used to obtain speed information of the plant protection mechanical equipment when moving in a curve; based on the speed information, determine the operating rate of each of the working components; according to the operating rate of each of the working components, control each The work components perform work at respective work rates.
  • an embodiment of the present invention provides a plant protection machinery equipment control device (eg, chip, integrated circuit, etc.), including: a memory and a processor.
  • the memory is used to store code for executing a plant protection machinery control method.
  • the processor is configured to call the code stored in the memory to execute the plant protection mechanical equipment control method described in the first aspect or the second aspect of the embodiment of the present invention.
  • an embodiment of the present invention provides a computer-readable storage medium that stores a computer program, where the computer program includes at least one piece of code, and the at least one piece of code can be executed by a computer to control the computer
  • the computer executes the screen brightness adjustment method according to the embodiment of the present invention in the first aspect or the second aspect.
  • an embodiment of the present invention provides a computer program that, when executed by a computer, is used to implement the plant protection mechanical device control method described in the first or second aspect of the embodiment of the present invention.
  • the plant protection mechanical equipment control method and plant protection mechanical equipment determine the working speed of each working component by acquiring the linear speed of each working component of the plant protection mechanical equipment when the plant protection mechanical equipment moves in a curve, according to the linear speed of each working component Work rate, and according to the work rate of each work component, control each work component to work.
  • the working speed of each working part is adaptively determined, so that the plant protection mechanical equipment can still work evenly when the curve moves, which improves the operation effect and solves the problem that the existing plant protection mechanical equipment is working on the curve.
  • the problem is that the work is not uniform when moving, and the work effect is poor.
  • FIG. 1 (a) is a schematic structural diagram of an unmanned aerial system according to an embodiment of the present invention
  • FIG. 1 (b) is a schematic structural diagram of an unmanned aerial system according to an embodiment of the present invention.
  • FIG. 2 is a flowchart of a plant protection mechanical equipment control method provided by an embodiment of the present invention
  • FIG. 3 is a schematic diagram of application of a plant protection mechanical equipment control method according to another embodiment of the present invention.
  • FIG. 4 is a flowchart of a method for controlling plant protection mechanical equipment provided by another embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a plant protection mechanical device according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a plant protection mechanical device according to another embodiment of the present invention.
  • a component when a component is said to be “fixed” to another component, it can be directly on another component or it can also exist in a centered component. When a component is considered to be “connected” to another component, it can be directly connected to another component or there can be centered components at the same time.
  • the embodiments of the present invention provide a plant protection mechanical equipment control method and a plant protection mechanical equipment.
  • the plant protection mechanical equipment includes, but is not limited to, plant protection aviation machinery equipment and plant protection land machinery equipment, for example, plant protection drones, autonomous operation robots, tractor supporting plant protection machinery equipment, self-propelled plant protection machinery equipment, etc.
  • the plant protection drone may, for example, use a rotorcraft (rotorcraft), for example, a multi-rotor aircraft propelled by multiple propulsion devices through the air, and the embodiments of the present invention are not limited thereto.
  • FIG. 1 (a) is a schematic architectural diagram of an unmanned aerial system according to an embodiment of the present invention.
  • FIG. 1 (b) is a schematic structural diagram of an unmanned aerial system according to an embodiment of the present invention.
  • a rotary-wing UAV is taken as an example for description.
  • the unmanned aerial system 100 may include a drone 110, a display device 130, and a control terminal 140.
  • the UAV 110 may include a power system 150, a flight control system 160, a rack, and an operating system 120 carried on the rack.
  • the drone 110 can communicate wirelessly with the control terminal 140 and the display device 130.
  • the rack may include a fuselage and a tripod (also called landing gear).
  • the fuselage may include a center frame and one or more arms connected to the center frame, the one or more arms extending radially from the center frame.
  • the tripod is connected to the fuselage and is used to support the UAV 110 when it lands.
  • the power system 150 may include one or more electronic governors (abbreviated as electric governors) 151, one or more propellers 153, and one or more motors 152 corresponding to the one or more propellers 153, wherein the motor 152 is connected to Between the electronic governor 151 and the propeller 153, the motor 152 and the propeller 153 are disposed on the arm of the drone 110; the electronic governor 151 is used to receive the driving signal generated by the flight control system 160 and provide driving according to the driving signal The current is given to the motor 152 to control the rotation speed of the motor 152. The motor 152 is used to drive the propeller to rotate, thereby providing power for the flight of the drone 110, which enables the drone 110 to achieve one or more degrees of freedom of movement.
  • electric governors abbreviated as electric governors
  • the drone 110 may rotate about one or more rotation axes.
  • the rotation axis may include a roll axis (Roll), a yaw axis (Yaw), and a pitch axis (Pitch).
  • the motor 152 may be a DC motor or an AC motor.
  • the motor 152 may be a brushless motor or a brush motor.
  • the flight control system 160 may include a flight controller 161 and a sensing system 162.
  • the sensing system 162 is used to measure the attitude information of the drone, that is, the position information and status information of the drone 110 in space, for example, three-dimensional position, three-dimensional angle, three-dimensional velocity, three-dimensional acceleration, and three-dimensional angular velocity.
  • the sensing system 162 may include, for example, at least one of a gyroscope, an ultrasonic sensor, an electronic compass, an inertial measurement unit (Inertial Measurement Unit, IMU), a visual sensor, a global navigation satellite system, and a barometer.
  • the global navigation satellite system may be a global positioning system (Global Positioning System, GPS).
  • the flight controller 161 is used to control the flight of the drone 110.
  • the flight of the drone 110 can be controlled according to the attitude information measured by the sensor system 162. It should be understood that the flight controller 161 may control the drone 110 according to pre-programmed program instructions, or may control the drone 110 by responding to one or more control instructions from the control terminal 140.
  • the operating system 120 may include one or more power components 122.
  • the operating system also includes multiple operating components 123 for plant protection operations.
  • the power component 122 can provide work power for the work component.
  • the flight controller 161 may control the movement of the operating system 120 through the power component 122.
  • the operating system 120 may further include a controller for controlling the motion of the operating system 120 by controlling the power component 122.
  • the operating system 120 may be independent of the drone 110 or may be a part of the drone 110.
  • the power component 122 may be a DC power component or an AC power component.
  • the power component 122 may be a motor, a cylinder, or a water pump.
  • the working part 123 may be located at the top of the drone or at the bottom of the drone.
  • the working member 123 may be a shower head, a spreading mechanism, or the like.
  • the plurality of working parts 123 may also be directly fixed on the drone 110, so that the working system 120 may be omitted.
  • the display device 130 is located on the ground end of the unmanned aerial system 100, can communicate with the drone 110 in a wireless manner, and can be used to display the attitude information of the drone 110.
  • the image captured by the imaging device may also be displayed on the display device 130. It should be understood that the display device 130 may be an independent device or may be integrated in the control terminal 140.
  • the control terminal 140 is located at the ground end of the unmanned aerial system 100, and can communicate with the drone 110 in a wireless manner for remote manipulation of the drone 110.
  • FIG. 2 is a flowchart of a method for controlling plant protection machinery and equipment provided by an embodiment of the present invention.
  • the method of this embodiment can be used to control the plant protection machinery and equipment to perform plant protection operations.
  • the plant protection machinery and equipment can be provided with a plurality of working parts, which are located in different directions than the direction perpendicular to the movement direction of the plant protection mechanical equipment. position.
  • the plant protection mechanical equipment control method provided in this embodiment may include:
  • the working parts in this embodiment are parts used for spraying liquid or gas pesticides, fertilizers, etc., and spreading solid pesticides, fertilizers, seeds, etc. when plant protection machinery and equipment are performing plant protection operations.
  • the angular velocity of each working part is the same, which is equal to the angular speed of the plant protection mechanical equipment.
  • the linear velocity of each working part is different.
  • the working parts located inside the turn have a smaller turning radius, so the linear velocity is smaller; the working parts located outside the turn have a larger turning radius, so the linear velocity is larger.
  • a motion sensor can be installed on each working component, and the linear velocity of each working component can be obtained through the motion sensor; or the linear velocity of each working component can be determined according to the speed information of the plant protection machinery.
  • S202 Determine the operation rate of each work component according to the linear speed of each work component.
  • the working rate in this embodiment can be expressed by the mass or volume of the sprayed or spread working material per unit time, and the unit can be liter / second (L / s), milliliter / second (mL / s), kilogram / second (kg / s), grams / second (g / s), etc.
  • the working area per unit time is positively related to the linear velocity of the working part.
  • the total amount of sprayed or spread working materials per unit area is predetermined.
  • the total amount of sprayed or spread working materials per unit time is expected to be positively correlated with the working area of the working parts per unit time . Therefore, the work rate of the work component is positively related to the linear speed of the work component.
  • a working component with a lower linear velocity on the inside of the turn may be determined with a lower operating speed to avoid the plant protection machinery moving along the curve, causing re-spraying and re-spraying on the inside of the turn; it may be on the outside of the turn
  • the working speed of the working part when the linear speed of the working part increases, the working speed of the working part can be increased to avoid leakage spray and leakage; when the linear speed of the working part decreases, the working speed of the working part can be reduced to avoid heavy Spraying and re-spreading phenomenon.
  • each work component is controlled to perform work at the determined operation rate.
  • the method for controlling plant protection machinery and equipment obtains the linear velocity of each working component of the plant protection machinery and equipment when the plant protection machinery and equipment moves in a curve, and determines the operation rate of each working component according to the linear velocity of each work component, and according to The work rate of each work component controls each work component to work.
  • the working speed of each working part is adaptively determined, so that the plant protection mechanical equipment can still work evenly when the curve moves, which improves the operation effect and solves the problem that the existing plant protection mechanical equipment is working on the curve.
  • the problem is that the work is not uniform when moving, and the work effect is poor.
  • an implementation method for obtaining the linear speed of each working part of the plant protection machinery and equipment when the plant protection machinery and equipment moves in a curve may be: acquiring plant protection according to the preset work route and the current position information of the plant protection machinery and equipment The linear speed of each working part of mechanical equipment.
  • the operation route can be planned in advance through the control station and the control terminal.
  • the preset operation route in this embodiment may include the position information of each point in the operation route.
  • the position information may use absolute position information, such as latitude and longitude information, or relative position information, such as relative to the starting point of the operation route. Distance and bearing indication.
  • the current position information of the plant protection machinery and equipment in this embodiment can be obtained, for example, through a positioning system installed on the plant protection machinery and equipment.
  • the positioning system can use a global positioning system (Global Positioning System, GPS), Beidou satellite positioning system, Real-time (Real-Time Kinematic, RTK) positioning system, etc.
  • the plant protection machinery equipment it can be determined whether the plant protection machinery equipment is moving linearly or curvilinearly.
  • the plant protection machinery equipment is performing curved movement, it can also be based on the preset The working route determines the turning radius of the current plant protection machinery and equipment, and thus the linear speed of each working part of the plant protection machinery and equipment can be obtained.
  • an implementation manner of acquiring the linear speed of each working component of the plant protection machinery and equipment may be:
  • the linear speed of each work part of the plant protection machinery and equipment is obtained.
  • the specific position of the plant protection machinery and equipment in the preset operation route can be determined. Then the turning radius of plant protection machinery and equipment can be determined.
  • the distance of each working component from the central axis of the plant protection machinery and equipment in this embodiment can be determined according to the equipment parameters of the plant protection machinery and equipment, and can also be obtained by way of measurement, which is not limited in this embodiment.
  • the current moving speed of the plant protection mechanical device in this embodiment may be the current moving linear speed or the current moving angular speed. It can be obtained by linear velocity sensor or angular velocity sensor installed on plant protection machinery.
  • an implementation manner for obtaining the linear speed of each work component of the plant protection mechanical equipment may be:
  • FIG. 3 is a schematic diagram of application of a plant protection mechanical equipment control method according to another embodiment of the present invention.
  • the upper part of FIG. 3 shows a part of the preset operation route.
  • the plant protection machinery equipment moves in a curve, and in the middle of the operation route, the plant protection machinery equipment makes a straight line. mobile.
  • A, B, C and D represent four working parts, and the triangular area represents the effective working area of each working part.
  • the center axis of the plant protection machinery and equipment is shown by the dotted line through the plant protection machinery and equipment in FIG. 3, and the distances of each working part from the center axis are La, Lb, Lc, and Ld, respectively.
  • V 0 , Va, Vb, Vc and Vd are used to represent the instantaneous linear velocity of plant protection machinery and four working components, respectively.
  • one way to obtain the linear velocity of each working part of the plant protection machinery and equipment when the plant protection machinery and equipment moves in a curve may be: acquiring the posture information of the plant protection machinery and equipment; The linear speed of each working part.
  • the posture information in this embodiment may include one or more of the three-dimensional position, three-dimensional angle, three-dimensional velocity, three-dimensional acceleration, and three-dimensional angular velocity of the plant protection mechanical device.
  • the posture information in this embodiment may be obtained by a sensor installed on the plant protection mechanical device, and the sensor includes but is not limited to a gyroscope, an ultrasonic sensor, an electronic compass, and an IMU.
  • obtaining the linear velocity of each working part of the plant protection machinery and equipment based on the posture information may include: determining the angular velocity and turning radius of the plant protection machinery and equipment according to the posture information; based on the angular speed and turning radius of the plant protection machinery and equipment The distance of the parts from the central axis of the plant protection machinery and equipment to obtain the linear velocity of each working part of the plant protection machinery and equipment.
  • the angular speed and turning radius of the plant protection mechanical equipment when moving in a curve can be determined.
  • the turning radius of the plant protection machinery and equipment, and the distance of each working part from the central axis of the plant protection machinery and equipment the turning radius of each working part can be determined. Since the angular velocity of each working component is the same as the angular velocity of the plant protection machinery and equipment during curve movement, the linear velocity of each working component can be determined to be equal to the respective turning radius and the angular velocity of the plant protection machinery and equipment according to the relationship between the linear velocity and the angular velocity The product of.
  • an implementation manner of determining the working rate of each working component may be:
  • the working rate of each working component is determined.
  • the correspondence relationship between the preset linear speed and the operation rate in this embodiment may be predetermined by actual measurement or theoretical derivation, which may be stored in the plant protection machinery in advance, or may be controlled by the console or during operation.
  • the control terminal sends it to the plant protection machinery.
  • Table 1 is a schematic diagram of the correspondence relationship between the preset linear speed and the operation rate in an embodiment. It should be noted that the numerical values in this embodiment are for illustration only, and are not limited thereto.
  • the working rate of the working part can be determined to be 30 mL / s.
  • the operating rate of each operating component can be quickly and accurately determined, not only to ensure uniform operation, but also to improve operating efficiency.
  • the operating rate of each working component is positively related to the linear velocity of each working component. That is to say, the working rate of a working component with a high linear velocity is high; the working rate of a working component with a low linear velocity is low.
  • the working rate of a working component with a low linear velocity is low.
  • the working speed of the working part adaptively changes according to the linear speed of the working part.
  • an implementation of determining the operating rate of each working component according to the linear speed of each working component may be: determining the linear speed ratio of each working component according to the linear speed of each working component; according to each working component The linear speed ratio determines the operating rate of each working component.
  • the ratio of the working rate of each working component is positively related to the ratio of the linear speed of each working component.
  • the working rate of each working component may be determined according to the linear speed ratio of each working component and the total working speed of the plant protection mechanical equipment.
  • the total working rate of the plant protection machinery and equipment is equal to the sum of the work rates of the various working parts of the plant protection machinery and equipment.
  • the working rate can be assigned to each working part according to the linear speed ratio of each working part. For example, when the total working rate of the plant protection machinery and equipment is 100 mL / s, and the line speed ratio of the three working parts included in the plant protection machinery and equipment is 30:34:36, the working speed of the three working parts can be 30 mL / s, 34mL / s and 36mL / s.
  • the working part may include a spray head and / or a discharge port.
  • the working part may be a spray head, for example, the spray head is used to spray liquid or gas pesticides, fertilizers, etc .
  • the working part when the working substance is solid, the working part may be a discharge port, for example, the discharge port When distributing solid granules or powdered pesticides and fertilizers, use the outlet to seed, etc .; when the working substance includes both solid, liquid and / or gas, the working parts include the nozzle and the outlet, for example, apply at the same time as the seeding For liquid fertilizer, use the discharge port to sow, and use the nozzle to spray the liquid fertilizer.
  • the spray rate of each sprinkler can be determined according to the linear velocity of each sprinkler; and each sprinkler can be controlled to operate according to the spray rate of each sprinkler.
  • controlling the operation of each nozzle according to the spray rate of each nozzle can include controlling the operation of each nozzle by at least one of the following ways: adjusting the pump pressure corresponding to each nozzle according to the spray rate of each nozzle; according to each The spraying rate of the spray head can adjust the speed of the pump corresponding to each spray head.
  • the pump pressure corresponding to the spray head is increased, or the pump speed corresponding to the spray head is increased, or the pump pressure and pump speed corresponding to the spray head are increased at the same time; Reduce the water pump pressure corresponding to the spray head, or reduce the water pump speed corresponding to the spray head, or simultaneously reduce the water pump pressure and water pump speed corresponding to the spray head.
  • the discharge rate of each discharge port can be determined according to the linear velocity of each discharge port; and each discharge port can be controlled according to the discharge rate of each discharge port operation.
  • controlling each discharge port to operate according to the discharge rate of each discharge port may include controlling the discharge port to perform operations in at least one of the following ways: according to the discharge rate of each discharge port, Adjust the size of each discharge opening; adjust the opening angle of each discharge opening according to the discharge rate of each discharge opening.
  • the size of the discharge port is increased, or the opening angle of the discharge port door is increased, or the size of the discharge port and the discharge port are increased at the same time
  • the opening angle of the hatch when the discharge rate of the discharge port is reduced, the size of the discharge port is reduced, or the opening angle of the discharge port door is reduced, or the size of the discharge port is reduced at the same time
  • the opening angle of the discharge hatch when the discharge rate of the discharge port is reduced, the size of the discharge port is reduced, or the opening angle of the discharge port door is reduced, or the size of the discharge port is reduced at the same time.
  • FIG. 4 is a flowchart of a plant protection mechanical equipment control method provided by another embodiment of the present invention.
  • the method of this embodiment can be used to control the plant protection machinery and equipment to perform plant protection operations.
  • the plant protection machinery and equipment can be provided with a plurality of working parts, which are located in different directions than the direction perpendicular to the movement direction of the plant protection mechanical equipment. position.
  • the plant protection mechanical equipment control method provided in this embodiment may include:
  • the speed information in this embodiment may include at least one of angular speed and linear speed.
  • the speed information in this embodiment may be sensed by a motion sensor, and the motion sensor may be installed on the plant protection mechanical device.
  • the motion sensor may include at least one of the following: an inertial measurement unit IMU, an angular velocity sensor, and a linear velocity sensor.
  • S402. Determine the working rate of each working component according to the speed information.
  • the working rates of multiple working parts are different. It can be understood that when the plant protection machinery and equipment are moving in a curve, the linear speeds of the multiple working parts are different, and the working area per unit time is different. Therefore, in order to achieve uniform work, the working rates of the multiple working parts are different.
  • the operating rate of the multiple working components gradually changes according to the position in the direction perpendicular to the moving direction of the plant protection machinery.
  • each work component is controlled to perform work at its own operation rate.
  • control the operation rate control the pump speed, control the pipeline pressure, control the pump throttle, control the size of the discharge hatch, and control the opening angle of the discharge hatch.
  • the plant protection machinery and equipment control method provided in this embodiment obtains the speed information of the plant protection machinery and equipment during curve movement, determines the operation rate of each working part according to the speed information, and controls each working part according to the operation rate of each work part Operate at the respective operating rate.
  • the self-adaptive adjustment of the working rate of each working component is realized, and the work uniformity of the plant protection mechanical equipment when moving in a curve is improved.
  • the method for controlling plant protection machinery and equipment provided by the embodiments of the present invention can determine the respective operating rate of each working component according to the linear speed of each working component, and realize the adaptive operation rate of the working component according to the linear speed of the working component
  • the adjustment improves the work uniformity of the plant protection machinery and equipment during the curve movement.
  • the plant protection machinery and equipment does not need to slow down or stop the operation even when it encounters a 90-degree or even 180-degree turn, which improves the efficiency of the operation.
  • the plant protection mechanical device 500 provided in this embodiment may include: a processor 501 and a plurality of working components 502.
  • the processor 501 is communicatively connected to the plurality of work units 502 via a bus.
  • the plurality of working parts 502 in this embodiment may include N working parts such as working part 1, working part 2, working part 3, ..., working part N, and N, where N is an integer greater than or equal to 2.
  • the processor 502 may be a central processing unit (Central Processing Unit, CPU), or other general-purpose processors, digital signal processors (Digital Signal Processors, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), off-the-shelf Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may be any conventional processor.
  • the plurality of working members 502 are respectively located at different positions compared to the direction perpendicular to the moving direction of the plant protection machinery 500.
  • the processor 501 is used to obtain the linear velocity of each working component of the plant protection mechanical equipment 500 when the plant protection mechanical equipment 500 moves in a curve; determine the working rate of each working component according to the linear speed of each working component; according to the operation of each working component Rate, control each work component to work.
  • the processor 501 is specifically configured to: acquire the linear speed of each working part of the plant protection mechanical equipment according to the preset work route and the current position information of the plant protection mechanical equipment.
  • the processor 501 is specifically used to: determine the turning radius of the plant protection mechanical equipment according to the preset operation route and the current position information of the plant protection mechanical equipment; according to the turning radius of the plant protection mechanical equipment, the current moving speed, and various working parts Obtain the linear velocity of each working part of the plant protection machinery and equipment from the distance of the center axis of the plant protection machinery and equipment.
  • the processor 501 is specifically used to: determine the angular velocity of the plant protection mechanical equipment according to the turning radius of the plant protection mechanical equipment and the current moving speed; according to the turning radius of the plant protection mechanical equipment and the distance of each working part from the central axis of the plant protection mechanical equipment, Determine the turning radius of each working part; according to the turning radius of each working part and the angular velocity of the plant protection machinery and equipment, obtain the linear speed of each working part of the plant protection machinery and equipment.
  • the processor 501 is specifically used for:
  • the linear velocity of each working part of the plant protection machinery and equipment is acquired.
  • the processor 501 is specifically used for:
  • attitude information determine the angular velocity and turning radius of plant protection machinery and equipment
  • the linear speed of each work component of the plant protection machinery and equipment is obtained.
  • the processor 501 is specifically configured to determine the operating rate of each working component according to the linear speed of each operating component and the preset correspondence between the linear speed and the operating rate.
  • the operating rate of each working component is positively related to the linear velocity of each working component.
  • the processor 501 is specifically used for:
  • the work rate of each work component is determined.
  • the processor 501 is specifically used for:
  • the working parts include a spray head and / or a discharge port.
  • the processor 501 is specifically used for:
  • each nozzle determines the spray rate of each nozzle
  • each spray head control each spray head to work.
  • the processor 501 is specifically configured to control each nozzle to perform operations in at least one of the following ways:
  • each spray head adjusts the pump pressure corresponding to each spray head
  • each spray head adjusts the pump speed corresponding to each spray head.
  • the processor 501 is specifically used to: determine the discharge rate of each discharge port according to the linear velocity of each discharge port;
  • processor 501 is specifically configured to control each discharge port to perform operations in at least one of the following ways:
  • each discharge port adjust the opening angle of each discharge port hatch.
  • the plant protection mechanical device 600 provided in this embodiment may include: a processor 601 and a plurality of working components 602.
  • the processor 601 and a plurality of work units 602 are communicatively connected via a bus.
  • the plurality of working parts 602 in this embodiment may include N working parts such as working part 1, working part 2, working part 3,..., Working part N, etc. N is an integer greater than or equal to 2.
  • the above processor 602 may be a central processing unit (Central Processing Unit, CPU), or other general-purpose processors, digital signal processors (Digital Signal Processors, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), off-the-shelf Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the plurality of working members 602 are respectively located at different positions compared to the direction perpendicular to the moving direction of the plant protection machinery 600.
  • the processor 601 is used to obtain the speed information of the plant protection machinery 600 when moving in a curve; based on the speed information, determine the working rate of each working component; according to the working rate of each working component, control each working component to perform at its own working rate operation.
  • the speed information includes at least one of angular speed and linear speed.
  • the speed information is sensed by a motion sensor, which is installed on the plant protection machinery.
  • the motion sensor includes at least one of the following: an inertial measurement unit IMU, an angular velocity sensor, and a linear velocity sensor.
  • the working rates of multiple working parts are different.
  • the operating rate of the multiple working components gradually changes according to the position in the direction perpendicular to the moving direction of the plant protection machinery.
  • An embodiment of the present invention also provides a plant protection machinery equipment control device (such as a chip, an integrated circuit, etc.), including: a memory and a processor.
  • the memory is used to store code for executing a plant protection machinery control method.
  • the processor is configured to call the code stored in the memory to execute the plant protection mechanical equipment control method described in any of the foregoing method embodiments.
  • the plant protection mechanical equipment control device provided in the embodiments of the present invention may be applied to plant protection mechanical equipment, such as plant protection drones, plant protection robots, plant protection ground machinery, etc., to control plant protection mechanical equipment for plant protection operations.
  • the foregoing program may be stored in a computer-readable storage medium, and when the program is executed, It includes the steps of the above method embodiments; and the foregoing storage media include: read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disks or optical discs, etc., which can store program codes Medium.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Engineering & Computer Science (AREA)
  • Insects & Arthropods (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Catching Or Destruction (AREA)

Abstract

一种植保机械设备控制方法及植保机械设备,通过获取植保机械设备的各个作业部件在植保机械设备作曲线移动时的线速度(S201),根据各个作业部件的线速度,确定各个作业部件的作业速率(S202),并根据各个作业部件的作业速率,控制各个作业部件进行作业(S203)。根据各个作业部件的线速度,自适应确定各个作业部件的作业速率,可以使植保机械设备在作曲线移动时依然均匀作业,提升了作业效果,解决了现有植保机械设备在作曲线移动时作业不均匀,作业效果差的问题。

Description

植保机械设备控制方法及植保机械设备 技术领域
本发明实施例涉及电子设备技术领域,尤其涉及一种植保机械设备控制方法及植保机械设备。
背景技术
随着农业现代化以及精准农业不断向前发展,机械化农业得到了大力推广,植保机械设备的大力发展极大的提高了农业生产效率。例如,在农业作业过程中,可以使用植保无人机、拖拉机配套植保机械设备、自走式植保机械设备等,进行农药喷洒、施肥、播种等任务,以解放劳动力,提高作业效率。
为了提高作业效率,植保机械设备在进行农药喷洒、施肥、播种等任务时,通常同时使用多个作业部件,例如多个喷头或者多个出料口进行作业。各个作业部件以相同的速率进行作业,即多个喷头以相同的喷洒速率进行喷洒作业,或者,多个出料口以相同下料速率进行作业。因此,当植保机械设备在作业中进行转弯时,会使得转弯内侧出现重喷、重撒现象,转弯外侧出现漏喷、漏撒现象,进而导致植保机械设备在转弯时作业不均匀,作业效果差。
发明内容
本发明实施例提供一种植保机械设备控制方法及植保机械设备,用以解决现有植保机械设备在转弯时作业不均匀,作业效果差的问题。
第一方面,本发明实施例提供一种植保机械设备控制方法,所述植保机械设备设有多个作业部件,所述多个作业部件相较于垂直于所述植保机械设备的移动方向的方向上分别位于不同的位置,包括:
获取所述植保机械设备的各个作业部件在所述植保机械设备作曲线移动时的线速度;
根据各个所述作业部件的线速度,确定各个所述作业部件的作业速率;
根据各个所述作业部件的作业速率,控制各个所述作业部件进行作业。
第二方面,本发明实施例提供一种植保机械设备控制方法,所述植保机械设备设有多个作业部件,所述多个作业部件相较于垂直于所述植保机械设备的移动方向的方向上分别位于不同的位置,包括:
获取所述植保机械设备在作曲线移动时的速度信息;
根据所述速度信息,确定各个所述作业部件的作业速率;
根据各个所述作业部件的作业速率,控制各个所述作业部件按照各自的作业速率进行作业。
第三方面,本发明实施例提供一种植保机械设备,包括处理器和多个作业部件;
所述多个作业部件相较于垂直于所述植保机械设备的移动方向的方向上分别位于不同的位置;
所述处理器用于,获取所述植保机械设备的各个作业部件在所述植保机械设备作曲线移动时的线速度;根据各个所述作业部件的线速度,确定各个所述作业部件的作业速率;根据各个所述作业部件的作业速率,控制各个所述作业部件进行作业。
第四方面,本发明实施例提供一种植保机械设备,包括处理器和多个作业部件;
所述多个作业部件相较于垂直于所述植保机械设备的移动方向的方向上分别位于不同的位置;
所述处理器用于,获取所述植保机械设备在作曲线移动时的速度信息;根据所述速度信息,确定各个所述作业部件的作业速率;根据各个所述作业部件的作业速率,控制各个所述作业部件按照各自的作业速率进行作业。
第五方面,本发明实施例提供一种植保机械设备控制装置(例如芯片、集成电路等),包括:存储器和处理器。所述存储器,用于存储执行植保机械设备控制方法的代码。所述处理器,用于调用所述存储器中存储的所述代码,执行如第一方面或者第二方面本发明实施例所述的植保机械设备控制方法。
第六方面,本发明实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序包含至少一段代码,所述至 少一段代码可由计算机执行,以控制所述计算机执行第一方面或者第二方面本发明实施例所述的屏幕亮度调整方法。
第七方面,本发明实施例提供一种计算机程序,当所述计算机程序被计算机执行时,用于实现第一方面或者第二方面本发明实施例所述的植保机械设备控制方法。
本发明实施例提供的植保机械设备控制方法及植保机械设备,通过获取植保机械设备的各个作业部件在植保机械设备作曲线移动时的线速度,根据各个作业部件的线速度,确定各个作业部件的作业速率,并根据各个作业部件的作业速率,控制各个作业部件进行作业。本实施中根据各个作业部件的线速度,自适应确定各个作业部件的作业速率,可以使植保机械设备在作曲线移动时依然均匀作业,提升了作业效果,解决了现有植保机械设备在作曲线移动时作业不均匀,作业效果差的问题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1(a)是根据本发明的实施例提供的无人飞行***的示意性架构图;
图1(b)是根据本发明的实施例提供的无人飞行***的结构示意图;
图2为本发明一实施例提供的植保机械设备控制方法的流程图;
图3为本发明又一实施例提供的植保机械设备控制方法的应用示意图;
图4为本发明另一实施例提供的植保机械设备控制方法的流程图;
图5为本发明一实施例提供的植保机械设备的结构示意图;
图6为本发明又一实施例提供的植保机械设备的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于 本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,当组件被称为“固定于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
本发明的实施例提供了植保机械设备控制方法及植保机械设备。该植保机械设备包括但不限于植保航空机械设备和植保陆地机械设备,例如可以是植保无人机、自主作业机器人、拖拉机配套植保机械设备、自走式植保机械设备等等。其中植保无人机例如可以采用旋翼飞行器(rotorcraft),例如由多个推动装置通过空气推动的多旋翼飞行器,本发明的实施例并不限于此。
图1(a)是根据本发明的实施例提供的无人飞行***的示意性架构图。图1(b)是根据本发明的实施例提供的无人飞行***的结构示意图。本实施例以旋翼无人机为例进行说明。
无人飞行***100可以包括无人机110、显示设备130和控制终端140。其中,无人机110可以包括动力***150、飞行控制***160、机架和承载在机架上的作业***120。无人机110可以与控制终端140和显示设备130进行无线通信。
机架可以包括机身和脚架(也称为起落架)。机身可以包括中心架以及与中心架连接的一个或多个机臂,一个或多个机臂呈辐射状从中心架延伸出。脚架与机身连接,用于在无人机110着陆时起支撑作用。
动力***150可以包括一个或多个电子调速器(简称为电调)151、一个或多个螺旋桨153以及与一个或多个螺旋桨153相对应的一个或多个电机152,其中电机152连接在电子调速器151与螺旋桨153之间,电机152和螺旋桨 153设置在无人机110的机臂上;电子调速器151用于接收飞行控制***160产生的驱动信号,并根据驱动信号提供驱动电流给电机152,以控制电机152的转速。电机152用于驱动螺旋桨旋转,从而为无人机110的飞行提供动力,该动力使得无人机110能够实现一个或多个自由度的运动。在某些实施例中,无人机110可以围绕一个或多个旋转轴旋转。例如,上述旋转轴可以包括横滚轴(Roll)、偏航轴(Yaw)和俯仰轴(pitch)。应理解,电机152可以是直流电机,也可以交流电机。另外,电机152可以是无刷电机,也可以是有刷电机。
飞行控制***160可以包括飞行控制器161和传感***162。传感***162用于测量无人机的姿态信息,即无人机110在空间的位置信息和状态信息,例如,三维位置、三维角度、三维速度、三维加速度和三维角速度等。传感***162例如可以包括陀螺仪、超声传感器、电子罗盘、惯性测量单元(Inertial Measurement Unit,IMU)、视觉传感器、全球导航卫星***和气压计等传感器中的至少一种。例如,全球导航卫星***可以是全球定位***(Global Positioning System,GPS)。飞行控制器161用于控制无人机110的飞行,例如,可以根据传感***162测量的姿态信息控制无人机110的飞行。应理解,飞行控制器161可以按照预先编好的程序指令对无人机110进行控制,也可以通过响应来自控制终端140的一个或多个控制指令对无人机110进行控制。
作业***120可以包括一个或多个动力部件122。作业***还包括多个作业部件123,用于进行植保作业。其中,动力部件122可以为作业部件提供作业动力。飞行控制器161可以通过动力部件122控制作业***120的运动。可选地,作为另一实施例,作业***120还可以包括控制器,用于通过控制动力部件122来控制作业***120的运动。应理解,作业***120可以独立于无人机110,也可以为无人机110的一部分。应理解,动力部件122可以是直流动力部件,也可以是交流动力部件。例如,动力部件122可以是电机,气缸,或者是水泵。还应理解,作业部件123可以位于无人机的顶部,也可以位于无人机的底部。作业部件123可以为喷头、播撒机构等。
多个作业部件123也可以直接固定于无人机110上,从而作业***120可以省略。
显示设备130位于无人飞行***100的地面端,可以通过无线方式与无人机110进行通信,并且可以用于显示无人机110的姿态信息。另外,还可以在显示设备130上显示成像装置拍摄的图像。应理解,显示设备130可以是独立的设备,也可以集成在控制终端140中。
控制终端140位于无人飞行***100的地面端,可以通过无线方式与无人机110进行通信,用于对无人机110进行远程操纵。
应理解,上述对于无人飞行***各组成部分的命名仅是出于标识的目的,并不应理解为对本发明的实施例的限制。例如可以采用下面实施例所述的植保机械设备控制方法控制多个作业部件123进行植保作业。
图2为本发明一实施例提供的植保机械设备控制方法的流程图。本实施例的方法可以用于控制植保机械设备进行植保作业,该植保机械设备可以设有多个作业部件,多个作业部件相较于垂直于植保机械设备的移动方向的方向上分别位于不同的位置。本实施例提供的植保机械设备控制方法可以包括:
S201、获取植保机械设备的各个作业部件在植保机械设备作曲线移动时的线速度。
本实施例中的作业部件为植保机械设备在进行植保作业时用于喷洒液体或者气体的农药、肥料等,播撒固体农药、肥料、种子等的部件。
当植保机械设备作直线移动时,各个作业部件的线速度相同,等于植保机械设备的移动速度。
当植保机械设备作曲线移动时,各个作业部件的角速度相同,等于植保机械设备的角速度。然而由于各个作业部件的转弯半径不同,所以各个作业部件的线速度不同。位于转弯内侧的作业部件,具有较小的转弯半径,因此线速度较小;位于转弯外侧的作业部件,具有较大的转弯半径,因此线速度较大。
本实施例中可以通过在各个作业部件上安装运动传感器,通过运动传感器获取各个作业部件的线速度;也可以根据植保机械设备的速度信息,确定各个作业部件的线速度。
S202、根据各个作业部件的线速度,确定各个作业部件的作业速率。
本实施例中的作业速率可以采用单位时间内喷洒或者播撒作业物质的质 量或者体积来表示,单位可以采用升/秒(L/s)、毫升/秒(mL/s)、千克/秒(kg/s)、克/秒(g/s)等。
当作业部件的有效作业宽度确定时,单位时间内的作业面积与作业部件的线速度正相关。通常单位面积上期望喷洒或者播撒作业物质的总量是预先确定的,为了实现均匀作业,期望作业部件在单位时间内喷洒或者播撒作业物质的总量与作业部件在单位时间内的作业面积正相关。因此,作业部件的作业速率与作业部件的线速度正相关。
本实施例中可以为位于转弯内侧线速度较小的作业部件,确定较低的作业速率,以避免植保机械设备在作曲线移动,导致转弯内侧出现重喷、重撒现象;可以为位于转弯外侧线速度较大的作业部件,确定较高的作业速率,以避免植保机械设备在作曲线移动,导致转弯外侧出现漏喷、漏撒现象。
本实施例中当作业部件的线速度增加时,可以提高作业部件的作业速率,以避免漏喷、漏撒现象;当作业部件的线速度减小时,可以降低作业部件的作业速率,以避免重喷、重撒现象。
S203、根据各个作业部件的作业速率,控制各个作业部件进行作业。
本实施例中在确定了各个作业部件的作业速率之后,则控制各个作业部件以所确定的作业速率进行作业。
本实施例提供的植保机械设备控制方法,通过获取植保机械设备的各个作业部件在植保机械设备作曲线移动时的线速度,根据各个作业部件的线速度,确定各个作业部件的作业速率,并根据各个作业部件的作业速率,控制各个作业部件进行作业。本实施中根据各个作业部件的线速度,自适应确定各个作业部件的作业速率,可以使植保机械设备在作曲线移动时依然均匀作业,提升了作业效果,解决了现有植保机械设备在作曲线移动时作业不均匀,作业效果差的问题。
在一些实施例中,获取植保机械设备的各个作业部件在植保机械设备作曲线移动时的线速度的一种实现方式可以是:根据预设的作业路线和植保机械设备当前的位置信息,获取植保机械设备的各个作业部件的线速度。
植保机械设备在进行自主作业时,例如可以通过控制站、控制终端等提前规划好作业路线。本实施例中预设的作业路线可以包括作业路线中各个点的位置信息,该位置信息既可以采用绝对位置信息,如经纬度信息表示,也 可以采用相对位置信息,如相对于作业路线起始点的距离及方位表示。
可选的,本实施例中植保机械设备当前的位置信息例如可以通过安装在植保机械设备上的定位***获取,定位***例如可以采用全球定位***(Global Positioning System,GPS)、北斗卫星定位***、实时动态(Real-Time Kinematic,RTK)定位***等。
可选的,根据预设的作业路线和植保机械设备当前的位置信息,可以确定植保机械设备当前是在作直线移动还是曲线移动,当植保机械设备在做曲线移动时,还可以根据预设的作业路线确定当前植保机械设备的转弯半径,进而可以获取植保机械设备的各个作业部件的线速度。
在一些实施例中,根据预设的作业路线和植保机械设备当前的位置信息,获取植保机械设备的各个作业部件的线速度的一种实现方式可以是:
根据预设的作业路线和植保机械设备当前的位置信息,确定植保机械设备的转弯半径;
根据植保机械设备的转弯半径、当前移动速度,以及各个作业部件距离植保机械设备中心轴线的距离,获取植保机械设备的各个作业部件的线速度。
本实施例中在确定了植保机械设备当前的位置信息之后,根据预设的作业路线,便可以确定植保机械设备在预设的作业路线中的具***置,若此时植保机械设备作曲线移动,则可以确定植保机械设备的转弯半径。
可选的,本实施例中各个作业部件距离植保机械设备中心轴线的距离可以根据植保机械设备的设备参数确定,也可以通过测量的方式的获取,本实施例对此不做限制。
可选的,本实施例中植保机械设备的当前移动速度可以是当前移动的线速度,也可以是当前移动的角速度。可以通过安装在植保机械设备上的直线速度传感器或者角速度传感器获取。
在一些实施例中,根据植保机械设备的转弯半径、当前移动速度,以及各个作业部件距离植保机械设备中心轴线的距离,获取植保机械设备的各个作业部件的线速度的一种实现方式可以是:
根据植保机械设备的转弯半径和当前移动速度,确定植保机械设备的角速度;
根据植保机械设备的转弯半径以及各个作业部件距离植保机械设备中心 轴线的距离,确定各个作业部件的转弯半径;
根据各个作业部件的转弯半径以及植保机械设备的角速度,获取植保机械设备的各个作业部件的线速度。
下面通过一个具体的示例,对根据预设的作业路线和植保机械设备当前的位置信息,获取植保机械设备的各个作业部件的线速度的具体实现方式进行说明。图3为本发明又一实施例提供的植保机械设备控制方法的应用示意图。在图3的上部示出了预设的作业路线中的一部分,如图3所示,在作业路线的左右两侧,植保机械设备作曲线移动,在作业路线的中间部分,植保机械设备做直线移动。其中,A、B、C和D表示四个作业部件,三角形区域表示各个作业部件的有效作业区域。植保机械设备的中心轴线如图3中贯穿植保机械设备的虚线所示,各个作业部件距离中心轴线的距离分别为La、Lb、Lc和Ld。V 0、Va、Vb、Vc和Vd分别用于表示植保机械设备以及四个作业部件的瞬时线速度。当植保机械设备做直线移动时,V 0=Va=Vb=Vc=Vd。
若根据图3所示的作业路线以及获取到的植保机械设备当前的位置信息,确定植保机械设备当前位于图3中P点所示的位置,可以确定当前植保机械设备做曲线移动,且转弯半径为R,则当前植保机械设备的角速度ω=V 0/R。四个作业部件的角速度与植保机械设备的角速度相同,均为ω。作业部件A的转弯半径为(R+La),则作业部件A当前的线速度Va=ω*(R+La)=V 0*(R+La)/R;作业部件B的转弯半径为(R+Lb),则作业部件B当前的线速度Vb=ω*(R+Lb)=V 0*(R+Lb)/R;作业部件C的转弯半径为(R-Lc),则作业部件C当前的线速度Vc=ω*(R-Lc)=V 0*(R-Lc)/R;作业部件D的转弯半径为(R-Ld),则作业部件D当前的线速度Va=ω*(R-Ld)=V 0*(R-Ld)/R。
在一些实施例中,获取植保机械设备的各个作业部件在植保机械设备作曲线移动时的线速度的一种实现方式可以是:获取植保机械设备的姿态信息;根据姿态信息,获取植保机械设备的各个作业部件的线速度。
可选的,本实施例中的姿态信息可以包括植保机械设备的三维位置、三维角度、三维速度、三维加速度和三维角速度中的一种或者多种。本实施例中的姿态信息可以通过安装在植保机械设备上的传感器获取,传感器包括但 不限于陀螺仪、超声传感器、电子罗盘和IMU。
可选的,根据姿态信息,获取植保机械设备的各个作业部件的线速度,可以包括:根据姿态信息,确定植保机械设备的角速度和转弯半径;根据植保机械设备的角速度、转弯半径,以及各个作业部件距离植保机械设备中心轴线的距离,获取植保机械设备的各个作业部件的线速度。
本实施例中根据植保机械设备的姿态信息,可以确定植保机械设备在作曲线移动时的角速度和转弯半径。根据植保机械设备的转弯半径,以及各个作业部件距离植保机械设备中心轴线的距离,可以确定各个作业部件的转弯半径。由于在作曲线移动时,各个作业部件的角速度与植保机械设备的角速度相同,则根据线速度与角速度之间的关系,可以确定各个作业部件的线速度等于各自的转弯半径与植保机械设备的角速度的乘积。
在一些实施例中,根据各个作业部件的线速度,确定各个作业部件的作业速率的一种实现方式可以是:
根据各个作业部件的线速度,以及预设的线速度与作业速率的对应关系,确定各个作业部件的作业速率。
可选的,本实施例中预设的线速度与作业速率的对应关系可以通过实际测量或者理论推导的方式预先确定,其可以预先存储于植保机械设备中,也可以在作业时由控制台或者控制终端发送至作业的植保机械设备。表1为一实施例中预设的线速度与作业速率的对应关系的示意。需要说明的,本实施例中的数值仅作示意,并不以此为限制。
表1
线速度 作业速率
10m/s 30mL/s
11m/s 35mL/s
12m/s 40mL/s
举例来说,若确定植保机械设备中的一个作业部件的线速度为10m/s,则可以确定该作业部件的作业速率为30mL/s。
通过预设的线速度与作业速率的对应关系,在确定了各个作业部件的线速度时,可以快速准确的确定各个作业部件的作业速率,不仅可以保证均匀作业,而且可以提高作业效率。
可选的,各个作业部件的作业速率,与各个作业部件的线速度正相关。也就是说,线速度大的作业部件,其作业速率高;线速度小的作业部件,其作业速率低。当作业部件的线速度增大时,则提高其作业速率;当作业部件的线速度减小时,则降低其作业速率。以实现作业部件的作业速率根据作业部件的线速度自适应改变。
在一些实施例中,根据各个作业部件的线速度,确定各个作业部件的作业速率的一种实现方式可以是:根据各个作业部件的线速度,确定各个作业部件的线速度比;根据各个作业部件的线速度比,确定各个作业部件的作业速率。
可选的,各个作业部件的作业速率之比与各个作业部件的线速度比正相关。
可选的,本实施例中可以根据各个作业部件的线速度比,以及植保机械设备的总作业速率,确定各个作业部件的作业速率。其中,植保机械设备的总作业速率等于植保机械设备的各个作业部件的作业速率之和。
若植保机械设备的总作业速率确定,则可以根据各个作业部件的线速度比为各个作业部件分配作业速率。例如,当植保机械设备的总作业速率为100mL/s,植保机械设备包括的3个作业部件的线速度比为30:34:36,则3个作业部件的作业速率可以分别为30mL/s、34mL/s和36mL/s。
可选的,作业部件可以包括喷头和/或出料口。当作业物质为液体和/或气体时,作业部件可以为喷头,例如采用喷头喷洒液体或者气体的农药、肥料等;当作业物质为固体时,作业部件可以为出料口,例如采用出料口播撒固体颗粒状或者粉末状的农药、肥料,采用出料口播种等;当作业物质既包括固体,也包括液体和/或气体时,作业部件包括喷头和出料口,例如在播种的同时施用液体肥料,则采用出料口播种,同时采用喷头喷洒液体肥料。
可选的,若作业部件为喷头,则可以根据各个喷头的线速度,确定各个喷头的喷洒速率;并根据各个喷头的喷洒速率,控制各个喷头进行作业。
可选的,根据各个喷头的喷洒速率,控制各个喷头进行作业,可以包括通过以下方式中的至少一种控制各个喷头进行作业:根据各个喷头的喷洒速率,调整各个喷头对应的水泵压力;根据各个喷头的喷洒速率,调整各个喷头对应的水泵转速。
例如,当喷头的喷洒速率提高时,则增加该喷头对应的水泵压力,或者增加该喷头对应的水泵转速,或者同时增加该喷头对应的水泵压力和水泵转速;当喷头的喷洒速率降低时,则减少该喷头对应的水泵压力,或者减少该喷头对应的水泵转速,或者同时减少该喷头对应的水泵压力和水泵转速。
可选的,若作业部件为出料口,则可以根据各个出料口的线速度,确定各个出料口的下料速率;并根据各个出料口的下料速率,控制各个出料口进行作业。
可选的,根据各个出料口的下料速率,控制各个出料口进行作业,可以包括通过以下方式中的至少一种控制各个出料口进行作业:根据各个出料口的下料速率,调整各个出料口的大小;根据各个出料口的下料速率,调整各个出料口舱门开启的角度。
例如,当出料口的下料速率提高时,则增大该出料口的大小,或者增大该出料口舱门开启的角度,或者同时增大该出料口的大小和出料口舱门开启的角度;当出料口的下料速率降低时,则减小该出料口的大小,或者减小该出料口舱门开启的角度,或者同时减小该出料口的大小和出料口舱门开启的角度。
图4为本发明另一实施例提供的植保机械设备控制方法的流程图。本实施例的方法可以用于控制植保机械设备进行植保作业,该植保机械设备可以设有多个作业部件,多个作业部件相较于垂直于植保机械设备的移动方向的方向上分别位于不同的位置。本实施例提供的植保机械设备控制方法可以包括:
S401、获取植保机械设备在作曲线移动时的速度信息。
可选的,本实施例中的速度信息可以包括角速度和直线速度中的至少一种。
可选的,本实施例中的速度信息可以由运动传感器感测得到,运动传感器可以安装在植保机械设备上。其中,运动传感器可以包括如下至少一种:惯性测量单元IMU、角速度传感器和直线速度传感器。
S402、根据速度信息,确定各个作业部件的作业速率。
可选的,在植保机械设备作曲线移动时,多个作业部件的作业速率各不相同。可以理解的是,植保机械设备在作曲线移动时,多个作业部件的线速 度不同,单位时间内的作业面积不同,因此,为了实现均匀作业,多个作业部件的作业速率各不相同。
可选的,多个作业部件的作业速率,按照垂直于植保机械设备的移动方向的方向上的位置逐渐变化。
S403、根据各个作业部件的作业速率,控制各个作业部件按照各自的作业速率进行作业。
本实施例中在确定了各个作业部件的作业速率之后,则控制各个作业部件按照各自的作业速率进行作业。例如可以采用如下方式中的一种或者多种对作业速率进行控制:控制水泵转速、控制管道压力、控制水泵油门、控制出料口舱门大小、控制出料口舱门开启的角度等。
本实施例提供的植保机械设备控制方法,通过获取植保机械设备在作曲线移动时的速度信息,根据速度信息,确定各个作业部件的作业速率,并根据各个作业部件的作业速率,控制各个作业部件按照各自的作业速率进行作业。实现了各个作业部件作业速率的自适应调整,提高了植保机械设备在作曲线移动时的作业均匀度。
综上所述,本发明实施例提供的植保机械设备控制方法,可以根据各个作业部件的线速度,确定各个作业部件各自的作业速率,实现了作业部件的作业速率根据作业部件的线速度自适应调整,提高了植保机械设备在作曲线移动时的作业均匀度,同时植保机械设备在作业过程中,即使遇到90度甚至180度转弯时,也无需减速或者停止作业,提高了作业效率。
图5为本发明一实施例提供的植保机械设备的结构示意图。如图5所示,本实施例提供的植保机械设备500可以包括:处理器501和多个作业部件502。处理器501与多个作业部件502通过总线通信连接。本实施例中的多个作业部件502可以包括作业部件1、作业部件2、作业部件3、……、作业部件N,等N个作业部件,N为大于等于2的整数。上述处理器502可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常 规的处理器等。
其中,多个作业部件502相较于垂直于植保机械设备500的移动方向的方向上分别位于不同的位置。
处理器501用于,获取植保机械设备500的各个作业部件在植保机械设备500作曲线移动时的线速度;根据各个作业部件的线速度,确定各个作业部件的作业速率;根据各个作业部件的作业速率,控制各个作业部件进行作业。
可选的,处理器501具体用于:根据预设的作业路线和植保机械设备当前的位置信息,获取植保机械设备的各个作业部件的线速度。
可选的,处理器501具体用于:根据预设的作业路线和植保机械设备当前的位置信息,确定植保机械设备的转弯半径;根据植保机械设备的转弯半径、当前移动速度,以及各个作业部件距离植保机械设备中心轴线的距离,获取植保机械设备的各个作业部件的线速度。
可选的,处理器501具体用于:根据植保机械设备的转弯半径和当前移动速度,确定植保机械设备的角速度;根据植保机械设备的转弯半径以及各个作业部件距离植保机械设备中心轴线的距离,确定各个作业部件的转弯半径;根据各个作业部件的转弯半径以及植保机械设备的角速度,获取植保机械设备的各个作业部件的线速度。
可选的,处理器501具体用于:
获取植保机械设备的姿态信息;
根据姿态信息,获取植保机械设备的各个作业部件的线速度。
可选的,处理器501具体用于:
根据姿态信息,确定植保机械设备的角速度和转弯半径;
根据植保机械设备的角速度、转弯半径,以及各个作业部件距离植保机械设备中心轴线的距离,获取植保机械设备的各个作业部件的线速度。
可选的,处理器501具体用于:根据各个作业部件的线速度,以及预设的线速度与作业速率的对应关系,确定各个作业部件的作业速率。
可选的,各个作业部件的作业速率,与各个作业部件的线速度正相关。
可选的,处理器501具体用于:
根据各个作业部件的线速度,确定各个作业部件的线速度比;
根据各个作业部件的线速度比,确定各个作业部件的作业速率。
可选的,处理器501具体用于:
根据各个作业部件的线速度比,以及植保机械设备的总作业速率,确定各个作业部件的作业速率。
可选的,作业部件包括喷头和/或出料口。
可选的,若作业部件为喷头,则处理器501具体用于:
根据各个喷头的线速度,确定各个喷头的喷洒速率;
根据各个喷头的喷洒速率,控制各个喷头进行作业。
可选的,处理器501具体用于通过以下方式中的至少一种控制各个喷头进行作业:
根据各个喷头的喷洒速率,调整各个喷头对应的水泵压力;
根据各个喷头的喷洒速率,调整各个喷头对应的水泵转速。
可选的,若作业部件为出料口,则处理器501具体用于:根据各个出料口的线速度,确定各个出料口的下料速率;
根据各个出料口的下料速率,控制各个出料口进行作业。
可选的,处理器501具体用于通过以下方式中的至少一种控制各个出料口进行作业:
根据各个出料口的下料速率,调整各个出料口的大小;
根据各个出料口的下料速率,调整各个出料口舱门开启的角度。
图6为本发明又一实施例提供的植保机械设备的结构示意图。如图6所示,本实施例提供的植保机械设备600可以包括:处理器601和多个作业部件602。处理器601与多个作业部件602通过总线通信连接。本实施例中的多个作业部件602可以包括作业部件1、作业部件2、作业部件3、……、作业部件N,等N个作业部件,N为大于等于2的整数。上述处理器602可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
其中,多个作业部件602相较于垂直于植保机械设备600的移动方向的方向上分别位于不同的位置。
处理器601用于,获取植保机械设备600在作曲线移动时的速度信息;根据速度信息,确定各个作业部件的作业速率;根据各个作业部件的作业速率,控制各个作业部件按照各自的作业速率进行作业。
可选的,速度信息包括角速度和直线速度中的至少一种。
可选的,速度信息由运动传感器感测得到,运动传感器安装在植保机械设备上。
可选的,运动传感器包括如下至少一种:惯性测量单元IMU、角速度传感器和直线速度传感器。
可选的,在植保机械设备作曲线移动时,多个作业部件的作业速率各不相同。
可选的,多个作业部件的作业速率,按照垂直于植保机械设备的移动方向的方向上的位置逐渐变化。
本发明实施例还提供一种植保机械设备控制装置(例如芯片、集成电路等),包括:存储器和处理器。所述存储器,用于存储执行植保机械设备控制方法的代码。所述处理器,用于调用所述存储器中存储的所述代码,执行如上述任一方法实施例所述的植保机械设备控制方法。本发明实施例提供的植保机械设备控制装置可以应用于植保机械设备中,例如植保无人机、植保机器人、植保地面机械等,控制植保机械设备进行植保作业。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:只读内存(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并 不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (42)

  1. 一种植保机械设备控制方法,其特征在于,所述植保机械设备设有多个作业部件,所述多个作业部件相较于垂直于所述植保机械设备的移动方向的方向上分别位于不同的位置,包括:
    获取所述植保机械设备的各个作业部件在所述植保机械设备作曲线移动时的线速度;
    根据各个所述作业部件的线速度,确定各个所述作业部件的作业速率;
    根据各个所述作业部件的作业速率,控制各个所述作业部件进行作业。
  2. 根据权利要求1所述的方法,其特征在于,所述获取所述植保机械设备的各个作业部件在所述植保机械设备作曲线移动时的线速度,包括:
    根据预设的作业路线和所述植保机械设备当前的位置信息,获取所述植保机械设备的各个作业部件的线速度。
  3. 根据权利要求2所述的方法,其特征在于,所述根据预设的作业路线和所述植保机械设备当前的位置信息,获取所述植保机械设备的各个作业部件的线速度,包括:
    根据预设的作业路线和所述植保机械设备当前的位置信息,确定所述植保机械设备的转弯半径;
    根据所述植保机械设备的转弯半径、当前移动速度,以及各个所述作业部件距离所述植保机械设备中心轴线的距离,获取所述植保机械设备的各个作业部件的线速度。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述植保机械设备的转弯半径、当前移动速度,以及各个所述作业部件距离所述植保机械设备中心轴线的距离,获取所述植保机械设备的各个作业部件的线速度,包括:
    根据所述植保机械设备的转弯半径和当前移动速度,确定所述植保机械设备的角速度;
    根据所述植保机械设备的转弯半径以及各个所述作业部件距离所述植保机械设备中心轴线的距离,确定各个所述作业部件的转弯半径;
    根据各个所述作业部件的转弯半径以及所述植保机械设备的角速度,获取所述植保机械设备的各个作业部件的线速度。
  5. 根据权利要求1所述的方法,其特征在于,所述获取所述植保机械设 备的各个作业部件在所述植保机械设备作曲线移动时的线速度,包括:
    获取所述植保机械设备的姿态信息;
    根据所述姿态信息,获取所述植保机械设备的各个作业部件的线速度。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述姿态信息,获取所述植保机械设备的各个作业部件的线速度,包括:
    根据所述姿态信息,确定所述植保机械设备的角速度和转弯半径;
    根据所述植保机械设备的角速度、转弯半径,以及各个所述作业部件距离所述植保机械设备中心轴线的距离,获取所述植保机械设备的各个作业部件的线速度。
  7. 根据权利要求1所述的方法,其特征在于,所述根据各个所述作业部件的线速度,确定各个所述作业部件的作业速率,包括:
    根据各个所述作业部件的线速度,以及预设的线速度与作业速率的对应关系,确定各个所述作业部件的作业速率。
  8. 根据权利要求1所述的方法,其特征在于,各个所述作业部件的作业速率,与各个所述作业部件的线速度正相关。
  9. 根据权利要求1所述的方法,其特征在于,所述根据各个所述作业部件的线速度,确定各个所述作业部件的作业速率,包括:
    根据各个所述作业部件的线速度,确定各个所述作业部件的线速度比;
    根据各个所述作业部件的线速度比,确定各个所述作业部件的作业速率。
  10. 根据权利要求9所述的方法,其特征在于,所述根据各个所述作业部件的线速度比,确定各个所述作业部件的作业速率,包括:
    根据各个所述作业部件的线速度比,以及所述植保机械设备的总作业速率,确定各个所述作业部件的作业速率。
  11. 根据权利要求1所述的方法,其特征在于,所述作业部件包括喷头和/或出料口。
  12. 根据权利要求11所述的方法,其特征在于,若所述作业部件为喷头,则所述根据各个所述作业部件的线速度,确定各个所述作业部件的作业速率,包括:
    根据各个喷头的线速度,确定各个所述喷头的喷洒速率;
    所述根据各个所述作业部件的作业速率,控制各个所述作业部件进行作 业,包括:
    根据各个所述喷头的喷洒速率,控制各个所述喷头进行作业。
  13. 根据权利要求12所述的方法,其特征在于,所述根据各个所述喷头的喷洒速率,控制各个所述喷头进行作业,包括通过以下方式中的至少一种控制各个所述喷头进行作业:
    根据各个所述喷头的喷洒速率,调整各个所述喷头对应的水泵压力;
    根据各个所述喷头的喷洒速率,调整各个所述喷头对应的水泵转速。
  14. 根据权利要求11所述的方法,其特征在于,若所述作业部件为出料口,则所述根据各个所述作业部件的线速度,确定各个所述作业部件的作业速率,包括:
    根据各个出料口的线速度,确定各个所述出料口的下料速率;
    所述根据各个所述作业部件的作业速率,控制各个所述作业部件进行作业,包括:
    根据各个所述出料口的下料速率,控制各个所述出料口进行作业。
  15. 根据权利要求14所述的方法,其特征在于,所述根据各个所述出料口的下料速率,控制各个所述出料口进行作业,包括通过以下方式中的至少一种控制各个所述出料口进行作业:
    根据各个所述出料口的下料速率,调整各个所述出料口的大小;
    根据各个所述出料口的下料速率,调整各个所述出料口舱门开启的角度。
  16. 一种植保机械设备控制方法,其特征在于,所述植保机械设备设有多个作业部件,所述多个作业部件相较于垂直于所述植保机械设备的移动方向的方向上分别位于不同的位置,包括:
    获取所述植保机械设备在作曲线移动时的速度信息;
    根据所述速度信息,确定各个所述作业部件的作业速率;
    根据各个所述作业部件的作业速率,控制各个所述作业部件按照各自的作业速率进行作业。
  17. 根据权利要求16所述的方法,其特征在于,所述速度信息包括角速度和直线速度中的至少一种。
  18. 根据权利要求16所述的方法,其特征在于,所述速度信息由运动传感器感测得到,所述运动传感器安装在所述植保机械设备上。
  19. 根据权利要求18所述的方法,其特征在于,所述运动传感器包括如下至少一种:惯性测量单元IMU、角速度传感器和直线速度传感器。
  20. 根据权利要求16所述的方法,其特征在于,在所述植保机械设备作曲线移动时,所述多个作业部件的作业速率各不相同。
  21. 根据权利要求20所述的方法,其特征在于,所述多个作业部件的作业速率,按照垂直于所述植保机械设备的移动方向的方向上的位置逐渐变化。
  22. 一种植保机械设备,其特征在于,包括处理器和多个作业部件;
    所述多个作业部件相较于垂直于所述植保机械设备的移动方向的方向上分别位于不同的位置;
    所述处理器用于,获取所述植保机械设备的各个作业部件在所述植保机械设备作曲线移动时的线速度;根据各个所述作业部件的线速度,确定各个所述作业部件的作业速率;根据各个所述作业部件的作业速率,控制各个所述作业部件进行作业。
  23. 根据权利要求22所述的设备,其特征在于,所述处理器具体用于:
    根据预设的作业路线和所述植保机械设备当前的位置信息,获取所述植保机械设备的各个作业部件的线速度。
  24. 根据权利要求23所述的设备,其特征在于,所述处理器具体用于:
    根据预设的作业路线和所述植保机械设备当前的位置信息,确定所述植保机械设备的转弯半径;
    根据所述植保机械设备的转弯半径、当前移动速度,以及各个所述作业部件距离所述植保机械设备中心轴线的距离,获取所述植保机械设备的各个作业部件的线速度。
  25. 根据权利要求24所述的设备,其特征在于,所述处理器具体用于:
    根据所述植保机械设备的转弯半径和当前移动速度,确定所述植保机械设备的角速度;
    根据所述植保机械设备的转弯半径以及各个所述作业部件距离所述植保机械设备中心轴线的距离,确定各个所述作业部件的转弯半径;
    根据各个所述作业部件的转弯半径以及所述植保机械设备的角速度,获取所述植保机械设备的各个作业部件的线速度。
  26. 根据权利要求22所述的设备,其特征在于,所述处理器具体用于:
    获取所述植保机械设备的姿态信息;
    根据所述姿态信息,获取所述植保机械设备的各个作业部件的线速度。
  27. 根据权利要求26所述的设备,其特征在于,所述处理器具体用于:
    根据所述姿态信息,确定所述植保机械设备的角速度和转弯半径;
    根据所述植保机械设备的角速度、转弯半径,以及各个所述作业部件距离所述植保机械设备中心轴线的距离,获取所述植保机械设备的各个作业部件的线速度。
  28. 根据权利要求22所述的设备,其特征在于,所述处理器具体用于:根据各个所述作业部件的线速度,以及预设的线速度与作业速率的对应关系,确定各个所述作业部件的作业速率。
  29. 根据权利要求22所述的设备,其特征在于,各个所述作业部件的作业速率,与各个所述作业部件的线速度正相关。
  30. 根据权利要求22所述的设备,其特征在于,所述处理器具体用于:
    根据各个所述作业部件的线速度,确定各个所述作业部件的线速度比;
    根据各个所述作业部件的线速度比,确定各个所述作业部件的作业速率。
  31. 根据权利要求30所述的设备,其特征在于,所述处理器具体用于:
    根据各个所述作业部件的线速度比,以及所述植保机械设备的总作业速率,确定各个所述作业部件的作业速率。
  32. 根据权利要求22所述的设备,其特征在于,所述作业部件包括喷头和/或出料口。
  33. 根据权利要求32所述的设备,其特征在于,若所述作业部件为喷头,则所述处理器具体用于:
    根据各个喷头的线速度,确定各个所述喷头的喷洒速率;
    根据各个所述喷头的喷洒速率,控制各个所述喷头进行作业。
  34. 根据权利要求33所述的设备,其特征在于,所述处理器具体用于通过以下方式中的至少一种控制各个所述喷头进行作业:
    根据各个所述喷头的喷洒速率,调整各个所述喷头对应的水泵压力;
    根据各个所述喷头的喷洒速率,调整各个所述喷头对应的水泵转速。
  35. 根据权利要求32所述的设备,其特征在于,若所述作业部件为出料口,则所述处理器具体用于:根据各个出料口的线速度,确定各个所述出料 口的下料速率;
    根据各个所述出料口的下料速率,控制各个所述出料口进行作业。
  36. 根据权利要求35所述的设备,其特征在于,所述处理器具体用于通过以下方式中的至少一种控制各个所述出料口进行作业:
    根据各个所述出料口的下料速率,调整各个所述出料口的大小;
    根据各个所述出料口的下料速率,调整各个所述出料口舱门开启的角度。
  37. 一种植保机械设备,其特征在于,包括处理器和多个作业部件;
    所述多个作业部件相较于垂直于所述植保机械设备的移动方向的方向上分别位于不同的位置;
    所述处理器用于,获取所述植保机械设备在作曲线移动时的速度信息;根据所述速度信息,确定各个所述作业部件的作业速率;根据各个所述作业部件的作业速率,控制各个所述作业部件按照各自的作业速率进行作业。
  38. 根据权利要求37所述的设备,其特征在于,所述速度信息包括角速度和直线速度中的至少一种。
  39. 根据权利要求37所述的设备,其特征在于,所述速度信息由运动传感器感测得到,所述运动传感器安装在所述植保机械设备上。
  40. 根据权利要求39所述的设备,其特征在于,所述运动传感器包括如下至少一种:惯性测量单元IMU、角速度传感器和直线速度传感器。
  41. 根据权利要求37所述的设备,其特征在于,在所述植保机械设备作曲线移动时,所述多个作业部件的作业速率各不相同。
  42. 根据权利要求41所述的设备,其特征在于,所述多个作业部件的作业速率,按照垂直于所述植保机械设备的移动方向的方向上的位置逐渐变化。
PCT/CN2018/117247 2018-11-23 2018-11-23 植保机械设备控制方法及植保机械设备 WO2020103141A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2018/117247 WO2020103141A1 (zh) 2018-11-23 2018-11-23 植保机械设备控制方法及植保机械设备
CN201880072754.4A CN111448136A (zh) 2018-11-23 2018-11-23 植保机械设备控制方法及植保机械设备
US17/327,383 US20210274774A1 (en) 2018-11-23 2021-05-21 Control method for agricultural mechanical device and agricultural mechanical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/117247 WO2020103141A1 (zh) 2018-11-23 2018-11-23 植保机械设备控制方法及植保机械设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/327,383 Continuation US20210274774A1 (en) 2018-11-23 2021-05-21 Control method for agricultural mechanical device and agricultural mechanical device

Publications (1)

Publication Number Publication Date
WO2020103141A1 true WO2020103141A1 (zh) 2020-05-28

Family

ID=70773779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117247 WO2020103141A1 (zh) 2018-11-23 2018-11-23 植保机械设备控制方法及植保机械设备

Country Status (3)

Country Link
US (1) US20210274774A1 (zh)
CN (1) CN111448136A (zh)
WO (1) WO2020103141A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112715508B (zh) * 2020-12-15 2022-09-13 广州极飞科技股份有限公司 确定下料口位置的方法和装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102687711A (zh) * 2012-06-05 2012-09-26 南京林业大学 静电喷雾式无人直升机施药***
CN104554725A (zh) * 2014-11-18 2015-04-29 浙江大学 一种变量喷洒农药的无人机以及方法
CN205633063U (zh) * 2016-05-12 2016-10-12 江西兴航智控航空工业有限公司 一种喷洒农药无人机专用自动农药喷洒装置
CN106527479A (zh) * 2016-11-29 2017-03-22 广州极飞科技有限公司 一种无人机的控制方法及装置
CN107992081A (zh) * 2017-12-25 2018-05-04 衢州量智科技有限公司 植保无人机控制方法以及控制装置
US10043263B1 (en) * 2011-07-05 2018-08-07 Bernard Fryshman Mobile system for explosive device detection and instant active response

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017204433A1 (de) * 2017-03-16 2018-09-20 Zf Friedrichshafen Ag Verfahren zum Betreiben eines Systems aus einem landwirtschaftlichen Arbeitsfahrzeug und zumindest einem an diesem angeordneten Arbeitsgerät

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10043263B1 (en) * 2011-07-05 2018-08-07 Bernard Fryshman Mobile system for explosive device detection and instant active response
CN102687711A (zh) * 2012-06-05 2012-09-26 南京林业大学 静电喷雾式无人直升机施药***
CN104554725A (zh) * 2014-11-18 2015-04-29 浙江大学 一种变量喷洒农药的无人机以及方法
CN205633063U (zh) * 2016-05-12 2016-10-12 江西兴航智控航空工业有限公司 一种喷洒农药无人机专用自动农药喷洒装置
CN106527479A (zh) * 2016-11-29 2017-03-22 广州极飞科技有限公司 一种无人机的控制方法及装置
CN107992081A (zh) * 2017-12-25 2018-05-04 衢州量智科技有限公司 植保无人机控制方法以及控制装置

Also Published As

Publication number Publication date
US20210274774A1 (en) 2021-09-09
CN111448136A (zh) 2020-07-24

Similar Documents

Publication Publication Date Title
JP6621140B2 (ja) 無人飛行体による薬剤散布方法、および、プログラム
US11338921B2 (en) Disbursement system for an unmanned aerial vehicle
US9945957B2 (en) Machine control system and method
JP2017206066A (ja) 薬液散布用無人航空機
JP7018060B2 (ja) 無人機の作業方法及び装置
JP6962720B2 (ja) 飛行制御方法、情報処理装置、プログラム及び記録媒体
US20220197309A1 (en) Systems and methods for operating unmanned aerial vehicles
JP6906959B2 (ja) ドローンを使用した肥料散布方法
US9173337B2 (en) GNSS optimized control system and method
US8548649B2 (en) GNSS optimized aircraft control system and method
AU2017249162A1 (en) Line acquisition path generation
WO2015139050A1 (en) Implement and boom height control
CN104407586A (zh) 一种驱动解耦植保无人机的控制***及控制方法
US20190382116A1 (en) Drug spreading drone
WO2018189848A1 (ja) 無人飛行体による薬剤散布方法、および、プログラム
WO2022088562A1 (zh) 一种多旋翼喷杆结构及其控制方法
WO2019119239A1 (zh) 喷洒面积的测量方法和设备
US10386857B2 (en) Sensor-centric path planning and control for robotic vehicles
EP2892332B1 (en) Dynamic application system priming
US20200222929A1 (en) Smart spray painting nozzle and calibration method for use with mobile robots
Wang et al. Autonomous maneuvers of a robotic tractor for farming
WO2020103141A1 (zh) 植保机械设备控制方法及植保机械设备
US11944047B2 (en) Automated data-based irrigation system and method
US20210360853A1 (en) Autonomous System For Automating Garden Tasks And A Method For Automating Customizable Lawn Patterns
CN109901607A (zh) 一种多旋翼无人机专用飞控***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18940620

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18940620

Country of ref document: EP

Kind code of ref document: A1