WO2019119239A1 - 喷洒面积的测量方法和设备 - Google Patents

喷洒面积的测量方法和设备 Download PDF

Info

Publication number
WO2019119239A1
WO2019119239A1 PCT/CN2017/117035 CN2017117035W WO2019119239A1 WO 2019119239 A1 WO2019119239 A1 WO 2019119239A1 CN 2017117035 W CN2017117035 W CN 2017117035W WO 2019119239 A1 WO2019119239 A1 WO 2019119239A1
Authority
WO
WIPO (PCT)
Prior art keywords
spray
spraying
drone
length
area
Prior art date
Application number
PCT/CN2017/117035
Other languages
English (en)
French (fr)
Inventor
周毅
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2017/117035 priority Critical patent/WO2019119239A1/zh
Priority to CN201780025600.5A priority patent/CN109073375A/zh
Publication of WO2019119239A1 publication Critical patent/WO2019119239A1/zh
Priority to US16/890,691 priority patent/US20200290739A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/28Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring areas
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M7/00Special adaptations or arrangements of liquid-spraying apparatus for purposes covered by this subclass
    • A01M7/0089Regulating or controlling systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D1/00Dropping, ejecting, releasing, or receiving articles, liquids, or the like, in flight
    • B64D1/16Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting
    • B64D1/18Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting by spraying, e.g. insecticides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • G01S19/47Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being an inertial measurement, e.g. tightly coupled inertial
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0094Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots involving pointing a payload, e.g. camera, weapon, sensor, towards a fixed or moving target
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/40UAVs specially adapted for particular uses or applications for agriculture or forestry operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/45UAVs specially adapted for particular uses or applications for releasing liquids or powders in-flight, e.g. crop-dusting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls

Definitions

  • Embodiments of the present invention relate to the field of drone technology, and in particular, to a method and an apparatus for measuring a spray area.
  • agricultural drones occupy an important position as an industrial-grade application drone, which can be used for farmland.
  • Plant protection operations such as arable land, spraying pesticides and harvesting crops, have brought great benefits to the agricultural sector, such as saving users time, improving work efficiency, increasing operating income, and improving the efficiency of agricultural machinery.
  • the operation of agricultural drones can be measured by the workload of plant protection operations, and the work area is the most important and intuitive one.
  • the working area is usually manually estimated or measured before the plant protection operation, but the actual working process is affected by various factors, which makes the actual working area and the estimated or measured working area have a large gap, resulting in plant protection workload. Inaccurate.
  • Embodiments of the present invention provide a method and an apparatus for measuring a spray area for improving the measurement accuracy of a spray area.
  • an embodiment of the present invention provides a method for measuring a spray area, including:
  • the spray area of the spray operation is determined based on the flight data and the spray amplitude of the spray heads configured for spraying on the drone.
  • an embodiment of the present invention provides a measuring device for a spray area, including: a memory and a processor;
  • the memory is configured to store program code
  • the processor calls the program code to perform the following operations when the program code is executed:
  • the spray area of the spray operation is determined based on the flight data and the spray amplitude of the spray heads configured for spraying on the drone.
  • an embodiment of the present invention provides a chip, including: a memory and a processor;
  • the memory is configured to store program code
  • the processor calls the program code to perform the following operations when the program code is executed:
  • the spray area of the spray operation is determined based on the flight data and the spray amplitude of the spray heads configured for spraying on the drone.
  • an embodiment of the present invention provides a readable storage medium, where the readable storage medium stores a computer program; when the computer program is executed, the spraying according to the first aspect of the present invention is implemented. The method of measuring the area.
  • the method and device for measuring the spray area provided by the embodiment of the present invention, by acquiring the flight data of the drone during the execution of the spraying operation; and according to the flight data and the spraying range of the nozzle for spraying configured on the drone Determine the spray area for the spray operation. Since the flight data reflects the actual flight condition of the drone, the spray area obtained according to this is closer to the actual spray area of the drone, which improves the measurement accuracy of the spray area and improves the accuracy of the plant protection workload.
  • FIG. 1 is a schematic architectural diagram of an agricultural drone 100 in accordance with an embodiment of the present invention.
  • FIG. 2 is a flow chart of a method for measuring a spray area according to an embodiment of the present invention
  • FIG. 3 is a flow chart of a method for measuring a spray area according to another embodiment of the present invention.
  • Figure 4 is a schematic view showing a spray area measurement in the embodiment shown in Figure 3;
  • FIG. 5 is a flowchart of a method for measuring a spray area according to another embodiment of the present invention.
  • Figure 6 is a schematic view showing a spray area measurement in the embodiment shown in Figure 5;
  • FIG. 7 is a schematic structural diagram of a measuring device for a spray area according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a measuring system for a spray area according to an embodiment of the present invention.
  • FIG. 9 is another schematic structural diagram of a measurement system for a spray area according to an embodiment of the present invention.
  • Embodiments of the present invention provide a method and apparatus for measuring a spray area for use in the field of drones.
  • the drone may be an agricultural drone, such as a rotorcraft, for example, a multi-rotor aircraft propelled by air by a plurality of pushing devices, and embodiments of the present invention are not limited thereto.
  • FIG. 1 is a schematic architectural diagram of an agricultural drone 100 in accordance with an embodiment of the present invention.
  • the agricultural drone 100 is taken as an example of a rotor unmanned aerial vehicle.
  • the agricultural drone 100 can include a power system, a flight control system, and a rack.
  • the agricultural drone 100 can perform wireless communication with the control terminal, the control terminal can display flight information of the agricultural drone, etc., and the control terminal can communicate with the agricultural drone 100 wirelessly for the agricultural drone 100. Perform remote manipulation.
  • the frame may include a fuselage 110 and a stand 120 (also referred to as a landing gear).
  • the fuselage 110 can include a center frame 111 and one or more arms 112 coupled to the center frame 111, one or more arms 112 extending radially from the center frame.
  • the tripod 120 is connected to the fuselage 110 for supporting when the agricultural drone 100 is landing, and the foot frame 120 is further equipped with a liquid storage tank 130 for storing the chemical liquid or water;
  • the end of the arm 112 is also equipped with a head 140, and the liquid in the reservoir 130 is pumped into the head 140 by a pump, and is sprayed out by the head 140.
  • the power system may include one or more electronic governors (referred to as ESCs), one or more propellers 150, and one or more electric machines 160 corresponding to one or more propellers 150, wherein the electric machine 160 is coupled to the electronic tune
  • the electronic governor is configured to receive a driving signal generated by the flight control system, and provide a driving current to the motor according to the driving signal.
  • the motor 160 is used to drive the rotation of the propeller 150 to power the flight of the agricultural drone 100, which enables the agricultural drone 100 to achieve one or more degrees of freedom of motion.
  • the agricultural drone 100 can be rotated about one or more axes of rotation.
  • the above-described rotating shaft may include a roll axis, a yaw axis, and a pitch axis.
  • the motor 160 can be a DC motor or an AC motor.
  • the motor 160 may be a brushless motor or a brushed motor.
  • the flight control system can include a flight controller and a sensing system.
  • the sensing system is used to measure the attitude information of the unmanned aerial vehicle, that is, the position information and state information of the agricultural drone 100 in space, for example, three-dimensional position, three-dimensional angle, three-dimensional speed, three-dimensional acceleration, and three-dimensional angular velocity.
  • the sensing system may include, for example, at least one of a gyroscope, an ultrasonic sensor, an electronic compass, an Inertial Measurement Unit (IMU), a vision sensor, a global navigation satellite system, and a barometer.
  • the global navigation satellite system can be a Global Positioning System (GPS).
  • the flight controller is used to control the flight of the agricultural drone 100, for example, the flight of the agricultural drone 100 can be controlled based on the attitude information measured by the sensing system. It should be understood that the flight controller may control the agricultural drone 100 in accordance with pre-programmed program instructions, or may control the agricultural drone 100 in response to one or more control commands from the control terminal.
  • FIG. 2 is a flowchart of a method for measuring a spray area according to an embodiment of the present invention. As shown in FIG. 2, the method in this embodiment may include:
  • the drone can perform a spraying operation on the farmland, such as spraying a liquid medicine or water, etc., wherein the spraying operation can be measured by determining the spraying area of the drone.
  • the drone In order to ensure the effect of the drone operation in the spraying operation, the drone generally flies in the air and sprays in the air toward the ground. Therefore, the present embodiment can acquire the flight data of the drone during the execution of the spraying operation, for example: The flight data of the drone is acquired in real time, or the flight data of the drone can be acquired in real time according to a preset period, for example, the flight data is acquired every 1 second, 2 seconds, 5 seconds, or 10 seconds.
  • the flight data includes, for example, at least one of the following: flight altitude, flight speed, flight angle, position information, and flight time; it should be noted that the embodiment is not limited thereto.
  • the flight data can reflect the flight conditions (such as flight trajectory) of the drone during the spraying operation.
  • the longer the flight path of the drone during the spraying operation the larger the spray area; the shorter the flight path of the drone during the spraying operation, the smaller the spray area; in addition, the spray area is still
  • the spraying range of the nozzle for spraying on the man-machine is related. If the spraying range of the nozzle is smaller for the same nozzle, the smaller the spraying area is, the larger the spraying range of the nozzle is, the larger the spraying area is. Therefore, the present embodiment determines the spray area of the spray operation based on the flight data and the spray range of the spray heads configured for spraying on the drone.
  • the flight data of the spraying operation is determined by acquiring the flight data of the drone during the execution of the spraying operation; and determining the spraying area of the spraying operation according to the flight data and the spraying amplitude of the nozzle for spraying disposed on the drone. Since the flight data reflects the actual flight condition of the drone, the spray area obtained according to this is closer to the actual spray area of the drone, which improves the measurement accuracy of the spray area and improves the accuracy of the plant protection workload.
  • the spray amplitude of the spray heads configured for spraying on the drone is also obtained.
  • different spray ranges may be set for the spray heads, and different spray heads may be replaced (different spray heads may have different spray ranges). Therefore, in order to measure the spray area more accurately, it is also possible to obtain the spray range of the spray head for spraying on the drone before determining the spray area.
  • the method of this embodiment may be applied to a control terminal of a drone or may also be applied to a server.
  • a feasible manner is: receiving the flight data of the drone sent by the drone during the execution of the spraying operation.
  • the control terminal can acquire the above flight data through a wireless link with the drone.
  • a feasible manner is: receiving flight data of the drone sent by the drone during the execution of the spraying operation.
  • the drone can be configured with a communication interface through which the drone can communicate with the server, such as a network communication interface, such as a cellular communication interface (3G, 4G, or 5G communication interface), so the server acquires no The above flight data that the human machine can transmit through the communication interface.
  • a network communication interface such as a cellular communication interface (3G, 4G, or 5G communication interface
  • another feasible manner is: receiving flight data of the drone that is sent by the control terminal of the drone during the execution of the spraying operation.
  • control terminal of the drone can be configured with a communication interface through which the control terminal can communicate with the server, such as a network communication interface, such as a cellular communication interface (3G, 4G or 5G communication interface), therefore, no
  • a network communication interface such as a cellular communication interface (3G, 4G or 5G communication interface)
  • the control terminal of the human machine can acquire the flight data through a wireless link with the drone, and then the server acquires the flight data of the drone that the terminal transmits through the communication interface.
  • FIG. 3 is a flowchart of a method for measuring a spray area according to another embodiment of the present invention. As shown in FIG. 3, the method in this embodiment may include:
  • a possible implementation manner of the foregoing S202 may include the foregoing S302 and S303.
  • the length of each route segment during the execution of the spraying operation of the drone is determined according to the flight data.
  • the length of the route segment may be a spherical distance projected by the route segment onto the surface of the earth, and the distance from the projection to the surface of the earth may be determined according to location information of the drone in the flight data, but the implementation is The example is not limited to this.
  • the route segments are divided by preset time intervals.
  • the flight data includes a flight position and a flight time, for example, the flight position is the latitude and longitude of the drone, for example, the preset time interval is 2S, for example, the flight position corresponding to the flight time of 2S according to the time interval, The length of this route segment can be obtained.
  • determining a flight position corresponding to the time t1 and a flight position corresponding to the time t1+2S determining a distance between the two flight positions according to the latitude and longitude of the two flight positions, the distance being the length of the route segment; Determining the flight position corresponding to the time t1+2S and the flight position corresponding to the time t1+4S, determining the distance of the two flight positions according to the latitude and longitude of the two flight positions, the distance is the length of the route segment; and so on , you can determine the length of all route segments.
  • the route segments are divided by a predetermined distance interval.
  • the flight data includes a flight position, for example, the flight position is the latitude and longitude of the drone, for example, the preset distance interval is 2m, for example, determining a flight position, and then determining the distance from the flight position.
  • the two flight positions are determined as a route segment, and the length of the route segment is 2 m.
  • determining a first flight position and a second flight position from each flight position that is 2 m from the first flight position the route from the first flight position to the second flight position is referred to as a route segment;
  • a third flight position that is 2 m apart from the second flight position is determined in the flight position, and the route from the second flight position to the third flight position is referred to as another route segment; and so on, all route segments can be determined, and each route segment The length is 2m.
  • each route segment is a route segment in which the drone is flying during the execution of the spraying operation, and the spraying of the nozzle for spraying is configured on the drone
  • the amplitude is known, and then the spray area of the spray operation is determined based on the length of each of the route segments and the spray range of the spray head.
  • the foregoing S303 may include the following possible implementation manners:
  • S303 may be: determining a spray area of the corresponding route segment according to the length of each route segment and the spray amplitude of the spray head; and then determining the spray area of the spray operation according to the spray area corresponding to each route segment. For example, as shown in FIG. 4, the embodiment can calculate the spraying area when the drone performs the spraying operation when flying each line segment, and then calculate the spraying of the drone spraying operation according to the corresponding spraying area of each line segment. Area, for example, the spray area corresponding to each line segment can be summed to obtain the spray area of the drone spraying operation.
  • determining the spray area of the corresponding route segment according to the length of each route segment and the spray range of the spray head can be implemented in the following manners.
  • the number of nozzles configured on the drone when the drone is flying all the route segments is the same, or the nozzles configured on the drone can be considered to be turned on, so that for each In the route segment, the spray range of the drone is the same, and the spray range of the drone can be determined according to the spray range of the spray head.
  • the spray range of the drone can be the number of open spray heads and the spray of the spray head. The product of the magnitude. In this way, the length of each route segment can be multiplied by the spray range of the same drone to obtain the spray area corresponding to each route segment.
  • the embodiment further acquires an operating state of the nozzle of the drone in each route segment, and the working state is, for example, opening or closing. If the nozzle is open, the nozzle is spraying. The spray range of the spray head should be used to calculate the spray area. If the spray head is closed, the spray head is not sprayed, and the spray range of the spray head should not be used to calculate the spray area. Therefore, the working state of the nozzle also affects the spray area, so the embodiment can determine the spray area of the corresponding spray line segment according to the length of each line segment, the spray range, and the working state of the nozzle in the line segment. Specifically, when the working state of the nozzle in a route segment is off, the spraying area of the route segment is 0.
  • the spraying of the drone can be determined according to the spraying range of the nozzle.
  • the amplitude is determined according to the spray range of the drone and the length of the route segment.
  • the spray area of the route segment may be the product of the length of the route segment and the spray range of the drone.
  • a further specific solution is: determining the number of nozzles whose working state is on the route segment according to the working state of each nozzle in each route segment, and then according to the length of each route segment, the spray range of the nozzle, and The number of nozzles whose working state is open in the route segment determines the spray area of the corresponding route segment. Since the number of nozzles in the working condition is different in some route segments, the spray ranges of the drones are different in these route segments. Therefore, the spray areas corresponding to these route segments are also different, in order to accurately measure the spray area. When calculating the spray area corresponding to each route segment, it is necessary to consider the number of nozzles that are opened.
  • the number of nozzles that are turned on is Ni
  • the spray range of the nozzle is S (this refers to the spray range of one nozzle)
  • the length of the route segment is Li
  • the spray range of the drone is :Ni*S
  • the spray area of this route segment is: Ni*S*Li.
  • the number of nozzles opened in the route segment is zero
  • the spray area of the route segment obtained by the solution of the embodiment is zero.
  • S303 may be: determining the length of the route according to the length of each of the route segments; and then determining the spray area of the spray operation according to the length of the route and the spray amplitude of the spray head.
  • the length of the entire route of the drone when performing the spraying operation can be calculated. For example, the length of each route segment can be summed to obtain the length of the entire route. Then, according to the length of the entire route and the spray range of the nozzle, the spray area of the drone spraying operation is obtained.
  • the method for determining the spray area in the embodiment may be: determining the spray area of the spray operation according to the length of the route, the spray range of the spray head, and the number of spray heads.
  • the spray range of the drone is the same, that is, the product of the number of nozzles and the spray range of the nozzle. In this way, the length of the entire route, the number of nozzles and the spray range of the nozzle can be multiplied to obtain the spray area of the drone spraying operation.
  • the length of each route segment is determined according to the flight data of the drone during the execution of the spraying operation, and then according to the length of each route segment and the spray range of the nozzle for spraying configured on the drone. Determine the spray area for the spray operation. Since the entire route is divided into multiple route segments, the spray area obtained according to the length of each route segment is further close to the actual spray area of the drone, which improves the measurement accuracy of the spray area and improves the accuracy of the plant protection workload. .
  • FIG. 5 is a flowchart of a method for measuring a spray area according to another embodiment of the present invention. As shown in FIG. 5, the method of this embodiment may include:
  • a possible implementation manner of the foregoing S202 may include the foregoing S502 and S503.
  • determining the length of each route segment that meets the preset requirement during the execution of the spraying operation by the drone according to the flight data which needs to be explained. Yes, the difference between this embodiment and the embodiment shown in FIG. 3 is that FIG. 3 obtains the length of each route segment during the execution of the spraying operation by the drone, but this embodiment does not acquire the drone. The length of each route segment in the process of performing the spraying operation is obtained, but the length of each route segment meeting the preset requirement is obtained.
  • the length of the route segment is not obtained in this embodiment. That is, some route segments in the process of performing the spraying operation do not affect the spraying area, for example, the nozzle is not opened, or the drone is flying in the invalid plant protection area (the area can be considered to be spray-free), etc., thereby affecting the spraying.
  • the area is not every route segment. Therefore, the present embodiment determines a route segment that meets the preset requirement from all the route segments in the process of performing the spraying operation by the drone, and acquires the length of each route segment that meets the preset requirement.
  • the length of the route segment may be a spherical distance projected by the route segment onto the surface of the earth, but the embodiment is not limited thereto. For the division of the route segment, refer to the related description in the foregoing embodiment, and details are not described herein again.
  • each route segment that meets the preset requirement is a route segment that affects the spray area when the drone performs the spraying operation, and
  • the spray range of the spray heads configured for spraying on the drone is known, and then the spray area of the spray operation is determined according to the length of each of the line segments meeting the preset requirements and the spray range of the spray head.
  • the embodiment before performing S502, the embodiment further acquires an operating state of the nozzle in each route segment during the execution of the spraying operation, the working state is, for example, being turned on or off, if the route segment is If the nozzle is open, the nozzle is sprayed.
  • the spray range of the nozzle should be used to calculate the spray area. If the nozzle is closed, the nozzle is not sprayed, and the spray range of the spray should not be used to calculate the spray area. Therefore, the working state of the nozzle also affects the spray area.
  • the route segment that meets the preset requirement in this embodiment is a spray route segment, and the route segment that does not meet the preset requirement may be referred to as a non-spray route segment, wherein the spray route
  • the segment is a route segment in which the working state of the nozzle in the route segment is the open state.
  • the embodiment may specifically: determine the length of each spray route segment in the route segment according to the flight data and the working state of the nozzle, and then according to the length of each spray route segment and the nozzle.
  • the spray range determines the spray area of the spray operation. Since the spray area is determined according to the length of the spray line segment, the spray area obtained in this embodiment is closer to the area where the drone actually sprays the liquid medicine or water into the plant protection area during the spraying operation, and further improves. The accuracy of the spray area.
  • determining the spray area of the corresponding route segment according to the length of each spray route segment and the spray range of the spray head can be implemented as follows.
  • determining the spray area of the spray operation according to the length of each spray line segment and the spray range of the spray head may include: determining a corresponding spray route according to the length of each spray line segment and the spray range of the spray head. The spray area of the section; then the spray area of the spray operation is determined according to the spray area corresponding to each spray line segment. For example, as shown in FIG. 6, for example, as shown in FIG. 6, a four-segment route segment is shown in the embodiment, wherein the nozzles in the first route segment, the second route segment, and the fourth route segment are opened. Then, these route segments are spray route segments, while the nozzles of the third route segment are closed, and the third route segment is not used to calculate the spray area.
  • the spraying area of the drone when performing the spraying operation when flying each spraying route segment can be calculated, and then the spraying area of the drone spraying operation is calculated according to the corresponding spraying area of each spraying route segment, for example: The spray area corresponding to each spray line segment is summed to obtain the spray area of the drone spraying operation.
  • determining the spray area of the corresponding spray line segment according to the length of each spray line segment and the spray range of the spray head can be implemented as follows.
  • the number of nozzles configured on the drone when the drone is flying the route segment is the same, or the nozzles configured on the drone can be considered to be open, so that for each In the case of a spray route segment, the spray range of the drone is the same, that is, the product of the number of open nozzles and the spray range of the spray head.
  • the length of each spray line segment can be multiplied by the same spray width to obtain the spray area corresponding to each spray line segment.
  • the number of nozzles whose working states are turned on in different route segments is different, not the corresponding spray area of each route segment is the same, in order to accurately measure the spray area, in calculating each When the spray area corresponding to the route segment is required, the number of open nozzles needs to be considered.
  • the number of the working nozzles corresponding to the working state in the corresponding spraying route segment is determined. If the working state is the number of the opened nozzles, the larger the spraying area is, if the working The smaller the number of nozzles that are open, the less the spray area.
  • the embodiment can be opened according to the length of each spray route segment, the spray range of the spray head, and the working state in the spray route segment.
  • the quantity determines the spray area corresponding to the spray line segment. For any of the spray route segments i, if the number of nozzles that are opened is Ni, and the spray range of the nozzle is S (this refers to the spray range of one nozzle), the length of the spray route segment is Li, then the drone's
  • the spraying range is: Ni*S
  • the spraying area of the spraying route section is: Ni*S*Li. Since the number of nozzles opened in the spray line segment is at least one, the spray area of each spray line segment is greater than zero.
  • determining the spray area of the spray operation according to the length of each spray line segment and the spray range of the spray head may include: determining the length of the spray route according to the length of each of the spray line segments; The spray area of the spray operation is determined according to the length of the spray route and the spray range of the spray head.
  • the length of the spraying route of the drone when performing the spraying operation can be calculated.
  • the spraying route refers to the opening of the nozzle configured when the drone is not in the spraying route; for example, the length of each spraying route segment can be summed , the length of the entire spray route can be obtained.
  • the method for determining the spraying area in the embodiment may be: determining the spraying area of the spraying operation according to the length of the spraying route, the spraying range of the nozzle, and the number of the nozzles.
  • there may be multiple nozzles configured on the drone and it can be considered that the number of nozzles configured on the drone is the same when the drone is flying the entire spraying route, or all the nozzles configured on the drone can be considered to be turned on.
  • the spray range of the drone is the same, that is, the product of the number of spray heads and the spray range of the spray head. In this way, the length of the entire spraying route, the number of nozzles and the spraying range of the nozzle can be multiplied to obtain the spraying area of the drone spraying operation.
  • the present embodiment receives a start job indicator, wherein the start job indicator includes a spray job identification number.
  • the spray job identification number may be generated when the drone starts the execution of the spray operation, and the spray job identification number is used to indicate the spray operation. Therefore, after receiving the receiving start job indicator, the acquired flight data of the drone during the execution of the spraying operation is the flight data during the spraying operation indicated by the spraying operation identification number, That is, the acquired flight data belongs to the same spraying operation.
  • the start job indicator is further used to instruct to start measuring the spray area, and the embodiment measures the spray area according to the flight data acquired after receiving the start work indicator, so that the spray area obtained according to the flight data is the spray operation.
  • the spray area indicated by the marking number ie the same spraying operation). In this embodiment, the spray area of the spray operation can be clearly interfaced by spraying the work identification number.
  • the spraying operation needs to be suspended due to factors such as dosing, charging, etc., so the embodiment may also receive a pause job indicator, the pause job indicator.
  • the present embodiment suspends acquisition of flight data of the drone during execution of the spray operation, and pauses according to the flight
  • the data and the spray range of the spray heads configured for spraying on the drone determine the spray area of the spray operation; to ensure the accuracy of measuring the spray area.
  • the pause job indicator further includes: a spray job identification number, the pause job indicator is used to indicate that the flight data in the process of acquiring the spray job indicated by the spray job identification number is suspended, and the spray job identification number is suspended.
  • the spray area of the indicated spraying operation correspondingly, the present embodiment suspends obtaining the flight data of the drone during the spraying operation indicated by the spraying operation identification number, and suspending the configuration according to the flight data and the drone
  • the spray amplitude of the spray head for spraying determines the spray area of the spray operation indicated by the spray job identification number.
  • the spraying area of the plurality of spraying operations can be simultaneously measured, and by including the spraying operation identification number in the temporary operation indicator, the spraying area of the spraying operation indicated by the spraying operation identification number can be suspended, without affecting other spraying operations. Measurement of the spray area.
  • the drone can identify whether the spraying operation is the unfinished spraying operation, and if the unfinished spraying operation continues
  • the embodiment may further receive a continuation job indicator for indicating that the flight data is continuously acquired and determining the spray area. Therefore, the embodiment continues to acquire the drone after receiving the continuation job indicator.
  • the flight data during the spraying operation is performed, and the spray area of the spraying operation is continuously determined according to the flight data and the spray width of the spray head configured on the drone; to ensure the accuracy of measuring the spray area.
  • the continuation job indicator further includes: a spray job identification number, the continuation indicator is used to indicate flight data in the process of continuing to acquire the spray job indicated by the spray job identification number, and continue to measure the spray job identification number indication
  • the spraying area of the spraying operation correspondingly, the embodiment continues to acquire the flight data of the drone during the spraying operation indicated by the spraying operation identification number, and continues to be configured according to the flight data and the drone
  • the spray range of the spray head for spraying determines the spray area of the spray operation indicated by the spray job identification number.
  • the spraying area of the plurality of spraying operations can be suspended at the same time.
  • the spraying area of the spraying operation indicated by the spraying operation identification number can be continuously measured without affecting the suspension of other spraying operations. Measurement of the spray area.
  • the start job indicator, the pause job indicator, and the resume job indicator may be sent by the drone to the control terminal.
  • the start indicator, the pause job indicator, and the resume job indicator may be sent by the drone to the server; or the start indicator and the pause mentioned above.
  • the job indicator and the continuation job indicator may be control terminals sent by the drone to the drone, and then forwarded to the server by the control terminal.
  • the embodiment of the invention further provides a computer storage medium, wherein the computer storage medium stores program instructions, and the program execution may include the measurement method of the spray area in FIG. 2 to FIG. 5 and its corresponding embodiments. Some or all of the steps.
  • FIG. 7 is a schematic structural diagram of a measuring device for a spray area according to an embodiment of the present invention.
  • the measuring device 700 of the spray area of the present embodiment may include: a memory 701 and a processor 702;
  • the processor 702 is connected by a bus.
  • Memory 701 can include read only memory and random access memory and provides instructions and data to processor 702.
  • a portion of the memory 701 may also include a non-volatile random access memory.
  • the processor 702 may be a central processing unit (CPU), and the processor may be another general-purpose processor, a digital signal processor (DSP), or an application specific integrated circuit (ASIC). ), a Field-Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware components, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 701 is configured to store program code
  • the processor 702 calls the program code to perform the following operations when the program code is executed:
  • the spray area of the spray operation is determined based on the flight data and the spray amplitude of the spray heads configured for spraying on the drone.
  • the flight data includes at least one of: flight altitude, flight speed, flight angle, position information, flight time.
  • the processor 702 determines, when determining the spray area of the spray operation according to the flight data and the spray range of the spray head configured for spraying on the drone, specifically for: determining no according to the flight data. The length of each route segment during the execution of the spraying operation of the man-machine; and determining the spraying area of the spraying operation according to the length of each route segment and the spraying amplitude of the nozzle.
  • the processor 702 determines the spray area of the spray operation according to the length of each route segment and the spray range of the spray head, specifically for:
  • the spray area of the spray operation is determined according to the spray area corresponding to each route segment.
  • the processor 702 is further configured to: acquire an operating state of the nozzle of the drone in each route segment;
  • the processor 702 is specifically configured to: according to the length of each route segment and the spray range of the nozzle, the length of each route segment, the spray range, and the route segment.
  • the working state of the middle nozzle determines the spray area of the corresponding route segment.
  • the processor 702 determines the spray area of the corresponding route segment according to the length of each route segment, the spray range, and the working state of the nozzle in the route segment, specifically for:
  • the spray area of the corresponding route segment is determined according to the length of each route segment, the spray range, and the number of spray heads that are open in the route segment.
  • the processor 702 determines the spray area of the spray operation according to the flight data and the spray range of the spray heads configured for spraying on the drone, specifically for:
  • the spray area of the spray operation is determined according to the length of each line segment meeting the preset requirement and the spray range of the spray head.
  • the processor 702 is further configured to: acquire an operating state of the nozzle in each route segment of the drone during the execution of the spraying operation;
  • the processor 702 is configured to determine, according to the flight data, the length of each route segment that meets the preset requirement during the execution of the spraying operation, specifically for: working according to the flight data and the nozzle
  • the state determines the length of each spray route segment in the route segment, wherein the spray route segment is a route segment in which the working state of the nozzle in the route segment is an open state;
  • the processor 702 is configured to determine the spray area of the spray operation according to the length of each spray line segment meeting the preset requirement and the spray range of the spray head, and specifically for: according to the length of each spray line segment and the spray head
  • the spray range determines the spray area of the spray operation.
  • the processor 702 determines the spray area of the spray operation according to the length of each of the spray line segments and the spray range of the spray head, specifically for:
  • the spray area of the spray operation is determined according to the spray area corresponding to each spray line segment.
  • the processor 702 is further configured to determine, according to an operating state of the nozzles in each of the spraying route segments, a number of nozzles whose working states are turned on in each of the spraying route segments;
  • the processor 702 is configured to: according to the length of each spray route segment and the spray range of the spray head, the spray area of the corresponding spray route segment, specifically for: working according to the length of each spray route segment and the corresponding spray route segment
  • the number of spray heads in the state of opening, and the spray range of the spray head determine the spray area corresponding to the spray line segment.
  • the processor 702 determines the spray area of the spray operation according to the length of each route segment and the spray range of the spray head, specifically for:
  • the spray area of the spray operation is determined according to the length of the route and the spray range of the spray head.
  • the processor 702 determines the spray area of the spray operation according to the length of the route and the spray range of the spray head, specifically for:
  • the spray area of the spray operation is determined according to the length of the route, the spray range of the spray head, and the number of spray heads.
  • the processor 702 determines the spray area of the spray operation according to the length of each spray line segment and the spray range of the spray head, specifically for:
  • the spray area of the spray operation is determined according to the length of the spray route and the spray width of the spray head.
  • the processor 702 determines the spray area of the spray operation according to the length of the spray route and the spray range of the spray head, specifically for:
  • the spray area of the spray operation is determined according to the length of the spray route, the number of spray heads, and the spray range of the spray head.
  • the processor 702 acquires flight data of the drone during the execution of the spraying operation, specifically for: receiving the process of the drone sent by the drone to perform a spraying operation.
  • the processor 702 is further configured to acquire a spray amplitude of a spray head configured for spraying on the drone.
  • the length of each of the course segments is a spherical distance projected onto the surface of the earth.
  • the route segments are divided by preset time intervals or by predetermined distance intervals.
  • the processor 702 is further configured to: receive a start job indicator, where the start job indicator includes a spray job identification number;
  • the processor 702 is configured to: when the flight data in the process of performing the spraying operation is performed by the unmanned aerial vehicle, obtain the indication that the drone is performing the spraying operation identification number after receiving the starting job indicator Flight data during the spraying operation.
  • the processor 702 is further configured to: receive a pause job indicator; after receiving the pause job indicator, pause acquiring flight data of the drone during execution of the spray job And suspending the spray area of the spray operation based on the flight data and the spray range of the spray heads configured for spraying on the drone.
  • the pause job indicator includes the spray job identification number
  • the processor 702 suspends acquiring flight data of the drone during the execution of the spraying operation, and suspending determining the spraying area of the spraying operation according to the flight data and the spraying range of the nozzle for spraying configured on the drone Specifically, the method is: suspending obtaining flight data of the drone during the spraying operation indicated by the spray job identification number, and suspending spraying according to the flight data and the spray head configured for spraying on the drone The amplitude determines the spray area of the spray operation indicated by the spray job identification number.
  • the processor 702 is further configured to: receive a resume job indicator; after receiving the resume job indicator, continue to acquire flight data of the drone during the execution of the spray job, And continuing to determine the spray area of the spray operation based on the flight data and the spray amplitude of the spray heads configured for spraying on the drone.
  • the resume job indicator includes the spray job identification number
  • the processor 702 continues to acquire flight data of the drone during the execution of the spraying operation, and continues to determine the spraying area of the spraying operation according to the flight data and the spraying range of the nozzle for spraying configured on the drone Specifically, the method is: continuing to acquire flight data of the drone during the spraying operation indicated by the spray operation identification number, and continuing to spray according to the flight data and the spray head configured for spraying on the drone The amplitude determines the spray area of the spray operation indicated by the spray job identification number.
  • the spray area measuring device 700 is a control terminal of the drone; the control terminal can receive flight data sent by the drone, start a job indicator, suspend the job indicator, continue the job indicator, etc. .
  • the spray area measuring device 700 is a server; the server may receive flight data sent by the drone, start a job indicator, pause a job indicator, continue a job indicator, etc.; or, the server may The receiving control terminal forwards the flight data transmitted by the drone, starts the job indicator, pauses the job indicator, continues the job indicator, and the like.
  • the device in this embodiment may be used to implement the technical solution of the foregoing method embodiment of the present invention, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • FIG. 8 is a schematic structural diagram of a measuring system for a spray area according to an embodiment of the present invention.
  • the measuring area 800 of the spray area of the present embodiment includes: a drone 801 and a control terminal 802.
  • the control terminal 802 can measure the spray area of the spraying operation of the drone 801.
  • the control terminal 802 can adopt the structure of the embodiment shown in FIG. 7 , and correspondingly, the technical solution of any of the method embodiments in FIG. 2 to FIG. 5 can be executed, and the implementation principle and technical effects are similar, and details are not described herein again. .
  • FIG. 9 is another schematic structural diagram of a measuring area for a spray area according to an embodiment of the present invention.
  • the measuring area 900 of the spray area of the present embodiment includes: a drone 901 and a server 902.
  • the server 902 can measure the spray area of the spray operation of the drone 901.
  • the server 902 can adopt the structure of the embodiment shown in FIG. 7 , and correspondingly, the technical solution of the method embodiment of any one of FIG. 2 to FIG. 5 can be performed, and the implementation principle and technical effects are similar, and details are not described herein again.
  • the measurement system of the spray area of the embodiment may further include a control terminal 903, wherein data and/or signaling between the drone 901 and the server 902 may be forwarded by the control terminal 903.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing storage medium includes: read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk, and the like, which can store program codes. Medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Pest Control & Pesticides (AREA)
  • Insects & Arthropods (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Catching Or Destruction (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种喷洒面积的测量方法和设备,该方法包括:获取无人机在执行喷洒作业的过程中的飞行数据;以及根据所述飞行数据以及无人机上配置的用于喷洒的喷头的喷洒幅度确定喷洒作业的喷洒面积;该设备包括:存储器和处理器;存储器用于存储程序代码;处理器调用所述程序代码,当程序代码被执行时,用于执行所述测量方法。该测量方法提高了喷洒面积的测量准确率,也提高了植保工作量的准确率。

Description

喷洒面积的测量方法和设备 技术领域
本发明实施例涉及无人机技术领域,尤其涉及一种喷洒面积的测量方法和设备。
背景技术
随着消费级无人机日益普及,行业级应用无人机也开始崭露头角,对为农行业来说,农业无人机作为行业级应用无人机占据着重要的位置,其可以对农田地进行植保作业,如耕地、喷洒农药和收割庄稼等,给农业领域带来了极大的好处,例如节省用户时间、提高作业效率、增加作业收益以及提高农业机械的利用效率等。其中,农业无人机的作业情况可以通过植保作业工作量来衡量,而作业面积是最为重要和直观的一个。在现在方式中,作业面积通常通过植保作业前人工估算或测量得到,但是实际作业过程中受各种因素的影响,使得实际作业面积与估算或测量得到的作业面积差距较大,造成植保工作量不准确。
发明内容
本发明实施例提供一种喷洒面积的测量方法和设备,用于提高喷洒面积的测量准确率。
第一方面,本发明实施例提供一种喷洒面积的测量方法,包括:
获取无人机在执行喷洒作业的过程中的飞行数据;
根据所述飞行数据以及无人机上配置的用于喷洒的喷头的喷洒幅度确定喷洒作业的喷洒面积。
第二方面,本发明实施例提供一种喷洒面积的测量设备,包括:存储器和处理器;
所述存储器,用于存储程序代码;
所述处理器,调用所述程序代码,当程序代码被执行时,用于执行以下操作:
用于获取无人机在执行喷洒作业的过程中的飞行数据;
根据所述飞行数据以及无人机上配置的用于喷洒的喷头的喷洒幅度确定喷洒作业的喷洒面积。
第三方面,本发明实施例提供一种芯片,包括:存储器和处理器;
所述存储器,用于存储程序代码;
所述处理器,调用所述程序代码,当程序代码被执行时,用于执行以下操作:
获取无人机在执行喷洒作业的过程中的飞行数据;
根据所述飞行数据以及无人机上配置的用于喷洒的喷头的喷洒幅度确定喷洒作业的喷洒面积。
第四方面,本发明实施例提供一种可读存储介质,所述可读存储介质上存储有计算机程序;所述计算机程序在被执行时,实现如第一方面本发明实施例所述的喷洒面积的测量方法。
本发明实施例提供的喷洒面积的测量方法和设备,通过获取无人机在执行喷洒作业的过程中的飞行数据;以及根据所述飞行数据以及无人机上配置的用于喷洒的喷头的喷洒幅度确定喷洒作业的喷洒面积。由于飞行数据反映了无人机的实际飞行状况,据此获得的喷洒面积更加接近无人机的实际喷洒面积,提高了喷洒面积的测量准确率,也提高了植保工作量的准确率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本发明的实施例的农业无人机100的示意性架构图;
图2为本发明一实施例提供的喷洒面积的测量方法的流程图;
图3为本发明另一实施例提供的喷洒面积的测量方法的流程图;
图4为图3所示实施例中的一种喷洒面积测量示意图;
图5为本发明另一实施例提供的喷洒面积的测量方法的流程图;
图6为图5所示实施例中的一种喷洒面积测量示意图;
图7为本发明实施例提供的喷洒面积的测量设备的一种结构示意图;
图8为本发明实施例提供的喷洒面积的测量***的一种结构示意图;
图9为本发明实施例提供的喷洒面积的测量***的另一种结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的实施例提供了喷洒面积的测量方法和设备,应用于无人机领域。无人机可以是农业无人机,如旋翼飞行器(rotorcraft),例如,由多个推动装置通过空气推动的多旋翼飞行器,本发明的实施例并不限于此。
图1是根据本发明的实施例的农业无人机100的示意性架构图。本实施例以农业无人机100为旋翼无人飞行器为例进行说明。
农业无人机100可以包括动力***、飞行控制***和机架。农业无人机100可以与控制终端进行无线通信,该控制终端可以显示农业无人机的飞行信息等,控制终端可以通过无线方式与农业无人机100进行通信,用于对农业无人机100进行远程操纵。
其中,机架可以包括机身110和脚架120(也称为起落架)。机身110可以包括中心架111以及与中心架111连接的一个或多个机臂112,一个或多个机臂112呈辐射状从中心架延伸出。脚架120与机身110连接,用于在农业无人机100着陆时起支撑作用,另外脚架120之间还搭载有储液箱130,该储液箱用于存储药液或者水;而且机臂112的末端还搭载有喷头140,储液箱130中的液体通过泵泵入至喷头140,由喷头140喷散出去。
动力***可以包括一个或多个电子调速器(简称为电调)、一个或多个螺旋桨150以及与一个或多个螺旋桨150相对应的一个或多个电机160,其中电机160连接在电子调速器与螺旋桨150之间,电机160和螺旋桨150设置在农业无人机100的机臂112上;电子调速器用于接收飞行控制***产生的驱动信号,并根据驱动信号提供驱动电流给电机,以控制电机160的转速。 电机160用于驱动螺旋桨150旋转,从而为农业无人机100的飞行提供动力,该动力使得农业无人机100能够实现一个或多个自由度的运动。在某些实施例中,农业无人机100可以围绕一个或多个旋转轴旋转。例如,上述旋转轴可以包括横滚轴、偏航轴和俯仰轴。应理解,电机160可以是直流电机,也可以交流电机。另外,电机160可以是无刷电机,也可以是有刷电机。
飞行控制***可以包括飞行控制器和传感***。传感***用于测量无人飞行器的姿态信息,即农业无人机100在空间的位置信息和状态信息,例如,三维位置、三维角度、三维速度、三维加速度和三维角速度等。传感***例如可以包括陀螺仪、超声传感器、电子罗盘、惯性测量单元(Inertial Measurement Unit,IMU)、视觉传感器、全球导航卫星***和气压计等传感器中的至少一种。例如,全球导航卫星***可以是全球定位***(Global Positioning System,GPS)。飞行控制器用于控制农业无人机100的飞行,例如,可以根据传感***测量的姿态信息控制农业无人机100的飞行。应理解,飞行控制器可以按照预先编好的程序指令对农业无人机100进行控制,也可以通过响应来自控制终端的一个或多个控制指令对农业无人机100进行控制。
应理解,上述对于农业无人机各组成部分的命名仅是出于标识的目的,并不应理解为对本发明的实施例的限制。
图2为本发明一实施例提供的喷洒面积的测量方法的流程图,如图2所示,本实施例的方法可以包括:
S201、获取无人机在执行喷洒作业的过程中的飞行数据。
S202、根据所述飞行数据以及无人机上配置的用于喷洒的喷头的喷洒幅度确定喷洒作业的喷洒面积。
本实施例,无人机可以对农田执行喷洒作业,例如喷洒药液或者水等,其中,可以通过确定无人机的喷洒面积来衡量喷洒作业情况。为了保证无人机在执行喷洒作业的效果,无人机一般飞行在空中,在空中朝地面喷洒,因此,本实施例可以获取无人机在执行喷洒作业的过程中的飞行数据,例如:可以实时获取无人机的上述飞行数据,或者,可以根据预设周期实时获取无人机的上述飞行数据,如每隔1秒、2秒、5秒、或者10秒获取上述飞行数据。可选地,飞行数据例如包括以下至少一种:飞行高度、飞行速度、飞行 角度、位置信息、飞行时刻;需要说明的是,本实施例并不限于此。其中,飞行数据可以反映出无人机在喷洒作业的过程中的飞行情况(例如飞行轨迹)。一般无人机在喷洒作业的过程中的飞行轨迹越长,说明喷洒面积越大;无人机在喷洒作业的过程中的飞行轨迹越短,说明喷洒面积越小;另外,喷洒面积还与无人机上配置的用于喷洒的喷头的喷洒幅度有关,若对同一喷头而言,喷头的喷洒幅度越小,则说明喷洒面积越小,喷头的喷洒幅度越大,则说明喷洒面积越大。所以,本实施例根据飞行数据以及无人机上配置的用于喷洒的喷头的喷洒幅度确定喷洒作业的喷洒面积。
本实施例中,通过获取无人机在执行喷洒作业的过程中的飞行数据;以及根据所述飞行数据以及无人机上配置的用于喷洒的喷头的喷洒幅度确定喷洒作业的喷洒面积。由于飞行数据反映了无人机的实际飞行状况,据此获得的喷洒面积更加接近无人机的实际喷洒面积,提高了喷洒面积的测量准确率,也提高了植保工作量的准确率。
其中,在一些实施例中,还获取无人机上配置的用于喷洒的喷头的喷洒幅度。对于不同的喷洒作业,可能为喷头设置不同的喷洒幅度,也可能更换不同的喷头(不同的喷头,其喷洒幅度可能不同)。因此,为了更加准确地测量喷洒面积,因此在确定喷洒面积之前,还可以获取无人机上配置的用于喷洒的喷头的喷洒幅度。
需要说明的是,本实施例的方法可以应用于无人机的控制终端中,或者,也可以应用于服务器中。
在本实施例的方法应用于无人机的控制终端时,对于步骤S201,一种可行的方式是:接收所述无人机发送的所述无人机在执行喷洒作业的过程中的飞行数据。例如:控制终端可以通过与无人机之间的无线链路获取上述飞行数据。
在本实施例的方法应用于服务器时,对于步骤S201,一种可行的方式是:接收所述无人机发送的所述无人机在执行喷洒作业的过程中的飞行数据。例如:无人机可以配置通信接口,无人机可通过该通信接口与服务器通信,该通信接口例如是网络通信接口,如蜂窝通信接口(3G、4G或者5G通信接口),因此,服务器获取无人机可以通过该通信接口发送的上述飞行数据。对于步骤S201,另一种可行的方式是:接收所述无人机的控制终端 发送的所述无人机在执行喷洒作业的过程中的飞行数据。例如:无人机的控制终端可以配置通信接口,控制终端可通过该通信接口与服务器通信,该通信接口例如是网络通信接口,如蜂窝通信接口(3G、4G或者5G通信接口),因此,无人机的控制终端可以通过与无人机之间的无线链路获取上述飞行数据,然后服务器获取控制终端通过该通信接口发送的无人机的上述飞行数据。
在图2所述的实施例的基础上,图3为本发明另一实施例提供的喷洒面积的测量方法的流程图,如图3所示,本实施例的方法可以包括:
S301、获取无人机在执行喷洒作业的过程中的飞行数据。
本实施例中,S301的具体实现过程可以参见图2所示实施例中的相关描述,此处不再赘述。
S302、根据所述飞行数据确定无人机在执行喷洒作业的过程中每一个航线段的长度。
S303、根据每一个航线段的长度和无人机上配置的用于喷洒的喷头的喷洒幅度,确定喷洒作业的喷洒面积。
本实施例中,上述S202的一种可能的实现方式可以包括如上S302和S303。本实施例在获得无人机在执行喷洒作业的过程中的飞行数据之后,根据该飞行数据确定无人机在执行喷洒作业的过程中每一个航线段的长度。可选地,该航线段的长度可以是航线段投影到地球表面上的球面距离,所述投影到地球表面的距离可以是根据所述飞行数据中无人机的位置信息确定的,但本实施例不以此为限。
在一些实施例中,航线段是以预设时间间隔来划分的。其中,该飞行数据中包括飞行位置和飞行时刻,例如该飞行位置为无人机的所处的经纬度,例如预设时间间隔为2S,例如:根据时间间隔为2S的飞行时刻对应的飞行位置,可以获得这一航线段的长度。举例来说,确定t1时刻对应的飞行位置以及t1+2S时刻对应的飞行位置,根据这两个飞行位置的经纬度确定这两个飞行位置的距离,该距离即为这一条航线段的长度;然后确定t1+2S时刻对应的飞行位置以及t1+4S时刻对应的飞行位置,根据这两个飞行位置的经纬度确定这两个飞行位置的距离,该距离即为这一条航线段的长度;以此类推,可以确定所有航线段的长度。
在一些实施例中,航线段是以预设距离间隔来划分的。其中,该飞行数据中包括飞行位置,例如该飞行位置为无人机的所处的经纬度,例如预设距离间隔为2m,例如:确定一飞行位置,然后从各飞行位置中确定距离该飞行位置为2m的飞行位置,将这两个飞行位置确定一航线段,该航线段的长度即为2m。举例来说,确定第一飞行位置以及从各飞行位置中与该第一飞行位置距离2m的第二飞行位置,从第一飞行位置到第二飞行位置的路线称为一航线段;然后从各飞行位置中确定与第二飞行位置相距2m的第三飞行位置,从第二飞行位置到第三飞行位置的路线称为另一航线段;以此类推,可以确定所有航线段,且各航线段的长度为2m。
本实施例中,在根据飞行数据获得每一个航线段的长度之后,由于每个航线段是无人机在执行喷洒作业时飞行的航线段,而且无人机上配置的用于喷洒的喷头的喷洒幅度已知,然后根据该每一个航线段的长度以及喷头的喷洒幅度,确定喷洒作业的喷洒面积。
其中,上述S303可以包括如下几种可能的实现方式:
在一些实施例中,S303可以为:根据每一个航线段的长度和所述喷头的喷洒幅度确定对应航线段的喷洒面积;然后根据每一个航线段对应的喷洒面积确定喷洒作业的喷洒面积。例如如图4所示,本实施例可以计算无人机在飞行每一个航线段时执行喷洒作业时的喷洒面积,然后根据获得每一个航线段对应的喷洒面积来计算无人机喷洒作业的喷洒面积,例如:可以将每一个航线段对应的喷洒面积求和来获得无人机喷洒作业的喷洒面积。
其中,根据每一个航线段的长度和所述喷头的喷洒幅度确定对应航线段的喷洒面积可以如下几种实现方式。
在一种可能的实现方式中,可以认为无人机在飞行所有航线段时无人机上配置的喷头为开启的数量相同,或者,也可以认为无人机上配置的喷头均开启,这样对于每一个航线段来说,无人机的喷洒幅度是一样的,无人机的喷洒幅度可以根据喷头的喷洒幅度来确定,例如所述无人机的喷洒幅度可以为开启的喷头的数量与喷头的喷洒幅度的乘积。这样可以将每一个航线段的长度与同一无人机的喷洒幅度相乘,即可得到每一个航线段对应的喷洒面积。
在另一种可能的实现方式中,本实施例还获取无人机在每一个航线段中喷头的工作状态,该工作状态例如为开启或者关闭,如果该喷头为开启,则 说明该喷头在喷洒,该喷头的喷洒幅度应该用于计算喷洒面积,如果该喷头关闭,则说明该喷头未喷洒,该喷头的喷洒幅度不应该用于计算喷洒面积。因此,喷头的工作状态也会影响到喷洒面积,所以本实施例可以根据每一个航线段的长度、喷洒幅度、以及在所述航线段中喷头的工作状态确定对应喷洒航线段的喷洒面积。具体地,当一个航线段中喷头的工作状态为关闭时,该航线段的喷洒面积为0,当一个航线段中喷头的工作状态为开启时,可以根据喷头的喷洒幅度确定无人机的喷洒幅度,根据无人机的喷洒幅度和航线段的长度确定该航线段的喷洒面积,例如该航线段的喷洒面积可以为航线段的长度与无人机的喷洒幅度的乘积。
进一步具体的一种方案为:根据每一个航线段中各个喷头的工作状态确定在该航线段上工作状态为开启的喷头的数量,然后根据每一个航线段的长度、喷头的喷洒幅度、以及在该航线段中工作状态为开启的喷头的数量,确定对应航线段的喷洒面积。由于某些航线段中工作状态为开启的喷头的数量存在不同,这样,这些航线段中时无人机的喷洒幅度不同,因此,这些航线段对应的喷洒面积也不相同,为了准确测量喷洒面积,在计算每个航线段对应的喷洒面积时,需要考虑开启的喷头的数量。对于其中任一航线段i,若开启的喷头的数量为Ni,喷头的喷洒幅度为S(这是指一个喷头的喷洒幅度),该航线段的长度为Li,则无人机的喷洒幅度为:Ni*S,该航线段的喷洒面积为:Ni*S*Li。在一些情况下,航线段中开启的喷头的数量为0,通过本实施例的方案获得的该航线段的喷洒面积为0。
或者,在一些实施例中,S303可以为:根据所述每一个航线段的长度确定航线的长度;然后根据航线的长度和所述喷头的喷洒幅度确定喷洒作业的喷洒面积。本实施例可以计算无人机在执行喷洒作业时的整个航线的长度,例如:可以将每一个航线段的长度求和,即可获得整个航线的长度。然后根据整个航线的长度以及喷头的喷洒幅度,获得无人机喷洒作业的喷洒面积。其中,本实施例确定喷洒面积的一种方式为可以为:根据航线的长度、所述喷头的喷洒幅度和喷头的数量确定喷洒作业的喷洒面积。其中,无人机上配置的喷头可能为多个,可以认为无人机在飞行整个航线时无人机上配置的喷头为开启的数量相同,或者,也可以认为无人机上配置的所有喷头均开启,这样对于整个航线来说,无人机的喷洒幅度是一样的,即为喷头的数量与喷 头的喷洒幅度的乘积。这样可以将整个航线的长度、喷头的数量与喷头的喷洒幅度三者相乘,即可得到无人机喷洒作业的喷洒面积。
本实施例中,通过根据无人机在执行喷洒作业的过程中的飞行数据确定每一个航线段的长度,再根据每一个航线段的长度以及无人机上配置的用于喷洒的喷头的喷洒幅度确定喷洒作业的喷洒面积。由于将整个航线划分为多个航线段,根据每个航线段的长度获得的喷洒面积进一步接近无人机的实际喷洒面积,提高了喷洒面积的测量准确率,也提高了植保工作量的准确率。
在图2所述的实施例的基础上,图5为本发明另一实施例提供的喷洒面积的测量方法的流程图,如图5所示,本实施例的方法可以包括:
S501、获取无人机在执行喷洒作业的过程中的飞行数据。
本实施例中,S501的具体实现过程可以参见图2所示实施例中的相关描述,此处不再赘述。
S502、根据所述飞行数据确定无人机在执行喷洒作业的过程中每一个符合预设要求的航线段的长度。
S503、根据每一个符合预设要求的航线段的长度和所述喷头的喷洒幅度,确定喷洒作业的喷洒面积。
本实施例中,上述S202的一种可能的实现方式可以包括如上S502和S503。本实施例在获得无人机在执行喷洒作业的过程中的飞行数据之后,根据该飞行数据确定无人机在执行喷洒作业的过程中每一个符合预设要求的航线段的长度,需要说明的是,本实施例与图3所示实施例不同之处在于,图3获取的是无人机在执行喷洒作业的过程中每一个航线段的长度,但本实施例并不是获取无人机在执行喷洒作业的过程中每一个航线段的长度,而是获取符合预设要求的每一个航线段的长度,如果航线段不符合预设要求,则本实施例不获取该航线段的长度。即无人机在执行喷洒作业的过程中有些航线段并不影响喷洒面积,例如:喷头未开,或者,无人机飞行在无效植保区域(可以认为这些区域无需喷洒)等等,从而影响喷洒面积的并不是每个航线段。因此,本实施例从无人机在执行喷洒作业的过程中的所有航线段中确定符合预设要求的航线段,并获取每一个符合预设要求的航线段的长度。可选地,该航线段的长度可以是航线段投影到地球表面上的球面距离,但本实施例不以此为限。其中,航线段的划分可以参见上述实施例中的相关描述,此 处不再赘述。
本实施例中,在根据飞行数据获得每一个符合预设要求的航线段的长度之后,由于每个符合预设要求的航线段是无人机在执行喷洒作业时影响喷洒面积的航线段,而且无人机上配置的用于喷洒的喷头的喷洒幅度已知,然后根据该每一个符合预设要求的航线段的长度以及喷头的喷洒幅度,确定喷洒作业的喷洒面积。
在一些实施例中,本实施例在执行S502之前,还获取无人机在执行喷洒作业的过程中每一个航线段中喷头的工作状态,该工作状态例如为开启或者关闭,如果航线段中该喷头为开启,则说明该喷头在喷洒,该喷头的喷洒幅度应该用于计算喷洒面积,如果该喷头关闭,则说明该喷头未喷洒,该喷头的喷洒幅度不应该用于计算喷洒面积。因此,喷头的工作状态也会影响到喷洒面积,所以本实施例中符合预设要求的航线段为喷洒航线段,不符合预设要求的航线段可以称为不喷洒航线段,其中,喷洒航线段为航线段中喷头的工作状态为开启状态的航线段。基于上述,本实施例在执行S502和S503时具体可以为:根据飞行数据和喷头的工作状态确定航线段中每一个喷洒航线段的长度,然后根据每一个喷洒航线段的长度和所述喷头的喷洒幅度确定喷洒作业的喷洒面积。由于本实施例是根据喷洒航线段的长度来确定喷洒面积,所以本实施例获得的喷洒面积更加接近无人机在喷洒作业时实际将药液或水等喷洒到植保区域中的面积,进一步提高了喷洒面积的准确率。
其中,根据每一个喷洒航线段的长度和所述喷头的喷洒幅度确定对应航线段的喷洒面积可以如下几种实现方式。
在一些实施例中,上述根据每一个喷洒航线段的长度和所述喷头的喷洒幅度确定喷洒作业的喷洒面积可以包括:根据每一个喷洒航线段的长度和所述喷头的喷洒幅度确定对应喷洒航线段的喷洒面积;然后根据每一个喷洒航线段对应的喷洒面积确定喷洒作业的喷洒面积。例如如图6所示,例如如图6所示,本实施例中示出了四段航线段,其中,第一个航线段、第二个航线段和第四个航线段中的喷头开启,则这几个航线段为喷洒航线段,而第三个航线段的喷头关闭,该第三个航线段则不用于计算喷洒面积。本实施例可以计算无人机在飞行每一个喷洒航线段时执行喷洒作业时的喷洒面积,然后根据获得每一个喷洒航线段对应的喷洒面积来计算无人机喷洒作业的喷洒面 积,例如:可以将每一个喷洒航线段对应的喷洒面积求和来获得无人机喷洒作业的喷洒面积。
其中,根据每一个喷洒航线段的长度和所述喷头的喷洒幅度确定对应喷洒航线段的喷洒面积可以如下几种实现方式。
在一种可能的实现方式中,可以认为无人机在飞行喷洒航线段时无人机上配置的喷头为开启的数量相同,或者,也可以认为无人机上配置的喷头均开启,这样对于每一个喷洒航线段来说,无人机的喷洒幅度是一样的,即为开启的喷头的数量与喷头的喷洒幅度的乘积。这样可以将每一个喷洒航线段的长度与同一喷洒幅度相乘,即可得到每一喷洒航线段对应的喷洒面积。
在另一种可能的实现方式中,由于各个航线段中工作状态为开启的喷头的数量存在不同,因此,并不是每个航线段对应的喷洒面积均相同,为了准确测量喷洒面积,在计算每个航线段对应的喷洒面积时,需要考虑开启的喷头的数量。本实施例还根据每一个喷洒航线段中喷头的工作状态确定对应喷洒航线段中工作状态为开启的喷头的数量,若工作状态为开启的喷头的数量越大,说明喷洒面积越大,若工作状态为开启的喷头的数量越少,说明喷洒面积越少。因此,工作状态为开启的喷头的数量也会影响到喷洒面积,所以本实施例可以根据每一个喷洒航线段的长度、喷头的喷洒幅度、以及在所述喷洒航线段中工作状态为开启的喷头的数量,确定对应喷洒航线段的喷洒面积。对于其中任一喷洒航线段i,若开启的喷头的数量为Ni,喷头的喷洒幅度为S(这是指一个喷头的喷洒幅度),该喷洒航线段的长度为Li,则该无人机的喷洒幅度为:Ni*S,该喷洒航线段的喷洒面积为:Ni*S*Li。由于喷洒航线段中开启的喷头的数量为至少一个,因此,每个喷洒航线段的喷洒面积大于0。
或者,在一些实施例中,上述根据每一个喷洒航线段的长度和所述喷头的喷洒幅度确定喷洒作业的喷洒面积可以包括:根据所述每一个喷洒航线段的长度确定喷洒航线的长度;然后根据喷洒航线的长度和所述喷头的喷洒幅度确定喷洒作业的喷洒面积。本实施例可以计算无人机在执行喷洒作业时的喷洒航线的长度,喷洒航线是指无人机无行在喷洒航线时配置的喷头开启;例如:可以将每一喷洒航线段的长度求和,即可获得整个喷洒航线的长度。然后根据整个喷洒航线的长度以及喷头的喷洒幅度,获得无人机喷洒作业的 喷洒面积。其中,本实施例确定喷洒面积的一种方式为可以为:根据喷洒航线的长度、所述喷头的喷洒幅度和喷头的数量确定喷洒作业的喷洒面积。其中,无人机上配置的喷头可能为多个,可以认为无人机在飞行整个喷洒航线时无人机上配置的喷头为开启的数量相同,或者,也可以认为无人机上配置的所有喷头均开启,这样对于整个喷洒航线来说,无人机的喷洒幅度是一样的,即为喷头的数量与喷头的喷洒幅度的乘积。这样可以将整个喷洒航线的长度、喷头的数量与喷头的喷洒幅度三者相乘,即可得到无人机喷洒作业的喷洒面积。
在一些实施例中,在上述各实施例的基础上,本实施例接收开始作业指示符,其中所述开始作业指示符中包括喷洒作业标识号。该喷洒作业标识号可以是无人机在执行喷洒作业开始时生成,该喷洒作业标识号用于指示此次喷洒作业。因此,本实施例在接收到该接收开始作业指示符之后,获取到的该无人机在执行喷洒作业的过程中的飞行数据为该喷洒作业标识号指示的喷洒作业的过程中的飞行数据,即获取到的飞行数据属于同一喷洒作业。另外,该开始作业指示符还用于指示开始测量喷洒面积,本实施例根据接收到开始作业指示符之后获取的飞行数据来测量喷洒面积,这样根据这些飞行数据获得的喷洒面积即为该喷洒作业标识号指示的喷洒作业(即同一喷洒作业)的喷洒面积。本实施例通过喷洒作业标识号可以清晰界面不同喷洒作业的喷洒面积。
在一些实施例中,在无人机执行该喷洒作业的过程中,因为加药、充电等因素,需要暂停本次喷洒作业,所以本实施例还可以接收暂停作业指示符,该暂停作业指示符用于指示暂停获取飞行数据以及确定喷洒面积,因此,本实施例在接收到暂停作业指示符之后,暂停获取无人机在执行所述喷洒作业的过程中的飞行数据,以及暂停根据所述飞行数据以及无人机上配置的用于喷洒的喷头的喷洒幅度确定喷洒作业的喷洒面积;以保证测量喷洒面积的准确率。可选地,该暂停作业指示符还包括:喷洒作业标识号,该暂停作业指示符用于指示暂停获取该喷洒作业标识号指示的喷洒作业的过程中的飞行数据以及暂停测量该喷洒作业标识号指示的喷洒作业的喷洒面积,相应地,本实施例暂停获取无人机在执行所述喷洒作业标识号指示的喷洒作业的过程中的飞行数据,以及暂停根据所述飞行数据以及无人机上配置的用于喷洒的喷 头的喷洒幅度确定所述喷洒作业标识号指示的喷洒作业的喷洒面积。本实施例可以同时测量多个喷洒作业的喷洒面积,通过在暂时作业指示符中包括喷洒作业标识号,可以暂停测量该喷洒作业标识号指示的喷洒作业的喷洒面积,而不影响其它喷洒作业的喷洒面积的测量。
在一些实施例中,若无人机在加药完成、充电完成等之后,继续执行喷洒作业时,无人机可以识别该喷洒作业是否是继续未完成的喷洒作业,若是继续未完成的喷洒作业,则本实施例还可以接收继续作业指示符,该继续作业指示符用于指示继续获取飞行数据以及确定喷洒面积,因此,本实施例在接收到继续作业指示符之后,继续获取无人机在执行所述喷洒作业的过程中的飞行数据,以及继续根据所述飞行数据以及无人机上配置的用于喷洒的喷头的喷洒幅度确定喷洒作业的喷洒面积;以保证测量喷洒面积的准确率。可选地,该继续作业指示符还包括:喷洒作业标识号,该继续指示符用于指示继续获取该喷洒作业标识号指示的喷洒作业的过程中的飞行数据以及继续测量该喷洒作业标识号指示的喷洒作业的喷洒面积,相应地,本实施例继续获取无人机在执行所述喷洒作业标识号指示的喷洒作业的过程中的飞行数据,以及继续根据所述飞行数据以及无人机上配置的用于喷洒的喷头的喷洒幅度确定所述喷洒作业标识号指示的喷洒作业的喷洒面积。本实施例可以同时暂停测量多个喷洒作业的喷洒面积,通过在继续指示符中包括喷洒作业标识号,可以继续测量该喷洒作业标识号指示的喷洒作业的喷洒面积,而不影响暂停其它喷洒作业的喷洒面积的测量。
可选地,若上述实施例的方案应用于无人机的控制终端时,上述的开始作业指示符、暂停作业指示符、继续作业指示符可以是无人机向该控制终端发送的。
可选地,若上述实施例的方案应用于服务器时,上述的开始指示符、暂停作业指示符、继续作业指示符可以是无人机向该服务器发送的;或者,上述的开始指示符、暂停作业指示符、继续作业指示符可以是无人机发送给无人机的控制终端,再由该控制终端转发给服务器。
本发明实施例中还提供了一种计算机存储介质,该计算机存储介质中存储有程序指令,所述程序执行时可包括如图2-图5及其对应实施例中的喷洒面积的测量方法的部分或全部步骤。
图7为本发明实施例提供的喷洒面积的测量设备的一种结构示意图,如图7所示,本实施例的喷洒面积的测量设备700可以包括:存储器701和处理器702;上述存储器701和处理器702通过总线连接。存储器701可以包括只读存储器和随机存取存储器,并向处理器702提供指令和数据。存储器701的一部分还可以包括非易失性随机存取存储器。
上述处理器702可以是中央处理单元(Central Processing Unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述存储器701,用于存储程序代码;
所述处理器702,调用所述程序代码,当程序代码被执行时,用于执行以下操作:
用于获取无人机在执行喷洒作业的过程中的飞行数据;
根据所述飞行数据以及无人机上配置的用于喷洒的喷头的喷洒幅度确定喷洒作业的喷洒面积。
在一些实施例中,所述飞行数据包括以下至少一种:飞行高度、飞行速度、飞行角度、位置信息、飞行时刻。
在一些实施例中,所述处理器702在根据所述飞行数据以及无人机上配置的用于喷洒的喷头的喷洒幅度确定喷洒作业的喷洒面积时,具体用于:根据所述飞行数据确定无人机在执行喷洒作业的过程中每一个航线段的长度;以及根据每一个航线段的长度和所述喷头的喷洒幅度确定喷洒作业的喷洒面积。
在一些实施例中,所述处理器702根据每一个航线段的长度和所述喷头的喷洒幅度确定喷洒作业的喷洒面积时,具体用于:
根据每一个航线段的长度和所述喷头的喷洒幅度确定对应航线段的喷洒面积;
根据每一个航线段对应的喷洒面积确定喷洒作业的喷洒面积。
在一些实施例中,所述处理器702还用于:获取无人机在每一个航线段 中喷头的工作状态;
所述处理器702在根据每一个航线段的长度和所述喷头的喷洒幅度确定对应航线段的喷洒面积时,具体用于:根据每一个航线段的长度、喷洒幅度、以及在所述航线段中喷头的工作状态确定对应航线段的喷洒面积。
在一些实施例中,所述处理器702根据每一个航线段的长度、喷洒幅度、以及在所述航线段中喷头的工作状态确定对应航线段的喷洒面积时,具体用于:
根据所述每一个航线段中喷头的工作状态确定在所述航线段上工作状态为开启的喷头的数量;
根据每一个航线段的长度、喷洒幅度、以及在所述航线段中工作状态为开启的喷头的数量确定对应航线段的喷洒面积。
在一些实施例中,所述处理器702根据所述飞行数据以及无人机上配置的用于喷洒的喷头的喷洒幅度确定喷洒作业的喷洒面积时,具体用于:
根据所述飞行数据确定无人机在执行喷洒作业的过程中每一个符合预设要求的航线段的长度;
根据每一个符合预设要求的航线段的长度和所述喷头的喷洒幅度确定喷洒作业的喷洒面积。
在一些实施例中,所述处理器702,还用于:获取无人机在执行喷洒作业的过程中每一个航线段中喷头的工作状态;
所述处理器702在根据所述飞行数据确定无人机在执行喷洒作业的过程中每一个符合预设要求的航线段的长度时,具体用于:根据所述飞行数据和所述喷头的工作状态确定航线段中每一个喷洒航线段的长度,其中,所述喷洒航线段为航线段中喷头的工作状态为开启状态的航线段;
所述处理器702在根据每一个符合预设要求的喷洒航线段的长度和所述喷头的喷洒幅度确定喷洒作业的喷洒面积时,具体用于:根据每一个喷洒航线段的长度和所述喷头的喷洒幅度确定喷洒作业的喷洒面积。
在一些实施例中,所述处理器702根据每一个所述喷洒航线段的长度和所述喷头的喷洒幅度确定喷洒作业的喷洒面积时,具体用于:
根据每一个喷洒航线段的长度和所述喷头的喷洒幅度确定对应喷洒航线段的喷洒面积;
根据每一个喷洒航线段对应的喷洒面积确定喷洒作业的喷洒面积。
在一些实施例中,所述处理器702,还用于根据每一个喷洒航线段中喷头的工作状态确定每一个喷洒航线段中工作状态为开启的喷头的数量;
所述处理器702在根据每一个喷洒航线段的长度和所述喷头的喷洒幅度确定对应喷洒航线段的喷洒面积时,具体用于:根据每一个喷洒航线段的长度、对应喷洒航线段中工作状态为开启的喷头的数量、所述喷头的喷洒幅度确定对应喷洒航线段的喷洒面积。
在一些实施例中,所述处理器702根据每一个航线段的长度和所述喷头的喷洒幅度确定喷洒作业的喷洒面积时,具体用于:
根据所述每一个航线段的长度确定航线的长度;
根据航线的长度和所述喷头的喷洒幅度确定喷洒作业的喷洒面积。
在一些实施例中,所述处理器702根据航线的长度和所述喷头的喷洒幅度确定喷洒作业的喷洒面积时,具体用于:
根据航线的长度、所述喷头的喷洒幅度和喷头的数量确定喷洒作业的喷洒面积。
在一些实施例中,所述处理器702根据每一个喷洒航线段的长度和所述喷头的喷洒幅度确定喷洒作业的喷洒面积时,具体用于:
根据每一个喷洒航线段的长度确定喷洒航线的长度;
根据所述喷洒航线的长度和所述喷头的喷洒幅度确定喷洒作业的喷洒面积。
在一些实施例中,所述处理器702根据所述喷洒航线的长度和所述喷头的喷洒幅度确定喷洒作业的喷洒面积时,具体用于:
根据所述喷洒航线的长度、喷头的数量和所述喷头的喷洒幅度确定喷洒作业的喷洒面积。
在一些实施例中,所述处理器702获取无人机在执行喷洒作业的过程中的飞行数据时,具体用于:接收所述无人机发送的所述无人机在执行喷洒作业的过程中的飞行数据;或者,接收所述无人机的控制终端发送的所述无人机在执行喷洒作业的过程中的飞行数据。
在一些实施例中,所述处理器702,还用于获取无人机上配置的用于喷洒的喷头的喷洒幅度。
在一些实施例中,所述每一个航线段的长度为投影到地球表面上的球面距离。
在一些实施例中,所述航线段是以预设时间间隔或以预设距离间隔来划分的。
在一些实施例中,所述处理器702,还用于:接收开始作业指示符,其中所述开始作业指示符中包括喷洒作业标识号;
所述处理器702在获取无人机在执行喷洒作业的过程中的飞行数据时,具体用于:在接收到所述开始作业指示符后,获取无人机在执行所述喷洒作业标识号指示的喷洒作业的过程中的飞行数据。
在一些实施例中,所述处理器702,还用于:接收暂停作业指示符;在接收到所述暂停作业指示符之后,暂停获取无人机在执行所述喷洒作业的过程中的飞行数据,以及暂停根据所述飞行数据以及无人机上配置的用于喷洒的喷头的喷洒幅度确定喷洒作业的喷洒面积。
在一些实施例中,所述暂停作业指示符包括所述喷洒作业标识号;
所述处理器702暂停获取无人机在执行所述喷洒作业的过程中的飞行数据,以及暂停根据所述飞行数据以及无人机上配置的用于喷洒的喷头的喷洒幅度确定喷洒作业的喷洒面积时,具体用于:暂停获取无人机在执行所述喷洒作业标识号指示的喷洒作业的过程中的飞行数据,以及暂停根据所述飞行数据以及无人机上配置的用于喷洒的喷头的喷洒幅度确定所述喷洒作业标识号指示的喷洒作业的喷洒面积。
在一些实施例中,所述处理器702还用于:接收继续作业指示符;在接收到所述继续作业指示符之后,继续获取无人机在执行所述喷洒作业的过程中的飞行数据,以及继续根据所述飞行数据以及无人机上配置的用于喷洒的喷头的喷洒幅度确定喷洒作业的喷洒面积。
在一些实施例中,所述继续作业指示符包括所述喷洒作业标识号;
所述处理器702继续获取无人机在执行所述喷洒作业的过程中的飞行数据,以及继续根据所述飞行数据以及无人机上配置的用于喷洒的喷头的喷洒幅度确定喷洒作业的喷洒面积时,具体用于:继续获取无人机在执行所述喷洒作业标识号指示的喷洒作业的过程中的飞行数据,以及继续根据所述飞行数据以及无人机上配置的用于喷洒的喷头的喷洒幅度确定所述喷洒作业标识 号指示的喷洒作业的喷洒面积。
在一些实施例中,所述喷洒面积的测量设备700为无人机的控制终端;该控终端可以接收无人机发送的飞行数据、开始作业指示符、暂停作业指示符、继续作业指示符等。
在一些实施例中,所述喷洒面积的测量设备700为服务器;该服务器可以接收无人机发送的飞行数据、开始作业指示符、暂停作业指示符、继续作业指示符等;或者,该服务器可以接收控制终端转发无人机所发送的飞行数据、开始作业指示符、暂停作业指示符、继续作业指示符等。
本实施例的设备,可以用于执行本发明上述方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图8为本发明实施例提供的喷洒面积的测量***的一种结构示意图,如图8所示,本实施例的喷洒面积的测量***800包括:无人机801和控制终端802。控制终端802可以测量无人机801的喷洒作业的喷洒面积。其中,控制终端802可以采用图7所示实施例的结构,其对应地,可以执行图2~图5中任一方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图9为本发明实施例提供的喷洒面积的测量***的另一种结构示意图,如图9所示,本实施例的喷洒面积的测量***900包括:无人机901和服务器902。服务器902可以测量无人机901的喷洒作业的喷洒面积。其中,服务器902可以采用图7所示实施例的结构,其对应地,可以执行图2~图5中任一方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。可选地,本实施例的喷洒面积的测量***还可以包括控制终端903,其中,无人机901与服务器902之间的数据和/或信令可以通过控制终端903进行转发。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:只读内存(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (47)

  1. 一种喷洒面积的测量方法,其特征在于,包括:
    获取无人机在执行喷洒作业的过程中的飞行数据;
    根据所述飞行数据以及无人机上配置的用于喷洒的喷头的喷洒幅度确定喷洒作业的喷洒面积。
  2. 根据权利要求1所述的方法,其特征在于,所述飞行数据包括以下至少一种:飞行高度、飞行速度、飞行角度、位置信息、飞行时刻。
  3. 根据权利要求1或2所述的方法,其特征在于,所述根据所述飞行数据以及无人机上配置的用于喷洒的喷头的喷洒幅度确定喷洒作业的喷洒面积包括:
    根据所述飞行数据确定无人机在执行喷洒作业的过程中每一个航线段的长度;
    根据每一个航线段的长度和所述喷头的喷洒幅度确定喷洒作业的喷洒面积。
  4. 根据权利要求3所述的方法,其特征在于,所述根据每一个航线段的长度和所述喷头的喷洒幅度确定喷洒作业的喷洒面积包括:
    根据每一个航线段的长度和所述喷头的喷洒幅度确定对应航线段的喷洒面积;
    根据每一个航线段对应的喷洒面积确定喷洒作业的喷洒面积。
  5. 根据权利要求3或4所述的方法,其特征在于,所述方法还包括:
    获取无人机在每一个航线段中喷头的工作状态;
    所述根据每一个航线段的长度和所述喷头的喷洒幅度确定对应航线段的喷洒面积包括:根据每一个航线段的长度、喷洒幅度、以及在所述航线段中喷头的工作状态确定对应航线段的喷洒面积。
  6. 根据权利要求5所述的方法,其特征在于,所述根据每一个航线段的长度、喷洒幅度、以及在所述航线段中喷头的工作状态确定对应航线段的喷 洒面积包括:
    根据所述每一个航线段中喷头的工作状态确定在所述航线段上工作状态为开启的喷头的数量;
    根据每一个航线段的长度、喷洒幅度、以及在所述航线段中工作状态为开启的喷头的数量确定对应航线段的喷洒面积。
  7. 根据权利要求1或2所述的方法,其特征在于,所述根据所述飞行数据以及无人机上配置的用于喷洒的喷头的喷洒幅度确定无人机的喷洒面积包括:
    根据所述飞行数据确定无人机在执行喷洒作业的过程中每一个符合预设要求的航线段的长度;
    根据每一个符合预设要求的航线段的长度和所述喷头的喷洒幅度确定喷洒作业的喷洒面积。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    获取无人机在执行喷洒作业的过程中每一个航线段中喷头的工作状态;
    所述根据所述飞行数据确定无人机在执行喷洒作业的过程中每一个符合预设要求的航线段的长度包括:
    根据所述飞行数据和所述喷头的工作状态确定航线段中每一个喷洒航线段的长度,其中,所述喷洒航线段为航线段中喷头的工作状态为开启状态的航线段;
    所述根据每一个符合预设要求的喷洒航线段的长度和所述喷头的喷洒幅度确定喷洒作业的喷洒面积包括:
    根据每一个喷洒航线段的长度和所述喷头的喷洒幅度确定喷洒作业的喷洒面积。
  9. 根据权利要求8所述的方法,其特征在于,所述根据每一个喷洒航线段的长度和所述喷头的喷洒幅度确定喷洒作业的喷洒面积,包括:
    根据每一个喷洒航线段的长度和所述喷头的喷洒幅度确定对应喷洒航线段的喷洒面积;
    根据每一个喷洒航线段对应的喷洒面积确定喷洒作业的喷洒面积。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    根据每一个喷洒航线段中喷头的工作状态确定每一个喷洒航线段中工作状态为开启的喷头的数量;
    所述根据每一个喷洒航线段的长度和所述喷头的喷洒幅度确定对应喷洒航线段的喷洒面积包括:
    根据每一个喷洒航线段的长度、对应喷洒航线段中工作状态为开启的喷头的数量、所述喷头的喷洒幅度确定对应喷洒航线段的喷洒面积。
  11. 根据权利要求3所述的方法,其特征在于,所述根据每一个航线段的长度和所述喷头的喷洒幅度确定喷洒作业的喷洒面积包括:
    根据所述每一个航线段的长度确定航线的长度;
    根据航线的长度和所述喷头的喷洒幅度确定喷洒作业的喷洒面积。
  12. 根据权利要求11所述的方法,其特征在于,所述根据航线的长度和所述喷头的喷洒幅度确定喷洒作业的喷洒面积包括:
    根据航线的长度、所述喷头的喷洒幅度和喷头的数量确定喷洒作业的喷洒面积。
  13. 根据权利要求8所述的方法,其特征在于,
    所述根据每一个喷洒航线段的长度和所述喷头的喷洒幅度确定喷洒作业的喷洒面积包括:
    根据每一个喷洒航线段的长度确定喷洒航线的长度;
    根据所述喷洒航线的长度和所述喷头的喷洒幅度确定喷洒作业的喷洒面积。
  14. 根据权利要求13所述的方法,其特征在于,所述根据所述喷洒航线的长度和所述喷头的喷洒幅度确定喷洒作业的喷洒面积包括:
    根据所述喷洒航线的长度、喷头的数量和所述喷头的喷洒幅度确定喷洒 作业的喷洒面积。
  15. 根据权利要求1-14任意一项所述的方法,其特征在于,所述获取无人机在执行喷洒作业的过程中的飞行数据包括:
    接收所述无人机发送的所述无人机在执行喷洒作业的过程中的飞行数据;或者,
    接收所述无人机的控制终端发送的所述无人机在执行喷洒作业的过程中的飞行数据。
  16. 根据权利要求1-15任一项所述的方法,其特征在于,所述方法还包括:
    获取无人机上配置的用于喷洒的喷头的喷洒幅度。
  17. 根据权利要求3-14任一项所述的方法,其特征在于,所述每一个航线段的长度为投影到地球表面上的球面距离。
  18. 根据权利要求3-14任一项所述的方法,其特征在于,所述航线段是以预设时间间隔或以预设距离间隔来划分的。
  19. 根据权利要求1-18任一项所述的方法,其特征在于,所述方法还包括:
    接收开始作业指示符,其中所述开始作业指示符中包括喷洒作业标识号;
    所述获取无人机在执行喷洒作业的过程中的飞行数据包括:
    在接收到所述开始作业指示符后,获取无人机在执行所述喷洒作业标识号指示的喷洒作业的过程中的飞行数据。
  20. 根据权利要求19所述的方法,其特征在于,所述方法还包括:
    接收暂停作业指示符;
    在接收到所述暂停作业指示符之后,暂停获取无人机在执行所述喷洒作业的过程中的飞行数据,以及暂停根据所述飞行数据以及无人机上配置的用 于喷洒的喷头的喷洒幅度确定喷洒作业的喷洒面积。
  21. 根据权利要求20所述的方法,其特征在于,所述暂停作业指示符包括所述喷洒作业标识号;
    所述暂停获取无人机在执行所述喷洒作业的过程中的飞行数据,以及暂停根据所述飞行数据以及无人机上配置的用于喷洒的喷头的喷洒幅度确定喷洒作业的喷洒面积,包括:
    暂停获取无人机在执行所述喷洒作业标识号指示的喷洒作业的过程中的飞行数据,以及暂停根据所述飞行数据以及无人机上配置的用于喷洒的喷头的喷洒幅度确定所述喷洒作业标识号指示的喷洒作业的喷洒面积。
  22. 根据权利要求20或21所述的方法,其特征在于,所述方法还包括:
    接收继续作业指示符;
    在接收到所述继续作业指示符之后,继续获取无人机在执行所述喷洒作业的过程中的飞行数据,以及继续根据所述飞行数据以及无人机上配置的用于喷洒的喷头的喷洒幅度确定喷洒作业的喷洒面积。
  23. 根据权利要求22所述的方法,其特征在于,所述继续作业指示符包括所述喷洒作业标识号;
    所述继续获取无人机在执行所述喷洒作业的过程中的飞行数据,以及继续根据所述飞行数据以及无人机上配置的用于喷洒的喷头的喷洒幅度确定喷洒作业的喷洒面积,包括:
    继续获取无人机在执行所述喷洒作业标识号指示的喷洒作业的过程中的飞行数据,以及继续根据所述飞行数据以及无人机上配置的用于喷洒的喷头的喷洒幅度确定所述喷洒作业标识号指示的喷洒作业的喷洒面积。
  24. 一种喷洒面积的测量设备,其特征在于,包括:存储器和处理器;
    所述存储器,用于存储程序代码;
    所述处理器,调用所述程序代码,当程序代码被执行时,用于执行以下操作:
    用于获取无人机在执行喷洒作业的过程中的飞行数据;
    根据所述飞行数据以及无人机上配置的用于喷洒的喷头的喷洒幅度确定喷洒作业的喷洒面积。
  25. 根据权利要求24所述的设备,其特征在于,所述飞行数据包括以下至少一种:飞行高度、飞行速度、飞行角度、位置信息、飞行时刻。
  26. 根据权利要求24或25所述的设备,其特征在于,所述处理器在根据所述飞行数据以及无人机上配置的用于喷洒的喷头的喷洒幅度确定喷洒作业的喷洒面积时,具体用于:根据所述飞行数据确定无人机在执行喷洒作业的过程中每一个航线段的长度;以及根据每一个航线段的长度和所述喷头的喷洒幅度确定喷洒作业的喷洒面积。
  27. 根据权利要求26所述的设备,其特征在于,所述处理器根据每一个航线段的长度和所述喷头的喷洒幅度确定喷洒作业的喷洒面积时,具体用于:
    根据每一个航线段的长度和所述喷头的喷洒幅度确定对应航线段的喷洒面积;
    根据每一个航线段对应的喷洒面积确定喷洒作业的喷洒面积。
  28. 根据权利要求26或27所述的设备,其特征在于,所述处理器还用于:获取无人机在每一个航线段中喷头的工作状态;
    所述处理器在根据每一个航线段的长度和所述喷头的喷洒幅度确定对应航线段的喷洒面积时,具体用于:根据每一个航线段的长度、喷洒幅度、以及在所述航线段中喷头的工作状态确定对应航线段的喷洒面积。
  29. 根据权利要求28所述的设备,其特征在于,所述处理器根据每一个航线段的长度、喷洒幅度、以及在所述航线段中喷头的工作状态确定对应航线段的喷洒面积时,具体用于:
    根据所述每一个航线段中喷头的工作状态确定在所述航线段上工作状态为开启的喷头的数量;
    根据每一个航线段的长度、喷洒幅度、以及在所述航线段中工作状态为开启的喷头的数量确定对应航线段的喷洒面积。
  30. 根据权利要求24或25所述的设备,其特征在于,所述处理器根据所述飞行数据以及无人机上配置的用于喷洒的喷头的喷洒幅度确定喷洒作业的喷洒面积时,具体用于:
    根据所述飞行数据确定无人机在执行喷洒作业的过程中每一个符合预设要求的航线段的长度;
    根据每一个符合预设要求的航线段的长度和所述喷头的喷洒幅度确定喷洒作业的喷洒面积。
  31. 根据权利要求30所述的设备,其特征在于,所述处理器,还用于:获取无人机在执行喷洒作业的过程中每一个航线段中喷头的工作状态;
    所述处理器在根据所述飞行数据确定无人机在执行喷洒作业的过程中每一个符合预设要求的航线段的长度时,具体用于:根据所述飞行数据和所述喷头的工作状态确定航线段中每一个喷洒航线段的长度,其中,所述喷洒航线段为航线段中喷头的工作状态为开启状态的航线段;
    所述处理器在根据每一个符合预设要求的喷洒航线段的长度和所述喷头的喷洒幅度确定喷洒作业的喷洒面积时,具体用于:根据每一个喷洒航线段的长度和所述喷头的喷洒幅度确定喷洒作业的喷洒面积。
  32. 根据权利要求31所述的设备,其特征在于,所述处理器根据每一个所述喷洒航线段的长度和所述喷头的喷洒幅度确定喷洒作业的喷洒面积时,具体用于:
    根据每一个喷洒航线段的长度和所述喷头的喷洒幅度确定对应喷洒航线段的喷洒面积;
    根据每一个喷洒航线段对应的喷洒面积确定喷洒作业的喷洒面积。
  33. 根据权利要求32所述的设备,其特征在于,所述处理器,还用于根据每一个喷洒航线段中喷头的工作状态确定每一个喷洒航线段中工作状态为 开启的喷头的数量;
    所述处理器在根据每一个喷洒航线段的长度和所述喷头的喷洒幅度确定对应喷洒航线段的喷洒面积时,具体用于:根据每一个喷洒航线段的长度、对应喷洒航线段中工作状态为开启的喷头的数量、所述喷头的喷洒幅度确定对应喷洒航线段的喷洒面积。
  34. 根据权利要求26所述的设备,其特征在于,所述处理器根据每一个航线段的长度和所述喷头的喷洒幅度确定喷洒作业的喷洒面积时,具体用于:
    根据所述每一个航线段的长度确定航线的长度;
    根据航线的长度和所述喷头的喷洒幅度确定喷洒作业的喷洒面积。
  35. 根据权利要求34所述的设备,其特征在于,所述处理器根据航线的长度和所述喷头的喷洒幅度确定喷洒作业的喷洒面积时,具体用于:
    根据航线的长度、所述喷头的喷洒幅度和喷头的数量确定喷洒作业的喷洒面积。
  36. 根据权利要求31所述的设备,其特征在于,所述处理器根据每一个喷洒航线段的长度和所述喷头的喷洒幅度确定喷洒作业的喷洒面积时,具体用于:
    根据每一个喷洒航线段的长度确定喷洒航线的长度;
    根据所述喷洒航线的长度和所述喷头的喷洒幅度确定喷洒作业的喷洒面积。
  37. 根据权利要求36所述的设备,其特征在于,所述处理器根据所述喷洒航线的长度和所述喷头的喷洒幅度确定喷洒作业的喷洒面积时,具体用于:
    根据所述喷洒航线的长度、喷头的数量和所述喷头的喷洒幅度确定喷洒作业的喷洒面积。
  38. 根据权利要求24-37任意一项所述的设备,其特征在于,
    所述处理器获取无人机在执行喷洒作业的过程中的飞行数据时,具体用 于:接收所述无人机发送的所述无人机在执行喷洒作业的过程中的飞行数据;或者,接收所述无人机的控制终端发送的所述无人机在执行喷洒作业的过程中的飞行数据。
  39. 根据权利要求24-38任一项所述的设备,其特征在于,所述处理器,还用于获取无人机上配置的用于喷洒的喷头的喷洒幅度。
  40. 根据权利要求26-37任一项所述的设备,其特征在于,所述每一个航线段的长度为投影到地球表面上的球面距离。
  41. 根据权利要求26-37任一项所述的设备,其特征在于,所述航线段是以预设时间间隔或以预设距离间隔来划分的。
  42. 根据权利要求24-41任一项所述的设备,其特征在于,所述处理器,还用于:接收开始作业指示符,其中所述开始作业指示符中包括喷洒作业标识号;
    所述处理器在获取无人机在执行喷洒作业的过程中的飞行数据时,具体用于:在接收到所述开始作业指示符后,获取无人机在执行所述喷洒作业标识号指示的喷洒作业的过程中的飞行数据。
  43. 根据权利要求42所述的设备,其特征在于,所述处理器,还用于:接收暂停作业指示符;在接收到所述暂停作业指示符之后,暂停获取无人机在执行所述喷洒作业的过程中的飞行数据,以及暂停根据所述飞行数据以及无人机上配置的用于喷洒的喷头的喷洒幅度确定喷洒作业的喷洒面积。
  44. 根据权利要求43所述的设备,其特征在于,所述暂停作业指示符包括所述喷洒作业标识号;
    所述处理器暂停获取无人机在执行所述喷洒作业的过程中的飞行数据,以及暂停根据所述飞行数据以及无人机上配置的用于喷洒的喷头的喷洒幅度确定喷洒作业的喷洒面积时,具体用于:暂停获取无人机在执行所述喷洒作 业标识号指示的喷洒作业的过程中的飞行数据,以及暂停根据所述飞行数据以及无人机上配置的用于喷洒的喷头的喷洒幅度确定所述喷洒作业标识号指示的喷洒作业的喷洒面积。
  45. 根据权利要求43或44所述的设备,其特征在于,所述处理器还用于:接收继续作业指示符;在接收到所述继续作业指示符之后,继续获取无人机在执行所述喷洒作业的过程中的飞行数据,以及继续根据所述飞行数据以及无人机上配置的用于喷洒的喷头的喷洒幅度确定喷洒作业的喷洒面积。
  46. 根据权利要求45所述的设备,其特征在于,所述继续作业指示符包括所述喷洒作业标识号;
    所述处理器继续获取无人机在执行所述喷洒作业的过程中的飞行数据,以及继续根据所述飞行数据以及无人机上配置的用于喷洒的喷头的喷洒幅度确定喷洒作业的喷洒面积时,具体用于:继续获取无人机在执行所述喷洒作业标识号指示的喷洒作业的过程中的飞行数据,以及继续根据所述飞行数据以及无人机上配置的用于喷洒的喷头的喷洒幅度确定所述喷洒作业标识号指示的喷洒作业的喷洒面积。
  47. 根据权利要求24-46任意一项所述的设备,其特征在于,所述设备为服务器,或者,所述设备为无人机的控制终端。
PCT/CN2017/117035 2017-12-18 2017-12-18 喷洒面积的测量方法和设备 WO2019119239A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2017/117035 WO2019119239A1 (zh) 2017-12-18 2017-12-18 喷洒面积的测量方法和设备
CN201780025600.5A CN109073375A (zh) 2017-12-18 2017-12-18 喷洒面积的测量方法和设备
US16/890,691 US20200290739A1 (en) 2017-12-18 2020-06-02 Method and device for measuring spray area

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/117035 WO2019119239A1 (zh) 2017-12-18 2017-12-18 喷洒面积的测量方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/890,691 Continuation US20200290739A1 (en) 2017-12-18 2020-06-02 Method and device for measuring spray area

Publications (1)

Publication Number Publication Date
WO2019119239A1 true WO2019119239A1 (zh) 2019-06-27

Family

ID=64831296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/117035 WO2019119239A1 (zh) 2017-12-18 2017-12-18 喷洒面积的测量方法和设备

Country Status (3)

Country Link
US (1) US20200290739A1 (zh)
CN (1) CN109073375A (zh)
WO (1) WO2019119239A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4005684A4 (en) * 2019-07-23 2023-07-26 Toyo Seikan Co., Ltd. UNMANNED AIRCRAFT

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020220195A1 (zh) * 2019-04-29 2020-11-05 深圳市大疆创新科技有限公司 无人机的控制方法、设备、喷洒***、无人机及存储介质
CN111516877A (zh) * 2020-05-25 2020-08-11 湖北同诚通用航空有限公司 一种直升机农药喷洒单位面积喷洒量控制调节***及方法
WO2022127099A1 (zh) * 2020-12-15 2022-06-23 广州极飞科技股份有限公司 用于无人机的喷头调节方法、装置、无人机和存储介质
CN113758438B (zh) * 2021-07-08 2023-07-25 重庆市勘测院 特殊建筑物倾斜航空摄影及三维重建方法
CN114608439B (zh) * 2022-03-15 2024-05-31 牧星智能工业科技(上海)有限公司 一种多传感器融合的农机作业面积精确测量***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106503433A (zh) * 2016-10-18 2017-03-15 广州极飞科技有限公司 基于无人机作业的喷洒区域确定方法及装置
CN106996766A (zh) * 2017-03-01 2017-08-01 北京农业智能装备技术研究中心 一种飞机喷洒状态监测装置及飞机施药作业面积计量***
CN107272726A (zh) * 2017-08-11 2017-10-20 上海拓攻机器人有限公司 基于无人机植保作业的作业区域确定方法及装置
JP2017206066A (ja) * 2016-05-16 2017-11-24 株式会社プロドローン 薬液散布用無人航空機
CN107462208A (zh) * 2017-08-15 2017-12-12 河北农业大学 一种农机及农机作业面积测量装置和测量方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6104339A (en) * 1998-08-19 2000-08-15 Trimble Navigation Limited All-terrain error correction
CN103673970A (zh) * 2013-12-20 2014-03-26 遵义师范学院 跨区作业机械的作业区域自动识别与面积测量***及方法
CN106970634B (zh) * 2017-05-09 2023-07-25 南京航空航天大学 一种智能植保无人机的控制管理***及其控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017206066A (ja) * 2016-05-16 2017-11-24 株式会社プロドローン 薬液散布用無人航空機
CN106503433A (zh) * 2016-10-18 2017-03-15 广州极飞科技有限公司 基于无人机作业的喷洒区域确定方法及装置
CN106996766A (zh) * 2017-03-01 2017-08-01 北京农业智能装备技术研究中心 一种飞机喷洒状态监测装置及飞机施药作业面积计量***
CN107272726A (zh) * 2017-08-11 2017-10-20 上海拓攻机器人有限公司 基于无人机植保作业的作业区域确定方法及装置
CN107462208A (zh) * 2017-08-15 2017-12-12 河北农业大学 一种农机及农机作业面积测量装置和测量方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4005684A4 (en) * 2019-07-23 2023-07-26 Toyo Seikan Co., Ltd. UNMANNED AIRCRAFT

Also Published As

Publication number Publication date
US20200290739A1 (en) 2020-09-17
CN109073375A (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
WO2019119239A1 (zh) 喷洒面积的测量方法和设备
CN104670496B (zh) 一种六轴式农药喷雾飞行装置及控制方法
JP6671375B2 (ja) 無人機の飛行補助方法
CN111556986B (zh) 无人机及其控制方法以及计算机可读取记录介质
CN111699455B (zh) 飞行航线生成方法、终端和无人机
WO2021232407A1 (zh) 一种喷洒控制方法及装置
US20210208608A1 (en) Control method, control apparatus, control terminal for unmanned aerial vehicle
WO2019000328A1 (zh) 无人机的控制方法、控制终端和无人机
WO2021159249A1 (zh) 航线规划方法、设备及存储介质
JP6994798B2 (ja) ドローンシステム、ドローン、管制装置、ドローンシステムの制御方法、および、ドローンシステム制御プログラム
WO2021237462A1 (zh) 无人飞行器的限高方法、装置、无人飞行器及存储介质
JP7008999B2 (ja) 運転経路生成システム、運転経路生成方法、および運転経路生成プログラム、ならびにドローン
JP6982908B2 (ja) 運転経路生成装置、運転経路生成方法、および運転経路生成プログラム、ならびにドローン
WO2020071305A1 (ja) 運転経路生成装置、運転経路生成方法、運転経路生成プログラム、およびドローン
US20220214700A1 (en) Control method and device, and storage medium
WO2020062255A1 (zh) 拍摄控制方法和无人机
US20210274774A1 (en) Control method for agricultural mechanical device and agricultural mechanical device
JP7333947B2 (ja) ドローン、ドローンの制御方法、および、ドローンの制御プログラム
JP7285557B2 (ja) 運転経路生成システム、運転経路生成方法、運転経路生成プログラム、およびドローン
JP7075695B2 (ja) ドローン操縦機、および、操縦用プログラム
WO2021224970A1 (ja) 測位システム、移動体、速度推定システム、測位方法、および速度推定方法
WO2020118500A1 (zh) 控制方法、控制***、计算机可读存储介质和可飞行设备
CN112105461A (zh) 一种控制方法、控制设备、可移动平台及控制***
JP7490208B2 (ja) ドローンシステム、ドローン、管制装置、ドローンシステムの制御方法、および、ドローンシステム制御プログラム
JP7411280B2 (ja) ドローンシステム、ドローンおよび障害物検知方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17935464

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17935464

Country of ref document: EP

Kind code of ref document: A1