WO2020096199A1 - 화합물 및 이를 포함하는 유기 발광 소자 - Google Patents

화합물 및 이를 포함하는 유기 발광 소자 Download PDF

Info

Publication number
WO2020096199A1
WO2020096199A1 PCT/KR2019/012402 KR2019012402W WO2020096199A1 WO 2020096199 A1 WO2020096199 A1 WO 2020096199A1 KR 2019012402 W KR2019012402 W KR 2019012402W WO 2020096199 A1 WO2020096199 A1 WO 2020096199A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
formula
compound
Prior art date
Application number
PCT/KR2019/012402
Other languages
English (en)
French (fr)
Inventor
차용범
허정오
홍성길
문현진
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201980055110.9A priority Critical patent/CN112585141B/zh
Publication of WO2020096199A1 publication Critical patent/WO2020096199A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D498/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D498/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D498/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D513/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains two hetero rings
    • C07D513/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6561Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing systems of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring or ring system, with or without other non-condensed hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6561Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing systems of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring or ring system, with or without other non-condensed hetero rings
    • C07F9/65616Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing systems of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring or ring system, with or without other non-condensed hetero rings containing the ring system having three or more than three double bonds between ring members or between ring members and non-ring members, e.g. purine or analogs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • H10K50/181Electron blocking layers

Definitions

  • the present specification relates to a compound and an organic light emitting device including the same.
  • the organic light emitting device has a structure in which an organic thin film is disposed between two electrodes. When a voltage is applied to the organic light emitting device having such a structure, electrons and holes injected from the two electrodes are combined in an organic thin film to form a pair, and then disappear and emit light.
  • the organic thin film may be composed of a single layer or multiple layers if necessary.
  • the material of the organic thin film may have a light emitting function as necessary.
  • a compound that can itself constitute a light emitting layer may be used, or a compound capable of acting as a host or dopant of a host-dopant-based light emitting layer may be used.
  • a compound capable of performing a role of hole injection, hole transport, electron blocking, hole blocking, electron transport or electron injection may be used.
  • the present specification provides a compound and an organic light emitting device including the same.
  • One embodiment of the present specification provides a compound represented by the following Chemical Formula 1.
  • the group which does not form a ring among R1 to R3 is hydrogen
  • R4 to R10 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; Halogen group; Nitrile group; A substituted or unsubstituted alkyl group; A substituted or unsubstituted alkoxy group; A substituted or unsubstituted cycloalkyl group; A substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroaryl group,
  • R11 to R14 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; Halogen group; Nitrile group; A substituted or unsubstituted alkyl group; A substituted or unsubstituted alkoxy group; A substituted or unsubstituted cycloalkyl group; A substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroaryl group, or adjacent groups combine with each other to form a substituted or unsubstituted ring,
  • L is a direct bond; A substituted or unsubstituted arylene group; Or a substituted or unsubstituted heteroarylene group,
  • Ar is a substituted or unsubstituted aryl group; A substituted or unsubstituted heteroaryl group; A substituted or unsubstituted amine group; Or a substituted or unsubstituted phosphine oxide group,
  • the present application is a first electrode; A second electrode provided to face the first electrode; And one or more organic material layers provided between the first electrode and the second electrode, wherein at least one layer of the organic material layer includes the above-described compound.
  • the compound according to an exemplary embodiment of the present application is used in an organic light emitting device to increase the luminance of the organic light emitting device, increase the life, lower the driving voltage, improve the light efficiency, and improve the life characteristics of the device by thermal stability of the compound Can be improved.
  • FIG. 1 shows an example of an organic light emitting device in which a substrate 1, an anode 2, an organic material layer 3, and a cathode 4 are sequentially stacked.
  • Figure 2 is a substrate (1), anode (2), hole injection layer (5), hole transport layer (6), electron suppression layer (7), light emitting layer (8), hole suppression layer (9), electron injection and transport layer ( 10) shows an example of an organic light emitting device in which the cathodes 4 are sequentially stacked.
  • substitution means that the hydrogen atom bonded to the carbon atom of the compound is replaced with another substituent, and the position to be substituted is not limited to a position where the hydrogen atom is substituted, that is, a position where the substituent can be substituted, and when two or more are substituted , 2 or more substituents may be the same or different from each other.
  • substituted or unsubstituted refers to deuterium; Halogen group; Nitrile group; Alkyl groups; Cycloalkyl group; Alkoxy groups; Amine group; Phosphine oxide group; Aryl group; And a substituted with 1 or 2 or more substituents selected from the group consisting of heteroaryl groups, or substituted with two or more substituents of the above-described substituents, or having no substituents.
  • a substituent having two or more substituents may be a biphenyl group. That is, the biphenyl group may be an aryl group or may be interpreted as a substituent to which two phenyl groups are connected.
  • examples of the halogen group include fluorine, chlorine, bromine or iodine.
  • the alkyl group may be straight chain or branched chain, and carbon number is not particularly limited, but is preferably 1 to 50.
  • Specific examples are methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n-pentyl , Isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl, n -Heptyl, 1-methylhexyl, cyclopentylmethyl, cyclohexylmethyl, octyl, n
  • the cycloalkyl group is not particularly limited, but preferably has 3 to 30 carbon atoms, specifically cyclopropyl, cyclobutyl, cyclopentyl, 3-methylcyclopentyl, 2,3-dimethylcyclopentyl, cyclohexyl, 3-methylcyclohexyl, 4-methylcyclohexyl, 2,3-dimethylcyclohexyl, 3,4,5-trimethylcyclohexyl, 4-tert-butylcyclohexyl, cycloheptyl, cyclooctyl, and the like. It is not.
  • the alkoxy group may be a straight chain, branched chain or cyclic chain.
  • the number of carbon atoms of the alkoxy group is not particularly limited, but is preferably 1 to 30 carbon atoms.
  • the aryl group is a monocyclic aryl group
  • the number of carbon atoms is not particularly limited, but is preferably 6 to 30 carbon atoms.
  • the monocyclic aryl group may be a phenyl group, a biphenyl group, or a terphenyl group, but is not limited thereto.
  • the aryl group is a polycyclic aryl group
  • the number of carbon atoms is not particularly limited. It is preferable that it has 10 to 24 carbon atoms.
  • the polycyclic aryl group may be a naphthyl group, anthracene group, phenanthrene group, pyrenyl group, perylene group, chrysene group, fluorene group, but is not limited thereto.
  • the heteroaryl group includes one or more non-carbon atoms and heteroatoms, and specifically, the heteroatoms may include one or more atoms selected from the group consisting of O, N, Se, Si, and S. have.
  • the number of carbon atoms of the heteroaryl group is not particularly limited, but is preferably 2 to 60 carbon atoms or 2 to 30 carbon atoms.
  • heteroaryl group examples include thiophene group, furan group, pyrrol group, imidazolyl group, thiazolyl group, oxazolyl group, oxadiazolyl group, triazolyl group, pyridyl group, bipyridyl group, pyrimidyl group, tria Genyl group, acridil group, pyridazinyl group, pyrazinyl group, quinolinyl group, quinazolinyl group, quinoxalinyl group, phthalazinyl group, pyridopyrimidinyl group, pyridopyrazinyl group, pyrazinopyrazinyl group , Isoquinolinyl group, indole group, carbazolyl group, benzoxazolyl group, benzimidazolyl group, benzothiazolyl group, benzocarbazolyl group, dibenzocarbazolyl group, benzothi
  • two adjacent ones combine with each other to form a ring means a hydrocarbon ring which is substituted or unsubstituted by combining with adjacent groups; Or it means forming a substituted or unsubstituted heterocycle.
  • the ring is a substituted or unsubstituted hydrocarbon ring; Or a substituted or unsubstituted hetero ring.
  • the hydrocarbon ring may be an aromatic, aliphatic or aromatic and aliphatic condensed ring, and may be selected from examples of the cycloalkyl group or aryl group except for the non-monovalent.
  • the aromatic ring may be monocyclic or polycyclic, and may be selected from examples of the aryl group, except that it is not monovalent.
  • the heterocycle is a non-carbon atom, and contains one or more heteroatoms.
  • the hetero atom may include one or more atoms selected from the group consisting of O, N, Se, and S.
  • the heterocycle may be monocyclic or polycyclic, and may be aromatic, aliphatic or aromatic and aliphatic condensed ring, and may be selected from examples of the heteroaryl group except that it is not monovalent.
  • the amine group is -NH 2 ; Monoalkylamine groups; Dialkylamine groups; N-alkylarylamine group; Monoarylamine group; Diarylamine group; N-aryl heteroarylamine group; It may be selected from the group consisting of an N-alkylheteroarylamine group, a monoheteroarylamine group and a diheteroarylamine group, and the number of carbon atoms is not particularly limited, but is preferably 1 to 30.
  • amine group examples include methylamine group, dimethylamine group, ethylamine group, diethylamine group, phenylamine group, naphthylamine group, biphenylamine group, anthracenylamine group, 9-methyl-anthracenylamine group , Diphenylamine group, ditolylamine group, N-phenyltolylamine group, triphenylamine group, N-phenylbiphenylamine group; N-phenyl naphthylamine group; N-biphenyl naphthylamine group; N-naphthylfluorenylamine group; N-phenylphenanthrenylamine group; N-biphenylphenanthrenylamine group; N-phenylfluorenylamine group; N-phenyl terphenylamine group; N-phenanthrenylfluorenylamine group; N-biphenyl fluorenylamine group, and the like
  • the N-alkylarylamine group means an amine group in which an alkyl group and an aryl group are substituted for N of the amine group.
  • the N-aryl heteroarylamine group means an amine group in which an aryl group and a heteroaryl group are substituted with N of the amine group.
  • the N-alkylheteroarylamine group means an amine group in which an alkyl group and a heteroaryl group are substituted with N of the amine group.
  • the phosphine oxide group is specifically a diphenylphosphine oxide group, a dinaphthyl phosphine oxide, and the like, but is not limited thereto.
  • examples of the arylamine group include a substituted or unsubstituted monoarylamine group, a substituted or unsubstituted diarylamine group, or a substituted or unsubstituted triarylamine group.
  • the aryl group in the arylamine group may be a monocyclic aryl group or a polycyclic aryl group.
  • the arylamine group including two or more aryl groups may include a monocyclic aryl group, a polycyclic aryl group, or a monocyclic aryl group and a polycyclic aryl group at the same time.
  • the aryl group in the arylamine group can be selected from the examples of the aryl group described above.
  • the compound represented by Chemical Formula 1 is represented by any one of the following Chemical Formulas 3 to 6.
  • R4 to R10, R11 to R14, L and Ar are as defined in Formula 1.
  • R11 and R12; Or R13 and R14 may be bonded to each other to form a substituted or unsubstituted ring.
  • R11 and R12; Or R13 and R14 may combine with each other to form a substituted or unsubstituted aromatic ring.
  • R11 and R12; Or R13 and R14 are bonded to each other to form a substituted or unsubstituted benzene ring; A substituted or unsubstituted naphthalene ring; A substituted or unsubstituted phenanthrene ring; Alternatively, a substituted or unsubstituted triphenylene ring may be formed.
  • R11 and R12; Or R13 and R14 may combine with each other to form a substituted or unsubstituted benzene ring.
  • R11 and R12; Alternatively, R13 and R14 may combine with each other to form a benzene ring.
  • the compound represented by Chemical Formula 1 is represented by the following Chemical Formulas 3-1 to 3-3, 4-1 to 4-3, 5-1 to 5-3, and 6-1 to 6-3 It is displayed as either.
  • R4 to R10, L and Ar are the same as those in Formula 1,
  • R20 to R23 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; Halogen group; Nitrile group; A substituted or unsubstituted alkyl group; A substituted or unsubstituted alkoxy group; A substituted or unsubstituted cycloalkyl group; A substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroaryl group.
  • R4 to R10 are hydrogen.
  • R20 to R23 are hydrogen.
  • L is a direct bond; Or a substituted or unsubstituted arylene group having 6 to 30 carbon atoms.
  • L is a direct bond; Or a substituted or unsubstituted arylene group having 6 to 20 carbon atoms.
  • L is a direct bond; Or an arylene group having 6 to 20 carbon atoms.
  • L is a direct bond; A substituted or unsubstituted phenylene group; A substituted or unsubstituted biphenylylene group; A substituted or unsubstituted terphenylylene group; A substituted or unsubstituted naphthylene group; Or a substituted or unsubstituted anthracenylylene group.
  • L is a direct bond; Phenylene group; Biphenylylene group; Terphenylylene group; Naphthylene group; Or an anthracenylylene group.
  • L is a direct bond; Phenylene group; Or a biphenylylene group.
  • L is a direct bond; Or a phenylene group.
  • Ar is 6 to 30 aryl groups unsubstituted or substituted with carbon atoms; A substituted or unsubstituted heteroaryl group having 2 to 30 carbon atoms; A substituted or unsubstituted arylamine group having 6 to 60 carbon atoms; Or a phosphine oxide group unsubstituted or substituted with an aryl group having 6 to 30 carbon atoms.
  • Ar is a substituted or unsubstituted phenyl group; A substituted or unsubstituted biphenyl group; A substituted or unsubstituted terphenyl group; A substituted or unsubstituted naphthyl group; A substituted or unsubstituted phenanthrene group; A substituted or unsubstituted triphenylene group; A substituted or unsubstituted fluorene group; A substituted or unsubstituted dibenzofuran group; A substituted or unsubstituted dibenzothiophene group; A substituted or unsubstituted carbazole group; A substituted or unsubstituted quinazoline group; A substituted or unsubstituted quinoxaline group; A substituted or unsubstituted triazine group; A substituted or unsubstituted pyrimidine group; A substituted or unsubstituted pyridine group; A substituted or unsub
  • Ar is a phenyl group unsubstituted or substituted with an aryl group unsubstituted or substituted with a nitrile group;
  • Ar is a phenyl group; Biphenyl group; Terphenyl group; A naphthyl group unsubstituted or substituted with a phenyl group; A phenanthrene group unsubstituted or substituted with a phenyl group; A triphenylene group unsubstituted or substituted with a phenyl group; A fluorene group unsubstituted or substituted with a phenyl group or a methyl group; A dibenzofuran group unsubstituted or substituted with a phenyl group, a biphenyl group, or a naphthyl group; A dibenzothiophene group unsubstituted or substituted with a phenyl group, a biphenyl group, or a naphthyl group; A carbazole group unsubstituted or substituted with a phenyl group, a biphenyl group, or a naphthyl group
  • Ar is a phenyl group; Biphenyl group; Terphenyl group; Naphthyl group; Phenanthrene; Triphenylene group; A fluorene group unsubstituted or substituted with a methyl group; Dibenzofuran group; Dibenzothiophene group; A carbazole group unsubstituted or substituted with a phenyl group; A quinazoline group unsubstituted or substituted with a phenyl group, a biphenyl group, or a naphthyl group; A quinoxaline group unsubstituted or substituted with a phenyl group, a biphenyl group, or a naphthyl group; A phenyl group, a biphenyl group unsubstituted or substituted with a nitrile group, or a triazine group unsubstituted or substituted with a naphthyl group; A
  • the compound represented by Chemical Formula 1 is selected from the following structural formulas.
  • the compound according to an exemplary embodiment of the present application may be prepared by a manufacturing method described later.
  • the compound of Formula 1 may have a core structure as shown in Scheme 1 below.
  • Substituents can be combined by methods known in the art, and the type, location, or number of substituents can be changed according to techniques known in the art.
  • the present specification provides an organic light emitting device comprising the above-described compound.
  • the first electrode A second electrode provided to face the first electrode; And an organic light emitting device including one or more organic material layers provided between the first electrode and the second electrode, wherein at least one layer of the organic material layer includes the compound.
  • the organic material layer of the organic light emitting device of the present application may have a single-layer structure, but may have a multi-layer structure in which two or more organic material layers are stacked.
  • the organic light emitting device may have a structure including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer as an organic material layer.
  • the structure of the organic light emitting device is not limited to this, and may include fewer organic layers.
  • the organic material layer includes a light emitting layer, and the light emitting layer is a red light emitting layer.
  • the organic material layer includes a light emitting layer, and the light emitting layer is a blue light emitting layer.
  • the organic material layer includes a light emitting layer, and the light emitting layer contains the compound.
  • the organic material layer includes a light emitting layer, the light emitting layer contains the compound, and the light emitting layer is a red light emitting layer.
  • the organic material layer includes a light emitting layer, and the light emitting layer includes the compound as a red host.
  • the organic material layer includes a light emitting layer, the light emitting layer includes the compound, and further includes a dopant.
  • the light emitting layer includes the compound and the dopant in a weight ratio of 1:99 to 99: 1.
  • the dopant may be selected from the following structures, but is not limited thereto.
  • the organic material layer includes a hole injection layer or a hole transport layer, and the hole injection layer or a hole transport layer contains the compound.
  • the organic material layer includes a hole injection layer, a hole transport layer or a hole injection and transport layer, and the hole injection layer, a hole transport layer or a hole injection and transport layer includes the compound.
  • the organic material layer includes an electron transport layer or an electron injection layer, and the electron transport layer or electron injection layer contains the compound.
  • the organic material layer includes an electron injection layer, an electron transport layer, or an electron injection and transport layer, and the electron injection layer, electron transport layer, or electron injection and transport layer contains the compound.
  • the organic material layer includes an electron suppressing layer, and the electron suppressing layer includes the compound.
  • the organic material layer includes a hole injection layer, a hole transport layer, or a hole injection and transport layer, and further includes an electron suppression layer, and the electron suppression layer includes the compound.
  • the organic material layer includes a hole injection layer, a hole transport layer, an electron suppressing layer, a light emitting layer, and an electron injection and transport layer, and the electron suppressing layer includes the compound.
  • the organic material layer includes a hole injection layer, a hole transport layer, an electron suppression layer, a light emitting layer, a hole suppression layer, and an electron injection and transport layer
  • the electron suppression layer includes the compound
  • the organic material layer includes a hole inhibiting layer, and the hole inhibiting layer includes the compound.
  • the organic material layer includes an electron injection layer, an electron transport layer, or an electron injection and transport layer, and further includes a hole suppressing layer, and the hole suppressing layer includes the compound.
  • the organic material layer includes a hole injection layer, a hole transport layer, a light emitting layer, a hole suppression layer, and an electron injection and transport layer
  • the hole suppression layer includes the compound
  • the organic material layer includes a hole injection layer, a hole transport layer, an electron suppressing layer, a light emitting layer, a hole suppressing layer, and an electron injection and transport layer, and the hole suppressing layer includes the compound.
  • the organic light emitting device includes a first electrode; A second electrode provided to face the first electrode; And a light emitting layer provided between the first electrode and the second electrode. It includes two or more organic material layers provided between the light emitting layer and the first electrode, or between the light emitting layer and the second electrode, and at least one of the two or more organic material layers comprises the compound.
  • the organic light emitting device may be an organic light emitting device having a structure in which an anode, one or more organic material layers, and a cathode are sequentially stacked on a substrate.
  • the organic light emitting device may be an inverted type organic light emitting device in which a cathode, one or more organic material layers, and an anode are sequentially stacked on a substrate.
  • FIGS. 1 and 2 the structure of the organic light emitting device according to the exemplary embodiment of the present application is illustrated in FIGS. 1 and 2.
  • FIG. 1 illustrates a structure of an organic light emitting device in which a substrate 1, an anode 2, an organic material layer 3, and a cathode 4 are sequentially stacked.
  • the compound may be included in the light emitting layer 3.
  • the structure of the organic light emitting device in which the cathodes 4 are sequentially stacked is illustrated.
  • the compound may be included in the electron suppressing layer 7, the light emitting layer 8, or the hole suppressing layer 9, but is not limited thereto.
  • the organic light emitting device of the present application may be made of materials and methods known in the art, except that at least one layer of the organic material layer includes the compound of the present application, that is, the compound.
  • the organic material layers may be formed of the same material or different materials.
  • the organic light emitting device of the present application can be manufactured by sequentially laminating a first electrode, an organic material layer, and a second electrode on a substrate.
  • a positive electrode is formed by depositing metal or conductive metal oxides or alloys thereof on a substrate using a physical vapor deposition (PVD) method such as sputtering or e-beam evaporation.
  • PVD physical vapor deposition
  • an organic material layer including a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer may be formed thereon, followed by deposition of a material that can be used as a cathode.
  • an organic light emitting device may be formed by sequentially depositing a cathode material, an organic material layer, and a cathode material on a substrate.
  • the compound of Formula 1 may be formed into an organic material layer by a solution coating method as well as a vacuum deposition method when manufacturing the organic light emitting device.
  • the solution application method means spin coating, dip coating, doctor blading, inkjet printing, screen printing, spraying, roll coating, and the like, but is not limited to these.
  • an organic light emitting device may also be formed by sequentially depositing an organic material layer and a cathode material from a cathode material on a substrate (International Patent Application Publication No. 2003/012890).
  • the manufacturing method is not limited thereto.
  • the first electrode is an anode
  • the second electrode is a cathode
  • the first electrode is a cathode
  • the second electrode is an anode
  • the positive electrode material is usually a material having a large work function to facilitate hole injection into the organic material layer.
  • Specific examples of the positive electrode material that can be used in the present invention include metals such as vanadium, chromium, copper, zinc, gold, or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); ZnO: Al or SnO 2 : Combination of metal and oxide such as Sb; Conductive polymers such as poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene] (PEDOT), polypyrrole, and polyaniline, but are not limited thereto.
  • the cathode material is preferably a material having a small work function to facilitate electron injection into the organic material layer.
  • the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead, or alloys thereof;
  • There is a multilayer structure material such as LiF / Al or LiO 2 / Al, but is not limited thereto.
  • the hole injection layer is a layer for injecting holes from an electrode, and has the ability to transport holes as a hole injection material, and thus has a hole injection effect at an anode, an excellent hole injection effect for a light emitting layer or a light emitting material, and is generated in the light emitting layer.
  • a compound that prevents migration of the excitons to the electron injection layer or the electron injection material, and has excellent thin film formation ability is preferable. It is preferable that the highest occupied molecular orbital (HOMO) of the hole injection material is between the work function of the positive electrode material and the HOMO of the surrounding organic layer.
  • HOMO highest occupied molecular orbital
  • hole injection material examples include metal porphyrin, oligothiophene, arylamine-based organic substances, hexanitrile hexaazatriphenylene-based organic substances, quinacridone-based organic substances, and perylene-based substances.
  • Organic anthraquinone and polyaniline and polythiophene-based conductive polymers are not limited thereto.
  • the hole transport layer is a layer that receives holes from the hole injection layer and transports holes to the light emitting layer.
  • the hole transport material the hole is transported from the anode or the hole injection layer to the hole and is transported to the light emitting layer.
  • the material is suitable. Specific examples include arylamine-based organic materials, conductive polymers, and block copolymers having a conjugated portion and a non-conjugated portion, but are not limited thereto.
  • a material capable of emitting light in the visible light region by receiving and bonding holes and electrons from the hole transport layer and the electron transport layer, respectively is preferably a material having good quantum efficiency for fluorescence or phosphorescence.
  • Specific examples include 8-hydroxy-quinoline aluminum complex (Alq 3 ); Carbazole-based compounds; Dimerized styryl compounds; BAlq; 10-hydroxybenzo quinoline-metal compound; Benzoxazole, benzthiazole and benzimidazole compounds; Poly (p-phenylenevinylene) (PPV) polymers; Spiro compounds; Polyfluorene, rubrene, and the like, but are not limited to these.
  • the light emitting layer may include a host material and a dopant material.
  • the host material may be a condensed aromatic ring derivative or a heterocyclic compound.
  • condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, fluoranthene compounds, etc.
  • heterocyclic compounds include compounds, dibenzofuran derivatives, and ladder-type furan compounds. , Pyrimidine derivatives, and the like.
  • the electron transport layer is a layer that receives electrons from the electron injection layer and transports electrons to the light emitting layer.
  • the electron transport material a material capable of receiving electrons from the cathode and transferring them to the light emitting layer, a material having high mobility for electrons This is suitable. Specific examples include Al complexes of 8-hydroxyquinoline; Complexes including Alq 3 ; Organic radical compounds; Hydroxyflavone-metal complexes, and the like, but are not limited thereto.
  • the electron transport layer can be used with any desired cathode material, as used according to the prior art.
  • suitable cathode materials are conventional materials that have a low work function and are followed by an aluminum or silver layer. Specifically, cesium, barium, calcium, ytterbium and samarium, each case followed by an aluminum layer or a silver layer.
  • the electron injection layer is a layer that injects electrons from an electrode, has the ability to transport electrons, has an electron injection effect from a cathode, has an excellent electron injection effect on a light emitting layer or a light emitting material, and hole injection of excitons generated in the light emitting layer A compound that prevents migration to the layer and has excellent thin film forming ability is preferred.
  • fluorenone anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, preorenylidene methane, anthrone and the like and their derivatives, metal Complex compounds, nitrogen-containing 5-membered ring derivatives, and the like, but are not limited thereto.
  • Examples of the metal complex compound include 8-hydroxyquinolinato lithium, bis (8-hydroxyquinolinato) zinc, bis (8-hydroxyquinolinato) copper, bis (8-hydroxyquinolinato) manganese, Tris (8-hydroxyquinolinato) aluminum, tris (2-methyl-8-hydroxyquinolinato) aluminum, tris (8-hydroxyquinolinato) gallium, bis (10-hydroxybenzo [h] Quinolinato) beryllium, bis (10-hydroxybenzo [h] quinolinato) zinc, bis (2-methyl-8-quinolinato) chlorogallium, bis (2-methyl-8-quinolinato) ( There are o-cresolato) gallium, bis (2-methyl-8-quinolinato) (1-naphtolato) aluminum, bis (2-methyl-8-quinolinato) (2-naphtholato) gallium, It is not limited to this.
  • the hole inhibiting layer is a layer that prevents the cathode from reaching the hole, and may be generally formed under the same conditions as the hole injection layer. Specifically, there are oxadiazole derivatives, triazole derivatives, phenanthroline derivatives, BCP, aluminum complex, and the like, but are not limited thereto.
  • the organic light emitting device may be a front emission type, a back emission type, or a double-sided emission type, depending on the material used.
  • a glass substrate coated with a thin film coated with ITO (indium tin oxide) at a thickness of 1,000 ⁇ was put in distilled water in which detergent was dissolved and washed with ultrasonic waves.
  • Fischer Co. product was used as the detergent
  • distilled water filtered secondarily by a filter of Millipore Co. was used as the distilled water.
  • ultrasonic cleaning was repeated twice with distilled water for 10 minutes.
  • ultrasonic cleaning was performed with a solvent of isopropyl alcohol, acetone, and methanol, followed by drying and then transported to a plasma cleaner.
  • the substrate was washed for 5 minutes using oxygen plasma, and then transferred to a vacuum evaporator.
  • a compound of the following compound HI1 and the following compound HI2 was thermally vacuum-deposited to a thickness of 100 Pa to a ratio of 98: 2 (molar ratio) on the prepared ITO transparent electrode, thus forming a hole injection layer.
  • a compound (1150 ⁇ ) represented by the following Chemical Formula HT1 was vacuum-deposited to form a hole transport layer.
  • an electron suppressing layer was formed by vacuum-depositing Compound 1 of Preparation Example 1 with a thickness of 50 mm 2 on the hole transport layer.
  • a compound represented by the following Chemical Formula BH and a compound represented by the following Chemical Formula BD as a film thickness of 200 mm 2 on the electron suppressing layer were vacuum-deposited in a weight ratio of 25: 1 to form a light emitting layer.
  • a hole suppressing layer was formed by vacuum-depositing a compound represented by the following Chemical Formula HB1 with a thickness of 50 mm 2 on the light emitting layer.
  • a compound represented by the following Chemical Formula ET 1 and a compound represented by the following Chemical Formula LiQ were vacuum-deposited at a weight ratio of 1: 1 to form an electron injection and transport layer with a thickness of 310 MPa.
  • lithium fluoride (LiF) with a thickness of 12 ⁇ and aluminum with a thickness of 1,000 ⁇ were sequentially deposited to form a negative electrode.
  • An organic light emitting diode was manufactured according to the same method as Example 1-1 except for using Compound 2 instead of Compound 1 of Preparation Example 1.
  • An organic light emitting diode was manufactured according to the same method as Example 1-1 except for using Compound 3 instead of Compound 1 of Preparation Example 1.
  • An organic light emitting diode was manufactured according to the same method as Example 1-1 except for using Compound 14 instead of Compound 1 of Preparation Example 1.
  • An organic light emitting diode was manufactured according to the same method as Example 1-1 except for using Compound 16 instead of Compound 1 of Preparation Example 1.
  • An organic light-emitting device was manufactured according to the same method as Example 1-1 except for using the following compound EB2 instead of the compound 1 of Preparation Example 1.
  • An organic light-emitting device was manufactured according to the same method as Example 1-1 except for using the following compound EB3 instead of the compound 1 of Preparation Example 1.
  • An organic light-emitting device was manufactured according to the same method as Example 1-1 except for using the following compound EB4 instead of the compound 1 of Preparation Example 1.
  • T95 means the time required for the luminance to decrease from the initial luminance (1600 nit) to 95%.
  • the organic light emitting device using the compound of the present invention as the electron suppressing layer exhibited excellent properties in terms of efficiency, driving voltage, and stability of the organic light emitting device.
  • the compound according to the present invention developed a new synthesis method to fuse fused carbazole with acenaphthoquinoxaline, synthesized substances with amine groups substituted in the N direction, and these substances have excellent electron blocking ability It was confirmed that it can be applied to an organic light emitting device.
  • An organic light-emitting device was manufactured in the same manner as in Example 1-1, except that EB1 was used instead of Compound 1 of Preparation Example 1 and the compound shown in Table 2 was used instead of HB1.
  • An organic light-emitting device was manufactured in the same manner as in Example 1-1, except that EB1 was used instead of Compound 1 of Preparation Example 1 and the compound shown in Table 2 was used instead of HB1.
  • the compounds of HB2, HB3, and HB4 used in Table 2 below are as follows.
  • T95 means the time required for the luminance to decrease from the initial luminance (1600 nits) to 95%.
  • a glass substrate coated with a thin film coated with ITO (indium tin oxide) at a thickness of 1,000 ⁇ was put in distilled water in which detergent was dissolved and washed with ultrasonic waves.
  • Fischer Co. product was used as the detergent
  • distilled water filtered secondarily by a filter of Millipore Co. was used as the distilled water.
  • ultrasonic cleaning was repeated twice with distilled water for 10 minutes.
  • ultrasonic cleaning was performed with a solvent of isopropyl alcohol, acetone, and methanol, followed by drying and then transported to a plasma cleaner.
  • the substrate was washed for 5 minutes using oxygen plasma, and then transferred to a vacuum evaporator.
  • the following HI-1 compound was formed to a thickness of 1150 as a hole injection layer on the prepared ITO transparent electrode, but the following A-1 compound was p-doped at a concentration of 1.5%.
  • the following HT-1 compound was vacuum deposited on the hole injection layer to form a hole transport layer having a thickness of 800 mm 2.
  • the following EB-1 compound was vacuum-deposited to a thickness of 150 mm 2 on the hole transport layer to form an electron suppressing layer.
  • the following RH-1 compound and the following Dp-7 compound were vacuum-deposited in a weight ratio of 98: 2 on the EB-1 deposition film to form a 400-mm thick red light-emitting layer.
  • a hole-blocking layer was formed by vacuum-depositing the following HB-1 compound with a thickness of 30 Pa on the light emitting layer. Subsequently, the following ET-1 compound and the following LiQ compound were vacuum-deposited in a weight ratio of 2: 1 on the hole suppressing layer to form an electron injection and transport layer with a thickness of 300 Pa. On the electron injection and transport layer, lithium fluoride (LiF) with a thickness of 12 ⁇ and aluminum with a thickness of 1,000 ⁇ were sequentially deposited to form a negative electrode.
  • LiF lithium fluoride
  • An organic light emitting diode was manufactured according to the same method as Comparative Example 3-1 except for using the compound described in Table 3 instead of RH-1 in the organic light emitting diode of Comparative Example 3-1.
  • T95 means the time required for the luminance to decrease from the initial luminance (5000 nit) to 95%.
  • the red organic light emitting device of Comparative Example 3-1 used a material that has been widely used in the past, and has a structure using compound [EB-1] as an electron suppressing layer and RH-1 / Dp-7 as a red emitting layer.
  • the compound of the present invention was used as a host for a red light-emitting layer, the driving voltage was significantly lowered by 20% compared to the comparative example material, and the efficiency was increased by 20% or more. It was found that energy transfer to the dopant was well achieved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 명세서는 화학식 1의 화합물 및 이를 포함한 유기 발광 소자를 제공한다.

Description

화합물 및 이를 포함하는 유기 발광 소자
본 명세서는 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.
본 출원은 2018년 11월 5일에 한국특허청에 제출된 한국 특허 출원 제10- 2018-0134295호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
유기발광소자는 2개의 전극 사이에 유기박막을 배치시킨 구조를 가지고 있다. 이와 같은 구조의 유기발광소자에 전압이 인가되면, 2개의 전극으로부터 주입된 전자와 정공이 유기박막에서 결합하여 쌍을 이룬 후 소멸하면서 빛을 발하게 된다. 상기 유기박막은 필요에 따라 단층 또는 다층으로 구성될 수 있다.
유기박막의 재료는 필요에 따라 발광 기능을 가질 수 있다. 예컨대, 유기박막 재료로는 그 자체가 단독으로 발광층을 구성할 수 있는 화합물이 사용될 수도 있고, 또는 호스트-도펀트계 발광층의 호스트 또는 도펀트 역할을 할 수 있는 화합물이 사용될 수도 있다. 그 외에도, 유기박막의 재료로서, 정공주입, 정공수송, 전자블록킹, 정공블록킹, 전자수송 또는 전자주입 등의 역할을 수행할 수 있는 화합물이 사용될 수도 있다.
유기발광소자의 성능, 수명 또는 효율을 향상시키기 위하여, 유기박막의 재료의 개발이 지속적으로 요구되고 있다.
본 명세서는 화합물 및 이를 포함하는 유기 발광 소자를 제공한다.
본 명세서의 일 실시상태는 하기 화학식 1로 표시되는 화합물을 제공한다.
[화학식 1]
Figure PCTKR2019012402-appb-I000001
상기 화학식 1에 있어서,
R1 및 R2; 또는 R2 및 R3은 하기 화학식 2와 결합하여 고리를 형성하고,
R1 내지 R3 중 고리를 형성하지 않는 기는 수소이며,
R4 내지 R10은 서로 같거나 상이하고 각각 독립적으로 수소; 중수소; 할로겐기; 니트릴기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이고,
[화학식 2]
Figure PCTKR2019012402-appb-I000002
상기 화학식 2에서,
R11 내지 R14는 서로 같거나 상이하고 각각 독립적으로 수소; 중수소; 할로겐기; 니트릴기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이거나, 인접한 기가 서로 결합하여 치환 또는 비치환된 고리를 형성하고,
L은 직접결합; 치환 또는 비치환된 아릴렌기; 또는 치환 또는 비치환된 헤테로아릴렌기이며,
Ar은 치환 또는 비치환된 아릴기; 치환 또는 비치환된 헤테로아릴기; 치환 또는 비치환된 아민기; 또는 치환 또는 비치환된 포스핀옥사이드기이고,
*은 화학식 1의 R1 및 R2; 또는 R2 및 R3와 결합하는 위치를 의미한다.
또한, 본 출원은 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1 층 이상은 전술한 화합물을 포함하는 것인 유기 발광 소자를 제공한다.
본 출원의 일 실시상태에 따른 화합물은 유기 발광 소자에 사용되어, 유기 발광 소자의 휘도를 높이고, 수명을 늘리며, 구동전압을 낮추고, 광효율을 향상시키며, 화합물의 열적 안정성에 의하여 소자의 수명 특성을 향상시킬 수 있다.
도 1은 기판(1), 양극(2), 유기물층(3), 음극(4)이 순차적으로 적층된 유기 발광 소자의 예를 도시한 것이다
도 2는 기판(1), 양극(2), 정공주입층(5), 정공수송층(6), 전자억제층(7), 발광층(8), 정공억제층(9), 전자 주입 및 수송층(10), 음극(4)이 순차적으로 적층된 유기 발광 소자의 예를 도시한 것이다.
[부호의 설명]
1: 기판
2: 양극
3: 유기물층
4: 음극
5: 정공주입층
6: 정공수송층
7: 전자억제층
8: 발광층
9: 정공억제층
10: 전자 주입 및 수송층
이하, 본 명세서에 대하여 더욱 상세하게 설명한다.
본 명세서는 상기 화학식 1로 표시되는 화합물을 제공한다.
본 명세서에서 치환기의 예시들은 아래에서 설명하나, 이에 한정되는 것은 아니다.
상기 "치환"이라는 용어는 화합물의 탄소 원자에 결합된 수소 원자가 다른 치환기로 바뀌는 것을 의미하며, 치환되는 위치는 수소 원자가 치환되는 위치 즉, 치환기가 치환 가능한 위치라면 한정하지 않으며, 2 이상 치환되는 경우, 2 이상의 치환기는 서로 동일하거나 상이할 수 있다.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 니트릴기; 알킬기; 시클로알킬기; 알콕시기; 아민기; 포스핀옥사이드기; 아릴기; 및 헤테로아릴기로 이루어진 군에서 선택된 1 또는 2 이상의 치환기로 치환되었거나 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환기로 치환되거나, 또는 어떠한 치환기도 갖지 않는 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 바이페닐기일 수 있다. 즉, 바이페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수 있다.
본 명세서에 있어서, 할로겐기의 예로는 불소, 염소, 브롬 또는 요오드가 있다.
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 50인 것이 바람직하다. 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸헥실, 시클로펜틸메틸, 시클로헥실메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸프로필, 1,1-디메틸프로필, 이소헥실, 2-메틸펜틸, 4-메틸헥실, 5-메틸헥실 등이 있으나, 이들에 한정되지 않는다.
본 명세서에 있어서, 시클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 30인 것이 바람직하며, 구체적으로 시클로프로필, 시클로부틸, 시클로펜틸, 3-메틸시클로펜틸, 2,3-디메틸시클로펜틸, 시클로헥실, 3-메틸시클로헥실, 4-메틸시클로헥실, 2,3-디메틸시클로헥실, 3,4,5-트리메틸시클로헥실, 4-tert-부틸시클로헥실, 시클로헵틸, 시클로옥틸 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 상기 알콕시기는 직쇄, 분지쇄 또는 고리쇄일 수 있다. 알콕시기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 30인 것이 바람직하다. 구체적으로, 메톡시, 에톡시, n-프로폭시, 이소프로폭시, i-프로필옥시, n-부톡시, 이소부톡시, tert-부톡시, sec-부톡시, n-펜틸옥시, 네오펜틸옥시, 이소펜틸옥시, n-헥실옥시, 3,3-디메틸부틸옥시, 2-에틸부틸옥시, n-옥틸옥시, n-노닐옥시, n-데실옥시, 벤질옥시, p-메틸벤질옥시 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에서 상기 아릴기가 단환식 아릴기인 경우 탄소수는 특별히 한정되지 않으나, 탄소수 6 내지 30인 것이 바람직하다. 구체적으로 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
상기 아릴기가 다환식 아릴기인 경우 탄소수는 특별히 한정되지 않으나. 탄소수 10 내지 24인 것이 바람직하다. 구체적으로 다환식 아릴기로는 나프틸기, 안트라센기, 페난트렌기, 파이레닐기, 페릴레닐기, 크라이센기, 플루오렌기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 헤테로아릴기는 탄소가 아닌 원자, 이종원자를 1 이상 포함하는 것으로서, 구체적으로 상기 이종 원자는 O, N, Se, Si 및 S 등으로 이루어진 군에서 선택되는 원자를 1 이상 포함할 수 있다. 헤테로아릴기의 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 60 또는 탄소수 2 내지 30인 것이 바람직하다. 헤테로아릴기의 예로는 티오펜기, 퓨란기, 피롤기, 이미다졸릴기, 티아졸릴기, 옥사졸릴기, 옥사디아졸릴기, 트리아졸릴기, 피리딜기, 비피리딜기, 피리미딜기, 트리아지닐기, 아크리딜기, 피리다지닐기, 피라지닐기, 퀴놀리닐기, 퀴나졸리닐기, 퀴녹살리닐기, 프탈라지닐기, 피리도피리미디닐기, 피리도피라지닐기, 피라지노피라지닐기, 이소퀴놀리닐기, 인돌기, 카바졸릴기, 벤즈옥사졸릴기, 벤즈이미다졸릴기, 벤조티아졸릴기, 벤조카바졸릴기, 디벤조카바졸릴기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨란기, 디벤조퓨란기, 벤조실롤기, 디벤조실롤기, 페난트롤리닐기(phenanthrolinyl group), 이소옥사졸릴기, 티아디아졸릴기, 페노티아지닐기, 페녹사진기 및 이들의 축합구조 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서에 있어서, 치환기 중 "인접한 2개는 서로 결합하여 고리를 형성한다"는 의미는 인접한 기와 서로 결합하여 치환 또는 비치환된 탄화수소고리; 또는 치환 또는 비치환된 헤테로고리를 형성하는 것을 의미한다.
본 명세서에 있어서, 고리는 치환 또는 비치환된 탄화수소고리; 또는 치환 또는 비치환된 헤테로고리를 의미한다.
본 명세서에 있어서, 탄화수소고리는 방향족, 지방족 또는 방향족과 지방족의 축합고리일 수 있으며, 상기 1가가 아닌 것을 제외하고 상기 시클로알킬기 또는 아릴기의 예시 중에서 선택될 수 있다.
본 명세서에 있어서, 방향족고리는 단환 또는 다환일 수 있으며, 1가가 아닌 것을 제외하고 상기 아릴기의 예시 중에서 선택될 수 있다.
본 명세서에 있어서, 헤테로고리는 탄소가 아닌 원자, 이종원자를 1 이상 포함하는 것으로서, 구체적으로 상기 이종 원자는 O, N, Se 및 S 등으로 이루어진 군에서 선택되는 원자를 1 이상 포함할 수 있다. 상기 헤테로고리는 단환 또는 다환일 수 있으며, 방향족, 지방족 또는 방향족과 지방족의 축합고리일 수 있으며, 1가가 아닌 것을 제외하고 상기 헤테로아릴기의 예시 중에서 선택될 수 있다.
본 명세서에 있어서, 아민기는 -NH2; 모노알킬아민기; 디알킬아민기; N-알킬아릴아민기; 모노아릴아민기; 디아릴아민기; N-아릴헤테로아릴아민기; N-알킬헤테로아릴아민기, 모노헤테로아릴아민기 및 디헤테로아릴아민기로 이루어진 군으로부터 선택될 수 있으며, 탄소수는 특별히 한정되지 않으나, 1 내지 30인 것이 바람직하다. 아민기의 구체적인 예로는 메틸아민기, 디메틸아민기, 에틸아민기, 디에틸아민기, 페닐아민기, 나프틸아민기, 바이페닐아민기, 안트라세닐아민기, 9-메틸-안트라세닐아민기, 디페닐아민기, 디톨릴아민기, N-페닐톨릴아민기, 트리페닐아민기, N-페닐바이페닐아민기; N-페닐나프틸아민기; N-바이페닐나프틸아민기; N-나프틸플루오레닐아민기; N-페닐페난트레닐아민기; N-바이페닐페난트레닐아민기; N-페닐플루오레닐아민기; N-페닐터페닐아민기; N-페난트레닐플루오레닐아민기; N-바이페닐플루오레닐아민기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, N-알킬아릴아민기는 아민기의 N에 알킬기 및 아릴기가 치환된 아민기를 의미한다.
본 명세서에 있어서, N-아릴헤테로아릴아민기는 아민기의 N에 아릴기 및 헤테로아릴기가 치환된 아민기를 의미한다.
본 명세서에 있어서, N-알킬헤테로아릴아민기는 아민기의 N에 알킬기 및 헤테로아릴기가 치환된 아민기를 의미한다.
본 명세서에 있어서, 포스핀옥사이드기는 구체적으로 디페닐포스핀옥사이드기, 디나프틸포스핀옥사이드 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 아릴아민기의 예로는 치환 또는 비치환된 모노아릴아민기, 치환 또는 비치환된 디아릴아민기, 또는 치환 또는 비치환된 트리아릴아민기가 있다. 상기 아릴아민기 중의 아릴기는 단환식 아릴기일 수 있고, 다환식 아릴기일 수 있다. 상기 아릴기가 2 이상을 포함하는 아릴아민기는 단환식 아릴기, 다환식 아릴기, 또는 단환식 아릴기와 다환식 아릴기를 동시에 포함할 수 있다. 예컨대, 상기 아릴아민기 중의 아릴기는 전술한 아릴기의 예시 중에서 선택될 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 1로 표시되는 화합물은 하기 화학식 3 내지 6 중 어느 하나로 표시된다.
[화학식 3]
Figure PCTKR2019012402-appb-I000003
[화학식 4]
Figure PCTKR2019012402-appb-I000004
[화학식 5]
Figure PCTKR2019012402-appb-I000005
[화학식 6]
Figure PCTKR2019012402-appb-I000006
상기 화학식 3 내지 6에 있어서,
R4 내지 R10, R11 내지 R14, L 및 Ar의 정의는 화학식 1에서의 정의와 같다.
본 명세서의 일 실시상태에 있어서, 상기 R11 및 R12; 또는 R13 및 R14는 서로 결합하여 치환 또는 비치환된 고리를 형성 할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 R11 및 R12; 또는 R13 및 R14는 서로 결합하여 치환 또는 비치환된 방향족고리를 형성 할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 R11 및 R12; 또는 R13 및 R14는 서로 결합하여 치환 또는 비치환된 벤젠고리; 치환 또는 비치환된 나프탈렌고리; 치환 또는 비치환된 페난트렌고리; 또는 치환 또는 비치환된 트리페닐렌고리를 형성 할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 R11 및 R12; 또는 R13 및 R14는 서로 결합하여 치환 또는 비치환된 벤젠고리를 형성 할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 R11 및 R12; 또는 R13 및 R14는 서로 결합하여 벤젠고리를 형성 할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 1로 표시되는 화합물은 하기 화학식 3-1 내지 3-3, 4-1 내지 4-3, 5-1 내지 5-3 및 6-1 내지 6-3 중 어느 하나로 표시된다.
[화학식 3-1]
Figure PCTKR2019012402-appb-I000007
[화학식 3-2]
Figure PCTKR2019012402-appb-I000008
[화학식 3-3]
Figure PCTKR2019012402-appb-I000009
[화학식 4-1]
Figure PCTKR2019012402-appb-I000010
[화학식 4-2]
Figure PCTKR2019012402-appb-I000011
[화학식 4-3]
Figure PCTKR2019012402-appb-I000012
[화학식 5-1]
Figure PCTKR2019012402-appb-I000013
[화학식 5-2]
Figure PCTKR2019012402-appb-I000014
[화학식 5-3]
Figure PCTKR2019012402-appb-I000015
[화학식 6-1]
Figure PCTKR2019012402-appb-I000016
[화학식 6-2]
Figure PCTKR2019012402-appb-I000017
[화학식 6-3]
Figure PCTKR2019012402-appb-I000018
상기 화학식 3-1 내지 3-3, 4-1 내지 4-3, 5-1 내지 5-3 및 6-1 내지 6-3에 있어서,
R4 내지 R10, L 및 Ar의 정의는 화학식 1에서의 정의와 같고,
R20 내지 R23은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 니트릴기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이다.
본 명세서의 일 실시상태에 있어서, 상기 R4 내지 R10은 수소이다.
본 명세서의 일 실시상태에 있어서, 상기 R20 내지 R23은 수소이다.
본 명세서의 일 실시상태에 있어서, 상기 L은 직접결합; 또는 치환 또는 비치환된 탄소수 6 내지 30의 아릴렌기이다.
본 명세서의 일 실시상태에 있어서, 상기 L은 직접결합; 또는 치환 또는 비치환된 탄소수 6 내지 20의 아릴렌기이다.
본 명세서의 일 실시상태에 있어서, 상기 L은 직접결합; 또는 탄소수 6 내지 20의 아릴렌기이다.
본 명세서의 일 실시상태에 있어서, 상기 L은 직접결합; 치환 또는 비치환된 페닐렌기; 치환 또는 비치환된 바이페닐릴렌기; 치환 또는 비치환된 터페닐릴렌기; 치환 또는 비치환된 나프틸렌기; 또는 치환 또는 비치환된 안트라세닐릴렌기이다.
본 명세서의 일 실시상태에 있어서, 상기 L은 직접결합; 페닐렌기; 바이페닐릴렌기; 터페닐릴렌기; 나프틸렌기; 또는 안트라세닐릴렌기이다.
본 명세서의 일 실시상태에 있어서, 상기 L은 직접결합; 페닐렌기; 또는 바이페닐릴렌기이다.
본 명세서의 일 실시상태에 있어서, 상기 L은 직접결합; 또는 페닐렌기이다.
본 명세서의 일 실시상태에 있어서, 상기 Ar은 탄소수 치환 또는 비치환된 6 내지 30의 아릴기; 치환 또는 비치환된 탄수소 2 내지 30의 헤테로아릴기; 치환 또는 비치환된 탄소수 6 내지 60의 아릴아민기; 또는 탄소수 6 내지 30의 아릴기로 치환 또는 비치환된 포스핀옥사이드기이다.
본 명세서의 일 실시상태에 있어서, 상기 Ar은 치환 또는 비치환된 페닐기; 치환 또는 비치환된 바이페닐기; 치환 또는 비치환된 터페닐기; 치환 또는 비치환된 나프틸기; 치환 또는 비치환된 페난쓰렌기; 치환 또는 비치환된 트리페닐렌기; 치환 또는 비치환된 플루오렌기; 치환 또는 비치환된 디벤조퓨란기; 치환 또는 비치환된 디벤조티오펜기; 치환 또는 비치환된 카바졸기; 치환 또는 비치환된 퀴나졸린기; 치환 또는 비치환된 퀴녹살린기; 치환 또는 비치환된 트리아진기; 치환 또는 비치환된 피리미딘기; 치환 또는 비치환된 피리딘기; 치환 또는 비치환된 벤조싸이오피리미딘기; 치환 또는 비치환된 벤조퓨로피리미딘기; 치환 또는 비치환된 디페닐아민기; 또는 치환 또는 비치환된 디페닐포스핀옥사이드기이다.
본 명세서의 일 실시상태에 있어서, 상기 Ar은 니트릴기로 치환 또는 비치환된 아릴기로 치환 또는 비치환된 페닐기; 니트릴기로 치환 또는 비치환된 아릴기로 치환 또는 비치환된 바이페닐기; 니트릴기로 치환 또는 비치환된 아릴기로 치환 또는 비치환된 터페닐기; 니트릴기로 치환 또는 비치환된 아릴기로 치환 또는 비치환된 나프틸기; 니트릴기로 치환 또는 비치환된 아릴기로 치환 또는 비치환된 페난쓰렌기; 니트릴기로 치환 또는 비치환된 아릴기로 치환 또는 비치환된 트리페닐렌기; 니트릴기로 치환 또는 비치환된 아릴기, 또는 알킬기로 치환 또는 비치환된 플루오렌기; 니트릴기로 치환 또는 비치환된 아릴기로 치환 또는 비치환된 디벤조퓨란기; 니트릴기로 치환 또는 비치환된 아릴기로 치환 또는 비치환된 디벤조티오펜기; 니트릴기로 치환 또는 비치환된 아릴기로 치환 또는 비치환된 카바졸기; 니트릴기로 치환 또는 비치환된 아릴기로 치환 또는 비치환된 퀴나졸린기; 니트릴기로 치환 또는 비치환된 아릴기로 치환 또는 비치환된 퀴녹살린기; 니트릴기로 치환 또는 비치환된 아릴기로 치환 또는 비치환된 트리아진기; 니트릴기로 치환 또는 비치환된 아릴기로 치환 또는 비치환된 피리미딘기; 니트릴기로 치환 또는 비치환된 아릴기로 치환 또는 비치환된 피리딘기; 니트릴기로 치환 또는 비치환된 아릴기, 또는 아릴기로 치환 또는 비치환된 헤테로고리기로 치환 또는 비치환된 벤조싸이오피리미딘기; 니트릴기로 치환 또는 비치환된 아릴기, 또는 아릴기로 치환 또는 비치환된 헤테로고리기로 치환 또는 비치환된 벤조퓨로피리미딘기; 니트릴기로 치환 또는 비치환된 아릴기로 치환 또는 비치환된 디페닐아민기; 또는 니트릴기로 치환 또는 비치환된 아릴기로 치환 또는 비치환된 디페닐포스핀옥사이드기이다.
본 명세서의 일 실시상태에 있어서, 상기 Ar은 페닐기; 바이페닐기; 터페닐기; 페닐기로 치환 또는 비치환된 나프틸기; 페닐기로 치환 또는 비치환된 페난쓰렌기; 페닐기로 치환 또는 비치환된 트리페닐렌기; 페닐기 또는 메틸기로 치환 또는 비치환된 플루오렌기; 페닐기, 바이페닐기, 또는 나프틸기로 치환 또는 비치환된 디벤조퓨란기; 페닐기, 바이페닐기, 또는 나프틸기로 치환 또는 비치환된 디벤조티오펜기; 페닐기, 바이페닐기, 또는 나프틸기로 치환 또는 비치환된 카바졸기; 페닐기, 바이페닐기, 또는 나프틸기로 치환 또는 비치환된 퀴나졸린기; 페닐기, 바이페닐기, 또는 나프틸기로 치환 또는 비치환된 퀴녹살린기; 니트릴기로 치환 또는 비치환된 페닐기, 니트릴기로 치환 또는 비치환된 바이페닐기, 또는 니트릴기로 치환 또는 비치환된 나프틸기로 치환 또는 비치환된 트리아진기; 니트릴기로 치환 또는 비치환된 페닐기, 니트릴기로 치환 또는 비치환된 바이페닐기, 또는 니트릴기로 치환 또는 비치환된 나프틸기로 치환 또는 비치환된 피리미딘기; 니트릴기로 치환 또는 비치환된 페닐기, 니트릴기로 치환 또는 비치환된 바이페닐기, 또는 니트릴기로 치환 또는 비치환된 나프틸기로 치환 또는 비치환된 피리딘기; 페닐기, 바이페닐기, 나프틸기, 또는 페닐기로 치환 또는 비치환된 카바졸기로 치환 또는 비치환된 벤조싸이오피리미딘기; 페닐기, 바이페닐기, 나프틸기, 또는 페닐기로 치환 또는 비치환된 카바졸기로 치환 또는 비치환된 벤조퓨로피리미딘기; 페닐기, 바이페닐기, 또는 나프틸기로 치환 또는 비치환된 디페닐아민기; 또는 페닐기, 바이페닐기, 또는 나프틸기로 치환 또는 비치환된 디페닐포스핀옥사이드기이다.
본 명세서의 일 실시상태에 있어서, 상기 Ar은 페닐기; 바이페닐기; 터페닐기; 나프틸기; 페난쓰렌기; 트리페닐렌기; 메틸기로 치환 또는 비치환된 플루오렌기; 디벤조퓨란기; 디벤조티오펜기; 페닐기로 치환 또는 비치환된 카바졸기; 페닐기, 바이페닐기, 또는 나프틸기로 치환 또는 비치환된 퀴나졸린기; 페닐기, 바이페닐기, 또는 나프틸기로 치환 또는 비치환된 퀴녹살린기; 페닐기, 니트릴기로 치환 또는 비치환된 바이페닐기, 또는 나프틸기로 치환 또는 비치환된 트리아진기; 페닐기, 바이페닐기, 또는 나프틸기로 치환 또는 비치환된 피리미딘기; 페닐기, 바이페닐기, 또는 나프틸기로 치환 또는 비치환된 피리딘기; 페닐기, 바이페닐기,나프틸기, 또는 페닐기로 치환된 카바졸기로 치환 또는 비치환된 벤조싸이오피리미딘기; 페닐기, 바이페닐기, 나프틸기, 또는 페닐기로 치환된 카바졸기로 치환 또는 비치환된 벤조퓨로피리미딘기; 디페닐아민기; 또는 디페닐포스핀옥사이드기이다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 1로 표시되는 화합물은 하기 구조식들 중에서 선택된다.
Figure PCTKR2019012402-appb-I000019
Figure PCTKR2019012402-appb-I000020
Figure PCTKR2019012402-appb-I000021
Figure PCTKR2019012402-appb-I000022
Figure PCTKR2019012402-appb-I000023
Figure PCTKR2019012402-appb-I000024
Figure PCTKR2019012402-appb-I000025
Figure PCTKR2019012402-appb-I000026
Figure PCTKR2019012402-appb-I000027
Figure PCTKR2019012402-appb-I000028
Figure PCTKR2019012402-appb-I000029
Figure PCTKR2019012402-appb-I000030
Figure PCTKR2019012402-appb-I000031
Figure PCTKR2019012402-appb-I000032
Figure PCTKR2019012402-appb-I000033
Figure PCTKR2019012402-appb-I000034
Figure PCTKR2019012402-appb-I000035
Figure PCTKR2019012402-appb-I000036
Figure PCTKR2019012402-appb-I000037
Figure PCTKR2019012402-appb-I000038
Figure PCTKR2019012402-appb-I000039
Figure PCTKR2019012402-appb-I000040
Figure PCTKR2019012402-appb-I000041
Figure PCTKR2019012402-appb-I000042
Figure PCTKR2019012402-appb-I000043
Figure PCTKR2019012402-appb-I000044
Figure PCTKR2019012402-appb-I000045
Figure PCTKR2019012402-appb-I000046
Figure PCTKR2019012402-appb-I000047
Figure PCTKR2019012402-appb-I000048
Figure PCTKR2019012402-appb-I000049
Figure PCTKR2019012402-appb-I000050
Figure PCTKR2019012402-appb-I000051
본 출원의 일 실시 상태에 따른 화합물은 후술하는 제조방법으로 제조될 수 있다.
예컨데 상기 화학식 1의 화합물은 하기 반응식 1과 같이 코어구조가 제조될수 있다. 치환기는 당기술분야에 알려져 있는 방법에 의하여 결합될 수 있으며, 치환기의 종류, 위치 또는 개수는 당기술분야에 알려져 있는 기술에 따라 변경될 수 있다.
[반응식1]
Figure PCTKR2019012402-appb-I000052
Figure PCTKR2019012402-appb-I000053
또한, 본 명세서는 상기 전술한 화합물을 포함하는 유기 발광 소자를 제공한다.
본 출원의 일 실시상태에 있어서, 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1 층 이상은 상기 화합물을 포함하는 것인 유기 발광 소자를 제공한다.
본 명세서에서 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본 명세서에서 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 출원의 유기 발광 소자의 유기물층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 발명의 유기 발광 소자의 대표 적인 예로서, 유기 발광 소자는 유기물층으로서 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등을 포함하는 구조를 가질 수 있다. 그러나 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수의 유기층을 포함할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 적색발광층이다.
본 출원의 일 실시상태에 있어서, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 청색발광층이다.
본 출원의 일 실시상태에 있어서, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 상기 화합물을 포함한다.
본 출원의 일 실시상태에 있어서, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 상기 화합물을 포함하며, 상기 발광층은 적색발광층이다.
본 출원의 일 실시상태에 있어서, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 상기 화합물을 적색호스트로 포함한다.
본 출원의 일 실시상태에 있어서, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 상기 화합물을 포함하고, 도펀트를 더 포함한다.
본 명세서의 일 실시상태에 따르면, 상기 발광층은 상기 화합물과 도펀트를 1:99 내지 99:1의 중량비로 포함한다.
본 출원의 일 실시상태에 있어서, 상기 도펀트는 하기 구조에서 선택될 수 있으나, 이에 한정되지 않는다.
Figure PCTKR2019012402-appb-I000054
Figure PCTKR2019012402-appb-I000055
본 출원의 일 실시상태에 있어서, 상기 유기물층은 정공주입층 또는 정공수송층을 포함하고, 상기 정공주입층 또는 정공수송층은 상기 화합물을 포함한다.
본 출원의 일 실시상태에 있어서, 상기 유기물층은 정공주입층, 정공수송층 또는 정공 주입 및 수송층을 포함하고, 상기 정공주입층, 정공수송층 또는 정공 주입 및 수송층은 상기 화합물을 포함한다.
본 출원의 일 실시상태에 있어서, 상기 유기물층은 전자수송층 또는 전자주입층을 포함하고, 상기 전자수송층 또는 전자주입층은 상기 화합물을 포함한다.
본 출원의 일 실시상태에 있어서, 상기 유기물층은 전자주입층, 전자수송층 또는 전자 주입 및 수송층을 포함하고, 상기 전자주입층, 전자수송층 또는 전자 주입 및 수송층은 상기 화합물을 포함한다.
본 출원의 일 실시상태에 있어서, 상기 유기물층은 전자억제층을 포함하고, 상기 전자억제층은 상기 화합물을 포함한다.
본 출원의 일 실시상태에 있어서, 상기 유기물층은 정공주입층, 정공수송층, 또는 정공주입 및 수송층을 포함하고, 전자억제층을 더포함하며, 상기 전자억제층은 상기 화합물을 포함한다.
본 출원의 일 실시상태에 있어서, 상기 유기물층은 정공주입층, 정공수송층, 전자억제층, 발광층, 및 전자주입 및 수송층을 포함하고, 상기 전자억제층은 상기 화합물을 포함한다.
본 출원의 일 실시상태에 있어서, 상기 유기물층은 정공주입층, 정공수송층, 전자억제층, 발광층, 정공억제층, 및 전자주입 및 수송층을 포함하고, 상기 전자억제층은 상기 화합물을 포함한다.
본 출원의 일 실시상태에 있어서, 상기 유기물층은 정공억제층을 포함하고, 상기 정공억제층은 상기 화합물을 포함한다.
본 출원의 일 실시상태에 있어서, 상기 유기물층은 전자주입층, 전자수송층, 또는 전자주입 및 수송층을 포함하고, 정공억제층을 더 포함하며, 상기 정공억제층은 상기 화합물을 포함한다.
본 출원의 일 실시상태에 있어서, 상기 유기물층은 정공주입층, 정공수송층, 발광층, 정공억제층, 및 전자주입 및 수송층을 포함하고, 상기 정공억제층은 상기 화합물을 포함한다.
본 출원의 일 실시상태에 있어서, 상기 유기물층은 정공주입층, 정공수송층, 전자억제층, 발광층, 정공억제층, 및 전자주입 및 수송층을 포함하고, 상기 정공억제층은 상기 화합물을 포함한다.
본 출원의 일 실시상태에 있어서, 상기 유기 발광 소자는 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 발광층; 상기 발광층과 상기 제1 전극 사이, 또는 상기 발광층과 상기 제2 전극 사이에 구비된 2층 이상의 유기물층을 포함하고, 상기 2층 이상의 유기물층 중 적어도 하나는 상기 화합물을 포함한다.
또 하나의 실시상태에 있어서, 유기 발광 소자는 기판 상에 양극, 1층 이상의 유기물층 및 음극이 순차적으로 적층된 구조(normal type)의 유기 발광 소자일 수 있다.
또 하나의 실시상태에 있어서, 유기 발광 소자는 기판 상에 음극, 1층 이상의 유기물층 및 양극이 순차적으로 적층된 역방향 구조(inverted type)의 유기 발광 소자일 수 있다.
예컨대, 본 출원의 일 실시상태에 따른 유기 발광 소자의 구조는 도 1 및 2에 예시되어 있다.
도 1은 기판(1), 양극(2), 유기물층(3), 음극(4)이 순차적으로 적층된 유기 발광 소자의 구조가 예시되어 있다. 이와 같은 구조에 있어서, 상기 화합물은 상기 발광층(3)에 포함될 수 있다.
도 2 는 기판(1), 양극(2), 정공주입층(5), 정공수송층(6), 전자억제층(7), 발광층(8), 정공억제층(9), 전자 주입 및 수송층(10), 음극(4)이 순차적으로 적층된 유기 발광 소자의 구조가 예시되어 있다. 이와 같은 구조에 있어서, 상기 화합물은 상기 전자억제층(7), 발광층(8) 또는 정공억제층(9)에 포함될 수 있으나, 이에 한정되지 않는다.
본 출원의 유기 발광 소자는 유기물층 중 1층 이상이 본 출원의 화합물, 즉 상기 화합물을 포함하는 것을 제외하고는 당 기술분야에 알려져 있는 재료와 방법으로 제조될 수 있다.
상기 유기 발광 소자가 복수개의 유기물층을 포함하는 경우, 상기 유기물층은 동일한 물질 또는 다른 물질로 형성될 수 있다.
예컨대, 본 출원의 유기 발광 소자는 기판 상에 제1 전극, 유기물층 및 제2 전극을 순차적으로 적층시킴으로써 제조할 수 있다. 이 때 스퍼터링법(sputtering)이나 전자빔 증발법(e-beam evaporation)과 같은 PVD(physical Vapor Deposition)방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공 주입층, 정공 수송층, 발광층 및 전자 수송층을 포함하는 유기물층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시킴으로써 제조될 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수 있다.
또한, 상기 화학식 1의 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.
이와 같은 방법 외에도, 기판 상에 음극 물질로부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수도 있다 (국제 특허 출원 공개 제 2003/012890호). 다만, 제조 방법이 이에 한정되는 것은 아니다.
본 출원의 일 실시상태에 있어서, 상기 제1 전극은 양극이고, 상기 제2 전극은 음극이다.
또 하나의 실시상태에 있어서, 상기 제1 전극은 음극이고, 상기 제2 전극은 양극이다.
상기 양극 물질로는 통상 유기물층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 본 발명에서 사용될 수 있는 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO2 : Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 정공 주입층은 전극으로부터 정공을 주입하는 층으로, 정공 주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 여기자의 전자주입층 또는 전자주입재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물이 바람직하다. 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는 금속 포피린(porphyrin), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone)계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정 되는 것은 아니다.
상기 정공수송층은 정공주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층으로, 정공 수송 물질로는 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 발광 물질로는 정공 수송층과 전자 수송층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자 효율이 좋은 물질이 바람직하다. 구체적인 예로는 8-히드록시-퀴놀린 알루미늄 착물(Alq3); 카르바졸 계열 화합물; 이량체화 스티릴(dimerized styryl) 화합물; BAlq; 10-히드록시벤조 퀴놀린-금속 화합물; 벤족사졸, 벤즈티아졸 및 벤즈이미다졸 계열의 화합물; 폴리(p-페닐렌비닐렌)(PPV) 계열의 고분자; 스피로(spiro) 화합물; 폴리플루오렌, 루브렌 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 발광층은 호스트 재료 및 도펀트 재료를 포함할 수 있다. 호스트 재료는 축합 방향족환 유도체 또는 헤테로환 함유 화합물 등이 있다. 구체적으로 축합 방향족환 유도체로는 안트라센 유도체, 피렌 유도체, 나프탈렌 유도체, 펜타센 유도체, 페난트렌 화합물, 플루오란텐 화합물 등이 있고, 헤테로환 함유 화합물로는 화합물, 디벤조퓨란 유도체, 래더형 퓨란 화합물, 피리미딘 유도체 등이 있으나, 이에 한정되지 않는다.
상기 전자 수송 층은 전자주입층으로부터 전자를 수취하여 발광층까지 전자를 수송하는 층으로, 전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 8-히드록시퀴놀린의 Al착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다. 전자 수송층은 종래기술에 따라 사용된 바와 같이 임의의 원하는 캐소드 물질과 함께 사용할 수 있다. 특히, 적절한 캐소드 물질의 예는 낮은 일함수를 가지고 알루미늄층 또는 실버층이 뒤따르는 통상적인 물질이다. 구체적으로 세슘, 바륨, 칼슘, 이테르븀 및 사마륨이고, 각 경우 알루미늄 층 또는 실버층이 뒤따른다.
상기 전자주입층은 전극으로부터 전자를 주입하는 층으로, 전자를 수송하는 능력을 갖고, 음극으로부터의 전자주입 효과, 발광층 또는 발광 재료에 대하여 우수한 전자주입 효과를 가지며, 발광층에서 생성된 여기자의 정공 주입층에의 이동을 방지하고, 또한, 박막형성능력이 우수한 화합물이 바람직하다. 구체적으로는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 함질소 5원환 유도체 등이 있으나, 이에 한정되지 않는다.
상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스(8-하이드록시퀴놀리나토)아연, 비스(8-하이드록시퀴놀리나토)구리, 비스(8-하이드록시퀴놀리나토)망간, 트리스(8-하이드록시퀴놀리나토)알루미늄, 트리스(2-메틸-8-하이드록시퀴놀리나토)알루미늄, 트리스(8-하이드록시퀴놀리나토)갈륨, 비스(10-하이드록시벤조[h]퀴놀리나토)베릴륨, 비스(10-하이드록시벤조[h]퀴놀리나토)아연, 비스(2-메틸-8-퀴놀리나토)클로로갈륨, 비스(2-메틸-8-퀴놀리나토)(o-크레졸라토)갈륨, 비스(2-메틸-8-퀴놀리나토)(1-나프톨라토)알루미늄, 비스(2-메틸-8-퀴놀리나토)(2-나프톨라토)갈륨 등이 있으나, 이에 한정되지 않는다.
상기 정공억제층은 정공의 음극 도달을 저지하는 층으로, 일반적으로 정공주입층과 동일한 조건으로 형성될 수 있다. 구체적으로 옥사디아졸 유도체나 트리아졸 유도체, 페난트롤린 유도체, BCP, 알루미늄 착물 (aluminum complex) 등이 있으나, 이에 한정되지 않는다.
본 명세서에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
상기 화학식 1로 표시되는 화합물 및 이를 포함하는 유기 발광 소자의 제조는 이하 실시예에서 구체적으로 설명한다. 그러나 하기 실시예는 본 명세서를 예시하기 위한 것이며, 본 명세서의 범위가 이들에 의하여 한정되는 것은 아니다.
< 제조예 1>
1) 하기 화합물 1의 화합물 합성
Figure PCTKR2019012402-appb-I000056
질소 분위기에서 500ml 둥근 바닥 플라스크에 화합물 A (4.5g, 13.12mmol), 4-브로모-N,N-디페닐아닐린 (4.32g, 13.38mmol)을 자일렌 180ml에 완전히 녹인 후 소듐 tert-부톡사이드(sodium tert-butoxide)(1.89g, 19.68mol)을 첨가하고, 비스(트리-tert-부틸포스핀) 팔라듐(0) (0.07g, 0.14mmol)을 넣은 후 2 시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 여과하여 염(base)을 제거한 후 에 자일렌을 감압농축 시키고 에틸아세테이트 250ml으로 재결정하여 상기 화합물 1 (4.67g, 수율: 61%)를 제조하였다.
MS[M+H]+= 587
< 제조예 2>
1) 하기 화합물 2의 화합물 합성
Figure PCTKR2019012402-appb-I000057
질소 분위기에서 500ml 둥근 바닥 플라스크에 화합물 A (5.34g, 13.38mmol), 4'-브로모-N,N-디페닐-[1,1'-비페닐]-4-아민 (4.50g, 13.12mmol)을 자일렌 200ml에 완전히 녹인 후 소듐 tert-부톡사이드 (1.89g, 19.68mol)을 첨가하고, 비스(트리-tert-부틸포스핀) 팔라듐(0) (0.07g, 0.14mmol)을 넣은 후 6 시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 여과하여 염(base)을 제거한 후 에 자일렌을 감압농축 시키고 에틸아세테이트 220ml으로 재결정하여 상기 화합물 2 (5.74g, 수율: 66%)를 제조하였다.
MS[M+H]+= 663
< 제조예 3>
1) 하기 화합물 3의 화합물 합성
Figure PCTKR2019012402-appb-I000058
질소 분위기에서 500ml 둥근 바닥 플라스크에 화합물 A (4.31g, 13.38mmol), 3-브로모-9-페닐-9H-카바졸 (4.50g, 13.32mmol)을 자일렌 160ml에 완전히 녹인 후 소듐 tert-부톡사이드 (1.89g, 19.68mol)을 첨가하고, 비스(트리-tert-부틸포스핀) 팔라듐(0) (0.07g, 0.14mmol)을 넣은 후 3 시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 여과하여 염(base)을 제거한 후 에 자일렌을 감압농축 시키고 에틸아세테이트 240ml으로 재결정하여 상기 화합물 3 (4.89g, 수율: 64%)를 제조하였다.
MS[M+H]+= 585
< 제조예 4>
1) 하기 화합물 4의 화합물 합성
Figure PCTKR2019012402-appb-I000059
질소 분위기에서 500ml 둥근 바닥 플라스크에 화합물 A (5.90g, 17.19mmol), 2-클로로-4,6-디페닐-1,3,5-트리아진 (4.50g, 16.85mmol)을 자일렌 280ml에 완전히 녹인 후 소듐 tert-부톡사이드(2.43g, 25.28mol)을 첨가하고, 비스(트리-tert-부틸포스핀) 팔라듐(0) (0.09g, 0.17mmol)을 넣은 후 5 시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 여과하여 염(base)을 제거한 후 에 자일렌을 감압농축 시키고 에틸아세테이트 220ml 으로 재결정 하여 상기 화합물 4 (5.47g, 수율: 55%)를 제조하였다.
MS[M+H]+= 575
< 제조예 5>
1) 하기 화합물 5의 화합물 합성
Figure PCTKR2019012402-appb-I000060
질소 분위기에서 500ml 둥근 바닥 플라스크에 화합물 A (5.90g, 17.19mmol), 4-클로로-2,6-디페닐피리미딘 (4.50g, 16.85mmol)을 자일렌 280ml에 완전히 녹인 후 소듐 tert-부톡사이드(2.43g, 25.28mol)을 첨가하고, 비스(트리-tert-부틸포스핀) 팔라듐(0) (0.09g, 0.17mmol)을 넣은 후 3 시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 여과하여 염(base)을 제거한 후 에 자일렌을 감압농축 시키고 에틸아세테이트 260ml 으로 재결정 하여 상기 화합물 5 (5.23g, 수율: 53%)를 제조하였다.
MS[M+H]+= 574
< 제조예 6>
1) 하기 화합물 6의 화합물 합성
Figure PCTKR2019012402-appb-I000061
질소 분위기에서 500ml 둥근 바닥 플라스크에 화합물 A (5.90g, 17.19mmol), 2-클로로-4,6-디페닐피리딘 (4.50g, 16.85mmol)을 자일렌 280ml에 완전히 녹인 후 소듐 tert-부톡사이드(2.43g, 25.28mol)을 첨가하고, 비스(트리-tert-부틸포스핀) 팔라듐(0) (0.09g, 0.17mmol)을 넣은 후 5 시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 여과하여 염(base)을 제거한 후 에 자일렌을 감압농축 시키고 에틸아세테이트 220ml 으로 재결정 하여 상기 화합물 6 (4.88g, 수율: 49%)를 제조하였다.
MS[M+H]+= 573
< 제조예 7>
1) 하기 화합물 7의 화합물 합성
Figure PCTKR2019012402-appb-I000062
질소 분위기에서 500ml 둥근 바닥 플라스크에 화합물 B (6.76g, 17.19mmol), 2-클로로-4,6-디페닐-1,3,5-트리아진 (4.50g, 16.85mmol)을 자일렌 280ml에 완전히 녹인 후 소듐 tert-부톡사이드(2.43g, 25.28mol)을 첨가하고, 비스(트리-tert-부틸포스핀) 팔라듐(0) (0.09g, 0.17mmol)을 넣은 후 5 시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 여과하여 염(base)을 제거한 후 에 자일렌을 감압농축 시키고 에틸아세테이트 210ml 으로 재결정 하여 상기 화합물 7 (5.47g, 수율: 55%)를 제조하였다.
MS[M+H]+= 625
< 제조예 8>
1) 하기 화합물 8의 화합물 합성
Figure PCTKR2019012402-appb-I000063
질소 분위기에서 500ml 둥근 바닥 플라스크에 화합물 C (7.52, 19.13mmol), 2-클로로-4-페닐퀴나졸린 (4.50g, 18.75mmol)을 자일렌 180ml에 완전히 녹인 후 소듐 tert-부톡사이드(2.70g, 28.13mol)을 첨가하고, 비스(트리-tert-부틸포스핀) 팔라듐(0) (0.10g, 0.19mmol)을 넣은 후 3 시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 여과하여 염(base)을 제거한 후 에 자일렌을 감압농축 시키고 에틸아세테이트 210ml 으로 재결정 하여 상기 화합물 8 (6.79g, 수율: 61%)를 제조하였다.
MS[M+H]+= 598
< 제조예 9>
1) 하기 화합물 9의 화합물 합성
Figure PCTKR2019012402-appb-I000064
질소 분위기에서 500ml 둥근 바닥 플라스크에 화합물 D (4.66, 11.86mmol), 2-(3-브로모페닐)-4,6-디페닐-1,3,5-트리아진 (4.50g, 18.75mmol)을 자일렌 340ml에 완전히 녹인 후 소듐 tert-부톡사이드(2.70g, 28.13mmol)을 첨가하고, 비스(트리-tert-부틸포스핀) 팔라듐(0) (0.10g, 0.19mmol)을 넣은 후 5 시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 여과하여 염(base)을 제거한 후 에 자일렌을 감압농축 시키고 테트라하이드로퓨란 180ml 으로 재결정 하여 상기 화합물 9 (5.89g, 수율: 78%)를 제조하였다.
MS[M+H]+= 651
< 제조예 10>
1) 하기 화합물 10 의 화합물 합성
Figure PCTKR2019012402-appb-I000065
질소 분위기에서 500ml 둥근 바닥 플라스크에 화합물 D (5.11g, 14.90mmol), 2-클로로-4-(9-페닐-9H-카바졸-2-일)벤조퓨로[3,2-d]피리미딘 (6.50g, 14.61mmol)을 자일렌 240ml에 완전히 녹인 후 소듐 tert-부톡사이드(2.11g, 21.91mmol)을 첨가하고, 비스(트리-tert-부틸포스핀) 팔라듐(0) (0.08g, 0.16mmol)을 넣은 후 8 시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 여과하여 염(base)을 제거한 후 에 자일렌을 감압농축 시키고 테트라하이드로퓨란 240ml 으로 재결정 하여 상기 화합물 10 (7.69g, 수율: 70%)를 제조하였다.
MS[M+H]+= 753
< 제조예 11>
1) 하기 화합물 11의 화합물 합성
Figure PCTKR2019012402-appb-I000066
질소 분위기에서 500ml 둥근 바닥 플라스크에 화합물 D (8.86g, 25.84mmol), 2-클로로-4-페닐벤조[4,5]티에노[3,2-d]피리미딘 (7.50g, 25.34mmol)을 자일렌 240ml에 완전히 녹인 후 소듐 tert-부톡사이드(3.65g, 38.01mmol)을 첨가하고, 비스(트리-tert-부틸포스핀) 팔라듐(0) (0.13g, 0.25mmol)을 넣은 후 4 시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 여과하여 염(base)을 제거한 후 에 자일렌을 감압농축 시키고 테트라하이드로퓨란 210ml 으로 재결정 하여 상기 화합물 11 (12.33g, 수율: 65%)를 제조하였다.
MS[M+H]+= 604
< 제조예 12>
1) 하기 화합물 12의 화합물 합성
Figure PCTKR2019012402-appb-I000067
질소 분위기에서 500ml 둥근 바닥 플라스크에 화합물 E (12.53g, 31.88mmol), 2-클로로-3-페닐퀴녹살린 (7.50g, 31.25mmol)을 자일렌 240ml에 완전히 녹인 후 소듐 tert-부톡사이드(4.50g, 46.88mmol)을 첨가하고, 비스(트리-tert-부틸포스핀) 팔라듐(0) (0.16g, 0.31mmol)을 넣은 후 4 시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 여과하여 염(base)을 제거한 후 에 자일렌을 감압농축 시키고 테트라하이드로퓨란 240ml 으로 재결정 하여 상기 화합물 12 (13.65g, 수율: 73%)를 제조하였다.
MS[M+H]+= 598
< 제조예 13>
1) 하기 화합물 13 의 화합물 합성
Figure PCTKR2019012402-appb-I000068
질소 분위기에서 500ml 둥근 바닥 플라스크에 화합물 F (8.45g, 21.49mmol), (4-브로모페닐)디페닐포스핀 옥사이드 oxide (7.50g, 21.07mmol)을 자일렌 240ml에 완전히 녹인 후 소듐 tert-부톡사이드(3.04g, 31.60mmol)을 첨가하고, 비스(트리-tert-부틸포스핀) 팔라듐(0) (0.11g, 0.21mmol)을 넣은 후 4 시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 여과하여 염(base)을 제거한 후 에 자일렌을 감압농축 시키고 테트라하이드로퓨란 220ml 으로 재결정 하여 상기 화합물 13 (11.23g, 수율: 86%)를 제조하였다.
MS[M+H]+= 620
< 제조예 14>
1) 하기 화합물 14의 화합물 합성
Figure PCTKR2019012402-appb-I000069
질소 분위기에서 500ml 둥근 바닥 플라스크에 화합물 A (8.52g, 24.84mmol), 5'-브로모-1,1':3',1''-터페닐 (7.50g, 24.35mmol)을 자일렌 280ml에 완전히 녹인 후 소듐 tert-부톡사이드(3.51g, 36.53mol)을 첨가하고, 비스(트리-tert-부틸포스핀) 팔라듐(0) (0.12g, 0.24mmol)을 넣은 후 5 시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 여과하여 염(base)을 제거한 후 에 자일렌을 감압농축 시키고 에틸아세테이트 250ml 으로 재결정 하여 상기 화합물 14 (8.66g, 수율: 62%)를 제조하였다.
MS[M+H]+= 572
< 제조예 15>
1) 하기 화합물 15의 화합물 합성
Figure PCTKR2019012402-appb-I000070
질소 분위기에서 500ml 둥근 바닥 플라스크에 화합물 A (7.13g, 20.79mmol), 4'-(4-클로로-6-페닐-1,3,5-트리아진-2-일)-[1,1'-비페닐]-3-카보니트릴 (7.50g, 20.38mmol)을 자일렌 280ml에 완전히 녹인 후 소듐 tert-부톡사이드(2.94g, 30.57mol)을 첨가하고, 비스(트리-tert-부틸포스핀) 팔라듐(0) (0.10g, 0.20mmol)을 넣은 후 5 시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 여과하여 염(base)을 제거한 후에 자일렌을 감압농축 시키고 에틸아세테이트 240ml 으로 재결정 하여 상기 화합물 15 (9.75g, 수율: 75%)를 제조하였다.
MS[M+H]+= 676
< 제조예 16>
1) 하기 화합물 16의 화합물 합성
Figure PCTKR2019012402-appb-I000071
질소 분위기에서 500ml 둥근 바닥 플라스크에 화합물 G (4.5g, 13.12mmol), 4-브로모-N,N-디페닐아닐린 (4.32g, 13.38mmol)을 자일렌 180ml에 완전히 녹인 후 소듐 tert-부톡사이드 (1.89g, 19.68mol)을 첨가하고, 비스(트리-tert-부틸포스핀) 팔라듐(0) (0.07g, 0.14mmol)을 넣은 후 2 시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 여과하여 염(base)을 제거한 후에 자일렌을 감압농축 시키고 아세톤 350ml으로 재결정하여 상기 화합물 16 (5.13g, 수율: 68%)를 제조하였다.
MS[M+H]+= 587
< 제조예 17>
1) 하기 화합물 17의 화합물 합성
Figure PCTKR2019012402-appb-I000072
질소 분위기에서 500ml 둥근 바닥 플라스크에 화합물 H (6.76g, 17.19mmol), 2-클로로-4,6-디페닐-1,3,5-트리아진 (4.50g, 16.85mmol)을 자일렌 280ml에 완전히 녹인 후 소듐 tert-부톡사이드 (2.43g, 25.28mol)을 첨가하고, 비스(트리-tert-부틸포스핀) 팔라듐(0) (0.09g, 0.17mmol)을 넣은 후 5 시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 여과하여 염(base)을 제거한 후에 자일렌을 감압농축 시키고 에틸아세테이트 250ml 으로 재결정 하여 상기 화합물 17 (6.02g, 수율: 61%)를 제조하였다.
MS[M+H]+= 625
< 제조예 18>
1) 하기 화합물 18의 화합물 합성
Figure PCTKR2019012402-appb-I000073
질소 분위기에서 500ml 둥근 바닥 플라스크에 화합물 I (7.52, 19.13mmol), 2-클로로-4-페닐퀴나졸린 (4.50g, 18.75mmol)을 자일렌 180ml에 완전히 녹인 후 소듐 tert-부톡사이드 (2.70g, 28.13mol)을 첨가하고, 비스(트리-tert-부틸포스핀) 팔라듐(0) (0.10g, 0.19mmol)을 넣은 후 3 시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 여과하여 염(base)을 제거한 후에 자일렌을 감압농축 시키고 에틸아세테이트 260ml 으로 재결정 하여 상기 화합물 18 (7.46g, 수율: 68%)를 제조하였다.
MS[M+H]+= 598
< 제조예 19>
1) 하기 화합물 19의 화합물 합성
Figure PCTKR2019012402-appb-I000074
질소 분위기에서 500ml 둥근 바닥 플라스크에 화합물 J (4.66, 11.86mmol), 2-(3-브로모페닐)-4,6-디페닐-1,3,5-트리아진 (4.50g, 18.75mmol)을 자일렌 340ml에 완전히 녹인 후 소듐 tert-부톡사이드 (2.70g, 28.13mmol)을 첨가하고, 비스(트리-tert-부틸포스핀) 팔라듐(0) (0.10g, 0.19mmol)을 넣은 후 5 시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 여과하여 염(base)을 제거한 후에 자일렌을 감압농축 시키고 테트라하이드로퓨란 240ml 으로 재결정 하여 상기 화합물 19 (6.47g, 수율: 86%)를 제조하였다.
MS[M+H]+= 651
< 제조예 20>
1) 하기 화합물 20의 화합물 합성
Figure PCTKR2019012402-appb-I000075
질소 분위기에서 500ml 둥근 바닥 플라스크에 화합물 J (12.53g, 31.88mmol), 2-클로로-3-페닐퀴녹살린 (7.50g, 31.25mmol)을 자일렌 240ml에 완전히 녹인 후 소듐 tert-부톡사이드 (4.50g, 46.88mmol)을 첨가하고, 비스(트리-tert-부틸포스핀) 팔라듐(0) (0.16g, 0.31mmol)을 넣은 후 4 시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 여과하여 염(base)을 제거한 후에 자일렌을 감압농축 시키고 테트라하이드로퓨란 240ml 으로 재결정 하여 상기 화합물 20(13.65g, 수율: 73%)를 제조하였다.
MS[M+H]+= 598
< 제조예 21>
1) 하기 화합물 21 의 화합물 합성
Figure PCTKR2019012402-appb-I000076
질소 분위기에서 500ml 둥근 바닥 플라스크에 화합물 K (8.45g, 21.49mmol), (4-브로모페닐)디페닐 포스핀옥사이드 (7.50g, 21.07mmol)을 자일렌 240ml에 완전히 녹인 후 소듐 tert-부톡사이드 (3.04g, 31.60mmol)을 첨가하고, 비스(트리-tert-부틸포스핀) 팔라듐(0) (0.11g, 0.21mmol)을 넣은 후 4 시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 여과하여 염(base)을 제거한 후에 자일렌을 감압농축 시키고 테트라하이드로퓨란 220ml 으로 재결정 하여 상기 화합물 21 (11.23g, 수율: 86%)를 제조하였다.
MS[M+H]+= 620
실시예 1-1
ITO(indium tin oxide)가 1,000Å의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척하였다. 이때, 세제로는 피셔사(Fischer Co.) 제품을 사용하였으며, 증류수로는 밀러포어사(Millipore Co.) 제품의 필터(Filter)로 2차로 걸러진 증류수를 사용하였다. ITO를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다.
이렇게 준비된 양극인 ITO 투명 전극 위에 하기 화합물 HI1 및 하기 화합물 HI2의 화합물을 98:2(몰비)의 비가 되도록 100Å의 두께로 열 진공 증착하여 정공주입층을 형성하였다. 상기 정공주입층 위에 하기 화학식 HT1으로 표시되는 화합물(1150Å)을 진공 증착하여 정공수송층을 형성하였다. 이어서, 상기 정공수송층 위에 막 두께 50Å으로 제조예 1의 화합물 1을 진공 증착하여 전자억제층을 형성하였다. 이어서, 상기 전자억제층 위에 막 두께 200Å으로 하기 화학식 BH로 표시되는 화합물 및 하기 화학식 BD로 표시되는 화합물을 25:1의 중량비로 진공증착하여 발광층을 형성하였다. 상기 발광층 위에 막 두께 50Å으로 하기 화학식 HB1으로 표시되는 화합물을 진공 증착하여 정공억제층을 형성하였다. 이어서, 상기 정공억제층 위에 하기 화학식 ET 1으로 표시되는 화합물과 하기 화학식 LiQ로 표시되는 화합물을 1:1의 중량비로 진공증착하여 310Å의 두께로 전자 주입 및 수송층을 형성하였다. 상기 전자 주입 및 수송층 위에 순차적으로 12Å두께로 리튬플로라이드(LiF)와 1,000Å두께로 알루미늄을 증착하여 음극을 형성하였다.
Figure PCTKR2019012402-appb-I000077
상기의 과정에서 유기물의 증착속도는 0.4~0.7Å/sec를 유지하였고, 음극의 리튬플로라이드는 0.3Å/sec, 알루미늄은 2Å/sec의 증착 속도를 유지하였으며, 증착시 진공도는 2×10-7 ~ 5×10-6 torr를 유지하여, 유기 발광 소자를 제작하였다.
실시예 1-2
제조예 1의 화합물 1 대신 화합물 2를 사용하는 것을 제외하고는, 상기 실시예 1-1과 동일한 방법으로 유기 발광 소자를 제조하였다.
실시예 1-3
제조예 1의 화합물 1 대신 화합물 3을 사용하는 것을 제외하고는, 상기 실시예 1-1과 동일한 방법으로 유기 발광 소자를 제조하였다.
실시예 1-4
제조예 1의 화합물 1 대신 화합물 14를 사용하는 것을 제외하고는, 상기 실시예 1-1과 동일한 방법으로 유기 발광 소자를 제조하였다.
실시예 1-5
제조예 1의 화합물 1 대신 화합물 16를 사용하는 것을 제외하고는, 상기 실시예 1-1과 동일한 방법으로 유기 발광 소자를 제조하였다.
비교예 1-1
제조예 1의 화합물 1 대신 하기 화합물 EB2를 사용하는 것을 제외하고는, 상기 실시예 1-1과 동일한 방법으로 유기 발광 소자를 제조하였다.
비교예 1-2
제조예 1의 화합물 1 대신 하기 화합물 EB3을 사용하는 것을 제외하고는, 상기 실시예 1-1과 동일한 방법으로 유기 발광 소자를 제조하였다.
비교예 1-3
제조예 1의 화합물 1 대신 하기 화합물 EB4를 사용하는 것을 제외하고는, 상기 실시예 1-1과 동일한 방법으로 유기 발광 소자를 제조하였다.
Figure PCTKR2019012402-appb-I000078
실험예 1
상기 실시예 및 비교예에서 제조한 유기 발광 소자에 전류를 인가하였을 때, 전압, 효율, 색좌표 및 수명을 측정하고 그 결과를 하기 표 1에 나타내었다. T95은 휘도가 초기 휘도(1600 nit)에서 95%로 감소되는데 소요되는 시간을 의미한다.
화합물(전자억제층) 전압(V@10mA/cm2) 효율(cd/A@10mA/cm2) 색좌표(x,y) T95(hr)
실시예 1-1 화합물 1 4.47 6.49 (0.146, 0.042) 280
실시예 1-2 화합물 2 4.48 6.34 (0.144, 0.045) 275
실시예 1-3 화합물 3 4.39 6.48 (0.146, 0.046) 285
실시예 1-4 화합물 14 4.55 6.29 (0.146, 0.047) 285
실시예 1-5 화합물 16 4.51 6.31 (0.145, 0.047) 265
비교예 1-1 EB2 5.26 5.21 (0.145, 0.046) 125
비교예 1-2 EB3 4.79 5.91 (0.144, 0.046) 210
비교예 1-3 EB4 5.12 5.35 (0.143, 0.046) 110
상기 표 1에 나타난 바와 같이, 본 발명의 화합물을 전자억제층으로 사용한 유기 발광 소자는, 유기 발광 소자의 효율, 구동 전압 및 안정성 면에서 우수한 특성을 나타내었다.
화학식 1의 구조에서 화학식 2의 구조가 축합되지 않은 EB2 내지 EB4의 경우, 화학식 2가 축합된 본원 발명의 화합물을 사용한 유기 발광 소자보다 특성이 떨어지는 것을 알 수 있었다.
본원 발명의 코어와 유사한 구조에 아민계 치환기를 가지는 EB2, EB3, EB4 물질을 사용하여 제조된 비교예 1-1, 1-2, 1-3의 유기 발광 소자보다 저전압, 고효율 및 장수명의 특성을 나타내었다.
상기 표 1의 결과와 같이, 본 발명에 따른 화합물은 새로운 합성법을 개발하여 아세나프토퀴녹살린에 퓨즈드카바졸화시켰고, N 방향에 아민기가 치환된 물질들을 합성하였고 이러한 물질들은 전자 차단 능력이 우수하여 유기 발광 소자에 적용 가능함을 확인할 수 있었다.
실시예 2-1 내지 실시예 2-10
제조예 1의 화합물 1 대신 EB1을 사용하고 HB1 대신에 하기 표 2에 기재된 화합물을 사용하는 것을 제외하고는, 상기 실시예 1-1과 동일한 방법으로 유기 발광 소자를 제조하였다.
비교예 2-1 내지 2-3
제조예 1의 화합물 1 대신 EB1을 사용하고 HB1 대신에 하기 표 2에 기재된 화합물을 사용하는 것을 제외하고는, 상기 실시예 1-1과 동일한 방법으로 유기 발광 소자를 제조하였다. 하기 표 2에서 사용한 HB2, HB3, HB4의 화합물을 하기와 같다.
Figure PCTKR2019012402-appb-I000079
실시예 2-1 내지 2-10, 및 비교예 2-1 내지 비교예 2-3 에 의해 제작된 유기 발광 소자에 전류를 인가하였을 때, 전압, 효율, 색좌표 및 수명을 측정하고 그 결과를 하기 [표 2]에 나타내었다. T95은 휘도가 초기휘도(1600nit)에서 95%로 감소되는데 소요되는 시간을 의미한다.
화합물(정공억제층) 전압(V@20mA/cm2) 효율(cd/A@20mA/cm2) 색좌표(x,y) T95(hr)
실험예 2-1 화합물 4 4.13 6.85 (0.144, 0.046) 250
실험예 2-2 화합물 5 4.12 6.81 (0.143, 0.046) 245
실험예 2-3 화합물 6 4.15 6.69 (0.144, 0.045) 230
실험예 2-4 화합물 7 4.23 6.68 (0.143, 0.046) 220
실험예 2-5 화합물 9 4.11 6.67 (0.144, 0.045) 235
실험예 2-6 화합물 13 4.26 6.66 (0.143, 0.046) 220
실험예 2-7 화합물 15 4.17 6.64 (0.144, 0.045) 235
실험예 2-8 화합물 17 4.16 6.60 (0.144, 0.045) 235
실험예 2-9 화합물 19 4.21 6.56 (0.143, 0.046) 245
실험예 2-10 화합물 20 4.23 6.53 (0.143, 0.046) 250
비교예 2-1 HB 2 4.64 5.35 (0.145, 0.047) 115
비교예 2-2 HB 3 4.55 5.53 (0.147, 0.044) 90
비교예 2-3 HB 4 4.73 5.21 (0.147, 0.043) 35
상기 표 2에서 보는 바와 같이, 본원 발명의 화합물을 정공억제층으로 사용하여 제조된 유기 발광 소자의 경우에 유기 발광 소자의 효율, 구동전압 및/또는 안정성 면에서 우수한 특성을 나타낸다.
비교예 3-1
ITO(indium tin oxide)가 1,000Å의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척하였다. 이때, 세제로는 피셔사(Fischer Co.) 제품을 사용하였으며, 증류수로는 밀러포어사(Millipore Co.) 제품의 필터(Filter)로 2차로 걸러진 증류수를 사용하였다. ITO를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다.
이렇게 준비된 ITO 투명 전극 위에 정공주입층으로 하기 HI-1 화합물을 1150Å의 두께로 형성하되 하기 A-1 화합물을 1.5% 농도로 p-doping 하였다. 상기 정공주입층 위에 하기 HT-1 화합물을 진공 증착하여 막 두께 800Å의 정공수송층을 형성하였다. 이어서, 상기 정공수송층 위에 막 두께 150Å으로 하기 EB-1 화합물을 진공 증착하여 전자억제층을 형성하였다. 이어서, 상기 EB-1 증착막 위에 하기 RH-1 화합물과 하기 Dp-7 화합물을 98:2의 중량비로 진공 증착하여 400Å두께의 적색 발광층을 형성하였다. 상기 발광층 위에 막 두께 30Å으로 하기 HB-1 화합물을 진공 증착하여 정공억제층을 형성하였다. 이어서, 상기 정공억제층 위에 하기 ET-1 화합물과 하기 LiQ 화합물을 2:1의 중량비로 진공 증착하여 300Å의 두께로 전자 주입 및 수송층을 형성하였다. 상기 전자 주입 및 수송층 위에 순차적으로 12Å 두께로 리튬플로라이드(LiF)와 1,000Å 두께로 알루미늄을 증착하여 음극을 형성하였다.
Figure PCTKR2019012402-appb-I000080
상기의 과정에서 유기물의 증착속도는 0.4~0.7Å/sec를 유지하였고, 음극의 리튬플로라이드는 0.3Å/sec, 알루미늄은 2Å/sec의 증착 속도를 유지하였으며, 증착시 진공도는 2×10-7 ~ 5×10-6 torr를 유지하여, 유기 발광 소자를 제작하였다.
실험예 3-1 내지 실험예 3-5
비교예 3-1의 유기 발광 소자에서 RH-1 대신 하기 표 3에 기재된 화합물을 사용하는 것을 제외하고는, 상기 비교예 3-1과 동일한 방법으로 유기 발광 소자를 제조하였다.
상기 비교예 3-1 및 실험예 3-1 내지 3-4 에서 제조한 유기 발광 소자에 전류를 인가하였을 때, 전압, 효율, 수명을 측정하고 그 결과를 하기 표 1에 나타내었다. T95은 휘도가 초기 휘도(5000 nit)에서 95%로 감소되는데 소요되는 시간을 의미한다.
구분 물질 구동전압(V) 효율(cd/A) 수명 T95(hr) 발광색
비교예 3-1 RH-1 4.72 32.8 185 적색
실험예 3-1 화합물 8 4.34 35.1 235 적색
실험예 3-2 화합물 10 4.03 37.6 260 적색
실험예 3-3 화합물 11 4.06 39.5 245 적색
실험예 3-4 화합물 12 4.19 37.3 255 적색
실험예 3-5 화합물 18 4.09 37.1 250 적색
실험예 3-1 내지 3-5 및 비교예 3-1 에 의해 제작된 유기 발광 소자에 전류를 인가하였을 때, 상기 표 3의 결과를 얻었다. 상기 비교예 3-1의 적색 유기 발광 소자는 종래 널리 사용되고 있는 물질을 사용하였으며, 전자 억제층으로 화합물 [EB-1], 적색 발광층으로 RH-1/Dp-7을 사용하는 구조이다. 상기 표 3의 결과를 보면 본 발명의 화합물이 적색 발광층의 호스트로 사용했을 때 비교예 물질에 비해서 구동전압이 크게는 20% 가까이 낮아졌으며, 효율 측면에서는 20% 이상 상승을 한 것으로 보아 호스트에서 적색 도판트로의 에너지 전달이 잘 이뤄진다는 것을 알 수 있었다. 또한 높은 효율을 유지하면서도 수명 특성을 1.5배 이상 크게 개선 시킬 수 있는 것을 알 수 있었다. 이것은 결국 비교예 3-1 화합물 보다 본 발명의 화합물이 전자와 정공에 대한 안정도가 높기 때문이라 판단 할 수 있다. 결론적으로 본 발명의 화합물을 적색 발광층의 호스트로 사용하였을 때 유기 발광 소자의 구동전압, 발광 효율 및 수명 특성을 개선할 수 있다는 것을 확인할 수 있다.
이상을 통해 본 발명의 바람직한 실시예(전자억제층, 정공억제층, 적색발광층)에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 발명의 범주에 속한다.

Claims (10)

  1. 하기 화학식 1로 표시되는 화합물:
    [화학식 1]
    Figure PCTKR2019012402-appb-I000081
    상기 화학식 1에 있어서,
    R1 및 R2; 또는 R2 및 R3은 하기 화학식 2와 결합하여 고리를 형성하고,
    R1 내지 R3 중 고리를 형성하지 않는 기는 수소이며,
    R4 내지 R10은 서로 같거나 상이하고 각각 독립적으로 수소; 중수소; 할로겐기; 니트릴기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이고,
    [화학식 2]
    Figure PCTKR2019012402-appb-I000082
    상기 화학식 2에서,
    R11 내지 R14는 서로 같거나 상이하고 각각 독립적으로 수소; 중수소; 할로겐기; 니트릴기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이거나, 인접한 기가 서로 결합하여 치환 또는 비치환된 고리를 형성하고,
    L은 직접결합; 치환 또는 비치환된 아릴렌기; 또는 치환 또는 비치환된 헤테로아릴렌기이며,
    Ar은 치환 또는 비치환된 아릴기; 치환 또는 비치환된 헤테로아릴기; 치환 또는 비치환된 아민기; 또는 치환 또는 비치환된 포스핀옥사이드기이고,
    *은 화학식 1의 R1 및 R2; 또는 R2 및 R3와 결합하는 위치를 의미한다.
  2. 청구항 1에 있어서, 상기 화학식 1로 표시되는 화합물은 하기 화학식 3 내지 6 중 어느 하나로 표시되는 것인 화합물:
    [화학식 3]
    Figure PCTKR2019012402-appb-I000083
    [화학식 4]
    Figure PCTKR2019012402-appb-I000084
    [화학식 5]
    Figure PCTKR2019012402-appb-I000085
    [화학식 6]
    Figure PCTKR2019012402-appb-I000086
    상기 화학식 3 내지 6에 있어서,
    R4 내지 R10, R11 내지 R14, L 및 Ar의 정의는 상기 화학식 1에서의 정의와 같다.
  3. 청구항 1에 있어서, 상기 화학식 1로 표시되는 화합물은 하기 화학식 3-1 내지 3-3, 4-1 내지 4-3, 5-1 내지 5-3 및 6-1 내지 6-3 중 어느 하나로 표시되는 것인 화합물:
    [화학식 3-1]
    Figure PCTKR2019012402-appb-I000087
    [화학식 3-2]
    Figure PCTKR2019012402-appb-I000088
    [화학식 3-3]
    Figure PCTKR2019012402-appb-I000089
    [화학식 4-1]
    Figure PCTKR2019012402-appb-I000090
    [화학식 4-2]
    Figure PCTKR2019012402-appb-I000091
    [화학식 4-3]
    Figure PCTKR2019012402-appb-I000092
    [화학식 5-1]
    Figure PCTKR2019012402-appb-I000093
    [화학식 5-2]
    Figure PCTKR2019012402-appb-I000094
    [화학식 5-3]
    Figure PCTKR2019012402-appb-I000095
    [화학식 6-1]
    Figure PCTKR2019012402-appb-I000096
    [화학식 6-2]
    Figure PCTKR2019012402-appb-I000097
    [화학식 6-3]
    Figure PCTKR2019012402-appb-I000098
    상기 화학식 3-1 내지 3-3, 4-1 내지 4-3, 5-1 내지 5-3 및 6-1 내지 6-3에 있어서,
    R4 내지 R10, L 및 Ar의 정의는 상기 화학식 1에서의 정의와 같고,
    R20 내지 R23은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 니트릴기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이다.
  4. 청구항 1에 있어서, 상기 L은 직접결합; 치환 또는 비치환된 페닐렌기; 치환 또는 비치환된 바이페닐릴렌기; 치환 또는 비치환된 터페닐릴렌기; 치환 또는 비치환된 나프틸렌기; 또는 치환 또는 비치환된 안트라세닐릴렌기인 것인 화합물.
  5. 청구항 1에 있어서, 상기 Ar은 치환 또는 비치환된 페닐기; 치환 또는 비치환된 바이페닐기; 치환 또는 비치환된 터페닐기; 치환 또는 비치환된 나프틸기; 치환 또는 비치환된 페난쓰렌기; 치환 또는 비치환된트리페닐렌기; 치환 또는 비치환된 플루오렌기; 치환 또는 비치환된 디벤조퓨란기; 치환 또는 비치환된 디벤조티오펜기; 치환 또는 비치환된 카바졸기; 치환 또는 비치환된 퀴나졸린기; 치환 또는 비치환된 퀴녹살린기; 치환 또는 비치환된 트리아진기; 치환 또는 비치환된 피리미딘기; 치환 또는 비치환된 피리딘기; 치환 또는 비치환된 벤조싸이오피리미딘기; 치환 또는 비치환된 벤조퓨로피리미딘기; 치환 또는 비치환된 디페닐아민기; 또는 치환 또는 비치환된 디페닐포스핀옥사이드기인 것인 화합물.
  6. 청구항 1에 있어서, 상기 화학식 1로 표시되는 화합물은 하기 구조식들 중에서 선택되는 것인 화합물:
    Figure PCTKR2019012402-appb-I000099
    Figure PCTKR2019012402-appb-I000100
    Figure PCTKR2019012402-appb-I000101
    Figure PCTKR2019012402-appb-I000102
    Figure PCTKR2019012402-appb-I000103
    Figure PCTKR2019012402-appb-I000104
    Figure PCTKR2019012402-appb-I000105
    Figure PCTKR2019012402-appb-I000106
    Figure PCTKR2019012402-appb-I000107
    Figure PCTKR2019012402-appb-I000108
    Figure PCTKR2019012402-appb-I000109
    Figure PCTKR2019012402-appb-I000110
    Figure PCTKR2019012402-appb-I000111
    Figure PCTKR2019012402-appb-I000112
    Figure PCTKR2019012402-appb-I000113
    Figure PCTKR2019012402-appb-I000114
    Figure PCTKR2019012402-appb-I000115
    Figure PCTKR2019012402-appb-I000116
    Figure PCTKR2019012402-appb-I000117
    Figure PCTKR2019012402-appb-I000118
    Figure PCTKR2019012402-appb-I000119
    Figure PCTKR2019012402-appb-I000120
    Figure PCTKR2019012402-appb-I000121
    Figure PCTKR2019012402-appb-I000122
    Figure PCTKR2019012402-appb-I000123
    Figure PCTKR2019012402-appb-I000124
    Figure PCTKR2019012402-appb-I000125
    Figure PCTKR2019012402-appb-I000126
    Figure PCTKR2019012402-appb-I000127
    Figure PCTKR2019012402-appb-I000128
    Figure PCTKR2019012402-appb-I000129
    Figure PCTKR2019012402-appb-I000130
    Figure PCTKR2019012402-appb-I000131
    .
  7. 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 적어도 하나는 청구항 1 내지 6 중 어느 한 항에 따른 화합물을 포함하는 것인 유기 발광 소자.
  8. 청구항 7에 있어서, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 상기 화합물을 포함하는 것인 유기 발광 소자.
  9. 청구항 7에 있어서, 상기 유기물층은 전자억제층을 포함하고, 상기 전자억제층은 상기 화합물을 포함하는 것인 유기 발광 소자.
  10. 청구항 7에 있어서, 상기 유기물층은 정공억제층을 포함하고, 상기 정공억제층은 상기 화합물을 포함하는 것인 유기 발광 소자.
PCT/KR2019/012402 2018-11-05 2019-09-24 화합물 및 이를 포함하는 유기 발광 소자 WO2020096199A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980055110.9A CN112585141B (zh) 2018-11-05 2019-09-24 化合物及包含其的有机发光二极管

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0134295 2018-11-05
KR1020180134295A KR102293510B1 (ko) 2018-11-05 2018-11-05 화합물 및 이를 포함하는 유기 발광 소자

Publications (1)

Publication Number Publication Date
WO2020096199A1 true WO2020096199A1 (ko) 2020-05-14

Family

ID=70611619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/012402 WO2020096199A1 (ko) 2018-11-05 2019-09-24 화합물 및 이를 포함하는 유기 발광 소자

Country Status (3)

Country Link
KR (1) KR102293510B1 (ko)
CN (1) CN112585141B (ko)
WO (1) WO2020096199A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005068367A (ja) * 2003-08-27 2005-03-17 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子用材料および有機エレクトロルミネッセンス素子
KR20090103739A (ko) * 2008-03-28 2009-10-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 아세나프토퀴녹살린 유도체, 발광소자, 발광장치 및 전자기기
WO2015115529A1 (ja) * 2014-01-31 2015-08-06 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
KR20170065974A (ko) * 2015-12-04 2017-06-14 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
CN107987029A (zh) * 2017-11-21 2018-05-04 中节能万润股份有限公司 含有吡嗪环的新型有机电致发光材料及其制备方法与应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10135513B4 (de) 2001-07-20 2005-02-24 Novaled Gmbh Lichtemittierendes Bauelement mit organischen Schichten
KR20120020816A (ko) * 2010-08-31 2012-03-08 롬엔드하스전자재료코리아유한회사 신규한 유기 전자재료용 화합물 및 이를 포함하는 유기 전계 발광 소자
KR101430589B1 (ko) * 2011-02-21 2014-08-19 (주)씨에스엘쏠라 유기발광화합물 및 이를 이용한 유기 광소자
JPWO2014057873A1 (ja) * 2012-10-10 2016-09-05 東レ株式会社 ホスフィンオキサイド誘導体およびそれを有する発光素子
WO2014157574A1 (ja) * 2013-03-27 2014-10-02 出光興産株式会社 縮合フルオランテン化合物、これを用いた有機エレクトロルミネッセンス素子用材料、並びにこれを用いた有機エレクトロルミネッセンス素子及び電子機器
CN104829521B (zh) * 2013-12-02 2017-09-19 北京鼎材科技有限公司 一种10,15‑二苯基苯并芴并咔唑衍生物及其应用
KR101661592B1 (ko) * 2014-09-30 2016-10-04 (주)더블유에스 융합된 플루오란텐 유도체 및 이를 포함한 유기 전계발광 소자
KR20180080686A (ko) * 2017-01-04 2018-07-12 주식회사 엘지화학 유기 발광 소자

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005068367A (ja) * 2003-08-27 2005-03-17 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子用材料および有機エレクトロルミネッセンス素子
KR20090103739A (ko) * 2008-03-28 2009-10-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 아세나프토퀴녹살린 유도체, 발광소자, 발광장치 및 전자기기
WO2015115529A1 (ja) * 2014-01-31 2015-08-06 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
KR20170065974A (ko) * 2015-12-04 2017-06-14 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
CN107987029A (zh) * 2017-11-21 2018-05-04 中节能万润股份有限公司 含有吡嗪环的新型有机电致发光材料及其制备方法与应用

Also Published As

Publication number Publication date
KR20200051223A (ko) 2020-05-13
KR102293510B1 (ko) 2021-08-24
CN112585141B (zh) 2023-08-01
CN112585141A (zh) 2021-03-30

Similar Documents

Publication Publication Date Title
WO2019168367A1 (ko) 유기 발광 소자
WO2017150859A1 (ko) 함질소 화합물 및 이를 포함하는 유기 발광 소자
WO2019235873A1 (ko) 유기 발광 소자
WO2016195370A1 (ko) 헤테로환 화합물 및 이를 포함하는 유기 발광 소자
WO2019151733A1 (ko) 유기 발광 소자
WO2019156405A1 (ko) 화합물 및 이를 포함한 유기 발광 소자
WO2019146946A1 (ko) 유기발광소자
WO2019182402A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2019147077A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2017146522A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2019004791A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2016068478A2 (ko) 고리 화합물 및 이를 포함하는 유기 발광 소자
WO2022080927A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2021125648A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2017164614A1 (ko) 헤테로환 화합물 및 이를 포함하는 유기 발광 소자
WO2019108033A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2020262861A1 (ko) 신규한 화합물 및 이를 포함하는 유기발광 소자
WO2022102992A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2018074881A1 (ko) 다중고리 화합물 및 이를 포함하는 유기 발광 소자
WO2020231242A1 (ko) 유기 발광 소자
WO2017048060A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2022059923A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2021261856A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2022031020A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2020231021A1 (ko) 유기 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19882011

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19882011

Country of ref document: EP

Kind code of ref document: A1