KR101661592B1 - 융합된 플루오란텐 유도체 및 이를 포함한 유기 전계발광 소자 - Google Patents

융합된 플루오란텐 유도체 및 이를 포함한 유기 전계발광 소자 Download PDF

Info

Publication number
KR101661592B1
KR101661592B1 KR1020140130940A KR20140130940A KR101661592B1 KR 101661592 B1 KR101661592 B1 KR 101661592B1 KR 1020140130940 A KR1020140130940 A KR 1020140130940A KR 20140130940 A KR20140130940 A KR 20140130940A KR 101661592 B1 KR101661592 B1 KR 101661592B1
Authority
KR
South Korea
Prior art keywords
compound
layer
mmol
light emitting
added
Prior art date
Application number
KR1020140130940A
Other languages
English (en)
Other versions
KR20160038310A (ko
Inventor
한상배
윤정훈
오유진
Original Assignee
(주)더블유에스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)더블유에스 filed Critical (주)더블유에스
Priority to KR1020140130940A priority Critical patent/KR101661592B1/ko
Publication of KR20160038310A publication Critical patent/KR20160038310A/ko
Application granted granted Critical
Publication of KR101661592B1 publication Critical patent/KR101661592B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D221/00Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00
    • C07D221/02Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00 condensed with carbocyclic rings or ring systems
    • C07D221/04Ortho- or peri-condensed ring systems
    • C07D221/06Ring systems of three rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/78Benzo [b] furans; Hydrogenated benzo [b] furans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F13/00Compounds containing elements of Groups 7 or 17 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • C09K11/07Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials having chemically interreactive components, e.g. reactive chemiluminescent compositions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

하기 화학식 1로 표시되는 융합된 플루오란텐 유도체가 제공된다.
[화학식 1]
Figure 112014093326822-pat00072

[상기 화학식 1에서 각 치환기들의 정의는 발명의 상세한 설명에서 정의한 바와 같다.]

Description

융합된 플루오란텐 유도체 및 이를 포함한 유기 전계발광 소자{fused fluoranthene derivatives and organic electroluminescent device including the same}
본 발명은 융합된 플루오란텐 유도체 및 이를 포함한 유기 전계발광 소자에 관한 것으로, 특히 발광 효율이 높은 유기 전계발광 소자 및 이를 위한 신규한 융합된 플루오란텐 유도체에 관한 것이다.
최근 정보 통신 산업의 발달이 가속화됨에 따라 가장 중요한 분야의 하나인 디스플레이 소자 분야에 있어서 보다 고도의 성능이 요구되고 있다. 이러한 디스플레이는 발광형과 비발광형으로 나눌 수 있다.
발광형에 속하는 디스플레이로는 음극 선관(Cathode Ray Tube: CRT), 전계 발광 소자(Electroluminescene Display: ELD), 전기발광 다이오드(Light Emitting Diode: LED), 플라즈마 소자 패널 (Plazma Display Panel: PDP) 등이 있다. 그리고, 비발광형 디스플레이로는 액정디스플레이(Liquid Crystal Display: LCD) 등이 있다.
일반적으로 유기 전계 발광 현상이란 유기 물질을 이용하여 전기 에너지를 빛 에너지로 전환시켜 주는 현상을 말한다. 유기 전계 발광 현상을 이용하는 유기 전계 발광 소자는 통상 양극(anode)과 음극(cathode) 및 이들 사이에 유기물층을 포함하는 구조를 가진다. 여기서 유기물층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공 주입층, 정공 수송층, 발광층, 전자 수송층, 전자 주입층 등을 포함 할 수 있다.
1950년대 Bernanose의 유기 박막 발광 관측을 시점으로 1965년 안트라센 단결정을 이용한 청색 전기발광으로 이어진 유기 전계 발광 (electro luminescent, EL) 소자에 대한 연구는 1987년 탕(Tang)에 의하여 정공층과 발광층의 기능층으로 나눈 적층 구조의 유기 EL 소자가 제시되었고, 고효율, 고수명의 유기 전계 발광 소자를 만들기 위하여 소자 내 각각의 특징적인 유기물 층을 도입하는 형태로 발전하여 왔으며, 이에 사용되는 특화된 물질의 개발로 이어졌다.
이러한 유기 전계 발광 소자의 구조에서 두 전극 사이에 전압을 걸어 주면 양극에서는 정공이 주입되고, 음극에서는 전자가 유기물층으로 주입된다. 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 바닥상태로 떨어질 때 빛이 나게 된다.
유기 전계 발광 소자에서 유기물층으로 사용되는 물질은 기능에 따라, 발광 물질, 정공 주입 물질, 정공 수송 물질, 전자 수송 물질, 전자 주입 물질 등으로 분류될 수 있다. 발광 물질은 발광색에 따라 청색, 녹색, 적색 발광 물질과 보다 나은 천연색을 구현하기 위해 필요한 노란색 및 주황색 발광 물질로 구분될 수 있다. 또한, 색순도의 증가와 에너지 전이를 통한 발광 효율을 증가시키기 위하여, 발광 물질로서 호스트/도판트(dopant)계를 사용할 수 있다. 그 원리는 발광층을 주로 구성하는 호스트보다 에너지 대역 간극이 작고 발광 효율이 우수한 도판트를 발광층에 소량 혼합하면, 호스트에서 발생한 엑시톤이 도판트로 수송되어 효율이 높은 빛을 내는 것이다. 이때 호스트의 파장이 도판트의 파장대로 이동하므로, 이용하는 도판트의 종류에 따라 원하는 파장의 빛을 얻을 수 있다.
전자 수송 물질은 전자에 대한 안정도와 전자 이동 속도가 상대적으로 우수한 유기 금속착제들이 유기 단분자물질로서 좋은 후보들이며, 안정성이 우수하고 전자 친화도가 큰 Alq3가 가장 우수한 것으로 보고되었으며, 현재에도 가장 기본적으로 사용되고 있다.
Figure 112014093326822-pat00001
현재까지 퀴놀린 착물 유도체에 관해서는 많은 연구가 이루어져 왔고 청색 발광층 재료로 이데미쓰-고산의 DPVBi 이후로 많은 재료들이 개발되어 상업화되어 있으며, 이데미쓰-고산의 청색 재료 시스템과 코닥의 디나프틸안트라센(dinaphthylanthracen), 테트라(t-부틸)페릴렌(tetra(t-butyl)perlyene) 등이 알려져 있으나, 아직도 많은 연구 개발이 이루어져야 할 것으로 판단된다.
Figure 112014093326822-pat00002
또한, 종래의 전자 주입 물질 및 전자 수송 물질로는 이미다졸기, 옥사졸기, 티아졸기를 가진 유기 단분자 물질들이 많이 보고되었다. 그러나 이러한 물질들이 전자수송용 물질로 보고되기 이전에 이러한 물질들의 금속착체 화합물들이 유기 전계 발광 소자의 청색 발광층 또는 청록색 발광층에 적용된 것으로 이미 보고되었다.
특히 도핑 재료는 발광 효율의 향상에 큰 영향을 주는 재료이나, 발광 효율, 호스트 물질과의 불일치 등의 이유로 그 개발에 어려움을 겪어 왔다. 청색의 도판트의 경우에는 스티릴 구조가 열적으로 안정하지 않아서 순도를 높이기 어려웠으며, 이에 따라 색순도가 떨어지고 효율이 낮아지거나 수명이 짧아지는 문제가 있었다. 또한, 짙은 청색의 색순도를 가지기 위해서는 도판트의 호모(Homo)와 루모(Lumo) 사이의 에너지 차이 (Band gap)가 커야 하는데 이러한 물질의 개발이 쉽지 않았다. 따라서 색순도, 효율 및 열안정성에 관해 연구 개발이 시급하다고 할 수 있다.
특허문헌 1: 대한민국 등록특허 제1430589호. 특허문헌 2: 대한민국 공개특허 제2011-0077871호.
본 발명의 과제는 종래의 재료보다 발광효율이 우수하고 내구성이 뛰어난 신규한 플루오란텐 유도체를 제공하는 것이며, 또한 상기 플루오란텐 유도체가 유기막에 포함되어 소자의 구동전압을 낮추고 발광 효율이 개선된 유기 전계발광 소자를 제공하는 것이다.
본 발명의 일 측면에 의하면, 하기 화학식 1로 표시되는 융합된 플루오란텐 유도체가 제공된다.
하기 화학식 1로 표시되는 융합된 플루오란텐 유도체.
[화학식 1]
Figure 112016035316414-pat00075

[상기 화학식 1에서
Ar3
Figure 112016035316414-pat00076
,
Figure 112016035316414-pat00077
,
Figure 112016035316414-pat00078
,
Figure 112016035316414-pat00079
,
Figure 112016035316414-pat00080
,
Figure 112016035316414-pat00081
,
Figure 112016035316414-pat00082
,
Figure 112016035316414-pat00083
,
Figure 112016035316414-pat00084
Figure 112016035316414-pat00085
로 이루어진 군 중에서 선택된 어느 하나이며, (여기서, A는 페닐기 또는 나프탈렌기이며, X8, X9, X10 및 X11은 각각 독립적으로 CH 또는 N이다.)
p는 0 또는 1이고 q는 0 내지 2의 정수이되, p와 q는 동시에 0이 아니며,
X5, X6 및 X7은 각각 독립적으로 CH 또는 N이다.]
삭제
삭제
삭제
삭제
삭제
삭제
본 발명의 다른 측면에 의하면, 상기 융합된 플루오란텐 유도체를 포함하는 유기 전계발광 소자가 제공된다.
본 발명의 또 다른 측면에 의하면, 제1 전극, 제2 전극, 및 상기 전극들 사이에 배치된 1층 이상의 유기막을 포함하되, 상기 유기막은 상기 융합된 플루오란텐 유도체를 포함하는 유기 전계발광 소자가 제공된다.
본 발명의 일 실시예에 따른 융합된 플루오란텐 유도체는 유기 전계발광 소자의 유기막에 포함되어 발광 효율을 개선할 수 있다. 또한, 본 발명의 융합된 플루오란텐 유도체의 열적 안정성에 의해 유기 전계발광 소자의 수명을 개선할 수 있다.
도 1은 본 발명의 일 실시예에 따른 유기 전계발광 소자의 개략적인 단면도이다.
도 2는 비교시험예 및 시험예 1 내지 2에서 제조된 유기 전계발광 소자에 대한 전기적 발광특성을 나타낸 그래프이다.
본 명세서에서 용어 "알킬"은 직쇄, 분지쇄 탄화수소기 또는 이들의 조합을 포함하며, 알케닐이나 알키닐을 포함한다.
용어 "헤테로알킬"은 다른 의미로 명시되지 않는 한, 1종 이상의 탄소 원자 및 O, N, P, Si 및 S로 이루어진 군으로부터 선택되는 1종 이상의 이종원자로 이루어지는 안정한 직쇄 또는 분지쇄 탄화수소기를 의미하고, 질소, 인 및 황 원자는 경우에 따라 산화될 수 있고, 질소 이종원자는 경우에 따라 4차화될 수 있다.
용어 "시클로알킬" 및 "헤테로시클로알킬"은 다른 의미로 명시하지 않는 한, 각각 "알킬" 및 "헤테로알킬"의 고리형 버전을 나타낸다.
용어 "아릴"은 다른 의미로 명시되지 않는 한, 단일 고리이거나 융합 또는 공유 결합된 다중 고리(1개 내지 3개의 고리)일 수 있는 다중불포화 방향족 탄화수소 치환기를 의미한다.
상기 아릴은 각 고리에 적절하게는 4 내지 7개, 바람직하게는 5 또는 6개의 고리원자를 포함하는 단일 또는 융합고리계를 포함한다. 또한, 하나 이상의 아릴이 화학결합을 통하여 결합되어 있는 구조도 포함한다. 상기 아릴의 구체적인 예로 페닐, 나프틸, 비페닐, 안트릴, 인데닐, 플루오레닐, 페난트릴, 트라이페닐레닐, 피렌일, 페릴렌일, 크라이세닐, 나프타세닐, 플루오란텐일 등을 포함하지만, 이에 한정되지 않는다.
용어 "헤테로아릴"은 (다중 고리의 경우 각각의 별도의 고리에서) N, O 및 S로부터 선택되는 1 내지 4개의 이종원자를 포함하는 아릴 기(또는 고리)를 의미하고, 질소 및 황 원자는 경우에 따라 산화되고, 질소 원자(들)은 경우에 따라 4차화된다. 헤테로아릴 기는 탄소 또는 이종원자를 통해 분자의 나머지에 결합될 수 있다.
상기 헤테로아릴은 5 내지 6원 단환 헤테로아릴, 및 하나 이상의 벤젠 환과 융합된 다환식 헤테로아릴을 포함하며, 부분적으로 포화될 수도 있다. 또한, 하나 이상의 헤테로아릴이 화학결합을 통하여 결합되어 있는 구조도 포함된다. 상기 헤테로아릴기는 고리 내 헤테로원자가 산화되거나 사원화되어, 예를 들어 N-옥사이드 또는 4차 염을 형성하는 2가 아릴 그룹을 포함한다.
상기 헤테로아릴의 구체적인 예로 퓨릴, 티오펜일, 피롤릴, 이미다졸릴, 피라졸릴, 티아졸릴, 티아디아졸릴, 이소티아졸릴, 이속사졸릴, 옥사졸릴, 옥사디아졸릴, 플루오란텐일, 테트라진일, 트리아졸릴, 테트라졸릴, 퓨라잔일, 피리딜, 피라진일, 피리미딘일, 피리다진일 등의 단환 헤테로아릴, 벤조퓨란일, 벤조티오펜일, 이소벤조퓨란일, 벤조이미다졸릴, 벤조티아졸릴, 벤조이소티아졸릴, 벤조이속사졸릴, 벤조옥사졸릴, 이소인돌릴, 인돌릴, 인다졸릴, 벤조티아디아졸릴, 퀴놀릴, 이소퀴놀릴, 신놀리닐, 퀴나졸리닐, 퀴녹살리닐, 카바졸릴, 페난트리딘일, 벤조디옥솔릴 등의 다환식 헤테로아릴 및 이들의 상응하는 N-옥사이드(예를 들어, 피리딜 N-옥사이드, 퀴놀릴 N-옥사이드), 이들의 4차 염 등을 포함하지만, 이에 한정되지 않는다.
용어 "아르알킬"은 아릴로 치환된 알킬 그룹을 나타내며, 여기서, 알킬 및 아릴 부분은 독립적으로 임의로 치환된다.
용어 "헤테로아르알킬"은 헤테로아릴로 치환된 알킬 그룹을 나타내며, 여기서, 알킬 및 헤테로아릴 부분은 독립적으로 임의로 치환된다.
본 명세서에 기재된 "치환 또는 비치환된"이라는 표현에서 "치환"은 탄화수소 내의 수소 원자 하나 이상이 각각, 서로 독립적으로, 동일하거나 상이한 치환기로 대체되는 것을 의미한다. 유용한 치환기는 다음을 포함하지만 이에 제한되지 않는다.
이러한 치환기는, -F; -Cl; -Br; -CN; -NO2; -OH; -F, -Cl, -Br, -CN, -NO2 또는 -OH로 치환되거나 비치환된 C1~C20 알킬기; -F, -Cl, -Br, -CN, -NO2 또는 -OH로 치환되거나 비치환된 C1~C20 알콕시기; C1~C20 알킬기, C1~C20 알콕시기, -F, -Cl, -Br, -CN, -NO2 또는 -OH로 치환되거나 비치환된 C6~C30 아릴기; C1~C20 알킬기, C1~C20 알콕시기, -F, -Cl, -Br, -CN, -NO2 또는 -OH로 치환되거나 비치환된 C6~C30 헤테로아릴기; C1~C20 알킬기, C1~C20 알콕시기, -F, -Cl, -Br, -CN, -NO2 또는 -OH로 치환되거나 비치환된 C5~C20 사이클로알킬기; C1~C20 알킬기, C1~C20 알콕시기, -F, -Cl, -Br, -CN, -NO2 또는 -OH로 치환되거나 비치환된 C5~C30 헤테로사이클로알킬기; 및 -N(G1)(G2)으로 표시되는 기로 이루어진 군으로부터 선택된 하나 이상일 수 있다. 이때, 상기 G1 및 G2는 서로 독립적으로 각각 수소; C1~C10 알킬기; 또는 C1~C10 알킬기로 치환되거나 비치환된 C6~C30 아릴기일 수 있다.
이하, 본 발명에 대해 상세히 설명하고자 한다.
본 발명의 일 실시예에 따른 융합된 플루오란텐 유도체는 하기 화학식 1로 표시될 수 있다.
[화학식 1]
Figure 112016035316414-pat00086

[상기 화학식 1에서
Ar3
Figure 112016035316414-pat00087
,
Figure 112016035316414-pat00088
,
Figure 112016035316414-pat00089
,
Figure 112016035316414-pat00090
,
Figure 112016035316414-pat00091
,
Figure 112016035316414-pat00092
,
Figure 112016035316414-pat00093
,
Figure 112016035316414-pat00094
,
Figure 112016035316414-pat00095
Figure 112016035316414-pat00096
로 이루어진 군 중에서 선택된 어느 하나이며, (여기서, A는 페닐기 또는 나프탈렌기이며, X8, X9, X10 및 X11은 각각 독립적으로 CH 또는 N이다.)
p는 0 또는 1이고 q는 0 내지 2의 정수이되, p와 q는 동시에 0이 아니며,
X5, X6 및 X7은 각각 독립적으로 CH 또는 N이다.]
본 발명의 일 구현예에 따른 화학식 1로 표시되는 융합된 플루오란텐 유도체의 구체적인 예들을 이하의 화학식 2와 같이 나타낼 수 있으며, 이들에 한정되지 않고 이들 외에도 다양한 구조의 예들이 본 발명의 융합된 플루오란텐 유도체에 포함될 수 있다.
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
[화학식 2]
Figure 112016035316414-pat00097

Figure 112016035316414-pat00098

Figure 112016035316414-pat00099

Figure 112016035316414-pat00100
삭제
삭제
삭제
삭제
삭제
삭제
삭제
상기 화학식 1로 표시되는 플루오란텐 유도체는 공지의 유기 합성방법을 이용하여 합성가능하다. 상기 플루오란텐 유도체의 합성방법은 후술하는 제조예를 참조하여 당업자에게 용이하게 인식될 수 있다.
또한 본 발명에 따르면, 상기 화학식 1로 표시되는 플루오란텐 유도체를 포함하는 유기 전계발광 소자가 제공된다.
상기 화학식 1의 플루오란텐 유도체는 발광층 재료, 바람직하게는 청색 형광 도판트 재료로서 유용하며, 이밖에 녹색, 적색 형광의 재료 또는 정공주입층, 정공수송층 재료로서 사용될 수 있다.
또한 본 발명에 따른 유기 전계발광 소자는 제1 전극, 제2 전극 및 이들 전극 사이에 배치된 1층 이상의 유기막을 포함한다. 상기 유기막은 상기 화학식 1로 표시되는 플루오란텐 유도체를 하나 이상 포함한다.
상기 유기막은 정공주입층, 정공수송층, 정공주입 기능과 정공수송 기능을 동시에 갖는 기능층, 버퍼층, 전자저지층, 발광층, 정공저지층, 전자수송층, 전자주입층, 및 전자수송 기능과 전자주입 기능을 동시에 갖는 기능층으로 이루어진 군 중에서 선택되는 1층 이상을 포함할 수 있다.
예를 들어, 상기 플루오란텐 유도체는 발광층, 양극과 발광층 사이에 배치된 유기막 및 발광층과 음극 사이에 배치된 유기막으로 이루어진 군 중에서 선택되는 적어도 어느 하나에 포함될 수 있다. 바람직하게는, 상기 플루오란텐 유도체는 발광층, 정공주입층, 정공수송층, 및 정공주입 기능과 정공수송 기능을 동시에 갖는 기능층으로 이루어진 군 중에서 선택되는 어느 1층 이상에 포함될 수 있다. 상기 플루오란텐 유도체는 단일 물질 또는 서로 다른 물질의 조합으로서 상기 유기막에 포함될 수 있다. 또는 상기 플루오란텐 유도체는 발광층, 정공수송층 및 정공주입층 등에 종래 알려진 화합물과 혼합되어 사용될 수 있다.
본 발명에 따른 유기 전계발광소자는 양극/발광층/음극, 양극/정공주입층/발광층/음극, 양극/정공주입층/정공수송층/발광층/전자수송층/음극, 또는 양극/정공주입층/정공수송층/발광층/전자수송층/전자주입층/음극의 구조를 가질 수 있다. 또는 상기 유기 전계발광소자는 양극/정공주입 기능 및 정공수송 기능을 동시에 갖는 기능층/발광층/전자수송층/음극, 또는 양극/정공주입 기능 및 정공 수송 기능을 동시에 갖는 기능층/발광층/전자수송층/전자주입층/음극의 구조를 가질 수 있지만 이에 한정되는 것은 아니다.
도 1은 본 발명의 일 실시예에 따른 유기 전계발광 소자의 개략적인 단면도이다.
상기 유기 전계발광 소자는 스퍼터링(sputtering)이나 전자빔 증발(e-beam evaporation)과 같은 PVD(physical vapor deposition) 방법을 이용하여 제조될 수 있다. 예를 들어, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공주입층, 정공수송층, 발광층, 전자수송층 및 전자주입층을 포함하는 유기막을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시킴으로써 제조될 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기막, 양극 물질을 차례로 증착시켜 유기 전계발광 소자를 만들 수도 있다.
한편, 상기 유기막은 다양한 고분자 소재를 사용하여 증착법이 아닌 용액 공정, 예컨대 스핀 코팅, 딥 코팅, 닥터 블레이딩, 스크린 프린팅, 잉크젯 프린팅 또는 열 전사법 등의 방법으로 제조될 수 있다.
본 발명에 따른 유기 전계발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
이하, 다양한 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 하나, 이하의 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범위가 이들로 한정되는 것은 아니다.
[실시예]
화학식 2의 화합물들 중 화합물(2-1) 내지 화합물(2-21)을 제조하였으며 이들의 제조를 위해 먼저 다양한 중간체들을 이하의 방법으로 합성하였다.
합성예 1: 중간체(1)의 합성
Figure 112014093326822-pat00023
5-브로모아세나프탈렌 (5-bromoacenaphthylene) 20.0 g(0.086 mol), 건조 벤젠(Dried Benzene) 400 mL에 2,3-다이클로로-5,6-다이사이아노-1,4-벤조퀴논 (2,3-dichloro-5,6-dicyano-1,4-Benzoquinone, DDQ) 23.4 g(0.103 mol)을 가하고, 가열 환류하에 12시간 교반했다. 반응 혼합물에 2,3-다이클로로-5,6-다이사이아노-1,4-벤조퀴논 (2,3-dichloro-5,6-dicyano-1,4-Benzoquinone, DDQ) 6.0 g(26.4mmol)을 더 가하고, 4시간 가열 교반 하였다. 냉각 후, 침전물을 여과 분리하고, 클로로포름(Chloroforme)으로 세정했다. 여액을 모아, 10% NaOH 용액, H2O로 세정했다. 분액 후, 유기상을 무수 MgSO4로 건조하고, 용매를 증류 제거했다. 감압 하에 건조하여 갈색의 고체 화합물(중간체(1)) 11.0g(수율: 55%)을 얻었다.
합성예 2: 중간체(2)의 합성
Figure 112014093326822-pat00024
중간체(1) 11 g(0.048mol), 1,3-다이페닐아이소벤조퓨란(1,3-diphenylisobenzofuran) 12.8g (0.048 mol)의 톨루엔(Toluene) 43.6ml의 혼합물을 가열 환류하에 16시간 교반 하였다. 용매를 증류 제거 후, 아세트산(Acetic acid) 1000ml를 가하고, 80℃로 가열했다. 이 혼합물에, 48% HBr 수용액 132ml를 가하고, 80℃에서 2시간 교반했다. 실온까지 냉각 후, 침전물을 여과하여 취하고, 메탄올로 세정했다. 얻어진 황색 고체를 톨루엔(Toluene) 100ml로 재결정화했다. 결정을 여과하여 취하여 갈색 고체의 화합물(중간체(2)) 17.5g(수율: 75%)을 얻었다.
합성예 3: 중간체(3)의 합성
Figure 112014093326822-pat00025
중간체(2) 30g (0.062mol), PIN2B2 18.9g (0.074mol), Pd(dppf)Cl2 1.5g (1.86mmol), KOAc 12.2g (0.124mol), 디옥산(Dioxane) 310ml를 같이 넣고 질소하에서 100~110℃에서 2시간 환류 교반하였다. 온도를 상온으로 내린 후, 용매를 증류 제거하였다. 메틸렌클로라이드 600 ml를 혼합물에 넣고 고체를 실리카겔로 여과한 후 메틸렌클로라이드로 씻어준다. 여과액을 증류 제거한 후, 얻어진 고체를 재결정화, 여과하여 갈색 고체의 화합물(중간체(3)) 26 g(수율: 79%)을 얻었다.
합성예 4: 중간체(4)의 합성
Figure 112014093326822-pat00026
1구 100 mL 플라스크에 중간체 (3) 31 g (0.058mol), 3-클로로-2-니트로피리딘 (3-chloro-2-nitropyridine) 7.72 g (0.0487mol) 및 Pd(PPh3)4 2.8 g (0.002mol) 을 넣고 질소 분위기 하에 톨루엔(Toluene) 180 mL 과 에탄올 60 mL에 용해시킨 후, 2M K2CO3 용액 49 mL를 첨가하여 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고 H2O 200 mL를 첨가한다. 혼합물에 메틸렌클로라이드 300 mL로 2회 추출 후 추출액을 Na2SO4로 건조, 여과하고 여액을 감압 농축하였다. 얻어진 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 노란색 고체의 화합물(중간체(4)) 12.6 g (수율: 49%)을 얻었다.
합성예 5: 중간체(5)의 합성
Figure 112014093326822-pat00027
2구 100 mL 플라스크에 중간체(4) (12.6 g, 0.024mol), 1,2-비스(디페닐포스피노)에탄 (1,2-bis(diphenylphosphino)ethane) 11.5 g (0.0288mol) 을 넣고 질소 분위기 하에 톨루엔(Toluene) 50 mL 를 첨가하여 환류 교반하였다. 환류 교반 시 톨루엔(Toluene) 을 증류시킨 후 반응 온도를 130~140℃로 유지한다. 반응이 종결된 후 상온으로 냉각하고 반응 용매를 감압 농축하였다. 얻어진 고체를 DCM (100 mL) 로 정제하여 노란색 고체의 화합물(중간체 (5)) 7.1 g (수율: 60%)을 얻었다.
합성예 6: 중간체(6)의 합성
Figure 112014093326822-pat00028
1구 500 mL 플라스크에 중간체(3) (14.5 g, 0.027mol), 3-클로로-2-니트로피리딘 (3-chloro-2-nitropyridine) 5.0 g (0.0248mol) 및 Pd(PPh3)4 1.43 g(0.0012mol) 을 넣고 질소 분위기 하에 톨루엔(Toluene) 115 mL 과 에탄올 50 mL에 용해 시킨 후, 2M K2CO3 용액 25 mL를 첨가하여 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고 H2O 100 mL를 첨가한다. 혼합물에 메틸렌클로라이드 300 mL로 2회 추출 후 추출액을 Na2SO4로 건조, 여과하고 여액을 감압 농축하였다. 얻어진 고체를 Hexanes/EtOAc (5/1, 250 mL) 로 정제하여 노란색 고체의 화합물(중간체(6)) 8.5 g (수율: 65%)을 얻었다.
합성예 7: 중간체(7)의 합성
Figure 112014093326822-pat00029
2구 100 mL 플라스크에 중간체(6) (8.5 g, 0.016mol), 1,2-비스(디페닐포스피노)에탄 (1,2-bis(diphenylphosphino)ethane) 7.1 g (0.0176mol)을 넣고 질소 분위기 하에 톨루엔(Toluene) 30 mL 를 첨가하여 환류 교반하였다. 환류 교반 시 톨루엔(Toluene)을 증류시킨 후 반응 온도를 130~140℃로 유지한다. 반응이 종결된 후 상온으로 냉각하고 반응 용매를 감압 농축하였다. 얻어진 고체를 DCM (100 mL) 로 정제하여 노란색 고체의 화합물(중간체(7)) 5.3 g (수율: 67%)을 얻었다.
상기 합성된 중간체들을 이용하여 이하와 같이 다양한 플루오란텐 유도체 화합물을 합성하였다.
실시예 1: 화합물(2-1)의 합성
화합물(2-1)의 합성 경로를 이하에 나타낸다.
Figure 112014093326822-pat00030
1구 100 mL 플라스크에 중간체(5)(0.1 g, 0.202mmol), 1-요오드 벤젠 (1-iodobenzene) 87 mg(0.404mmol), Cu 1.3 mg(0.02mmol), K2CO3 28 mg(0.202mmol), Na2SO4, 29 mg(0.202mmol) 및 니트로벤젠(nitrobenzene)(2 mL)과 혼합한 다음, 170~180℃ 에서 5시간 동안 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 실리카겔 컬럼 크로마토그래피로 정제하여 노란색 고체의 화합물(2-1) 90 mg(수율: 78%)을 얻었다.
실시예 2: 화합물(2-2)의 합성
화합물(2-2)의 합성 경로를 이하에 나타낸다.
Figure 112014093326822-pat00031
1구 100 mL 플라스크에 중간체(5)(0.5g, 1.01mmol)를 DMF(20 mL)에 녹인 후, NaOH 100 mg(2.5mmol)를 첨가한다. 상온에서 30분 교반한 후, 2-클로로-4,6-디페닐-1,3,5-트리아진(2-chloro-4,6-diphenyl-1,3,5-triazine) 0.324 g(1.22mmol)을 첨가한다. 상온에서 5시간 동안 교반하였다. 반응이 종결된 후, H2O 5 mL를 천천히 넣고 교반하였다. 고체 화합물을 여과한 후, 얻어진 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 노란색 고체의 화합물(2-2) 0.32 g(수율: 44%)을 얻었다.
실시예 3: 화합물(2-3)의 합성
화합물(2-3)의 합성 경로를 이하에 나타낸다.
Figure 112014093326822-pat00032
1구 100 mL 플라스크에 중간체(5) 0.5 g(1.01mmol), 9-(4-브로모페닐)-9H-카바졸(9-(4-bromophenyl)-9H-carbazole) 0.39 g(0.1.22mmol), CuI 96 mg(0.502mmol), 1,10-phenanthroline 0.182 g(1.01mmol) 및 Cs2CO3 0.658 g(2.02mmol)을 넣고 질소 분위기 하에 디옥산(Dioxane) 10 mL를 첨가하여 환류교반하였다. 반응이 종결된 후 상온으로 냉각하고 반응물을 감압 농축하였다. 얻어진 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 노란색 고체의 화합물(2-3) 0.095g(수율: 13%)을 얻었다.
실시예 4: 화합물(2-4)의 합성
화합물(2-4)의 합성 경로를 이하에 나타낸다.
Figure 112014093326822-pat00033
1구 100 mL 플라스크에 중간체(5) 0.5 g(1.01mmol), 4-브로모-N,N-디페닐아민(4-bromo-N,N-diphenylaniline) 0.392 g (1.21mmol), CuI 96 mg(0.502mmol), 1,10-phenanthroline 0.182 g(1.01mmol) 및 Cs2CO3 0.658 g(2.02mmol)을 넣고 질소 분위기 하에 디옥산(Dioxane) 5 mL를 첨가하여 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고 반응물을 감압 농축하였다. 얻어진 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 노란색 고체의 화합물(2-4) 0.070g(수율: 9.4%)을 얻었다.
실시예 5: 화합물(2-5)의 합성
화합물(2-5)의 합성 경로를 이하에 나타낸다.
Figure 112014093326822-pat00034
1구 100 mL 플라스크에 중간체(5) 0.5 g(1.01mmol), 5-(6-브로모피리딘-2-닐)5H-피리도[3,2-b]인돌(5-(6-bromopyridin-2-yl)-5H-pyrido[3,2-b]indole) 0.36 g(1.21mmol), CuI 96 mg(0.502mmol), 1,10-phenanthroline 0.182 g(1.01mmol) 및 Cs2CO3 0.658 g(2.02mmol)을 넣고 질소 분위기 하에 디옥산(Dioxane) 10 mL를 첨가하여 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고 반응물을 감압 농축하였다. 얻어진 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 노란색 고체의 화합물(2-5) 0.32g(수율: 43%)을 얻었다.
실시예 6: 화합물(2-6)의 합성
화합물(2-6)의 합성 경로를 이하에 나타낸다.
Figure 112014093326822-pat00035
1구 100 mL 플라스크에 중간체(8) 0.4 g(0.61mmol), 카바졸(carbazole) 0.123 g (0.732mmol), 트리-터트-부틸포스핀(tri-tert-butylphosphine) 12 mg(0.031mmol, 50% 용액 in xylene), 나트륨 터트부톡사이드(sodium tert-butoxide) 0.117 g(1.22 mmol) 및 Pd(dba2) 7 mg(0.0122mmol)을 넣고 질소 분위기 하에 톨루엔(Toluene) 6 mL를 첨가하여 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고 감압 농축하였다. 얻어진 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 고체 화합물(2-6) 0.12 g(수율: 27%)을 얻었다.
실시예 7: 화합물(2-7)의 합성
화합물(2-7)의 합성 경로를 이하에 나타낸다.
Figure 112014093326822-pat00036
1구 100 mL 플라스크에 중간체(5) 0.5 g(1.01mmol), 2-브로모피리딘(2-bromopyridine) 0.24 g(1.52mmol), CuI 38 mg(0.202mmol), 1,10-phenanthroline 91 mg(0.5mmol) 및 Cs2CO3 0.66 g(2.02mmol)을 넣고 질소 분위기 하에 디옥산(Dioxane) 10 mL를 첨가하여 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고 반응물을 감압 농축하였다. 얻어진 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 노란색 고체의 화합물(2-7) 0.34g(수율: 59%)을 얻었다.
실시예 8: 화합물(2-8)의 합성
화합물(2-8)의 합성 경로를 이하에 나타낸다.
Figure 112014093326822-pat00037
1구 100 mL 플라스크에 중간체(5)(0.5g, 1.01mmol)를 DMF(5 mL)에 녹인 후, NaOH 81 mg(2.02mmol)를 첨가한다. 상온에서 30분 교반한 후, 2-클로로-4-페닐퀴나졸린(2-chloro-4-phenylquinazoline) 0.291 g(1.21mmol)을 첨가한다. 상온에서 12시간 동안 교반 하였다. 반응이 종결된 후, H2O 1 mL 를 천천히 넣고 교반하였다. 고체 화합물을 여과한 후, 얻어진 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 노란색 고체의 화합물(2-8) 0.32g(수율: 45%)을 얻었다.
실시예 9: 화합물(2-9)의 합성
화합물(2-9)의 합성 경로를 이하에 나타낸다.
Figure 112014093326822-pat00038
1구 100 mL 플라스크에 중간체(5)(0.3g, 0.607mmol)를 DMF(3 mL)에 녹인 후, NaOH 49 mg(1.2mmol)를 첨가한다. 상온에서 30분 교반한 후, 2-클로로-4,6-디(나프탈렌-2-닐)-1,3,5-트리아진(2-chloro-4,6-di(naphthalen-2-yl)-1,3,5-triazine) 0.268 g(0.728mmol)을 첨가한다. 상온에서 12시간 동안 교반하였다. 반응이 종결된 후, H2O 1 mL를 천천히 넣고 교반하였다. 고체 화합물을 여과한 후, 얻어진 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 노란색 고체의 화합물(2-9) 0.19g(수율: 38%)을 얻었다.
실시예 10: 화합물(2-10)의 합성
화합물(2-10)의 합성 경로를 이하에 나타낸다.
Figure 112014093326822-pat00039
1구 100 mL 플라스크에 중간체(5) 0.3 g(0.607mmol), 6-브로모-2,3'-바이피리딘(6-bromo-2,3'-bipyridine) 0.171 g(0.728mmol), 트리-터트-부틸포스핀(tri-tert-butylphosphine) 12 mg(0.031mmol, 50% 용액 in xylene), 나트륨 터트부톡사이드(sodium tert-butoxide) 0.117 g(1.22 mmol) 및 Pd(dba2) 7 mg(0.0122mmol)을 넣고 질소 분위기 하에 톨루엔(Toluene) 6 mL를 첨가하여 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고 감압 농축하였다. 얻어진 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 고체 화합물(2-10) 0.215 g(수율: 55%)을 얻었다.
실시예 11: 화합물(2-11)의 합성
화합물(2-11)의 합성 경로를 이하에 나타낸다.
Figure 112014093326822-pat00040
1구 100 mL 플라스크에 중간체(5) 0.5 g(1.01mmol), 4-(6-브로모피리딘-2-닐)벤조니트릴(4-(6-bromopyridin-2-yl)benzonitrile) 0.31 g(1.21mmol), 트리-터트-부틸포스핀(tri-tert-butylphosphine) 12 mg(0.031mmol, 50% 용액 in xylene), 나트륨 터트부톡사이드(sodium tert-butoxide) 0.194 g(2.02mmol) 및 Pd(dba2) 7 mg(0.0122mmol)을 넣고 질소 분위기 하에 톨루엔(Toluene) 10 mL를 첨가하여 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고 감압 농축하였다. 얻어진 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 고체 화합물(2-11) 0.42 g(수율: 62%)을 얻었다.
실시예 12: 화합물(2-12)의 합성
화합물(2-12)의 합성 경로를 이하에 나타낸다.
Figure 112014093326822-pat00041
1구 100 mL 플라스크에 중간체(5) 0.5 g(1.01mmol), 8-(6-브로모피리딘-2-닐)퀴놀린(8-(6-bromopyridin-2-yl)quinoline) 0.345 g(1.21mmol), 트리-터트-부틸포스핀(tri-tert-butylphosphine) 12 mg(0.031mmol, 50% 용액 in xylene), 나트륨 터트부톡사이드(sodium tert-butoxide) 0.194 g(2.02mmol) 및 Pd(dba2) 7 mg(0.0122mmol)을 넣고 질소 분위기 하에 톨루엔(Toluene) 10 mL를 첨가하여 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고 감압 농축하였다. 얻어진 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 고체 화합물(2-12) 0.43 g(수율: 61%)을 얻었다.
실시예 13: 화합물(2-13)의 합성
화합물(2-13)의 합성 경로를 이하에 나타낸다.
Figure 112014093326822-pat00042
1구 100 mL 플라스크에 중간체(5) 0.5 g(1.01mmol), 2-(4-클로로페닐)-4,6-디페닐-1,3,5-트리아진(2-(4-chlorophenyl)-4,6-diphenyl-1,3,5-triazine) 0.52 g(1.52mmol), Cu powder 6.4 mg(0.101mmol), K2CO3 0.14 g(1.01mmol) 및 Na2SO4 0.143 g(1.01mmol)을 넣고 질소 분위기 하에 니트로벤젠(nitrobenzene) 10 mL를 첨가하여 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고 감압 농축하였다. 얻어진 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 고체 화합물(2-13) 0.095 g(수율: 12%)을 얻었다.
실시예 14: 화합물(2-14)의 합성
화합물(2-14)의 합성 경로를 이하에 나타낸다.
Figure 112014093326822-pat00043
1구 100 mL 플라스크에 중간체(5)(0.5g, 1.01mmol)를 DMF(5 mL)에 녹인 후, NaOH 81 mg(2.02mmol)를 첨가한다. 상온에서 30분 교반한 후, 2-클로로-4,6-디페닐피리미딘(2-chloro-4,6-diphenylpyrimidine) 0.41 g(1.52mmol)을 첨가한다. 상온에서 12시간 동안 교반하였다. 반응이 종결된 후, H2O 1 mL를 천천히 넣고 교반하였다. 고체 화합물을 여과한 후, 얻어진 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 노란색 고체의 화합물(2-14) 0.18 g(수율: 25%)을 얻었다.
실시예 15: 화합물(2-15)의 합성
화합물(2-15)의 합성 경로를 이하에 나타낸다.
Figure 112014093326822-pat00044
1구 100 mL 플라스크에 중간체(5)(0.142g, 0.287mmol)를 DMF(3 mL)에 녹인 후, NaOH 23 mg(0.57mmol)를 첨가한다. 상온에서 30분 교반한 후, 2-클로로-4-페닐벤조[g]퀴나졸린(2-chloro-4-phenylbenzo[g]quinazoline) 0.1 g(0.34mmol)을 첨가한다. 상온에서 15시간 동안 교반하였다. 반응이 종결된 후, H2O 1 mL를 천천히 넣고 교반하였다. 고체 화합물을 여과한 후, 얻어진 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 노란색 고체의 화합물(2-15) 0.14 g(수율: 65%)을 얻었다.
실시예 16: 화합물(2-16)의 합성
화합물(2-16)의 합성 경로를 이하에 나타낸다.
Figure 112014093326822-pat00045
1구 100 mL 플라스크에 중간체(7)(0.142g, 0.287mmol)를 DMF(3 mL)에 녹인 후, NaOH 23 mg(0.57mmol)를 첨가한다. 상온에서 30분 교반한 후, 2-클로로-4,6-디페닐-1,3,5-트리아진(2-chloro-4,6-diphenyl-1,3,5-triazine) 0.1 g(0.34mmol)을 첨가한다. 상온에서 15시간 동안 교반하였다. 반응이 종결된 후, H2O 1 mL를 천천히 넣고 교반하였다. 고체 화합물을 여과한 후, 얻어진 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 노란색 고체의 화합물(2-16) 0.14 g(수율: 65%)을 얻었다.
실시예 17: 화합물(2-17)의 합성
화합물(2-17)의 합성 경로를 이하에 나타낸다.
Figure 112014093326822-pat00046
1구 100 mL 플라스크에 중간체(7)(0.5g, 1.01mmol)를 DMF(5 mL)에 녹인 후, NaOH 81 mg(2.02mmol)를 첨가한다. 상온에서 30분 교반한 후, 2-클로로-4-페닐퀴나졸린(2-chloro-4-phenylquinazoline) 0.291 g(1.21mmol)을 첨가한다. 상온에서 12시간 동안 교반하였다. 반응이 종결된 후, H2O 1 mL를 천천히 넣고 교반하였다. 고체 화합물을 여과한 후, 얻어진 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 노란색 고체의 화합물(2-17) 0.32 g(수율: 45%)을 얻었다.
실시예 18: 화합물(2-18)의 합성
화합물(2-18)의 합성 경로를 이하에 나타낸다.
Figure 112014093326822-pat00047
1구 100 mL 플라스크에 중간체(7) 0.5 g(1.01mmol), 6-브로모-2,3'-비피리딘 (6-bromo-2,3'-bipyridine) 0.36 g(1.52mmol), CuI 38 mg(0.202mmol), 1,10-phenanthroline 91 mg(0.51mmol) 및 Cs2CO3 0.66 g(2.02mmol)을 넣고 질소 분위기 하에 디옥산(Dioxane) 10 mL를 첨가하여 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고 반응물을 감압 농축하였다. 얻어진 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 노란색 고체의 화합물(2-18) 0.208 g(수율: 32%)을 얻었다.
실시예 19: 화합물(2-19)의 합성
화합물(2-19)의 합성 경로를 이하에 나타낸다.
Figure 112014093326822-pat00048
1구 100 mL 플라스크에 중간체(7) 0.5 g(1.01mmol), 4-(6-브로모피리딘-2-닐)벤조니트릴(4-(6-bromopyridin-2-yl)benzonitrile) 0.394 g(1.52mmol), CuI 38 mg(0.202mmol), 1,10-phenanthroline 91 mg(0.5mmol) 및 Cs2CO3 0.66 g(2.02mmol)을 넣고 질소 분위기 하에 디옥산(Dioxane) 10 mL를 첨가하여 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고 반응물을 감압 농축하였다. 얻어진 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 노란색 고체의 화합물(2-19) 0.33 g(수율: 49%)을 얻었다.
실시예 20: 화합물(2-20)의 합성
화합물(2-20)의 합성 경로를 이하에 나타낸다.
Figure 112014093326822-pat00049
1구 100 mL 플라스크에 중간체(7)(0.5g, 1.01mmol)를 DMF(5 mL)에 녹인 후, NaOH 81 mg(2.02mmol)를 첨가한다. 상온에서 30분 교반한 후, 2-클로로-4,6-디페닐피리미딘(2-chloro-4,6-diphenylpyrimidine) 0.282 g(1.06mmol)을 첨가한다. 상온에서 12시간 동안 교반하였다. 반응이 종결된 후, H2O 1 mL를 천천히 넣고 교반하였다. 고체 화합물을 여과한 후, 얻어진 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 노란색 고체의 화합물(2-20) 0.32 g(수율: 45%)을 얻었다.
실시예 21: 화합물(2-21)의 합성
화합물(2-21)의 합성 경로를 이하에 나타낸다.
Figure 112014093326822-pat00050
1구 100 mL 플라스크에 중간체(7) 0.5 g(1.01mmol), 4-(4-브로모페닐)피리딘 (4-(4-bromophenyl)pyridine) 0.36 g(1.52mmol), Cu powder 6.4 mg(0.101mmol), K2CO3 0.14 g(1.01mmol) 및 Na2SO4 0.143 g(1.01mmol)을 넣고 질소 분위기 하에 니트로벤젠(nitrobenzene) 10 mL를 첨가하여 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고 감압 농축하였다. 얻어진 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 고체 화합물(2-21) 0.21 g(수율: 32%)을 얻었다.
<시험예 1>
본 발명의 화합물에 대하여 Jasco V-630 기기를 이용하여 UV/VIS 스펙트럼을 측정하고, Jasco FP-8500 기기를 이용하여 PL(photoluminescence) 스펙트럼을 측정하여 하기 표 1에 나타내었다.
실시예의 화합물들의 UV/VIS 및 PL 측정 결과
구분(화합물) UV/VIS(nm)*1 PL(nm, 상온)*2
실시예 1 (화합물2-1) 260, 294, 315, 331, 356, 386, 409, 434 443.5, 470
실시예 2 (화합물2-2) 245, 258, 315, 330, 386, 409, 433 449.5
실시예 3 (화합물2-3) 244, 292, 331, 386, 409, 434 444, 471, 502
실시예 4 (화합물2-4) 263, 296, 386, 409, 435 445.5, 530
실시예 5 (화합물2-5) 248, 258, 291, 317, 330, 385, 409, 434 445, 471
실시예 6 (화합물2-6) 245, 290, 333, 385, 409, 433 445, 471
실시예 7 (화합물2-7) 261, 293, 331, 353, 385, 408, 433 443.5, 470
실시예 8 (화합물2-8) 245, 258, 315, 330, 386, 409, 434 445, 470
실시예 9 (화합물2-9) 248, 303, 315, 328, 386, 408, 433 446, 473
실시예 10 (화합물2-10) 261, 291, 330, 385, 408, 433 444, 470.5
실시예 11 (화합물2-11) 261, 291, 331, 385, 408, 433 444.5, 470.5
실시예 12 (화합물2-12) 261, 294, 330, 385, 408, 433 444, 470.5
실시예 13 (화합물2-13) 248, 259, 291, 316, 329, 385, 409, 433 445.5, 471
실시예 14 (화합물2-14) 263, 329, 386, 409, 433 450
실시예 15 (화합물2-15) 264, 300, 313, 409, 434 443.5, 470
실시예 16 (화합물2-16) 266, 315, 329, 384, 407, 431 446, 470.5
실시예 17 (화합물2-17) 256, 265, 304, 330, 389, 410, 436 446, 473
실시예 18 (화합물2-18) 248, 303, 315, 328, 386, 408, 433 443.5, 470
실시예 19 (화합물2-19) 263, 302, 315, 329, 386, 408, 433 443.5, 470
실시예 20 (화합물2-20) 264, 300, 313, 409, 434 450.5
실시예 21 (화합물2-21) 260, 304, 316, 387, 408, 434 444.5, 471
*1: 1.0 x 10-5 M in Methylene Chloride
*2: 5.0 x 10-6 M in Methylene Chloride
<시험예 2>
본 발명의 실시예의 화합물에 대하여 Waters Acquity UPLC H-Class/ SQD2 system 기기를 이용하여 LC-MS를 측정하였으며 그 결과를 하기 표 2에 나타내었다.
실시예의 화합물들의 LC/MS 측정 결과
구분(화합물) MS Calcd LC-MS Found
실시예 1 (화합물2-1) 570.68 571.14
실시예 2 (화합물2-2) 557.68 726.48
실시예 3 (화합물2-3) 735.87 736.46
실시예 4 (화합물2-4) 737.89 738.59
실시예 5 (화합물2-5) 737.85 738.59
실시예 6 (화합물2-6) 736.86 737.46
실시예 7 (화합물2-7) 571.67 572.47
실시예 8 (화합물2-8) 698.81 699.54
실시예 9 (화합물2-9) 825.95 826.66
실시예 10 (화합물2-10) 648.75 649.45
실시예 11 (화합물2-11) 672.77 673.53
실시예 12 (화합물2-12) 698.81 699.41
실시예 13 (화합물2-13) 801.93 802.58
실시예 14 (화합물2-14) 724.85 725.62
실시예 15 (화합물2-15) 748.87 749.63
실시예 16 (화합물2-16) 724.85 725.62
실시예 17 (화합물2-17) 697.82 698.68
실시예 18 (화합물2-18) 647.76 648.65
실시예 19 (화합물2-19) 671.79 672.60
실시예 20 (화합물2-20) 723.86 724.69
실시예 21 (화합물2-21) 646.78 647.58
소자 제작 시험예
소자 제작을 위해 투명 전극인 ITO는 양극 층, 2-TNATA는 정공 주입층, NPB는 정공 수송층, αβ-ADN은 발광층의 호스트, Bphen은 전자 수송층, Liq는 전자 주입층, Al은 음극으로 사용하였다. 이렇게 사용되는 화합물들의 구조는 하기의 화학식과 같다.
Figure 112014093326822-pat00051

비교시험예 : ITO / 2- TNATA / NPB / αβ- ADN , 9,9- diethyl -2,7-bis((E)-4-tritylstyryl)-9H-fluorene / Bphen / Liq / Al
청색 형광 유기발광소자는 ITO(180 nm) / 2-TNATA (60 nm) / NPB (20 nm) / αβ-ADN : 9,9-diethyl-2,7-bis((E)-4-tritylstyryl)-9H-fluorene 10% (30 nm) / Bphen (40 nm) / Liq (2 nm) / Al (100 nm) 순으로 증착하여 소자를 제작하였다.
유기물을 증착하기 전에 ITO 전극은 2 10-2Torr에서 125 W로 2분간 산소 플라즈마 처리를 하였다. 유기물은 9 10-7Torr의 진공도에서 증착하였으며 Liq는 0.1 Å/sec, αβ-ADN은 0.18 Å/sec의 기준으로 청색 형광 도판트는 0.02 Å/sec으로 동시 증착하였고, 나머지 유기물들은 모두 1 Å/sec의 속도로 증착하였다. 실험에 사용된 청색 형광 도판트 물질은 9,9-diethyl-2,7-bis((E)-4-tritylstyryl)-9H-fluorene 이며, 도판트의 농도는 10%로 고정하였다.
소자 제작이 끝난 후 소자의 공기 및 수분의 접촉을 막기 위하여 질소 기체로 채워져 있는 글러브 박스 안에서 봉지를 하였다. 3M사의 접착용 테이프로 격벽을 형성 후 수분 등을 제거할 수 있는 흡습제인 바륨산화물(Barium Oxide)을 넣고 유리판을 붙였다.
Figure 112014093326822-pat00052

시험예 1 : ITO / 2- TNATA / NPB / αβ- ADN , 화합물(2-1) / Bphen / Liq / Al
상기 비교시험예에서 이용한 청색형광 도판트 물질 대신에 상기 실시예 1에서 제조한 화합물(2-1)을 발광층으로 이용한 것을 제외하고는, 상기 비교시험예와 동일한 방법으로 소자를 제작하였다.
시험예 2 : ITO / 2- TNATA / NPB / αβ- ADN , 화합물(2-2) / Bphen / Liq / Al
상기 비교시험예에서 이용한 청색형광 도판트 물질 대신에 상기 실시예 2에서 제조한 화합물(2-2)을 발광층으로 이용한 것을 제외하고는 상기 비교시험예와 동일한 방법으로 소자를 제작하였다.
상기 비교시험예 및 시험예 1 내지 6에서 제조된 유기 전계발광 소자에 대한 전기적 발광 특성을 하기 표 3에 나타내었다.
색좌표
(x, y)
EL Peak
(nm)
발광효율
(cd/A
@20mA/㎠)
외부양자효율
(%
@20mA/㎠)
비교시험예 (0.17, 0.19) 456 1.89 1.20
시험예 1
(화합물 2-1)
(0.15, 0.18) 452, 479 5.73 4.11
시험예 2
(화합물 2-2)
(0.15, 0.22) 458, 483 5.95 3.78
(결과)
상기 표 3 및 도 2로 확인할 수 있는 바와 같이 본 발명의 화합물들을 발광층으로 사용하여 제작한 소자는 청색 파장 영역에서 발광하며, 시험예 1~2의 소자가 비교시험예의 소자에 비해 발광 효율 및 외부양자효율 특성이 모두 향상됨을 확인할 수 있다. 이러한 발광 효율 및 외부양자효율 특성의 향상은 낮은 구동전압과 발광 효율이 개선된 유기 전계발광 소자를 제공할 수 있다.

Claims (11)

  1. 하기 화학식 1로 표시되는 융합된 플루오란텐 유도체.
    [화학식 1]
    Figure 112016035316414-pat00101

    [상기 화학식 1에서
    Ar3
    Figure 112016035316414-pat00102
    ,
    Figure 112016035316414-pat00103
    ,
    Figure 112016035316414-pat00104
    ,
    Figure 112016035316414-pat00105
    ,
    Figure 112016035316414-pat00106
    ,
    Figure 112016035316414-pat00107
    ,
    Figure 112016035316414-pat00108
    ,
    Figure 112016035316414-pat00109
    ,
    Figure 112016035316414-pat00110
    Figure 112016035316414-pat00111
    로 이루어진 군 중에서 선택된 어느 하나이며, (여기서, A는 페닐기 또는 나프탈렌기이며, X8, X9, X10 및 X11은 각각 독립적으로 CH 또는 N이다.)
    p는 0 또는 1이고 q는 0 내지 2의 정수이되, p와 q는 동시에 0이 아니며,
    X5, X6 및 X7은 각각 독립적으로 CH 또는 N이다.]
  2. 삭제
  3. 삭제
  4. 제 1항에 있어서,
    상기 화학식 1의 화합물은 하기 화학식 2로 이루어진 군으로부터 선택되는 것을 특징으로 하는 융합된 플루오란텐 유도체.
    [화학식 2]
    Figure 112016035316414-pat00065

    Figure 112016035316414-pat00112

    Figure 112016035316414-pat00113

    Figure 112016035316414-pat00114
  5. 제 1항 또는 제 4항의 융합된 플루오란텐 유도체를 포함하는 유기 전계발광 소자.
  6. 제 5항에 있어서,
    상기 융합된 플루오란텐 유도체가 발광층 재료로 사용되는 것을 특징으로 하는 유기 전계발광 소자.
  7. 제 6항에 있어서,
    상기 발광층 재료가 청색 형광 도판트 재료인 유기 전계발광 소자.
  8. 제 6항에 있어서,
    상기 융합된 플루오란텐 유도체가 청색, 녹색 및 적색 형광의 도판트 재료로 사용되는 유기 전계발광 소자.
  9. 제1 전극, 제2 전극, 및 상기 전극들 사이에 배치된 1층 이상의 유기막을 포함하되,
    상기 유기막은 제 1항 또는 제 4항의 융합된 플루오란텐 유도체를 포함하는 유기 전계발광 소자.
  10. 제 9항에 있어서,
    상기 유기막은 정공주입층, 정공수송층, 정공주입 기능과 정공수송 기능을 동시에 갖는 기능층, 버퍼층, 전자저지층, 발광층, 정공저지층, 전자수송층, 전자주입층, 및 전자수송 기능과 전자주입 기능을 동시에 갖는 기능층으로 이루어진 군 중에서 선택되는 1층 이상을 포함하는 유기 전계발광 소자.
  11. 제 9항에 있어서,
    상기 융합된 플루오란텐 유도체는 발광층, 정공주입층, 정공수송층, 및 정공주입 기능과 정공수송 기능을 동시에 갖는 기능층으로 이루어진 군 중에서 선택되는 1층 이상에 포함되는 유기 전계발광 소자.
KR1020140130940A 2014-09-30 2014-09-30 융합된 플루오란텐 유도체 및 이를 포함한 유기 전계발광 소자 KR101661592B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140130940A KR101661592B1 (ko) 2014-09-30 2014-09-30 융합된 플루오란텐 유도체 및 이를 포함한 유기 전계발광 소자

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140130940A KR101661592B1 (ko) 2014-09-30 2014-09-30 융합된 플루오란텐 유도체 및 이를 포함한 유기 전계발광 소자

Publications (2)

Publication Number Publication Date
KR20160038310A KR20160038310A (ko) 2016-04-07
KR101661592B1 true KR101661592B1 (ko) 2016-10-04

Family

ID=55789515

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140130940A KR101661592B1 (ko) 2014-09-30 2014-09-30 융합된 플루오란텐 유도체 및 이를 포함한 유기 전계발광 소자

Country Status (1)

Country Link
KR (1) KR101661592B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11641776B2 (en) 2018-12-05 2023-05-02 Lg Display Co., Ltd. Organic compound, organic light emitting diode and organic light emitting device having the compound

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102656919B1 (ko) * 2016-09-27 2024-04-16 솔루스첨단소재 주식회사 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
JPWO2018088472A1 (ja) * 2016-11-09 2019-10-03 出光興産株式会社 化合物、組成物、有機エレクトロルミネッセンス素子、及び電子機器
KR102293510B1 (ko) * 2018-11-05 2021-08-24 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자
CN109970716B (zh) * 2019-04-11 2020-07-24 石家庄诚志永华显示材料有限公司 有机化合物及其在有机电致发光装置中的应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080047209A (ko) * 2006-11-24 2008-05-28 삼성전자주식회사 유기 발광 화합물 및 이를 구비한 유기 발광 소자
KR20110077871A (ko) 2009-12-30 2011-07-07 주식회사 두산 유기 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
KR101184159B1 (ko) * 2009-12-30 2012-09-18 주식회사 두산 유기 화합물 및 이를 이용한 유기 전계 발광 소자
KR20120081539A (ko) * 2011-01-11 2012-07-19 (주)씨에스엘쏠라 유기발광화합물 및 이를 이용한 유기 광소자
KR101430589B1 (ko) * 2011-02-21 2014-08-19 (주)씨에스엘쏠라 유기발광화합물 및 이를 이용한 유기 광소자

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11641776B2 (en) 2018-12-05 2023-05-02 Lg Display Co., Ltd. Organic compound, organic light emitting diode and organic light emitting device having the compound

Also Published As

Publication number Publication date
KR20160038310A (ko) 2016-04-07

Similar Documents

Publication Publication Date Title
KR101806464B1 (ko) 피리딜기가 결합된 피리미딘 유도체 및 이를 이용한 유기 전계 발광 소자
KR101650595B1 (ko) 치환된 안트라센환 구조와 피리도인돌환 구조를 가지는 화합물 및 유기 전계 발광 소자
KR101576562B1 (ko) 유기발광 화합물 및 이를 이용한 유기 전계 발광 소자
KR101601356B1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
KR101661592B1 (ko) 융합된 플루오란텐 유도체 및 이를 포함한 유기 전계발광 소자
KR20150061174A (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
KR20150047858A (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
KR20170058619A (ko) 페닐기가 결합된 피리미딘 유도체 및 이를 이용한 유기 전계 발광 소자
KR20140145451A (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
KR20130123484A (ko) 아민 유도체 및 이를 포함한 유기 전계발광 소자
KR20140014135A (ko) 치환된 비피리딜기와 피리도인돌환 구조를 가지는 화합물 및 유기 일렉트로루미네센스 소자
KR101670906B1 (ko) 포스포릴기가 결합된 트리아진 유도체 및 이를 포함한 유기 전계발광 소자
KR101842503B1 (ko) 아릴기 또는 헤테로아릴기 치환된 다환의 페난트리딘 유도체 및 이를 포함한 유기 전계발광 소자
KR101585303B1 (ko) 유기발광 화합물 및 이를 이용한 유기 전계 발광 소자
KR101661591B1 (ko) 트리아졸기가 치환된 파이렌 유도체 및 이를 포함한 유기 전계발광 소자
KR101513988B1 (ko) 방향족 아민 유도체 및 이를 포함한 유기 전계발광 소자
KR101612158B1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
KR101528767B1 (ko) 안트라센 유도체 및 이를 포함한 유기 전계발광 소자
KR101513987B1 (ko) 방향족 아민 유도체 및 이를 포함한 유기 전계발광 소자
KR101652323B1 (ko) 포스포릴기가 결합된 트리아진 유도체 및 이를 포함한 유기 전계발광 소자
KR101714509B1 (ko) 디벤조-벤지미다졸 유도체 및 이를 포함한 유기 전계발광 소자
KR101581948B1 (ko) 플루오란텐 유도체 및 이를 포함한 유기 전계발광 소자
KR101759439B1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
KR101652325B1 (ko) 포스포릴기가 결합된 트리아진 유도체 및 이를 포함한 유기 전계발광 소자
KR20190071889A (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant