WO2020088470A1 - 发光单元及其制造方法、显示装置 - Google Patents

发光单元及其制造方法、显示装置 Download PDF

Info

Publication number
WO2020088470A1
WO2020088470A1 PCT/CN2019/114099 CN2019114099W WO2020088470A1 WO 2020088470 A1 WO2020088470 A1 WO 2020088470A1 CN 2019114099 W CN2019114099 W CN 2019114099W WO 2020088470 A1 WO2020088470 A1 WO 2020088470A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor layer
light
layer
emitting
light emitting
Prior art date
Application number
PCT/CN2019/114099
Other languages
English (en)
French (fr)
Inventor
王国强
王久石
刘清召
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/760,475 priority Critical patent/US11527676B2/en
Publication of WO2020088470A1 publication Critical patent/WO2020088470A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/24Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate of the light emitting region, e.g. non-planar junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0025Processes relating to coatings

Definitions

  • the present application relates to a light-emitting unit, a manufacturing method thereof, and a display device.
  • Micro Light Emitting Diode (Micro LED) technology that is, LED device miniaturization and matrix technology, refers to the integration of high-density micro LED device arrays on a chip. Micro LED devices have the characteristics of high luminous efficiency, high brightness, high resolution and fast response speed. Therefore, the application of micro LED devices in display products is an inevitable development trend of display technology.
  • the present application provides a light-emitting unit, a manufacturing method thereof, and a display device.
  • the technical solution is as follows:
  • a light-emitting unit including:
  • the second semiconductor layer covers at least part of the top surface and part of the side surface of the light-emitting layer, and the top surface of the light-emitting layer is the side of the two layers of the light-emitting layer that is away from the first semiconductor layer .
  • the second semiconductor layer covers all top surfaces and all side surfaces of the light-emitting layer.
  • the first semiconductor layer has a first convex structure
  • the light-emitting layer covers at least a part of the top surface and part of the side surface of the first convex structure.
  • the side surface of the light emitting layer is inclined with respect to the bottom surface of the first semiconductor layer; or,
  • the side surface of the light emitting layer is perpendicular to the bottom surface of the first semiconductor layer.
  • the orthographic projection of the top surface of the light emitting layer on the first semiconductor layer is within the orthographic projection of the light emitting layer on the first semiconductor layer.
  • the light exit surface of the second semiconductor layer has at least one second convex structure.
  • the light exit surface of the second semiconductor layer has a plurality of second convex structures, and the plurality of second convex structures are evenly distributed.
  • the light emitting unit further includes: a first electrode and a second electrode,
  • the first electrode is electrically connected to the first semiconductor layer, and the orthographic projection of the light emitting layer on the first semiconductor layer is offset from the orthographic projection of the first electrode on the first semiconductor layer;
  • the second electrode is electrically connected to the second semiconductor layer, and the orthographic projection of the light emitting layer on the first semiconductor layer is offset from the orthographic projection of the second electrode on the first semiconductor layer.
  • the first semiconductor layer includes: a first light-emitting drive portion and a first extension portion, an orthographic projection of the light-emitting layer on the first semiconductor layer coincides with the first light-emitting drive portion and is The first extension is staggered, the first electrode is located on the first extension and electrically connected to the first extension;
  • the second semiconductor layer includes: a second light-emitting drive portion and a second extension portion, the orthographic projection of the light-emitting layer on the first semiconductor layer is located on the first semiconductor layer of the second light-emitting drive portion In the orthographic projection of, and the orthographic projection of the light-emitting layer on the first semiconductor layer is offset from the orthographic projection of the second extension portion on the first semiconductor layer, the second electrode is located on the first Two extensions are electrically connected to the second extension.
  • the light emitting unit further includes a refractive layer, the refractive layer being located on a side of the second semiconductor layer away from the first semiconductor layer.
  • the difference between the refractive index of the second semiconductor layer and the refractive index of the refractive layer is less than a preset threshold, and the light transmittance of the refractive layer is greater than the light transmittance of the second semiconductor layer;
  • the refractive index of the refractive layer is less than the refractive index of the second semiconductor layer, and the refractive index of the refractive layer is greater than the refractive index of air.
  • the light exit surface of the refractive layer has at least one third convex structure.
  • the light exit surface of the third semiconductor layer has a plurality of third protrusion structures, and the plurality of third protrusion structures are evenly distributed.
  • the material of the second semiconductor layer includes metal-doped gallium nitride, and the material of the refractive layer includes silicon nitride.
  • the light emitting unit includes a micro LED device.
  • a method for manufacturing a light-emitting unit including:
  • At least one of the first semiconductor layer or the second semiconductor layer is in contact with at least a partial level and a partial side of the light emitting layer, and the first semiconductor layer is insulated from the second semiconductor layer, the first One of the one semiconductor layer and the second semiconductor layer is an N-type semiconductor layer, and the other is a P-type semiconductor layer.
  • the forming the first semiconductor layer includes:
  • the forming a light-emitting layer on one side of the first semiconductor layer includes:
  • the forming a second semiconductor layer on a side of the light emitting layer away from the first semiconductor layer includes:
  • Patterning the second semiconductor thin film layer to obtain the second semiconductor layer, and the light emitting surface of the second semiconductor layer has at least one second convex structure.
  • the method further includes:
  • a refractive layer is formed on the side of the second semiconductor layer away from the first semiconductor layer.
  • the forming a refractive layer on a side of the second semiconductor layer away from the first semiconductor layer includes:
  • Graphic processing is performed on the refractive film layer to obtain the refractive layer, and the light exit surface of the refractive layer has at least one third convex structure.
  • the method further includes:
  • the method further includes:
  • a second electrode is formed on a side of the second semiconductor layer away from the first semiconductor layer.
  • a display device including the light-emitting unit according to any one of the above aspects.
  • FIG. 1 is a schematic structural diagram of a light-emitting unit provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of another light-emitting unit provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of yet another light-emitting unit provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of yet another light-emitting unit provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of yet another light-emitting unit provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of light reflection and refraction on a surface of a second convex structure provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of yet another light-emitting unit provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of yet another light-emitting unit provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of yet another light-emitting unit provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a refractive index change of silicon nitride with light wavelength provided by an embodiment of the present application;
  • FIG. 11 is a schematic structural diagram of yet another light-emitting unit provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of yet another light-emitting unit provided by an embodiment of the present application.
  • FIG. 13 is a flowchart of a method for manufacturing a light-emitting unit provided by an embodiment of the present application.
  • FIG. 14 is a flowchart of another method for manufacturing a light-emitting unit provided by an embodiment of the present application.
  • current micro-LED devices include a light-emitting layer, and N-type semiconductor layers and P-type semiconductor layers on both sides of the light-emitting layer, the N-type semiconductor layer is in contact with the top surface of the light-emitting layer The layer is in contact with the bottom surface of the light-emitting layer, and the contact surface of the light-emitting layer and the N-type semiconductor layer, and the contact surface of the light-emitting layer and the P-type semiconductor layer are flat, which makes the light-emitting area of the micro-LED device smaller, Therefore, the light extraction efficiency of the micro LED device is low.
  • the light extraction efficiency may be the percentage of the number of photons emitted into free space per unit time and the number of photons generated by recombination of electrons and holes per unit time.
  • the top surface of the light-emitting layer may be the surface of the surface of the light-emitting layer that is away from the P-type semiconductor layer, and the bottom surface of the light-emitting layer may be the surface of the surface of the light-emitting layer that is in contact with the P-type semiconductor layer.
  • An embodiment of the present application provides a light-emitting unit including a first semiconductor layer, a light-emitting layer, and a second semiconductor layer that are stacked and distributed, at least one of the first semiconductor layer or the second semiconductor layer is at least in contact with the light-emitting layer. Part of the level and part of the sides are in contact, and the first semiconductor layer is insulated from the second semiconductor layer.
  • One of the first semiconductor layer and the second semiconductor layer is an N-type semiconductor layer, and the other is a P-type semiconductor layer.
  • both the surface and the side of the light-emitting layer can emit light, and the light-emitting area of the light-emitting layer is large, so that the The light-emitting unit has a large light-emitting area and a high light extraction rate.
  • the light-emitting unit is usually located on the base substrate, the surface of the light-emitting layer includes a layer and a side, the side of the light-emitting layer usually intersects the board surface of the base substrate, the layer of the light-emitting layer may be the surface of the light-emitting layer except the light-emitting layer The surface outside the side.
  • the second semiconductor layer is in contact with part of the level and part of the side surface of the light-emitting layer.
  • the second semiconductor layer covers at least part of the level and part of the side surface of the light-emitting layer as an example for description.
  • FIG. 1 shows a schematic structural diagram of a light-emitting unit provided by an embodiment of the present application. As shown in FIG.
  • the light-emitting unit may include: a first semiconductor layer 001 and a light-emitting layer 002 distributed in a stack And a second semiconductor layer 003, the second semiconductor layer 003 covers at least part of the top surface 002d and part of the side surface 002c of the light emitting layer 002, and the first semiconductor layer 001 is insulated from the second semiconductor layer 003, the first semiconductor layer 001 and the second One of the semiconductor layers 003 is an N-type semiconductor layer, and the other is a P-type semiconductor layer.
  • the first semiconductor layer 001 may be an N-type semiconductor layer
  • the second semiconductor layer 003 may be a P-type semiconductor layer.
  • the first semiconductor layer 001 may be a P-type semiconductor layer
  • the second semiconductor layer 003 may be an N-type semiconductor layer, which is not limited in the embodiments of the present application.
  • the top surface 002d of the light-emitting layer 002 may be the side of the two layers of the light-emitting layer 002 away from the first semiconductor layer 001. It is easy to understand that the light emitting unit is usually located on the base substrate, the first semiconductor layer 001, the light emitting layer 002 and the second semiconductor layer 003 may be stacked in a direction away from the base substrate, and the top surface 002d of the light emitting layer 002 may also be the light emitting
  • the side of the surface of the layer 002 away from the base substrate, the side surface 002c of the light-emitting layer 002 may be the surface of the surface of the light-emitting layer 002 that intersects the top surface 002d of the light-emitting layer 002 and the plate surface of the base substrate.
  • the light-emitting unit provided by the embodiment of the present application includes a first semiconductor layer, a light-emitting layer, and a second semiconductor layer that are stacked and distributed, and the second semiconductor layer covers at least part of the top surface and part of the side surface of the light-emitting layer Therefore, part of the top surface and part of the side surface of the light emitting layer can emit light, so that the top surface and side surfaces of the light emitting unit can emit light, which helps to increase the light emitting area of the light emitting unit, thereby increasing the light extraction efficiency of the light emitting unit.
  • the second semiconductor layer 003 covers all the top surfaces 002d and all the side surfaces 002c of the light-emitting layer 002, so that all the top surfaces and all the side surfaces of the light-emitting unit can emit light, which can be greatly increased The light emitting area of the light emitting unit.
  • the A film layer covering the C surface of the B film layer herein may mean that the A film layer covers the C surface, and the thickness of the A film layer at different positions may be equal or unequal.
  • the A film layer covers the C surface of the B film layer, and the thickness of the A film layer at different positions is equal the A film layer and the B film layer can be better matched.
  • the second semiconductor layer 003 covers the top surface 002d and the side surface 002c of the light emitting layer 002, and the thickness of the second semiconductor layer 003 at different positions is equal, the second semiconductor layer 003 and the light emitting layer 002 can be better
  • the matching ensures the carrier transmission efficiency between the second semiconductor layer 003 and the light-emitting layer 002, thereby ensuring the light-emitting efficiency of the light-emitting unit.
  • the display unit further includes: an insulating layer 004 located between the first semiconductor layer 001 and the second semiconductor layer 003, the insulating layer 004 may be distributed in the same layer as the light emitting layer 002, the insulating The layer 004 may insulate the first semiconductor layer 001 and the second semiconductor layer 003.
  • the material of the insulating layer 004 may be at least one of silicon nitride, silicon oxide, or silicon oxynitride.
  • the material of the insulating layer 004 is silicon nitride.
  • the structure of the first semiconductor layer 001 may have multiple implementable ways.
  • the first semiconductor layer 001 has a first convex structure (not shown in FIGS. 1 and 2), and the light-emitting layer 002 covers at least the first convex structure.
  • the side of the first semiconductor layer 001 near the light-emitting layer 002 may be a plane.
  • FIG. 2, FIG. 3 and FIG. 4 show schematic structural diagrams of three other light-emitting units provided by embodiments of the present application.
  • the shape of the vertical section of the first convex structure is trapezoidal, and the first convex structure may be a mesa-shaped structure, such as a round mesa-shaped structure or a truncated mesa-shaped structure.
  • the vertical cross-sectional shape of the first convex structure is rectangular, and the first convex structure may be a columnar structure, such as a cylindrical structure or a prismatic structure.
  • the vertical section of the first convex structure may be a section perpendicular to the bottom surface of the first semiconductor layer 001 in the section of the first convex structure.
  • the structure of the light-emitting layer 002 may also have multiple implementable modes, for example.
  • the side surface 002c of the light emitting layer 002 may be inclined with respect to the bottom surface of the first semiconductor layer 001, or, as shown in FIGS. 2 and 4, the side surface 002c of the light emitting layer 002 may be relative to the first
  • the bottom surface of a semiconductor layer 001 is vertical.
  • the orthographic projection of the top surface 002d of the light emitting layer 002 on the first semiconductor layer 001 may be within the orthographic projection of the light emitting layer 002 on the first semiconductor layer 001.
  • the top surface 002d of the light-emitting layer 002 may be flat or curved.
  • the vertical cross-sectional shape of the light-emitting layer 002 may be arched. As shown in FIG. 1 and 2, when the first semiconductor layer 001 has a first convex structure and the top surface 002d of the light-emitting layer 002 is a plane, the vertical cross-sectional shape of the light-emitting layer 002 may be arched. As shown in FIG.
  • the shape of the vertical cross-section of the light-emitting layer 002 may be trapezoidal, and the light-emitting layer 002 may have a mesa-shaped structure, such as a prism-shaped structure or a circular mesa-shaped structure. As shown in FIG.
  • the shape of the vertical cross section of the light emitting layer 002 may be rectangular, and the light emitting layer 002 may have a prismatic structure or a cylindrical structure.
  • the vertical cross section of the light emitting layer 002 may be a cross section of the light emitting layer 002 in a direction perpendicular to the bottom surface of the first semiconductor layer 001.
  • the side surface 002c of the light emitting layer 002 is inclined with respect to the bottom surface of the first semiconductor layer 001, and the size of the top surface 002d of the light emitting layer 002 is smaller than the size of the bottom surface of the light emitting layer 002,
  • the top surface 002d of the light-emitting layer 002 does not block the light emitted from the side surface 002c of the light-emitting layer 002, so that more light can be emitted from the light-emitting unit, which helps to improve the light extraction rate of the light-emitting layer 002.
  • the side surface 002c of the light-emitting layer 002 is perpendicular to the bottom surface of the first semiconductor layer 001, and the second semiconductor layer 003 covers the top surface 002d and the side surface 002c of the light-emitting layer 002, which helps increase light emission The luminous area of the unit.
  • the bottom surface of the light emitting layer 002 may be the surface of the surface of the light emitting layer close to the first semiconductor layer 001
  • the bottom surface of the first semiconductor layer 001 may be the surface of the first semiconductor layer 001 far from the light emitting layer 002.
  • FIG. 5 shows a schematic structural diagram of yet another light emitting unit provided by an embodiment of the present application.
  • the light emitting surface of the second semiconductor layer 003 may have at least one second protrusion In structure 0031
  • the orthographic projection of the top surface 003a of the second convex structure 0031 on the second semiconductor layer 003 is located in the orthographic projection of the bottom surface 0031b of the second convex structure 0031 on the second semiconductor layer 003.
  • the shape of the vertical section of the second convex structure 0031 may be a trapezoid, and the bottom angle of the trapezoid may be an acute angle. It is easy to understand that FIG.
  • the shape of the vertical section of the second convex structure 0031 may also be an acute-angle triangle, a semicircle, or a rectangle.
  • the vertical section of the second convex structure 0031 may be a section of the second convex structure 0031 in a direction perpendicular to the bottom surface of the second semiconductor layer 001.
  • the embodiments of the present application describe the second convex structure on the second semiconductor layer 003 based on the light emitting unit shown in FIG. 1, and the second semiconductor layer of the light emitting unit shown in FIGS. 2 to 4 003 may also have a second raised structure, which is not limited in the embodiments of the present application.
  • the light emitting surface of the second semiconductor layer 003 has a plurality of second convex structures 0031, and the plurality of second convex structures 0031 can be evenly distributed on the light emitting surface of the second semiconductor layer 003, so that it can be
  • the light emitting surface of the second semiconductor layer 003 has a periodic convex structure.
  • the second convex structure 0031 can increase the area of the light emitting surface of the second semiconductor layer 003 To further increase the light emitting area of the light emitting unit.
  • the second convex structure 0031 can reflect and / or refract light, change the incident angle of the light on the light exit surface of the second semiconductor layer 003, and when the incident angle of the light is less than the total reflection angle of the light After being refracted, it can be emitted from the light emitting surface of the second semiconductor layer 003, that is, the second convex structure 0031 can destroy the total reflection of light, so that more light is emitted from the light emitting surface of the second semiconductor layer 003, and the light emitting unit is increased. The amount of light emitted, thereby increasing the light extraction efficiency of the light emitting unit.
  • the uniformly distributed plurality of second convex structures 0031 can reflect and / or refract light more evenly, The amount of light emitted from the light emitting unit is increased, thereby increasing the light extraction efficiency of the light emitting unit.
  • FIG. 6 shows a schematic diagram of light propagation in the second semiconductor layer 003 provided by an embodiment of the present application.
  • the light G1 irradiates a side of the second convex structure 0031
  • the light Part of the light in G1 is refracted to form refracted light G2
  • the refracted light G2 is emitted from the second convex structure 0031
  • part of the light is reflected to form reflected light G3
  • the reflected light G3 irradiates another part of the second convex structure 0031
  • refraction occurs on the other side and finally exits from the second convex structure 0031.
  • the light emitting surface of the second semiconductor layer 003 is a flat surface, when light is irradiated to the light emitting surface, the light is reflected on the light emitting surface to form reflected light, and the reflected light may directly illuminate the interior of the light emitting unit, and It cannot be emitted from the light emitting unit. It can be seen that the second convex structure 0031 on the light emitting surface of the second semiconductor layer 003 can adjust the light, so that the light that could not be emitted from the light emitting unit can be emitted from the light emitting unit, and the light extraction rate of the light emitting unit is improved.
  • FIG. 7 shows a schematic structural diagram of yet another light-emitting unit provided by an embodiment of the present application.
  • the light-emitting unit may further include a first electrode 005, and the first electrode 005 It is electrically connected to the first semiconductor layer 001, and the orthographic projection of the light emitting layer 002 on the first semiconductor layer 001 is offset from the orthographic projection of the first electrode 005 on the first semiconductor layer 001.
  • the first electrode 005 is used to load the first semiconductor layer 001 with a first electrical signal.
  • the orthographic projection of the light-emitting layer 002 on the first semiconductor layer 001 and the orthographic projection of the first electrode 005 on the first semiconductor layer 001 mean that the orthographic projection of the light-emitting layer 002 on the first semiconductor layer 001 and There is no overlapping region in the orthographic projection of the first electrode 005 on the first semiconductor layer 001. Since the orthographic projection of the light emitting layer 002 on the first semiconductor layer 001 does not overlap with the orthographic projection of the first electrode 005 on the first semiconductor layer 001, the first electrode 005 does not occupy the light emitting area of the light emitting unit, which can ensure The light-emitting unit has a large light-emitting area.
  • the first semiconductor layer 001 may include: a first light-emitting driving portion (not shown in FIG. 7) and a first extension portion 0011, the light-emitting layer 002
  • the orthographic projection on the first semiconductor layer 001 coincides with the first light-emitting drive portion, and the orthographic projection of the light-emitting layer 002 on the first semiconductor layer 001 is offset from the first extension portion 0011, and the first electrode 005 is located on the first extension On the portion 0011, and the first electrode 005 is electrically connected to the first extension portion 0011.
  • the first light emitting driving part and the first extending part 0011 may be an integrated structure, the first light emitting driving part may be a part of the first semiconductor layer 001 for driving the light emitting layer 002 to emit light, and the first extending part 0011 may be the first The portion of the semiconductor layer 001 other than the first light-emitting drive portion.
  • the first electrode 005 may be located at any position of the first extension portion 0011, and the first electrode 005 may be a post located on the first extension portion 0011 or a solder joint of a lead for loading a first electrical signal.
  • the light emitting unit may further include: a second electrode 006, the second electrode 006 is electrically connected to the second semiconductor layer 003, and the light emitting layer 002 is positive on the first semiconductor layer 001
  • the projection is offset from the orthographic projection of the second electrode 006 on the first semiconductor layer 001.
  • the second electrode 006 is used to load a second electrical signal to the second semiconductor layer 003, and the polarity of the second electrical signal is opposite to that of the first electrical signal.
  • the orthographic projection of the light emitting layer 002 on the first semiconductor layer 001 is staggered from the orthographic projection of the second electrode 006 on the first semiconductor layer 001, the second electrode 006 does not occupy the light emitting area of the light emitting unit, which can ensure the light emitting unit Has a large light-emitting area.
  • the second semiconductor layer 003 may include: a second light-emitting driving portion (not shown in FIG. 7) and a second extension portion 0031, the light-emitting layer 002
  • the orthographic projection on the first semiconductor layer 001 is located in the orthographic projection of the second light-emitting drive portion on the first semiconductor layer 001, and the orthographic projection of the light-emitting layer 002 on the first semiconductor layer 001 and the second extension portion 0031 are in The orthographic projection on the first semiconductor layer 001 is staggered, the second electrode 006 is located on the second extension 0031, and the second electrode 006 is electrically connected to the second extension 0031.
  • the second light emitting driving part and the second extending part 0031 may be an integrated structure, the second light emitting driving part may be a part of the second semiconductor layer 003 for driving the light emitting layer 002 to emit light, and the second extending part 0031 may be the second The portion of the semiconductor layer 003 other than the second light-emitting drive portion.
  • the second electrode 006 can be located at any position of the second extension 0031, and the second electrode 006 can be a post located on the second extension 0031 or a solder joint of a lead for loading a second electrical signal.
  • the light emitting unit may further include: The semiconductor layer 003 is away from the refractive layer 007 on the side of the first semiconductor layer 001.
  • the second semiconductor layer 003 may include: a second light emitting driving portion (not marked in FIGS. 8 and 9) and a second extension portion (not marked in FIGS. 8 and 9), and the refractive layer 007 Cover the light exit surface of the second light-emitting drive unit.
  • the difference between the refractive index of the second semiconductor layer 003 and the refractive index of the refractive layer 007 is less than a preset threshold, and the light transmittance of the refractive layer 007 is greater than the light transmittance of the second semiconductor layer 003.
  • the refractive index of the refractive layer 007 is less than the refractive index of the second semiconductor layer 003, and the refractive index of the refractive layer 007 is greater than the refractive index of air.
  • the difference between the refractive index of the second semiconductor layer 003 and the refractive layer 007 is less than a preset threshold, the difference between the refractive index of the second semiconductor layer 003 and the refractive layer 007 is smaller, Therefore, the refractive index of the second semiconductor layer 003 is similar to the refractive index of the refractive layer 007. According to optical theory, the closer the refractive indices of the two media are, the greater the total reflection angle when light enters the other medium from one of the two media, and the smaller the total reflection loss.
  • the difference between the refractive index of the second semiconductor layer 003 and the refractive index of the refractive layer 007 is less than a preset threshold, which can ensure that as much light as possible enters the refractive layer 007 from the second semiconductor layer 003 through refraction.
  • the refracted light can be directly emitted from the refraction layer 007 and irradiated into the free space, and the reflected light irradiates the refraction layer 007 At the interface with the second semiconductor layer 003, it will be reflected again by the interface, and the re-reflected light will be reflected and refracted when irradiated to the light exit surface of the refractive layer 007.
  • the light transmittance of the refractive layer 007 is greater than the light transmittance of the second semiconductor layer 003, it can be ensured that as much light as possible is transmitted through the refractive layer 007, and finally the light reflected by the light exit surface of the refractive layer 007 for the first time
  • the amount of light refracted into the free space is usually much larger than the amount of light blocked by the light transmittance of the refractive layer 007, and the refractive layer 007 can increase the amount of light irradiated into the free space.
  • the material of the second semiconductor layer 003 may include metal-doped gallium nitride (GaN), and the material of the refractive layer 007 may include silicon nitride (Si 3 N 4 ), and the gallium nitride refracts visible light
  • the rate is about 2.5
  • the refractive index of air to visible light is about 1
  • when the light enters the air from gallium nitride its total reflection angle is about 24 ° (degrees)
  • its light extraction rate is about 4% (percentage).
  • FIG. 10 illustrates a schematic diagram of a refractive index change of silicon nitride according to the wavelength of light provided by an embodiment of the present application.
  • the refractive index, the abscissa represents the wavelength of light, the unit is nanometers, according to Figure 10 we can see that the refractive index range of silicon nitride for visible light (wavelength range 380-780 nanometers) is [1.9, 2.1], due to the gallium nitride The refractive index is close to that of silicon nitride.
  • the refractive layer 007 made of silicon nitride is located on the light exit surface of the second semiconductor layer 003 to increase the light extraction efficiency of the light emitting unit.
  • the rate is similar, which can increase the total reflection angle of light entering the refractive layer 007 from the second semiconductor layer 003, and because the refractive index of the refractive layer 007 is similar to the refractive index of air, it can increase the incidence of light entering the air from the refractive layer 007 Total reflection angle, thereby reducing the amount of light that is totally reflected.
  • the refractive layer 007 can enable light to refract and reflect at the interface between the second semiconductor layer 003 and the refractive layer 007, and the light exit surface of the refractive layer 007, increasing the amount of light emitted from the light emitting unit and irradiated into free space , which in turn increases the light extraction efficiency of the light emitting unit.
  • FIGS. 11 and 12 show schematic structural diagrams of two other light emitting units provided by the embodiments of the present application.
  • the light exit surface of the refractive layer 007 may have at least A third convex structure 0071, the orthographic projection of the top surface 0071a of the third convex structure 0071 on the refractive layer 007 is located in the orthographic projection of the bottom surface 0071b of the third convex structure 0071 on the refractive layer 007.
  • the shape of the vertical section of the third convex structure 0071 may be a trapezoid, and the bottom angle of the trapezoid may be an acute angle. It is easy to understand that FIGS.
  • the shape of the vertical section of the third convex structure 0071 may also be an acute-angle triangle, a semicircle, or a rectangle.
  • the vertical section of the third convex structure 0071 may be a section of the third convex structure 0071 in a direction perpendicular to the bottom surface of the second semiconductor layer 001.
  • the embodiments of the present application describe the refraction layer 007 based on the light-emitting unit shown in FIGS. 1 and 2.
  • the refraction layer 007 on the basis of the light-emitting unit shown in FIGS. 3 and 4, refer to this The embodiments are not limited in the embodiments of the present application.
  • the light exit surface of the refractive layer 007 has a plurality of third convex structures 0071, and the plurality of third convex structures 0071 may be evenly distributed on the light exit surface of the refractive layer 007, so As a result, the light exit surface of the refractive layer 007 can have a periodic convex structure.
  • the third convex structure 0071 when the light emitting surface of the refractive layer 007 has at least one third convex structure 0071, on the one hand, the third convex structure 0071 can increase the area of the light emitting surface of the refractive layer 007, thereby increasing light emission
  • the light-emitting area of the unit on the other hand, the third convex structure 0071 can reflect and / or refract light, and the amount of light emitted from the light-emitting unit can be increased by the reflection and / or refraction (for the principle, please refer to the second Relevant principles of raised structures).
  • the plurality of third convex structures 7007 evenly distributed can reflect and / or refract light more evenly, increasing The amount of light emitted by the light emitting unit, thereby increasing the light extraction efficiency of the light emitting unit.
  • the light emitting unit may be a structure capable of emitting light such as a micro LED device or an LED device.
  • the light emitting unit shown in FIG. 11 is a micro LED device, and the height of the light emitting unit is 2 ⁇ m and the diameter is 10 ⁇ m, the experiment proves
  • the light-emitting area of the light-emitting unit shown in FIG. 11 is at least 30 square micrometers greater than the light-emitting area of the micro-LED device known to the inventor. Therefore, the solution provided by the embodiments of the present application can increase the light-emitting area of the light-emitting unit.
  • the light-emitting unit provided by the embodiment of the present application includes the first semiconductor layer, the light-emitting layer and the second semiconductor layer that are stacked and distributed, at least one of the first semiconductor layer or the second semiconductor layer is at least one It is in contact with part of the surface and part of the side of the light-emitting layer, so the layer and the side of the light-emitting layer can emit light, which helps to increase the light-emitting area of the light-emitting layer, thereby increasing the light-emitting area of the light-emitting unit, and increasing the light extraction of the light-emitting unit effectiveness.
  • FIG. 13 shows a flowchart of a method for manufacturing a light emitting unit provided by an embodiment of the present application. As shown in FIG. 13, the method may include the following steps:
  • step 301 a first semiconductor layer is formed.
  • step 302 a light emitting layer is formed on one side of the first semiconductor layer.
  • a second semiconductor layer is formed on the side of the light emitting layer away from the first semiconductor layer.
  • the first semiconductor layer or the second semiconductor layer is in contact with at least part of the level and part of the side surface of the light-emitting layer, and the first semiconductor layer is insulated from the second semiconductor layer.
  • One is an N-type semiconductor layer, and the other is a P-type semiconductor layer.
  • the first semiconductor layer may be an N-type semiconductor layer, and the second semiconductor layer may be a P-type semiconductor layer.
  • the first semiconductor layer may be a P-type semiconductor layer, and the second semiconductor layer may be an N-type semiconductor layer.
  • the method for manufacturing a light-emitting unit includes a first semiconductor layer, a light-emitting layer, and a second semiconductor layer that are stacked and distributed, the first semiconductor layer or the second semiconductor At least one of the layers is in contact with at least a part of the surface and part of the side of the light-emitting layer, so the layer and the side of the light-emitting layer can emit light, which helps to increase the light-emitting area of the light-emitting layer, thereby increasing the light-emitting area of the light-emitting unit, increasing Light extraction efficiency of large light emitting unit.
  • the light-emitting unit is usually located on a base substrate.
  • a base substrate can be usually provided first, and then each film layer of the light-emitting unit is formed on the base substrate.
  • the first semiconductor layer is an N-type semiconductor layer
  • the second semiconductor layer is a P-type semiconductor layer
  • each film layer of a light-emitting unit is formed on a base substrate as an example, and a method of manufacturing the light-emitting unit will be described.
  • FIG. 14 shows a flowchart of another method for manufacturing a light emitting unit provided by an embodiment of the present application. As shown in FIG. 14, the method may include the following steps:
  • step 401 a base substrate is provided.
  • the base substrate may be a transparent substrate, which may be a rigid substrate made of a light-transmitting material with a certain hardness, such as glass, quartz, or transparent resin.
  • the base substrate may be a flexible substrate made of a flexible material such as polyimide (Polyimide, PI).
  • step 402 a first semiconductor layer is formed on the base substrate.
  • the material of the first semiconductor layer may be a semiconductor material doped with non-metal, for example, the first semiconductor material may be gallium nitride doped with silicon.
  • gallium nitride doped with silicon can be used, either by magnetron sputtering, thermal evaporation, or plasma enhanced chemical vapor deposition (Plasma Enhanced Chemical Vapor Deposition, PECVD), etc. on the substrate
  • a first semiconductor thin film layer having a certain thickness is formed on the substrate, and then the first semiconductor thin film layer is patterned through a patterning process to obtain the first semiconductor layer.
  • one patterning process may include: photoresist coating, exposure, development, etching and photoresist stripping.
  • the structure of the first semiconductor layer may have multiple implementations, for example, the side of the first semiconductor layer far away from the base substrate may be a plane, or the side of the first semiconductor layer far away from the base substrate may have
  • the first raised structure may be a mesa-shaped structure or a columnar structure.
  • it may include a first light-emitting drive portion and a first extension portion, the first light-emitting drive portion and the first extension portion may be electrically connected, for example, the first light-emitting drive The portion and the first extension portion may be an integral structure.
  • the first semiconductor thin film layer may be patterned according to actual needs to obtain first semiconductor layers of different structures that meet different actual needs.
  • the embodiments of the present application take the following two achievable methods as examples , To illustrate the first semiconductor thin film layer patterning process:
  • the thickness of the whole layer structure may be equal to that of the first semiconductor layer to be formed Thickness, so when patterning the first semiconductor thin film layer, you can first apply photoresist on the surface of the first semiconductor thin film layer away from the base substrate, and then use a mask to expose the photoresist and Developing to remove the photoresist on the first semiconductor thin film layer except the area corresponding to the first semiconductor layer to be formed, then etching the first semiconductor thin film layer, and finally stripping the remaining photoresist to obtain a substrate away from the base substrate
  • the first semiconductor layer has a flat surface.
  • the first semiconductor layer to be formed away from the base substrate has a first convex structure
  • the first semiconductor layer includes a first light emitting driving portion and a first extension portion
  • the thickness of the whole layer structure may be equal to the thickness of the first light emitting driving portion of the first semiconductor layer. Therefore, when patterning the first semiconductor thin film layer, the first The surface of the semiconductor thin film layer far away from the base substrate is coated with photoresist, and then a halftone mask is used to expose and develop the photoresist to obtain a photoresist pattern.
  • the photoresist pattern includes a first photoresist area and A second photoresist area, the first photoresist area corresponds to the first raised structure of the first semiconductor layer to be formed, and the second photoresist area corresponds to the first extension of the first semiconductor layer to be formed, And the thickness of the first photoresist area is greater than the thickness of the second photoresist area, and then the first semiconductor thin film layer is etched using the photoresist pattern as a mask to remove the first semiconductor thin film layer except for the first A semiconductor
  • the first extension portion is obtained by etching, and finally the remaining photoresist is stripped to obtain a first light-emitting drive portion, thereby obtaining a first semiconductor layer having a first convex structure on a side away from the base substrate.
  • the side surface of the first convex structure corresponds to the first raised structure of the first semiconductor layer to be formed
  • the second photoresist area corresponds to the first extension of the first semiconductor layer to be formed
  • a first electrode is formed on the side of the first semiconductor layer away from the base substrate.
  • the material of the first electrode may be a conductive material such as metal or non-metal oxide.
  • the material of the first electrode may be indium tin oxide (Indium Tin Oxides, ITO).
  • a conductive material may be used to form a first electrode thin film layer with a certain thickness on the side of the first semiconductor layer away from the base substrate by any of magnetron sputtering, thermal evaporation, or PECVD, and then The first electrode thin film layer is patterned by a patterning process to obtain a first electrode.
  • the first electrode may be located on the first extension of the first semiconductor layer, and the first electrode is electrically connected to the first semiconductor layer.
  • the first electrode is used to load a first electrical signal to the first semiconductor layer.
  • the first electrode is electrically connected to the first extension, so that the first electrode is electrically connected to the first semiconductor layer.
  • one patterning process may include: photoresist coating, exposure, development, etching and photoresist stripping.
  • a light emitting layer is formed on the side of the first semiconductor layer away from the base substrate.
  • the material of the light-emitting layer may be a quantum hydrazine material.
  • the material of the light-emitting layer may be a mixed material (InGaN / GaN) of indium gallium nitride and gallium nitride.
  • a quantum hydrazine material may be used to form a light-emitting thin film layer with a certain thickness on the side of the first semiconductor layer away from the base substrate by any of magnetron sputtering, thermal evaporation, or PECVD, and then pass
  • the light-emitting thin film layer is patterned to obtain a light-emitting layer.
  • one patterning process may include: photoresist coating, exposure, development, etching and photoresist stripping.
  • the orthographic projection of the light emitting layer on the first semiconductor layer is staggered from the orthographic projection of the first electrode on the first semiconductor layer, so the first electrode does not block the light emitting layer, and the first electrode does not occupy light
  • the light emitting area of the unit ensures that the light emitting unit has a large light emitting area.
  • the positions of the first extension portion and the light-emitting layer may satisfy: the orthographic projection of the light-emitting layer on the first semiconductor layer and the positive extension of the first extension portion on the first semiconductor layer
  • the projections are staggered, thereby ensuring that the orthographic projection of the light emitting layer on the first semiconductor layer is staggered from the orthographic projection of the first electrode on the first semiconductor layer.
  • the structure of the light emitting layer is different according to the structure of the first semiconductor layer.
  • the light-emitting layer may have a mesa-shaped structure, for example, the light-emitting layer may have a prism-shaped structure or a round mesa-shaped structure.
  • the shape of the vertical cross-section of the light-emitting layer may be arched, and the light-emitting layer covers at least part of the top surface and part of the side surface of the first convex structure .
  • the side surface of the first convex structure may be inclined or vertical relative to the bottom surface of the first semiconductor layer, and accordingly, the side surface of the light emitting layer may also be inclined or vertical relative to the bottom surface of the first semiconductor layer.
  • a second semiconductor layer is formed on a side of the light-emitting layer away from the first semiconductor layer, the second semiconductor layer covers at least part of the top surface and part of the side surface of the light-emitting layer, and the first semiconductor layer is insulated from the second semiconductor layer .
  • the second semiconductor material may be a semiconductor material doped with metal, for example, the second semiconductor material may be gallium nitride doped with magnesium.
  • gallium nitride doped with magnesium can be used to form a second layer with a certain thickness on the side of the light emitting layer away from the first semiconductor layer by any one of methods such as magnetron sputtering, thermal evaporation, or PECVD.
  • the semiconductor thin film layer and then patterning the second semiconductor thin film layer through a patterning process to obtain a second semiconductor layer, the second semiconductor layer covering at least part of the top surface and part of the side surface of the light emitting layer.
  • one patterning process may include: photoresist coating, exposure, development, etching and photoresist stripping.
  • the structure of the second semiconductor layer may have multiple implementations, for example, the surface of the second semiconductor layer away from the first semiconductor layer may be a flat surface, or the second semiconductor layer may be away from the first semiconductor layer
  • the surface of the may have at least one second convex structure or a plurality of second convex structures evenly distributed, and the second convex structure may be a mesa-shaped structure or a columnar structure.
  • it may include a second light-emitting drive portion and a second extension portion, the second light-emitting drive portion covers part of the top surface and part of the side surface of the light-emitting layer
  • the orthographic projection on the layer is offset from the orthographic projection of the second extension on the first semiconductor layer.
  • the method for manufacturing the second semiconductor layer can be referred to The two achievable methods in step 402 are not repeated in the embodiments of the present application.
  • the second extension portion since the second extension portion does not need to cover the top surface and the side surface of the light emitting layer, the second extension portion may be arranged in a tiled manner (ie, the extension direction of the second extension portion is parallel to the substrate Board surface). Since the second extension portion cannot be provided in a tiled manner in the technology known to the inventor, the technical difficulty when setting the corresponding film layer is greater, and the integration difficulty of the light emitting unit is increased.
  • the provision of the second extension part can simplify the manufacturing difficulty of the second extension part and is beneficial to the integration of the light emitting unit.
  • the first semiconductor layer is insulated from the second semiconductor layer, so before forming the second semiconductor layer, an insulating layer may be formed on the side of the first semiconductor layer away from the base substrate, the insulating layer may be The light emitting layers are distributed in the same layer and cover the portion of the first semiconductor layer that is not covered by the light emitting layer, and then the second semiconductor layer is formed, so that the second semiconductor layer and the first semiconductor layer can be insulated.
  • step 406 a second electrode is formed on the side of the second semiconductor layer away from the first semiconductor layer.
  • the material of the second electrode may be a conductive material such as metal or non-metal oxide, for example, the material of the second electrode may be ITO.
  • a conductive material may be used to form a second electrode thin film layer with a certain thickness on the side of the second semiconductor layer away from the first semiconductor layer by any of magnetron sputtering, thermal evaporation, or PECVD. Then patterning the second electrode film layer through a patterning process to obtain a second electrode, the second electrode may be located on the second extension of the second semiconductor layer, and the second electrode is electrically connected to the second semiconductor layer, The second electrode is used to load a second electrical signal to the second semiconductor layer, and the polarity of the second electrical signal is opposite to the polarity of the first electrical signal loaded on the first semiconductor layer.
  • the second electrode is electrically connected to the second extension, so that the second electrode is electrically connected to the second semiconductor layer.
  • one patterning process may include: photoresist coating, exposure, development, etching and photoresist stripping.
  • a refractive layer is formed on the side of the second semiconductor layer away from the first semiconductor layer.
  • the difference between the refractive index of the second semiconductor layer and the refractive index of the refractive layer may be less than a preset threshold, and the light transmittance of the refractive layer is greater than the light transmittance of the second semiconductor layer.
  • the refractive index of the refractive layer may be smaller than the refractive index of the second semiconductor layer, and the refractive index of the refractive layer is greater than the refractive index of air.
  • the material of the second semiconductor layer includes gallium nitride doped with magnesium
  • the material of the refractive layer may include silicon nitride.
  • silicon nitride may be used, and a refractive thin film layer having a certain thickness is formed on the side of the second semiconductor layer away from the first semiconductor layer by any of magnetron sputtering, thermal evaporation, or PECVD, and then The refraction layer is patterned by a patterning process to obtain a refraction layer, and the refraction layer may cover the second light-emitting driving portion of the second semiconductor layer.
  • the light exit surface of the refractive layer (that is, the side of the refractive layer away from the second semiconductor layer) may be a flat surface.
  • the light exit surface of the refractive layer may have at least one third convex structure or a plurality of third convex structures uniformly distributed.
  • the method for manufacturing the refraction layer can refer to the two achievable methods in step 402, embodiments of the present application I will not repeat them here.
  • the method for manufacturing a light-emitting unit includes a first semiconductor layer, a light-emitting layer, and a second semiconductor layer that are stacked and distributed, the first semiconductor layer or the second semiconductor At least one of the layers is in contact with at least a part of the surface and part of the side of the light-emitting layer, so that both the surface and the side of the light-emitting layer can emit light, which helps to increase the light-emitting area of the light-emitting layer and thus the light-emitting area of the light-emitting unit Increase the light extraction efficiency of the light emitting unit.
  • an embodiment of the present application provides a display device.
  • the display device may include a light emitting unit provided by the embodiment of the present application, and the light emitting unit may be a micro LED device.
  • the display device may include a pixel, the pixel may include a thin film transistor and a light emitting unit, and the display device may further include a plurality of data lines, the data line may be electrically connected to the source of the thin film transistor, and all of the display device The data lines can be on the same layer.
  • the display device may be any of a liquid crystal panel, an electronic paper, an organic light-emitting diode (Organic Light-Emitting Diode, OLED) panel, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame or a navigator, etc.
  • OLED Organic Light-Emitting Diode
  • a device or component with a display function may be any of a liquid crystal panel, an electronic paper, an organic light-emitting diode (Organic Light-Emitting Diode, OLED) panel, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame or a navigator, etc.
  • a device or component with a display function may be any of a liquid crystal panel, an electronic paper, an organic light-emitting diode (Organic Light-Emitting Diode, OLED) panel, a mobile phone, a tablet computer, a television, a display,
  • electrical connection refers to a connection and is capable of transmitting electrical signals, but is not limited to the need for electrical signal transmission, for example, "A and B electrical connection” refers to the connection of A and B, and A and B Electrical signals can be transmitted between them, but the electrical signals must be transmitted between A and B.
  • At least one of A or B in this application is merely an association relationship describing an associated object, indicating that there may be three kinds of relationships, for example, at least one of A or B may indicate: A exists alone, and at the same time There are three cases, A and B, and B alone.
  • at least one of A, B, or C means that there can be seven relationships, which can mean: A exists alone, B exists alone, C exists alone, A and B exist simultaneously, A and C exist simultaneously, and both exist C and B, there are seven situations of A, B and C at the same time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

本申请公开了一种发光单元及其制造方法、显示装置。该发光单元包括:层叠分布的第一半导体层、发光层和第二半导体层,第一半导体层或第二半导体层中的至少一个至少与发光层的部分层面和部分侧面接触,且第一半导体层与第二半导体层绝缘,第一半导体层和第二半导体层中的一个为N型半导体层,另一个为P型半导体层。本申请有助于增大发光单元的发光面积和光提取效率。

Description

发光单元及其制造方法、显示装置
本申请要求于2018年11月01日提交的申请号为201811296440.0、发明名称为“发光单元及其制造方法、显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及一种发光单元及其制造方法、显示装置。
背景技术
微型发光二极管(Micro Light Emitting Diode,微LED)技术,即LED器件微缩化和矩阵化技术,是指在一个芯片上集成高密度的微LED器件阵列。微LED器件具有发光效率高、亮度高、解析度高和反应速度快等特点,因此,将微LED器件应用在显示产品中是显示技术的必然发展趋势。
发明内容
本申请提供了一种发光单元及其制造方法、显示装置。所述技术方案如下:
一方面,提供了一种发光单元,包括:
层叠分布的第一半导体层、发光层和第二半导体层,所述第一半导体层或所述第二半导体层中的至少一个至少与所述发光层的部分层面和部分侧面接触,且所述第一半导体层与所述第二半导体层绝缘,所述第一半导体层和所述第二半导体层中的一个为N型半导体层,另一个为P型半导体层。
可选地,所述第二半导体层至少覆盖所述发光层的部分顶面和部分侧面,所述发光层的顶面为所述发光层的两个层面中远离所述第一半导体层的一面。
可选地,所述第二半导体层覆盖所述发光层的全部顶面和全部侧面。
可选地,所述第一半导体层上具有第一凸起结构,所述发光层至少覆盖所述第一凸起结构的部分顶面和部分侧面。
可选地,所述发光层的侧面相对于所述第一半导体层的底面倾斜;或者,
所述发光层的侧面相对于所述第一半导体层的底面垂直。
可选地,所述发光层的顶面在所述第一半导体层上的正投影位于所述发光 层在所述第一半导体层上的正投影内。
可选地,所述第二半导体层的出光面具有至少一个第二凸起结构。
可选地,所述第二半导体层的出光面具有多个所述第二凸起结构,多个所述第二凸起结构均匀分布。
可选地,所述发光单元还包括:第一电极和第二电极,
所述第一电极与所述第一半导体层电连接,所述发光层在所述第一半导体层上的正投影与所述第一电极在所述第一半导体层上的正投影错开;
所述第二电极与所述第二半导体层电连接,所述发光层在所述第一半导体层上的正投影与所述第二电极在所述第一半导体层上的正投影错开。
可选地,所述第一半导体层包括:第一发光驱动部和第一延伸部,所述发光层在所述第一半导体层上的正投影与所述第一发光驱动部重合且与所述第一延伸部错开,所述第一电极位于所述第一延伸部上且与所述第一延伸部电连接;
所述第二半导体层包括:第二发光驱动部和第二延伸部,所述发光层在所述第一半导体层上的正投影位于所述第二发光驱动部在所述第一半导体层上的正投影内,且所述发光层在所述第一半导体层上的正投影与所述第二延伸部在所述第一半导体层上的正投影错开,所述第二电极位于所述第二延伸部上且与所述第二延伸部电连接。
可选地,所述发光单元还包括:折射层,所述折射层位于所述第二半导体层远离所述第一半导体层的一侧。
可选地,所述第二半导体层的折射率与所述折射层的折射率的差值小于预设阈值,且所述折射层的透光率大于所述第二半导体层的透光率;或者,
所述折射层的折射率小于所述第二半导体层的折射率,且所述折射层的折射率大于空气的折射率。
可选地,所述折射层的出光面具有至少一个第三凸起结构。
可选地,所述第三半导体层的出光面具有多个所述第三凸起结构,多个所述第三凸起结构均匀分布。
可选地,所述第二半导体层的材料包括掺杂有金属的氮化镓,所述折射层的材料包括氮化硅。
可选地,所述发光单元包括微LED器件。
另一方面,提供了一种发光单元的制造方法,所述方法包括:
形成第一半导体层;
在所述第一半导体层的一侧形成发光层;
在所述发光层远离所述第一半导体层的一侧形成第二半导体层;
所述第一半导体层或所述第二半导体层中的至少一个至少与所述发光层的部分层面和部分侧面接触,且所述第一半导体层与所述第二半导体层绝缘,所述第一半导体层和所述第二半导体层中的一个为N型半导体层,另一个为P型半导体层。
可选地,所述形成第一半导体层,包括:
形成第一半导体薄膜层;
对所述第一半导体薄膜层进行图形化处理,得到所述第一半导体层,所述第一半导体层的一面具有第一凸起结构;
所述在所述第一半导体层的一侧形成发光层,包括:
在所述第一半导体层具有所述第一凸起结构的一面形成发光薄膜层;
对所述发光薄膜层进行图形化处理,得到所述发光层,所述发光层至少覆盖所述第一凸起结构的部分顶面和部分侧面。
可选地,所述在所述发光层远离所述第一半导体层的一侧形成第二半导体层,包括:
在所述发光层远离所述第一半导体层的一侧形成第二半导体薄膜层;
对所述第二半导体薄膜层进行图形化处理,得到所述第二半导体层,所述第二半导体层的出光面具有至少一个第二凸起结构。
可选地,在所述发光层远离所述第一半导体层的一侧形成第二半导体层之后,所述方法还包括:
在所述第二半导体层远离所述第一半导体层的一侧形成折射层。
可选地,所述在所述第二半导体层远离所述第一半导体层的一侧形成折射层,包括:
在所述第二半导体层远离所述第一半导体层的一侧形成折射薄膜层;
对所述折射薄膜层进行图形化处理,得到所述折射层,所述折射层的出光面具有至少一个第三凸起结构。
可选地,在形成第一半导体层之后,所述方法还包括:
在所述第一半导体层的一侧形成第一电极;
在所述发光层远离所述第一半导体层的一侧形成第二半导体层之后,所述方法还包括:
在所述第二半导体层远离所述第一半导体层的一侧形成第二电极。
再一方面,提供了一种显示装置,包括上述一方面任一所述的发光单元。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种发光单元的结构示意图;
图2是本申请实施例提供的另一种发光单元的结构示意图;
图3是本申请实施例提供的再一种发光单元的结构示意图;
图4是本申请实施例提供的又一种发光单元的结构示意图;
图5是本申请实施例提供的还一种发光单元的结构示意图;
图6是本申请实施例提供的一种光线在第二凸起结构的表面反射和折射的示意图;
图7是本申请实施例提供的还一种发光单元的结构示意图;
图8是本申请实施例提供的还一种发光单元的结构示意图;
图9是本申请实施例提供的还一种发光单元的结构示意图;
图10是本申请实施例提供的一种氮化硅的折射率随光线波长变化的示意图;
图11是本申请实施例提供的还一种发光单元的结构示意图;
图12是本申请实施例提供的还一种发光单元的结构示意图;
图13是本申请实施例提供的一种发光单元的制造方法的流程图;
图14是本申请实施例提供的另一种发光单元的制造方法的流程图。
具体实施方式
为使本申请的原理、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
发明人所知,目前微LED器件包括:发光层,以及位于该发光层两侧的N型半导体层和P型半导体层,该N型半导体层与该发光层的顶面接触,该P型半导体层与该发光层的底面接触,且该发光层与N型半导体层的接触面,以及 该发光层与P型半导体层的接触面均为平面,这使得该微LED器件的发光面积较小,从而该微LED器件的光提取效率较低。其中,光提取效率可以为单位时间内发射到自由空间的光子数与单位时间内电子和空穴复合所产生的光子数的百分比。发光层的顶面可以是该发光层的表面中远离P型半导体层的一面,发光层的底面可以是该发光层的表面中与P型半导体层接触的表面。
本申请实施例提供了一种发光单元,该发光单元包括层叠分布的第一半导体层、发光层和第二半导体层,第一半导体层或第二半导体层中的至少一个至少与该发光层的部分层面和部分侧面接触,且该第一半导体层与该第二半导体层绝缘,该第一半导体层和该第二半导体层中的一个为N型半导体层,另一个为P型半导体层。由于第一半导体层或第二半导体层中的至少一个至少与该发光层的部分层面和部分侧面接触,因此该发光层的层面和侧面均能够发光,该发光层的发光面积较大,从而该发光单元具有较大的发光面积,且具有较高的光提取率。其中,发光单元通常位于衬底基板上,发光层的表面包括层面和侧面,发光层的侧面通常与衬底基板的板面相交,该发光层的层面可以是该发光层的表面除发光层的侧面之外的表面。
可选地,第二半导体层与该发光层的部分层面和部分侧面接触,本申请实施例以第二半导体层至少覆盖该发光层的部分层面和部分侧面为例进行说明。示例地,请参考图1,其示出了本申请实施例提供的一种发光单元的结构示意图,如图1所示,该发光单元可以包括:层叠分布的第一半导体层001、发光层002和第二半导体层003,该第二半导体层003至少覆盖发光层002的部分顶面002d和部分侧面002c,且第一半导体层001与第二半导体层003绝缘,第一半导体层001和第二半导体层003中的一个为N型半导体层,另一个为P型半导体层。例如,第一半导体层001可以为N型半导体层,第二半导体层003可以为P型半导体层。或者,第一半导体层001可以为P型半导体层,第二半导体层003可以为N型半导体层,本申请实施例对此不做限定。
其中,发光层002的顶面002d可以为发光层002的两个层面中远离第一半导体层001的一面。容易理解,发光单元通常位于衬底基板上,第一半导体层001、发光层002和第二半导体层003可以沿远离衬底基板的方向层叠,该发光层002的顶面002d也可以是该发光层002的表面中远离衬底基板的一面,该发光层002的侧面002c可以是该发光层002的表面中,与该发光层002的顶面002d 和衬底基板的板面均相交的一面。
综上所述,本申请实施例提供的发光单元,该发光单元包括层叠分布的第一半导体层、发光层和第二半导体层,该第二半导体层至少覆盖发光层的部分顶面和部分侧面,因此该发光层的部分顶面和部分侧面均能够发光,使得该发光单元的顶面和侧面均能够发光,有助于增大发光单元的发光面积,从而增大发光单元的光提取效率。
可选地,该第二半导体层003覆盖发光层002的全部顶面002d和全部侧面002c,这样一来,可以该发光单元的全部顶面和全部侧面均能够发光,能够较大程度地增大该发光单元的发光面积。
需要指出的是,本文的A膜层覆盖B膜层的C面可以指:该A膜层覆盖在该C面上,且不同位置处的该A膜层的厚度可以相等或者不等。当A膜层覆盖在该B膜层的C面上,且不同位置的该A膜层的厚度相等时,该A膜层与B膜层能够较好的匹配。例如,当第二半导体层003覆盖在发光层002的顶面002d和侧面002c上,且不同位置的该第二半导体层003的厚度相等时,该第二半导体层003与发光层002能够较好的匹配,保证载流子在该第二半导体层003和发光层002之间的传输效率,从而保证该发光单元的发光效率。
可选地,如图1所示,该显示单元还包括:位于第一半导体层001和第二半导体层003之间的绝缘层004,该绝缘层004可以与发光层002同层分布,该绝缘层004可以使该第一半导体层001和第二半导体层003绝缘。其中,该绝缘层004的材料可以为氮化硅、氧化硅或氮氧化硅中的至少一种,例如,该绝缘层004的材料为氮化硅。
可选地,在本申请实施例中,第一半导体层001的结构可以有多种可实现方式。例如,如图1和图2所示,该第一半导体层001上具有第一凸起结构(图1和图2中均未标出),该发光层002至少覆盖该第一凸起结构的部分顶面001d和部分侧面001c。或者,如图3和图4所示,该第一半导体层001靠近发光层002的一面可以为平面。其中,该图2、图3和图4示出的是本申请实施例提供的另外三种发光单元的结构示意图。
可选地,如图1所示,该第一凸起结构的垂直截面的形状呈梯形,该第一凸起结构可以呈台状结构,该台状结构例如圆台状结构或棱台状结构。或者,如图2所示,该第一凸起结构的垂直截面的形状呈矩形,该第一凸起结构可以呈柱状结构,该柱状结构例如圆柱状结构或棱柱状结构。其中,该第一凸起结 构的垂直截面可以是该第一凸起结构的截面中与该第一半导体层001的底面垂直的截面。
可选地,在本申请实施例中,发光层002的结构也可以有多种可实现方式,例如。如图1和图3所示,该发光层002的侧面002c可以相对于第一半导体层001的底面倾斜,或者,如图2和图4所示,该发光层002的侧面002c可以相对于第一半导体层001的底面垂直。发光层002的顶面002d在第一半导体层001上的正投影可以位于该发光层002在第一半导体层001上的正投影内。
可选地,该发光层002的顶面002d可以为平面或曲面。如图1和图2所示,当第一半导体层001上具有第一凸起结构,且该发光层002的顶面002d为平面时,该发光层002的垂直截面的形状可以呈拱形。如图3所示,当第一半导体层001靠近发光层002的一面为平面,该发光层002的顶面002d为平面时,且该发光层002的侧面002c相对于第一半导体层001的底面倾斜时,该发光层002的垂直截面的形状可以呈梯形,该发光层002可以呈台状结构,该台状结构例如棱台状结构或圆台状结构。如图4所示,当第一半导体层001靠近发光层002的一面为平面,该发光层002的顶面002d为平面,且该发光层002的侧面002c相对于第一半导体层001的底面垂直时,该发光层002的垂直截面的形状可以呈矩形,该发光层002可以呈棱柱状结构或圆柱状结构。其中,该发光层002的垂直截面可以是该发光层002在垂直于第一半导体层001的底面的方向上的截面。
可选地,如图1和图3所示,发光层002的侧面002c相对于第一半导体层001的底面倾斜,该发光层002的顶面002d的尺寸小于该发光层002的底面的尺寸,该发光层002的顶面002d不会对从发光层002的侧面002c发出的光线进行遮挡,能够使更多的光线从该发光单元射出,有助于提高该发光层002的光提取率。如图2和图4所示,该发光层002的侧面002c相对于第一半导体层001的底面垂直,第二半导体层003覆盖发光层002的顶面002d和侧面002c,有助于增大发光单元的发光面积。其中,发光层002的底面可以是发光层的表面中靠近第一半导体层001的一面,第一半导体层001的底面可以是第一半导体层001的表面中远离发光层002的一面。
可选地,请参考图5,其示出了本申请实施例提供的再一种发光单元的结构示意图,如图5所示,第二半导体层003的出光面可以具有至少一个第二凸起结构0031,第二凸起结构0031的顶面0031a在第二半导体层003上的正投影位 于该第二凸起结构0031的底面0031b在第二半导体层003上的正投影内。如图5所示,第二凸起结构0031的垂直截面的形状可以为梯形,该梯形的底角可以为锐角。容易理解,该图5仅仅是示例性的,第二凸起结构0031的垂直截面的形状也可以为锐角三角形、半圆形或矩形。其中,第二凸起结构0031的垂直截面可以是该第二凸起结构0031在垂直于第二半导体层001的底面的方向上的截面。此外,容易理解,本申请实施例是以图1所示的发光单元为基础描述第二半导体层003上的第二凸起结构的,图2至图4所示的发光单元的第二半导体层003上也可以具有第二凸起结构的,本申请实施例对此不做限定。
可选地,该第二半导体层003的出光面具有多个第二凸起结构0031,该多个第二凸起结构0031可以均匀分布在第二半导体层003的出光面,这样一来,可以使得第二半导体层003的出光面具有周期性的凸起结构。
在本申请实施例中,当该第二半导体层003的出光面具有至少一个第二凸起结构0031时,一方面,第二凸起结构0031能够增大第二半导体层003的出光面的面积,进而增大发光单元的发光面积。另一方面,第二凸起结构0031能够对光线进行反射和/或折射,改变光线在第二半导体层003的出光面的入射角,且当光线的入射角小于光线的全反射角时,光线在折射后能够从该第二半导体层003的出光面射出,即第二凸起结构0031能破坏光线的全反射,使更多光线从该第二半导体层003的出光面射出,增加从发光单元射出的光线的量,从而增大发光单元的光提取效率。并且,当第二半导体层003的出光面具有均匀分布的多个第二凸起结构0031时,该均匀分布的多个第二凸起结构0031能够较均衡地对光线进行反射和/或折射,增加从发光单元射出的光线的量,从而增大发光单元的光提取效率。
示例地,请参考图6,其示出了本申请实施例提供的一种光线在第二半导体层003中的传播示意图,当光线G1照射至第二凸起结构0031的一侧面时,该光线G1中的部分光线发生折射形成折射光线G2,该折射光线G2从第二凸起结构0031射出,部分光线发生反射形成反射光线G3,该反射光线G3照射在该第二凸起结构0031的另一侧面时,在该另一侧面上发生折射最终从该第二凸起结构0031射出。但是,若该第二半导体层003的出光面为平整表面,当光线照射至该出光面时,光线在该出光面发生反射形成反射光线,该反射光线可能会直接照射至该发光单元内部,而无法从发光单元射出。由此可见,该第二半导体层003的出光面上的第二凸起结构0031可以对光线进行调整,使得原本无法从 发光单元射出的光线能够从发光单元射出,提高发光单元的光提取率。
可选地,请参考图7,其示出了本申请实施例提供的又一种发光单元的结构示意图,如图7所示,该发光单元还可以包括第一电极005,该第一电极005与第一半导体层001电连接,且发光层002在第一半导体层001上的正投影与该第一电极005在第一半导体层001上的正投影错开。该第一电极005用于向第一半导体层001加载第一电信号。其中,该发光层002在第一半导体层001上的正投影与该第一电极005在第一半导体层001上的正投影错开是指:发光层002在第一半导体层001上的正投影与该第一电极005在第一半导体层001上的正投影不存在重叠区域。由于发光层002在第一半导体层001上的正投影与该第一电极005在第一半导体层001上的正投影不重叠,因此该第一电极005不会占用发光单元的发光面积,能够保证发光单元具有较大的发光面积。
请继续参考图7,作为设置第一电极005的一种实现方式,该第一半导体层001可以包括:第一发光驱动部(图7中未标出)和第一延伸部0011,发光层002在第一半导体层001上的正投影与该第一发光驱动部重合,且发光层002在第一半导体层001上的正投影与第一延伸部0011错开,第一电极005位于该第一延伸部0011上,且该第一电极005与该第一延伸部0011电连接。其中,第一发光驱动部与第一延伸部0011可以为一体结构,第一发光驱动部可以是第一半导体层001中用于驱动发光层002发光的部分,第一延伸部0011可以是第一半导体层001中除第一发光驱动部之外的部分。其中,该第一电极005可以位于第一延伸部0011的任意位置,该第一电极005可以是位于第一延伸部0011上的接线柱或用于加载第一电信号的引线的焊点。
可选地,请继续参考图7,该发光单元还可以包括:第二电极006,该第二电极006与第二半导体层003电连接,且该发光层002在第一半导体层001上的正投影与第二电极006在第一半导体层001上的正投影错开。该第二电极006用于向第二半导体层003加载第二电信号,该第二电信号的极性与第一电信号的极性相反。由于发光层002在第一半导体层001上的正投影与第二电极006在第一半导体层001上的正投影错开,因此该第二电极006不会占用发光单元的发光面积,能够保证发光单元具有较大的发光面积。
请继续参考图7,作为设置第二电极006的一种实现方式,该第二半导体层003可以包括:第二发光驱动部(图7中未标出)和第二延伸部0031,发光层002在第一半导体层001上的正投影位于该第二发光驱动部在第一半导体层001 上的正投影内,且发光层002在第一半导体层001上的正投影与第二延伸部0031在第一半导体层001上的正投影错开,第二电极006位于该第二延伸部0031上,且第二电极006与第二延伸部0031电连接。其中,第二发光驱动部与第二延伸部0031可以为一体结构,第二发光驱动部可以是第二半导体层003中用于驱动发光层002发光的部分,第二延伸部0031可以是第二半导体层003中除第二发光驱动部之外的部分。其中,该第二电极006可以位于第二延伸部0031的任意位置,该第二电极006可以是位于该第二延伸部0031上的接线柱或用于加载第二电信号的引线的焊点。
可选地,请参考图8和图9,其示出了本申请实施例提供的另外两种发光单元的结构示意图,如图8和图9所示,该发光单元还可以包括:位于第二半导体层003远离第一半导体层001的一侧的折射层007。可选地,该第二半导体层003可以包括:第二发光驱动部(图8和图9中未标出)和第二延伸部(图8和图9中未标出),该折射层007覆盖该第二发光驱动部的出光面。
可选地,该第二半导体层003的折射率与折射层007的折射率的差值小于预设阈值,且折射层007的透光率大于第二半导体层003的透光率。或者,该折射层007的折射率小于第二半导体层003的折射率,且该折射层007的折射率大于空气的折射率。
其中,当该第二半导体层003的折射率与折射层007的折射率的差值小于预设阈值时,该第二半导体层003的折射率与折射层007的折射率的差值较小,因此该第二半导体层003的折射率与折射层007的折射率相近。根据光学理论可知,两种介质的折射率越接近,光线由该两种介质中的一种介质射入另一种介质时的全反射角越大,全反射损失越小。因此该第二半导体层003的折射率与折射层007的折射率的差值小于预设阈值,能够保证有尽量多的光线通过折射从第二半导体层003射入折射层007。并且,根据光的传播规律可知,经过第二半导体层003折射后射入至折射层007的光线照射在该折射层007的出光面时,部分光线会发生折射,部分光线会发生反射(为便于区分,下面将此部分光线称为首次被折射层007的出光面反射的光线),该发生折射的光线能够直接从折射层007射出照射至自由空间中,该发生反射的光线照射至折射层007和第二半导体层003的交界面时,会被该交界面再次反射,该再次反射的光线在照射至折射层007的出光面时又会发生反射和折射,按照该规律循环,最终能够使首次被折射层007的出光面反射的光线中的多数光线从折射层007射出照 射至自由空间中。并且,由于折射层007的透光率大于第二半导体层003的透光率,因此能够保证尽量多的光线从该折射层007透过,且首次被折射层007的出光面反射的光线中最终被折射至自由空间中的光量通常远大于被该折射层007的透光率阻挡的光量,该折射层007能够增大照射至自由空间中的光量。
可选地,第二半导体层003的材料可以包括掺杂有金属的氮化镓(GaN),该折射层007的材料可以包括氮化硅(Si 3N 4),氮化镓对可见光的折射率约为2.5,空气对可见光的折射率约为1,当光线从氮化镓射入空气时,其全反射角约为24°(度),其光提取率约为4%(百分比)。可选地,请参考图10,其示出了本申请实施例提供的一种氮化硅的折射率随光线的波长变化的示意图,该图10的纵轴表示氮化硅对不同波长的光线的折射率,横坐标表示光线的波长,单位为纳米,根据图10可知该氮化硅对可见光(波长范围380~780纳米)的折射率的范围为[1.9,2.1],由于氮化镓的折射率和氮化硅的折射率接近,实验证明,当光线从氮化镓射入氮化硅时,其全反射角约为55°,其光提取率约为50%至70%。可见,由氮化硅制成的折射层007位于该第二半导体层003的出光面上可以增大发光单元的光提取效率。
其中,当该折射层007的折射率小于第二半导体层003的折射率,且折射层007的折射率大于空气的折射率时,由于该第二半导体层003的折射率与折射层007的折射率相近,能够增大光线由第二半导体层003射入折射层007的全反射角,且由于折射层007的折射率与空气的折射率相近,能够增大光线由折射层007射入空气的全反射角,从而减小被全反射的光线的量。并且该折射层007可以使得光线能够在第二半导体层003和折射层007的交界面,以及折射层007的出光面均发生折射和反射,增大从发光单元射出并照射至自由空间中的光量,进而增大了发光单元的光提取效率。
可选地,请参考图11和图12,其示出了本申请实施例提供的又两种发光单元的结构示意图,如图11和图12所示,该折射层007的出光面可以具有至少一个第三凸起结构0071,第三凸起结构0071的顶面0071a在折射层007上的正投影位于该第三凸起结构0071的底面0071b在折射层007的正投影内。第三凸起结构0071的垂直截面的形状可以为梯形,且该梯形的底角可以为锐角。容易理解,该图11和图12仅仅是示例性的,第三凸起结构0071的垂直截面的形状也可以为锐角三角形、半圆形或矩形。其中,第三凸起结构0071的垂直截面可以是该第三凸起结构0071在垂直于第二半导体层001的底面的方向上的截面。 此外,容易理解,本申请实施例是以图1和图2所示的发光单元为基础描述折射层007的,在图3和图4所示的发光单元的基础上增设折射层007可以参考本实施例,本申请实施例对此不做限定。
可选地,如图11和图12所示,折射层007的出光面具有多个第三凸起结构0071,该多个第三凸起结构0071可以均匀分布在折射层007的出光面,这样一来,可以使得折射层007的出光面具有周期性的凸起结构。
在本申请实施例中,该折射层007的出光面具有至少一个第三凸起结构0071时,一方面,第三凸起结构0071能够增大折射层007的出光面的面积,进而增大发光单元的发光面积,另一方面,第三凸起结构0071能够对光线进行反射和/或折射,通过该反射和/或折射能够增加从发光单元射出的光线的量(其原理请相应参考第二凸起结构的相关原理)。并且,当折射层007的出光面具有均匀分布的多个第三凸起结构0071时,该均匀分布的多个第三凸起结构0071能够较均衡地对光线进行反射和/或折射,增加从发光单元射出的光线的量,从而增大发光单元的光提取效率。
可选地,发光单元可以为微LED器件或LED器件等能够发光的结构,假设图11所示的发光单元为微LED器件,且该发光单元的高度为2微米,直径为10微米,实验证明,该图11所示的发光单元的发光面积比发明人所知的微LED器件的发光面积至少增加30平方微米,因此,本申请实施例提供的方案能够增大发光单元的发光面积。
综上所述,本申请实施例提供的发光单元,该发光单元包括层叠分布的第一半导体层、发光层和第二半导体层,该第一半导体层或该第二半导体层中的至少一个至少与发光层的部分层面和部分侧面接触,因此该发光层的层面和侧面均能够发光,有助于增大发光层的发光面积,从而增大发光单元的发光面积,增大发光单元的光提取效率。
请参考图13,其示出了本申请实施例提供的一种发光单元的制造方法的流程图,如图13所示,该方法可以包括如下几个步骤:
在步骤301中、形成第一半导体层。
在步骤302中、在第一半导体层的一侧形成发光层。
在步骤303中、在发光层远离第一半导体层的一侧形成第二半导体层。
其中,第一半导体层或第二半导体层中的至少一个至少与发光层的部分层 面和部分侧面接触,且第一半导体层与第二半导体层绝缘,第一半导体层和第二半导体层中的一个为N型半导体层,另一个为P型半导体层。例如,第一半导体层可以为N型半导体层,第二半导体层可以为P型半导体层。或者,第一半导体层可以为P型半导体层,第二半导体层可以为N型半导体层。
综上所述,本申请实施例提供的发光单元的制造方法,该方法制造的发光单元包括层叠分布的第一半导体层、发光层和第二半导体层,该第一半导体层或该第二半导体层中的至少一个至少与发光层的部分层面和部分侧面接触,因此该发光层的层面和侧面均能够发光,有助于增大发光层的发光面积,从而增大发光单元的发光面积,增大发光单元的光提取效率。
本领域技术人员容易理解,该发光单元通常位于衬底基板上,在制造该发光单元时,通常可以先提供一衬底基板,然后在该衬底基板上形成发光单元的各个膜层,下面以该第一半导体层为N型半导体层,该第二半导体层为P型半导体层,且在衬底基板上形成发光单元的各个膜层为例,对该发光单元的制造方法进行说明。
示例地,请参考图14,其示出了本申请实施例提供的另一种发光单元的制造方法的流程图,如图14所示,该方法可以包括如下几个步骤:
在步骤401中、提供一衬底基板。
其中,衬底基板可以为透明基板,其可以是采用玻璃、石英或透明树脂等具有一定硬度的透光材料制成的刚性基板。或者,衬底基板可以是采用聚酰亚胺(Polyimide,PI)等柔性材料制成的柔性基板。
在步骤402中、在衬底基板上形成第一半导体层。
可选地,该第一半导体层的材料可以为掺杂有非金属的半导体材料,例如,该第一半导体材料可以为掺杂有硅的氮化镓。
可选地,可以使用掺杂有硅的氮化镓,通过磁控溅射、热蒸发或者等离子体增强化学气相沉积法(Plasma Enhanced Chemical Vapor Deposition,PECVD)等方法中的任一种在衬底基板上形成具有一定厚度的第一半导体薄膜层,然后通过一次构图工艺对第一半导体薄膜层进行图形化处理得到第一半导体层。其中,一次构图工艺可以包括:光刻胶涂覆、曝光、显影、刻蚀和光刻胶剥离。
可选地,第一半导体层的结构可以有多种可实现方式,例如,该第一半导体层远离衬底基板的一面可以为平面,或者,该第一半导体层远离衬底基板的一面可以具有第一凸起结构,该第一凸起结构可以呈台状结构或柱状结构。并 且,无论哪种结构的第一半导体层,其均可以包括第一发光驱动部和第一延伸部,该第一发光驱动部和第一延伸部可以电连接,示例地,该第一发光驱动部和第一延伸部可以为一体结构。
本申请实施例中,可以根据实际需要对该第一半导体薄膜层进行图形化处理,以得到满足不同实际需要的不同结构的第一半导体层,本申请实施例以下述两种可实现方式为例,对第一半导体薄膜层进行图形化处理进行说明:
在一种可实现方式中:当第一半导体层远离衬底基板的一面为平面时,由于第一半导体薄膜层为整层结构,该整层结构的厚度可以等于待形成的第一半导体层的厚度,因此在对该第一半导体薄膜层进行图形化处理时,首先可以在第一半导体薄膜层远离衬底基板的表面上涂覆光刻胶,然后采用掩膜版对光刻胶进行曝光和显影,以去除第一半导体薄膜层上除待形成的第一半导体层对应区域以外的光刻胶,接着对第一半导体薄膜层进行刻蚀,最后剥离剩余的光刻胶,得到远离衬底基板的一面为平面的第一半导体层。
另一种可实现方式中:当待形成的第一半导体层远离衬底基板的一面具有第一凸起结构,且该第一半导体层包括第一发光驱动部和第一延伸部时,由于第一半导体薄膜层为整层结构,该整层结构的厚度可以等于第一半导体层的第一发光驱动部的厚度,因此在对该第一半导体薄膜层进行图形化处理时,首先可以在第一半导体薄膜层远离衬底基板的表面上涂覆光刻胶,然后采用半色调掩膜版对光刻胶进行曝光和显影得到光刻胶图形,该光刻胶图形包括第一光刻胶区和第二光刻胶区,第一光刻胶区与待形成的第一半导体层的第一凸起结构对应,第二光刻胶区与待形成的第一半导体层的第一延伸部对应,且第一光刻胶区的厚度大于第二光刻胶区的厚度,接着以光刻胶图形为掩膜对第一半导体薄膜层进行刻蚀,去除第一半导体薄膜层上除待形成的第一半导体层以外的部分,之后对光刻胶图形进行灰化,去除第二光刻胶区并减薄第一光刻胶区,之后以第一光刻胶区为掩膜对第一半导体薄膜层进行半刻蚀得到第一延伸部,最后剥离剩余的光刻胶得到第一发光驱动部,从而得到远离衬底基板的一面具有第一凸起结构的第一半导体层。其中,该第一凸起结构的侧面可以相对于第一半导体层的底面倾斜或垂直。
在步骤403中、在第一半导体层远离衬底基板的一侧形成第一电极。
可选地,第一电极的材料可以金属或非金属氧化物等导电材料。例如,第一电极的材料可以为氧化铟锡(Indium Tin Oxides,ITO)。
可选地,可以使用导电材料,通过磁控溅射、热蒸发或者PECVD等方法中的任一种在第一半导体层远离衬底基板的一侧形成具有一定厚度的第一电极薄膜层,然后通过一次构图工艺对第一电极薄膜层进行图形化处理得到第一电极,该第一电极可以位于第一半导体层的第一延伸部上,且该第一电极与第一半导体层电连接,该第一电极用于向第一半导体层加载第一电信号。可选地,该第一电极与第一延伸部电连接,使得该第一电极与第一半导体层电连接。其中,一次构图工艺可以包括:光刻胶涂覆、曝光、显影、刻蚀和光刻胶剥离。
在步骤404中、在第一半导体层远离衬底基板的一侧形成发光层。
可选地,该发光层的材料可以为量子肼材料,例如,该发光层的材料可以为铟氮化镓和氮化镓的混合材料(InGaN/GaN)。
可选地,可以使用量子肼材料,通过磁控溅射、热蒸发或者PECVD等方法中的任一种在第一半导体层远离衬底基板的一侧形成具有一定厚度的发光薄膜层,然后通过一次构图工艺对发光薄膜层进行图形化处理得到发光层。其中,一次构图工艺可以包括:光刻胶涂覆、曝光、显影、刻蚀和光刻胶剥离。
可选地,发光层在第一半导体层上的正投影与第一电极在第一半导体层上的正投影错开,因此第一电极不会对发光层进行遮挡,该第一电极不会占用发光单元的发光面积,保证发光单元具有较大的发光面积。当第一电极位于第一延伸部上时,该第一延伸部和发光层的位置可以满足:该发光层在第一半导体层上的正投影与第一延伸部在第一半导体层上的正投影错开,从而保证发光层在第一半导体层上的正投影与第一电极在第一半导体层上的正投影错开。
容易理解,根据第一半导体层的结构的不同,该发光层的结构也不同。例如,当第一半导体层远离衬底基板的一面为平面时,该发光层可以呈台状结构,例如该发光层可以呈棱台状结构或圆台状结构。当第一半导体层远离衬底基板的一面具有第一凸起结构时,该发光层的垂直截面的形状可以呈拱形,该发光层至少覆盖该第一凸起结构的部分顶面和部分侧面。可选地,该第一凸起结构的侧面可以相对于第一半导体层的底面倾斜或垂直,相应地,该发光层的侧面也可以相对于第一半导体层的底面倾斜或垂直。
在步骤405中、在发光层远离第一半导体层的一侧形成第二半导体层,该第二半导体层至少覆盖发光层的部分顶面和部分侧面,且第一半导体层与第二半导体层绝缘。
可选地,该第二半导体材料可以为掺杂有金属的半导体材料,例如,该第 二半导体材料可以为掺杂有镁的氮化镓。
可选地,可以使用掺杂有镁的氮化镓,通过磁控溅射、热蒸发或者PECVD等方法中的任一种在发光层远离第一半导体层的一侧形成具有一定厚度的第二半导体薄膜层,然后通过一次构图工艺对第二半导体薄膜层进行图形化处理,得到第二半导体层,该第二半导体层至少覆盖发光层的部分顶面和部分侧面。其中,一次构图工艺可以包括:光刻胶涂覆、曝光、显影、刻蚀和光刻胶剥离。
可选地,第二半导体层的结构可以有多种可实现方式,例如,该第二半导体层远离第一半导体层的表面可以为平整的表面,或者,该第二半导体层远离第一半导体层的表面可以具有至少一个第二凸起结构或均匀分布的多个第二凸起结构,该第二凸起结构可以呈台状结构或柱状结构。并且,无论哪种结构的第二半导体层,其均可以包括第二发光驱动部和第二延伸部,该第二发光驱动部覆盖发光层的部分顶面和部分侧面,发光层在第一半导体层上的正投影与该第二延伸部在第一半导体层上的正投影错开。其中,第二半导体层远离第一半导体层的表面为平整的表面时,以及该第二半导体层远离第一半导体层的表面具有第二凸起结构时,该第二半导体层的制造方法可以参考步骤402中的两种可实现方式,本申请实施例在此不再赘述。
在本申请实施例中,由于第二延伸部无需覆盖在发光层的顶面和侧面,因此可以以平铺的方式设置该第二延伸部(即该第二延伸部的延伸方向平行于衬底基板的板面)。由于发明人所知的技术中无法以平铺的方式设置第二延伸部,因此设置对应膜层时的技术难度较大,发光单元的集成难度加大,本申请实施例通过以平铺的方式设置该第二延伸部,能够简化第二延伸部的制造难度,有利于发光单元的集成。
在本申请实施例中,第一半导体层与第二半导体层绝缘,因此在形成第二半导体层之前,可以形成在第一半导体层远离衬底基板的一侧形成绝缘层,该绝缘层可以与发光层位于同层分布,且覆盖第一半导体层上未被发光层覆盖的部分,之后再形成第二半导体层,从而可以将该第二半导体层和第一半导体层绝缘。
在步骤406中、在第二半导体层远离第一半导体层的一侧形成第二电极。
可选地,第二电极的材料可以金属或非金属氧化物等导电材料,例如,第二电极的材料可以为ITO。
可选地,可以使用导电材料,通过磁控溅射、热蒸发或者PECVD等方法中 的任一种在第二半导体层远离第一半导体层的一侧形成具有一定厚度的第二电极薄膜层,然后通过一次构图工艺对第二电极薄膜层进行图形化处理得到第二电极,该第二电极可以位于第二半导体层的第二延伸部上,且该第二电极与第二半导体层电连接,该第二电极用于向第二半导体层加载第二电信号,该第二电信号的极性与第一半导体层上加载的第一电信号的极性相反。可选地,该第二电极与第二延伸部电连接,使得该第二电极与第二半导体层电连接。其中,一次构图工艺可以包括:光刻胶涂覆、曝光、显影、刻蚀和光刻胶剥离。
在步骤407中、在第二半导体层远离第一半导体层的一侧形成折射层。
可选地,第二半导体层的折射率与该折射层的折射率的差值可以小于预设阈值,且折射层的透光率大于第二半导体层的透光率。或者,该折射层的折射率可以小于第二半导体层的折射率,且该折射层的折射率大于空气的折射率。例如,当第二半导体层的材料包括掺杂有镁的氮化镓时,该折射层的材料可以包括氮化硅。
可选地,可以使用氮化硅,通过磁控溅射、热蒸发或者PECVD等方法中的任一种在第二半导体层远离第一半导体层的一侧形成具有一定厚度的折射薄膜层,然后通过一次构图工艺对折射薄膜层进行图形化处理得到折射层,该折射层可以覆盖第二半导体层的第二发光驱动部。可选地,该折射层的出光面(也即是折射层远离第二半导体层的一面)可以为平整的表面。或者,该折射层的出光面可以具有至少一个第三凸起结构或均匀分布的多个第三凸起结构。其中,折射层的出光面为平整的表面时,以及该折射层的出光面具有第三凸起结构时,该折射层的制造方法可以参考步骤402中的两种可实现方式,本申请实施例在此不再赘述。
综上所述,本申请实施例提供的发光单元的制造方法,该方法制造的发光单元包括层叠分布的第一半导体层、发光层和第二半导体层,该第一半导体层或该第二半导体层中的至少一个至少与发光层的部分层面和部分侧面接触,因此使得该发光层的层面和侧面均能够发光,有助于增大发光层的发光面积,从而增大发光单元的发光面积,增大发光单元的光提取效率。
本领域技术人员容易理解,本申请实施例提供的发光单元的制造方法步骤的先后顺序可以进行适当调整,步骤也可以根据情况进行相应增减,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化的方法,都应涵盖在本申请的保护范围之内,因此不再赘述。
基于同样的发明构思,本申请实施例提供一种显示装置,该显示装置可以包括本申请实施例提供的发光单元,该发光单元可以为微LED器件。可选地,该显示装置可以包括像素,该像素可以包括薄膜晶体管和发光单元,且该显示装置还可以包括多条数据线,数据线可以与薄膜晶体管的源极电连接,且显示装置的所有数据线可以位于同一层内。
可选地,该显示装置可以为:液晶面板、电子纸、有机发光二极管(Organic Light-Emitting Diode,OLED)面板、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框或导航仪等任何具有显示功能的装置或部件。
在本申请中,术语“电连接”指的是连接且能够传输电信号,但不限定必须有电信号传输,例如,“A和B电连接”指的是A和B连接,且A和B之间能够传输电信号,但是限定A和B之间必须传输电信号。
在本申请中,术语“第一”、“第二”、“第三”和“第四”仅用于描述目的,而不能理解为指示或暗示相对重要性。术语“多个”指两个或两个以上,除非另有明确的限定。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请中术语“A或B的至少一种”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A或B的至少一种,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。同理,“A、B或C的至少一种”表示可以存在七种关系,可以表示:单独存在A,单独存在B,单独存在C,同时存在A和B,同时存在A和C,同时存在C和B,同时存在A、B和C这七种情况。
以上仅为本申请的示例性实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (23)

  1. 一种发光单元,包括:
    层叠分布的第一半导体层、发光层和第二半导体层,所述第一半导体层或所述第二半导体层中的至少一个至少与所述发光层的部分层面和部分侧面接触,且所述第一半导体层与所述第二半导体层绝缘,所述第一半导体层和所述第二半导体层中的一个为N型半导体层,另一个为P型半导体层。
  2. 根据权利要求1所述的发光单元,其中,
    所述第二半导体层至少覆盖所述发光层的部分顶面和部分侧面,所述发光层的顶面为所述发光层的两个层面中远离所述第一半导体层的一面。
  3. 根据权利要求1或2所述的发光单元,其中,
    所述第二半导体层覆盖所述发光层的全部顶面和全部侧面。
  4. 根据权利要求1至3任一所述的发光单元,其中,
    所述第一半导体层上具有第一凸起结构,所述发光层至少覆盖所述第一凸起结构的部分顶面和部分侧面。
  5. 根据权利要求1至4任一所述的发光单元,其中,
    所述发光层的侧面相对于所述第一半导体层的底面倾斜;或者,
    所述发光层的侧面相对于所述第一半导体层的底面垂直。
  6. 根据权利要求1至5任一所述的发光单元,其中,
    所述发光层的顶面在所述第一半导体层上的正投影位于所述发光层在所述第一半导体层上的正投影内。
  7. 根据权利要求1至6任一所述的发光单元,其中,
    所述第二半导体层的出光面具有至少一个第二凸起结构。
  8. 根据权利要求7所述的发光单元,其中,
    所述第二半导体层的出光面具有多个所述第二凸起结构,多个所述第二凸起结构均匀分布。
  9. 根据权利要求1至8任一所述的发光单元,其中,
    所述发光单元还包括:第一电极和第二电极,
    所述第一电极与所述第一半导体层电连接,所述发光层在所述第一半导体层上的正投影与所述第一电极在所述第一半导体层上的正投影错开;
    所述第二电极与所述第二半导体层电连接,所述发光层在所述第一半导体层上的正投影与所述第二电极在所述第一半导体层上的正投影错开。
  10. 根据权利要求9所述的发光单元,其中,
    所述第一半导体层包括:第一发光驱动部和第一延伸部,所述发光层在所述第一半导体层上的正投影与所述第一发光驱动部重合且与所述第一延伸部错开,所述第一电极位于所述第一延伸部上且与所述第一延伸部电连接;
    所述第二半导体层包括:第二发光驱动部和第二延伸部,所述发光层在所述第一半导体层上的正投影位于所述第二发光驱动部在所述第一半导体层上的正投影内,且所述发光层在所述第一半导体层上的正投影与所述第二延伸部在所述第一半导体层上的正投影错开,所述第二电极位于所述第二延伸部上且与所述第二延伸部电连接。
  11. 根据权利要求1至10任一所述的发光单元,其中,
    所述发光单元还包括:折射层,所述折射层位于所述第二半导体层远离所述第一半导体层的一侧。
  12. 根据权利要求11所述的发光单元,其中,
    所述第二半导体层的折射率与所述折射层的折射率的差值小于预设阈值,且所述折射层的透光率大于所述第二半导体层的透光率;或者,
    所述折射层的折射率小于所述第二半导体层的折射率,且所述折射层的折射率大于空气的折射率。
  13. 根据权利要求11或12所述的发光单元,其中,
    所述折射层的出光面具有至少一个第三凸起结构。
  14. 根据权利要求13所述的发光单元,其中,
    所述折射层的出光面具有多个第三凸起结构,多个所述第三凸起结构均匀分布。
  15. 根据权利要求11至14任一所述的发光单元,其中,
    所述第二半导体层的材料包括掺杂有金属的氮化镓,所述折射层的材料包括氮化硅。
  16. 根据权利要求1至15任一所述的发光单元,其中,
    所述发光单元包括微LED器件。
  17. 一种发光单元的制造方法,所述方法包括:
    形成第一半导体层;
    在所述第一半导体层的一侧形成发光层;
    在所述发光层远离所述第一半导体层的一侧形成第二半导体层;
    所述第一半导体层或所述第二半导体层中的至少一个至少与所述发光层的部分层面和部分侧面接触,且所述第一半导体层与所述第二半导体层绝缘,所述第一半导体层和所述第二半导体层中的一个为N型半导体层,另一个为P型半导体层。
  18. 根据权利要求17所述的方法,其中,
    所述形成第一半导体层,包括:
    形成第一半导体薄膜层;
    对所述第一半导体薄膜层进行图形化处理,得到所述第一半导体层,所述第一半导体层的一面具有第一凸起结构;
    所述在所述第一半导体层的一侧形成发光层,包括:
    在所述第一半导体层具有所述第一凸起结构的一侧形成发光薄膜层;
    对所述发光薄膜层进行图形化处理,得到所述发光层,所述发光层至少覆盖所述第一凸起结构的部分顶面和部分侧面。
  19. 根据权利要求18所述的方法,其中,
    所述在所述发光层远离所述第一半导体层的一侧形成第二半导体层,包括:
    在所述发光层远离所述第一半导体层的一侧形成第二半导体薄膜层;
    对所述第二半导体薄膜层进行图形化处理,得到所述第二半导体层,所述第二半导体层的出光面具有至少一个第二凸起结构。
  20. 根据权利要求17至19任一所述的方法,其中,
    在所述发光层远离所述第一半导体层的一侧形成第二半导体层之后,所述方法还包括:
    在所述第二半导体层远离所述第一半导体层的一侧形成折射层。
  21. 根据权利要求20所述的方法,其中,
    所述在所述第二半导体层远离所述第一半导体层的一侧形成折射层,包括:
    在所述第二半导体层远离所述第一半导体层的一侧形成折射薄膜层;
    对所述折射薄膜层进行图形化处理,得到所述折射层,所述折射层的出光面具有至少一个第三凸起结构。
  22. 根据权利要求17至21任一所述的方法,其中,
    在形成第一半导体层之后,所述方法还包括:
    在所述第一半导体层的一侧形成第一电极;
    在所述发光层远离所述第一半导体层的一侧形成第二半导体层之后,所述方法还包括:
    在所述第二半导体层远离所述第一半导体层的一侧形成第二电极。
  23. 一种显示装置,包括:权利要求1至16任一所述的发光单元。
PCT/CN2019/114099 2018-11-01 2019-10-29 发光单元及其制造方法、显示装置 WO2020088470A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/760,475 US11527676B2 (en) 2018-11-01 2019-10-29 Light-emitting unit and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811296440.0A CN109411583B (zh) 2018-11-01 2018-11-01 发光单元及其制造方法、显示装置
CN201811296440.0 2018-11-01

Publications (1)

Publication Number Publication Date
WO2020088470A1 true WO2020088470A1 (zh) 2020-05-07

Family

ID=65471332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/114099 WO2020088470A1 (zh) 2018-11-01 2019-10-29 发光单元及其制造方法、显示装置

Country Status (3)

Country Link
US (1) US11527676B2 (zh)
CN (1) CN109411583B (zh)
WO (1) WO2020088470A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109411583B (zh) * 2018-11-01 2020-12-04 京东方科技集团股份有限公司 发光单元及其制造方法、显示装置
CN112582507B (zh) * 2019-09-30 2022-04-26 成都辰显光电有限公司 Led芯片及显示面板
CN113658518B (zh) * 2021-08-24 2023-07-04 京东方科技集团股份有限公司 显示面板及其制备方法、显示装置
WO2024050801A1 (en) * 2022-09-09 2024-03-14 Jade Bird Display (shanghai) Limited System and manufacturing method of light emitting pixel structure for improving light emitting efficiency

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1447990A (zh) * 2000-07-18 2003-10-08 索尼株式会社 半导体发光器件及其制造工艺
CN1628391A (zh) * 2002-09-06 2005-06-15 索尼株式会社 半导体发光器件及制造方法、集成半导体发光设备及制造方法、图像显示设备及制造方法、照明设备及制造方法
CN101364628A (zh) * 2007-08-06 2009-02-11 晶元光电股份有限公司 半导体发光装置及其制造方法
KR20090022286A (ko) * 2007-08-30 2009-03-04 서울옵토디바이스주식회사 발광 다이오드 및 그 제조방법
JP2015153883A (ja) * 2014-02-13 2015-08-24 富士通株式会社 光半導体素子及び光半導体素子の製造方法
CN107768495A (zh) * 2016-08-18 2018-03-06 新世纪光电股份有限公司 微型发光二极管及其制造方法
CN109411583A (zh) * 2018-11-01 2019-03-01 京东方科技集团股份有限公司 发光单元及其制造方法、显示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3906654B2 (ja) * 2000-07-18 2007-04-18 ソニー株式会社 半導体発光素子及び半導体発光装置
JP2004288799A (ja) * 2003-03-20 2004-10-14 Sony Corp 半導体発光素子およびその製造方法、集積型半導体発光装置およびその製造方法、画像表示装置およびその製造方法ならびに照明装置およびその製造方法
CN105612622B (zh) * 2013-09-27 2019-02-22 英特尔公司 在硅鳍状物上形成led结构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1447990A (zh) * 2000-07-18 2003-10-08 索尼株式会社 半导体发光器件及其制造工艺
CN1628391A (zh) * 2002-09-06 2005-06-15 索尼株式会社 半导体发光器件及制造方法、集成半导体发光设备及制造方法、图像显示设备及制造方法、照明设备及制造方法
CN101364628A (zh) * 2007-08-06 2009-02-11 晶元光电股份有限公司 半导体发光装置及其制造方法
KR20090022286A (ko) * 2007-08-30 2009-03-04 서울옵토디바이스주식회사 발광 다이오드 및 그 제조방법
JP2015153883A (ja) * 2014-02-13 2015-08-24 富士通株式会社 光半導体素子及び光半導体素子の製造方法
CN107768495A (zh) * 2016-08-18 2018-03-06 新世纪光电股份有限公司 微型发光二极管及其制造方法
CN109411583A (zh) * 2018-11-01 2019-03-01 京东方科技集团股份有限公司 发光单元及其制造方法、显示装置

Also Published As

Publication number Publication date
CN109411583B (zh) 2020-12-04
US11527676B2 (en) 2022-12-13
US20210226091A1 (en) 2021-07-22
CN109411583A (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
WO2020088470A1 (zh) 发光单元及其制造方法、显示装置
WO2020186932A1 (zh) 发光器件及其制造方法、显示装置
US9685634B2 (en) Pixel structure, display device and manufacturing method of pixel structure
CN110875438B (zh) 发光显示装置
WO2021017986A1 (zh) 显示基板及显示装置
US20070290607A1 (en) Organic electroluminescent display device
WO2019041899A1 (zh) 显示面板、显示装置及显示面板制作方法
US8884280B2 (en) Organic light emitting diode display and manufacturing method thereof
WO2020073305A1 (en) Micro light emitting diode display panel, micro light emitting diode display apparatus, and method of fabricating micro light emitting diode display panel
JP2018081815A (ja) 表示装置
US9231231B2 (en) Organic light emitting diode display and manufacturing method thereof
CN111129270A (zh) 微型led显示装置
CN115483327B (zh) Micro LED微显示芯片及其制造方法
US11217776B2 (en) Light emitting display apparatus having plurality of structures under light emitting element
CN115472730B (zh) Micro LED微显示芯片及其制造方法
CN111969121A (zh) 发光显示装置
US10663794B2 (en) Display devices
JP7348075B2 (ja) 画素構造、表示装置及び画素構造の製造方法
WO2023124392A1 (zh) 发光器件及其制备方法、灯板、背光模块以及显示装置
CN114068844A (zh) 显示模组及显示装置
CN113192997B (zh) 背光模组及显示装置
US20220130895A1 (en) Unit of light-emitting elements and display device including the same
TWI797915B (zh) 鏡面顯示器
TW202249304A (zh) 微型發光二極體元件結構
TW202205660A (zh) 用於高效微型發光二極體顯示器的發光二極體間隔物架構

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19879559

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19879559

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19879559

Country of ref document: EP

Kind code of ref document: A1