WO2020080149A1 - Flame-retardant phenolic-resin composition and flame-retardant material obtained therefrom - Google Patents

Flame-retardant phenolic-resin composition and flame-retardant material obtained therefrom Download PDF

Info

Publication number
WO2020080149A1
WO2020080149A1 PCT/JP2019/039326 JP2019039326W WO2020080149A1 WO 2020080149 A1 WO2020080149 A1 WO 2020080149A1 JP 2019039326 W JP2019039326 W JP 2019039326W WO 2020080149 A1 WO2020080149 A1 WO 2020080149A1
Authority
WO
WIPO (PCT)
Prior art keywords
flame
retardant
resin composition
phenolic resin
foam
Prior art date
Application number
PCT/JP2019/039326
Other languages
French (fr)
Japanese (ja)
Inventor
山田 修司
Original Assignee
旭有機材株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭有機材株式会社 filed Critical 旭有機材株式会社
Priority to JP2020553069A priority Critical patent/JP7473476B2/en
Priority to KR1020217007487A priority patent/KR102438544B1/en
Priority to CN201980061016.4A priority patent/CN112739769A/en
Publication of WO2020080149A1 publication Critical patent/WO2020080149A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/009Use of pretreated compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/143Halogen containing compounds
    • C08J9/144Halogen containing compounds containing carbon, halogen and hydrogen only
    • C08J9/145Halogen containing compounds containing carbon, halogen and hydrogen only only chlorine as halogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/149Mixtures of blowing agents covered by more than one of the groups C08J9/141 - C08J9/143
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/01Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/02Halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • C08L61/12Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols with polyhydric phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08L61/26Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds
    • C08L61/28Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds with melamine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/04Condensation polymers of aldehydes or ketones with phenols only
    • C08J2361/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • C08J2361/12Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols with polyhydric phenols

Definitions

  • the present invention relates to a flame-retardant phenolic resin composition and a flame-retardant material obtained from the flame-retardant phenolic resin composition.
  • a flame-retardant material comprising a cured phenolic resin such as a flame-retardant phenolic resin foam (phenol foam) is advantageous.
  • a flame-retardant material obtained from such a phenol resin composition is advantageous.
  • a phenol resin material obtained by curing a phenol resin has been recognized by those skilled in the art as a material having relatively high flame retardance, but as it is, it can be used for construction, civil engineering, and electricity. It does not fully meet the safety standards required in the fields of products, electric and electronic parts, automobile parts, etc., and is difficult to be stipulated by the Japanese Building Standards Act, which is evaluated by a heat generation test with a cone calorimeter. Flame-retardant materials with flammability properties could not be advantageously provided.
  • a predetermined flame retardant is blended with the phenol resin composition, and curing thereof improves the flame retardancy of the intended phenol resin material. It has been planned.
  • a useful flame-retardant phenol foam is obtained by using a phosphorus compound, a sulfur compound or a boron compound as a flame retardant and blending them with a resin composition for phenol foam production. It has been demonstrated that can be manufactured.
  • JP-A-2007-161810, JP-A-2007-70511 and the like aluminum hydroxide and magnesium hydroxide are used as inorganic fillers that are usually added to a resin composition for producing phenol foam.
  • Phenol foam obtained by foaming by using metal hydroxides such as; oxides of metals such as calcium oxide and aluminum oxide; metal powders such as zinc dust; carbonates of metals such as calcium carbonate and magnesium carbonate It has been clarified that the flame retardancy or fire resistance of the can be improved.
  • JP-A-8-176343 discloses a resin composition containing ammonium polyphosphate as a non-halogen flame retardant capable of imparting a high degree of flame retardancy to a resin.
  • a resol type phenolic resin which is one of the phenolic resins, and combining it with an acid curing agent, a foaming agent, etc., and foam-curing it, a phenol consisting of a cured product of a phenolic resin such as phenol foam.
  • a flame retardant composed of ammonium polyphosphate as proposed in the above-mentioned JP-A-8-176343, such polyphosphoric acid is used.
  • a flame retardant composed of ammonium polyphosphate as proposed in the above-mentioned JP-A-8-176343
  • the total calorific value for 5 minutes after starting heating is 8.0 MJ.
  • the curing reaction of the phenol resin composition is less likely to proceed as the compounding amount of ammonium polyphosphate with respect to the phenol resin composition is increased in order to obtain the characteristic of less than 1 / m 2 and the desired phenol resin material such as phenol foam.
  • the (cured product) cannot be obtained at all.
  • the flame-retardant material satisfies the above total calorific value, and the maximum heat generation rate does not exceed 200 kW / m 2 continuously for more than 10 seconds. It is said that there are no cracks and holes that penetrate to the back surface, which is harmful for flame prevention, but the phenol resin materials up to this point have been able to meet such requirements while ensuring useful properties as a phenol resin. It wasn't enough.
  • the problem to be solved is a phenol resin composition containing a resol type phenol resin as an essential component, Flame-retardant phenolic resin which can solve the problems in the case of blending ammonium polyphosphate that can impart the flame-retardant property, and can advantageously form the flame-retardant material specified by the Building Standards Law of Japan. It is to provide a composition, and to provide a flame-retardant material defined by such a building standard method by using such a flame-retardant phenol resin composition.
  • At least an ammonium polyphosphate powder having a surface coating layer as a flame retardant is contained together with a resol-type phenol resin and an acid curing agent.
  • the flame-retardant phenolic resin composition is
  • the surface coating layer is formed of a sparingly soluble thermosetting resin.
  • a melamine resin will be preferably adopted.
  • the flame retardant is used in a proportion of 0.5 to 30 parts by mass with respect to 100 parts by mass of the resol type phenolic resin. It is included.
  • the resol-type phenol resin is adjusted to have a viscosity of 2000 mPa ⁇ s or more at 25 ° C.
  • a foaming agent is further contained, whereby a phenol foam (phenolic resin) having exceptional flame retardant properties is contained. Foams) can be advantageously formed.
  • halogenated alkenes, or chlorinated aliphatic hydrocarbons and / or aliphatic hydrocarbons are preferably used, and among them, a mixture of isopentane and isopropyl chloride is advantageously used. Will be done.
  • the flame-retardant phenolic resin composition as described above a flame-retardant material characterized by comprising a cured product obtained by curing, is also the gist thereof, Furthermore, a flame-retardant material comprising a foam obtained by foam-curing a flame-retardant phenolic resin composition containing a foaming agent as described above is also the subject matter.
  • the foam is 5 after the start of heating when heated at a radiant heat intensity of 50 kW / m 2 in accordance with the exothermic test method specified in ISO-5660. It has the characteristic that the total calorific value per minute is 8.0 MJ / m 2 or less.
  • the ammonium polyphosphate powder formed by forming the surface coating layer is blended as the flame retardant, not the ammonium polyphosphate itself. Therefore, the inhibitory effect of ammonium polyphosphate on the curing reaction of the phenol resin composition containing the resol-type phenol resin and the acid curing agent can be advantageously suppressed or prevented, whereby the phenol resin composition is obtained.
  • the flame retardancy of the target phenolic resin material composed of the cured product of 1) can be effectively improved.
  • a predetermined foaming agent is contained, and by being foam-cured, a phenol foam excellent in flame-retardant properties can be advantageously formed. Therefore, one of the great features of the present invention can be found there.
  • a flame-retardant phenolic resin material such as a flame-retardant phenolic foam can be easily obtained as a flame-retardant material specified by the Building Standards Law of Japan. Moreover, it can be advantageously formed.
  • the resol-type phenol resin used in the present invention as described above is in a liquid form, and it is advantageous that 1.0 mol to 3 mol. It is used in a proportion of about 0 mol, preferably in a proportion of about 1.5 to 2.5 mol, and these are used in the presence of an alkaline reaction catalyst in the same manner as in the conventional manner, for example, in the range of 50 ° C. to the reflux temperature.
  • a neutralization treatment is carried out, and then a predetermined characteristic value, for example, a viscosity at 25 ° C. of 2000 mPa ⁇ s or more, and a water content of 3 to 20 mass% under reduced pressure.
  • dehydration concentration is carried out so that the amount is preferably 5 to 18% by mass, and thereafter, if necessary, predetermined additives are added in the same manner as in the conventional case, and the product is produced.
  • the liquid resol-type phenol resin thus obtained is generally 2000 mPa ⁇ s or more, preferably 2000 to 100000 mPa ⁇ s, more preferably 3000 to 80000 mPa ⁇ s, further preferably 4000 to 30000 mPas at 25 ° C. -By having a viscosity of s, it is possible to more effectively realize the preparation work of the intended phenol resin composition, in particular, the dispersion and the containing operation of the ammonium polyphosphate powder having the surface coating layer. Since the stability of the dispersed state can be advantageously increased, the advantage that flame retardancy and thermal conductivity can be further improved can be enjoyed.
  • the phenols as one raw material of the resol type phenol resin used in the present invention include phenol, o-cresol, m-cresol, p-cresol, p-tert-butylphenol, m-xylenol, bisphenol F, Bisphenol A and the like can be mentioned, and as the other raw material aldehyde used in combination with this phenol, formaldehyde, paraformaldehyde, trioxane, polyoxymethylene, glyoxal and the like can be mentioned.
  • examples of the reaction catalyst include potassium hydroxide, sodium hydroxide, barium hydroxide, calcium hydroxide, potassium carbonate, ammonia and the like.
  • any of these phenols, aldehydes and reaction catalysts is by no means limited to the above examples, and various known ones can be appropriately used, and they are respectively They can be used alone or in combination of two or more.
  • a phenol foam as a flame-retardant phenol resin material, together with the resole type phenol resin as described above, as the foaming agent
  • various known foaming agents are used.
  • a chlorinated aliphatic hydrocarbon and / or an aliphatic hydrocarbon having a low global warming potential and a halogenated alkene are advantageously used, and a phenol resin such as phenol foam is used.
  • a foam will be formed.
  • chlorinated aliphatic hydrocarbon as a foaming agent, generally, a chlorinated product of a linear or branched aliphatic hydrocarbon having about 2 to 5 carbon atoms is preferably used.
  • the number of bonded atoms is generally about 1 to 4.
  • Specific examples of such chlorinated aliphatic hydrocarbons include dichloroethane, propyl chloride, isopropyl chloride, butyl chloride, isobutyl chloride, pentyl chloride, isopentyl chloride and the like. These may be used alone or in combination of two or more. Among them, chloropropanes such as propyl chloride and isopropyl chloride are preferable, and isopropyl chloride is particularly preferably used. .
  • aliphatic hydrocarbon as the foaming agent, a conventionally known hydrocarbon-based foaming agent having about 3 to 7 carbon atoms can be appropriately selected and used.
  • a conventionally known hydrocarbon-based foaming agent having about 3 to 7 carbon atoms can be appropriately selected and used.
  • Propane, butane, pentane, isopentane, hexane, isohexane, neohexane, heptane, isoheptane, cyclopentane and the like can be mentioned, and from these, one kind or a combination of two or more kinds is used.
  • a mixed foaming agent obtained by combining the above-mentioned chlorinated aliphatic hydrocarbon and aliphatic hydrocarbon is also suitably used, and the mixing ratio thereof is, in terms of mass ratio, aliphatic hydrocarbon.
  • Chlorinated aliphatic hydrocarbon 25: 75 to 5:95, which is advantageously adopted.
  • a combination of such two kinds of foaming agents a combination of isopentane and isopropyl chloride is recommended, whereby the object of the present invention can be achieved even more advantageously.
  • a halogenated alkene is also advantageously used as a blowing agent, which can contribute to further improvement of the properties of the obtained phenol foam, particularly flame retardancy and heat insulating properties.
  • Halogenated alkenes having such characteristics include those called halogenated olefins and halogenated hydroolefins, and in general, chlorine or fluorine is bonded and contained as a halogen and has 2 to 4 carbon atoms.
  • Tetrafluoro which is an unsaturated hydrocarbon derivative of about 6, for example, propene, butene, pentene and hexene having 3 to 6 fluorine substituents, substituted with halogen such as fluorine or chlorine.
  • Examples thereof include propene, fluorochloropropene, trifluoromonochloropropene, pentafluoropropene, fluorochlorobutene, hexafluorobutene, and a mixture of two or more thereof.
  • hydrofluoroolefin which is one of such halogenated alkenes (halogenated olefins)
  • halogenated olefins for example, pentafluoro such as 1,2,3,3,3-pentafluoropropene (HFO1225ye) is used.
  • Tetrafluoro such as propene, 1,3,3,3-tetrafluoropropene (HFO1234ze), 2,3,3,3-tetrafluoropropene (HFO1234yf), 1,2,3,3-tetrafluoropropene (HFO1234ye)
  • Propene trifluoropropene such as 3,3,3-trifluoropropene (HFO1243zf), tetrafluorobutene isomer (HFO1354), pentafluorobutene isomer (HFO1345), 1,1,1,4,4,4 4-hexafluoro-2-butene (HFO 336mzz) and other hexafluorobutene isomers (HFO1336), heptafluorobutene isomers (HFO1327), heptafluoropentene isomers (HFO1447), octafluoropentene isomers (HFO1438), nonafluoropen
  • hydrochlorofluoroolefin HCFO
  • 1-chloro-3,3,3-trifluoropropene HCFO-1233zd
  • 2-chloro-3,3,3-trifluoropropene HCFO-1233xf
  • Dichlorotrifluoropropene HCFO1223
  • 1-chloro-2,3,3-trifluoropropene HCFO-1233yd
  • 1-chloro-1,3,3-trifluoropropene HCFO-1233zb
  • 2-chloro- 1,3,3-trifluoropropene HCFO-1233xe
  • 2-chloro-2,2,3-trifluoropropene HCFO-1233xc
  • 3-chloro-1,2,3-trifluoropropene HCFO- 1233ye
  • 3-chloro-1,1,2-trifluoropropene HCF
  • the total amount of each of the above-mentioned foaming agents is generally 1 to 30 parts by mass, preferably 5 to 25 parts by mass, relative to 100 parts by mass of the resol-type phenol resin.
  • the blowing agent preferably used in the present invention is characterized by containing a chlorinated aliphatic hydrocarbon and / or an aliphatic hydrocarbon as described above, or a halogenated alkene, but for the purpose of the present invention, As long as they do not cause adverse effects, for example, fluorinated hydrocarbons such as 1,1,1,3,3-pentafluorobutane (alternative CFCs), salt fluorinated hydrocarbons such as trichloromonofluoromethane and trichlorotrifluoroethane, It is also possible to contain water, an ether compound such as isopropyl ether, a gas such as nitrogen, argon, carbon dioxide, air or the like in an appropriate ratio.
  • fluorinated hydrocarbons such as 1,1,1,3,3-pentafluorobutane (alternative CFCs)
  • salt fluorinated hydrocarbons such as trichloromonofluoromethane and trichlorotri
  • the acid curing agent used in the present invention is a component (curing catalyst) for accelerating the curing reaction of the resol type phenolic resin as described above, and a conventionally known acid curing agent is appropriately selected. , Will be used.
  • an acid curing agent include aromatic sulfonic acids such as benzenesulfonic acid, phenolsulfonic acid, cresolsulfonic acid, toluenesulfonic acid, xylenesulfonic acid and naphthalenesulfonic acid; methanesulfonic acid and trifluoromethanesulfonic acid.
  • inorganic acids such as sulfuric acid, phosphoric acid, polyphosphoric acid, borofluoric acid, etc., which may be used alone, or may be used in combination of two or more kinds.
  • acid curing agents for example, phenol sulfonic acid, toluene sulfonic acid, and aromatic sulfonic acid such as naphthalene sulfonic acid can achieve an appropriate curing rate in the production of phenol foam.
  • the balance between the curing of the resol-type phenol resin and the foaming by the foaming agent is further improved, and a desired foamed structure is realized, and therefore, it is particularly preferably used.
  • paratoluenesulfonic acid the combined use of paratoluenesulfonic acid and xylenesulfonic acid is recommended.
  • the usage ratio thereof it is desirable that the amount of paratoluenesulfonic acid used is more than the amount of xylenesulfonic acid used on a mass basis.
  • paratoluenesulfonic acid: xylenesulfonic acid is within the range of 51:49 to 95: 5, it is advantageously adopted.
  • the amount of such an acid curing agent to be used is appropriately set depending on the type and temperature conditions during mixing with the resol-type phenol resin, but in the present invention, the resol-type phenol is used. It is desirable that the amount is generally 1 to 50 parts by mass, preferably 5 to 30 parts by mass, and particularly preferably 7 to 25 parts by mass, relative to 100 parts by mass of the resin. If the amount used is less than 1 part by mass, the progress of curing is slow, while if it exceeds 50 parts by mass, the curing rate becomes too fast and it becomes difficult to obtain the desired phenol foam advantageously. Cause.
  • At least a ammonium polyphosphate powder having a surface coating layer is contained as a flame retardant in the phenol resin composition constituted by containing the resol-type phenol resin and the acid curing agent as described above.
  • the curing reaction of the phenol resin composition can be effectively progressed, and thus, with excellent flame retardant properties,
  • the ammonium polyphosphate powder having a surface coating layer used therein is obtained by coating or microencapsulating ammonium polyphosphate particles with a thermosetting resin, polyphosphoric acid such as melamine monomer or other nitrogen-containing organic compound.
  • a thermosetting resin such as melamine monomer or other nitrogen-containing organic compound.
  • examples thereof include those obtained by coating the surface of ammonium particles, those treated with a surfactant or silicon, etc., and normally, they are appropriately selected from commercial products and used.
  • Exolit AP462 available from Clariant Chemicals Co., Ltd.
  • FR CROS486, FR CROS487 available from CBC
  • Terrage C30, Terrage C60, Terrage C70, Terrage C80, etc. can be mentioned.
  • the surface coating layer of the ammonium polyphosphate powder is preferably sparingly soluble in the liquid phenol resin composition, that is, sparingly soluble in water.
  • the curable resin a phenol resin, a melamine resin or the like is used, and among them, the melamine resin is preferably used.
  • an easily soluble thermosetting resin can be advantageously used by advancing the curing reaction of the surface coating layer formed thereon to form a hardly soluble surface coating layer.
  • a surface coating layer made of such a sparingly soluble thermosetting resin a cured product such as phenol foam having excellent properties in compressive strength and initial thermal conductivity can be advantageously obtained. You can do it.
  • the amount of the ammonium polyphosphate powder having such a surface coating layer to be used is generally 0.5 to 30 parts by mass, preferably 1 to 25 parts by mass, and further 100 parts by mass of the resol type phenol resin. Preferably, it will be appropriately determined within the range of 2 to 20 parts by mass.
  • the addition amount of the ammonium polyphosphate powder having such a surface coating layer is too small, it is difficult to sufficiently exert the effect of imparting flame retardancy to the phenol resin material composed of the cured product such as phenol foam. Further, if the addition amount becomes too large, it becomes difficult to avoid the inhibitory effect on the curing reaction of the phenol resin composition, and it increases the viscosity of the composition to which it is added, causing problems such as poor stirring. In addition to causing such problems, problems such as deterioration in properties such as compressive strength and thermal conductivity of the phenol resin material will occur.
  • the average particle diameter of the ammonium polyphosphate powder having such a surface coating layer is generally about 1 to 100 ⁇ m, preferably about 5 to 50 ⁇ m. If the particle size of the ammonium polyphosphate powder having this surface coating layer becomes too small, it causes problems such as difficulty in handling and uniform dispersion in the phenol resin composition, and the particle size becomes large. Even if it is too much, it is difficult to obtain a uniform dispersion effect in the phenol resin composition, which causes a problem that the object of the present invention cannot be sufficiently achieved.
  • ammonium polyphosphate powder having a surface coating layer is used as a flame retardant, but if necessary, other publicly known substances that do not impair the object of the present invention. It is also possible to use the above flame retardant together.
  • flame retardant include phenylphosphonic acid, guanidine phosphate derivatives, carbamate phosphate derivatives, phosphorus-based flame retardants such as red phosphorus and ammonium phosphate, sulfamic acid-based flame retardants, and borohydrides.
  • examples thereof include acid flame retardants, halogen flame retardants, inorganic hydroxides such as metal hydroxides, metal oxides and graphite.
  • ammonium polyphosphate powder having a surface coating layer as a flame retardant is added as an essential component together with the resole-type phenolic resin and the acid curing agent as described above.
  • a predetermined blowing agent in particular, a chlorinated aliphatic hydrocarbon and / or an aliphatic hydrocarbon, or a halogenated alkene is mixed, and further, If necessary, conventionally known foam stabilizers, inorganic fillers, plasticizers, urea, etc. may be added.
  • the foam stabilizer among the additives to be added and contained as necessary, is used for assisting the mixing and emulsification of the mixed components in the phenol resin composition, dispersing the generated gas, stabilizing the foam cell membrane, and the like. It is mixed for the purpose.
  • various foam stabilizers conventionally used in the technical field will be selected and used, among them, poly Nonionic surfactants such as siloxane compounds, polyoxyethylene sorbitan fatty acid esters, alkylphenol ethylene oxide adducts, and castor oil ethylene oxide adducts are particularly preferably used. These foam stabilizers may be used alone or in combination of two or more.
  • the amount used is also not particularly limited, but it is generally used within a range of 0.5 to 10 parts by mass with respect to 100 parts by mass of the resol-type phenol resin.
  • inorganic filler for example, aluminum hydroxide, magnesium hydroxide, metal hydroxide such as calcium hydroxide, magnesium oxide, aluminum oxide, metal oxide such as zinc oxide, metal powder such as zinc, Mention may be made of metal carbonates such as calcium carbonate, magnesium carbonate, barium carbonate and zinc carbonate.
  • inorganic fillers may be used alone or in combination of two or more.
  • flame retardancy and fire resistance can be improved, but the amount thereof is appropriately determined within the range of the amount not hindering the object of the present invention. It goes without saying that it is done.
  • the plasticizer can be advantageously used as a cured phenolic resin material in the case of producing a phenol foam, and by its use, it imparts flexibility to the cell wall of the phenol foam, thereby improving the heat insulation performance. It exhibits characteristics such as suppressing deterioration with time.
  • the plasticizer is not particularly limited, and known plasticizers conventionally used in the production of phenol foams, such as triphenyl phosphate, dimethyl terephthalate, and dimethyl isophthalate, can be used, and further polyesters can be used. The use of polyols is also effective.
  • the polyester polyol since the polyester polyol has a structure containing an ester bond and a hydroxyl group, which are hydrophilic and have excellent surface activity, it has good compatibility with the hydrophilic phenol resin solution and should be mixed uniformly with the phenol resin. Can be done. Further, by using this polyester polyol, uneven distribution of air bubbles is avoided, the air bubbles are uniformly distributed throughout the foam, and a phenol resin foam (phenol foam) which is homogeneous in terms of quality is easily produced, which is preferable plasticization. It can be called an agent.
  • phenol resin foam phenol foam
  • the amount of such a plasticizer is usually 0.1 to 20 parts by mass, preferably 0.5 to 15 parts by mass, and more preferably 1 to 12 parts by mass with respect to 100 parts by mass of the resol-type phenol resin. It is used in the range, whereby the effect of imparting flexibility to the cell wall can be satisfactorily exerted without impairing the other properties of the resulting phenol foam, and the object of the present invention can be achieved even better.
  • urea will be suitably added and contained in the flame-retardant phenolic resin composition constructed according to the present invention.
  • urea By containing such urea, it is possible to effectively reduce the initial thermal conductivity of the obtained phenol resin material such as phenol foam, and further to obtain a phenol resin material such as phenol foam having strength, particularly low brittleness.
  • it also contributes to maintaining the thermal conductivity low over a medium to long term, which makes it easy to obtain a phenolic resin material such as phenol foam having excellent thermal insulation performance for a long period of time. It will be.
  • the flame-retardant phenolic resin composition according to the present invention which contains the above-described compounding ingredients, is, for example, the above-mentioned resole-type phenolic resin, to which, as a flame retardant, ammonium polyphosphate powder having the above-mentioned surface coating layer is added. Then, the mixture is mixed, and if necessary, the above-mentioned other flame retardant, inorganic filler, foam stabilizer, further plasticizer, urea, etc. are added and mixed, and the resulting mixture is mixed as necessary.
  • a phenol resin composition thus prepared is used and cured to form a desired phenol resin material such as a solid material or a foam
  • various conventionally known various resins are used.
  • a method for producing a phenol foam (1) a molding method in which a phenol resin composition is allowed to flow out on an endless conveyor belt to foam and cure, and (2) spot filling is performed. Partially foaming and curing, (3) foaming and curing under pressure in a mold, and (4) foaming and curing by filling into a predetermined large space. Examples include a method of forming a body block and (5) a method of filling and foaming while press-fitting into a cavity.
  • the above-mentioned phenol resin composition is discharged onto a carrier that moves continuously, and this discharged material passes through a heating zone.
  • a method is employed in which the desired phenolic foam is made by foaming and molding. Specifically, the phenolic resin composition is discharged onto a face material on a conveyor belt, then the face material is placed on the upper surface of the resin material on the conveyor belt, and moved to a curing furnace, and a curing furnace. In the above, press the other conveyor belt from above to adjust the resin material to a predetermined thickness, and foam and cure it under the conditions of about 60 to 100 ° C for about 2 to 15 minutes, and then cure furnace. By cutting the foam taken out from the product into a predetermined length, a phenol foam having a desired shape is produced.
  • the face material used here is not particularly limited, and generally, natural fibers, synthetic fibers such as polyester fibers and polyethylene fibers, non-woven fabrics such as inorganic fibers such as glass fibers, papers, aluminum Foil-clad non-woven fabrics, metal plates, metal foils and the like are used, but usually glass fiber non-woven fabrics, spunbonded non-woven fabrics, aluminum foil-clad non-woven fabrics, metal plates, metal foils, plywood, structural panels, particle boards, hard boards.
  • Wood cement board flexible board, perlite board, calcium silicate board, magnesium carbonate board, pulp cement board, seeding board, medium density fiberboard, gypsum board, lath sheet, volcanic vitreous composite board, natural stone, brick, tile , Glass molding, lightweight cellular concrete molding, cement mortar Body, molded bodies of water-curable cement hydrate glass fiber-reinforced cement moldings such as a binder component, and thus preferably used.
  • This face material may be provided on one side of the phenol foam, or on both sides, without any problem. Further, when provided on both sides, the face materials may be the same or different. Further, it does not matter even if it is formed by laminating the face materials by using an adhesive later.
  • the phenol resin material (cured product) such as the phenol foam thus obtained contains the predetermined ammonium polyphosphate powder dispersed and contained therein.
  • the property can be effectively enhanced, and in a heat generation test by a corn calorimeter, the property as a flame retardant material stipulated by the Building Standards Law of Japan is advantageously provided.
  • the exothermic test method specified in ISO-5660 when heated at a radiant heat intensity of 50 kW / m 2 , the total calorific value from the start of heating until 5 minutes has elapsed is The material having the characteristic of 8.0 MJ / m 2 or less is advantageously provided, and thus, it can be advantageously used in various applications as a flame retardant material.
  • a phenolic resin material such as such a phenolic foam is advantageously generally 0.0230 W / m ⁇ K (20 ° C.) or less, preferably 0.0200 W / m ⁇ K (20 ° C.) or less, more preferably It can be easily produced as having an initial thermal conductivity of 0.0195 W / m ⁇ K (20 ° C.) or less, and in the case of phenol foam, its closed cell ratio is Generally, it is constituted to be 80% or more, preferably 85% or more, more preferably 90% or more, whereby it is produced as one that advantageously exhibits excellent flame retardancy and excellent low thermal conductivity characteristics. It will be.
  • the phenolic resin material such as phenol foam obtained according to the present invention
  • its density is generally 10 to 150 kg / m 3 , preferably 15 to 100 kg / m 3 , and more preferably 15 to 70 kg / m 3 . Yes, more preferably 20 to 50 kg / m 3 , and most preferably 20 to 40 kg / m 3 .
  • a phenol foam having a density lower than 10 kg / m 3 the strength is low and the foam (foam) may be damaged during transportation or construction. If the density is low, the bubble film tends to be thin.
  • Example 1 In a three-neck reaction flask equipped with a reflux condenser, a thermometer and a stirrer, 1600 parts of phenol, 2282 parts of 47% formalin and 41.6 parts of 50% sodium hydroxide aqueous solution were charged, and the temperature was 80 ° C. for 70 minutes. It was made to react. Then, after cooling to 40 ° C., it was neutralized with a 50% paratoluenesulfonic acid aqueous solution, and then dehydrated and concentrated to a water content of 10% under reduced pressure and heating to obtain a liquid resol-type phenol resin. .
  • the obtained phenol resin had the following properties: viscosity: 10000 mPa ⁇ s / 25 ° C., number average molecular weight: 380, free phenol content: 4.0%.
  • the foamable phenolic resin molding material thus prepared, it is poured into a mold having a length of 300 mm, a width of 300 mm, and a thickness of 50 mm, which has been heated to 70 to 75 ° C. in advance.
  • the mold was housed in a dryer at 70 to 75 ° C., foamed and cured for 10 minutes, and further heated at a temperature of 70 ° C. for 12 hours in a heating furnace to be post-cured, A phenol foam (phenol resin foam) was produced.
  • Example 2 In Example 1, FR CROS486 (sold by CBC Co., Ltd .; an average particle size: 18 ⁇ m) of polyphosphorus which is an ammonium polyphosphate powder in which a silane coating layer is formed as a surface coating layer in place of the TELLAGE C80 used as the flame retardant. A phenol foam was produced in the same manner as in Example 1 except that ammonium acid powder having a surface treated with silane) was used.
  • Example 3 In Example 1, the blowing agent was changed to hydrofluoroolefin (1,1,1,4,4,4-hexafluoro-2-butene: HFO-1336mzz, a product of Chemours), and the addition amount was 17. A phenol foam was produced in the same manner as in Example 1 except that the amount was 5 parts.
  • Example 1 A phenolic foam was produced in the same manner as in Example 1 except that ammonium polyphosphate powder having a surface coating layer as a flame retardant was not added.
  • Example 2 In Example 1, except that ammonium polyphosphate powder (FR CROS484 sold by CBC Co., average particle size: 18 ⁇ m) having no surface coating layer was used as the flame retardant, Similarly, an attempt was made to produce a phenol foam, but the curing reaction of the phenol resin composition did not proceed sufficiently, and a foam whose physical properties could be measured could not be obtained.
  • ammonium polyphosphate powder FR CROS484 sold by CBC Co., average particle size: 18 ⁇ m
  • the phenol foams formed in Examples 1 to 3 all had a total calorific value of 8 MJ / m 2 or less in the combustion test, and the maximum heat generation rate was also the specified value. From the following points, we have found that it is useful as a flame-retardant material specified by the Building Standards Law of Japan. Among them, the phenol foams obtained in Examples 1 and 3 all have an initial thermal conductivity of 0.0193 W / mK or less, a closed cell rate of 91% or more, and a compression strength. It was about 16 N / cm 2 or more, and it was confirmed that the mechanical properties as well as the heat insulating properties were excellent.
  • Comparative Example 1 since the phenol foam obtained in Comparative Example 1 does not contain any flame retardant, it cannot impart effective flame retardancy and is easily burned. Further, in Comparative Example 2 in which the powder of ammonium polyphosphate as it is having no surface coating layer was used, the curing reaction of the phenol resin composition did not proceed smoothly, and therefore a foam capable of measuring physical properties was prepared. I could't get it.

Abstract

Provided is a flame-retardant phenolic-resin composition which solves problems caused by incorporating ammonium polyphosphate, which can impart a high degree of flame retardancy, into phenolic-resin compositions containing a resole-type phenolic resin as an essential component and which can advantageously give flame-retardant materials according to the Building Standards Law of Japan. The flame-retardant phenolic-resin composition is a phenolic-resin composition which comprises a resole-type phenolic resin and an acid hardener and further contains a flame retardant at least including an ammonium polyphosphate powder having a surface-coating layer.

Description

難燃性フェノール樹脂組成物及びそれから得られた難燃材料Flame-retardant phenolic resin composition and flame-retardant material obtained therefrom
 本発明は、難燃性フェノール樹脂組成物及びそれから得られた難燃材料に係り、特に、難燃性フェノール樹脂発泡体(フェノールフォーム)の如き、硬化したフェノール樹脂からなる難燃材料を、有利に形成し得るフェノール樹脂組成物と、そのようなフェノール樹脂組成物から得られた難燃材料に関するものである。 The present invention relates to a flame-retardant phenolic resin composition and a flame-retardant material obtained from the flame-retardant phenolic resin composition. In particular, a flame-retardant material comprising a cured phenolic resin such as a flame-retardant phenolic resin foam (phenol foam) is advantageous. And a flame-retardant material obtained from such a phenol resin composition.
 従来から、フェノール樹脂を硬化させて得られるフェノール樹脂材料は、それ自体、比較的に難燃性の高いものとして、当業者間において認識されているのであるが、そのままでは、建築、土木、電気製品、電気電子部品、自動車部品等の分野において要求される安全性基準を充分に満たすものではなく、コーンカロリーメーターによる発熱性試験にて評価される、我国の建築基準法にて規定される難燃特性を備えた難燃材料を、有利に与え得るものではなかった。 BACKGROUND ART Conventionally, a phenol resin material obtained by curing a phenol resin has been recognized by those skilled in the art as a material having relatively high flame retardance, but as it is, it can be used for construction, civil engineering, and electricity. It does not fully meet the safety standards required in the fields of products, electric and electronic parts, automobile parts, etc., and is difficult to be stipulated by the Japanese Building Standards Act, which is evaluated by a heat generation test with a cone calorimeter. Flame-retardant materials with flammability properties could not be advantageously provided.
 このため、そのようなフェノール樹脂材料の難燃特性の向上を図るべく、所定の難燃剤をフェノール樹脂組成物に配合して、その硬化により、目的とするフェノール樹脂材料の難燃性の向上が図られてきている。例えば、特開平2-49037号公報においては、難燃剤として、リン化合物、硫黄化合物又はホウ素化合物を用いて、それらをフェノールフォーム製造用樹脂組成物に配合せしめることによって、有用な難燃性フェノールフォームを製造し得ることが、明らかにされている。また、特開2007-161810号公報や特開2007-70511号公報等においても、フェノールフォーム製造用の樹脂組成物に、通常、配合せしめられることとなる無機フィラーとして、水酸化アルミニウム、水酸化マグネシウム等の金属の水酸化物;酸化カルシウム、酸化アルミニウム等の金属の酸化物;亜鉛末の如き金属粉末;炭酸カルシウム、炭酸マグネシウム等の金属の炭酸塩を用いることにより、発泡して得られるフェノールフォームの難燃性乃至は耐火性を向上せしめ得ることが、明らかにされている。更に、特開平8-176343号公報においては、樹脂に高度の難燃性を付与し得る非ハロゲン系難燃剤として、ポリリン酸アンモニウムを配合せしめてなる樹脂組成物が、明らかにされている。 Therefore, in order to improve the flame-retardant properties of such a phenol resin material, a predetermined flame retardant is blended with the phenol resin composition, and curing thereof improves the flame retardancy of the intended phenol resin material. It has been planned. For example, in JP-A-2-49037, a useful flame-retardant phenol foam is obtained by using a phosphorus compound, a sulfur compound or a boron compound as a flame retardant and blending them with a resin composition for phenol foam production. It has been demonstrated that can be manufactured. Further, in JP-A-2007-161810, JP-A-2007-70511 and the like, aluminum hydroxide and magnesium hydroxide are used as inorganic fillers that are usually added to a resin composition for producing phenol foam. Phenol foam obtained by foaming by using metal hydroxides such as; oxides of metals such as calcium oxide and aluminum oxide; metal powders such as zinc dust; carbonates of metals such as calcium carbonate and magnesium carbonate It has been clarified that the flame retardancy or fire resistance of the can be improved. Further, JP-A-8-176343 discloses a resin composition containing ammonium polyphosphate as a non-halogen flame retardant capable of imparting a high degree of flame retardancy to a resin.
 ところで、フェノール樹脂の一つであるレゾール型フェノール樹脂を用い、これと酸硬化剤や発泡剤等とを組み合わせて、発泡硬化せしめることにより得られる、フェノールフォームの如きフェノール樹脂の硬化物からなるフェノール樹脂材料に対して、高度の難燃性を付与せしめるべく、上記の特開平8-176343号公報に提案されている如き、ポリリン酸アンモニウムからなる難燃剤を用いたときに、そのようなポリリン酸アンモニウムを配合せしめてなるフェノール樹脂組成物の硬化反応を有効に進行せしめ難く、そのために、目的とするフェノール樹脂材料(硬化物)を得ることが出来なくなるという問題があった。特に、我国の建築基準法にて規定される難燃材料に要求される特性、即ち放射熱強度:50kW/m2 にて加熱したときに、加熱開始後5分間の総発熱量が8.0MJ/m2 以下となる特性を得るために、ポリリン酸アンモニウムのフェノール樹脂組成物に対する配合量を増加せしめるに従って、フェノール樹脂組成物の硬化反応が進行し難く、目的とするフェノールフォームの如きフェノール樹脂材料(硬化物)を得ることが、全く出来なくなってしまうのである。 By the way, using a resol type phenolic resin, which is one of the phenolic resins, and combining it with an acid curing agent, a foaming agent, etc., and foam-curing it, a phenol consisting of a cured product of a phenolic resin such as phenol foam. In order to impart a high degree of flame retardancy to a resin material, when using a flame retardant composed of ammonium polyphosphate as proposed in the above-mentioned JP-A-8-176343, such polyphosphoric acid is used. There is a problem that it is difficult to effectively proceed the curing reaction of the phenol resin composition in which ammonium is blended, and thus it is impossible to obtain the intended phenol resin material (cured product). In particular, when the properties required for flame-retardant materials stipulated by the Japanese Building Standards Act, that is, radiant heat intensity: 50 kW / m 2 , the total calorific value for 5 minutes after starting heating is 8.0 MJ. The curing reaction of the phenol resin composition is less likely to proceed as the compounding amount of ammonium polyphosphate with respect to the phenol resin composition is increased in order to obtain the characteristic of less than 1 / m 2 and the desired phenol resin material such as phenol foam. The (cured product) cannot be obtained at all.
 なお、前記建築基準法の規定によれば、難燃材料は、上記の総発熱量を満たすものであると共に、最高発熱速度が10秒を超えて連続して200kW/m2 を超えることがないこと、そして防炎上有害な裏面まで貫通する亀裂及び穴がないこととされているのであるが、これまでのフェノール樹脂材料は、フェノール樹脂としての有用な特性を確保しつつ、そのような要請に充分に応え得るものではなかったのである。 According to the provisions of the Building Standards Law, the flame-retardant material satisfies the above total calorific value, and the maximum heat generation rate does not exceed 200 kW / m 2 continuously for more than 10 seconds. It is said that there are no cracks and holes that penetrate to the back surface, which is harmful for flame prevention, but the phenol resin materials up to this point have been able to meet such requirements while ensuring useful properties as a phenol resin. It wasn't enough.
特開平2-49037号公報JP-A-2-49037 特開2007-161810号公報JP, 2007-161810, A 特開2007-70511号公報JP, 2007-70511, A 特開平8-176343号公報Japanese Unexamined Patent Publication No. 8-176343
 ここにおいて、本発明は、上述の如き事情を背景にして為されたものであって、その解決課題とするところは、レゾール型フェノール樹脂を必須成分として含有するフェノール樹脂組成物に対して、高度の難燃性を付与し得るポリリン酸アンモニウムを配合せしめた場合における問題を解消して、我国の建築基準法にて規定される難燃材料を有利に形成することの出来る、難燃性フェノール樹脂組成物を提供することにあり、また、そのような難燃性フェノール樹脂組成物を用いて、かかる建築基準法にて規定される難燃材料を提供することにある。 Here, the present invention has been made against the background of the above circumstances, the problem to be solved is a phenol resin composition containing a resol type phenol resin as an essential component, Flame-retardant phenolic resin which can solve the problems in the case of blending ammonium polyphosphate that can impart the flame-retardant property, and can advantageously form the flame-retardant material specified by the Building Standards Law of Japan. It is to provide a composition, and to provide a flame-retardant material defined by such a building standard method by using such a flame-retardant phenol resin composition.
 そして、本発明にあっては、かくの如き課題を解決するために、レゾール型フェノール樹脂及び酸硬化剤と共に、難燃剤として、表面コーティング層を有するポリリン酸アンモニウム粉末を、少なくとも含有することを特徴とする難燃性フェノール樹脂組成物を、その要旨とするものである。 And, in the present invention, in order to solve such a problem, at least an ammonium polyphosphate powder having a surface coating layer as a flame retardant is contained together with a resol-type phenol resin and an acid curing agent. The flame-retardant phenolic resin composition is
 なお、この本発明に従う難燃性フェノール樹脂組成物の好ましい態様の一つによれば、前記表面コーティング層は、難溶性熱硬化性樹脂にて形成されており、中でも、そのような難溶性熱硬化性樹脂としては、メラミン樹脂が、好適に採用されることとなる。 According to one of the preferred embodiments of the flame-retardant phenolic resin composition according to the present invention, the surface coating layer is formed of a sparingly soluble thermosetting resin. As the curable resin, a melamine resin will be preferably adopted.
 また、本発明に従う難燃性フェノール樹脂組成物の好ましい態様の他の一つによれば、難燃剤は、レゾール型フェノール樹脂の100質量部に対して、0.5~30質量部の割合において含有せしめられている。 According to another preferred embodiment of the flame-retardant phenolic resin composition according to the present invention, the flame retardant is used in a proportion of 0.5 to 30 parts by mass with respect to 100 parts by mass of the resol type phenolic resin. It is included.
 加えて、前記レゾール型フェノール樹脂は、25℃において、2000mPa・s以上の粘度を有するように調整されていることが、好ましい。 In addition, it is preferable that the resol-type phenol resin is adjusted to have a viscosity of 2000 mPa · s or more at 25 ° C.
 さらに、本発明に従う難燃性フェノール樹脂組成物の好ましい様態の別の一つによれば、発泡剤が、更に含有せしめられており、これによって、格別の難燃特性を有するフェノールフォーム(フェノール樹脂発泡体)が、有利に形成され得るのである。 Further, according to another preferred embodiment of the flame-retardant phenolic resin composition according to the present invention, a foaming agent is further contained, whereby a phenol foam (phenolic resin) having exceptional flame retardant properties is contained. Foams) can be advantageously formed.
 なお、そのような発泡剤としては、ハロゲン化アルケン、或は塩素化脂肪族炭化水素及び/又は脂肪族炭化水素が、好適に用いられ、中でも、イソペンタンとイソプロピルクロリドとの混合物が、有利に用いられることとなる。 As such a foaming agent, halogenated alkenes, or chlorinated aliphatic hydrocarbons and / or aliphatic hydrocarbons are preferably used, and among them, a mixture of isopentane and isopropyl chloride is advantageously used. Will be done.
 そして、本発明にあっては、上述の如き難燃性フェノール樹脂組成物を、硬化させて得られる硬化生成物からなることを特徴とする難燃材料をも、その要旨とするものであり、更には、上述の如き発泡剤を含む難燃性フェノール樹脂組成物を、発泡硬化させて得られる発泡体からなることを特徴とする難燃材料をも、その要旨とするものである。 And, in the present invention, the flame-retardant phenolic resin composition as described above, a flame-retardant material characterized by comprising a cured product obtained by curing, is also the gist thereof, Furthermore, a flame-retardant material comprising a foam obtained by foam-curing a flame-retardant phenolic resin composition containing a foaming agent as described above is also the subject matter.
 また、そのような難燃材料において、一般に、発泡体は、ISO-5660に規定の発熱性試験方法に準拠して、放射熱強度:50kW/m2 にて加熱したときに、加熱開始後5分間の総発熱量が、8.0MJ/m2 以下である特性を有している。 In addition, in such a flame-retardant material, generally, the foam is 5 after the start of heating when heated at a radiant heat intensity of 50 kW / m 2 in accordance with the exothermic test method specified in ISO-5660. It has the characteristic that the total calorific value per minute is 8.0 MJ / m 2 or less.
 このように、本発明に従う難燃性フェノール樹脂組成物にあっては、難燃剤として、ポリリン酸アンモニウムそのものではなく、表面コーティング層が形成されてなるポリリン酸アンモニウムの粉末が配合せしめられるものであるところから、レゾール型フェノール樹脂及び酸硬化剤を含むフェノール樹脂組成物の硬化反応に対する、ポリリン酸アンモニウムによる阻害作用が有利に抑制乃至は阻止され得ることとなるのであり、以て、フェノール樹脂組成物の硬化生成物からなる、目的とするフェノール樹脂材料の難燃性を、効果的に向上せしめ得ることとなったのである。 As described above, in the flame-retardant phenolic resin composition according to the present invention, the ammonium polyphosphate powder formed by forming the surface coating layer is blended as the flame retardant, not the ammonium polyphosphate itself. Therefore, the inhibitory effect of ammonium polyphosphate on the curing reaction of the phenol resin composition containing the resol-type phenol resin and the acid curing agent can be advantageously suppressed or prevented, whereby the phenol resin composition is obtained. The flame retardancy of the target phenolic resin material composed of the cured product of 1) can be effectively improved.
 特に、本発明に従う難燃性フェノール樹脂組成物にあっては、所定の発泡剤が含有せしめられて、発泡硬化せしめられることにより、難燃特性に優れたフェノールフォームが有利に形成され得ることとなるのであって、そこに、本発明の大きな特徴の一つを見出すことが出来る。 In particular, in the flame-retardant phenolic resin composition according to the present invention, a predetermined foaming agent is contained, and by being foam-cured, a phenol foam excellent in flame-retardant properties can be advantageously formed. Therefore, one of the great features of the present invention can be found there.
 そして、かかる本発明に従う難燃性フェノール樹脂組成物を用いることにより、我国の建築基準法にて規定される難燃材料として、難燃性フェノールフォームの如き難燃性フェノール樹脂材料が、容易に且つ有利に形成され得ることとなったのである。 And, by using the flame-retardant phenolic resin composition according to the present invention, a flame-retardant phenolic resin material such as a flame-retardant phenolic foam can be easily obtained as a flame-retardant material specified by the Building Standards Law of Japan. Moreover, it can be advantageously formed.
 ところで、かくの如き本発明において使用されるレゾール型フェノール樹脂は、液状の形態を呈するものであって、有利には、フェノール類の1モルに対して、アルデヒド類を、1.0~3.0モル程度の割合において、好ましくは1.5~2.5モル程度の割合において用い、それらを、アルカリ性の反応触媒の存在下において、従来と同様にして、例えば50℃~還流温度の範囲内の温度下において反応させた後、中和処理を実施し、次いで減圧下で、所定の特性値、例えば25℃での粘度が2000mPa・s以上であり、且つ含有水分量が3~20質量%、好ましくは5~18質量%となるように、脱水濃縮を行い、しかる後に、必要に応じて、所定の添加物を、従来と同様に加えて、製造されることとなるのである。 By the way, the resol-type phenol resin used in the present invention as described above is in a liquid form, and it is advantageous that 1.0 mol to 3 mol. It is used in a proportion of about 0 mol, preferably in a proportion of about 1.5 to 2.5 mol, and these are used in the presence of an alkaline reaction catalyst in the same manner as in the conventional manner, for example, in the range of 50 ° C. to the reflux temperature. After the reaction at a temperature of 1, a neutralization treatment is carried out, and then a predetermined characteristic value, for example, a viscosity at 25 ° C. of 2000 mPa · s or more, and a water content of 3 to 20 mass% under reduced pressure. Then, dehydration concentration is carried out so that the amount is preferably 5 to 18% by mass, and thereafter, if necessary, predetermined additives are added in the same manner as in the conventional case, and the product is produced.
 勿論、このようにして製造されるレゾール型フェノール樹脂の他、本発明においては、酸硬化剤によって硬化せしめられ得る、公知の各種のレゾール型フェノール樹脂も、適宜に採用され得るところであり、更には適当な変性剤によって変性されたレゾール型フェノール樹脂であっても、同様に用いることが出来る。 Of course, in addition to the resol-type phenol resin produced in this manner, in the present invention, various known resol-type phenol resins that can be cured with an acid curing agent can also be appropriately adopted, and further, Even a resol-type phenol resin modified with an appropriate modifier can be used in the same manner.
 また、このようにして得られる液状のレゾール型フェノール樹脂は、一般に、25℃において、2000mPa・s以上、好ましくは2000~100000mPa・s、より好ましくは3000~80000mPa・s、更に好ましくは4000~30000mPa・sの粘度を有していることにより、目的とするフェノール樹脂組成物の調製作業、中でも、表面コーティング層を有するポリリン酸アンモニウム粉末の分散、含有操作をより一層効果的に実現せしめ、更にはその分散状態の安定性を有利に高め得ることとなるのであり、以て、難燃性並びに熱伝導率のより一層の向上を図り得る利点を享受することが出来るのである。なお、かかるレゾール型フェノール樹脂の粘度が2000mPa・s未満となると、表面コーティング層を有するポリリン酸アンモニウム粉末の沈降が著しくなって、その局在化が惹起され、形成されるフェノールフォーム等のフェノール樹脂材料にムラを生じさせて、充分な難燃性、熱伝導率が得られず、また逆に、粘度が高くなり過ぎて、例えば100000mPa・sを超えるようになると、目的とするフェノールフォーム等のフェノール樹脂材料を得ることが困難となる等の問題を惹起する。 The liquid resol-type phenol resin thus obtained is generally 2000 mPa · s or more, preferably 2000 to 100000 mPa · s, more preferably 3000 to 80000 mPa · s, further preferably 4000 to 30000 mPas at 25 ° C. -By having a viscosity of s, it is possible to more effectively realize the preparation work of the intended phenol resin composition, in particular, the dispersion and the containing operation of the ammonium polyphosphate powder having the surface coating layer. Since the stability of the dispersed state can be advantageously increased, the advantage that flame retardancy and thermal conductivity can be further improved can be enjoyed. When the viscosity of the resol type phenol resin is less than 2000 mPa · s, the precipitation of the ammonium polyphosphate powder having the surface coating layer becomes remarkable and the localization thereof is induced, and the phenol resin such as phenol foam is formed. When the material becomes uneven, sufficient flame retardancy and thermal conductivity cannot be obtained, and conversely, when the viscosity becomes too high, for example, exceeding 100,000 mPa · s, the desired phenol foam, etc. This causes problems such as difficulty in obtaining a phenol resin material.
 さらに、かかる本発明で用いられるレゾール型フェノール樹脂の一方の原料となるフェノール類としては、フェノール、o‐クレゾール、m‐クレゾール、p‐クレゾール、p‐tert‐ブチルフェノール、m‐キシレノール、ビスフェノールF、ビスフェノールA等を挙げることが出来、また、このフェノール類と組み合わせて用いられる、他方の原料であるアルデヒド類としては、ホルムアルデヒド、パラホルムアルデヒド、トリオキサン、ポリオキシメチレン、グリオキザール等を挙げることが出来る。更に、反応触媒としては、水酸化カリウム、水酸化ナトリウム、水酸化バリウム、水酸化カルシウム、炭酸カリウム、アンモニア等を挙げることが出来る。勿論、これらフェノール類、アルデヒド類及び反応触媒は、何れも、上例のものに限定されるものでは決してなく、公知の各種のものが、適宜に用いられ得るところであり、また、それらは、それぞれ単独において、或は2種以上を組み合わせて、用いられ得るものである。 Further, the phenols as one raw material of the resol type phenol resin used in the present invention include phenol, o-cresol, m-cresol, p-cresol, p-tert-butylphenol, m-xylenol, bisphenol F, Bisphenol A and the like can be mentioned, and as the other raw material aldehyde used in combination with this phenol, formaldehyde, paraformaldehyde, trioxane, polyoxymethylene, glyoxal and the like can be mentioned. Further, examples of the reaction catalyst include potassium hydroxide, sodium hydroxide, barium hydroxide, calcium hydroxide, potassium carbonate, ammonia and the like. Of course, any of these phenols, aldehydes and reaction catalysts is by no means limited to the above examples, and various known ones can be appropriately used, and they are respectively They can be used alone or in combination of two or more.
 そして、本発明において、難燃性のフェノール樹脂材料としてのフェノールフォームを製造する場合にあっては、上述の如きレゾール型フェノール樹脂と共に、発泡剤として、公知の各種の発泡剤が用いられることとなるが、特に本発明にあっては、地球温暖化係数の低い、塩素化脂肪族炭化水素及び/又は脂肪族炭化水素や、ハロゲン化アルケンが、有利に用いられて、フェノールフォーム等のフェノール樹脂発泡体が、形成されることとなる。 Then, in the present invention, in the case of producing a phenol foam as a flame-retardant phenol resin material, together with the resole type phenol resin as described above, as the foaming agent, various known foaming agents are used. However, particularly in the present invention, a chlorinated aliphatic hydrocarbon and / or an aliphatic hydrocarbon having a low global warming potential and a halogenated alkene are advantageously used, and a phenol resin such as phenol foam is used. A foam will be formed.
 なお、そこにおいて、発泡剤としての塩素化脂肪族炭化水素は、一般に、炭素数が2~5個程度の直鎖状、分岐鎖状の脂肪族炭化水素の塩素化物が好ましく用いられ、その塩素原子の結合数としては、一般に、1~4個程度である。このような塩素化脂肪族炭化水素の具体例としては、ジクロロエタン、プロピルクロリド、イソプロピルクロリド、ブチルクロリド、イソブチルクロリド、ペンチルクロリド、イソペンチルクロリド等を挙げることが出来る。これらは、1種を単独で用いてもよく、2種以上を組み合わせてもよいが、それらの中でも、プロピルクロリドやイソプロピルクロリド等のクロロプロパン類が好ましく、特にイソプロピルクロリドが好適に用いられることとなる。 Here, as the chlorinated aliphatic hydrocarbon as a foaming agent, generally, a chlorinated product of a linear or branched aliphatic hydrocarbon having about 2 to 5 carbon atoms is preferably used. The number of bonded atoms is generally about 1 to 4. Specific examples of such chlorinated aliphatic hydrocarbons include dichloroethane, propyl chloride, isopropyl chloride, butyl chloride, isobutyl chloride, pentyl chloride, isopentyl chloride and the like. These may be used alone or in combination of two or more. Among them, chloropropanes such as propyl chloride and isopropyl chloride are preferable, and isopropyl chloride is particularly preferably used. .
 また、発泡剤としての脂肪族炭化水素には、従来から公知の、炭素数が3~7個程度の炭化水素系発泡剤が、適宜に選択されて用いられ得るところであり、具体的には、プロパン、ブタン、ペンタン、イソペンタン、ヘキサン、イソヘキサン、ネオヘキサン、ヘプタン、イソヘプタン、シクロペンタン等を挙げることが出来、それらの中から、1種又は2種以上を組み合わせて、用いられることとなる。 Further, as the aliphatic hydrocarbon as the foaming agent, a conventionally known hydrocarbon-based foaming agent having about 3 to 7 carbon atoms can be appropriately selected and used. Specifically, Propane, butane, pentane, isopentane, hexane, isohexane, neohexane, heptane, isoheptane, cyclopentane and the like can be mentioned, and from these, one kind or a combination of two or more kinds is used.
 さらに、本発明にあっては、上記した塩素化脂肪族炭化水素と脂肪族炭化水素とを組み合わせてなる混合発泡剤も好適に用いられ、その混合比率としては、質量比において、脂肪族炭化水素:塩素化脂肪族炭化水素=25:75~5:95の範囲内において、有利に採用されることとなる。なお、そのような2種類の発泡剤の組み合わせとしては、イソペンタンとイソプロピルクロリドとの組み合わせが推奨され、これによって、本発明の目的がより一層有利に達成され得るのである。 Furthermore, in the present invention, a mixed foaming agent obtained by combining the above-mentioned chlorinated aliphatic hydrocarbon and aliphatic hydrocarbon is also suitably used, and the mixing ratio thereof is, in terms of mass ratio, aliphatic hydrocarbon. : Chlorinated aliphatic hydrocarbon = 25: 75 to 5:95, which is advantageously adopted. As a combination of such two kinds of foaming agents, a combination of isopentane and isopropyl chloride is recommended, whereby the object of the present invention can be achieved even more advantageously.
 加えて、本発明にあっては、発泡剤として、ハロゲン化アルケンも有利に用いられ、それによって、得られるフェノールフォームの特性、特に難燃性や断熱特性のより一層の向上に寄与せしめることが出来る。このような特性を有するハロゲン化アルケンは、ハロゲン化オレフィンやハロゲン化ハイドロオレフィンと称されるものをも含み、一般的に、ハロゲンとして塩素やフッ素を結合、含有せしめてなる、炭素数が2~6個程度の不飽和炭化水素誘導体であって、例えば、3~6個のフッ素置換基を有するプロペン、ブテン、ペンテン及びヘキセンに、ハロゲン、例えばフッ素や塩素を置換、含有させてなる、テトラフルオロプロペン、フルオロクロロプロペン、トリフルオロモノクロロプロペン、ペンタフルオロプロペン、フルオロクロロブテン、ヘキサフルオロブテンや、これらの2種以上の混合物を挙げることが出来る。 In addition, in the present invention, a halogenated alkene is also advantageously used as a blowing agent, which can contribute to further improvement of the properties of the obtained phenol foam, particularly flame retardancy and heat insulating properties. I can. Halogenated alkenes having such characteristics include those called halogenated olefins and halogenated hydroolefins, and in general, chlorine or fluorine is bonded and contained as a halogen and has 2 to 4 carbon atoms. Tetrafluoro, which is an unsaturated hydrocarbon derivative of about 6, for example, propene, butene, pentene and hexene having 3 to 6 fluorine substituents, substituted with halogen such as fluorine or chlorine. Examples thereof include propene, fluorochloropropene, trifluoromonochloropropene, pentafluoropropene, fluorochlorobutene, hexafluorobutene, and a mixture of two or more thereof.
 具体的には、かかるハロゲン化アルケン(ハロゲン化オレフィン)の1つであるハイドロフルオロオレフィン(HFO)としては、例えば、1,2,3,3,3-ペンタフルオロプロペン(HFO1225ye)等のペンタフルオロプロペン、1,3,3,3-テトラフルオロプロペン(HFO1234ze)、2,3,3,3-テトラフルオロプロペン(HFO1234yf)、1,2,3,3-テトラフルオロプロペン(HFO1234ye)等のテトラフルオロプロペン、3,3,3-トリフルオロプロペン(HFO1243zf)等のトリフルオロプロペン、テトラフルオロブテン異性体(HFO1354)類、ペンタフルオロブテン異性体(HFO1345)類、1,1,1,4,4,4-ヘキサフルオロ-2-ブテン(HFO1336mzz)等のヘキサフルオロブテン異性体(HFO1336)類、ヘプタフルオロブテン異性体(HFO1327)類、ヘプタフルオロペンテン異性体(HFO1447)類、オクタフルオロペンテン異性体(HFO1438)類、ノナフルオロペンテン異性体(HFO1429)類等を挙げることが出来る。また、ハイドロクロロフルオロオレフィン(HCFO)としては、1-クロロ-3,3,3-トリフルオロプロペン(HCFO-1233zd)、2-クロロ-3,3,3-トリフルオロプロペン(HCFO-1233xf)、ジクロロトリフルオロプロペン(HCFO1223)、1-クロロ-2,3,3-トリフルオロプロペン(HCFO-1233yd)、1-クロロ-1,3,3-トリフルオロプロペン(HCFO-1233zb)、2-クロロ-1,3,3-トリフルオロプロペン(HCFO-1233xe)、2-クロロ-2,2,3-トリフルオロプロペン(HCFO-1233xc)、3-クロロ-1,2,3-トリフルオロプロペン(HCFO-1233ye)、3-クロロ-1,1,2-トリフルオロプロペン(HCFO-1233yc)等を挙げることが出来る。 Specifically, as a hydrofluoroolefin (HFO) which is one of such halogenated alkenes (halogenated olefins), for example, pentafluoro such as 1,2,3,3,3-pentafluoropropene (HFO1225ye) is used. Tetrafluoro, such as propene, 1,3,3,3-tetrafluoropropene (HFO1234ze), 2,3,3,3-tetrafluoropropene (HFO1234yf), 1,2,3,3-tetrafluoropropene (HFO1234ye) Propene, trifluoropropene such as 3,3,3-trifluoropropene (HFO1243zf), tetrafluorobutene isomer (HFO1354), pentafluorobutene isomer (HFO1345), 1,1,1,4,4,4 4-hexafluoro-2-butene (HFO 336mzz) and other hexafluorobutene isomers (HFO1336), heptafluorobutene isomers (HFO1327), heptafluoropentene isomers (HFO1447), octafluoropentene isomers (HFO1438), nonafluoropentene isomers (HFO1437) HFO1429) type etc. can be mentioned. As hydrochlorofluoroolefin (HCFO), 1-chloro-3,3,3-trifluoropropene (HCFO-1233zd), 2-chloro-3,3,3-trifluoropropene (HCFO-1233xf), Dichlorotrifluoropropene (HCFO1223), 1-chloro-2,3,3-trifluoropropene (HCFO-1233yd), 1-chloro-1,3,3-trifluoropropene (HCFO-1233zb), 2-chloro- 1,3,3-trifluoropropene (HCFO-1233xe), 2-chloro-2,2,3-trifluoropropene (HCFO-1233xc), 3-chloro-1,2,3-trifluoropropene (HCFO- 1233ye), 3-chloro-1,1,2-trifluoropropene (HCF) -1233yc), etc. can be mentioned.
 そして、上述の如き各発泡剤は、その合計量において、レゾール型フェノール樹脂の100質量部に対して、一般に1~30質量部、好ましくは5~25質量部の割合において用いられることとなる。 The total amount of each of the above-mentioned foaming agents is generally 1 to 30 parts by mass, preferably 5 to 25 parts by mass, relative to 100 parts by mass of the resol-type phenol resin.
 なお、本発明で好適に使用される発泡剤は、上述の如き塩素化脂肪族炭化水素及び/又は脂肪族炭化水素、或はハロゲン化アルケンを含むことを特徴としているが、本発明の目的に悪影響をもたらさない限りにおいて、例えば、1,1,1,3,3-ペンタフルオロブタン等のフッ素化炭化水素(代替フロン)、トリクロロモノフルオロメタン、トリクロロトリフルオロエタン等の塩フッ素化炭化水素、水、イソプロピルエーテル等のエーテル化合物、窒素、アルゴン、炭酸ガス等の気体、空気等を、適宜の割合において含有することも可能である。 The blowing agent preferably used in the present invention is characterized by containing a chlorinated aliphatic hydrocarbon and / or an aliphatic hydrocarbon as described above, or a halogenated alkene, but for the purpose of the present invention, As long as they do not cause adverse effects, for example, fluorinated hydrocarbons such as 1,1,1,3,3-pentafluorobutane (alternative CFCs), salt fluorinated hydrocarbons such as trichloromonofluoromethane and trichlorotrifluoroethane, It is also possible to contain water, an ether compound such as isopropyl ether, a gas such as nitrogen, argon, carbon dioxide, air or the like in an appropriate ratio.
 また、本発明において用いられる酸硬化剤は、上述せる如きレゾール型フェノール樹脂の硬化反応を促進するための成分(硬化触媒)であって、従来から公知の酸硬化剤が、適宜に選択されて、用いられることとなる。そして、そのような酸硬化剤としては、例えばベンゼンスルホン酸、フェノールスルホン酸、クレゾールスルホン酸、トルエンスルホン酸、キシレンスルホン酸、ナフタレンスルホン酸等の芳香族スルホン酸;メタンスルホン酸、トリフルオロメタンスルホン酸等の脂肪族スルホン酸;硫酸、リン酸、ポリリン酸、ホウフッ化水素酸等の無機酸等が挙げられ、これらは、単独で用いられてもよく、また2種以上が組み合わされて用いられても、何等差支えない。なお、これら例示の酸硬化剤の中でも、フェノールスルホン酸、トルエンスルホン酸、ナフタレンスルホン酸等の芳香族スルホン酸にあっては、フェノールフォームの製造に際して、適度な硬化速度を実現することが出来るために、レゾール型フェノール樹脂の硬化と発泡剤による発泡とのバランスがより一層良好となり、以て、望ましい発泡構造を実現することとなるところから、特に好適に用いられることとなるのである。中でも、本発明にあっては、パラトルエンスルホン酸とキシレンスルホン酸との併用が推奨される。それらの使用割合としては、質量基準において、パラトルエンスルホン酸の使用量が、キシレンスルホン酸の使用量より多いことが望ましく、具体的には、質量比で、パラトルエンスルホン酸:キシレンスルホン酸が51:49~95:5の範囲内において、有利に採用されることとなる。 The acid curing agent used in the present invention is a component (curing catalyst) for accelerating the curing reaction of the resol type phenolic resin as described above, and a conventionally known acid curing agent is appropriately selected. , Will be used. Examples of such an acid curing agent include aromatic sulfonic acids such as benzenesulfonic acid, phenolsulfonic acid, cresolsulfonic acid, toluenesulfonic acid, xylenesulfonic acid and naphthalenesulfonic acid; methanesulfonic acid and trifluoromethanesulfonic acid. And the like; inorganic acids such as sulfuric acid, phosphoric acid, polyphosphoric acid, borofluoric acid, etc., which may be used alone, or may be used in combination of two or more kinds. However, it does not matter at all. Among these acid curing agents, for example, phenol sulfonic acid, toluene sulfonic acid, and aromatic sulfonic acid such as naphthalene sulfonic acid can achieve an appropriate curing rate in the production of phenol foam. Moreover, the balance between the curing of the resol-type phenol resin and the foaming by the foaming agent is further improved, and a desired foamed structure is realized, and therefore, it is particularly preferably used. Above all, in the present invention, the combined use of paratoluenesulfonic acid and xylenesulfonic acid is recommended. As the usage ratio thereof, it is desirable that the amount of paratoluenesulfonic acid used is more than the amount of xylenesulfonic acid used on a mass basis. Specifically, in a mass ratio, paratoluenesulfonic acid: xylenesulfonic acid is Within the range of 51:49 to 95: 5, it is advantageously adopted.
 さらに、そのような酸硬化剤の使用量としては、その種類や、前記レゾール型フェノール樹脂との混合時における温度条件等に応じて、適宜に設定されるものの、本発明においては、レゾール型フェノール樹脂の100質量部に対して、一般に1~50質量部、好ましくは5~30質量部、特に好ましくは7~25質量部とすることが望ましい。その使用量が1質量部未満では、硬化の進行が遅く、逆に50質量部を超えるようになると、硬化速度が速くなり過ぎて、目的とするフェノールフォームを有利に得ることが困難となる問題を惹起する。 Furthermore, the amount of such an acid curing agent to be used is appropriately set depending on the type and temperature conditions during mixing with the resol-type phenol resin, but in the present invention, the resol-type phenol is used. It is desirable that the amount is generally 1 to 50 parts by mass, preferably 5 to 30 parts by mass, and particularly preferably 7 to 25 parts by mass, relative to 100 parts by mass of the resin. If the amount used is less than 1 part by mass, the progress of curing is slow, while if it exceeds 50 parts by mass, the curing rate becomes too fast and it becomes difficult to obtain the desired phenol foam advantageously. Cause.
 そして、上述の如きレゾール型フェノール樹脂及び酸硬化剤を含有せしめて構成されるフェノール樹脂組成物には、本発明に従って、難燃剤として、表面コーティング層を有するポリリン酸アンモニウム粉末が、少なくとも含有せしめられるのであるが、これによって、ポリリン酸アンモニウムをそのまま用いる場合に比べて、フェノール樹脂組成物の硬化反応が、効果的に進行せしめられ得ることとなるのであり、以て、優れた難燃特性と共に、圧縮強さや初期熱伝導率等において有用な特性を発揮する、フェノールフォーム等のフェノール樹脂硬化生成物を、有利に得ることが出来ることとなったのである。 Then, according to the present invention, at least a ammonium polyphosphate powder having a surface coating layer is contained as a flame retardant in the phenol resin composition constituted by containing the resol-type phenol resin and the acid curing agent as described above. However, by this, as compared with the case where ammonium polyphosphate is used as it is, the curing reaction of the phenol resin composition can be effectively progressed, and thus, with excellent flame retardant properties, Thus, it has become possible to advantageously obtain a cured product of a phenol resin such as phenol foam, which exhibits useful properties such as compressive strength and initial thermal conductivity.
 なお、そこで用いられる表面コーティング層を有するポリリン酸アンモニウム粉末は、ポリリン酸アンモニウムの粒子を、熱硬化性樹脂で被覆若しくはマイクロカプセル化したものや、メラミンモノマーや他の含窒素有機化合物等でポリリン酸アンモニウム粒子の表面を被覆したもの、界面活性剤やシリコン処理を行ったもの等を挙げることが出来、通常、市販品の中から適宜に選択して用いられることとなる。例えば、クラリアントケミカルズ株式会社から入手可能なExolit AP462や、CBC株式会社から入手可能なFR CROS486、FR CROS487、テラージュC30、テラージュC60、テラージュC70、テラージュC80等を挙げることが出来る。そして、そのようなポリリン酸アンモニウム粉末における表面コーティング層は、液状となるフェノール樹脂組成物に対して、難溶性、即ち水に難溶性のものであることが望ましく、特に、そのような難溶性熱硬化性樹脂としては、フェノール樹脂やメラミン樹脂等が用いられ、中でも、メラミン樹脂が好適に用いられることとなる。また、易溶性の熱硬化性樹脂であっても、それにて形成された表面コーティング層の硬化反応を進行せしめて、難溶性の表面コーティング層とすることにより、有利に用いられることとなる。そして、そのような難溶性の熱硬化性樹脂からなる表面コーティング層を有していることにより、圧縮強さや初期熱伝導率に優れた特性を有するフェノールフォームの如き硬化生成物を、有利に得ることが出来るのである。 The ammonium polyphosphate powder having a surface coating layer used therein is obtained by coating or microencapsulating ammonium polyphosphate particles with a thermosetting resin, polyphosphoric acid such as melamine monomer or other nitrogen-containing organic compound. Examples thereof include those obtained by coating the surface of ammonium particles, those treated with a surfactant or silicon, etc., and normally, they are appropriately selected from commercial products and used. For example, Exolit AP462 available from Clariant Chemicals Co., Ltd., FR CROS486, FR CROS487 available from CBC, Terrage C30, Terrage C60, Terrage C70, Terrage C80, etc. can be mentioned. The surface coating layer of the ammonium polyphosphate powder is preferably sparingly soluble in the liquid phenol resin composition, that is, sparingly soluble in water. As the curable resin, a phenol resin, a melamine resin or the like is used, and among them, the melamine resin is preferably used. Further, even an easily soluble thermosetting resin can be advantageously used by advancing the curing reaction of the surface coating layer formed thereon to form a hardly soluble surface coating layer. And, by having a surface coating layer made of such a sparingly soluble thermosetting resin, a cured product such as phenol foam having excellent properties in compressive strength and initial thermal conductivity can be advantageously obtained. You can do it.
 また、このような表面コーティング層を有するポリリン酸アンモニウム粉末の使用量としては、レゾール型フェノール樹脂の100質量部に対して、一般に0.5~30質量部、好ましくは1~25質量部、更に好ましくは2~20質量部の範囲内において、適宜に決定されることとなる。このような表面コーティング層を有するポリリン酸アンモニウム粉末の添加量が少なくなり過ぎると、フェノールフォーム等の硬化生成物からなるフェノール樹脂材料に対する難燃性の付与効果を充分に奏し難くなるからであり、また、その添加量が多くなり過ぎると、フェノール樹脂組成物の硬化反応に対する阻害作用を回避することが困難となると共に、それが添加された組成物の粘度を上昇させ、撹拌不良等の問題を惹起するようになることに加えて、フェノール樹脂材料の圧縮強さや熱伝導率等の特性が低下する等の問題を惹起するようになる。 The amount of the ammonium polyphosphate powder having such a surface coating layer to be used is generally 0.5 to 30 parts by mass, preferably 1 to 25 parts by mass, and further 100 parts by mass of the resol type phenol resin. Preferably, it will be appropriately determined within the range of 2 to 20 parts by mass. When the addition amount of the ammonium polyphosphate powder having such a surface coating layer is too small, it is difficult to sufficiently exert the effect of imparting flame retardancy to the phenol resin material composed of the cured product such as phenol foam. Further, if the addition amount becomes too large, it becomes difficult to avoid the inhibitory effect on the curing reaction of the phenol resin composition, and it increases the viscosity of the composition to which it is added, causing problems such as poor stirring. In addition to causing such problems, problems such as deterioration in properties such as compressive strength and thermal conductivity of the phenol resin material will occur.
 さらに、かかる表面コーティング層を有するポリリン酸アンモニウム粉末の平均粒径としては、一般に1~100μm程度、好ましくは5~50μm程度である。この表面コーティング層を有するポリリン酸アンモニウム粉末の粒径が小さくなり過ぎると、その取扱いやフェノール樹脂組成物中への均一な分散が困難となる等の問題を惹起し、またその粒径が大きくなり過ぎても、フェノール樹脂組成物中における均一な分散効果を得ることが難しく、そのために、本発明の目的を充分に達成し得ない問題を惹起する。 Further, the average particle diameter of the ammonium polyphosphate powder having such a surface coating layer is generally about 1 to 100 μm, preferably about 5 to 50 μm. If the particle size of the ammonium polyphosphate powder having this surface coating layer becomes too small, it causes problems such as difficulty in handling and uniform dispersion in the phenol resin composition, and the particle size becomes large. Even if it is too much, it is difficult to obtain a uniform dispersion effect in the phenol resin composition, which causes a problem that the object of the present invention cannot be sufficiently achieved.
 このように、本発明にあっては、難燃剤として、表面コーティング層を有するポリリン酸アンモニウム粉末が用いられるのであるが、更に必要に応じて、本発明の目的を阻害することのない他の公知の難燃剤を併用することも可能である。なお、そのような他の公知の難燃剤としては、例えば、フェニルホスホン酸、リン酸グアニジン誘導体、リン酸カルバメート誘導体、赤リン、リン酸アンモニウム等のリン系難燃剤、スルファミン酸系難燃剤、ホウ酸系難燃剤、ハロゲン系難燃剤や、金属水酸化物、金属酸化物、黒鉛等の無機系難燃剤等を挙げることが出来る。 As described above, in the present invention, ammonium polyphosphate powder having a surface coating layer is used as a flame retardant, but if necessary, other publicly known substances that do not impair the object of the present invention. It is also possible to use the above flame retardant together. Examples of such other known flame retardants include phenylphosphonic acid, guanidine phosphate derivatives, carbamate phosphate derivatives, phosphorus-based flame retardants such as red phosphorus and ammonium phosphate, sulfamic acid-based flame retardants, and borohydrides. Examples thereof include acid flame retardants, halogen flame retardants, inorganic hydroxides such as metal hydroxides, metal oxides and graphite.
 ところで、本発明に従う難燃性フェノール樹脂組成物には、上述の如きレゾール型フェノール樹脂や酸硬化剤と共に、難燃剤として、表面コーティング層を有するポリリン酸アンモニウム粉末が、必須の成分として、添加配合せしめられる他、フェノールフォームの製造の場合にあっては、所定の発泡剤、特に、塩素化脂肪族炭化水素及び/又は脂肪族炭化水素、或はハロゲン化アルケンが配合せしめられ、更に、その他、必要に応じて、従来から公知の整泡剤、無機フィラー、可塑剤、尿素等を含有せしめることも可能である。 By the way, in the flame-retardant phenolic resin composition according to the present invention, ammonium polyphosphate powder having a surface coating layer as a flame retardant is added as an essential component together with the resole-type phenolic resin and the acid curing agent as described above. In addition to the above, in the case of the production of phenol foam, a predetermined blowing agent, in particular, a chlorinated aliphatic hydrocarbon and / or an aliphatic hydrocarbon, or a halogenated alkene is mixed, and further, If necessary, conventionally known foam stabilizers, inorganic fillers, plasticizers, urea, etc. may be added.
 ここで、かかる必要に応じて添加、含有せしめられる添加剤のうち、整泡剤は、フェノール樹脂組成物における混合成分の混合や乳化の補助、発生ガスの分散、フォームセル膜の安定化等を図るために配合せしめられるものである。そして、そのような整泡剤としては、特に限定されるものではなく、当該技術分野で従来から使用されてきた各種の整泡剤が、何れも選択使用されることとなるが、中でも、ポリシロキサン系化合物、ポリオキシエチレンソルビタン脂肪酸エステル、アルキルフェノールエチレンオキサイド付加物、ヒマシ油のエチレンオキサイド付加物等の非イオン系界面活性剤が、特に好ましく用いられる。なお、これらの整泡剤は、単独で用いられる他、その2種以上を組み合わせて、用いることも出来る。また、その使用量についても、特に制限は無いが、一般的には、レゾール型フェノール樹脂の100質量部に対して、0.5~10質量部の範囲内において、用いられることとなる。 Here, the foam stabilizer, among the additives to be added and contained as necessary, is used for assisting the mixing and emulsification of the mixed components in the phenol resin composition, dispersing the generated gas, stabilizing the foam cell membrane, and the like. It is mixed for the purpose. And, as such a foam stabilizer, it is not particularly limited, various foam stabilizers conventionally used in the technical field will be selected and used, among them, poly Nonionic surfactants such as siloxane compounds, polyoxyethylene sorbitan fatty acid esters, alkylphenol ethylene oxide adducts, and castor oil ethylene oxide adducts are particularly preferably used. These foam stabilizers may be used alone or in combination of two or more. The amount used is also not particularly limited, but it is generally used within a range of 0.5 to 10 parts by mass with respect to 100 parts by mass of the resol-type phenol resin.
 その他、無機フィラーとしては、例えば、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム等の金属の水酸化物や、酸化マグネシウム、酸化アルミニウム、酸化亜鉛等の金属の酸化物、亜鉛等の金属粉末、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、炭酸亜鉛等の金属の炭酸塩を挙げることが出来る。なお、これらの無機フィラーは、単独で用いられる他、その内の2種以上を組み合わせて用いることも可能である。勿論、このような無機フィラーの使用により、難燃性や耐火性の向上が図られ得ることとなるが、その使用量は、本発明の目的を阻害しない使用量の範囲内において、適宜に決定されるものであることは、言うまでもないところである。 In addition, as the inorganic filler, for example, aluminum hydroxide, magnesium hydroxide, metal hydroxide such as calcium hydroxide, magnesium oxide, aluminum oxide, metal oxide such as zinc oxide, metal powder such as zinc, Mention may be made of metal carbonates such as calcium carbonate, magnesium carbonate, barium carbonate and zinc carbonate. These inorganic fillers may be used alone or in combination of two or more. Of course, by using such an inorganic filler, flame retardancy and fire resistance can be improved, but the amount thereof is appropriately determined within the range of the amount not hindering the object of the present invention. It goes without saying that it is done.
 また、可塑剤は、硬化したフェノール樹脂材料として、フェノールフォームを製造する場合において、有利に用いられ得るものであって、その使用によって、フェノールフォームの気泡壁に柔軟性を付与し、断熱性能の経時的な劣化を抑制する等の特徴を発揮するものである。この可塑剤としては、特に制限はなく、従来からフェノールフォームの製造に用いられている公知の可塑剤、例えば、リン酸トリフェニル、テレフタル酸ジメチル、イソフタル酸ジメチル等を用いることが出来、更にポリエステルポリオールの使用も有効である。特に、ポリエステルポリオールは、親水性且つ界面活性に優れるエステル結合及びヒドロキシル基を含む構造を有しているところから、親水性のフェノール樹脂液との相溶性がよく、フェノール樹脂と均一に混合することが出来る。また、このポリエステルポリオールを用いることにより、気泡の偏在を回避し、発泡体全体に気泡を均一に分布させ、品質的にも均質なフェノール樹脂発泡体(フェノールフォーム)が生成し易くなり、好ましい可塑剤ということが出来る。なお、このような可塑剤は、レゾール型フェノール樹脂の100質量部に対して、通常、0.1~20質量部、好ましくは0.5~15質量部、より好ましくは1~12質量部の範囲において用いられ、これによって、得られるフェノールフォームの他の性能を損なうことなく、気泡壁に柔軟性を付与する効果が良好に発揮され、本発明の目的が、より一層良好に達成され得ることとなる。 Further, the plasticizer can be advantageously used as a cured phenolic resin material in the case of producing a phenol foam, and by its use, it imparts flexibility to the cell wall of the phenol foam, thereby improving the heat insulation performance. It exhibits characteristics such as suppressing deterioration with time. The plasticizer is not particularly limited, and known plasticizers conventionally used in the production of phenol foams, such as triphenyl phosphate, dimethyl terephthalate, and dimethyl isophthalate, can be used, and further polyesters can be used. The use of polyols is also effective. In particular, since the polyester polyol has a structure containing an ester bond and a hydroxyl group, which are hydrophilic and have excellent surface activity, it has good compatibility with the hydrophilic phenol resin solution and should be mixed uniformly with the phenol resin. Can be done. Further, by using this polyester polyol, uneven distribution of air bubbles is avoided, the air bubbles are uniformly distributed throughout the foam, and a phenol resin foam (phenol foam) which is homogeneous in terms of quality is easily produced, which is preferable plasticization. It can be called an agent. The amount of such a plasticizer is usually 0.1 to 20 parts by mass, preferably 0.5 to 15 parts by mass, and more preferably 1 to 12 parts by mass with respect to 100 parts by mass of the resol-type phenol resin. It is used in the range, whereby the effect of imparting flexibility to the cell wall can be satisfactorily exerted without impairing the other properties of the resulting phenol foam, and the object of the present invention can be achieved even better. Becomes
 さらに、本発明に従って構成される難燃性フェノール樹脂組成物には、尿素が好適に添加、含有せしめられることとなる。このような尿素の含有によって、得られるフェノールフォーム等のフェノール樹脂材料の初期熱伝導率を効果的に低下せしめることが出来、更には強度、特に低脆性のフェノールフォーム等のフェノール樹脂材料を得ることが出来ると共に、その中長期に亘る熱伝導率を低く維持することにも有利に寄与し、以て、優れた断熱性能を長期安定的に有するフェノールフォーム等のフェノール樹脂材料を得ることが容易となるのである。 Furthermore, urea will be suitably added and contained in the flame-retardant phenolic resin composition constructed according to the present invention. By containing such urea, it is possible to effectively reduce the initial thermal conductivity of the obtained phenol resin material such as phenol foam, and further to obtain a phenol resin material such as phenol foam having strength, particularly low brittleness. In addition, it also contributes to maintaining the thermal conductivity low over a medium to long term, which makes it easy to obtain a phenolic resin material such as phenol foam having excellent thermal insulation performance for a long period of time. It will be.
 ところで、上述の如き配合成分を含有する、本発明に従う難燃性フェノール樹脂組成物は、例えば、前述のレゾール型フェノール樹脂に、難燃剤として、前記した表面コーティング層を有するポリリン酸アンモニウム粉末を加えて、混合せしめ、更に必要に応じて、前記した他の難燃剤、無機フィラー、整泡剤、更には可塑剤、尿素等を加えて混合し、そしてその得られた混合物に、必要に応じて、所定の発泡剤、特に、前記した塩素化脂肪族炭化水素及び/又は脂肪族炭化水素、或はハロゲン化アルケンを添加した後、これを、酸硬化剤と共に、ミキサに供給して、撹拌することにより、調製することが可能である。 By the way, the flame-retardant phenolic resin composition according to the present invention, which contains the above-described compounding ingredients, is, for example, the above-mentioned resole-type phenolic resin, to which, as a flame retardant, ammonium polyphosphate powder having the above-mentioned surface coating layer is added. Then, the mixture is mixed, and if necessary, the above-mentioned other flame retardant, inorganic filler, foam stabilizer, further plasticizer, urea, etc. are added and mixed, and the resulting mixture is mixed as necessary. After adding a predetermined blowing agent, in particular, the above-mentioned chlorinated aliphatic hydrocarbon and / or aliphatic hydrocarbon or halogenated alkene, this is supplied to a mixer together with an acid curing agent and stirred. Therefore, it can be prepared.
 また、そのようにして調製されたフェノール樹脂組成物を用いて、それを硬化せしめることにより、ソリッドな材料や発泡体の如き、目的とするフェノール樹脂材料を形成するに際しては、従来から公知の各種の手法が採用され得、例えば、フェノールフォームを製造する方法としては、(1)エンドレスコンベアベルト上にフェノール樹脂組成物を流出させて、発泡、硬化させる成形方法、(2)スポット的に充填して部分的に発泡、硬化させる方法、(3)モールド内に充填して加圧状態で発泡、硬化させる方法、(4)所定の大きな空間内に充填して、発泡、硬化させることにより、発泡体ブロックを形成する方法、(5)空洞中に圧入しながら充填発泡させる方法を挙げることが出来る。 In addition, when the phenol resin composition thus prepared is used and cured to form a desired phenol resin material such as a solid material or a foam, various conventionally known various resins are used. For example, as a method for producing a phenol foam, (1) a molding method in which a phenol resin composition is allowed to flow out on an endless conveyor belt to foam and cure, and (2) spot filling is performed. Partially foaming and curing, (3) foaming and curing under pressure in a mold, and (4) foaming and curing by filling into a predetermined large space. Examples include a method of forming a body block and (5) a method of filling and foaming while press-fitting into a cavity.
 そして、それらフェノールフォームの成形方法の中でも、上記(1)の成形方法によれば、前述の如きフェノール樹脂組成物は、連続的に移動するキャリア上に吐出され、この吐出物が加熱ゾーンを経由して発泡せしめられると共に成形されて、所望のフェノールフォームが作製されるようにする方法が、採用される。具体的には、前記フェノール樹脂組成物を、コンベアベルト上の面材の上に吐出した後、かかるコンベアベルト上の樹脂材料の上面に面材を載せて、硬化炉に移動せしめ、そして硬化炉の中では、上から他のコンベアベルトで押さえて、かかる樹脂材料を所定の厚さに調整して、60~100℃程度、2~15分間程度の条件下で発泡硬化せしめ、その後、硬化炉から取り出された発泡体を所定の長さに切断することにより、目的とする形状のフェノールフォームが作製されるのである。 Then, among the molding methods of the phenol foam, according to the molding method of the above (1), the above-mentioned phenol resin composition is discharged onto a carrier that moves continuously, and this discharged material passes through a heating zone. A method is employed in which the desired phenolic foam is made by foaming and molding. Specifically, the phenolic resin composition is discharged onto a face material on a conveyor belt, then the face material is placed on the upper surface of the resin material on the conveyor belt, and moved to a curing furnace, and a curing furnace. In the above, press the other conveyor belt from above to adjust the resin material to a predetermined thickness, and foam and cure it under the conditions of about 60 to 100 ° C for about 2 to 15 minutes, and then cure furnace. By cutting the foam taken out from the product into a predetermined length, a phenol foam having a desired shape is produced.
 なお、ここで用いられる面材としては、特に制限されることはなく、一般的には天然繊維、ポリエステル繊維やポリエチレン繊維等の合成繊維、ガラス繊維等の無機繊維等の不織布、紙類、アルミニウム箔張不織布、金属板、金属箔等が用いられるものであるが、通常、ガラス繊維不織布、スパンボンド不織布、アルミニウム箔張不織布、金属板、金属箔、合板、構造用パネル、パーティクルボード、ハードボード、木質系セメント板、フレキシブル板、パーライト板、珪酸カルシウム板、炭酸マグネシウム板、パルプセメント板、シージングボード、ミディアムデンシティーファイバーボード、石膏ボード、ラスシート、火山性ガラス質複合板、天然石、煉瓦、タイル、ガラス成形体、軽量気泡コンクリート成形体、セメントモルタル成形体、ガラス繊維補強セメント成形体等の水硬化性セメント水和物をバインダー成分とする成形体が、好適に用いられることとなる。そして、この面材は、フェノールフォームの片面に設けてもよく、また両面に設けても、何等差支えない。また、両面に設けられる場合において、面材は同じものであってもよいし、異なるものであってもよい。更に、後から接着剤を用いて、面材を貼り合わせて形成されるものであっても、何等差支えない。 The face material used here is not particularly limited, and generally, natural fibers, synthetic fibers such as polyester fibers and polyethylene fibers, non-woven fabrics such as inorganic fibers such as glass fibers, papers, aluminum Foil-clad non-woven fabrics, metal plates, metal foils and the like are used, but usually glass fiber non-woven fabrics, spunbonded non-woven fabrics, aluminum foil-clad non-woven fabrics, metal plates, metal foils, plywood, structural panels, particle boards, hard boards. , Wood cement board, flexible board, perlite board, calcium silicate board, magnesium carbonate board, pulp cement board, seeding board, medium density fiberboard, gypsum board, lath sheet, volcanic vitreous composite board, natural stone, brick, tile , Glass molding, lightweight cellular concrete molding, cement mortar Body, molded bodies of water-curable cement hydrate glass fiber-reinforced cement moldings such as a binder component, and thus preferably used. This face material may be provided on one side of the phenol foam, or on both sides, without any problem. Further, when provided on both sides, the face materials may be the same or different. Further, it does not matter even if it is formed by laminating the face materials by using an adhesive later.
 かくして、かくの如くして得られるフェノールフォームの如きフェノール樹脂材料(硬化生成物)には、所定のポリリン酸アンモニウム粉末が分散、含有せしめられてなるものであるところから、材料全体としての難燃性が効果的に高められ得て、コーンカロリーメーターによる発熱性試験において、我国の建築基準法にて規定される難燃材料としての特性を有利に具備するものとなっているのである。具体的には、ISO-5660に規定される発熱性試験方法に準拠して、放射熱強度:50kW/m2 にて加熱したときに、加熱開始から5分が経過するまでの総発熱量が8.0MJ/m2 以下である特性を、有利に具備する材料となるのであり、これによって、難燃材料として、各種の用途に有利に用いられ得ることとなるのである。 Thus, the phenol resin material (cured product) such as the phenol foam thus obtained contains the predetermined ammonium polyphosphate powder dispersed and contained therein. The property can be effectively enhanced, and in a heat generation test by a corn calorimeter, the property as a flame retardant material stipulated by the Building Standards Law of Japan is advantageously provided. Specifically, in accordance with the exothermic test method specified in ISO-5660, when heated at a radiant heat intensity of 50 kW / m 2 , the total calorific value from the start of heating until 5 minutes has elapsed is The material having the characteristic of 8.0 MJ / m 2 or less is advantageously provided, and thus, it can be advantageously used in various applications as a flame retardant material.
 また、そのようなフェノールフォームの如きフェノール樹脂材料は、有利には、一般に0.0230W/m・K(20℃)以下、好ましくは0.0200W/m・K(20℃)以下、更に好ましくは0.0195W/m・K(20℃)以下となる初期熱伝導率を有するものとして、容易に製造され得るものであり、更に、フェノールフォームである場合にあっては、その独立気泡率が、一般に80%以上、好ましくは85%以上、より好ましくは90%以上であるように構成され、これによって、優れた難燃性と共に、優れた低熱伝導率特性を有利に発揮するものとして製造されることとなる。 Also, a phenolic resin material such as such a phenolic foam is advantageously generally 0.0230 W / m · K (20 ° C.) or less, preferably 0.0200 W / m · K (20 ° C.) or less, more preferably It can be easily produced as having an initial thermal conductivity of 0.0195 W / m · K (20 ° C.) or less, and in the case of phenol foam, its closed cell ratio is Generally, it is constituted to be 80% or more, preferably 85% or more, more preferably 90% or more, whereby it is produced as one that advantageously exhibits excellent flame retardancy and excellent low thermal conductivity characteristics. It will be.
 さらに、本発明に従って得られる、フェノールフォームの如きフェノール樹脂材料において、その密度は、一般に10~150kg/m3 、好ましくは15~100kg/m3 であり、より好ましくは15~70kg/m3 であり、更に好ましくは20~50kg/m3 であり、最も好ましくは20~40kg/m3 である。なお、密度が10kg/m3 よりも低いフェノールフォームにあっては、強度が低く、運搬又は施工時にフォーム(発泡体)が破損する恐れがある。また、密度が低いと、気泡膜が薄くなる傾向がある。そして、気泡膜が薄いと、フォーム(発泡体)中の発泡剤が空気と置換し易くなったり、そして、発泡時に気泡膜が破れ易くなることから、高い独立気泡構造を得ることが困難となり、長期の断熱性能が低下する傾向がある。その一方で、密度が150kg/m3 を超えるようになると、フェノール樹脂を始めとする固形成分由来の固体の熱伝導が大きくなるために、フェノールフォームの断熱性能が低下する傾向がある。 Further, in the phenolic resin material such as phenol foam obtained according to the present invention, its density is generally 10 to 150 kg / m 3 , preferably 15 to 100 kg / m 3 , and more preferably 15 to 70 kg / m 3 . Yes, more preferably 20 to 50 kg / m 3 , and most preferably 20 to 40 kg / m 3 . In addition, in a phenol foam having a density lower than 10 kg / m 3 , the strength is low and the foam (foam) may be damaged during transportation or construction. If the density is low, the bubble film tends to be thin. When the cell membrane is thin, the foaming agent in the foam (foam) is easily replaced with air, and the cell membrane is easily broken during foaming, which makes it difficult to obtain a high closed cell structure, Long-term thermal insulation performance tends to decrease. On the other hand, when the density exceeds 150 kg / m 3 , the thermal conductivity of solids derived from solid components such as phenol resin becomes large, so that the heat insulation performance of the phenol foam tends to decrease.
 以下に、本発明の実施例を幾つか示し、比較例と対比することにより、本発明の特徴を更に具体的に明らかにすることとするが、本発明が、そのような実施例の記載によって、何等の制約をも受けるものでないことは、言うまでもないところである。また、本発明には、以下の実施例の他にも、更には上記した具体的記述以外にも、本発明の趣旨を逸脱しない限りにおいて、当業者の知識に基づいて、種々なる変更、修正、改良等を加え得るものであることが、理解されるべきである。なお、以下に示す百分率(%)及び部は、特に断りのない限り、何れも、質量基準にて示されるものである。 Hereinafter, some examples of the present invention will be shown, and the features of the present invention will be more concretely clarified by comparison with comparative examples. However, the present invention will be described by the description of such examples. Needless to say, it is not subject to any restrictions. In addition to the following embodiments, the present invention is not limited to the specific description described above, and various changes and modifications are made based on the knowledge of those skilled in the art without departing from the spirit of the present invention. It is to be understood that improvements, etc. can be added. All percentages (%) and parts shown below are based on mass unless otherwise specified.
-実施例1-
 還流器、温度計及び撹拌機を備えた三つ口反応フラスコ内に、フェノール1600部、47%ホルマリン2282部及び50%水酸化ナトリウム水溶液41.6部を仕込み、80℃の温度下において70分間反応させた。次いで、40℃に冷却した後、50%パラトルエンスルホン酸水溶液で中和せしめ、その後、減圧・加熱下において、水分率:10%まで脱水濃縮することにより、液状のレゾール型フェノール樹脂を得た。この得られたフェノール樹脂は、粘度:10000mPa・s/25℃、数平均分子量:380、遊離フェノール含有量:4.0%の特性を有するものであった。
-Example 1-
In a three-neck reaction flask equipped with a reflux condenser, a thermometer and a stirrer, 1600 parts of phenol, 2282 parts of 47% formalin and 41.6 parts of 50% sodium hydroxide aqueous solution were charged, and the temperature was 80 ° C. for 70 minutes. It was made to react. Then, after cooling to 40 ° C., it was neutralized with a 50% paratoluenesulfonic acid aqueous solution, and then dehydrated and concentrated to a water content of 10% under reduced pressure and heating to obtain a liquid resol-type phenol resin. . The obtained phenol resin had the following properties: viscosity: 10000 mPa · s / 25 ° C., number average molecular weight: 380, free phenol content: 4.0%.
 そして、その得られた液状のレゾール型フェノール樹脂の100部に、整泡剤として、ひまし油エチレンオキサイド付加物(付加モル数22)の3部、及び添加剤として、尿素の5部を加えて、混合し、均一なフェノール樹脂混合物108部を得た。 Then, to 100 parts of the obtained liquid resol-type phenolic resin, 3 parts of a castor oil ethylene oxide adduct (22 moles added) as a foam stabilizer and 5 parts of urea as an additive were added, The mixture was mixed to obtain 108 parts of a uniform phenol resin mixture.
 次いで、かかる得られたフェノール樹脂混合物の108部に対して、難燃剤として、メラミン樹脂からなる表面コーティング層を有するポリリン酸アンモニウム粉末(CBC株式会社販売のテラージュC80、平均粒径:19μm)の10部と、発泡剤として、イソプロピルクロリド:イソペンタン=85:15の質量割合からなる混合物の9.0部と、硬化剤として、パラトルエンスルホン酸:キシレンスルホン酸=2:1(質量比)の混合物の16部とを、撹拌、混合せしめることにより、フェノールフォーム製造用樹脂組成物である発泡性フェノール樹脂成形材料を調製した。 Then, to 108 parts of the obtained phenol resin mixture, 10 parts of ammonium polyphosphate powder having a surface coating layer made of a melamine resin (Terage C80 sold by CBC Co., average particle size: 19 μm) was used as a flame retardant. Parts and 9.0 parts of a mixture consisting of isopropyl chloride: isopentane = 85: 15 by mass as a foaming agent, and paratoluenesulfonic acid: xylenesulfonic acid = 2: 1 (mass ratio) as a curing agent. By stirring and mixing 16 parts with 16 parts of the above, a foamable phenol resin molding material which is a resin composition for phenol foam production was prepared.
 その後、かくの如くして調製された発泡性フェノール樹脂成形材料を用い、それを、予め70~75℃に加熱されてなる、縦:300mm、横:300mm、厚み:50mmの型枠内に注入した後、かかる型枠を70~75℃の乾燥機内に収容して、10分間発泡硬化せしめた後、更に70℃の温度で12時間、加熱炉内で加熱することにより、後硬化させて、フェノールフォーム(フェノール樹脂発泡体)を作製した。 Then, using the foamable phenolic resin molding material thus prepared, it is poured into a mold having a length of 300 mm, a width of 300 mm, and a thickness of 50 mm, which has been heated to 70 to 75 ° C. in advance. After that, the mold was housed in a dryer at 70 to 75 ° C., foamed and cured for 10 minutes, and further heated at a temperature of 70 ° C. for 12 hours in a heating furnace to be post-cured, A phenol foam (phenol resin foam) was produced.
-実施例2-
 実施例1において、難燃剤として用いたテラージュC80に代えて、表面コート層として、シランコーティング層が形成されてなるポリリン酸アンモニウム粉末であるFR CROS486(CBC株式会社販売;平均粒径:18μmのポリリン酸アンモニウム粉末をシランで表面処理したもの)を用いたこと以外は、実施例1と同様にして、フェノールフォームを作製した。
-Example 2-
In Example 1, FR CROS486 (sold by CBC Co., Ltd .; an average particle size: 18 μm) of polyphosphorus which is an ammonium polyphosphate powder in which a silane coating layer is formed as a surface coating layer in place of the TELLAGE C80 used as the flame retardant. A phenol foam was produced in the same manner as in Example 1 except that ammonium acid powder having a surface treated with silane) was used.
-実施例3-
 実施例1において、発泡剤を、ハイドロフルオロオレフィン(1,1,1,4,4,4-ヘキサフルオロ-2-ブテン:HFO-1336mzz、Chemours社製品)に変更し、その添加量を17.5部としたこと以外は、実施例1と同様にして、フェノールフォームを作製した。
-Example 3-
In Example 1, the blowing agent was changed to hydrofluoroolefin (1,1,1,4,4,4-hexafluoro-2-butene: HFO-1336mzz, a product of Chemours), and the addition amount was 17. A phenol foam was produced in the same manner as in Example 1 except that the amount was 5 parts.
-比較例1-
 実施例1において、難燃剤としての、表面コーティング層を有するポリリン酸アンモニウム粉末を、添加しなかったこと以外は、実施例1と同様にして、フェノールフォームを作製した。
-Comparative Example 1-
A phenolic foam was produced in the same manner as in Example 1 except that ammonium polyphosphate powder having a surface coating layer as a flame retardant was not added.
-比較例2-
 実施例1において、難燃剤として、表面コーティング層を有していないポリリン酸アンモニウム粉末(CBC株式会社販売のFR CROS484、平均粒径:18μm)を、用いることとしたこと以外は、実施例1と同様にして、フェノールフォームの作製を試みたが、フェノール樹脂組成物の硬化反応が充分に進行せず、物性測定が可能な発泡体を得ることが出来なかった。
-Comparative Example 2-
In Example 1, except that ammonium polyphosphate powder (FR CROS484 sold by CBC Co., average particle size: 18 μm) having no surface coating layer was used as the flame retardant, Similarly, an attempt was made to produce a phenol foam, but the curing reaction of the phenol resin composition did not proceed sufficiently, and a foam whose physical properties could be measured could not be obtained.
 次いで、かくして得られた各種のフェノールフォーム(フェノール樹脂発泡体)を用いて、その密度、初期熱伝導率、独立気泡率、圧縮強さ、及び難燃性の評価のための燃焼試験(総発熱量、最大発熱速度、試験後の状況)について、それぞれ、以下の方法に従って測定乃至は評価して、それら得られた結果を、下記表1に示した。 Then, using various phenol foams (phenolic resin foams) thus obtained, a combustion test (total heat generation) for evaluation of its density, initial thermal conductivity, closed cell ratio, compressive strength, and flame retardancy. The amount, the maximum heat generation rate, and the condition after the test) were measured or evaluated according to the following methods, and the obtained results are shown in Table 1 below.
(1)密度の測定
 JIS-A-9511(2003)における「5.6密度」の記載に従って、それぞれの発泡体の密度を測定した。
(1) Measurement of Density The density of each foam was measured according to the description of "5.6 Density" in JIS-A-9511 (2003).
(2)初期熱伝導率の測定
 300mm角のフェノール樹脂発泡体サンプルを用い、それを200mm角にカット(厚みは50mm)した後、低温板:10℃、高温板:30℃に設定して、JIS-A-1412-2(1999)に規定の「熱流計法」に従い、熱伝導率測定装置:HC-074 304(英弘精機株式会社製)を使用して、測定する。なお、ここでは、フェノール樹脂発泡体サンプルを、70℃の雰囲気下で4日間放置した後の熱伝導率を、初期熱伝導率として、測定した。
(2) Measurement of initial thermal conductivity After using a 300 mm square phenol resin foam sample and cutting it into a 200 mm square (50 mm in thickness), the low temperature plate was set at 10 ° C and the high temperature plate was set at 30 ° C. According to the “heat flow meter method” defined in JIS-A-1412-2 (1999), a thermal conductivity measuring device: HC-074 304 (manufactured by Eiko Seiki Co., Ltd.) is used for measurement. In addition, here, the thermal conductivity after leaving the phenol resin foam sample for 4 days in an atmosphere of 70 ° C. was measured as the initial thermal conductivity.
(3)独立気泡率の測定
 ASTM-D2856の規定に従って、フェノール樹脂発泡体サンプルの独立気泡率を測定した。
(3) Measurement of closed cell rate The closed cell rate of the phenol resin foam sample was measured according to the regulations of ASTM-D2856.
(4)圧縮強さの測定
 JIS-A-9511(2003)における「5.9圧縮強さ」の記載に従って、フェノール樹脂発泡体サンプルの圧縮強さを測定した。
(4) Measurement of Compressive Strength The compressive strength of the phenol resin foam sample was measured according to the description of “5.9 Compressive Strength” in JIS-A-9511 (2003).
(5)燃焼試験(難燃性評価)
 各フェノールフォームから、縦×横のサイズが99±1mmとなるように、試験体を切り出して、それぞれの試験体を準備した。なお、かかる試験体の厚みは50mmとした。次いで、それら試験体について、コーンカロリーメーター(株式会社東洋精機製作所製CONE III)を用いて、ISO-5660の規定に準拠した、(財)日本建築総合試験所編「防耐火性能試験・評価業務方法書 4.12.1発熱性試験・評価方法」に従って、加熱時間:5分における総発熱量及び最大発熱速度を、それぞれ測定した。測定結果としては、それぞれの発泡体から切り出した試験体の3個について測定を行い、その得られた測定値の平均値を採用した。また、評価試験後の試験体について観察して、裏面まで貫通する亀裂や穴の有無を調べた。
(5) Combustion test (flame retardancy evaluation)
A test body was cut out from each phenol foam so that the size of length × width was 99 ± 1 mm, and each test body was prepared. The thickness of the test body was 50 mm. Then, using those cone calorimeters (CONE III, manufactured by Toyo Seiki Seisakusho Co., Ltd.), these test specimens were compliant with the ISO-5660 regulations, edited by Japan Building Research Institute, “Fireproof performance test / evaluation work”. The total heat generation amount and the maximum heat generation rate at a heating time of 5 minutes were measured in accordance with the "Method document 4.12.1 Heat generation test / evaluation method". As the measurement results, three test pieces cut out from each foam were measured, and the average value of the obtained measured values was adopted. In addition, the specimen after the evaluation test was observed to check for the presence or absence of cracks or holes penetrating to the back surface.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 かかる表1の結果から明らかなように、実施例1~3において形成されたフェノールフォームは、何れも、燃焼試験において、総発熱量が8MJ/m2 以下であり、且つ最大発熱速度も規定値以下であるところから、我国の建築基準法にて規定される難燃材料として、有用なものであることを認めた。中でも、実施例1及び実施例3において得られたフェノールフォームは、何れも、初期熱伝導率が0.0193W/m・K以下であり、また、独立気泡率が91%以上、圧縮強さが約16N/cm2 以上となり、断熱性と共に、機械的物性においても優れたものであることを認めた。 As is clear from the results of Table 1, the phenol foams formed in Examples 1 to 3 all had a total calorific value of 8 MJ / m 2 or less in the combustion test, and the maximum heat generation rate was also the specified value. From the following points, we have found that it is useful as a flame-retardant material specified by the Building Standards Law of Japan. Among them, the phenol foams obtained in Examples 1 and 3 all have an initial thermal conductivity of 0.0193 W / mK or less, a closed cell rate of 91% or more, and a compression strength. It was about 16 N / cm 2 or more, and it was confirmed that the mechanical properties as well as the heat insulating properties were excellent.
 これに対して、比較例1において得られたフェノールフォームは、何れの難燃剤も添加含有せしめられていないところから、有効な難燃性を付与することが出来ず、燃焼され易いものであり、また、表面コーティング層を有していないポリリン酸アンモニウムそのままの粉末を用いた比較例2においては、フェノール樹脂組成物の硬化反応がスムーズに進行せず、そのために、物性測定が可能な発泡体を得ることが出来なかった。 On the other hand, since the phenol foam obtained in Comparative Example 1 does not contain any flame retardant, it cannot impart effective flame retardancy and is easily burned. Further, in Comparative Example 2 in which the powder of ammonium polyphosphate as it is having no surface coating layer was used, the curing reaction of the phenol resin composition did not proceed smoothly, and therefore a foam capable of measuring physical properties was prepared. I couldn't get it.
-難燃剤分散安定性試験-
 実施例1と同様にして得られたレゾール型フェノール樹脂を用い、これに、水を適宜添加して、下記表2に示される粘度を有する各種のレゾール型フェノール樹脂を作製した。ここで、各レゾール型フェノール樹脂の粘度は、JIS-K-7117-1に従い、ブルックフィールド形回転粘度計を用いて、試験温度:25℃で測定した。次いで、それらレゾール型フェノール樹脂の各々の100部と、実施例1で用いた難燃剤であるテラージュC80粉末の10部とを混合せしめた後、容量110ml、胴径40mmのガラス製スクリュー管瓶に収容して、1週間室温で静置し、かかるスクリュー管瓶に生じる沈殿物の有無及び沈殿層の高さを評価した。なお、その評価に際しては、沈殿物を観察できない場合を○、沈殿層の高さが5mm以下の場合を△、沈殿層の高さが5mmを超えた場合を×とし、その結果を、下記表2に示した。
-Flame retardant dispersion stability test-
The resol type phenolic resin obtained in the same manner as in Example 1 was used, and water was appropriately added thereto to prepare various resol type phenolic resins having the viscosities shown in Table 2 below. Here, the viscosity of each resol type phenol resin was measured at a test temperature of 25 ° C. using a Brookfield type rotational viscometer in accordance with JIS-K-7117-1. Then, 100 parts of each of the resol-type phenolic resins and 10 parts of the TERAGE C80 powder, which is the flame retardant used in Example 1, were mixed, and then added to a glass screw tube bottle having a volume of 110 ml and a barrel diameter of 40 mm. It was housed and allowed to stand at room temperature for 1 week, and the presence or absence of precipitates generated in the screw tube bottle and the height of the precipitation layer were evaluated. In addition, in the evaluation, when the precipitate could not be observed, ○, when the height of the precipitation layer was 5 mm or less, △, and when the height of the precipitation layer exceeded 5 mm, the result was shown in the table below. Shown in 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 かかる表2に示される如く、レゾール型フェノール樹脂の粘度が1000mPa・s(25℃)である場合にあっては、テラージュC80粉末との混合によって、著しい沈殿が惹起され、高さの高い沈殿層の発生が認められた。これに対して、3000mPa・s(25℃)以上の粘度を有するレゾール型フェノール樹脂にあっては、テラージュC80粉末を混合せしめても、その沈殿物の発生は認められず、従って沈殿層の存在も確認されなかった。また、レゾール型フェノール樹脂の粘度が2000mPa・s(25℃)である場合にあっては、テラージュC80粉末の混合によって、或る程度の沈殿物の存在を確認することが出来たが、それは、実用上において問題のない程度のものであると判断された。 As shown in Table 2, when the viscosity of the resol-type phenol resin is 1000 mPa · s (25 ° C.), mixing with the Terarge C80 powder causes remarkable precipitation, resulting in a high precipitation layer. Was observed. On the other hand, in the case of the resole-type phenol resin having a viscosity of 3000 mPa · s (25 ° C.) or more, even if TELARGE C80 powder was mixed, the precipitation was not observed, and therefore the presence of the precipitation layer. Was not confirmed. Further, when the viscosity of the resol-type phenol resin was 2000 mPa · s (25 ° C.), it was possible to confirm the presence of a certain amount of precipitate by mixing the Terarge C80 powder. It was judged that there was no problem in practical use.

Claims (11)

  1.  レゾール型フェノール樹脂及び酸硬化剤と共に、難燃剤として、表面コーティング層を有するポリリン酸アンモニウム粉末を、少なくとも含有することを特徴とする難燃性フェノール樹脂組成物。 A flame-retardant phenolic resin composition comprising at least an ammonium polyphosphate powder having a surface coating layer as a flame retardant together with a resol-type phenolic resin and an acid curing agent.
  2.  前記表面コーティング層が、難溶性熱硬化性樹脂にて形成されている請求項1に記載の難燃性フェノール樹脂組成物。 The flame-retardant phenolic resin composition according to claim 1, wherein the surface coating layer is formed of a sparingly soluble thermosetting resin.
  3.  前記難溶性熱硬化性樹脂が、メラミン樹脂である請求項2に記載の難燃性フェノール樹脂組成物。 The flame-retardant phenolic resin composition according to claim 2, wherein the hardly soluble thermosetting resin is a melamine resin.
  4.  前記難燃剤が、前記レゾール型フェノール樹脂の100質量部に対して、0.5~30質量部の割合において含有せしめられている請求項1乃至請求項3の何れか1項に記載の難燃性フェノール樹脂組成物。 The flame retardant according to any one of claims 1 to 3, wherein the flame retardant is contained in an amount of 0.5 to 30 parts by mass with respect to 100 parts by mass of the resol-type phenol resin. Phenolic resin composition.
  5.  前記レゾール型フェノール樹脂が、25℃において、2000mPa・s以上の粘度を有するように調整されていることを特徴とする請求項1乃至請求項4の何れか1項に記載の難燃性フェノール樹脂組成物。 The flame-retardant phenolic resin according to any one of claims 1 to 4, wherein the resol-type phenolic resin is adjusted to have a viscosity of 2000 mPa · s or more at 25 ° C. Composition.
  6.  発泡剤が、更に含有せしめられている請求項1乃至請求項5の何れか1項に記載の難燃性フェノール樹脂組成物。 The flame-retardant phenolic resin composition according to any one of claims 1 to 5, further comprising a foaming agent.
  7.  前記発泡剤として、ハロゲン化アルケン、或は塩素化脂肪族炭化水素及び/又は脂肪族炭化水素が、含有せしめられている請求項6に記載の難燃性フェノール樹脂組成物。 The flame-retardant phenolic resin composition according to claim 6, wherein a halogenated alkene, or a chlorinated aliphatic hydrocarbon and / or an aliphatic hydrocarbon is contained as the foaming agent.
  8.  前記発泡剤が、イソペンタンとイソプロピルクロリドとの混合物である請求項6に記載の難燃性フェノール樹脂組成物。 The flame-retardant phenolic resin composition according to claim 6, wherein the foaming agent is a mixture of isopentane and isopropyl chloride.
  9.  請求項1乃至請求項5の何れか1項に記載の難燃性フェノール樹脂組成物を硬化させて得られる硬化生成物からなることを特徴とする難燃材料。 A flame-retardant material comprising a cured product obtained by curing the flame-retardant phenolic resin composition according to any one of claims 1 to 5.
  10.  請求項6乃至請求項8の何れか1項に記載の難燃性フェノール樹脂組成物を発泡硬化させて得られる発泡体からなることを特徴とする難燃材料。 A flame-retardant material comprising a foam obtained by foam-curing the flame-retardant phenolic resin composition according to any one of claims 6 to 8.
  11.  前記発泡体が、ISO-5660に規定の発熱性試験方法に準拠して、放射熱強度:50kW/m2 にて加熱したときに、加熱開始後5分間の総発熱量が8.0MJ/m2 以下であることを特徴とする請求項10に記載の難燃材料。 When the foam was heated at a radiant heat intensity of 50 kW / m 2 according to the exothermic test method specified in ISO-5660, the total calorific value for 5 minutes after the start of heating was 8.0 MJ / m. The flame-retardant material according to claim 10, which is 2 or less.
PCT/JP2019/039326 2018-10-16 2019-10-04 Flame-retardant phenolic-resin composition and flame-retardant material obtained therefrom WO2020080149A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020553069A JP7473476B2 (en) 2018-10-16 2019-10-04 Flame-retardant phenolic resin composition and flame-retardant material obtained therefrom
KR1020217007487A KR102438544B1 (en) 2018-10-16 2019-10-04 Flame-retardant phenolic resin composition and flame-retardant material obtained therefrom
CN201980061016.4A CN112739769A (en) 2018-10-16 2019-10-04 Flame-retardant phenolic resin composition and flame-retardant material obtained from same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-194843 2018-10-16
JP2018194843 2018-10-16

Publications (1)

Publication Number Publication Date
WO2020080149A1 true WO2020080149A1 (en) 2020-04-23

Family

ID=70283382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039326 WO2020080149A1 (en) 2018-10-16 2019-10-04 Flame-retardant phenolic-resin composition and flame-retardant material obtained therefrom

Country Status (4)

Country Link
JP (1) JP7473476B2 (en)
KR (1) KR102438544B1 (en)
CN (1) CN112739769A (en)
WO (1) WO2020080149A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240047184A (en) 2022-10-04 2024-04-12 포인트 이노멘션 테크 컴퍼니 Flame retardant and method for preparing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002265656A (en) * 2001-03-08 2002-09-18 Kanegafuchi Chem Ind Co Ltd Styrenic resin foam and method for producing the same
JP2003128824A (en) * 2001-10-26 2003-05-08 Kanegafuchi Chem Ind Co Ltd Styrenic resin foam and method for producing the same
JP2004307602A (en) * 2003-04-04 2004-11-04 Kanegafuchi Chem Ind Co Ltd Thermoplastic resin foam and method for producing the same
WO2009037765A1 (en) * 2007-09-20 2009-03-26 Nagoya Oilchemical Co., Ltd. Buffering and sound-absorbing member
JP2009090554A (en) * 2007-10-09 2009-04-30 Asahi Kasei Construction Materials Co Ltd Flame-retardant phenol resin foam laminated sheet and its manufacturing method

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61242A (en) * 1984-06-12 1986-01-06 Achilles Corp Preparation of fire-preventive phenolic foam
JPH0249037A (en) 1988-08-11 1990-02-19 Toyo Tire & Rubber Co Ltd Production of foam of flame-retardant phenolic resin
JP2879408B2 (en) * 1993-12-27 1999-04-05 チッソ株式会社 Flame retardant thermosetting resin composition
US5700575A (en) * 1993-12-27 1997-12-23 Chisso Corporation Water-insoluble ammonium polyphosphate particles
JPH08176343A (en) 1994-12-22 1996-07-09 Mitsui Toatsu Chem Inc Flame retardant resin composition
WO2001005888A1 (en) * 1999-07-16 2001-01-25 Polyplastics Co., Ltd. Polyacetal resin composition and process for the production thereof
WO2006043435A1 (en) * 2004-10-22 2006-04-27 Takashi Fujimori Process for producing foam
JP4939784B2 (en) 2005-09-08 2012-05-30 旭有機材工業株式会社 Phenolic resin foam
JP5036021B2 (en) 2005-12-12 2012-09-26 旭有機材工業株式会社 Phenolic resin foam
JP5400485B2 (en) * 2009-06-10 2014-01-29 旭有機材工業株式会社 Foamable resol-type phenolic resin molding material and phenolic resin foam using the same
CN104629253A (en) * 2015-03-03 2015-05-20 山东圣泉新材料股份有限公司 Phenolic resin composition and application thereof
AU2016237124B2 (en) * 2015-03-24 2020-07-23 Sekisui Chemical Co., Ltd. Phenolic resin foam and method for producing phenolic resin foam
KR101792186B1 (en) 2017-05-24 2017-10-31 한국건설기술연구원 Exterior Insulation Panel Using Limited Combustible Resin Composition And Method for Manufaturing the Same
KR20180054540A (en) * 2018-05-11 2018-05-24 한국건설기술연구원 Resol type phenol resin composition, method for preparing the same, and resol type phenol resin foam using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002265656A (en) * 2001-03-08 2002-09-18 Kanegafuchi Chem Ind Co Ltd Styrenic resin foam and method for producing the same
JP2003128824A (en) * 2001-10-26 2003-05-08 Kanegafuchi Chem Ind Co Ltd Styrenic resin foam and method for producing the same
JP2004307602A (en) * 2003-04-04 2004-11-04 Kanegafuchi Chem Ind Co Ltd Thermoplastic resin foam and method for producing the same
WO2009037765A1 (en) * 2007-09-20 2009-03-26 Nagoya Oilchemical Co., Ltd. Buffering and sound-absorbing member
JP2009090554A (en) * 2007-10-09 2009-04-30 Asahi Kasei Construction Materials Co Ltd Flame-retardant phenol resin foam laminated sheet and its manufacturing method

Also Published As

Publication number Publication date
KR102438544B1 (en) 2022-08-30
JP7473476B2 (en) 2024-04-23
JPWO2020080149A1 (en) 2021-09-16
CN112739769A (en) 2021-04-30
KR20210075972A (en) 2021-06-23

Similar Documents

Publication Publication Date Title
KR102469128B1 (en) Semi-incombustible phenolic resin composition and semi-incombustible material obtained therefrom
JP7289302B2 (en) Resin composition for producing phenolic foam
JP7141983B2 (en) Resin composition for producing phenolic foam, phenolic foam and method for producing the same
JP6035144B2 (en) Phenol resin foam laminate and method for producing the same
JP4756683B2 (en) Foamable resol-type phenolic resin molding material and phenolic resin foam
JP5036021B2 (en) Phenolic resin foam
JP5464863B2 (en) Foamable resol-type phenol resin molding material, method for producing the same, and phenol resin foam
JP7473476B2 (en) Flame-retardant phenolic resin composition and flame-retardant material obtained therefrom
GB1604657A (en) Phenolic resins and products prepared therefrom
JP6946038B2 (en) Phenol resin foam laminate and its manufacturing method
JP2010163502A (en) Expandable resol type phenolic resin moulding material and phenolic resin foam
KR20230095122A (en) Flame-retardant phenol resin foam
JP2514879B2 (en) Fireproof phenolic resin foamable composition and method for producing foam
WO2023204283A1 (en) Foamed phenolic-resin object and laminate thereof
WO2005037903A1 (en) Phenolic foams and production thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19874604

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020553069

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19874604

Country of ref document: EP

Kind code of ref document: A1