WO2006043435A1 - Process for producing foam - Google Patents

Process for producing foam Download PDF

Info

Publication number
WO2006043435A1
WO2006043435A1 PCT/JP2005/018642 JP2005018642W WO2006043435A1 WO 2006043435 A1 WO2006043435 A1 WO 2006043435A1 JP 2005018642 W JP2005018642 W JP 2005018642W WO 2006043435 A1 WO2006043435 A1 WO 2006043435A1
Authority
WO
WIPO (PCT)
Prior art keywords
beads
resin
flame retardant
particles
foam
Prior art date
Application number
PCT/JP2005/018642
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Fujimori
Original Assignee
Takashi Fujimori
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takashi Fujimori filed Critical Takashi Fujimori
Priority to JP2006542328A priority Critical patent/JP3950980B2/en
Publication of WO2006043435A1 publication Critical patent/WO2006043435A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/224Surface treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • C08J9/232Forming foamed products by sintering expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2461/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium

Definitions

  • the present invention relates to a method for producing a foam resistant to fire and heat.
  • heat insulation boards used for building materials and the like are foamed with a resin such as polystyrene in order to have heat insulation properties, and then formed into a predetermined shape such as a board shape as a V or a loose foam molded body. These closed cells provide heat insulation.
  • These heat insulation boards are lightweight, inexpensive, and have excellent properties of heat insulation. When exposed to high temperatures due to fire, etc., the resin material in these heat insulation boards dissolves quickly due to the low melting point. Then the bubbles collapse. For this reason, the entire structure of these heat insulation boards quickly shrinks, and at the same time, the resin material in these heat insulation boards starts to vaporize and burn with heat, generating black smoke and harmful with combustion. There is a risk of generating gas.
  • this type of heat-resistant board has a bubble wall made of an inorganic substance containing silicon or boron, and a synthetic resin containing hydroxyaluminum hydroxide is integrated with the wall.
  • a structure of a synthetic resin foam in which non-combustible inorganic particles are disposed between them is known (for example, see Patent Document 1).
  • this type of heat-resistant board a large number of inorganic foam particles and a foam in which gaps between these numerous inorganic foam particles are filled and these numerous inorganic foam particles are bonded to each other. It is a synthetic resin foam in which greasy inorganic powder is mixed. In the synthetic resin foam, when the inorganic powder particles in the synthetic resin foam are foamed, an amount of a volume larger than the gaps between many inorganic foam particles is mixed in the synthetic resin foam. Fireproof Insulating agent.
  • the structure of the inorganic foam and an inorganic granular and synthetic resin foam is composed of a foamed molded by foaming of inorganic granular material is known (e.g., see Patent Document 2.) 0
  • the expanded polystyrene product as the expanded molded body constituting this type of heat-resistant board contains the surface of the expanded styrene beads containing boric acid, which is a boric acid-based inorganic substance, and phenol resin, which is a thermosetting resin. It is covered with a coating film.
  • Styrofoam products coated with a coating are prepared by subjecting styrene beads to pretreatment foaming by various treatment methods and then aging, and then, for example, boric acid inorganic materials such as boric acid powder and boric acid aqueous solution, and boric acid based inorganic materials.
  • boric acid inorganic materials such as boric acid powder and boric acid aqueous solution
  • boric acid based inorganic materials such as boric acid powder and boric acid aqueous solution
  • thermosetting resin such as phenolic resin, and if necessary, amino-based resin, polyamide resin, fiber material, etc.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 51-67625 (Page 2-3, Figure 1- Figure 2)
  • Patent Document 3 Japanese Patent No. 3163282 (Page 3-4, Figure 1- Figure 2)
  • boric acid-based inorganic material, thermosetting resin, etc. are again added to the pre-foamed beads obtained by mixing boric acid-based inorganic material with pre-expanded beads. Is added to produce added beads, and then the added beads are foamed. Therefore, when this added bead is subjected to water vapor and subjected to main foaming, boric acid-based inorganic material or thermosetting resin flows from the surface of the added bead, and the surface of the added bead There is a risk that it will not be coated with a coating film containing boric acid-based inorganic substances and thermosetting resin. For this reason, the primary beads must be dried twice and coated with a boric acid-based inorganic substance before the main foaming. However, this foaming operation takes time, and it is difficult to improve productivity.
  • the present invention has been made in view of the above points, and it is possible to improve the productivity of a foam in which generation of black smoke during combustion is prevented, fire resistance and heat resistance are improved, and shrinkage deformation due to heat is suppressed. It aims at providing the manufacturing method of the molded object which can be manufactured.
  • a large number of particles capable of forming a fine hollow body by foaming are pre-foamed into a large number of pre-foamed particles,
  • the flame retardant inorganic material and the thermosetting resin are mixed, dried and crushed from the glass, and each of the numerous pre-foamed particles contains the flame retardant inorganic material and the thermosetting resin.
  • a mixed layer is formed, a large number of pre-foamed particles formed on the surface of the mixed layer are filled in a mold, and a large number of pre-foamed particles filled in the mold and the mixed layer is formed on the surface
  • a foam having a predetermined shape is formed by subjecting water vapor to water and subjecting it to main foaming.
  • a large number of particles capable of forming a fine hollow body by foaming are pre-foamed to obtain a large number of pre-foamed particles.
  • the large number of pre-foamed particles are mixed with a flame-retardant inorganic material and a thermosetting resin, and then dried and crushed, so that the surface of each of these many pre-foamed particles is flame retardant.
  • a mixed layer containing an inorganic material and a thermosetting resin is formed.
  • a large number of pre-foamed particles having a mixed layer containing a flame-retardant inorganic material and a thermosetting resin on the surface are made into single particles simultaneously with drying.
  • a large number of pre-expanded particles formed on the surface of the mixed layer are filled in a mold and subjected to main steam by applying force steam to form a single particle on the surface.
  • Water vapor can be fed into the gap between the mixed layers of the pre-foamed particles on which the mixed layer is formed.
  • sufficient flame retardancy can be secured with one mixed layer, and a large number of preliminary layers can be obtained by feeding water vapor.
  • the foamed particles can be fully foamed in a shorter time. Therefore, it is possible to efficiently produce a foam having a predetermined shape having flame retardancy in a short time. Therefore, generation of black smoke during combustion such as fire is prevented, fire resistance and heat resistance are improved, and shrinkage due to fire and heat A foam with suppressed deformation can be produced with high productivity.
  • the method for producing a foam according to claim 2 is the method for producing a foam according to claim 1, wherein the large number of particles capable of forming a fine hollow body by foaming are polystyrene resin particles, and are flame retardant.
  • the functional inorganic material is aluminum hydroxide and boric acid, and the thermosetting resin is at least one of phenol resin and carboxylic acid resin.
  • a large number of particles capable of forming a fine hollow body by foaming are polystyrene resin particles, the flame-retardant inorganic material is hydroxyaluminum and boric acid, and the thermosetting resin is phenolic resin. It was set as at least any one of fat and carboxylic acid rosin. As a result, a foam composed of a large number of polystyrene resin particles on the surface of which a mixed layer containing at least one of phenol resin and carboxylic acid resin, hydroxyaluminum, and boric acid was formed. Can be manufactured with high productivity.
  • the method for producing a foam according to claim 3 is the method for producing a foam according to claim 1 or 2, wherein a number of pre-foamed particles are difficult to be added together with a flame-retardant inorganic material and a thermosetting resin.
  • a flame retardant is mixed, dried and crushed, and a mixture containing the flame retardant inorganic material, the thermosetting resin and the flame retardant on the surface of each of these pre-foamed particles. It forms a composite layer.
  • a large number of pre-expanded particles are mixed with a flame-retardant agent together with a flame-retardant inorganic material and a thermosetting resin, and then dried and crushed.
  • a mixed layer containing each of a flame retardant inorganic material, a thermosetting resin and a flame retardant is formed on each surface.
  • the method for producing a foam according to claim 4 is the method for producing a foam according to claim 3, wherein the flame retardant is at least one of red phosphorus and ammonium polyphosphate. It is.
  • the method for producing a foam according to claim 5 is the method for producing a foam according to claim 1, wherein the flame retardant inorganic material is a flame retardant inorganic viscosity modifier. Therefore, mica is used as the flame retardant inorganic viscosity modifier.
  • the flame retardant inorganic material is a flame retardant inorganic viscosity modifier, and the viscosity can be adjusted by using mica as the flame retardant inorganic viscosity modifier. It becomes difficult for fine powder to scatter and fall off. Therefore, the flame retardancy can be further improved, and at the same time, the thermosetting resin can be made sticky, so that the strength can be further improved and cracking during combustion can be prevented.
  • a single mixed layer has sufficient flame retardancy.
  • a large number of pre-expanded particles can be foamed in a shorter time by feeding water vapor. Therefore, a foam with a predetermined shape having flame retardancy can be produced efficiently and in a short time, so that the generation of black smoke during combustion such as a fire is prevented and the fire resistance and heat resistance are improved.
  • a large number of particles capable of forming a fine hollow body by foaming are polystyrene resin particles, and the flame-retardant inorganic material is hydroxyaluminum hydroxide and Boric acid, thermosetting resin, thermosetting resin at least one of phenolic resin and carboxylic acid resin, and at least one of phenolic resin and carboxylic acid resin;
  • a foam composed of a large number of polystyrene resin particles having a mixed layer containing aluminum hydroxide and boric acid formed on the surface can be produced with high productivity.
  • each of the pre-foamed particles is mixed with a mixed layer containing each of the flame-retardant inorganic material, the thermosetting resin and the flame retardant.
  • red phosphorus and polyphosphorus are used as the flame retardant.
  • the flame retardant can be properly used according to the operating temperature, so it is easier to ensure the flame retardancy of the foam.
  • the viscosity is adjusted by using the flame retardant inorganic material as a flame retardant inorganic viscosity modifier, and using mica as the flame retardant inorganic viscosity modifier.
  • FIG. 1 is a perspective view showing an embodiment of a polystyrene foam product according to the present invention.
  • FIG. 2 is a partially enlarged cross-sectional view showing the same expanded polystyrene product.
  • FIG. 3 is a photograph showing the combustion state of the polystyrene foam product.
  • FIG. 4 is a photograph showing Example 5 of the expanded polystyrene product of the present invention.
  • FIG. 5 A photograph showing a combustion test of the above polystyrene foam product.
  • FIG. 6 This is a photograph showing the state immediately after the completion of the 9-minute combustion test of the polystyrene foam product.
  • A Photograph showing the entire expanded polystyrene product after the combustion test
  • b Photograph showing the burning part of the foamed polystyrene product from the above
  • c Photograph showing the central part of the burning part of the foamed polystyrene product
  • d Photograph showing the cross section of the center of the burning part
  • FIG. 7 is a graph showing the results of a corn calorimeter test in Example 6 of the expanded polystyrene product of the present invention.
  • FIG. 8 is a photograph showing the same polystyrene foam product.
  • FIG. 9 is a photograph showing the same polystyrene foam product. Explanation of symbols
  • reference numeral 1 denotes a polystyrene foam product as a foam.
  • This polystyrene product 1 is made of polystyrene ( ⁇ CH—CH (C H) ⁇ ) resin as a molded body made of a porous foamed resin to which a foaming material is added.
  • porous foamed resin particles 2 that are foamed to a predetermined size by foaming treatment of styrene beads, which are beads.
  • these porous foamed resin particles 2 are particles obtained by impregnating butane gas or the like into styrene beads and foaming. Further, on the surface which is the outer peripheral surface of the porous foamed resin particles 2, a skin 2a of styrene beads is formed.
  • Each of the porous foamed resin particles 2 is formed into a substantially spherical shape.
  • each of these porous foamed resin particles 2 is consolidated into a predetermined shape, for example, a rectangular plate shape as a whole.
  • the expanded polystyrene product 1 has a foamed molded article structure in which the porous foamed resin particles 2 are in close contact with each other and are integrally molded.
  • the polystyrene foam product 1 is used as, for example, a building material board used for a building material or material that requires flame retardancy, a panel as a structural member, a molded product, and a lightweight molded member.
  • the coating layer 3 includes, for example, a flame retardant inorganic compound that is a flame retardant inorganic material, a flame retardant, a thermosetting resin, an amino resin, a polyamide resin, a fiber material, and the like.
  • a flame retardant inorganic compound for example, hydroxyaluminum (Al (OH)) or hydroxide magnesium hydroxide is used.
  • Flame retardant inorganic powders such as Nesmu (Mg (OH)), and boron-based inorganic compounds such as Boric acid BO). Further, as a flame retardant, for example, red phosphorus (P)
  • the coating layer 3 is made to be extremely flame retardant with polyphosphorus ammonium such as polyphosphorus ammonium.
  • the thermosetting resin include resol resin as phenol resin, and carboxylic acid resin.
  • this carboxylic acid resin has substantially the same properties as phenolic resin and is not relatively expensive, it can be used in place of this phenolic resin or as a thermosetting resin with this phenolic resin. .
  • red phosphorus is included in the coating layer 3 as a flame retardant, the red phosphorus is immediately carbonized during heating to block oxygen, so that the coating layer 3 can be made difficult to burn. Further, red phosphorus is added to the coating layer 3 when the temperature during the main foaming cannot be increased. Further, ammonium polyphosphate is added to the coating layer 3 when the temperature during the main foaming is raised. At this time, when the porous foamed resin particle 2 under the coating layer 3 is styrene, the heat-resistant temperature is low, so the temperature cannot be raised so much. In this case, red phosphorus is added. .
  • the coating layer 3 has a molecular weight of about 2500, preferably about 3000. Further, the coating layer 3 is composed of at least one of a boron-based inorganic compound and a flame retardant inorganic compound, and a thermosetting resin containing a flame retardant mixed as necessary. Yes. At this time, the coating layer 3 is integrated by bringing a large number of porous foamed resin particles 2 into close contact via the coating layer 3. Further, the resin constituting the cell-like structure of each of these many porous foamed resin particles only needs to be capable of forming a minute hollow body by a technique such as foaming.
  • the resin constituting the porous foamed resin particles 2 is not particularly limited, for example, general-purpose plastics such as polystyrene, polyethylene, polypropylene, polysulphated bulls, polyamides, polycarbonates, modified polyphenylene ethers.
  • Engineering plastics such as polyethersulfone and polyester ABS can be applied.
  • the softening point of polystyrene is 80 ° C or higher and 100 ° C or lower, and the long-term continuous use temperature is 50 ° C. Therefore, when used in an environment above this temperature, it is necessary to use engineering plastics such as polycarbonate resin and polyamide resin, which have a softer point and higher strength.
  • red phosphorus is suitable when the long-term continuous use temperature is 50 ° C. Therefore, it is preferable to add red phosphorus to the coating layer 3. If the softening point is higher than this, polyphosphoric acid ammonium is suitable. Therefore, it is preferable to add polyphosphoric acid ammonium to the coating layer.
  • thermosetting resin containing at least one of a boron-based inorganic compound, a flame retardant inorganic compound, and a flame retardant constituting the coating layer 3
  • a phenol resin or a coal acid resin is used as the thermosetting resin containing at least one of a boron-based inorganic compound, a flame retardant inorganic compound, and a flame retardant constituting the coating layer 3.
  • urea resin, melanin resin, guanamine resin, silicone resin, and polyimide resin can be used as thermosetting resin such as polyamideimide resin.
  • this coating layer 3 contains
  • flame retardant inorganic compounds include shirasu balloons, which are fine hollow glass spheres, aluminum hydroxide (Al ( ⁇ ), silicon (Si), or diatomaceous earth): L m or more 200
  • Inorganic powders which are inorganic fibers as an inorganic material exhibiting a neutral or acidic size of about m or less, are suitable.
  • various ceramics, carbon black, and the like can be used as the inorganic powder particles in order to ensure more flame retardancy.
  • the flame retardant added in a small amount to the coating layer 3 is one that causes an instantaneous dissolution carbonization phenomenon at the time of combustion, blocks oxygen from the outside, and exerts a great effect in preventing combustion. That's fine.
  • the flame retardant inorganic material contained in the coating layer 3 includes mica, which is a silicate mineral having a foil-like structure, alumina (Al 2 O 3), white clay (kaolin or China
  • Clay calcium carbonate (CaCO), chromium oxide (Cr O or CrO, etc.),
  • a cellular structure is formed in order to obtain a molded body in which a large number of porous foamed resin particles 2 are in close contact with each other.
  • a certain degree of adhesion is required between polystyrene, which is a resin, and a thermosetting resin containing a boron-based inorganic compound or a flame-retardant inorganic compound and a flame retardant. Even if the properties are not sufficient, the cohesive properties of both types of coffins are intercalated between the porous foamed resin particles 2 and the coating layer 3 as an intermediate layer (not shown). It is also possible to improve this.
  • thermosetting resin in addition to the thermosetting resin contained in the coating layer 3, another thermosetting resin different from the thermosetting resin may be added and mixed.
  • other thermosetting resins different from this thermosetting resin include, for example, polyimide resin, polyvinyl formal resin, polyethersulfone resin, and acrylonitrile whose terminal group is carboxylic acid. Polybutadiene copolymer or the like can be used.
  • the coating layer 3 which is a layer of a thermosetting resin containing a boron-based inorganic compound or a flame-retardant inorganic compound and a flame retardant constitutes an outer layer of the porous foamed resin particles 2.
  • the porous foamed resin particles 2 are given fire resistance, heat resistance and flame retardancy.
  • Sarakuko this coating layer 3 is usually in a solidified or semi-cured state at the temperature in the foaming process in order to obtain the foaming process of the primary beads to obtain a cellular structure.
  • the coating layer 3 is added with a reinforcing resin such as carbon short fiber as carbon fiber, glass short fiber as glass fiber, synthetic resin fiber, natural fiber, etc.
  • a reinforcing resin such as carbon short fiber as carbon fiber, glass short fiber as glass fiber, synthetic resin fiber, natural fiber, etc.
  • the properties such as strength, fire resistance, heat resistance and flame retardancy can be improved.
  • the coating layer 3 is mixed with a curing accelerator that promotes mixing of the thermosetting resin contained in the coating layer 3. And this hardening accelerator adjusts the hardening acceleration of a thermosetting resin by adjusting the mixing amount of this hardening accelerator, and blocks hardening acceleration of the coating layer 3.
  • the curing accelerator include phenol sulfonic acid and toluene sulfonic acid.
  • polystyrene beads that have been pretreated by impregnation with a foaming agent, etc., and containing the foaming agent are used as the primary beads.
  • the primary bead is a commercially available polystyrene bead having an original diameter of about 0.2 mm or more and 1. Om m or less.
  • the above-mentioned raw beads are pre-expanded to a predetermined ratio, for example, 5 to 90 times or 20 to 100 times (preferably 90 times) to obtain pre-expanded beads. That is, the primary beads are pre-foamed prior to the coating step described later. And The pre-expanded beads are used after being aged for 12 to 24 hours (preferably about 20 hours) and completed to maintain the stability of commercialization. In addition, the pre-expanded beads may be consumed within the molding process, which will be described later, within one week as much as possible, and used up without significant influence due to diffusion of residual gas in the pre-expanded beads. ,.
  • pre-foaming method used when producing the pre-foamed beads there are various treatment methods such as steam, radiant heat, infrared hot air, hot water and the like.
  • thermosetting resin a thermosetting resin, a boron-based inorganic compound, and a flame-retardant inorganic compound are mixed 1: 1 or each alone.
  • the pre-expanded beads are contained in these many pre-expanded beads.
  • a flame-retardant material is used in combination with the flame-retardant inorganic compound mixed in the mixture so that the ratio is about 5 to 20% by mass, and the mixture is mixed and stirred to form a coating layer 3 having a predetermined thickness.
  • the pre-expanded beads are mixed so that the total of the thermosetting resin, boron-based inorganic compound, and flame-retardant inorganic compound is in the ratio of 5: 1 to 1: 5.
  • thermosetting resin increases due to the flame-retardant inorganic compound added to the thermosetting resin used as the coating layer 3, and the coating layer 3 is thick and thick. If it does not become a so-called chocolate-like state, add 3 to 10% by weight of water or 5 to 10% by weight of methanol to the thermosetting resin. Then, adjust the viscosity of this thermosetting resin.
  • thermosetting resin phenol resin (resol), boron-based inorganic compound, Boric acid (H BO), and hydrated aluminum hydroxide as a flame retardant inorganic compound,
  • thermosetting resin a required amount of a curing accelerator such as phenolsulfonic acid or toluenesulfonic acid having a solid content of about 75% is added to the thermosetting resin, and then stirred and dispersed well. At this time, mix with a specified machine such as an automatic stirrer or a ribbon mixer for about 2 minutes for 4 minutes (preferably about 2 minutes for 2 minutes). After this mixing, stir for 4 to 5 minutes.
  • a curing accelerator such as phenolsulfonic acid or toluenesulfonic acid having a solid content of about 75%
  • these large numbers of coated pre-expanded beads are dried by blowing air, that is, air-dried. A portion of a number of coated pre-expanded beads is crushed.
  • the coated pre-expanded beads partially crushed are dried while being crushed at a temperature of about 55 ° C to 3 ° C until they are completely made into single particles.
  • the drying time at this time should be as short as possible with hot air, preferably within 5 minutes, more preferably about 3 minutes, if the coated pre-expanded beads have become single grains. Further, if the drying temperature at this time is too high, gas escapes from the covered pre-expanded beads, which is not preferable. Therefore, drying is performed at a temperature of about 55 ° C ⁇ 3 ° C. At this time, special care must be taken when setting a high magnification of 60 times or more and 90 times or less.
  • these numerous coated pre-expanded beads are vibrated into a single particle by shaking them with a sieve. It is set as the single particle bead.
  • Single particle beads produced by the above drying process are automatically molded or blocked.
  • the mold is automatically filled with air.
  • vacuum cooling which is vacuum cooling, is performed after heating in the same manner as in a general expanded polystyrene resin (Expandable PolyStyrene: EPS) molding method. Demold after molding. At this time, generally, the larger the foaming rate, the shorter the heating amount and the cooling time.
  • EPS Expandable PolyStyrene
  • the heating time is about 30 seconds or more and 60 seconds or less. Therefore, it is suitable for Styrofoam product 1 foamed at high magnification. However, a heating time of about 60 seconds is sufficient, depending on the size of the molded product.
  • a high-quality foamed polystyrene product 1 can be manufactured by a high-frequency heating method, a hot plate heating method, or a hot plate press method, but generally one cycle time is required as compared with the steam forming method. It takes.
  • the high-frequency heating method, etc. it is possible to use the panel depending on the situation because it can be made very efficient by forming it while adhering the single particle beads to the metal plate.
  • It can also be formed by chopping and filling by a normal steam forming method or high-frequency heating method, or by chopping by a chopping method in which the rice is horizontally filled so as to measure rice.
  • these single particle beads are formed on the outer surface of these single particle beads into a thermosetting resin containing a boron-based inorganic compound, a flame retardant inorganic compound, and a flame retardant. It expands together with the coating layer 3 configured as described above and comes into contact with each other. At this time, the inner layer and the outer layer of these single particle beads are bonded and cured by heating, and are cured and bonded together with the coating layer 3 on the outer surface of the adjacent single particle beads. As a result, the porous foamed resin particles are bonded to each other in the form of cells to form a group of cells (cells), so that the molded body has a predetermined shape along the inner surface of the mold.
  • Styrofoam product 1 Styrofoam product 1
  • the primary bead is pre-expanded into a pre-foamed bead. Thereafter, the pre-foamed beads are mixed with a thermosetting resin containing a flame retardant inorganic compound, and the surface is coated with a coating layer 3 containing the flame retardant inorganic compound and the thermosetting resin. The pre-expanded beads were then dried and crushed into single particles. [0059] As a result, a large number of pre-expanded particles whose surfaces are covered with the coating layer 3 containing a flame-retardant inorganic compound and a thermosetting resin are converted into single particles to form a large number of single-particle beads.
  • the molecular weight of phenol resin in the coating layer 3 on the surface of the large number of single-particle beads is increased to about 3000, and the amount of the curing accelerator used in the coating layer is adjusted.
  • the coating layer 3 also flows over the surface force of these many single particle beads. It becomes ⁇ . Therefore, compared to the double coat method, which coats the surface of a large number of single particle beads in two stages, a single coat that forms a single coating layer on the surface of these large number of single particle beads is sufficient.
  • the foamed polystyrene product 1 to be finally produced has a thickness of about 100 mm to 60 Omm, the heating time of about 30 to 60 seconds, and the effect of subsequent vacuum cooling As a result, one cycle of the foaming of the expanded polystyrene product 1 can be performed in about 3 to 4 minutes, which enables mass production of the expanded polystyrene product 1.
  • the expanded polystyrene product 1 formed by the main foaming of these many single-particle beads can be efficiently produced. For this reason, as shown in Fig. 3 (a) to Fig. 3 (c), it is possible to prevent the generation of black smoke during combustion, improve the fire resistance, and suppress the shrinkage deformation due to heat. 1 can be manufactured with good productivity. At this time, as shown in FIG. 3 (c), the surface of the ignited and carbonized portion of the expanded polystyrene product remains smooth even immediately after the flame is removed. There is. As shown in Fig. 3 (d), in the conventional polystyrene, a large amount of black smoke is generated even after 10 seconds of ignition, so it is not easy to copy the combustion state in the photograph.
  • the coating layer 3 is of extremely low molecular weight or the resin is slowly cured, a large number of single particle bead forces may flow through the coating layer 3 in this case.
  • the coating layer 3 is not preferable because it adheres to the inner surface of the mold.
  • the porous foamed resin particles 2 are made of polystyrene resin, and the flame retardant inorganic compound contained in the coating layer 3 on the surface of the porous foamed resin particles 2 is made of hydroxyaluminum hydroxide and boron. System Boric acid, an inorganic compound.
  • the thermosetting resin contained in the coating layer 3 was phenol resin.
  • the coating layer 3 contains a boron-based inorganic compound, when the coating layer 3 is ignited, the coating layer 3 is cracked and the generation of smoke is reduced.
  • the expanded polystyrene product 1 can be easily and inexpensively manufactured by the same manufacturing method as conventional expanded polystyrene, the expanded polystyrene product 1 can be manufactured with higher productivity.
  • the foamed polystyrene product 1 to be produced is strong against fire, and it is possible to surely suppress shrinkage deformation due to heat, and the fibers in the coating layer 3 of the foamed polystyrene product 1
  • the strength can be further improved by adding the fiber of the material. Therefore, it is possible to further improve the fire resistance and flame retardancy of the produced expanded polystyrene product 1 and to further suppress shrinkage deformation.
  • a flame retardant such as ammonium polyphosphate or red phosphorus is added at a ratio of 5% to 10% in the inorganic powder. Add more.
  • the flame retardant due to the carbonization effect of the expanded polystyrene product 1, that is, the oxygen barrier effect.
  • red phosphorus or ammonium polyphosphate as a flame retardant to be mixed with the coating layer 3, the flame retardant can be properly used according to the operating temperature at the time of foaming. It is easier to ensure the flame retardancy of 1.
  • a boron accelerator, a flame retardant inorganic compound, and a thermosetting resin together with a curing accelerator mixed with a number of pre-foamed beads, and dried and crushed into a large number of single particles. Formed single particle beads.
  • the curing of the coating layer 3 when the large number of single particle beads are foamed can be adjusted by adjusting the amount of the curing accelerator contained in the coating layer 3. Therefore, a large number of single-particle beads whose surfaces are coated with the coating layer 3 to form single particles can be more effectively foamed in a short time.
  • the primary beads that will become the porous foamed resin particles 2 are pre-foamed at a predetermined ratio and preliminarily expanded. Use foamed beads.
  • the main foaming step of the pre-foamed beads after the coating layer 3 is formed can be made smooth.
  • the expanded polystyrene product 1 in which the surface of the porous foamed resin particle 2 is coated with a coating layer 3 made of a boron-based inorganic compound, a flame-retardant inorganic compound, and a thermosetting resin is V
  • the fire-resistant and heat-resistant properties can be effectively exhibited by the cellular structure of the porous foamed resin particles 2 constituting the expanded polystyrene product 1.
  • the cellular structure of the porous foamed resin particles 2 enhances the heat insulating effect
  • the coating layer 3 is resistant to heat such as fire due to heat resistance and oxygen blocking effect due to rapid carbonization. Contributes to the further effect of flame retardancy.
  • the coating layer 3 made of a mixture of a boron-based inorganic compound, a flame retardant inorganic compound and a thermosetting resin does when heated.
  • the thermosetting resin is considered to be thermoset with heating to maintain the cellular structure of the porous foamed resin particles 2.
  • the vitrified boron-based inorganic compound covers the thermosetting resin that maintains the shape of the cured bubbles and shields it from the outside air.
  • ⁇ ⁇ aluminum hydroxide, a flame-retardant inorganic compound used in combination also contributed to moisture (HO).
  • combustion and burning are prevented by releasing 2 to the outside air, preventing flammability, and combining with a small amount of carbonization such as red phosphorus to quickly shut off oxygen in the outside air.
  • thermosetting resin that is cured by fire and heat such as a fire to maintain a foam-like structure, and porous foamed resin particles that are melted and cured in the process of curing the thermosetting resin 2
  • the combination of inorganic compounds to be mixed with the thermosetting resin is limited to the above-described embodiment as long as the reaction can be prevented by blocking the oxygen from the outside air and preventing the reaction at a higher temperature. Absent.
  • the reaction region of the expanded polystyrene product 1 also progresses to some extent with the progress of the heating, but the porous foamed structure by the porous expanded resin particles 2 described above. Since the range to which the heating is applied is limited by maintaining the temperature, the heating of the expanded polystyrene product 1 does not proceed beyond a certain level.
  • the porous foamed resin supporting the shape of the porous foamed resin particles 2 constituting the foamed polystyrene product 1 is converted into the porous foamed resin by a heating process when the foamed polystyrene product 1 is produced. It fuses with the thermosetting resin in the coating layer 3 that coats the particles 2 to be integrated.
  • the porous foamed resin particles 2 have a synergistic effect with the vitrification of boron-based inorganic compounds and the rapid action carbonization of red phosphorus and the like, and the synergistic effect of water release by the flame-retardant inorganic compounds. And the shape of the coating layer 3 is maintained.
  • the foamed polystyrene product 1 has characteristics such as lightness, strength, water resistance, and stability as a raw material, and boron based inorganic compounds and flame retardant inorganic compounds covering the surface of the porous foamed resin particles 2 are also used.
  • the coating layer 3 made of red phosphorus or polyphosphoric acid ammonium and a thermosetting resin in an amount of 5% by mass to 20% by mass of the inorganic additive is relatively light, thin and chemically stable. It has a certain strength. At this time, the strength required in the expanded polystyrene product 1 is for a relatively uniform surface load, and therefore, the inherent properties such as strength can be maintained.
  • this expanded polystyrene product 1 it can be efficiently and effectively produced by utilizing a conventional foam molding process such as polystyrene foam. Therefore, in order to form the porous foamed resin particles 2, a foaming agent is included! / Soot is pre-foamed beads impregnated with foaming gas and pretreated to complete foaming at the desired magnification.
  • a coating layer 3 is formed by coating with a thermosetting resin mixed with a boron-based inorganic compound, a flame-retardant inorganic compound, and a small amount of a flame retardant such as red phosphorus or ammonium polyphosphate. Into single particles. Thereafter, the single-particle beads formed with the coating layer 3 and formed into single particles are heated and foamed to obtain a foamed polystyrene product 1 having a predetermined shape.
  • a boron-based inorganic compound or a flame-retardant inorganic compound is formed on the outer surface of the porous foamed resin particles 2 forming the original cellular structure by the coating layer 3 constituting the expanded polystyrene product 1. It has the same effect as a structure in which a number of thermosetting resin layers having a flame-retardant carbonization blocking action composed of a flame retardant are stacked. Therefore, the coating layer 3 having a very rapid effect can be formed on the surface of the porous foamed resin particles 2.
  • the structure in which the coating layer 3 is formed on the surface of the porous foamed resin particles 2 makes it possible to achieve a fire resistance that cannot be achieved by using only the porous foamed resin particles 2 that essentially form a cellular structure.
  • Properties such as heat resistance, flame retardancy, and shape maintenance characteristics can be imparted to the expanded polystyrene product 1.
  • boron-based inorganic compounds constituting the coating layer 3 flame retardant aluminum hydroxide, aluminum
  • a liquid thermosetting resin is used.
  • the precursor or the uncured thermosetting resin may be applied by various methods, or the solvent may be evaporated after being dissolved in a solvent such as alcohol.
  • these methods have appropriate characteristics and fluidity under conditions such as heating in the above-described foaming step, which may be appropriately selected according to the type and properties of the thermosetting resin. It is sufficient that the coating layer 3 having a uniform film thickness can be generated on the surface of the porous foamed resin particles 2 formed by the foaming.
  • semi-hardened pre-foamed beads which are in a state where the coating layer 3 having a uniform film thickness is formed on the surface and hardened to some extent, are filled in the mold as they are and heated to about 110 ° C by indirect heat.
  • this method takes too much time to form. Therefore, the pre-expanded beads whose surface is uniformly coated with the coating layer 3 are dried while tacking with hot air having a temperature of about 55 ° C ⁇ 3 ° C, and with a small amount of pressure.
  • the block-shaped material is pulverized to form single grains, and further shaken while shaking to completely form single particles to obtain a large number of single particle beads.
  • the drying at this time may be a little longer, but in the case of forced drying, it should be completed in about 3 to 5 minutes at a temperature of about 55 ° C ⁇ 3 ° C. That is, the purpose is to make the pre-foamed beads into single particles.
  • thermosetting resin in these pre-expanded beads obtains the B stage that is the standard flow from the cottage before the standard flow, and the C stage exceeds the standard flow. Complete curing. For this reason, in the case of heating drying at a temperature of about 55 ° C and 3 ° C, centering on air drying, the curing of the thermosetting resin was stopped in the middle of the B stage. If it can be crushed and semi-cured particles are produced, the force of 2 minutes should be as short as 3 minutes.
  • Phenolic sulfonic acid (curing accelerator) 7.5PHR (for thermosetting resin) d Boric acid (boron-based inorganic compound) 30PHR (for pre-foamed beads)
  • the foam coated beads formed by mixing from a to f were air-dried and then roughly crushed. After that, it was dried for about 5 to 10 minutes at a temperature of 55 ° C ⁇ 3 ° C, pulverized, vibrated with a force sieve and made into single particles, and the surface was coated with a coating layer 3. Single particle beads.
  • a hot plate press method using a mold having a length of 230 mm x width 230 mm x thickness 30 mm and a hot plate is 110 ° Heat at C temperature for about 5 minutes, then cool for about 20 minutes to form Styrofoam product 1.
  • this expanded polystyrene product 1 was a density of 76 kgZm 3 , a compressive strength of 42 NZcm 2 , a water absorption of 0.31 gZlOOcm 2 and an oxygen index of 38.7.
  • Example 2
  • Phenolic sulfonic acid (curing accelerator) 10PHR (for thermosetting resin)
  • a large number of these single particle beads are formed by a vapor method which is an automatic forming method. Specifically, after filling a large number of these single-particle beads into a heating mold having an internal dimension of 300 mm in height, 300 mm in width, and 30 mm in thickness, after heating with 0.6 kgZcm 3 of water vapor for about 40 seconds, 2 Cool for about a minute to form Styrofoam product 1.
  • the main physical property of this expanded polystyrene product 1 is that the density is 0. O47g / cm 3 0lS A
  • red phosphorus (flame retardant) 10 PHR (7 mass 0/0 of boron-based inorganic compound and flame-retardant inorganic compound)
  • this chocolate-like product was mixed in a prepared in a stirrer and mixed with power. After stirring for about 2 to 3 minutes, finally put h and power for 1 minute. Gently stir for about 2 minutes to discharge the stirrer power as coated beads.
  • the coated beads are spread thinly to increase the surface area and air-dried, and then roughly crushed while maintaining a certain tackiness. Furthermore, hot air of about 55 ° C ⁇ 3 ° C is applied to the roughly crushed coated beads and dried for about 8 minutes for 5 minutes, and then further crushed and made into single particles. Store and use a large number of single-particle beads that have been completely made into single particles.
  • the stored single particle beads are subjected to vapor molding by an automatic molding method. Concrete Specifically, after filling a large number of single-particle beads into a mold having internal dimensions of 300 mm in height, 300 mm in width, and 30 mm in thickness, after heating for about 35 seconds at a steam pressure of 0.6 kgZcm 3 Cool for about 2 minutes to form Styrofoam product 1.
  • this expanded polystyrene product 1 is as follows: density is 0.04 gZcm 3 , compression strength is 20 NZcm 2 , water absorption is 0.3 gZlOOcm 2 , and thermal conductivity is 0.032 W / m- At K, the oxygen index was 30.5.
  • the flame retardant contained in the coating layer 3 of the expanded polystyrene product 1 has a fireproof temperature and a heat resistant temperature when the porous foamed resin particles 2 such as polystyrene are used. Since this is low, red phosphorus is generally more suitable.
  • the porous foamed resin particles 2 having a fire resistance and heat resistance of 100 ° C or higher the polyphosphate ammonia is red depending on the decomposition temperature of the porous foamed resin particles 2.
  • red phosphorus is generally suitable because it is more effective at low temperatures than ammonium polyphosphate.
  • the expanded polystyrene product 1 molded in each of the above-described embodiments can exhibit fire resistance, heat resistance and flame retardancy in applications of conventional expanded molded articles such as polystyrene and polyurethane. It can also be used appropriately for powerful applications that cannot be applied.
  • it can be a three-dimensional box-shaped product with various shapes or a foamed molded product with a pattern.
  • a resin-enhanced material added to the thermosetting resin constituting the coating layer 3, a powdered inorganic material, and a combination of resin can give new characteristics and can be applied for various uses. .
  • roof materials such as heat insulating tiles, outer heat insulating materials, heat insulation materials such as a ceiling or a floor, and the like are conceivable.
  • Panels, furniture, partitions, wall materials, etc. can be considered as lightweight flame retardant boards for various applications.
  • heat insulation structural materials for various applications heat insulation materials for air conditioning ducts, cold insulation and heat insulation equipment, mannequins, and the like are conceivable.
  • the above-mentioned expanded polystyrene product 1 has the same lightness and heat insulation properties as those of conventional foamed molded products such as foamed polystyrene and polyurethane foam as foamed molded products for various applications. Can be used similarly, heat resistance, flame retardant It is excellent in safety and shape maintenance, and can cope with the safety aspect of disaster countermeasures such as fire.
  • the coating layer 3 that covers the surface of the porous foamed resin particles 2 can be selected by appropriately selecting the type of resin that constitutes the coating layer 3, or other types of resin can be inorganic or organic substances. For example, properties such as flexibility, strength, and hardness can be imparted more favorably by mixing and mixing.
  • the flame retardant inorganic compound an inorganic material having a density as low as possible is used, and the weight is reduced so as to be close to the density of ordinary styrene, urethane, phenol foam, and the like.
  • the heating time and the cooling time are shortened and the product density is reduced, so that the material cost ratio can be reduced and the thermal conductivity can be improved.
  • the so-called flame retardant grade 3 can be ensured, but the flame retardant property of the expanded polystyrene product 1 is further improved to ensure the so-called flame retardant grade 2. Therefore, various ceramics, diatomaceous earth, carbon black, etc. may be mixed as a mixture of the coating layer 3 of the expanded polystyrene product 1.
  • Example 4
  • the expansion ratio of the expanded polystyrene resin is a force that varies depending on the strength to be obtained. Generally, the expanded ratio of the expanded polystyrene resin is preferably from 60 to 100. In addition, since resole resin generally has a smaller mass of the expanded polystyrene resin as the base material when the expansion ratio is increased, this resin resin is generally 120 PHR or more and 150 PHR or less with respect to the expanded polystyrene resin. It is good to use.
  • toluenesulfonic acid it is preferable to use it in the range of 6 PHR or more and 10 PHR or less with respect to resol resin.
  • boric acid has a low density, it is desirable to use it in large quantities. However, it may be partially dissolved by steam during molding. For this reason, when manufacturing Styrofoam products 1, it is better to reduce the use ratio of boric acid to about 1% as much as possible under the conditions of factory facilities where the cooling water is drained directly to river 11.
  • mica is used as a flame retardant inorganic viscosity modifier, and generally used in a range of 5 PHR to 50 PHR with respect to expanded polystyrene resin.
  • inorganic flame retardant powder iller
  • the viscosity of this expanded polystyrene resin can be adjusted by adding mica to the expanded polystyrene resin, so that fine powder will not scatter during drying and other inorganic additives will not fall off.
  • the other flame retardant added to the expanded polystyrene resin does not fall off, the flame retardancy of the expanded polystyrene product 1 can be further improved.
  • the resole resin added as a binder to the expanded polystyrene resin becomes somewhat sticky.
  • the strength of the polystyrene product 1 can be further improved, and the problem of cracks occurring when the foamed polystyrene product 1 is burned can be prevented to some extent.
  • red phosphorus is generally a very expensive material, it should be used as much as possible with respect to the expanded polystyrene resin at a level of 5 PHR to 10 PHR, preferably 7.5 PHR or less.
  • a polystyrene foam product 1 having a density of 0.075 and a fusion rate of 100% can be produced.
  • the portable cylinder (not shown) fully opened to a flame length of about 25 cm to 30 cm, bring this portable cylinder close to a position 10 mm away from the polystyrene foam product 1 to create a flame.
  • the after-flame disappeared in 4 seconds in the part where the foamed polystyrene product 1 was exposed to flame, and the depth of the carbonized part was about 49 mm.
  • Aluminum hydroxide (a flame retardant inorganic compound) 150PHR (for pre-expanded beads) e Boric acid (boron-based inorganic compound) 5PHR (for pre-expanded beads)
  • a polystyrene foam product 1 having a density of 0.0812 and a fusion rate of 100% can be manufactured.
  • the portable cylinder in the state where the portable cylinder was fully opened as a combustion test and the flame length was about 25 cm to 30 cm, the portable cylinder was When approaching a position 25 mm away from 1 and igniting the flame for 10 minutes and burning it, as shown in Fig. 6 (a) to 6 (c), this foamed polystyrene product 1 was exposed to flame.
  • Total heat generation 10. 24 MJ / m 2
  • the amount of aluminum hydroxide in the expanded polystyrene product 1 is 170 PHR for pre-expanded beads
  • the amount of boric acid added is 15 PHR for pre-expanded beads
  • the amount of red phosphorus added As shown in Table 3, a corn calorimeter test was conducted on the expanded polystyrene product 1 made by changing the pre-expanded beads to 7.5PHR as shown in Table 3. calorific value became 8.84MjZm 2.
  • Average heat generation rate T 300 1 5. 53 kW / m 2
  • SEA Average specific attenuation area
  • the above-mentioned expanded polystyrene product 1 has a total calorific value further equal to 8 MjZm 2 after 10 minutes of heating time, and is less than lOOgZm 2 and the maximum heat generation rate continues for more than 10 seconds and exceeds 200 kWZm 2 .
  • the cone is heated for 20 minutes at 200 gZm 2 or less. since the total heating value of the calorimeter test 8 MJ Zm 2 it can be sufficiently below is used as a quasi-noncombustible, and aluminum foil Ya, calcium silicate plate having a thickness of about 5,6Mm, a thickness of about 4, 5 mm It can be used as a non-combustible material by making a composite with other materials such as laminated mortar.
  • Total heat generation (THR) 1. 7 1 MJ / m 2
  • Average heat generation rate T 300 1. 33 kW / m 2
  • Average heat generation rate T 60 2. 42 kW / m 2
  • Average heat generation rate T 180 5. 73 kW / m 2
  • Average heat generation rate T 300 7. 78 kW / m 2
  • SEA Average specific attenuation area
  • the above-mentioned expanded polystyrene product 1 has a total calorific value of 8 MjZm 2 or less in a heating time of 10 minutes, and as shown in Fig. 7, the maximum heat generation rate continues for 10 seconds or more at lOOgZm 2 or less. did not exceed 200kW / m 2 Te. Therefore, this Styrofoam product 1 can be used as an organic foam insulation material, and it can maintain a shape that is resistant to flames, generates almost no smoke or gas, and does not absorb moisture, and is a condition of 8MjZm 2 in a 10-minute cone calorimeter test for semi-incombustibility. It can be used as a semi-incombustible material that completely satisfies
  • the size is 910mm (3 scales) X 1820mm (6 scales) X 600mm (thickness) or 910mm (3 scales) X 3640mm (12 scales) X 600mm (thickness)
  • Molded sheets of Styrofoam products 1 can be molded in a cycle of every 4 minutes. Furthermore, as shown in FIG. 9, by cutting this molded plate at a constant interval along the thickness direction at a time and dividing the thickness, a plurality of polystyrene foam products 1 having a constant thickness are simultaneously obtained. Since it can be produced, the production of this expanded polystyrene product 1 can be increased, and productivity can be greatly improved.
  • the method for producing a foam of the present invention is widely used as a method for producing a foam used for, for example, a building material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

This invention provides a process for producing a styrene foam product that can produce styrene foam products, which can prevent the occurrence of black smoke, can improve fire resistance and heat resistance, and can suppress shrink deformation caused by fire and heat, with good productivity. Prefoamed beads are mixed with a phenolic resin containing boric acid and aluminum hydroxide to form covered beads each having a surface covered with a covering layer (3) containing boric acid, aluminum hydroxide, and a phenolic resin. The covered beads are dried and disintegrated to prepare many single-particle beads each having a surface covered with the covering layer (3). The single-particle beads are filled into a mold followed by main foaming. Heat of steam can be efficiently supplied into between the covering layers (3) in the single-particle beads. In this case, since the heating time and cooling time necessary for the main foaming of the single-particle beads can be extremely shortened, mass production at low cost can be realized.

Description

明 細 書  Specification
発泡体の製造方法  Method for producing foam
技術分野  Technical field
[0001] 本発明は、火および熱に強い発泡体の製造方法に関する。  [0001] The present invention relates to a method for producing a foam resistant to fire and heat.
背景技術  Background art
[0002] 一般に、建材などに用いられる断熱ボードは、断熱性を持たせるためにポリスチレ ンなどの榭脂を発泡させて、 V、わゆる発泡成形体としてボード状などの所定の形状 に成形して、これらの独立気泡によって断熱性を持たせている。これら断熱ボードは 、軽量、安価および断熱性に優れた特性を有している力 火災などによって高温に 曝されると、これら断熱ボード中の榭脂素材が低融点であることによって、速やかに 溶解して気泡が潰れてしまう。このため、これら断熱ボードの構造全体が速やかに収 縮してしまうと同時に、これら断熱ボード中の榭脂素材が熱によって気化および燃焼 し始めるので、黒煙を発するとともに、燃焼に伴って有害なガスが発生させてしまうお それがある。  [0002] In general, heat insulation boards used for building materials and the like are foamed with a resin such as polystyrene in order to have heat insulation properties, and then formed into a predetermined shape such as a board shape as a V or a loose foam molded body. These closed cells provide heat insulation. These heat insulation boards are lightweight, inexpensive, and have excellent properties of heat insulation. When exposed to high temperatures due to fire, etc., the resin material in these heat insulation boards dissolves quickly due to the low melting point. Then the bubbles collapse. For this reason, the entire structure of these heat insulation boards quickly shrinks, and at the same time, the resin material in these heat insulation boards starts to vaporize and burn with heat, generating black smoke and harmful with combustion. There is a risk of generating gas.
[0003] これに対し、このような断熱性ボードなどに耐熱性ィ匕および難燃性ィ匕する試みがさ れている力 これら耐熱性および難燃性を断熱ボードに与えるために添加した素材 によって、耐熱性ボード本来の断熱性などの特性を損なったり、コストが上昇したりし てしまう。  [0003] On the other hand, such heat-insulating boards have been tried to give heat resistance and flame resistance to such heat-insulating boards, etc. Materials added to impart heat resistance and flame resistance to heat-insulating boards As a result, characteristics such as heat insulation inherent to the heat-resistant board may be impaired, and costs may increase.
[0004] 具体的に、この種の耐熱性ボードとしては、珪素または硼素を含有する無機物質に よって気泡の壁とし、この壁に水酸ィ匕アルミニウムを含有する合成樹脂を一体とし、こ れらの間に不燃無機質の粒子を配設した合成樹脂発泡体の構成が知られている (例 えば、特許文献 1参照。 )o  [0004] Specifically, this type of heat-resistant board has a bubble wall made of an inorganic substance containing silicon or boron, and a synthetic resin containing hydroxyaluminum hydroxide is integrated with the wall. A structure of a synthetic resin foam in which non-combustible inorganic particles are disposed between them is known (for example, see Patent Document 1).
[0005] また、この種の耐熱性ボードとしては、多数の無機質泡状粒子と、これら多数の無 機質泡状粒子の隙間に充填されてこれら多数の無機質泡状粒子を互いに結合させ た発泡榭脂性の無機質粉粒物とを混入した合成樹脂発泡体である。この合成樹脂 発泡体は、この合成樹脂発泡体中の無機質粉粒物が発泡したときに、多数の無機 質泡状粒子の隙間以上の容積となる量が、合成樹脂発泡体に混入されている耐火 断熱剤である。そして、これら無機質粉粒物の発泡によって無機質発泡体と無機質 粉粒物および合成樹脂発泡体とによって構成された発泡成形体とする構成が知られ ている (例えば、特許文献 2参照。 )0 [0005] Further, as this type of heat-resistant board, a large number of inorganic foam particles and a foam in which gaps between these numerous inorganic foam particles are filled and these numerous inorganic foam particles are bonded to each other. It is a synthetic resin foam in which greasy inorganic powder is mixed. In the synthetic resin foam, when the inorganic powder particles in the synthetic resin foam are foamed, an amount of a volume larger than the gaps between many inorganic foam particles is mixed in the synthetic resin foam. Fireproof Insulating agent. The structure of the inorganic foam and an inorganic granular and synthetic resin foam is composed of a foamed molded by foaming of inorganic granular material is known (e.g., see Patent Document 2.) 0
[0006] ところが、上述の合成樹脂発泡体および発泡成形体の!/ヽずれも、本来の耐熱性ボ ードに比べると断熱性などの本来有して 、なければならな!/、特性が低下してしまう。 さらに、これら合成樹脂発泡体および発泡成形体としても制約が多ぐ必ずしも所望 する断熱性および難燃性を得ることができな 、。  [0006] However, the above-mentioned synthetic resin foam and foam molded article also have! / Slack in nature, such as heat insulation, compared to the original heat-resistant board, and must have the characteristics! It will decline. In addition, these synthetic resin foams and foamed molded articles have many restrictions, and it is not always possible to obtain desired heat insulation and flame retardancy.
[0007] そこで、この種の耐熱性ボードを構成する発泡成形体としての発泡スチロール製品 は、発泡したスチレンビーズの表面を、硼酸系無機物である硼酸と熱硬化性榭脂で あるフエノール榭脂を含んだコーティング被膜で被覆している。  [0007] Therefore, the expanded polystyrene product as the expanded molded body constituting this type of heat-resistant board contains the surface of the expanded styrene beads containing boric acid, which is a boric acid-based inorganic substance, and phenol resin, which is a thermosetting resin. It is covered with a coating film.
[0008] 被膜で被覆された発泡スチロール製品は、スチレンビーズを種々の処理方法で予 備発泡させてから熟成放置させた後に、例えば硼酸粉末や硼酸水溶液などの硼酸 系無機物や、この硼酸系無機物に加えて、フ ノール榭脂などの熱硬化性榭脂や、 必要に応じて、アミノ系榭脂、ポリアミド榭脂、繊維材料などを添加して力ゝら本発泡さ せて発泡スチロール製品とする構成が知られている (例えば、特許文献 3参照。 )0 特許文献 1 :実開昭 53— 2463号公報 (第 2— 7頁、第 1図—第 2図) [0008] Styrofoam products coated with a coating are prepared by subjecting styrene beads to pretreatment foaming by various treatment methods and then aging, and then, for example, boric acid inorganic materials such as boric acid powder and boric acid aqueous solution, and boric acid based inorganic materials. In addition, thermosetting resin such as phenolic resin, and if necessary, amino-based resin, polyamide resin, fiber material, etc. are added and foamed to make a polystyrene product. (For example, refer to Patent Document 3.) 0 Patent Document 1: Japanese Utility Model Publication No. 53-2463 (Page 2-7, Figure 1-Figure 2)
特許文献 2 :特開昭 51— 67625号公報 (第 2— 3頁、第 1図—第 2図)  Patent Document 2: Japanese Patent Application Laid-Open No. 51-67625 (Page 2-3, Figure 1-Figure 2)
特許文献 3:特許第 3163282号公報 (第 3— 4頁、図 1—図 2)  Patent Document 3: Japanese Patent No. 3163282 (Page 3-4, Figure 1-Figure 2)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] し力しながら、上述の発泡スチロール製品の製造方法では、原粒ビーズに硼酸系 無機物を混合して予備発泡させた予備発泡済ビーズに、再度、硼酸系無機物や熱 硬化性榭脂などを添加して添加済ビーズを生成してから、この添加済ビーズを本発 泡させている。したがって、この添加済ビーズに水蒸気を当てて本発泡させた場合に は、添加済ビーズの表面カゝら硼酸系無機物や熱硬化性榭脂などが流れてしまい、こ の添加済ビーズの表面が硼酸系無機物および熱硬化性榭脂など含んだコーティン グ被膜にてコーティングされないおそれがある。このため、本発泡までに原粒ビーズ を 2度に亘つて乾燥させて硼酸系無機物などでコーティングしなければならないから 、この本発泡作業に時間が掛カり生産性の向上が容易ではないという問題を有して いる。 [0009] However, in the above-described method for producing a foamed polystyrene product, boric acid-based inorganic material, thermosetting resin, etc. are again added to the pre-foamed beads obtained by mixing boric acid-based inorganic material with pre-expanded beads. Is added to produce added beads, and then the added beads are foamed. Therefore, when this added bead is subjected to water vapor and subjected to main foaming, boric acid-based inorganic material or thermosetting resin flows from the surface of the added bead, and the surface of the added bead There is a risk that it will not be coated with a coating film containing boric acid-based inorganic substances and thermosetting resin. For this reason, the primary beads must be dried twice and coated with a boric acid-based inorganic substance before the main foaming. However, this foaming operation takes time, and it is difficult to improve productivity.
[0010] 本発明は、このような点に鑑みなされたもので、燃焼時における黒煙の発生が防止 され耐火性および耐熱性が向上し熱による収縮変形が抑制された発泡体を生産性 良く製造できる成形体の製造方法を提供することを目的とする。  [0010] The present invention has been made in view of the above points, and it is possible to improve the productivity of a foam in which generation of black smoke during combustion is prevented, fire resistance and heat resistance are improved, and shrinkage deformation due to heat is suppressed. It aims at providing the manufacturing method of the molded object which can be manufactured.
課題を解決するための手段  Means for solving the problem
[0011] 請求項 1記載の発泡体の製造方法は、発泡によって微小な中空体を形成できる多 数の粒子を予備発泡して多数の予備発泡済粒子とし、これら多数の予備発泡済粒 子に難燃性無機材および熱硬化性榭脂を混合してカゝら乾燥および解砕して、これら 多数の予備発泡済粒子それぞれの表面に前記難燃性無機材および熱硬化性榭脂 を含む混合層を形成し、この混合層が表面に形成された多数の予備発泡済粒子を 金型に充填し、この金型に充填され前記混合層が表面に形成された多数の予備発 泡済粒子に水蒸気を当てて本発泡させて所定の形状の発泡体を形成するものであ る。  [0011] In the method for producing a foam according to claim 1, a large number of particles capable of forming a fine hollow body by foaming are pre-foamed into a large number of pre-foamed particles, The flame retardant inorganic material and the thermosetting resin are mixed, dried and crushed from the glass, and each of the numerous pre-foamed particles contains the flame retardant inorganic material and the thermosetting resin. A mixed layer is formed, a large number of pre-foamed particles formed on the surface of the mixed layer are filled in a mold, and a large number of pre-foamed particles filled in the mold and the mixed layer is formed on the surface A foam having a predetermined shape is formed by subjecting water vapor to water and subjecting it to main foaming.
[0012] そして、発泡によって微小な中空体を形成できる多数の粒子を予備発泡して多数 の予備発泡済粒子とする。この後、これら多数の予備発泡済粒子に難燃性無機材お よび熱硬化性榭脂を混合してから乾燥および解砕して、これら多数の予備発泡済粒 子それぞれの表面に難燃性無機材および熱硬化性榭脂を含む混合層を形成する。 このとき、難燃性無機材および熱硬化性榭脂を含む混合層が表面に形成された多 数の予備発泡済粒子が乾燥と同時に単粒子化される。したがって、この混合層が表 面に形成された多数の予備発泡済粒子を金型に充填して力 水蒸気を当てて多数 の予備発泡済粒子を本発泡させることにより、これら単粒子化され表面に混合層が 形成された予備発泡済粒子それぞれの混合層の隙間に水蒸気を送り込むことがで きる。このため、予備発泡粒子の表面に二層に亘つて混合層を形成する方法に比べ 、一層の混合層で十分な難燃性を確保できるとともに、水蒸気を送り込むことによつ て、多数の予備発泡粒子をより短時間に本発泡できる。したがって、難燃性を有する 所定の形状の発泡体を効率良く短時間に製造できる。よって、火災などの燃焼時に おける黒煙の発生が防止され耐火性および耐熱性が向上し火および熱による収縮 変形が抑制された発泡体を生産性良く製造できる。 [0012] Then, a large number of particles capable of forming a fine hollow body by foaming are pre-foamed to obtain a large number of pre-foamed particles. After that, the large number of pre-foamed particles are mixed with a flame-retardant inorganic material and a thermosetting resin, and then dried and crushed, so that the surface of each of these many pre-foamed particles is flame retardant. A mixed layer containing an inorganic material and a thermosetting resin is formed. At this time, a large number of pre-foamed particles having a mixed layer containing a flame-retardant inorganic material and a thermosetting resin on the surface are made into single particles simultaneously with drying. Therefore, a large number of pre-expanded particles formed on the surface of the mixed layer are filled in a mold and subjected to main steam by applying force steam to form a single particle on the surface. Water vapor can be fed into the gap between the mixed layers of the pre-foamed particles on which the mixed layer is formed. For this reason, compared with the method in which the mixed layer is formed in two layers on the surface of the pre-expanded particles, sufficient flame retardancy can be secured with one mixed layer, and a large number of preliminary layers can be obtained by feeding water vapor. The foamed particles can be fully foamed in a shorter time. Therefore, it is possible to efficiently produce a foam having a predetermined shape having flame retardancy in a short time. Therefore, generation of black smoke during combustion such as fire is prevented, fire resistance and heat resistance are improved, and shrinkage due to fire and heat A foam with suppressed deformation can be produced with high productivity.
[0013] 請求項 2記載の発泡体の製造方法は、請求項 1記載の発泡体の製造方法におい て、発泡によって微小な中空体を形成できる多数の粒子は、ポリスチレン榭脂粒子で 、難燃性無機材は、水酸ィ匕アルミニウムおよび硼酸で、熱硬化性榭脂は、フエノール 榭脂および石炭酸榭脂の少なくともいずれか一方であるものである。  [0013] The method for producing a foam according to claim 2 is the method for producing a foam according to claim 1, wherein the large number of particles capable of forming a fine hollow body by foaming are polystyrene resin particles, and are flame retardant. The functional inorganic material is aluminum hydroxide and boric acid, and the thermosetting resin is at least one of phenol resin and carboxylic acid resin.
[0014] そして、発泡によって微小な中空体を形成できる多数の粒子をポリスチレン榭脂粒 子とし、難燃性無機材を水酸ィ匕アルミニウムおよび硼酸とし、熱硬化性榭脂をフエノ ール榭脂および石炭酸榭脂の少なくともいずれか一方とした。この結果、フエノール 榭脂および石炭酸榭脂の少なくともいずれか一方と、水酸ィ匕アルミニウムと、硼酸と を含む混合層が表面に形成された多数のポリスチレン榭脂粒子にて構成された発泡 体を生産性良く製造できる。  [0014] A large number of particles capable of forming a fine hollow body by foaming are polystyrene resin particles, the flame-retardant inorganic material is hydroxyaluminum and boric acid, and the thermosetting resin is phenolic resin. It was set as at least any one of fat and carboxylic acid rosin. As a result, a foam composed of a large number of polystyrene resin particles on the surface of which a mixed layer containing at least one of phenol resin and carboxylic acid resin, hydroxyaluminum, and boric acid was formed. Can be manufactured with high productivity.
[0015] 請求項 3記載の発泡体の製造方法は、請求項 1または 2記載の発泡体の製造方法 において、多数の予備発泡済粒子に、難燃性無機材および熱硬化性榭脂とともに難 燃性剤を混合してカゝら乾燥および解砕して、これら多数の予備発泡済粒子それぞれ の表面に前記難燃性無機材、熱硬化性榭脂および難燃性剤のそれぞれを含む混 合層を形成するものである。  [0015] The method for producing a foam according to claim 3 is the method for producing a foam according to claim 1 or 2, wherein a number of pre-foamed particles are difficult to be added together with a flame-retardant inorganic material and a thermosetting resin. A flame retardant is mixed, dried and crushed, and a mixture containing the flame retardant inorganic material, the thermosetting resin and the flame retardant on the surface of each of these pre-foamed particles. It forms a composite layer.
[0016] そして、多数の予備発泡済粒子に、難燃性無機材および熱硬化性榭脂とともに難 燃性剤を混合してカゝら乾燥および解砕して、これら多数の予備発泡済粒子それぞれ の表面に難燃性無機材、熱硬化性榭脂および難燃性剤のそれぞれを含む混合層を 形成する。この結果、この混合層が表面に形成されている多数の予備発泡済粒子の それぞれを本発泡させて形成される発泡体の難燃性を、難燃性剤の混合によってよ り一段と向上される。  [0016] Then, a large number of pre-expanded particles are mixed with a flame-retardant agent together with a flame-retardant inorganic material and a thermosetting resin, and then dried and crushed. A mixed layer containing each of a flame retardant inorganic material, a thermosetting resin and a flame retardant is formed on each surface. As a result, the flame retardancy of the foam formed by main foaming each of a large number of pre-foamed particles having the mixed layer formed on the surface is further improved by mixing the flame retardant. .
[0017] 請求項 4記載の発泡体の製造方法は、請求項 3記載の発泡体の製造方法におい て、難燃性剤は、赤リンおよびポリリン酸アンモ-ゥムの少なくともいずれかであるもの である。  [0017] The method for producing a foam according to claim 4 is the method for producing a foam according to claim 3, wherein the flame retardant is at least one of red phosphorus and ammonium polyphosphate. It is.
[0018] そして、難燃性無機材および熱硬化性榭脂とともに混合する難燃性剤として、赤リ ンおよびポリリン酸アンモ-ゥムの少なくともいずれかを用いることにより、使用温度に 応じて難燃性剤を使 、分けることができるので、発泡体の難燃性の確保がより容易に なる。 [0018] By using at least one of red phosphorus and ammonium polyphosphate as a flame retardant mixed with the flame retardant inorganic material and the thermosetting resin, it is difficult depending on the use temperature. Using flame retardants, it is easier to ensure the flame retardancy of the foam. Become.
[0019] 請求項 5記載の発泡体の製造方法は、請求項 1な!、し 4 、ずれか記載の発泡体の 製造方法において、難燃性無機材は、難燃性無機粘度調整材であって、この難燃 性無機粘度調整材として雲母を用いるものである。  [0019] The method for producing a foam according to claim 5 is the method for producing a foam according to claim 1, wherein the flame retardant inorganic material is a flame retardant inorganic viscosity modifier. Therefore, mica is used as the flame retardant inorganic viscosity modifier.
[0020] そして、難燃性無機材が難燃性無機粘度調整材で、この難燃性無機粘度調整材と して雲母を用いることによって粘度を調整できるので、乾燥時に難燃性無機材などの 微細な粉が飛散および脱落し難くなる。よって、難燃性をより一段と向上できると同時 に、熱硬化性榭脂に粘りを出すことができるため、強度をより向上できるとともに、燃 焼時の亀裂をも防止できる。  [0020] The flame retardant inorganic material is a flame retardant inorganic viscosity modifier, and the viscosity can be adjusted by using mica as the flame retardant inorganic viscosity modifier. It becomes difficult for fine powder to scatter and fall off. Therefore, the flame retardancy can be further improved, and at the same time, the thermosetting resin can be made sticky, so that the strength can be further improved and cracking during combustion can be prevented.
発明の効果  The invention's effect
[0021] 請求項 1記載の発泡体の製造方法によれば、予備発泡粒子の表面に二層に亘っ て混合層を形成する従来の方法に比べ、一層の混合層で十分な難燃性を確保でき るとともに、水蒸気を送り込むことによって、多数の予備発泡粒子をより短時間に本発 泡できる。したがって、難燃性を有する所定の形状の発泡体を効率良く短時間に製 造できるから、火災などの燃焼時における黒煙の発生が防止され耐火性および耐熱 性が向上し火おいび熱による収縮変形が抑制された発泡体を生産性良く製造できる  [0021] According to the method for producing a foam according to claim 1, compared with the conventional method in which a mixed layer is formed over two layers on the surface of the pre-expanded particles, a single mixed layer has sufficient flame retardancy. In addition to being able to ensure, a large number of pre-expanded particles can be foamed in a shorter time by feeding water vapor. Therefore, a foam with a predetermined shape having flame retardancy can be produced efficiently and in a short time, so that the generation of black smoke during combustion such as a fire is prevented and the fire resistance and heat resistance are improved. Can produce foam with reduced shrinkage and good productivity
[0022] 請求項 2記載の発泡体の製造方法によれば、発泡によって微小な中空体を形成で きる多数の粒子をポリスチレン榭脂粒子とし、難燃性無機材を水酸ィ匕アルミニウムお よび硼酸とし、熱硬化性榭脂を、熱硬化性榭脂をフ ノール榭脂および石炭酸榭脂 の少なくともいずれか一方としたことにより、フエノール榭脂および石炭酸榭脂の少な くともいずれか一方と、水酸化アルミニウムと、硼酸とを含む混合層が表面に形成さ れた多数のポリスチレン榭脂粒子にて構成された発泡体を生産性良く製造できる。 [0022] According to the method for producing a foam according to claim 2, a large number of particles capable of forming a fine hollow body by foaming are polystyrene resin particles, and the flame-retardant inorganic material is hydroxyaluminum hydroxide and Boric acid, thermosetting resin, thermosetting resin at least one of phenolic resin and carboxylic acid resin, and at least one of phenolic resin and carboxylic acid resin; A foam composed of a large number of polystyrene resin particles having a mixed layer containing aluminum hydroxide and boric acid formed on the surface can be produced with high productivity.
[0023] 請求項 3記載の発泡体の製造方法によれば、難燃性無機材、熱硬化性榭脂およ び難燃性剤のそれぞれを含む混合層を多数の予備発泡済粒子のそれぞれの表面 に形成させることにより、これら多数の予備発泡済粒子の本発泡にて形成される発泡 体の難燃性をより一段と向上できる。  [0023] According to the method for producing a foam according to claim 3, each of the pre-foamed particles is mixed with a mixed layer containing each of the flame-retardant inorganic material, the thermosetting resin and the flame retardant. By forming on the surface, the flame retardancy of the foam formed by the main foaming of these many pre-foamed particles can be further improved.
[0024] 請求項 4記載の発泡体の製造方法によれば、難燃性剤として赤リンおよびポリリン 酸アンモ-ゥムの少なくともいずれ力を用いることにより、使用温度に応じて難燃性剤 を使い分けることができるので、発泡体の難燃性の確保をより容易にできる。 [0024] According to the method for producing a foam according to claim 4, red phosphorus and polyphosphorus are used as the flame retardant. By using at least any one of the strengths of acid ammonium, the flame retardant can be properly used according to the operating temperature, so it is easier to ensure the flame retardancy of the foam.
[0025] 請求項 5記載の発泡体の製造方法によれば、難燃性無機材を難燃性無機粘度調 整材とし、この難燃性無機粘度調整材として雲母を用いることによって粘度を調整で きるから、混合させた難燃性無機材などの微細な粉が乾燥時に飛散および脱落し難 くできるから、難燃性の効果をより一段と向上できると同時に、熱硬化性榭脂に粘りを 出すことができるので、強度をより向上できるとともに、燃焼時の亀裂をも防止できる。 図面の簡単な説明  According to the method for producing a foam according to claim 5, the viscosity is adjusted by using the flame retardant inorganic material as a flame retardant inorganic viscosity modifier, and using mica as the flame retardant inorganic viscosity modifier. This makes it possible to prevent the fine powders of mixed flame-retardant inorganic materials from scattering and falling off during drying, thus further improving the flame-retardant effect and at the same time making the thermosetting resin more viscous. Therefore, the strength can be further improved, and cracks during combustion can be prevented. Brief Description of Drawings
[0026] [図 1]本発明の発泡スチロール製品の一実施の形態を示す斜視図である。 FIG. 1 is a perspective view showing an embodiment of a polystyrene foam product according to the present invention.
[図 2]同上発泡スチロール製品を示す一部を拡大した断面図である。  FIG. 2 is a partially enlarged cross-sectional view showing the same expanded polystyrene product.
[図 3]同上発泡スチロール製品の燃焼状態を示す写真である。 (a) 本発明の発泡 スチロール製品の着火 20秒後を示す写真 (b) 同上発泡スチロール製品の着火 1 分後を示す写真 (c) 同上発泡スチロール製品の離炎直後を示す写真 (d) 従来 の発泡スチロール製品の着火 10秒後を示す写真  FIG. 3 is a photograph showing the combustion state of the polystyrene foam product. (a) Photo showing ignition after 20 seconds of the expanded polystyrene product of the present invention (b) Photo showing 1 minute after ignition of the expanded polystyrene product same as above (c) Photo showing immediately after flame release of the expanded polystyrene product same as above (d) Conventional expanded polystyrene Photo showing product ignition after 10 seconds
[図 4]本発明の発泡スチロール製品の実施例 5を示す写真である。 (a) 実施例 5 の発泡スチロール製品を示す写真 (b) 同上発泡スチロール製品を示す写真  FIG. 4 is a photograph showing Example 5 of the expanded polystyrene product of the present invention. (a) Photo showing the expanded polystyrene product of Example 5 (b) Photo showing the expanded polystyrene product same as above
[図 5]同上発泡スチロール製品の燃焼テストを示す写真である。 (a) 燃焼テスト開 始 30秒後の状態を示す写真 (b) 燃焼テスト開始 5分後の状態を示す写真 (c) 燃 焼テスト開始 7分後の状態を示す写真  [Fig. 5] A photograph showing a combustion test of the above polystyrene foam product. (a) Photo showing the state 30 seconds after the start of the combustion test (b) Photo showing the state 5 minutes after the start of the combustion test (c) Photo showing the state 7 minutes after the start of the combustion test
[図 6]同上発泡スチロール製品の燃焼テストの 9分間終了離炎直後の状態を示す写 真である。 (a) 燃焼テスト後の発泡スチロール製品全体を示す写真 (b) 同上発 泡スチロール製品の燃焼部分を示す写真 (c) 同上発泡スチロール製品の燃焼部 分の中央部を示す写真 (d) 同上発泡スチロール製品の燃焼部分の中央部の断面 を示す写真  [Fig. 6] This is a photograph showing the state immediately after the completion of the 9-minute combustion test of the polystyrene foam product. (A) Photograph showing the entire expanded polystyrene product after the combustion test (b) Photograph showing the burning part of the foamed polystyrene product from the above (c) Photograph showing the central part of the burning part of the foamed polystyrene product (d) Photograph showing the cross section of the center of the burning part
[図 7]本発明の発泡スチロール製品の実施例 6のコーンカロリメータ試験の結果を示 すグラフである。  FIG. 7 is a graph showing the results of a corn calorimeter test in Example 6 of the expanded polystyrene product of the present invention.
[図 8]同上発泡スチロール製品を示す写真である。  FIG. 8 is a photograph showing the same polystyrene foam product.
[図 9]同上発泡スチロール製品を示す写真である。 符号の説明 FIG. 9 is a photograph showing the same polystyrene foam product. Explanation of symbols
[0027] 1 発泡体としての発泡スチロール製品  [0027] 1 Styrofoam product as foam
2 粒子としての多孔性発泡榭脂粒子  2 Porous foamed resin particles as particles
3 混合層としての被覆層  3 Coating layer as mixed layer
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0028] 本発明の発泡スチロール製品の一実施の形態の構成を図 1およびし図 2を参照し て説明する。 The configuration of one embodiment of the expanded polystyrene product of the present invention will be described with reference to FIG. 1 and FIG.
[0029] 図 1および図 2において、 1は発泡体としての発泡スチロール製品である。この発泡 スチロール製品 1は、発泡材が添加された多孔性発泡樹脂からなる成形体としての ポリスチレン ({CH— CH(C H )} )榭脂にて、ビーズ状に成形された図示しない原粒  [0029] In Fig. 1 and Fig. 2, reference numeral 1 denotes a polystyrene foam product as a foam. This polystyrene product 1 is made of polystyrene ({CH—CH (C H)}) resin as a molded body made of a porous foamed resin to which a foaming material is added.
2 6 5 η  2 6 5 η
ビーズであるスチレンビーズの発泡処理によって所定の大きさまで気泡状に発泡した 多孔性発泡榭脂粒子 2を多数有している。具体的に、これら多孔性発泡榭脂粒子 2 は、スチレンビーズにブタンガスなどを含浸させて発泡させた粒子である。さらに、こ れら多孔性発泡榭脂粒子 2の外周面である表面には、スチレンビーズの表皮 2aが形 成されている。  It has a large number of porous foamed resin particles 2 that are foamed to a predetermined size by foaming treatment of styrene beads, which are beads. Specifically, these porous foamed resin particles 2 are particles obtained by impregnating butane gas or the like into styrene beads and foaming. Further, on the surface which is the outer peripheral surface of the porous foamed resin particles 2, a skin 2a of styrene beads is formed.
[0030] そして、これら各多孔性発泡榭脂粒子 2のそれぞれは、略球状に成形されて!、る。  [0030] Each of the porous foamed resin particles 2 is formed into a substantially spherical shape.
さらに、これら各多孔性発泡榭脂粒子 2のそれぞれは、互いに固結されて全体として 所定の形状、例えば矩形板状に形成されている。言い換えると、発泡スチロール製 品 1は、これら各多孔性発泡榭脂粒子 2同士が互いに密着して一体的に成形された 発泡成形体構造とされている。なお、この発泡スチロール製品 1は、例えば難燃性が 要求される建材や資材などに用いられる建材用ボードなどや、構造部材としてのパ ネル、成形品および軽量成形部材として使用される。  Further, each of these porous foamed resin particles 2 is consolidated into a predetermined shape, for example, a rectangular plate shape as a whole. In other words, the expanded polystyrene product 1 has a foamed molded article structure in which the porous foamed resin particles 2 are in close contact with each other and are integrally molded. The polystyrene foam product 1 is used as, for example, a building material board used for a building material or material that requires flame retardancy, a panel as a structural member, a molded product, and a lightweight molded member.
[0031] そして、各多孔性発泡榭脂粒子 2の表皮 2aの外周面である表面には、図 2に示すよ うに、コーティング被膜としての混合層である被覆層 3が薄肉状に形成されて被覆さ れている。この被覆層3は、例えば、難燃無機材である難燃性無機化合物、難燃性 剤、熱硬化性榭脂、アミノ系榭脂、ポリアミド榭脂、繊維材料などを含んでいる。ここで 、難燃性無機化合物としては、例えば水酸ィ匕アルミニウム (Al (OH) )や水酸化マグ [0031] Then, on the surface which is the outer peripheral surface of the skin 2a of each porous foamed resin particle 2, as shown in Fig. 2, a coating layer 3 as a mixed layer as a coating film is formed in a thin shape. It is covered. The coating layer 3 includes, for example, a flame retardant inorganic compound that is a flame retardant inorganic material, a flame retardant, a thermosetting resin, an amino resin, a polyamide resin, a fiber material, and the like. Here, as the flame retardant inorganic compound, for example, hydroxyaluminum (Al (OH)) or hydroxide magnesium hydroxide is used.
2 3  twenty three
ネシゥム (Mg(OH) )などの難燃性無機粉、および硼素系無機化合物である例えば 硼酸 BO )などである。さらに、難燃性剤としては、例えば赤リン系である赤リン (P)Flame retardant inorganic powders such as Nesmu (Mg (OH)), and boron-based inorganic compounds such as Boric acid BO). Further, as a flame retardant, for example, red phosphorus (P)
3 3 3 3
や、ポリリン安系であるポリリン安としてのポリリン酸アンモ-ゥムなどで被覆層 3を超 難燃性とする。また、熱硬化性榭脂としては、例えばフエノール榭脂としてのレゾール 榭脂ゃ石炭酸榭脂などである。ここで、この石炭酸榭脂は、フエノール榭脂と略同様 な性質を有するとともに比較的高価ではないので、このフエノール榭脂の代わり、ある いはこのフエノール榭脂とともに熱硬化性榭脂として使用できる。  In addition, the coating layer 3 is made to be extremely flame retardant with polyphosphorus ammonium such as polyphosphorus ammonium. Examples of the thermosetting resin include resol resin as phenol resin, and carboxylic acid resin. Here, since this carboxylic acid resin has substantially the same properties as phenolic resin and is not relatively expensive, it can be used in place of this phenolic resin or as a thermosetting resin with this phenolic resin. .
[0032] このとき、難燃性剤として赤リンを被覆層 3に含ませた場合には、赤リンは加熱時に すぐに炭化して酸素を遮断するので、被覆層 3を燃え難くできる。さらに、赤リンは、 本発泡時の温度が上げられない場合に被覆層 3に添加される。また、ポリリン酸アン モ -ゥムは、本発泡時の温度が上げられる場合に被覆層 3に添加される。このとき、こ の被覆層 3下の多孔性発泡榭脂粒子 2がスチレンの場合には、耐熱温度が低!、ので 、余り温度を上げることができないから、この場合には赤リンを添加する。  [0032] At this time, when red phosphorus is included in the coating layer 3 as a flame retardant, the red phosphorus is immediately carbonized during heating to block oxygen, so that the coating layer 3 can be made difficult to burn. Further, red phosphorus is added to the coating layer 3 when the temperature during the main foaming cannot be increased. Further, ammonium polyphosphate is added to the coating layer 3 when the temperature during the main foaming is raised. At this time, when the porous foamed resin particle 2 under the coating layer 3 is styrene, the heat-resistant temperature is low, so the temperature cannot be raised so much. In this case, red phosphorus is added. .
[0033] ここで、この被覆層 3は、分子量が 2500前後、好ましくは 3000程度である。さらに、 この被覆層 3は、硼素系無機化合物と難燃性無機化合物との少なくとも一方、および 必要に応じて難燃性剤が混合されて含有されている熱硬化性榭脂にて構成されて いる。このとき、この被覆層 3は、この被覆層 3を介して多数の多孔性発泡榭脂粒子 2 を密着させて一体化されている。さらに、これら多数の多孔性発泡榭脂粒子 2それぞ れの気泡状構造を構成する榭脂は、発泡などの手法によって微小な中空体を形成 できるものであればよい。すなわち、この多孔性発泡榭脂粒子 2を構成する榭脂とし ては、特別の制限はなぐ例えばポリスチレン、ポリエチレン、ポリプロピレン、ポリ塩 化ビュルなどの汎用プラスチックや、ポリアミド、ポリカーボネート、変性ポリフエ-レン エーテル、ポリエーテルスルホン、ポリエステル ABSなどのエンジニアリングプラスチ ックなどを適用できる。  [0033] Here, the coating layer 3 has a molecular weight of about 2500, preferably about 3000. Further, the coating layer 3 is composed of at least one of a boron-based inorganic compound and a flame retardant inorganic compound, and a thermosetting resin containing a flame retardant mixed as necessary. Yes. At this time, the coating layer 3 is integrated by bringing a large number of porous foamed resin particles 2 into close contact via the coating layer 3. Further, the resin constituting the cell-like structure of each of these many porous foamed resin particles only needs to be capable of forming a minute hollow body by a technique such as foaming. That is, the resin constituting the porous foamed resin particles 2 is not particularly limited, for example, general-purpose plastics such as polystyrene, polyethylene, polypropylene, polysulphated bulls, polyamides, polycarbonates, modified polyphenylene ethers. Engineering plastics such as polyethersulfone and polyester ABS can be applied.
[0034] なお、ポリスチレンを用いた多孔性発泡榭脂粒子 2の場合には、ポリスチレンの軟 化点が 80°C以上 100°C以下と比較的低ぐ長期連続使用温度が 50°Cとされている ことから、このような温度以上の環境で使用する場合には、より軟ィ匕点が高く強度の 強!、ポリカーボネート榭脂や、ポリアミド榭脂などのエンジニアリングプラスチックを用 いる必要がある。ここで、長期連続使用温度が 50°Cの場合には、赤リンが適している ので、被覆層 3に赤リンを添加すると良い。そして、これよりもより軟ィ匕点が高い場合 には、ポリリン酸アンモ-ゥムが適しているので、被覆層にポリリン酸アンモ-ゥムを添 加すると良い。 [0034] In the case of porous foamed resin particles 2 using polystyrene, the softening point of polystyrene is 80 ° C or higher and 100 ° C or lower, and the long-term continuous use temperature is 50 ° C. Therefore, when used in an environment above this temperature, it is necessary to use engineering plastics such as polycarbonate resin and polyamide resin, which have a softer point and higher strength. Here, red phosphorus is suitable when the long-term continuous use temperature is 50 ° C. Therefore, it is preferable to add red phosphorus to the coating layer 3. If the softening point is higher than this, polyphosphoric acid ammonium is suitable. Therefore, it is preferable to add polyphosphoric acid ammonium to the coating layer.
[0035] さらに、被覆層 3を構成する硼素系無機化合物と難燃性無機化合物およびおよび 難燃性剤の少なくともいずれかを含有する熱硬化性榭脂としては、フエノール榭脂ぁ るいは石炭酸榭脂のほか、尿素樹脂、メラニン榭脂、グアナミン榭脂、シリコーン榭脂 、ポリイミドある!ヽはポリアミドイミド榭脂のような熱硬化性榭脂などを使用できる。  [0035] Further, as the thermosetting resin containing at least one of a boron-based inorganic compound, a flame retardant inorganic compound, and a flame retardant constituting the coating layer 3, a phenol resin or a coal acid resin is used. In addition to fat, urea resin, melanin resin, guanamine resin, silicone resin, and polyimide resin can be used as thermosetting resin such as polyamideimide resin.
[0036] また、この被覆層 3中に含まれている硼素系無機化合物としては、硼酸 (H BO )の  [0036] As the boron-based inorganic compound contained in the coating layer 3, boric acid (H BO)
3 3 ほ力、ホウ砂 (Na B O · 10Η Ο)などが適している。さらに、この被覆層 3中に含まれ  3 3 Power, borax (Na B O · 10Η) are suitable. Furthermore, this coating layer 3 contains
2 4 7 2  2 4 7 2
ている難燃性無機化合物としては、例えば微細中空ガラス球であるシラスバルーン、 水酸化アルミニウム (Al (ΟΗ) 珪素 (Si)あるいは珪藻土のほ力、: L m以上 200  Examples of flame retardant inorganic compounds include shirasu balloons, which are fine hollow glass spheres, aluminum hydroxide (Al (ΟΗ), silicon (Si), or diatomaceous earth): L m or more 200
2 3  twenty three
m以下程度の大きさの中性あるいは酸性を示す無機材としての無機系繊維である無 機粉粒体が適している。ここで、この無機粉粒体として、より難燃性を確保するために 、各種のセラミックや、カーボンブラックなどを用いることもできる。さらに、この被覆層 3中に少量添加される難燃性剤としては、燃焼時に瞬時に溶解炭化現象を起こして 、外部から酸素を遮断し、燃焼の阻止に絶大な効果を発揮するものであればよい。  Inorganic powders, which are inorganic fibers as an inorganic material exhibiting a neutral or acidic size of about m or less, are suitable. Here, various ceramics, carbon black, and the like can be used as the inorganic powder particles in order to ensure more flame retardancy. Further, the flame retardant added in a small amount to the coating layer 3 is one that causes an instantaneous dissolution carbonization phenomenon at the time of combustion, blocks oxygen from the outside, and exerts a great effect in preventing combustion. That's fine.
[0037] さらに、この被覆層 3中に含まれている難燃性無機材としては、箔状構造を有する ケィ酸塩鉱物である雲母 (mica)や、アルミナ (Al O ),白土 (カオリンあるいはチャイナ [0037] Further, the flame retardant inorganic material contained in the coating layer 3 includes mica, which is a silicate mineral having a foil-like structure, alumina (Al 2 O 3), white clay (kaolin or China
2 3  twenty three
クレーなど)、炭酸カルシウム (CaCO )、酸化クロム (Cr Oあるいは CrOなど)、ゼォ  Clay), calcium carbonate (CaCO), chromium oxide (Cr O or CrO, etc.),
3 2 3 2 ライト、パーライト、シリカ (SiO )、スズ (Sn)、タルク (滑石)、チタン (Ti)、炭素繊維など  3 2 3 2 Light, perlite, silica (SiO 2), tin (Sn), talc (talc), titanium (Ti), carbon fiber, etc.
2  2
を用いることちでさる。  You can use it.
[0038] このとき、この被覆層 3中に含まれている物質の組み合わせとしては、多数の多孔 性発泡榭脂粒子 2が密着して一体化した成形体とするために、気泡状構造を形成す る榭脂であるポリスチレンと、硼素系無機化合物または難燃性無機化合物および難 燃性剤を含有する熱硬化性榭脂との間で一定の密着性が必要であるが、相互の密 着性が十分でなくても、これら双方の榭脂に対して密着性のある榭脂を、図示しない 中間層として多孔性発泡榭脂粒子 2と被覆層 3との間に介挿させて密着性を改善さ せることも可會である。 [0039] さらに、この被覆層 3に含まれている熱硬化性榭脂のほか、この熱硬化性榭脂とは 異なる他の熱硬化性榭脂ゃ熱可塑性榭脂などを加えて混合することにより、適宜の 硬度や、柔軟性、靭性、強度などを付与できる。このとき、この熱硬化性榭脂とは異な る他の熱硬化性榭脂ゃ熱可塑性榭脂としては、例えばポリイミド榭脂、ポリビニルフォ ルマール樹脂、ポリエーテルスルホン樹脂、末端基がカルボン酸のアクリロニトリルポ リブタジエン共重合体などを用いることができる。 [0038] At this time, as a combination of substances contained in the coating layer 3, a cellular structure is formed in order to obtain a molded body in which a large number of porous foamed resin particles 2 are in close contact with each other. A certain degree of adhesion is required between polystyrene, which is a resin, and a thermosetting resin containing a boron-based inorganic compound or a flame-retardant inorganic compound and a flame retardant. Even if the properties are not sufficient, the cohesive properties of both types of coffins are intercalated between the porous foamed resin particles 2 and the coating layer 3 as an intermediate layer (not shown). It is also possible to improve this. [0039] Further, in addition to the thermosetting resin contained in the coating layer 3, another thermosetting resin different from the thermosetting resin may be added and mixed. Thus, appropriate hardness, flexibility, toughness, strength and the like can be imparted. At this time, other thermosetting resins different from this thermosetting resin include, for example, polyimide resin, polyvinyl formal resin, polyethersulfone resin, and acrylonitrile whose terminal group is carboxylic acid. Polybutadiene copolymer or the like can be used.
[0040] また、硼素系無機化合物または難燃性無機化合物および難燃性剤を含有する熱 硬化性榭脂の層である被覆層 3は、多孔性発泡榭脂粒子2の外層を構成しており、 この多孔性発泡榭脂粒子 2に耐火性、耐熱性および難燃性を付与している。さら〖こ、 この被覆層 3は、通常、原粒ビーズの発泡工程を得て気泡状の構造とするため、これ ら発泡工程での温度で固化あるいは半硬化した状態にある。 [0040] Further, the coating layer 3 which is a layer of a thermosetting resin containing a boron-based inorganic compound or a flame-retardant inorganic compound and a flame retardant constitutes an outer layer of the porous foamed resin particles 2. The porous foamed resin particles 2 are given fire resistance, heat resistance and flame retardancy. Sarakuko, this coating layer 3 is usually in a solidified or semi-cured state at the temperature in the foaming process in order to obtain the foaming process of the primary beads to obtain a cellular structure.
[0041] そして、この被覆層 3には、炭素繊維である炭素短繊維や、ガラス繊維であるガラス 短繊維、合成樹脂繊維、天然繊維などの榭脂強化材を添加して、この被覆層 3の強 度、耐火性、耐熱性および難燃性などの特性を向上できる。また、この被覆層 3には 、この被覆層 3に含まれている熱硬化性榭脂の混合を促進させる硬化促進剤が混合 されている。そして、この硬化促進剤は、この硬化促進剤の混合量を調整すること〖こ よって、熱硬化性榭脂の硬化促進を調整して、被覆層 3の硬化促進をブロック化する 。具体的に、この硬化促進剤としては、フヱノールスルホン酸やトルエンスルホン酸な どである。  [0041] Then, the coating layer 3 is added with a reinforcing resin such as carbon short fiber as carbon fiber, glass short fiber as glass fiber, synthetic resin fiber, natural fiber, etc. The properties such as strength, fire resistance, heat resistance and flame retardancy can be improved. Further, the coating layer 3 is mixed with a curing accelerator that promotes mixing of the thermosetting resin contained in the coating layer 3. And this hardening accelerator adjusts the hardening acceleration of a thermosetting resin by adjusting the mixing amount of this hardening accelerator, and blocks hardening acceleration of the coating layer 3. Specifically, examples of the curing accelerator include phenol sulfonic acid and toluene sulfonic acid.
[0042] 次に、上記一実施の形態の発泡スチロール製品 1の製造方法を説明する。  [0042] Next, a method for producing the expanded polystyrene product 1 of the above-described embodiment will be described.
[0043] (1) 原料の調整 [0043] (1) Preparation of raw materials
原料には、すでに発泡剤の含浸などによる前処理がされ発泡剤を含有したポリスチ レンビーズを原粒ビーズとして用いる。この原粒ビーズとしては、 0. 2mm以上 1. Om m以下程度の直径である原径を有する市販のポリスチレンビーズの原粒である。  As raw materials, polystyrene beads that have been pretreated by impregnation with a foaming agent, etc., and containing the foaming agent are used as the primary beads. The primary bead is a commercially available polystyrene bead having an original diameter of about 0.2 mm or more and 1. Om m or less.
[0044] (2) 予備発泡工程 [0044] (2) Pre-foaming process
上述の原粒ビーズを目的の製品に応じて、所定の比率、例えば 5倍から 90倍程度 あるいは 20倍から 100倍程度 (好ましくは 90倍)に予備発泡させて予備発泡済ビーズ とする。すなわち、後述する被覆工程に先立って原粒ビーズを予備発泡させる。そし て、予備発泡済ビーズは、製品化の安定性を維持するために、 12時間から 24時間 程度 (好ましくは 20時間程度)熟成放置させて完成させた後に使用する。また、この予 備発泡済ビーズは、できるだけ 1週間以内に後述する成形工程にて消費させて、こ の予備発泡済ビーズ内の残存ガスの拡散によって大きな影響が出ないうちに使い切 つてしまうとよ 、。 The above-mentioned raw beads are pre-expanded to a predetermined ratio, for example, 5 to 90 times or 20 to 100 times (preferably 90 times) to obtain pre-expanded beads. That is, the primary beads are pre-foamed prior to the coating step described later. And The pre-expanded beads are used after being aged for 12 to 24 hours (preferably about 20 hours) and completed to maintain the stability of commercialization. In addition, the pre-expanded beads may be consumed within the molding process, which will be described later, within one week as much as possible, and used up without significant influence due to diffusion of residual gas in the pre-expanded beads. ,.
[0045] このとき、この予備発泡済ビーズを製造する際に用いる予備発泡方法としては、蒸 気、幅射熱、赤外線熱風、熱湯水などの種々の処理方法がある。  [0045] At this time, as the pre-foaming method used when producing the pre-foamed beads, there are various treatment methods such as steam, radiant heat, infrared hot air, hot water and the like.
[0046] (3) 被覆工程  [0046] (3) Coating process
上述の多数の予備発泡済ビーズ中に、熱硬化性榭脂、硼素系無機化合物および 難燃性無機化合物のそれぞれを、 1 : 1あるいはそれぞれを単独として混合する。この とき、これら多数の予備発泡済ビーズにて製造される発泡スチロール製品 1の難燃性 の効果をより一層発揮させるためには、これら多数の予備発泡済ビーズ中に、この予 備発泡済ビーズ中に混合した難燃性無機化合物に対して 5質量%から 20質量%程 度の割合となるように難燃性材を併用して混合および攪拌して、所定の厚さの被覆 層 3を形成する。言い換えると、この予備発泡済ビーズに対して、熱硬化性榭脂、硼 素系無機化合物および難燃性無機化合物の合計が 5対 1から 1対 5の比率となるよう に混合する。  In each of the above-mentioned pre-expanded beads, a thermosetting resin, a boron-based inorganic compound, and a flame-retardant inorganic compound are mixed 1: 1 or each alone. At this time, in order to further exert the flame retardant effect of the expanded polystyrene product 1 produced with these many pre-expanded beads, the pre-expanded beads are contained in these many pre-expanded beads. A flame-retardant material is used in combination with the flame-retardant inorganic compound mixed in the mixture so that the ratio is about 5 to 20% by mass, and the mixture is mixed and stirred to form a coating layer 3 having a predetermined thickness. To do. In other words, the pre-expanded beads are mixed so that the total of the thermosetting resin, boron-based inorganic compound, and flame-retardant inorganic compound is in the ratio of 5: 1 to 1: 5.
[0047] すなわち、最終的に成形される発泡スチロール製品 1を構成する被覆層 3中の硼素 系無機化合物あるいは難燃性無機化合物の密度および難燃性度合によって、これ ら硼素系無機化合物および難燃性無機化合物のそれぞれを混合するか、これら硼 素系無機化合物および難燃性無機化合物のいずれか一方に赤リンあるいはポリリン 酸アンモ-ゥムなどの難燃性剤を添加して混合するかを決定する。  [0047] That is, depending on the density and the degree of flame retardance of the boron-based inorganic compound or flame-retardant inorganic compound in the coating layer 3 constituting the polystyrene foam product 1 to be finally formed, these boron-based inorganic compound and flame-retardant Whether to mix each of the inorganic inorganic compounds or add a flame retardant such as red phosphorus or ammonium polyphosphate to one of these boron inorganic compounds and flame retardant inorganic compounds. decide.
[0048] このとき、この被覆層 3となる熱硬化性榭脂中に添加した難燃性無機化合物によつ て熱硬化性榭脂の粘度が上昇して、被覆層 3が粘性の高いどろどろの状態、いわゆ るチョコレート状とならない場合には、この熱硬化性榭脂に対して 3質量%以上 10質 量%以下ぐらいの水、または 5質量%から 10質量%のメタノールなどを添カ卩して、こ の熱硬化性榭脂の粘度を調整する。  [0048] At this time, the viscosity of the thermosetting resin increases due to the flame-retardant inorganic compound added to the thermosetting resin used as the coating layer 3, and the coating layer 3 is thick and thick. If it does not become a so-called chocolate-like state, add 3 to 10% by weight of water or 5 to 10% by weight of methanol to the thermosetting resin. Then, adjust the viscosity of this thermosetting resin.
[0049] さらに、この熱硬化性榭脂としてフ ノール榭脂 (レゾ一ル)、硼素系無機化合物とし て硼酸 (H BO )、および難燃性無機化合物として水酸ィ匕アルミニウムのそれぞれを、[0049] Further, as this thermosetting resin, phenol resin (resol), boron-based inorganic compound, Boric acid (H BO), and hydrated aluminum hydroxide as a flame retardant inorganic compound,
3 3 3 3
原粒ビーズに対して、単独または 1対 1で混合して、 30PHR(Perts per Hundred Rub ber)カゝら 100PHR程度の割合で添加する。このとき、この熱硬化性榭脂の難燃性をさ らに上昇させるために、上述の難燃性無機化合物および硼素系無機化合物の質量 に対して、 5質量%から 20質量%程度 (好ましくは 10質量%程度が適量)の赤リンま たはポリリン酸アンモ-ゥムを難燃性剤として添加する。このとき、この難燃性剤は、 被覆層 3による難燃性効果を一段と向上させるために、赤リンあるいはポリリン酸アン モ-ゥムを難燃性無機化合物の 1Z20から 1Z30程度含有させる。  Add them to the primary beads alone or in a one-to-one mix at a rate of about 100 PHR, such as 30 PHR (Perts per Hundred Rubber). At this time, in order to further increase the flame retardancy of the thermosetting resin, about 5% by mass to 20% by mass (preferably with respect to the mass of the flame retardant inorganic compound and boron-based inorganic compound described above) Add about 10% by mass of red phosphorus or ammonium polyphosphate as a flame retardant. At this time, in order to further improve the flame retardant effect of the coating layer 3, this flame retardant contains red phosphorus or ammonium polyphosphate in an amount of 1Z20 to 1Z30 as a flame retardant inorganic compound.
[0050] また、熱硬化性榭脂には、固形分 75%程度のフ ノールスルホン酸やトルエンスル ホン酸などの硬化促進剤を所要量加えてから、良く攪拌および分散させる。このとき 、図示しな!ヽ自動攪拌機やリボンミキサなどの所定の機械で 2分力 4分程度 (好まし くは 2分力ゝら 3分程度)混合する。そして、この混合後に 4分から 5分程度攪拌する。  [0050] In addition, a required amount of a curing accelerator such as phenolsulfonic acid or toluenesulfonic acid having a solid content of about 75% is added to the thermosetting resin, and then stirred and dispersed well. At this time, mix with a specified machine such as an automatic stirrer or a ribbon mixer for about 2 minutes for 4 minutes (preferably about 2 minutes for 2 minutes). After this mixing, stir for 4 to 5 minutes.
[0051] (4) 乾燥工程  [0051] (4) Drying process
上述の被覆工程にて被覆された多数の被覆予備発泡済ビーズの表面積ができる だけ大きくなるように、これら多数の被覆予備発泡済ビーズに風を当てて乾燥、すな わち風乾させながら、これら多数の被覆予備発泡済ビーズの一部を解砕させる。  In order to increase the surface area of the large number of coated pre-expanded beads coated in the above-described coating process, these large numbers of coated pre-expanded beads are dried by blowing air, that is, air-dried. A portion of a number of coated pre-expanded beads is crushed.
[0052] 次 、で、この一部が解砕された被覆予備発泡済ビーズを 55°C士 3°C程度の温度で 完全に単粒子化するまで解砕しながら乾燥させる。このときの乾燥時間は、被覆予備 発泡済ビーズが単粒ィ匕したならば、できるだけ短い熱風乾燥、好ましくは 5分以内、 より好ましくは 3分力も 5分程度とする。また、このときの乾燥温度は、高温すぎると被 覆予備発泡済ビーズ内からガスが逃げてしまうため好ましくないので、 55°C± 3°C程 度の温度で乾燥させる。このとき、 60倍以上 90倍以下程度の高倍率にする場合に は、特に注意が必要である。  [0052] Next, the coated pre-expanded beads partially crushed are dried while being crushed at a temperature of about 55 ° C to 3 ° C until they are completely made into single particles. The drying time at this time should be as short as possible with hot air, preferably within 5 minutes, more preferably about 3 minutes, if the coated pre-expanded beads have become single grains. Further, if the drying temperature at this time is too high, gas escapes from the covered pre-expanded beads, which is not preferable. Therefore, drying is performed at a temperature of about 55 ° C ± 3 ° C. At this time, special care must be taken when setting a high magnification of 60 times or more and 90 times or less.
[0053] さらに、これら多数の被覆予備発泡済ビーズの解砕および乾燥が終了した後に、こ れら多数の被覆予備発泡済ビーズをふるい器にて振動させて単粒子化させて被覆 済み単独粒子である単粒子ビーズとする。  [0053] Further, after the pulverization and drying of these many coated pre-expanded beads are completed, these numerous coated pre-expanded beads are vibrated into a single particle by shaking them with a sieve. It is set as the single particle bead.
[0054] (5) 本発泡工程 (加熱工程)  [0054] (5) Main foaming process (heating process)
上述の乾燥工程にて製造された単粒子化ビーズを、自動成形機あるいはブロック 成形の金型内にエアーにて自動的に充填させる。この状態で、 0. 6kgZcm3から lk gZcm3程度の蒸気圧により、一般の発泡ポリスチレン榭脂 (Expandable PolyStyrene: EPS)の成形方法と同様に、加熱してからバキューム冷却である真空冷却をして成形 した後に脱型する。このとき、一般に発泡率の大きなものほど、加熱量および冷却時 間が短縮される。 Single particle beads produced by the above drying process are automatically molded or blocked. The mold is automatically filled with air. In this state, with a vapor pressure of about 0.6 kgZcm 3 to lk gZcm 3 , vacuum cooling, which is vacuum cooling, is performed after heating in the same manner as in a general expanded polystyrene resin (Expandable PolyStyrene: EPS) molding method. Demold after molding. At this time, generally, the larger the foaming rate, the shorter the heating amount and the cooling time.
[0055] 具体的に、発泡スチロール製品 1の発泡率が 80倍程度の場合には、 30秒以上 60 秒以下程度の加熱時間とする。したがって、高倍率に発泡させた発泡スチロール製 品 1に適している。ただし、成形品の大きさによって異なる力 大体 60秒程度の加熱 時間で十分である。  [0055] Specifically, when the expansion ratio of the expanded polystyrene product 1 is about 80 times, the heating time is about 30 seconds or more and 60 seconds or less. Therefore, it is suitable for Styrofoam product 1 foamed at high magnification. However, a heating time of about 60 seconds is sufficient, depending on the size of the molded product.
[0056] さらに、他の成形法として、高周波加熱法あるいは熱板加熱法や熱盤プレス法でも 良好な発泡スチロール製品 1を製造できるが、蒸気成形法に比べて一般的に 1サイ クルの時間が掛かる。ただし、高周波加熱法などの場合には、金属板に単粒子化ビ ーズを接着させつつ成形などすることにより、非常に効率良くパネルィヒできるので、 状況によって使用する。また、通常の蒸気成形法あるいは高周波加熱法などによる 升切り充填や、升で米を計るように水平に充填する升きり法などによる升切りなどを使 用して成形することもできる。  [0056] Further, as another forming method, a high-quality foamed polystyrene product 1 can be manufactured by a high-frequency heating method, a hot plate heating method, or a hot plate press method, but generally one cycle time is required as compared with the steam forming method. It takes. However, in the case of the high-frequency heating method, etc., it is possible to use the panel depending on the situation because it can be made very efficient by forming it while adhering the single particle beads to the metal plate. It can also be formed by chopping and filling by a normal steam forming method or high-frequency heating method, or by chopping by a chopping method in which the rice is horizontally filled so as to measure rice.
[0057] このような本発泡によって、これら単粒子ビーズは、これら単粒子ビーズの外表面に 形成され硼素系無機化合物、難燃性無機化合物および難燃性剤を含有した熱硬化 性榭脂にて構成された被覆層 3とともに膨張して互いに接する。このとき、加熱によつ て、これら単粒子ビーズの内層および外層が接着硬化するとともに、隣接する単粒子 ビーズの外表面の被覆層 3とともに硬化接着する。この結果、多孔性榭脂発泡粒子 同士が細胞 (セル)状に相互に結合して一体となって細胞 (セル)群となるから、金型の 内面に沿った所定の形状の成形体である発泡スチロール製品 1となる。  [0057] By this main foaming, these single particle beads are formed on the outer surface of these single particle beads into a thermosetting resin containing a boron-based inorganic compound, a flame retardant inorganic compound, and a flame retardant. It expands together with the coating layer 3 configured as described above and comes into contact with each other. At this time, the inner layer and the outer layer of these single particle beads are bonded and cured by heating, and are cured and bonded together with the coating layer 3 on the outer surface of the adjacent single particle beads. As a result, the porous foamed resin particles are bonded to each other in the form of cells to form a group of cells (cells), so that the molded body has a predetermined shape along the inner surface of the mold. Styrofoam product 1
[0058] 上述したように、上記一実施の形態によれば、原粒ビーズを予備発泡させて予備発 泡済ビーズとする。この後、この予備発泡済ビーズに難燃性無機化合物を含む熱硬 化性榭脂を混合して、これら難燃性無機化合物および熱硬化性榭脂を含む被覆層 3にて表面が被覆された予備発泡済ビーズとしてから、これら予備発泡済ビーズを乾 燥および解砕して単粒子化させた。 [0059] この結果、難燃性無機化合物および熱硬化性榭脂を含む被覆層 3にて表面が被 覆された多数の予備発泡済粒子が単粒子化されて多数の単粒子ビーズとなる。した がって、これら多数の単粒子ビーズを金型に充填して力 本発泡させることにより、こ れら多数の単粒子ビーズそれぞれの表面を被覆する被覆層 3の隙間に熱を効率良く 確実に送り込むことができる。よって、本発泡時の水蒸気を用いた加熱と、その後の 真空冷却との効果によって、これら多数の単粒子ビーズの本発泡時間を短時間にす るために多量の硬化促進剤を用いることなぐこれら多数の単粒子ビーズをより確実 に短時間に本発泡できるから、これら多数の単粒子ビーズの本発泡に必要な時間を 大幅に短くできる。 [0058] As described above, according to the above-described embodiment, the primary bead is pre-expanded into a pre-foamed bead. Thereafter, the pre-foamed beads are mixed with a thermosetting resin containing a flame retardant inorganic compound, and the surface is coated with a coating layer 3 containing the flame retardant inorganic compound and the thermosetting resin. The pre-expanded beads were then dried and crushed into single particles. [0059] As a result, a large number of pre-expanded particles whose surfaces are covered with the coating layer 3 containing a flame-retardant inorganic compound and a thermosetting resin are converted into single particles to form a large number of single-particle beads. Therefore, by filling these many single particle beads into a mold and forcefully foaming, heat can be efficiently and reliably ensured in the gaps of the coating layer 3 covering the surface of each of these multiple single particle beads. Can be sent to. Therefore, a large amount of curing accelerator is not used in order to shorten the main foaming time of these single-particle beads due to the effect of heating with water vapor during the main foaming and subsequent vacuum cooling. Since a large number of single-particle beads can be foamed more reliably in a short time, the time required for the main foaming of these multiple single-particle beads can be greatly shortened.
[0060] このとき、これら多数の単粒子ビーズの表面の被覆層 3中のフエノール榭脂の分子 量を 3000程度と大きくし、この被覆層への硬化促進剤の使用量を調整し、これら多 数の単粒子ビーズの本発泡時の加熱のタイミングを調整し、水蒸気を用いて加熱し て多数の単粒子ビーズを本発泡させることにより、これら多数の単粒子ビーズの表面 力も被覆層 3が流されに《なる。したがって、多数の単粒子ビーズの表面を 2段階に 分けてコーティングする方法であるダブルコートの場合に比べ、これら多数の単粒子 ビーズの表面に一層の被覆層を形成するだけのシングルコートで十分な難燃性を確 保できるので、これら多数の単粒子ビーズの表面をコーティングする工程を 1工程省 略できる。このため、多数の予備発泡済ビーズの乾燥も以前に比べ難しくなぐ単粒 子ビーズを大量に早く製造できるようになった。  [0060] At this time, the molecular weight of phenol resin in the coating layer 3 on the surface of the large number of single-particle beads is increased to about 3000, and the amount of the curing accelerator used in the coating layer is adjusted. By adjusting the heating timing of a number of single particle beads at the time of main foaming and heating with water vapor to main foam a large number of single particle beads, the coating layer 3 also flows over the surface force of these many single particle beads. It becomes <<. Therefore, compared to the double coat method, which coats the surface of a large number of single particle beads in two stages, a single coat that forms a single coating layer on the surface of these large number of single particle beads is sufficient. Since flame retardancy can be ensured, one step of coating the surface of these many single particle beads can be omitted. For this reason, it became possible to quickly produce a large number of single-grain beads that are difficult to dry a large number of pre-expanded beads.
[0061] 具体的には、最終的に製造される発泡スチロール製品 1の厚さが 100mm以上 60 Omm以下程度のもので、 30秒から 60秒程度の加熱時間と、その後の真空冷却によ る効果によって、 3分以上 4分以下程度で発泡スチロール製品 1の本発泡を 1サイク ルできるから、この発泡スチロール製品 1の大量な生産が可能となった。  [0061] Specifically, the foamed polystyrene product 1 to be finally produced has a thickness of about 100 mm to 60 Omm, the heating time of about 30 to 60 seconds, and the effect of subsequent vacuum cooling As a result, one cycle of the foaming of the expanded polystyrene product 1 can be performed in about 3 to 4 minutes, which enables mass production of the expanded polystyrene product 1.
[0062] よって、これら多数の単粒子ビーズの本発泡にて形成される発泡スチロール製品 1 を効率良く製造できる。このため、図 3(a)ないし図 3(c)に示すように、燃焼時の黒煙の 発生を防止でき、耐火性を向上でき、熱による収縮変形を抑制できた所定の形状の 発泡スチロール製品 1を生産性良く製造できる。このとき、図 3(c)に示すように、発泡 スチロール製品の着火されて炭化した部分の表面は、離炎直後であっても平滑なま まである。なお、図 3(d)に示すように、従来のポリスチレンでは、着火 10秒後の状態 であっても黒煙が多量に発生することから、燃焼状態を写真に写すことが容易ではな い。 [0062] Therefore, the expanded polystyrene product 1 formed by the main foaming of these many single-particle beads can be efficiently produced. For this reason, as shown in Fig. 3 (a) to Fig. 3 (c), it is possible to prevent the generation of black smoke during combustion, improve the fire resistance, and suppress the shrinkage deformation due to heat. 1 can be manufactured with good productivity. At this time, as shown in FIG. 3 (c), the surface of the ignited and carbonized portion of the expanded polystyrene product remains smooth even immediately after the flame is removed. There is. As shown in Fig. 3 (d), in the conventional polystyrene, a large amount of black smoke is generated even after 10 seconds of ignition, so it is not easy to copy the combustion state in the photograph.
[0063] したがって、従来の榭脂発泡ボードの断火性および耐熱性や軽量さ、および取り扱 いが容易で低コストなどの特性を損なうことなぐ火災などの火および熱に対して優れ た耐火性および耐熱性を発揮して、火災の際に溶融収縮することなく燃焼せず、黒 煙や有毒ガスなどの発生を抑制できる。  [0063] Therefore, fire extinguishing, heat resistance, light weight, and excellent fire resistance against fires and heat, such as fires that are easy to handle and do not impair low cost characteristics, etc. It exhibits heat resistance and heat resistance, and does not burn without shrinking in the event of a fire, and can suppress the generation of black smoke and toxic gases.
[0064] このとき、被覆層 3が、極度の低分子のものや、榭脂の硬化が遅い場合には、多数 の単粒子ビーズ力 被覆層 3が流れてしまう場合がある力 この場合には、この被覆 層 3が金型の内面などに付着してしまうので好ましくない。  [0064] At this time, if the coating layer 3 is of extremely low molecular weight or the resin is slowly cured, a large number of single particle bead forces may flow through the coating layer 3 in this case. The coating layer 3 is not preferable because it adheres to the inner surface of the mold.
[0065] また、発泡したスチレンビーズに硼酸系無機物を混合してから予備発泡させた後に 硼酸系無機物を再度添加して力 本発泡させた従来の発泡スチロール製品に比べ 、実用的になるとともに、原材料、充填内容および軽量ィ匕による低原料充填などの観 点から高倍率での低コストィ匕 (従来の 1Z2程度)が可能となり、生産効率を向上できる  [0065] In addition, it is more practical than the conventional expanded polystyrene products in which the boric acid-based inorganic material is mixed with the expanded styrene beads and then pre-expanded, and then the boric acid-based inorganic material is added again to force foam. From the viewpoints of filling contents and low raw material filling due to light weight, it is possible to reduce the cost (higher than conventional 1Z2) at high magnification and improve production efficiency.
[0066] さらに、多孔性発泡榭脂粒子 2をポリスチレン榭脂とし、この多孔性発泡榭脂粒子 2 の表面の被覆層 3に含まれている難燃性無機化合物を水酸ィ匕アルミニウムと硼素系 無機化合物の硼酸とした。また、この被覆層 3に含まれている熱硬化性榭脂をフエノ ール榭脂とした。この結果、被覆層 3に硼素系無機化合物を含有させることにより、こ の被覆層 3を着火したときに、この被覆層 3にひび割れが生じに《なるとともに、煙の 発生が少なくなる。さらに、従来の発泡ポリスチレンと同様の製法にて容易かつ安価 に発泡スチロール製品 1を製造できるから、この発泡スチロール製品 1をより生産性 良く製造できる。 [0066] Further, the porous foamed resin particles 2 are made of polystyrene resin, and the flame retardant inorganic compound contained in the coating layer 3 on the surface of the porous foamed resin particles 2 is made of hydroxyaluminum hydroxide and boron. System Boric acid, an inorganic compound. The thermosetting resin contained in the coating layer 3 was phenol resin. As a result, when the coating layer 3 contains a boron-based inorganic compound, when the coating layer 3 is ignited, the coating layer 3 is cracked and the generation of smoke is reduced. Furthermore, since the expanded polystyrene product 1 can be easily and inexpensively manufactured by the same manufacturing method as conventional expanded polystyrene, the expanded polystyrene product 1 can be manufactured with higher productivity.
[0067] また、被覆層 3に含まれている熱硬化性榭脂に、硼素系無機化合物、難燃性無機 化合物および難燃性剤のほか、炭素繊維などの繊維強化材ゃ、シリカあるいはパー ライト、シラスバルーンなどの中空粒子材料、中性あるいは酸性の無機粉粒体を添カロ する。この結果、製造される発泡スチロール製品 1が火に対して強くなり、熱による収 縮変形を確実に抑制できるとともに、この発泡スチロール製品 1の被覆層 3中の繊維 材料の繊維質を入れることによって、より強度を向上できる。したがって、製造される 発泡スチロール製品 1の耐火性および難燃性をより向上できるとともに、収縮変形を より抑制できる。 [0067] In addition to boron-based inorganic compounds, flame retardant inorganic compounds and flame retardants, fiber reinforcing materials such as carbon fibers, silica or Add hollow particle material such as light and shirasu balloon, neutral or acidic inorganic powder. As a result, the foamed polystyrene product 1 to be produced is strong against fire, and it is possible to surely suppress shrinkage deformation due to heat, and the fibers in the coating layer 3 of the foamed polystyrene product 1 The strength can be further improved by adding the fiber of the material. Therefore, it is possible to further improve the fire resistance and flame retardancy of the produced expanded polystyrene product 1 and to further suppress shrinkage deformation.
[0068] このとき、さらに難燃性を向上させたい場合には、この無機粉粒体中の 5%以上 10 %以下の割合でポリリン酸アンモ-ゥムまたは赤リンなどの難燃性剤をさらに添加す る。この結果、製造される発泡スチロール製品 1の炭化効果、すなわち酸素遮断効果 による難燃性をより向上できる。さらに、被覆層 3に混合させる難燃性剤として、赤リン あるいはポリリン酸アンモ-ゥムを用いることにより、本発泡時の使用温度に応じて難 燃性剤を使い分けることができるので、発泡スチロール製品 1の難燃性の確保をより 容易にできる。  [0068] At this time, in order to further improve the flame retardancy, a flame retardant such as ammonium polyphosphate or red phosphorus is added at a ratio of 5% to 10% in the inorganic powder. Add more. As a result, it is possible to further improve the flame retardancy due to the carbonization effect of the expanded polystyrene product 1, that is, the oxygen barrier effect. Furthermore, by using red phosphorus or ammonium polyphosphate as a flame retardant to be mixed with the coating layer 3, the flame retardant can be properly used according to the operating temperature at the time of foaming. It is easier to ensure the flame retardancy of 1.
[0069] また、硼素系無機化合物、難燃性無機化合物および熱硬化性榭脂とともに硬化促 進剤を多数の予備発泡済ビーズに混合してカゝら乾燥および解砕させて多数の単粒 子化された単粒子ビーズを形成する。この結果、これら多数の単粒子ビーズを本発 泡させる際の被覆層 3の硬化を、この被覆層 3に含まれて 、る硬化促進剤の量の調 整で調整できる。よって、この被覆層 3にて表面が被覆されて単粒子化された多数の 単粒子ビーズをより効率良く短時間に本発泡できる。  [0069] Also, a boron accelerator, a flame retardant inorganic compound, and a thermosetting resin, together with a curing accelerator mixed with a number of pre-foamed beads, and dried and crushed into a large number of single particles. Formed single particle beads. As a result, the curing of the coating layer 3 when the large number of single particle beads are foamed can be adjusted by adjusting the amount of the curing accelerator contained in the coating layer 3. Therefore, a large number of single-particle beads whose surfaces are coated with the coating layer 3 to form single particles can be more effectively foamed in a short time.
[0070] さらに、多孔性発泡榭脂粒子 2の表面に被覆層 3を形成する被覆工程に先立って、 この多孔性発泡榭脂粒子 2となる原粒ビーズを所定の比率で予備発泡させて予備発 泡済みビーズとする。この結果、この多孔性発泡榭脂粒子 2の表面を覆う被覆層 3の 厚さを調整できるから、この被覆層 3が形成された後の予備発泡済ビーズの本発泡 工程を円滑にできる。  [0070] Further, prior to the coating step of forming the coating layer 3 on the surface of the porous foamed resin particles 2, the primary beads that will become the porous foamed resin particles 2 are pre-foamed at a predetermined ratio and preliminarily expanded. Use foamed beads. As a result, since the thickness of the coating layer 3 covering the surface of the porous foamed resin particles 2 can be adjusted, the main foaming step of the pre-foamed beads after the coating layer 3 is formed can be made smooth.
[0071] また、多孔性発泡榭脂粒子 2の表面を、硼素系無機化合物、難燃性無機化合物お よび熱硬化性榭脂からなる被覆層 3で被覆した発泡スチロール製品 1は、 V、わゆるポ リスチレン発泡成形体などと同様に、この発泡スチロール製品 1を構成する多孔性発 泡榭脂粒子 2が有する気泡状の構造によって効果的に断火性および耐熱性を発揮 できる。このとき、この多孔性発泡榭脂粒子 2が有する気泡状の構造によって断熱効 果を高め、また火災などの加熱に対して被覆層 3が、耐熱性や、急速な炭化による酸 素遮断効果によって難燃性の一層の効果に寄与して 、る。 [0072] さらに、硼素系無機化合物、難燃性無機化合物および熱硬化性榭脂の混合物から なる被覆層 3が、加熱に際してどのような反応を生じるかについての厳密な反応は明 らかではないが、熱硬化性榭脂は、加熱に伴って熱硬化して多孔性発泡榭脂粒子 2 が有する気泡状の構造を保たせると考えられている。そして、さらに高温度になって 硼素系無機化合物のガラス化が進行すると、これらの硬化した気泡状の形状を保つ 熱硬化性榭脂を、ガラス化した硼素系無機化合物が覆って外気から遮断する。さら に、併用した難燃性無機化合物である水酸ィ匕アルミニウムも一役立って水分 (H O) In addition, the expanded polystyrene product 1 in which the surface of the porous foamed resin particle 2 is coated with a coating layer 3 made of a boron-based inorganic compound, a flame-retardant inorganic compound, and a thermosetting resin is V, As with the polystyrene foamed molded article, the fire-resistant and heat-resistant properties can be effectively exhibited by the cellular structure of the porous foamed resin particles 2 constituting the expanded polystyrene product 1. At this time, the cellular structure of the porous foamed resin particles 2 enhances the heat insulating effect, and the coating layer 3 is resistant to heat such as fire due to heat resistance and oxygen blocking effect due to rapid carbonization. Contributes to the further effect of flame retardancy. [0072] Further, it is not clear what kind of reaction the coating layer 3 made of a mixture of a boron-based inorganic compound, a flame retardant inorganic compound and a thermosetting resin does when heated. However, the thermosetting resin is considered to be thermoset with heating to maintain the cellular structure of the porous foamed resin particles 2. When the vitrification of the boron-based inorganic compound proceeds at a higher temperature, the vitrified boron-based inorganic compound covers the thermosetting resin that maintains the shape of the cured bubbles and shields it from the outside air. . In addition, 併 用 aluminum hydroxide, a flame-retardant inorganic compound used in combination, also contributed to moisture (HO).
2 を外気へと放出させて、燃焼性を阻止し、少量の赤リンなどの炭化現象も相まって、 外気の酸素を速やかに遮断することにより、燃焼および焼失が防止されると考えられ る。  It is considered that combustion and burning are prevented by releasing 2 to the outside air, preventing flammability, and combining with a small amount of carbonization such as red phosphorus to quickly shut off oxygen in the outside air.
[0073] このとき、硼素系無機化合物がガラス化する反応は広く知られている。例えば硼酸 は、メタ硼酸 (HBO )を経由してピロウ硼酸 (H B O )に変化してガラス状となり、さら  [0073] At this time, the reaction of vitrification of a boron-based inorganic compound is widely known. For example, boric acid changes to pyroboric acid (H B O) via metaboric acid (HBO) and becomes glassy.
2 2 4 7  2 2 4 7
に高温で無水硼酸 (B O )に変化する。このとき、ナトリウム塩などの存在によって硼  Changes to boric anhydride (B 2 O 3) at high temperatures. At this time, boron exists due to the presence of sodium salt.
2 3  twenty three
酸のガラス化が容易に進行する。したがって、火災などの火および熱にて硬化して気 泡状の構造を保つ熱硬化性榭脂と、この熱硬化性榭脂が硬化する過程で溶融して 硬化した多孔性発泡榭脂粒子 2を被覆して外気からの酸素などを遮断して、さらに高 温度での反応を防止できれば、この熱硬化性榭脂に混合すべき無機化合物の組み 合わせは、上記一実施の形態には限られない。  Vitrification of acid proceeds easily. Therefore, a thermosetting resin that is cured by fire and heat such as a fire to maintain a foam-like structure, and porous foamed resin particles that are melted and cured in the process of curing the thermosetting resin 2 The combination of inorganic compounds to be mixed with the thermosetting resin is limited to the above-described embodiment as long as the reaction can be prevented by blocking the oxygen from the outside air and preventing the reaction at a higher temperature. Absent.
[0074] さらに、発泡スチロール製品 1の加熱が進行すると、この加熱の進行に伴って、この 発泡スチロール製品 1の反応領域もある程度進行するが、上述の多孔性発泡榭脂粒 子 2による多孔性発泡構造が維持されることによって、加熱がおよぶ範囲が限定され るので、この発泡スチロール製品 1の加熱が一定以上進行することはない。 [0074] Further, as the heating of the expanded polystyrene product 1 proceeds, the reaction region of the expanded polystyrene product 1 also progresses to some extent with the progress of the heating, but the porous foamed structure by the porous expanded resin particles 2 described above. Since the range to which the heating is applied is limited by maintaining the temperature, the heating of the expanded polystyrene product 1 does not proceed beyond a certain level.
[0075] したがって、この発泡スチロール製品 1を構成する多孔性発泡榭脂粒子 2の形状を 支持する多孔性発泡樹脂が、この発泡スチロール製品 1を製造する際の加熱工程に よって、これら多孔性発泡榭脂粒子 2を被覆する被覆層 3中の熱硬化性榭脂と融合 して一体となる。さらに、硼素系無機化合物のガラス化および赤リンなどの速効性の 炭化による外気の遮断や、難燃性無機化合物による水分の放水との相乗効果によつ て、これら多孔性発泡榭脂粒子 2および被覆層 3の形状が維持される。この結果、発 泡スチロール製品 1内部への熱伝導が遮断されて、この熱伝達の進行が阻止される 。このため、この加熱に伴って、これら多孔性発泡榭脂粒子 2が例え燃焼したとしても 、燃焼した範囲は多孔性発泡榭脂粒子 2の表面の領域に限られるから、黒煙や有毒 ガスの発生を大幅に防止できる。 [0075] Therefore, the porous foamed resin supporting the shape of the porous foamed resin particles 2 constituting the foamed polystyrene product 1 is converted into the porous foamed resin by a heating process when the foamed polystyrene product 1 is produced. It fuses with the thermosetting resin in the coating layer 3 that coats the particles 2 to be integrated. In addition, the porous foamed resin particles 2 have a synergistic effect with the vitrification of boron-based inorganic compounds and the rapid action carbonization of red phosphorus and the like, and the synergistic effect of water release by the flame-retardant inorganic compounds. And the shape of the coating layer 3 is maintained. As a result, Styrofoam product 1 The heat conduction to the inside is interrupted, and this heat transfer is prevented. For this reason, even if the porous foamed resin particles 2 are combusted with this heating, the burned range is limited to the area of the surface of the porous foamed resin particles 2, so that black smoke and toxic gas Occurrence can be greatly prevented.
[0076] さらに、この発泡スチロール製品 1の軽量性、強度、耐水性や、素材としての安定性 などの特性も、多孔性発泡榭脂粒子 2の表面を覆う硼素系無機化合物、難燃性無機 化合物、無機添加剤の 5質量%以上 20質量%以下程度の赤リンあるいはポリリン酸 アンモ-ゥムおよび熱硬化性榭脂からなる被覆層 3自体が比較的軽量で薄ぐ化学 的に安定であり、一定の強度を有している。このとき、この発泡スチロール製品 1にお いて求められる強度は、比較的均一な面荷重に対するものであるから、本来有してい る強度などの特性を保つことができる。  [0076] Further, the foamed polystyrene product 1 has characteristics such as lightness, strength, water resistance, and stability as a raw material, and boron based inorganic compounds and flame retardant inorganic compounds covering the surface of the porous foamed resin particles 2 are also used. In addition, the coating layer 3 made of red phosphorus or polyphosphoric acid ammonium and a thermosetting resin in an amount of 5% by mass to 20% by mass of the inorganic additive is relatively light, thin and chemically stable. It has a certain strength. At this time, the strength required in the expanded polystyrene product 1 is for a relatively uniform surface load, and therefore, the inherent properties such as strength can be maintained.
[0077] また、この発泡スチロール製品 1の製造方法として、従来の発泡ポリスチレンなどの 発泡成形工程を利用することによって効率的かつ効果的に製造できる。したがって、 多孔性発泡榭脂粒子 2を形成するためには、発泡剤を含有ある!/ヽは発泡ガスを含浸 させて前処理して目的の倍率に発泡を完了させた予備発泡済ビーズを、硼素系無 機化合物、難燃性無機化合物および少量の赤リンあるいはポリリン酸アンモ-ゥムな どの難燃性剤を混合した熱硬化性榭脂で被覆して被覆層 3を形成して力ゝら単粒子化 する。この後、この被覆層 3が形成され単粒子化された単粒子ビーズを加熱して本発 泡させて所定の形状の発泡スチロール製品 1とする。  [0077] Further, as a method for producing this expanded polystyrene product 1, it can be efficiently and effectively produced by utilizing a conventional foam molding process such as polystyrene foam. Therefore, in order to form the porous foamed resin particles 2, a foaming agent is included! / Soot is pre-foamed beads impregnated with foaming gas and pretreated to complete foaming at the desired magnification. A coating layer 3 is formed by coating with a thermosetting resin mixed with a boron-based inorganic compound, a flame-retardant inorganic compound, and a small amount of a flame retardant such as red phosphorus or ammonium polyphosphate. Into single particles. Thereafter, the single-particle beads formed with the coating layer 3 and formed into single particles are heated and foamed to obtain a foamed polystyrene product 1 having a predetermined shape.
[0078] この結果、この発泡スチロール製品 1を構成する被覆層 3によって、本来の気泡状 構造を形成する多孔性発泡榭脂粒子 2の外表面に対して、硼素系無機化合物、難 燃性無機化合物および難燃性剤にて構成された難燃炭化遮断作用を有する多数の 熱硬化性榭脂層を重ねた構成と同様の作用を有する。したがって、非常に速効性の ある被覆層 3を多孔性発泡榭脂粒子 2の表面に形成できる。  As a result, a boron-based inorganic compound or a flame-retardant inorganic compound is formed on the outer surface of the porous foamed resin particles 2 forming the original cellular structure by the coating layer 3 constituting the expanded polystyrene product 1. It has the same effect as a structure in which a number of thermosetting resin layers having a flame-retardant carbonization blocking action composed of a flame retardant are stacked. Therefore, the coating layer 3 having a very rapid effect can be formed on the surface of the porous foamed resin particles 2.
[0079] さらに、この多孔性発泡榭脂粒子 2の表面に被覆層 3を形成した構成によって、本 来気泡状の構造を構成する多孔性発泡榭脂粒子 2のみでは達成できなカゝつた耐火 性や難燃性、形状維持特性などの性質を発泡スチロール製品 1に付与できる。このと き、被覆層 3を構成する硼素系無機化合物、難燃性を有する水酸ィ匕アルミニウム、お よび少々の赤リンまたはポリリン酸アンモ-ゥムを混合した熱硬化性榭脂を、気泡状 構造を形成する多孔性発泡榭脂粒子 2の表面に被覆するには、液状の熱硬化性榭 脂の前駆体または未硬化の熱硬化性榭脂を種々の方法で塗布したり、アルコールな どの溶剤に溶解して塗布した後に溶剤を蒸散させたりする方法としてもよい。 [0079] Further, the structure in which the coating layer 3 is formed on the surface of the porous foamed resin particles 2 makes it possible to achieve a fire resistance that cannot be achieved by using only the porous foamed resin particles 2 that essentially form a cellular structure. Properties such as heat resistance, flame retardancy, and shape maintenance characteristics can be imparted to the expanded polystyrene product 1. At this time, boron-based inorganic compounds constituting the coating layer 3, flame retardant aluminum hydroxide, aluminum In order to coat the surface of the porous foamed resin particles 2 forming a cellular structure with a thermosetting resin mixed with a little red phosphorus or ammonium polyphosphate, a liquid thermosetting resin is used. The precursor or the uncured thermosetting resin may be applied by various methods, or the solvent may be evaporated after being dissolved in a solvent such as alcohol.
[0080] このとき、これらの方法は、熱硬化性榭脂の種類や、性質に応じて適宜選択すれば 良ぐ上述した発泡工程の加熱などの条件下で適度の特性および流動性を有し、本 発泡にて形成される多孔性発泡榭脂粒子 2の面に均一な膜厚の被覆層 3を生成でき ればよい。 [0080] At this time, these methods have appropriate characteristics and fluidity under conditions such as heating in the above-described foaming step, which may be appropriately selected according to the type and properties of the thermosetting resin. It is sufficient that the coating layer 3 having a uniform film thickness can be generated on the surface of the porous foamed resin particles 2 formed by the foaming.
[0081] 一方、表面に均一な膜厚の被覆層 3が形成されある程度硬化した状態である半硬 化の予備発泡済ビーズをそのまま金型に充填して、間接熱によって 110°C程度の温 度で 5分力 6分程度加熱および冷却して発泡スチロール製品 1を成形できる力 一 般に、この方法では、成形時間が掛カり過ぎる。したがって、表面が被覆層 3にて均 一に被覆された予備発泡済ビーズを、 55°C±3°C程度の温度の温風にてタックを取 りながら乾燥させるとともに少量の加圧にてブロック化したものを解砕させて単粒ィ匕さ せて、さらに振るいに掛けながら振動させて完全に単粒子化させて多数の単粒子ビ ーズとする。このときの乾燥は、風乾を多少長くしても良いが、強制による乾燥の場合 には 55°C±3°C程度の温度で 3分から 5分程度で終える。すなわち、予備発泡済ビ 一ズの単粒子化が目的だからである。  [0081] On the other hand, semi-hardened pre-foamed beads, which are in a state where the coating layer 3 having a uniform film thickness is formed on the surface and hardened to some extent, are filled in the mold as they are and heated to about 110 ° C by indirect heat. A force that can form a polystyrene foam product 1 by heating and cooling for about 5 minutes at a force of 6 minutes. Generally, this method takes too much time to form. Therefore, the pre-expanded beads whose surface is uniformly coated with the coating layer 3 are dried while tacking with hot air having a temperature of about 55 ° C ± 3 ° C, and with a small amount of pressure. The block-shaped material is pulverized to form single grains, and further shaken while shaking to completely form single particles to obtain a large number of single particle beads. The drying at this time may be a little longer, but in the case of forced drying, it should be completed in about 3 to 5 minutes at a temperature of about 55 ° C ± 3 ° C. That is, the purpose is to make the pre-foamed beads into single particles.
[0082] したがって、風乾は、少し長めにしてある程度予備発泡済ビーズの解砕を進めて小 ブロック化したものとし、できれば 55°C±3°C程度の温度で 3分以内で乾燥を終了さ せて単粒子化させる。すなわち、これら予備発泡済ビーズ中の熱硬化性榭脂が、基 準とする流れ以前のコテージから、この基準とする流れである Bステージを得て、こ の基準とする流れを超えた Cステージで完全硬化となる。このため、風乾を中心にし た 55°C士 3°C程度の温度での加温乾燥では、熱硬化性榭脂の硬化を Bステージの 途中ほどで止めた 、ので、予備発泡済ビーズのブロック解砕ができて半硬化粒子が できれば、可能な限り 2分力も 3分との短い時間とする。  [0082] Therefore, in air drying, it is assumed that the pre-foamed beads have been crushed to a certain extent by making them a little longer, and if possible, the drying should be completed within 3 minutes at a temperature of about 55 ° C ± 3 ° C. To make a single particle. That is, the thermosetting resin in these pre-expanded beads obtains the B stage that is the standard flow from the cottage before the standard flow, and the C stage exceeds the standard flow. Complete curing. For this reason, in the case of heating drying at a temperature of about 55 ° C and 3 ° C, centering on air drying, the curing of the thermosetting resin was stopped in the middle of the B stage. If it can be crushed and semi-cured particles are produced, the force of 2 minutes should be as short as 3 minutes.
[0083] すなわち、これら予備発泡済ビーズ中の熱硬化性榭脂が Cステージほど進んでか ら完全硬化した場合には、これら予備発泡済ビーズにて成形される発泡スチロール 製品 1中に予備発泡済ビーズ間における融着硬化ができず、これら予備発泡済ビー ズ間の融着接合ができないから、製造された発泡スチロール製品 1の強度を確保で きなくなる力 である。 [0083] That is, when the thermosetting resin in the pre-expanded beads has progressed as much as the C stage and then completely cured, the expanded polystyrene molded with these pre-expanded beads. This is a force in which the strength of the manufactured expanded polystyrene product 1 cannot be secured because the fusion hardening between the pre-expanded beads cannot be performed in the product 1 and the fusion-bonding between these pre-expanded beads cannot be performed.
[0084] この結果、表面が被覆層 3にて被覆されて単粒子化された単粒子ビーズを金型に 充填させた状態で、これら単粒子ビーズ間に水蒸気を当てて、これら単粒子ビーズを 本発泡させることにより、これら単粒子ビーズの被覆層 3の間のそれぞれに水蒸気を 確実に送り込むことができる。したがって、これら単粒子ビーズの本発泡をより効率良 く短時間に成形カ卩ェできる。よって、これら単粒子ビーズの蒸気による本発泡にて成 形される発泡スチロール製品 1をより生産性良く製造できる。  [0084] As a result, in a state where the single particle beads whose surface was coated with the coating layer 3 and made into single particles were filled in the mold, water vapor was applied between the single particle beads so that the single particle beads were By performing the foaming, water vapor can be surely sent into each of the coating layers 3 of the single particle beads. Therefore, the main foaming of these single particle beads can be molded efficiently and in a short time. Therefore, the expanded polystyrene product 1 formed by the main foaming with the vapor of these single particle beads can be manufactured with higher productivity.
実施例 1  Example 1
[0085] 上記一実施の形態の発泡スチロール製品 1を、以下の原料などを用いて実験的に 製作して同様の作用効果を示すことを確認した。  [0085] It was confirmed that the expanded polystyrene product 1 of the above-described embodiment was experimentally manufactured using the following raw materials and the like and exhibited the same effect.
[0086] a 発泡ポリスチレン榭脂 (予備発泡済ビー ) 予備発泡: 50倍率 100PHR b レゾール榭脂 (熱硬化性榭脂) 75PHR (予備発泡済ビーズに対し)  [0086] a Expanded polystyrene resin (pre-expanded bee) Pre-expand: 50X 100PHR b Resole resin (thermosetting resin) 75PHR (for pre-expanded beads)
c フヱノールスルホン酸 (硬化促進剤) 7. 5PHR (熱硬化性榭脂に対し) d 硼酸 (硼素系無機化合物) 30PHR (予備発泡済ビーズに対し)  c Phenolic sulfonic acid (curing accelerator) 7.5PHR (for thermosetting resin) d Boric acid (boron-based inorganic compound) 30PHR (for pre-foamed beads)
e 水酸ィ匕アルミニウム (難燃性無機化合物) 30PHR (予備発泡済ビーズに対し) f 赤リン (難燃性剤) 10PHR (硼素系無機化合物および難燃性無機化合物に対し )  e Hydroxyaluminum (flame retardant inorganic compound) 30PHR (for pre-foamed beads) f Red phosphorus (flame retardant) 10PHR (for boron-based inorganic compounds and flame retardant inorganic compounds)
[0087] そして、上記 aから fまでを混合して形成された発泡コーティングビーズを風乾してか ら粗解砕した。この後、 55°C± 3°Cの温度で 5分から 10分程度乾燥させて解砕して 力 ふるい器にて振動させて単粒子化させて表面が被覆層 3にて被覆された多数の 単粒子ビーズとする。  [0087] Then, the foam coated beads formed by mixing from a to f were air-dried and then roughly crushed. After that, it was dried for about 5 to 10 minutes at a temperature of 55 ° C ± 3 ° C, pulverized, vibrated with a force sieve and made into single particles, and the surface was coated with a coating layer 3. Single particle beads.
[0088] さらに、これら多数の単粒子ビーズを金型に充填してから、縦 230mmX横 230m m X厚さ 30mmの金型を使用し熱板を用いた熱板プレス法の場合は、 110°Cの温度 で 5分ほど加熱した後に 20分ほど冷却させて発泡スチロール製品 1を形成する。  [0088] Furthermore, after filling a large number of these single-particle beads into a mold, a hot plate press method using a mold having a length of 230 mm x width 230 mm x thickness 30 mm and a hot plate is 110 ° Heat at C temperature for about 5 minutes, then cool for about 20 minutes to form Styrofoam product 1.
[0089] このとき、この発泡スチロール製品 1の主たる物性は、密度が 76kgZm3で、圧縮強 度が 42NZcm2で、吸水率が 0. 31gZlOOcm2で、酸素指数が 38. 7であった。 実施例 2 At this time, the main physical properties of this expanded polystyrene product 1 were a density of 76 kgZm 3 , a compressive strength of 42 NZcm 2 , a water absorption of 0.31 gZlOOcm 2 and an oxygen index of 38.7. Example 2
[0090] また、上記一実施の形態の発泡スチロール製品 1を、以下の原料などを用いて実 験的に製作して同様の作用効果を示すことを確認した。  [0090] Further, it was confirmed that the expanded polystyrene product 1 of the above-mentioned embodiment was produced experimentally using the following raw materials and the like and exhibited the same action and effect.
[0091] a 発泡ポリスチレン榭脂 (予備発泡済ビー ) 予備発泡: 60倍率 100PHR b レゾール榭脂 (熱硬化性榭脂) 90PHR (予備発泡済ビーズに対し)  [0091] a Expanded polystyrene resin (pre-expanded bee) Pre-expand: 60X 100PHR b Resole resin (thermosetting resin) 90PHR (for pre-expanded beads)
c フヱノールスルホン酸 (硬化促進剤) 10PHR (熱硬化性榭脂に対し)  c Phenolic sulfonic acid (curing accelerator) 10PHR (for thermosetting resin)
d 硼酸 (硼素系無機化合物) 1PHR (予備発泡済ビーズに対し)  d Boric acid (boron-based inorganic compound) 1PHR (for pre-expanded beads)
e 水酸ィ匕アルミニウム (難燃性無機化合物) 59PHR (予備発泡済ビーズに対し) f 赤リン (難燃性剤) 15PHR (硼素系無機化合物および難燃性無機化合物に対し )  e Hydroxyaluminum (Flame retardant inorganic compound) 59PHR (For pre-foamed beads) f Red phosphorus (Flame retardant) 15PHR (For boron inorganic compounds and flame retardant inorganic compounds)
g メタノール 5PHR (熱硬化性榭脂に対し)  g Methanol 5PHR (for thermosetting resin)
h アクリル榭脂ェマルジヨン (2. 5PHRから 3PHR)溶液 2PHR (予備発泡済ビー ズに対し)  h Acrylic resin emulsion (2.5PHR to 3PHR) solution 2PHR (for pre-foamed beads)
[0092] そして、上記 bに cを入れて 1分ほど混合してから、 gを bの 5PHRほど入れて粘度を 落とて低粘度とする。次いで、この混合物に d、 eおよび fのそれぞれを順序良くかき混 ぜながら e、 dおよび fの順に入れてチョコレート状とする。  [0092] Then, c is added to b and mixed for about 1 minute, and then g is added about 5PHR of b to lower the viscosity to a low viscosity. Next, while mixing each of d, e and f in this mixture in order, the mixture is put in the order of e, d and f to form a chocolate.
[0093] さらに、このチョコレート状としたものを、攪拌機に入れられた aに混ぜながら投入し てから 2分から 3分程度攪拌した後に、最後に hを aの 20質量%ほど入れて 1分から 2 分程度攪拌してコーティングビーズとする。 [0093] Further, after the chocolate-like product was added to a in a stirrer while being mixed, the mixture was stirred for about 2 to 3 minutes, and finally, about 20% by mass of a was added to 1 to 2 Stir for about minutes to make coated beads.
[0094] この後、この攪拌機力 すぐにコーティングビーズを排出および風乾させながら粗 解砕させた後、さらに解砕して単粒子化させてから、最終的にふるい器にて振動させ て完全に単粒ィ匕させて多数の単粒子ビーズとする。 [0094] After this, the stirrer force was immediately crushed while discharging and air-drying the coated beads, and then further pulverized into single particles, and finally completely vibrated with a sieve. Single grains are made into a large number of single-particle beads.
[0095] そして、これら多数の単粒子ビーズを自動成形法である蒸気法にて成形する。具体 的に、これら多数の単粒子ビーズを高さ 300mm X幅 300 X厚さ 30mmの内寸法を 有する加熱金型内に充填してから、 0. 6kgZcm3の水蒸気で 40秒間ほど加熱した 後に 2分間ほど冷却して発泡スチロール製品 1を形成する。 [0095] Then, a large number of these single particle beads are formed by a vapor method which is an automatic forming method. Specifically, after filling a large number of these single-particle beads into a heating mold having an internal dimension of 300 mm in height, 300 mm in width, and 30 mm in thickness, after heating with 0.6 kgZcm 3 of water vapor for about 40 seconds, 2 Cool for about a minute to form Styrofoam product 1.
[0096] このとき、この発泡スチロール製品 1の主たる物性は、密度が 0. O47g/cm30lS A [0096] At this time, the main physical property of this expanded polystyrene product 1 is that the density is 0. O47g / cm 3 0lS A
9511)で、圧縮強度が 25N/cm2C[IS K 7220)で、吸水率が 0. 27gZl00cm2(iI S K 9511)で、熱伝導率 (非定常熱線法)が 0. 033WZm'Kで、酸素指数が 32([IS K 7201 A1号)であった。 9511), with a compressive strength of 25 N / cm 2 C (IS K 7220) and a water absorption of 0.27 gZl00 cm 2 (iI SK 9511), the thermal conductivity (unsteady hot wire method) was 0.033 WZm'K, and the oxygen index was 32 ([IS K 7201 A1).
実施例 3  Example 3
[0097] さらに、上記一実施の形態の発泡スチロール製品 1を、以下の原料などを用いて実 験的に製作して同様の作用効果を示すことを確認した。  [0097] Further, it was confirmed that the expanded polystyrene product 1 of the above-mentioned embodiment was produced experimentally using the following raw materials and the like and exhibited the same action and effect.
[0098] a 発泡ポリスチレン榭脂 (予備発泡済ビー ) 予備発泡: 80倍率 100PHR b レゾール榭脂 (熱硬化性榭脂) 110PHR (予備発泡済ビーズに対し) c フヱノールスルホン酸 (硬化促進剤) 10PHR (熱硬化性榭脂に対し)  [0098] a Expanded polystyrene resin (pre-expanded bee) Pre-expansion: 80X 100PHR b Resole resin (thermosetting resin) 110PHR (for pre-expanded beads) c Phenolic sulfonic acid (curing accelerator) ) 10PHR (for thermosetting resin)
d 硼酸 (硼素系無機化合物) 35PHR (予備発泡済ビーズの 35質量%) e 水酸ィ匕アルミニウム (難燃性無機化合物) 35PHR (予備発泡済ビーズの 35質量 %)  d Boric acid (boron-based inorganic compound) 35PHR (35% by mass of pre-expanded beads) e Hydroxyaluminum (flame retardant inorganic compound) 35PHR (35% by mass of pre-expanded beads)
f 赤リン (難燃性剤) 10PHR (硼素系無機化合物および難燃性無機化合物の 7質 量0 /0) f red phosphorus (flame retardant) 10 PHR (7 mass 0/0 of boron-based inorganic compound and flame-retardant inorganic compound)
g メタノール 5PHR (熱硬化性榭脂に対し)  g Methanol 5PHR (for thermosetting resin)
h 二トリルブタジエンラバーェマルジヨン 3質量%水溶液 20PHR (予備発泡済ビ ーズに対し)  h Nitrile butadiene rubber mardijon 3% by weight aqueous solution 20PHR (for pre-foamed beads)
[0099] そして、上記 bに cを入れて 1分ほど良く混合してから、 gを bの 5PHRほど入れて良 く混ぜて低粘度にする。次いで、この混合物に e、 dおよび fの順に順序良くかき混ぜ ながら投入してチョコレート状とする。  [0099] Then, c is added to b and mixed well for about 1 minute, and then g is added about 5PHR of b and mixed well to reduce viscosity. Next, the mixture is poured into the mixture in the order of e, d and f in this order to make a chocolate.
[0100] さらに、このチョコレート状としたものを、攪拌機に入れられて準備された aに混ぜな 力 投入してカゝら 2分から 3分程度攪拌した後、最後に hを入れて 1分力ゝら 2分程度攪 拌してコーティングビーズとして攪拌機力 排出させる。 [0100] Furthermore, this chocolate-like product was mixed in a prepared in a stirrer and mixed with power. After stirring for about 2 to 3 minutes, finally put h and power for 1 minute. Gently stir for about 2 minutes to discharge the stirrer power as coated beads.
[0101] この後、この攪拌機からの排出と同時にコーティングビーズをなるベく薄く広げて表 面積を大きくして風乾させ、一定のタック性を取りながら粗解砕させる。さらに、この粗 解砕させたコーティングビーズに 55°C± 3°C程度の温風を当てて 5分力 8分程度乾 燥させ、さらに解砕および単粒子化させて、最終的に振動機にて完全に単粒子化さ せて多数の単粒子ビーズとしたものを保管して使用する。 [0101] After that, simultaneously with the discharge from the stirrer, the coated beads are spread thinly to increase the surface area and air-dried, and then roughly crushed while maintaining a certain tackiness. Furthermore, hot air of about 55 ° C ± 3 ° C is applied to the roughly crushed coated beads and dried for about 8 minutes for 5 minutes, and then further crushed and made into single particles. Store and use a large number of single-particle beads that have been completely made into single particles.
[0102] そして、この保管した多数の単粒子ビーズを自動成形法にて蒸気成形する。具体 的には、これら多数の単粒子ビーズを、高さ 300mm X幅 300mm X厚さ 30mmの 内寸法を有する金型に充填させてから、 0. 6kgZcm3の蒸気圧力で 35秒間ほどカロ 熱した後に 2分間ほど冷却させて発泡スチロール製品 1を形成する。 [0102] Then, the stored single particle beads are subjected to vapor molding by an automatic molding method. Concrete Specifically, after filling a large number of single-particle beads into a mold having internal dimensions of 300 mm in height, 300 mm in width, and 30 mm in thickness, after heating for about 35 seconds at a steam pressure of 0.6 kgZcm 3 Cool for about 2 minutes to form Styrofoam product 1.
[0103] このとき、この発泡スチロール製品 1の主たる物性は、密度が 0. 04gZcm3で、圧 縮強度が 20NZcm2で、吸水率が 0. 3gZlOOcm2で、熱伝導率が 0. 032W/m- Kで、酸素指数が 30. 5であった。 [0103] At this time, the main physical properties of this expanded polystyrene product 1 are as follows: density is 0.04 gZcm 3 , compression strength is 20 NZcm 2 , water absorption is 0.3 gZlOOcm 2 , and thermal conductivity is 0.032 W / m- At K, the oxygen index was 30.5.
[0104] これらの結果、発泡スチロール製品 1の被覆層 3に含まれている難燃材は、ポリスチ レンのような多孔性発泡榭脂粒子 2を使用する場合に耐火温度および耐熱温度がそ れぞれが低いので、一般に赤リンの方が適している。これに対し、耐火性および耐熱 性が 100°C以上の多孔性発泡榭脂粒子 2を使用する場合には、この多孔性発泡榭 脂粒子 2の分解温度によって、ポリリン酸アンモ-ゥムが赤リンに比べ効果が大き!/ヽ ので適している。したがって、高倍率に発泡させた発泡ポリスチレン榭脂を使用する 場合には、一般に、赤リンがポリリン酸アンモ-ゥムに比べ低温でも効果が大きいの で適している。  [0104] As a result, the flame retardant contained in the coating layer 3 of the expanded polystyrene product 1 has a fireproof temperature and a heat resistant temperature when the porous foamed resin particles 2 such as polystyrene are used. Since this is low, red phosphorus is generally more suitable. On the other hand, when using porous foamed resin particles 2 having a fire resistance and heat resistance of 100 ° C or higher, the polyphosphate ammonia is red depending on the decomposition temperature of the porous foamed resin particles 2. Great effect compared to phosphorus! Therefore, when using expanded polystyrene resin foamed at a high magnification, red phosphorus is generally suitable because it is more effective at low temperatures than ammonium polyphosphate.
[0105] さらに、上述した各実施例にて成形された発泡スチロール製品 1は、従来のポリス チレンやポリウレタンなどの発泡成形体の用途において、耐火性、耐熱性および難 燃性を発揮できるほか、従来適用できな力つた用途にも適切に用いることができる。 さらに、成形金型によっては種々の形状の立体的な箱状物や模様入りの発泡成形 体などともできる。また、被覆層 3を構成する熱硬化性榭脂に添加した榭脂強化材ゃ 、粉粒状の無機材料、榭脂の組み合わせによって、新たな特性を付与できるとともに 、各種の用途に向けて適用できる。  [0105] Further, the expanded polystyrene product 1 molded in each of the above-described embodiments can exhibit fire resistance, heat resistance and flame retardancy in applications of conventional expanded molded articles such as polystyrene and polyurethane. It can also be used appropriately for powerful applications that cannot be applied. In addition, depending on the molding die, it can be a three-dimensional box-shaped product with various shapes or a foamed molded product with a pattern. In addition, a resin-enhanced material added to the thermosetting resin constituting the coating layer 3, a powdered inorganic material, and a combination of resin can give new characteristics and can be applied for various uses. .
[0106] 例えば、建材としては、断熱瓦などの屋根材ゃ、外断熱材、天囲または床などの断 熱材などが考えられる。また、各種用途向け軽量難燃性ボードとしては、パネルや建 具、パーテーシヨン、壁材などが考えられる。さらに、各種用途向け断熱構造材として は、冷暖房ダクトや保冷'保温設備の断熱材、マネキンなどが考えられる。  [0106] For example, as building materials, roof materials such as heat insulating tiles, outer heat insulating materials, heat insulation materials such as a ceiling or a floor, and the like are conceivable. Panels, furniture, partitions, wall materials, etc. can be considered as lightweight flame retardant boards for various applications. In addition, as heat insulation structural materials for various applications, heat insulation materials for air conditioning ducts, cold insulation and heat insulation equipment, mannequins, and the like are conceivable.
[0107] したがって、上述の発泡スチロール製品 1は、これら各種用途向けの発泡成形体と して、従来の発泡ポリスチレンやポリウレタンフォームなどの発泡成形体と同様の軽 量および断熱性を有しているので、同様に用いることができるとともに、耐熱性、難燃 性および形状維持性に優れており、火災などの災害対策の安全面に対応できる。さ らに、多孔性発泡榭脂粒子 2の表面を被覆する被覆層 3は、この被覆層 3を構成する 榭脂の種類を適当に選んだり、他の種類の榭脂ゃ無機物質あるいは有機物質をカロ えて混合などしたりすることによって、例えば柔軟性や強度、硬度などの性質をより好 適に付与できる。 [0107] Therefore, the above-mentioned expanded polystyrene product 1 has the same lightness and heat insulation properties as those of conventional foamed molded products such as foamed polystyrene and polyurethane foam as foamed molded products for various applications. Can be used similarly, heat resistance, flame retardant It is excellent in safety and shape maintenance, and can cope with the safety aspect of disaster countermeasures such as fire. Furthermore, the coating layer 3 that covers the surface of the porous foamed resin particles 2 can be selected by appropriately selecting the type of resin that constitutes the coating layer 3, or other types of resin can be inorganic or organic substances. For example, properties such as flexibility, strength, and hardness can be imparted more favorably by mixing and mixing.
[0108] また、今後様々な特性が要求されるが、要するに発泡ポリスチレン榭脂の最大の強 みは、高倍率の発泡率であるので、上述した製造方法では、ポリスチレンビーズと比 ベると、被覆層 3にて表面を被覆させるので、この被覆層 3にて表面が被覆された多 孔性発泡榭脂粒子 2—粒の密度が約 2倍の質量となってしまう。したがって、特別な 強度を必要とする以外は、 80倍力も 90倍程度の高倍率に発泡させた発泡ポリスチレ ンのビーズを使用する。  [0108] In addition, various properties will be required in the future. In short, the greatest strength of expanded polystyrene resin is the high expansion ratio, so in the above manufacturing method, compared with polystyrene beads, Since the surface is coated with the coating layer 3, the density of the 2-porous foamed resin particles whose surface is coated with the coating layer 3 becomes about twice the mass. Therefore, unless special strength is required, use polystyrene foam beads that are expanded to a high magnification of about 90 times as much as 80 times.
[0109] さらに、難燃性無機化合物としては、できる限り密度の小さい無機材を使用して、通 常のスチレン、ウレタン、フエノールフォームなどの密度に近くなるように軽量ィ匕を図る 。このとき、発泡ポリスチレン榭脂を高倍率に発泡させると加熱時間および冷却時間 が短縮され、製品密度が軽くなるので、材料費比率を低減できるとともに、熱伝導性 を向上できる。  [0109] Further, as the flame retardant inorganic compound, an inorganic material having a density as low as possible is used, and the weight is reduced so as to be close to the density of ordinary styrene, urethane, phenol foam, and the like. At this time, if the expanded polystyrene resin is foamed at a high magnification, the heating time and the cooling time are shortened and the product density is reduced, so that the material cost ratio can be reduced and the thermal conductivity can be improved.
[0110] また、上記各実施例にて製造される発泡スチロール製品 1では、いわゆる難燃 3級 を確保できるが、この発泡スチロール製品 1の難燃性をより向上させて、いわゆる難 燃 2級を確保させるために、この発泡スチロール製品 1の被覆層 3の混合剤として各 種のセラミックや、珪藻土、カーボンブラックなどを混合させることも考えられる。 実施例 4  [0110] In addition, in the expanded polystyrene product 1 manufactured in each of the above examples, the so-called flame retardant grade 3 can be ensured, but the flame retardant property of the expanded polystyrene product 1 is further improved to ensure the so-called flame retardant grade 2. Therefore, various ceramics, diatomaceous earth, carbon black, etc. may be mixed as a mixture of the coating layer 3 of the expanded polystyrene product 1. Example 4
[0111] さらに、上記一実施の形態の発泡スチロール製品 1を、以下の原料などを用いて実 験的に製作して同様の作用効果を示すことを確認した。  [0111] Further, it was confirmed that the expanded polystyrene product 1 of the above-mentioned embodiment was produced experimentally using the following raw materials and the like and exhibited the same action and effect.
[0112] a 発泡ポリスチレン榭脂 (予備発泡済ビー ) 予備発泡: 70倍率 100PHR b レゾール榭脂 (熱硬化性榭脂) 120PHR (予備発泡済ビーズに対し) c トルエンスルホン酸 (硬化促進剤) 9PHR (熱硬化性榭脂に対し)  [0112] a Expanded polystyrene resin (pre-expanded bee) Pre-expansion: 70 magnification 100PHR b Resole resin (thermosetting resin) 120PHR (for pre-expanded beads) c Toluenesulfonic acid (setting accelerator) 9PHR (For thermosetting resin)
d 水酸ィ匕アルミニウム (難燃性無機化合物) 80PHR (予備発泡済ビーズに対し) e 硼酸 (硼素系無機化合物) 10PHR (予備発泡済ビーズに対し) f 雲母 (難燃性無機材) 10PHR (予備発泡済ビーズに対し) d Hydroxyaluminum (flame retardant inorganic compound) 80PHR (for pre-expanded beads) e Boric acid (boron-based inorganic compound) 10PHR (for pre-expanded beads) f Mica (Flame retardant inorganic material) 10PHR (For pre-expanded beads)
g 赤リン (難燃性剤) 5PHR (予備発泡済ビーズに対し)  g Red phosphorus (flame retardant) 5PHR (for pre-expanded beads)
[0113] なお、発泡ポリスチレン榭脂の発泡倍率は、求める強度によって変化させる力 一 般に、この発泡ポリスチレン榭脂の発泡倍率としては、 60倍率以上 100倍率以下の ものを使用することが好ましい。また、レゾール榭脂は、一般に発泡倍率が大きくなる とベース材である発泡ポリスチレン榭脂の質量が小さくなるので、一般に、このレゾー ル榭脂としては、発泡ポリスチレン榭脂に対して 120PHR以上 150PHR以下使用す ると良い。 [0113] The expansion ratio of the expanded polystyrene resin is a force that varies depending on the strength to be obtained. Generally, the expanded ratio of the expanded polystyrene resin is preferably from 60 to 100. In addition, since resole resin generally has a smaller mass of the expanded polystyrene resin as the base material when the expansion ratio is increased, this resin resin is generally 120 PHR or more and 150 PHR or less with respect to the expanded polystyrene resin. It is good to use.
[0114] さらに、トルエンスルホン酸としては、レゾール榭脂に対して 6PHR以上 10PHR以 下の範囲で使用すると良い。また、水酸ィ匕アルミニウムは、コストおよび灼熱減量を考 慮する必要がある力 昇温時に水分を放出する点の他に、臭いや煙を吸着するなど の利点があるので、できるだけ多く使用すると良い。さらに、硼酸は、密度が小さいの で大量に使用したいが、成形時のスチームによって一部が溶け出してしまうおそれが あるから、環境上 1質量%以上 15質量%程度の範囲で使用すると良い。このため、 発泡スチロール製品 1を製造するにあたり、その冷却水を河〗 11に直接排水するような 工場設備の立地条件の場合には、硼酸の使用比率をできる限り 1%程度まで下げる ほうがよい。  [0114] Further, as toluenesulfonic acid, it is preferable to use it in the range of 6 PHR or more and 10 PHR or less with respect to resol resin. In addition to the ability to release water at elevated temperatures as well as the ability to absorb odors and smoke, it is necessary to use it as much as possible. good. Furthermore, since boric acid has a low density, it is desirable to use it in large quantities. However, it may be partially dissolved by steam during molding. For this reason, when manufacturing Styrofoam products 1, it is better to reduce the use ratio of boric acid to about 1% as much as possible under the conditions of factory facilities where the cooling water is drained directly to river 11.
[0115] また、雲母は、難燃性無機粘度調整材として用いられ、一般に、発泡ポリスチレン 榭脂に対し 5PHR以上 50PHR以下の範囲で使用すると良い。特に、この実施例 4 のような発泡ポリスチレン榭脂に対してレゾール榭脂を無機難燃系紛体 (Filler)として 多量に使用し、振動による乾燥の工程をへて乾燥させた場合には、その後の工程で 、微細な粉の飛散や脱落が生じ、環境衛生面上好ましくない。これに対し、発泡ポリ スチレン榭脂に雲母を添加することによって、この発泡ポリスチレン榭脂の粘度を調 整できるので、乾燥時に微細な粉が飛散しなくなるとともに他の無機系添加剤が脱落 しなくなるから、環境衛生面上好ましくできる。さらに、発泡ポリスチレン榭脂に添加し た他の難燃性剤が脱落しなくなるので、発泡スチロール製品 1の難燃性をさらに向上 できる。同時に、発泡ポリスチレン榭脂に雲母を添加することによって、この発泡ポリ スチレン榭脂にバインダとして添加したレゾール榭脂に多少の粘りが出るから、発泡 スチロール製品 1の強度をより向上できるとともに、この発泡スチロール製品 1の燃焼 時に亀裂が発生するという問題をある程度防止できる。 [0115] In addition, mica is used as a flame retardant inorganic viscosity modifier, and generally used in a range of 5 PHR to 50 PHR with respect to expanded polystyrene resin. In particular, when a large amount of resole resin is used as an inorganic flame retardant powder (Filler) with respect to the expanded polystyrene resin as in Example 4, and then dried by a vibration drying process, In this process, fine powder is scattered and dropped off, which is not preferable in terms of environmental hygiene. In contrast, the viscosity of this expanded polystyrene resin can be adjusted by adding mica to the expanded polystyrene resin, so that fine powder will not scatter during drying and other inorganic additives will not fall off. From the viewpoint of environmental hygiene, it is preferable. Furthermore, since the other flame retardant added to the expanded polystyrene resin does not fall off, the flame retardancy of the expanded polystyrene product 1 can be further improved. At the same time, by adding mica to the expanded polystyrene resin, the resole resin added as a binder to the expanded polystyrene resin becomes somewhat sticky. The strength of the polystyrene product 1 can be further improved, and the problem of cracks occurring when the foamed polystyrene product 1 is burned can be prevented to some extent.
[0116] さらに、赤リンは、一般に、非常に高価な材料であるので、できる限り発泡ポリスチレ ン榭脂に対して 5PHR以上 10PHR以下程度、好ましく 7. 5PHR以下程度に抑制し て使用すると良い。  [0116] Furthermore, since red phosphorus is generally a very expensive material, it should be used as much as possible with respect to the expanded polystyrene resin at a level of 5 PHR to 10 PHR, preferably 7.5 PHR or less.
[0117] 以上の結果、密度が 0. 075で、融着率が 100%の発泡スチロール製品 1を製造で きる。そして、燃焼テストとして図示しない携帯ボンべを全開させて炎の長さを 25cm 以上 30cm以下程度とした状態で、この携帯ボンべを発泡スチロール製品 1から 10 mm離れた位置に接近させて炎を 9分間当てて燃焼させたところ、この発泡スチロー ル製品 1に炎を当てた部分では 4秒間で残炎が消え、炭化した部分の深さが 49mm 程度であった。  [0117] As a result of the above, a polystyrene foam product 1 having a density of 0.075 and a fusion rate of 100% can be produced. Then, as a combustion test, with the portable cylinder (not shown) fully opened to a flame length of about 25 cm to 30 cm, bring this portable cylinder close to a position 10 mm away from the polystyrene foam product 1 to create a flame. When fired for a minute, the after-flame disappeared in 4 seconds in the part where the foamed polystyrene product 1 was exposed to flame, and the depth of the carbonized part was about 49 mm.
実施例 5  Example 5
[0118] さらに、上記一実施の形態の発泡スチロール製品 1を、以下の原料などを用いて実 験的に製作して同様の作用効果を示すことを確認した。  [0118] Further, it was confirmed that the expanded polystyrene product 1 of the above-described embodiment was produced experimentally using the following raw materials and the like and exhibited the same action and effect.
[0119] a 発泡ポリスチレン榭脂 (予備発泡済ビー ) 予備発泡: 90倍率 100PHR b レゾール榭脂 (熱硬化性榭脂) 150PHR (予備発泡済ビーズに対し) c トルエンスルホン酸 (硬化促進剤) 8. 5PHR (硬化性榭脂に対し)  [0119] a Expanded polystyrene resin (pre-expanded bee) Pre-expansion: 90X 100PHR b Resole resin (thermosetting resin) 150PHR (for pre-expanded beads) c Toluenesulfonic acid (curing accelerator) 8 . 5PHR (for curable resin)
d 水酸ィ匕アルミニウム (難燃性無機化合物) 150PHR (予備発泡済ビーズに対し) e 硼酸 (硼素系無機化合物) 5PHR (予備発泡済ビーズに対し)  d Aluminum hydroxide (a flame retardant inorganic compound) 150PHR (for pre-expanded beads) e Boric acid (boron-based inorganic compound) 5PHR (for pre-expanded beads)
f 雲母 (難燃性無機材) 20PHR (予備発泡済ビーズに対し)  f Mica (Flame retardant inorganic material) 20PHR (For pre-foamed beads)
g 赤リン (難燃性剤) 5PHR (予備発泡済ビーズに対し)  g Red phosphorus (flame retardant) 5PHR (for pre-expanded beads)
[0120] 以上の結果、図 4(a)および図 4(b)に示すように、密度が 0. 0812で、融着率が 100 %の発泡スチロール製品 1を製造できる。そして、図 5(a)ないし図 5(c)に示すように、 燃焼テストとして携帯ボンべを全開させて炎の長さを 25cm以上 30cm以下程度とし た状態で、この携帯ボンべを発泡スチロール製品 1から 25mm離れた位置に接近さ せて炎を 10分間当てて燃焼させたところ、図 6(a)ないし図 6(c)に示すように、この発 泡スチロール製品 1に炎を当てた部分では 0秒間、すなわち 9分間の時間が経過した 時点で携帯ボンべを取り除いたとき即残炎が消えた。さらに、図 6(d)に示すように、こ の燃焼後の発泡スチロール製品 1の炭化した部分の深さが 42mm程度であった。 As a result of the above, as shown in FIG. 4 (a) and FIG. 4 (b), a polystyrene foam product 1 having a density of 0.0812 and a fusion rate of 100% can be manufactured. Then, as shown in Fig. 5 (a) to Fig. 5 (c), in the state where the portable cylinder was fully opened as a combustion test and the flame length was about 25 cm to 30 cm, the portable cylinder was When approaching a position 25 mm away from 1 and igniting the flame for 10 minutes and burning it, as shown in Fig. 6 (a) to 6 (c), this foamed polystyrene product 1 was exposed to flame. Then, after 0 seconds, that is, when 9 minutes had passed, the afterflame immediately disappeared when the portable cylinder was removed. Furthermore, as shown in Fig. 6 (d), The depth of the carbonized part of the expanded polystyrene product 1 after burning was about 42 mm.
[0121] [表 1][0121] [Table 1]
Figure imgf000029_0001
Figure imgf000029_0001
[0122] [表 2] [0122] [Table 2]
試 験 結 果 Test results
総 発 熱 量(THR) 10. 24 M J /m2 Total heat generation (THR) 10. 24 MJ / m 2
最大発熱速度(HRR) 52. 47 kW/m2 at 24. 80 sec 平均発熱速度(HRR) 1 7. 32 kW/m2 Maximum heating rate (HRR) 52. 47 kW / m 2 at 24. 80 sec Average heating rate (HRR) 1 7. 32 kW / m 2
平均発熱速度 T 60 32. 76 kW/m2 Average heat generation rate T 60 32. 76 kW / m 2
平均発熱速度 T 1 80 21. 60 kW/m2 Average heat generation rate T 1 80 21.60 kW / m 2
平均発熱速度 T 300 20. 92 kW/m2 Average heat generation rate T 300 20. 92 kW / m 2
最 終 質 量 23. 80 g  Final weight 23.80 g
質 重 減 少 1 1. 40 g  Weight loss 1 1. 40 g
着 火 時 間 10. 1 sec  Ignition time 10.1 sec
燃 焼 時 間 589. 9 sec  Burning time 589. 9 sec
200 k超過継続時間 0. 0 sec  Over 200 k duration 0.0 sec
200 k超過総時間 0. 0 sec  Total time exceeding 200 k 0.0 sec
平均燃焼有効発熱量(H O C ) 7. 94 M J /k g  Average combustion effective heating value (H O C) 7. 94 M J / k g
平均質量減少率(ML R) 2. 106 g/ s · m2 Average mass loss rate (ML R) 2. 106 g / s · m 2
平均比減光面積(S E A) 729. 1 5 m 2/k g Average specific attenuation area (SEA) 729. 1 5 m 2 / kg
[0123] よって、表 1に示す試験条件で表 2に示すように、発泡スチロール製品 1の 10分間 の加熱によるコーンカロリメータ試験の総発熱量が 10.24MjZm2となった。したが つて、コーンカロリメータ試験にて規格されている準不燃材料、すなわち 10分間の加 熱時間で総発熱量が 8MjZm2にほぼ等しくなり、 lOOgZm2以下で、最高発熱速度 が 10秒間以上継続して 200kWZm2を越えな 、発泡スチロール製品 1にできた。 [0123] Therefore, as shown in Table 2 in the test conditions shown in Table 1, the total calorific value of the cone calorimeter test by heating for 10 minutes styrofoam products 1 became 10.24MjZm 2. Therefore, the quasi-incombustible material specified in the corn calorimeter test, that is, the total calorific value is almost equal to 8MjZm 2 with a heating time of 10 minutes, the maximum heat generation rate continues for 10 seconds or more at lOOgZm 2 or less. Do not exceed the 200kWZm 2 Te, it was able to Styrofoam products 1.
[0124] さらに、発泡スチロール製品 1中の水酸化アルミニウムの添加量を予備発泡済ビー ズに対して 170PHRとし、硼酸の添力卩量を予備発泡済ビーズに対して 15PHRとし、 赤りんの添加量を予備発泡済ビーズに対して 7.5PHRに変更して作成した発泡ス チロール製品 1について、表 3に示すように、 10分間の加熱によるコーンカロリメータ 試験をしたところ、表 4に示すように、総発熱量が 8.84MjZm2となった。 [0124] Furthermore, the amount of aluminum hydroxide in the expanded polystyrene product 1 is 170 PHR for pre-expanded beads, the amount of boric acid added is 15 PHR for pre-expanded beads, and the amount of red phosphorus added As shown in Table 3, a corn calorimeter test was conducted on the expanded polystyrene product 1 made by changing the pre-expanded beads to 7.5PHR as shown in Table 3. calorific value became 8.84MjZm 2.
Figure imgf000031_0001
Figure imgf000031_0001
Figure imgf000031_0002
Figure imgf000031_0002
[ε挲] [esTO] /ェ:) d 63 S£t 0/900Z OAV 試 験 結 果 [ε 挲] [esTO] / e :) d 63 S £ t 0 / 900Z OAV Test results
総 発 熱 量(THR) 8. 84 M J /m2 Total heat generation (THR) 8. 84 MJ / m 2
最大発熱速度(HRR) 32. 1 2 k W/m 2 at 26. 80 sec 平均発熱速度(HRR) 1 5. 1 6 kW/m2 Maximum heating rate (HRR) 32. 1 2 k W / m 2 at 26. 80 sec Average heating rate (HRR) 1 5. 1 6 kW / m 2
平均発熱速度 T 60 20. 68 kW/m2 Average heat generation rate T 60 20. 68 kW / m 2
平均発熱速度 T 1 80 1 6. 1 0 k W/m2 Average heat generation rate T 1 80 1 6. 1 0 k W / m 2
平均発熱速度 T 300 1 5. 53 kW/m2 Average heat generation rate T 300 1 5. 53 kW / m 2
最 終 質 重 23. 08 g  Final weight 23.08 g
質 量 減 少 1 3. 32 g  Weight reduction 1 3.32 g
着 火 時 間 25. 3 sec  Ignition time 25. 3 sec
燃 焼 時 間 574. 7 sec  Burning time 574. 7 sec
200 k超過継続時間 0. 0 sec  Over 200 k duration 0.0 sec
200 k超過総時間 0. 0 sec  Total time exceeding 200 k 0.0 sec
平均燃焼有効発熱量(HOC) 5. 8 7 M J /k g  Average combustion effective heating value (HOC) 5. 8 7 M J / k g
平均質量減少率 (MLR) 2. 382 g/ s · m2 Average mass loss (MLR) 2.382 g / sm 2
平均比減光面積(SEA) 2. 1 6 mVk g  Average specific attenuation area (SEA) 2. 1 6 mVk g
[0127] これらの結果、上記発泡スチロール製品 1は、 10分間の加熱時間で総発熱量が 8 MjZm2にさらに等しくなり、 lOOgZm2以下で、最高発熱速度が 10秒間以上継続し て 200kWZm2を越えな!/、発泡スチロール製品 1にできた。 [0127] As a result, the above-mentioned expanded polystyrene product 1 has a total calorific value further equal to 8 MjZm 2 after 10 minutes of heating time, and is less than lOOgZm 2 and the maximum heat generation rate continues for more than 10 seconds and exceeds 200 kWZm 2 . Na! /, Styrofoam product 1
[0128] さらに、不燃系発泡スチレンインデックスボードである発泡スチロール製品 1の表面 に図示しないアルミニウム箔を積層させることによって、表 5および表 6に示すように、 200gZm2以下で、 20分間の加熱によるコーンカロリメータ試験の総発熱量を 8MJ Zm2以下に十分にできるから、準不燃材として用いられ、かつアルミ箔ゃ、 5,6mm 程度の厚さを有する珪酸カルシウム板、 4, 5mm程度の厚さに積層させたモルタル などのその他の素材にて複合ィ匕を図ることによって不燃材料として用いることができ る。 [0128] Further, by stacking an aluminum foil (not shown) on the surface of the expanded polystyrene product 1 which is a non-combustible expanded styrene index board, as shown in Table 5 and Table 6, the cone is heated for 20 minutes at 200 gZm 2 or less. since the total heating value of the calorimeter test 8 MJ Zm 2 it can be sufficiently below is used as a quasi-noncombustible, and aluminum foil Ya, calcium silicate plate having a thickness of about 5,6Mm, a thickness of about 4, 5 mm It can be used as a non-combustible material by making a composite with other materials such as laminated mortar.
[9挲] [οετο] [9 挲] [οετο]
Figure imgf000033_0001
Figure imgf000033_0001
[S挲] [62 TO] /ェ:) d S£t 0/900Z OAV 試 験 結 果 [S 挲] [62 TO] / e :) d S £ t 0 / 900Z OAV Test results
総 発 熱 量(THR) 1. 7 1 M J /m2 Total heat generation (THR) 1. 7 1 MJ / m 2
最大発熱速度(HRR) 2. 81 kW/m2 at 24. 80 sec 平均発熱速度(HRR) 1. 44 kW/m2 Maximum heating rate (HRR) 2. 81 kW / m 2 at 24. 80 sec Average heating rate (HRR) 1. 44 kW / m 2
平均発熱速度 T 60 0. 42 kW/m2 Average heat generation rate T 60 0.42 kW / m 2
平均発熱速度 T 180 0. 97 k W/m2 Average heat generation rate T 180 0. 97 k W / m 2
平均発熱速度 T 300 1. 33 kW/m2 Average heat generation rate T 300 1. 33 kW / m 2
最 終 質 量 33. 02 g  Final mass 33.02 g
質 量 減 少 4. 68 g  Weight loss 4.68 g
着 火 時 閒  Fire at fire
燃 焼 時 間 0. 0 sec  Burning time 0. 0 sec
200 k超過継続時間 0. 0 sec  Over 200 k duration 0.0 sec
200 k超過総時間 0. 0 sec  Total time exceeding 200 k 0.0 sec
平均燃焼有効発熱量(H O C ) 3. 22 M j/k g  Average combustion effective heating value (H O C) 3.22 M j / k g
平均質量減少率(ML R) 0. 464 g/ s · m2 Average mass loss rate (ML R) 0.464 g / s · m 2
平均比減光面積(S E A) 21 7. 28 mVk g  Average specific attenuation area (S E A) 21 7. 28 mVk g
[0131] すなわち、表 6に示すように、発泡スチロール製品 1の表面にアルミニウム箔を積層 させたことによって、 20分間の加熱によるコーンカロリメータ試験での総発熱量が 1. 71MjZm2となった。よって、 20分間の加熱によるコーンカロリメータ試験での総発 熱量が 8MjZm2以下の場合に不燃材となるから、上述のようにアルミニウム箔の使 用によって、 20分間の加熱によるコーンカロリメータ試験での不燃材を優々とクリア一 している。 [0131] That is, as shown in Table 6, by the aluminum foil was laminated on the surface of the styrofoam products 1, the total amount of heat generated in the cone calorimeter test by heating for 20 minutes became 1. 71MjZm 2. Therefore, when the total calorific value in the corn calorimeter test by heating for 20 minutes is 8MjZm 2 or less, it becomes a non-combustible material. As described above, by using aluminum foil, the non-flammability in the corn calorimeter test by heating for 20 minutes is used. The material is gently cleared.
実施例 6  Example 6
[0132] さらに、上記実施例 5の発泡スチロール製品 1の原料の配合比を以下のように改良 することによって、ついに待望の素材単体にてコーンカロリメータ試験による準不燃 材料の試験値に対して余裕ある 6.63MjZm2をクリアできた。 [0133] a 発泡ポリスチレン榭脂 (予備発泡済ビー ) 予備発泡: 90倍率 100PHR b レゾール樹脂 (熱硬化性榭脂) 225PHR (予備発泡済ビーズに対し) c トルエンスルホン酸 (硬化促進剤) 8. 5PHR (硬化性榭脂に対し) [0132] Furthermore, by improving the blending ratio of the raw materials of the polystyrene foam product 1 of Example 5 as follows, the long-awaited material alone finally has room for the test value of the semi-incombustible material by the corn calorimeter test. 6.63MjZm 2 was cleared. [0133] a Expanded polystyrene resin (pre-expanded bee) Pre-expand: 90X 100PHR b Resole resin (thermosetting resin) 225PHR (for pre-expanded beads) c Toluenesulfonic acid (curing accelerator) 8. 5PHR (for curable resin)
d 水酸ィ匕アルミニウム (難燃性無機化合物) 225PHR (予備発泡済ビーズに対し) e 硼酸 (硼素系無機化合物) 10PHR (予備発泡済ビーズに対し)  d Aluminum hydroxide 水 aluminum (flame retardant inorganic compound) 225PHR (for pre-expanded beads) e Boric acid (boron-based inorganic compound) 10PHR (for pre-expanded beads)
f 雲母 (難燃性無機材) 30PHR (予備発泡済ビーズに対し)  f Mica (Flame retardant inorganic material) 30PHR (For pre-expanded beads)
g 赤リン (難燃性剤) 10PHR (予備発泡済ビーズに対し)  g Red phosphorus (flame retardant) 10PHR (for pre-expanded beads)
[0134] そして、上記原料の配合比にて作成した発泡スチロール製品 1について、表 7に示 すように、 10分間の加熱によるコーンカロリメータ試験をしたところ、表 8に示すように 、総発熱量が 6. 63MjZm2となった。 [0134] And, as shown in Table 7, a corn calorimeter test by heating for 10 minutes was conducted on the expanded polystyrene product 1 prepared with the above-mentioned mixing ratio of the raw materials. As shown in Table 8, the total calorific value was as follows. 6. became 63MjZm 2.
[0135] [表 7]  [0135] [Table 7]
Figure imgf000035_0001
Figure imgf000035_0001
[0136] [表 8] 試 験 結 果 [0136] [Table 8] Test results
総 発 熱 量(THR) 6. 63 M J /m2 Total heat generation (THR) 6. 63 MJ / m 2
最大発熱速度(HRR) 1 5. 88 kW/m2 at460. 70 sec 平均発熱速度(HRR) 1 1. 05 kW/m2 Maximum heating rate (HRR) 1 5. 88 kW / m 2 at460. 70 sec Average heating rate (HRR) 1 1. 05 kW / m 2
平均発熱速度 T 60 2. 42 kW/m2 Average heat generation rate T 60 2. 42 kW / m 2
平均発熱速度 T 180 5. 73 kW/m2 Average heat generation rate T 180 5. 73 kW / m 2
平均発熱速度 T 300 7. 78 kW/m2 Average heat generation rate T 300 7. 78 kW / m 2
最 終 質 量 38. 04 g  Final weight 38.04 g
質 量 減 少 1 3. 56 g  Weight reduction 1 3. 56 g
着 火 時 間  Ignition time
燃 焼 時 間 0. 0 sec  Burning time 0. 0 sec
200 k超過継続時間 0. 0 sec  Over 200 k duration 0.0 sec
200 k超過総時間 0. 0 sec  Total time exceeding 200 k 0.0 sec
平均燃焼有効発熱量 (HOC) 4. 33 M j/k g  Average combustion effective heating value (HOC) 4.33 M j / k g
平均質量減少率(MLR) 2. 467 g/ s · m2 Average mass loss rate (MLR) 2. 467 g / s · m 2
平均比減光面積(SEA) 347. 53 m k g  Average specific attenuation area (SEA) 347. 53 m k g
[0137] これらの結果、上記発泡スチロール製品 1は、 10分間の加熱時間で総発熱量が 8 MjZm2以下となり、図 7に示すように、 lOOgZm2以下で、最高発熱速度が 10秒間 以上継続して 200kW/m2を越えなかった。したがって、この発泡スチロール製品 1 を、有機質の発泡断熱材として火炎に強く煙やガスがほとんど発生せず水分を吸わ ない形状維持が可能な、準不燃対応の 10分間コーンカロリメータ試験での 8MjZm 2の条件を完全に満たした準不燃材料として用いることができる。 [0137] As a result, the above-mentioned expanded polystyrene product 1 has a total calorific value of 8 MjZm 2 or less in a heating time of 10 minutes, and as shown in Fig. 7, the maximum heat generation rate continues for 10 seconds or more at lOOgZm 2 or less. did not exceed 200kW / m 2 Te. Therefore, this Styrofoam product 1 can be used as an organic foam insulation material, and it can maintain a shape that is resistant to flames, generates almost no smoke or gas, and does not absorb moisture, and is a condition of 8MjZm 2 in a 10-minute cone calorimeter test for semi-incombustibility. It can be used as a semi-incombustible material that completely satisfies
[0138] すなわち、スチロール発泡およびその他の有機系フォームにて構成された断熱材と して、素材単体でのコーンカロリメータ試験による 10分の準不燃試験で準不燃材とな るものは、有機断熱材系で他にないので、上記発泡スチロール製品 1は、大量生産 が可能で安価でかつ準不燃材料として用いることができることから、本発明は、驚異 的かつ画期的で、世の中に大いに貢献できるものと確信して 、る。 [0138] That is, as a heat insulating material composed of styrene foam and other organic foam, a material that becomes a semi-incombustible material in a 10-minute semi-incombustible test by a cone calorimeter test with a single material is an organic heat insulating material. Since there is no other material system, the above expanded polystyrene product 1 can be mass-produced, is inexpensive, and can be used as a semi-incombustible material. I am convinced that it is both innovative and innovative and can contribute greatly to the world.
[0139] また、図 8に示すように、 910mm(3尺) X 1820mm(6尺) X 600mm (厚さ)あるいは 910mm(3尺) X 3640mm(12尺) X 600mm (厚さ)の大きさの発泡スチロール製品 1 である成形板を、 4分毎のサイクルで成形できる。さらに、図 9に示すように、この成形 板を、厚さ方向に沿って一定の間隔で一度にカッティングして厚み割りすることによつ て、一定の厚さの発泡スチロール製品 1を同時に複数枚生産できるから、この発泡ス チロール製品 1の生産の大型化ができるとともに、生産性を大幅に向上できる。 産業上の利用可能性  [0139] As shown in Fig. 8, the size is 910mm (3 scales) X 1820mm (6 scales) X 600mm (thickness) or 910mm (3 scales) X 3640mm (12 scales) X 600mm (thickness) Molded sheets of Styrofoam products 1 can be molded in a cycle of every 4 minutes. Furthermore, as shown in FIG. 9, by cutting this molded plate at a constant interval along the thickness direction at a time and dividing the thickness, a plurality of polystyrene foam products 1 having a constant thickness are simultaneously obtained. Since it can be produced, the production of this expanded polystyrene product 1 can be increased, and productivity can be greatly improved. Industrial applicability
[0140] 以上のように、本発明の発泡体の製造方法は、例えば建築材料などに使用される 発泡体などの製造方法として広く利用される。 [0140] As described above, the method for producing a foam of the present invention is widely used as a method for producing a foam used for, for example, a building material.

Claims

請求の範囲 The scope of the claims
[1] 発泡によって微小な中空体を形成できる多数の粒子を予備発泡して多数の予備発 泡済粒子とし、  [1] A number of pre-foamed particles are obtained by pre-foaming a large number of particles that can form a micro hollow body by foaming.
これら多数の予備発泡済粒子に難燃性無機材および熱硬化性榭脂を混合してか ら乾燥および解砕して、これら多数の予備発泡済粒子それぞれの表面に前記難燃 性無機材および熱硬化性榭脂を含む混合層を形成し、  These many pre-foamed particles are mixed with a flame-retardant inorganic material and a thermosetting resin, and then dried and crushed. Forming a mixed layer containing thermosetting resin;
この混合層が表面に形成された多数の予備発泡済粒子を金型に充填し、 この金型に充填され前記混合層が表面に形成された多数の予備発泡済粒子に水 蒸気を当てて本発泡させて所定の形状の発泡体を形成する  A large number of pre-foamed particles formed on the surface of the mixed layer are filled in a mold, and water vapor is applied to the large number of pre-foamed particles filled in the mold and formed on the surface of the mixed layer. Foam to form a foam with a predetermined shape
ことを特徴とする発泡体の製造方法。  A method for producing a foam characterized by the above.
[2] 発泡によって微小な中空体を形成できる多数の粒子は、ポリスチレン榭脂粒子で、 難燃性無機材は、水酸ィ匕アルミニウムおよび硼酸で、  [2] A large number of particles that can form fine hollow bodies by foaming are polystyrene resin particles, and the flame-retardant inorganic materials are hydroxyaluminum and boric acid.
熱硬化性榭脂は、フエノール榭脂および石炭酸榭脂の少なくともいずれか一方で ある  The thermosetting resin is at least one of phenol resin and carboxylic acid resin
ことを特徴とした請求項 1記載の発泡体の製造方法。  The method for producing a foam according to claim 1, wherein:
[3] 多数の予備発泡済粒子に、難燃性無機材および熱硬化性榭脂とともに難燃性剤 を混合してカゝら乾燥および解砕して、これら多数の予備発泡済粒子それぞれの表面 に前記難燃性無機材、熱硬化性榭脂および難燃性剤のそれぞれを含む混合層を形 成する [3] A large number of pre-expanded particles are mixed with a flame-retardant inorganic material and a thermosetting resin, followed by drying and crushing. A mixed layer containing each of the flame retardant inorganic material, thermosetting resin and flame retardant is formed on the surface.
ことを特徴とした請求項 1または 2記載の発泡体の製造方法。  The method for producing a foam according to claim 1 or 2, wherein:
[4] 難燃性剤は、赤リンおよびポリリン酸アンモ-ゥムの少なくともいずれかである [4] The flame retardant is at least one of red phosphorus and ammonium polyphosphate
ことを特徴とした請求項 3記載の発泡体の製造方法。  The method for producing a foam according to claim 3, wherein:
[5] 難燃性無機材は、難燃性無機粘度調整材であって、 [5] The flame retardant inorganic material is a flame retardant inorganic viscosity modifier,
この難燃性無機調整材として雲母を用いる  Mica is used as this flame retardant inorganic conditioner
ことを特徴とした請求項 1な 、し 4 、ずれか記載の発泡体の製造方法。  The method for producing a foam according to any one of claims 1 to 4, wherein the foam is any of the above.
PCT/JP2005/018642 2004-10-22 2005-10-07 Process for producing foam WO2006043435A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006542328A JP3950980B2 (en) 2004-10-22 2005-10-07 Method for producing foam

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004308084 2004-10-22
JP2004-308084 2004-10-22

Publications (1)

Publication Number Publication Date
WO2006043435A1 true WO2006043435A1 (en) 2006-04-27

Family

ID=36202852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/018642 WO2006043435A1 (en) 2004-10-22 2005-10-07 Process for producing foam

Country Status (4)

Country Link
JP (1) JP3950980B2 (en)
KR (1) KR100846048B1 (en)
CN (1) CN101068864A (en)
WO (1) WO2006043435A1 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008120984A (en) * 2006-11-09 2008-05-29 Eiwa Matekkusu:Kk Coating beads for flame interrupting thermal insulation
JP2008267690A (en) * 2007-04-20 2008-11-06 Kuraray Plast Co Ltd Fireproof or fire-retardant heat insulating resin duct
JP2009502563A (en) * 2005-07-26 2009-01-29 エルテセー・ベー・ベー Method for producing flame retardant composite material and composite material obtained thereby
WO2010128797A2 (en) * 2009-05-04 2010-11-11 Kim Jae-Cheon Expandable, incombustible polystyrene particles and preparation method thereof, and styropor made from the particles
EP2158258A4 (en) * 2007-05-30 2011-10-05 Jae-Cheon Kim Expandable polystyrene bead with superior adiabatic and flameproof effect and method for producing the same
JP2012111826A (en) * 2010-11-24 2012-06-14 Inoac Corp Fire-retarding flexible polyurethane foam, and method for producing the same
JP2016516883A (en) * 2013-05-07 2016-06-09 エクスフラム ピーティーワイ リミテッドXflam Pty Ltd Method for producing foam composite
JP2017048327A (en) * 2015-09-03 2017-03-09 三和化成工業株式会社 Material for vibration absorption structure
JP2017048326A (en) * 2015-09-03 2017-03-09 三和化成工業株式会社 Material for structure
JP2018199741A (en) * 2017-05-25 2018-12-20 植田 勲 Coated expandable resin bead, and manufacturing method therefor
WO2019093414A1 (en) * 2017-11-08 2019-05-16 株式会社ジェイエスピー Composite particles, composite particle cured product, composite particle in-mold molded article, laminate, composite, and method for producing composite particles
JP2019085517A (en) * 2017-11-08 2019-06-06 株式会社ジェイエスピー Composite particle, composite particle cured product, and composite particle in-molded body and method for producing composite particle
JP2019181749A (en) * 2018-04-05 2019-10-24 株式会社ジェイエスピー Laminate and process for producing the same, package, and composite
WO2020080148A1 (en) * 2018-10-16 2020-04-23 旭有機材株式会社 Semi-noncombustible phenolic-resin composition and semi-noncombustible material obtained therefrom
US10676559B2 (en) 2013-01-20 2020-06-09 Sekisui Chemical Co., Ltd. Flame-retardant urethane resin composition
CN112739769A (en) * 2018-10-16 2021-04-30 旭有机材株式会社 Flame-retardant phenolic resin composition and flame-retardant material obtained from same
CN113354392A (en) * 2021-07-14 2021-09-07 青岛惠城环保科技股份有限公司 Building external wall heat-insulation composite material and preparation method thereof
JP2021138932A (en) * 2020-03-09 2021-09-16 ウシオマテックス株式会社 Coated foamable resin bead, and foamed molding including the same
CN113861493A (en) * 2021-09-24 2021-12-31 江阴市昌佳泡塑有限公司 Flame-retardant thermosetting EPS foam board and preparation method thereof
US20220227103A1 (en) * 2019-05-29 2022-07-21 Transversality Stone surface covering
WO2022230956A1 (en) 2021-04-30 2022-11-03 株式会社カネカ Fire-resistant article

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101245160B (en) * 2008-03-11 2010-08-18 四川大学 Fire retardant thermoplastic resin composition and manufacture method thereof
KR101387113B1 (en) * 2012-04-25 2014-04-21 주식회사 위저드 Manufacturing method of artificial skin and artificial skin for animatronics
CN103374200B (en) * 2012-04-26 2016-08-03 合肥杰事杰新材料股份有限公司 A kind of polymeric composite foam, preparation method and applications
CN102863706A (en) * 2012-08-28 2013-01-09 赵毅 Polystyrene/thermosetting resin syntactic foam and method for preparing same
KR101693688B1 (en) * 2015-11-12 2017-01-16 주식회사 투인텍 Multipurpose fire door
KR102032219B1 (en) * 2019-04-02 2019-10-18 주식회사 대광판넬 Apparatus for producing frame retardant board and apparatus for producing sandwich panel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02272040A (en) * 1989-04-13 1990-11-06 Tajima Kagaku Kogyo Kk Production of expansion molded body
JPH03167237A (en) * 1989-11-28 1991-07-19 Nippon Kasei Kk Production of flame-retardant polystyrene resin foam
JPH11349725A (en) * 1998-06-12 1999-12-21 Takashi Fujimori Foamed polystyrene product and its production
JP2001164031A (en) * 1999-12-13 2001-06-19 Takashi Fujimori Moldings comprising porous foam resin having heat- resistant and flame-retardant resin mixture layer and molding production thereof
JP2004018773A (en) * 2002-06-19 2004-01-22 Yuusui Kasei Kogyo Kk Functional foamed particle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100541658B1 (en) * 2003-04-18 2006-01-10 주식회사 경동세라텍 The foaming plastic body that has good incombustiblity

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02272040A (en) * 1989-04-13 1990-11-06 Tajima Kagaku Kogyo Kk Production of expansion molded body
JPH03167237A (en) * 1989-11-28 1991-07-19 Nippon Kasei Kk Production of flame-retardant polystyrene resin foam
JPH11349725A (en) * 1998-06-12 1999-12-21 Takashi Fujimori Foamed polystyrene product and its production
JP2001164031A (en) * 1999-12-13 2001-06-19 Takashi Fujimori Moldings comprising porous foam resin having heat- resistant and flame-retardant resin mixture layer and molding production thereof
JP2004018773A (en) * 2002-06-19 2004-01-22 Yuusui Kasei Kogyo Kk Functional foamed particle

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009502563A (en) * 2005-07-26 2009-01-29 エルテセー・ベー・ベー Method for producing flame retardant composite material and composite material obtained thereby
JP2008120984A (en) * 2006-11-09 2008-05-29 Eiwa Matekkusu:Kk Coating beads for flame interrupting thermal insulation
JP2008267690A (en) * 2007-04-20 2008-11-06 Kuraray Plast Co Ltd Fireproof or fire-retardant heat insulating resin duct
EP2158258A4 (en) * 2007-05-30 2011-10-05 Jae-Cheon Kim Expandable polystyrene bead with superior adiabatic and flameproof effect and method for producing the same
WO2010128797A2 (en) * 2009-05-04 2010-11-11 Kim Jae-Cheon Expandable, incombustible polystyrene particles and preparation method thereof, and styropor made from the particles
WO2010128797A3 (en) * 2009-05-04 2011-03-03 Kim Jae-Cheon Expandable, incombustible polystyrene particles and preparation method thereof, and styropor made from the particles
JP2012111826A (en) * 2010-11-24 2012-06-14 Inoac Corp Fire-retarding flexible polyurethane foam, and method for producing the same
US11958931B2 (en) 2013-01-20 2024-04-16 Sekisui Chemical Co., Ltd. Flame-retardant urethane resin composition
US10676559B2 (en) 2013-01-20 2020-06-09 Sekisui Chemical Co., Ltd. Flame-retardant urethane resin composition
JP2016516883A (en) * 2013-05-07 2016-06-09 エクスフラム ピーティーワイ リミテッドXflam Pty Ltd Method for producing foam composite
US10077348B2 (en) 2013-05-07 2018-09-18 Xflam Pty Ltd Processes for preparing foam composites
US10494497B2 (en) 2013-05-07 2019-12-03 Xflam Pty Ltd Processes for preparing foam composites
JP2017048327A (en) * 2015-09-03 2017-03-09 三和化成工業株式会社 Material for vibration absorption structure
JP2017048326A (en) * 2015-09-03 2017-03-09 三和化成工業株式会社 Material for structure
JP2018199741A (en) * 2017-05-25 2018-12-20 植田 勲 Coated expandable resin bead, and manufacturing method therefor
JP2019085517A (en) * 2017-11-08 2019-06-06 株式会社ジェイエスピー Composite particle, composite particle cured product, and composite particle in-molded body and method for producing composite particle
WO2019093414A1 (en) * 2017-11-08 2019-05-16 株式会社ジェイエスピー Composite particles, composite particle cured product, composite particle in-mold molded article, laminate, composite, and method for producing composite particles
US11680148B2 (en) 2017-11-08 2023-06-20 Jsp Corporation Composite particles, composite particle cured product, composite particle in-mold molded article, laminate, composite, and method for producing composite particles
JP7010753B2 (en) 2018-04-05 2022-01-26 株式会社ジェイエスピー Laminates and methods for manufacturing them, packages, and complexes
JP2019181749A (en) * 2018-04-05 2019-10-24 株式会社ジェイエスピー Laminate and process for producing the same, package, and composite
KR102469128B1 (en) 2018-10-16 2022-11-21 아사히 유키자이 가부시키가이샤 Semi-incombustible phenolic resin composition and semi-incombustible material obtained therefrom
JPWO2020080148A1 (en) * 2018-10-16 2021-09-16 旭有機材株式会社 Semi-incombustible phenol resin composition and quasi-incombustible material obtained from it
KR20210076898A (en) * 2018-10-16 2021-06-24 아사히 유키자이 가부시키가이샤 Semi-incombustible phenolic resin composition and semi-incombustible material obtained therefrom
KR102605769B1 (en) 2018-10-16 2023-11-24 아사히 유키자이 가부시키가이샤 Semi-noncombustible phenolic-resin composition and semi-noncombustible material obtained therefrom
CN112739769A (en) * 2018-10-16 2021-04-30 旭有机材株式会社 Flame-retardant phenolic resin composition and flame-retardant material obtained from same
EP3868826A4 (en) * 2018-10-16 2022-06-22 Asahi Yukizai Corporation Semi-noncombustible phenolic-resin composition and semi-noncombustible material obtained therefrom
KR20220108829A (en) * 2018-10-16 2022-08-03 아사히 유키자이 가부시키가이샤 Semi-noncombustible phenolic-resin composition and semi-noncombustible material obtained therefrom
WO2020080148A1 (en) * 2018-10-16 2020-04-23 旭有機材株式会社 Semi-noncombustible phenolic-resin composition and semi-noncombustible material obtained therefrom
US20220227103A1 (en) * 2019-05-29 2022-07-21 Transversality Stone surface covering
JP2021138932A (en) * 2020-03-09 2021-09-16 ウシオマテックス株式会社 Coated foamable resin bead, and foamed molding including the same
WO2022230956A1 (en) 2021-04-30 2022-11-03 株式会社カネカ Fire-resistant article
CN113354392A (en) * 2021-07-14 2021-09-07 青岛惠城环保科技股份有限公司 Building external wall heat-insulation composite material and preparation method thereof
CN113861493A (en) * 2021-09-24 2021-12-31 江阴市昌佳泡塑有限公司 Flame-retardant thermosetting EPS foam board and preparation method thereof

Also Published As

Publication number Publication date
KR100846048B1 (en) 2008-07-11
JP3950980B2 (en) 2007-08-01
CN101068864A (en) 2007-11-07
KR20070084433A (en) 2007-08-24
JPWO2006043435A1 (en) 2008-05-22

Similar Documents

Publication Publication Date Title
WO2006043435A1 (en) Process for producing foam
JP5203944B2 (en) Method for producing foam molded body, foam obtained thereby and use thereof
US20080234400A1 (en) Method For Producing Foam Plates
US20080230956A1 (en) Process for Producing Foam Boards
KR101300626B1 (en) Non-flammable foam insulation that creates a barrier method for manufacturing resin particles
NO813790L (en) LAMINATES.
KR101445647B1 (en) Apparatus and Method for Manufacturing Incombustible Panel using Waste Synthetic Resin
KR101796067B1 (en) Manufacturing method for packing box using expanded polystyrene beads and packing box manufactured by the same
CN106589801B (en) A kind of synthetic method of high oxygen index (OI) phenolic resin
KR101020139B1 (en) Adiabatic material comprising expanded perlite and polyurethane and Method of preparing the same and Construction meterials comprising the adiabatic material
KR20180007737A (en) Quasi-noncombustible recycled foam insulation
ES2702107T3 (en) Procedures for the preparation of foam composite materials
KR20120075821A (en) Anti-flammable composite
KR20160076282A (en) Incombustible insulation materials using expanded polystyrene beads and manufacturing method thereof
CN112047754A (en) Fireproof insulation board and preparation method thereof
KR20180128815A (en) Method for fabricating of noncombustible styrofoam panel
KR101378033B1 (en) Wall-system of flame-retardent styrofoam
KR102556207B1 (en) Organic-inorganic hybrid flame retarding compositions for preparing flame retarding EPS beads, the flame retarding EPS beads coated by the compositions and the method for preparing the same
JP2004090647A (en) Manufacture method for fireproof board
KR101246762B1 (en) Manufacuring method of the glass having nano structure to prevent heat transfer
DK2708668T3 (en) Process for producing a fire-retardant insulating element, insulating element and using an insulating element
KR100860046B1 (en) Foamed plastic body having excellent flame retardancy and fire resistance, which using compression method, and the manufacturing method thereof
JPS6324956B2 (en)
JPS5947984B2 (en) Fire-resistant, heat-resistant fiber laminate
US20080248198A1 (en) Method for Producing Foam Plates

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2006542328

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077011537

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580041135.1

Country of ref document: CN

122 Ep: pct application non-entry in european phase

Ref document number: 05790656

Country of ref document: EP

Kind code of ref document: A1