WO2020079902A1 - 加工用粒状物、加工用粒状物を備える複合ユニット、及び加工用粒状物の製造方法 - Google Patents

加工用粒状物、加工用粒状物を備える複合ユニット、及び加工用粒状物の製造方法 Download PDF

Info

Publication number
WO2020079902A1
WO2020079902A1 PCT/JP2019/028083 JP2019028083W WO2020079902A1 WO 2020079902 A1 WO2020079902 A1 WO 2020079902A1 JP 2019028083 W JP2019028083 W JP 2019028083W WO 2020079902 A1 WO2020079902 A1 WO 2020079902A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing
granular material
range
value
less
Prior art date
Application number
PCT/JP2019/028083
Other languages
English (en)
French (fr)
Inventor
旭東 賀
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Priority to EP19872441.1A priority Critical patent/EP3711901A4/en
Priority to JP2020529650A priority patent/JP6997317B2/ja
Publication of WO2020079902A1 publication Critical patent/WO2020079902A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C11/00Selection of abrasive materials or additives for abrasive blasts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/002Methods
    • B29B7/007Methods for continuous mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/72Measuring, controlling or regulating
    • B29B7/726Measuring properties of mixture, e.g. temperature or density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/16Auxiliary treatment of granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0022Combinations of extrusion moulding with other shaping operations combined with cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/04Particle-shaped
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/40Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft
    • B29B7/42Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft with screw or helix
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/05Filamentary, e.g. strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/345Extrusion nozzles comprising two or more adjacently arranged ports, for simultaneously extruding multiple strands, e.g. for pelletising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2001/00Use of cellulose, modified cellulose or cellulose derivatives, e.g. viscose, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/04Polyesters derived from hydroxycarboxylic acids
    • B29K2067/046PLA, i.e. polylactic acid or polylactide

Definitions

  • the present invention relates to a processing granule, a composite unit including the processing granule, and a method for manufacturing the processing granule.
  • granules are used for the purpose of processing by grinding or crushing the object to be processed.
  • the granular material is made of a resin material as disclosed in Patent Document 1, for example.
  • a granular material made of a resin material for example, it is manufactured by cutting a line-shaped resin material formed by extruding a molten material from an extrusion die of an extruder and crushing and classifying resin pieces.
  • processing granules may scatter during use, it is desirable that they have a low impact on the environment. Further, for example, when manufacturing processing granules having a relatively small particle size so that the processing target can be processed favorably in a limited space, the processing granules excellent in processability of the processing target can be efficiently manufactured. It is desirable to be able to.
  • the present invention makes it possible to produce, at a high production efficiency, a processing granule having a small effect on the environment and excellent in the workability of a processing object when manufacturing a processing granule having a relatively small particle size. With the goal.
  • the processing granular material according to one embodiment of the present invention includes at least one of polylactic acid and cellulose ester, has a plurality of corners, and has a maximum particle size of 0.18 mm or more. It is set to a value in the range of 3.35 mm or less.
  • the processing granules can contain biodegradability by containing at least one of polylactic acid and cellulose ester. Therefore, the processing granules can be biodegraded under the environment. Therefore, even if the processing granules are released into the environment, the influence of the processing granules on the environment can be reduced.
  • the processing granule has a plurality of corners and the maximum particle size is set to a value in the range of 0.18 mm or more and 3.35 mm or less, the particle size of the processing granule is relatively small. At the same time, minute corners can be formed on the processing granules. Thus, for example, by pressing the processing granular material against the surface of the processing target in a limited space, it is possible to easily process the processing target with a small external force.
  • processing granule contains at least one of polylactic acid and cellulose ester, for example, a raw material containing the component is supplied to an extruder to extrude the linear resin material, The granules for processing can be efficiently manufactured by cutting.
  • It may be formed in a polyhedron shape having a plurality of polygonal faces, and the side length of each side may be set to a value in the range of 0.18 mm or more and 3.35 mm or less.
  • the plurality of surfaces may include a surface having any one of a triangular shape, a quadrangular shape, a pentagonal shape, and a hexagonal shape in a plan view.
  • each side in side view may be set to a value in the range of 0.18 mm or more and 3.35 mm or less.
  • the particle size of the processing granules can be made relatively small, and minute corners can be formed in the portions corresponding to the end faces and the side surfaces of the cylindrical body of the processing granules. Therefore, for example, by pressing the processing granular material against the surface of the processing target in a limited space, the processing target can be easily processed with a small external force. Further, such a granular material for processing can be efficiently produced by, for example, supplying raw materials to an extrusion molding machine, extruding a linear resin material having a circular cross section, and cutting the material.
  • the side length may be set to a value in the range of 0.18 mm or more and less than 3.00 mm. According to this configuration, the side length can be appropriately reduced, and the minute corner portions formed between the adjacent surfaces can be increased as compared with other shapes having the same weight. Thereby, for example, it is possible to improve the polishing property when polishing the object to be processed with the particulate matter.
  • the parallelism of the pair of sides is It may be set to a value in the range of 0 mm or more and 0.50 mm or less.
  • the pair of sides of the processing granules are kept parallel to each other with high accuracy, it is possible to easily make the shapes of the plurality of processing granules uniform. As a result, the workability when processing the object to be processed using the processing granules can be made uniform, and the object to be processed can be processed with stable quality.
  • the pair of sides is a first pair of sides, and has a contour that further includes a second pair of sides that extend in the second direction and are separated in the first direction when viewed from the one direction,
  • the parallelism of the second pair of sides may be set to a value in the range of 0 mm or more and 0.10 mm or less.
  • the surface has a pair of surfaces spaced apart from each other in one direction, and the parallelism of the other surface with respect to a reference plane based on one surface of the pair of surfaces is greater than 0 mm and equal to or less than 0.20 mm. It may be set. According to the processing granular material having such a shape, by setting the parallelism of the other surface to the above value, it is possible to impart appropriate workability to the surface within a certain range. As a result, it is possible to easily control the workability when processing the object to be processed using the processing granules.
  • It may contain at least one of the polylactic acid and the cellulose ester as a main component, and the content of the organic component and the inorganic component other than the main component may be set to a value in the range of less than 5% by weight.
  • a composite unit accommodates any one of the above-described processing granules, a processing target processed by the processing granulation, and the processing granulation and the processing target. And a flexible container for applying an external force to the container from the outside, the object to be processed is processed by the processing granular material in the container.
  • the particle for processing is processed in a limited space.
  • the processing target can be processed by efficiently contacting the processing target with the processing granular material while preventing the processing target from scattering.
  • a molten material containing at least one of polylactic acid and cellulose ester is set to a value within a range of a maximum inner diameter of 0.18 mm or more and 4.30 mm or less.
  • the first step of extruding the linear resin material by extruding the linear resin material by extruding from the extrusion hole at the peripheral edge of the opening, and cutting the linear resin material in a direction perpendicular to the extrusion direction from the extrusion hole And a second step of obtaining a processing granule having a maximum particle size set to a value in the range of 0.18 mm or more and 3.35 mm or less.
  • the processing particles can be decomposed under the environment, and the influence of the processing particles on the environment can be reduced.
  • the processing granule has a plurality of corners and the maximum particle size is set to a value in the range of 0.18 mm or more and 3.35 mm or less, the particle size of the processing granule is relatively small. At the same time, minute corners can be formed on the processing granules. Thus, for example, by pressing the processing granular material against the surface of the processing target in a limited space, it is possible to easily process the processing target with a small external force.
  • such a processing granular material is obtained by extruding a line-shaped resin material by extruding a molten material from an extrusion die and cutting the line-shaped resin material in a direction perpendicular to an extrusion direction from an extrusion hole. , Can be manufactured efficiently.
  • the first step from the extrusion hole having a shape in which the opening edge has a plurality of vertices and the linear distance between the adjacent vertices is set to a value in the range of 0.18 mm or more and 4.30 mm or less.
  • the molten material is extruded to form a polyhedron having a plurality of polygonal faces, and each side has a side length of 0.18 mm or more and 3.35 mm or less.
  • the set granules for processing may be obtained.
  • the processing granules are formed into a polyhedron shape having a plurality of polygonal surfaces, and the side length of each side is set to a value in the range of 0.18 mm to 3.35 mm. Since it can be obtained, many corners can be provided on the surface of the processing granules, and since the workability can be imparted to the portions corresponding to the peripheral edges of the respective faces of the polyhedron, the processing granules having high workability are obtained. Can be configured.
  • the molten material may be extruded from the extruded hole at the peripheral edge of the opening, which is formed by connecting the adjacent vertices with each other by a curved line curved toward the center of the opening.
  • the cross-sectional shape of the linear resin material can be molded in consideration of the amount of expansion of the linear resin material after being extruded from the extrusion hole due to the swell phenomenon. Therefore, it is possible to easily form the processing granules having a desired shape.
  • a maximum distance in a direction perpendicular to the imaginary line between the curved line and an imaginary line passing through the adjacent vertices is greater than 0% of the maximum inner diameter.
  • the molten material may be extruded from the extrusion hole at the peripheral edge of the opening, which is set to a value larger than 25%.
  • the above method by extruding the molten material from the extrusion hole whose peripheral shape is formed as described above, it is possible to manufacture processing granules having a relatively small particle size, and to form a line shape after extrusion from the extrusion hole.
  • the cross-sectional shape of the line-shaped resin material can be molded in consideration of the amount of expansion of the resin material due to the swell phenomenon. Therefore, it is possible to further facilitate the formation of the processing granular material having the desired shape.
  • the molten material may be extruded from the extruding hole at the peripheral edge of the opening formed in a shape having a number of the apexes in the range of 3 or more and 6 or less.
  • this method by extruding the molten material from the extrusion hole whose peripheral shape is formed as described above, by having a surface of any one of a triangle, a quadrangle, a pentagon, and a hexagon, each surface is It is possible to efficiently manufacture a processing granular material having high workability in a portion corresponding to the peripheral edge of the.
  • the molten material is extruded from the extrusion hole of the circular peripheral edge of the opening whose diameter is set to a value in the range of 0.18 mm or more and 4.30 mm or less. It is also possible to obtain the above-mentioned granules for processing which are formed in a shape and whose side lengths in a side view are set to values in the range of 0.18 mm or more and 3.35 mm or less.
  • a granular material for processing is obtained, which is formed in a cylindrical shape and has a side length of each side in a side view set to a value in the range of 0.18 mm or more and 3.35 mm or less.
  • the particle size of the processing granules can be made relatively small, and minute corners can be formed in the portion corresponding to the end surface and the side surface of the cylindrical body of the processing granules. Accordingly, for example, by pressing the processing granular material against the surface of the processing target in a limited space, the processing target can be easily processed with a small external force.
  • such a processing granular material is extruded from a linear resin material having a circular cross section by extruding a molten material from an extrusion die, and the linear resin material is directed in a direction perpendicular to the extrusion direction from an extrusion hole. By cutting, it can be manufactured efficiently.
  • the processing granular material in which the side length is further set to a value in the range of 0.18 mm or more and less than 3.00 mm may be obtained.
  • the side length of the manufactured granules for processing can be appropriately reduced, and the minute corner portions formed between the adjacent surfaces can be increased as compared with other shapes having the same weight.
  • a processing granular material having improved polishing properties when polishing the processing target object is obtained.
  • At least one of the polylactic acid and the cellulose ester is contained as a main component, and the content of the organic component and the inorganic component other than the main component is set to a value in the range of less than 5% by weight.
  • the processed granules may be obtained.
  • a contour including a pair of sides extending in a first direction perpendicular to the extrusion direction and separated in a second direction perpendicular to the first direction when viewed from the extrusion direction from the opening peripheral edge is formed.
  • the processing granular material in which the parallelism of the pair of sides is set to a value in the range of 0 mm or more and 0.50 mm or less may be obtained. According to this method, since the pair of sides of the processing granules are kept parallel to each other with high accuracy, the shapes of the plurality of processing granules to be manufactured can be easily made uniform.
  • the pair of sides is a first pair of sides, and further includes a second pair of sides that extend in the second direction and are separated from each other in the first direction when viewed from the extrusion direction.
  • the second step has a pair of surfaces spaced apart in the one direction, and the parallelism of the other surface with respect to a reference plane based on one of the pair of surfaces is larger than 0 mm and 0.20 mm.
  • the parallelism of the other surface it is possible to obtain a processing granular material that can impart appropriate workability to the surface in a certain range.
  • a processing granule having a relatively small particle size a processing granule having a low effect on the environment and excellent in the workability of a processing object is manufactured with high manufacturing efficiency. it can.
  • FIG. 4 It is a schematic diagram of an extrusion molding machine concerning a 1st embodiment. It is a front view of the extrusion die of FIG. It is a perspective view of the granular material for processing of FIG. It is a schematic diagram of the compound unit concerning a 1st embodiment.
  • A) is a vertical cross-sectional view of the composite unit of FIG. 4 before pressing.
  • B) is a vertical cross-sectional view of the composite unit of FIG. 4 after being pressed.
  • FIG. 1 is a schematic diagram of an extruder 1 according to the first embodiment.
  • the extrusion molding machine 1 includes a drive unit 2, a speed reduction unit 3, a tubular unit 4, at least one (a pair here) screw 5, a storage unit 6, a duct 7, an extrusion die 8, and a cutter (pelletizer) 12. .
  • the drive unit 2 has a built-in motor as an example, and generates a rotational driving force that rotates the screw 5 around its axis.
  • the speed reduction unit 3 transmits the output from the drive unit 2 to the screw 5 in a state where the rotation speed is reduced.
  • the tubular portion 4 has a cylindrical internal space 4a extending in the horizontal direction.
  • a screw 5 is axially supported in the internal space 4a of the tubular portion 4 so as to be rotatable around its axis.
  • a spiral groove 5 a is formed on the peripheral surface of the screw 5.
  • the speed reducer 3 is arranged on one end side in the longitudinal direction of the internal space 4a, and the other end side in the longitudinal direction is opened to the outside.
  • the storage part 6 extends in the vertical direction, is arranged above the tubular part 4, and has its lower end connected to the internal space 4 a of the tubular part 4.
  • the raw material of the processing granular material 9 is stored in the storage portion 6.
  • the raw material contains at least one of polylactic acid and cellulose ester, and is supplied from the storage portion 6 to the internal space 4 a of the tubular portion 4.
  • the duct 7 is provided so that cooling air can be supplied from below the tubular portion 4 to the internal space 4a.
  • the extrusion die 8 is disposed on the other end side in the longitudinal direction of the internal space 4a of the tubular portion 4, and is detachably attached to the tubular portion 4 at the peripheral edge of the opening of the internal space 4a.
  • the extrusion die 8 has an extrusion hole 8a that communicates with the internal space 4a of the tubular portion 4.
  • the cutter 12 cuts the linear resin material 15 extruded from the extrusion hole 8a of the extrusion die 8 at a predetermined timing.
  • the extrusion molding machine 1 is a twin screw type having a pair of screws 5 here, but may be a single screw type having one screw 5 or another type.
  • the rotational driving force of the drive unit 2 is transmitted to the screw 5 via the speed reduction unit 3 and the screw 5 is rotated. Further, the raw material stored in the storage portion 6 is supplied to the internal space 4a of the tubular portion 4 and heated. This forms a molten material.
  • the molten material is pressed by the extrusion die 8 while being conveyed by the spiral groove 5a of the screw 5 toward the other end side in the longitudinal direction of the internal space 4a.
  • the molten material is extruded from the extrusion hole 8a of the extrusion die 8 to the outside.
  • the molten linear material 15 is obtained by molding the molten material along the peripheral edge of the extrusion hole 8a.
  • the line-shaped resin material 15 has a cross-sectional shape corresponding to the peripheral shape of the extrusion hole 8a, and is cut by the cutter 12 in a direction perpendicular to the extrusion direction from the extrusion hole 8a. As a result, the processing granular material 9 is obtained.
  • FIG. 2 is a front view of the extrusion die 8 of FIG.
  • the extrusion hole 8a of the extrusion die 8 has, as an example, a maximum inner diameter of 0.18 mm or more and 4.30 mm or less.
  • the extrusion hole 8a has a non-circular opening peripheral edge.
  • the opening peripheral edge of the extrusion hole 8a has, for example, a plurality of vertices P, and the adjacent vertices P are formed in a polygonal shape in which each of the adjacent vertices P is connected by a curved line L that curves toward the center of the opening.
  • the linear distance D1 between the adjacent vertices P is set to a value in the range of 0.18 mm or more and 4.30 mm or less.
  • the maximum distance D2 in the direction perpendicular to the imaginary line V between the curved line L and the imaginary line V passing through the adjacent apex P is larger than 0% of the maximum inner diameter of the extrusion die 8. It is set to a value within a large range and 25% or less.
  • the opening peripheral edge of the extrusion hole 8a is formed in a shape having a number of vertices P in the range of 3 or more and 6 or less.
  • the extrusion hole 8a is formed in a shape in which the opening peripheral edge has four vertices P.
  • the maximum distance D2 is set to a value in the range greater than 0 mm and 1.2 mm or less.
  • the swell phenomenon stress relaxation phenomenon
  • the swell phenomenon it may be difficult to set the cross-sectional shape of the linear resin material 15 to a desired shape.
  • the swell phenomenon is formed by forming the opening peripheral edge of the extrusion hole 8a in a polygonal shape having a plurality of vertices P and adjacent vertices P being connected to each other by a curved line segment L.
  • the deformation of the cross-sectional shape of the line-shaped resin material 15 due to the occurrence of is prevented.
  • FIG. 3 is a perspective view of the processing granular material 9 of FIG.
  • the processing granules 9 include at least one of polylactic acid and cellulose ester.
  • the processing granular material 9 of the present embodiment contains at least one of polylactic acid and cellulose ester as a main component, and the content of the organic component and the inorganic component other than the main component is in the range of less than 5% by weight. Is set to.
  • the main component here means a component contained in the processing granules 9 in an amount of more than 50% by weight.
  • the processing granular material 9 has a plurality of corners, and the maximum particle size is set to a value in the range of 0.18 mm or more and 3.35 mm or less.
  • the processing granular material 9 is formed in a polyhedral shape having a plurality of polygonal surfaces 9a, and the length dimension (side length) of each side Q is 0.18 mm or more and 3.35 mm or less. It is set to a range value.
  • the side length is further set to a value in the range of 0.18 mm or more and less than 3.00 mm (for example, 2.9 mm).
  • corner here means the apex of the abutting position of three or more surfaces when the processing granules 9 are formed in a polyhedral shape. Further, when the processing granules 9 are formed in a columnar shape or an elliptic cylinder shape, it indicates the boundary (side) between the end surface and the side surface. Further, when the processing granules 9 are formed in a shape that does not correspond to any of a polyhedron shape, a cylindrical shape, and an elliptic cylinder shape, the boundary (side) of two adjacent surfaces, or the abutment of three or more surfaces At least one of the vertices of the position.
  • the number of vertices P can be set as appropriate, but as an example, it is preferably 4 or less.
  • side length refers to the linear distance between the vertices P adjacent to each other on the projection surface of the processing granules 9 in a front view or a side view of the polyhedral processing granules 9.
  • the polyhedron, the columnar body, and the elliptical columnar body referred to here also include, for example, a shape having a slight shape error that may occur during manufacturing.
  • each of the lower limit value and the maximum value of the maximum particle size of the processing granular material 9 may include an error of several%.
  • the particle group may include, for example, 15% by weight or less of particles having a maximum particle size of less than 0.18 mm.
  • the value of the maximum particle size of the processing granules 9 is specified as the minimum value of the opening of the sieve through which the processing granules 9 can pass, of the test sieves according to JIS Z8801.
  • the particle size distribution of the processing granules 9 can be measured by any known method, for example, a dynamic light scattering method, a laser diffraction / scattering method, an image imaging method, or a sieving method.
  • the maximum particle size of the processing granules 9 can be appropriately set within the above range.
  • the upper limit of the maximum particle size of the processing granules 9 can be set to any of 3.35 mm, 3.0 mm, 2.5 mm, 2.0 mm, and 1.5 mm, for example.
  • the lower limit of the maximum particle size of the processing granules 9 can be set to any of 0.18 mm, 0.20 mm, 0.30 mm, 0.40 mm, and 0.50 mm, for example.
  • the maximum particle size of the processing granules 9 is preferably set to a value within the range of 2.98 mm or less.
  • the maximum particle size of the processing granules 9 tends to be smaller than the maximum inner diameter of the extrusion hole 8a, usually due to the ballast effect.
  • the plurality of surfaces 9a of the processing granular material 9 include a surface 9a having any one of a triangle, a quadrangle, a pentagon, and a hexagon (here, only a quadrangle) in plan view.
  • the polyhedron is a hexahedron.
  • the processing granular material 9 has a contour including a pair of sides extending in a first direction perpendicular to the one direction and separated in a second direction perpendicular to the first direction when viewed from the one direction.
  • the parallelism of the pair of sides is set to a value in the range of 0 mm or more and 0.50 mm or less.
  • the processing granular material 9 has a contour in which the pair of sides is a first pair of sides when viewed from one direction, and further includes a second pair of sides that extend in the second direction and are separated from each other in the first direction. Have.
  • the parallelism of the second pair of sides is set to a value in the range of 0 mm or more and 0.10 mm or less.
  • the contour of the processing granular material 9 viewed from one direction is formed in a rectangular shape by including the above-mentioned two pairs of sides. Accordingly, the processing granular material 9 has two pairs of surface regions having different parallelisms corresponding to the above-mentioned two pairs of sides.
  • the processing granular material 9 has a pair of surfaces that are spaced apart in one direction, and the parallelism of the other surface to the reference plane (datum plane) based on one surface of the pair of surfaces is 0 mm or more. It is set to a value in the range of 0.20 mm or less. As a result, the other surface of the processing granular material 9 is formed with a certain degree of unevenness that is allowed by the range of parallelism.
  • the pair of surfaces of the processing granular material 9 of the present embodiment correspond to cut surfaces at which the linear resin material 15 shown below is cut.
  • the parallelism referred to here is defined in JIS B 0022 and JIS B 0621: 1984. That is, when instructing a geometrical tolerance to a related feature, a geometrical line or a geometrical line parallel to a datum straight line or a datum plane, which is a theoretically accurate geometrical standard set to regulate the tolerance zone. It refers to the size of the deviation of a linear feature or a planar feature that should be parallel from the target plane.
  • the shape, the side length of the side Q, the particle size, and the like of the processing granular material 9 can be confirmed and measured using, for example, a commercially available digital microscope (for example, “RH-2000” manufactured by Hylox Corporation). .
  • the processing granules 9 are manufactured using the extruder 1.
  • the maximum inner diameter of the molten material containing at least one of polylactic acid and cellulose ester is set to a value in the range of 0.18 mm to 4.30 mm.
  • the line-shaped resin material 15 is continuously cut by a rotary blade that rotates in a plane perpendicular to the extrusion direction.
  • the method of cutting the line-shaped resin material 15 is not limited to this.
  • the maximum inner diameter of the extrusion hole 8a can be appropriately set within the above range.
  • the maximum inner diameter of the extrusion hole 8a can be determined in consideration of, for example, the maximum particle diameter of the processing granules 9 to be obtained and the viscosity of the resin used.
  • the upper limit of the maximum inner diameter of the extrusion hole 8a can be set to any of 4.30 mm, 3.80 mm, 3.30 mm, 2.90 mm, 2.80 mm, 2.50 mm, and 2.10 mm, for example.
  • the lower limit value of the maximum inner diameter of the extrusion hole 8a can be set to any of 0.18 mm, 0.20 mm, 0.25 mm, 0.30 mm, 0.50 mm, and 0.70 mm, for example.
  • the maximum inner diameter of the extrusion hole 8a is preferably set to a value in the range of 2.80 mm or less.
  • the molten material is extruded from the extrusion hole 8a having a shape in which the linear distance D1 is set to a value in the range of 0.18 mm or more and 4.30 mm or less in the second step.
  • a polygonal shape having a plurality of surfaces 9a, and the side length of each side Q is set to a value in the range of 0.18 mm or more and 3.35 mm or less.
  • the processing granular material 9 in which the side length is further set to a value in the range of 0.18 mm or more and less than 3.00 mm is obtained.
  • At least one of polylactic acid and cellulose ester is contained as a main component, and the content of the organic component and the inorganic component other than the main component is within a range of less than 5% by weight.
  • the molten material is extruded from the extrusion hole 8a at the peripheral edge of the opening having a shape in which adjacent vertices P are connected by a curved line segment L.
  • the maximum distance D2 is extruded from the extruding hole 8a at the peripheral edge of the opening in which the maximum distance D2 is set to a value that is larger than 0% and 25% or less of the maximum inner diameter of the extrusion die 8.
  • the molten material is extruded from the extrusion hole 8a at the peripheral edge of the opening formed in the shape having the number of apexes P in the range of 3 to 6 (here, 4).
  • the extrusion hole when viewed from the extrusion direction from the opening peripheral edge of the extrusion hole 8a, the extrusion hole extends in the first direction perpendicular to one direction (extrusion direction) and is separated in the second direction perpendicular to the first direction.
  • the processing granular material 9 has a contour including a pair of sides, and the parallelism of the pair of sides is set to a value in the range of 0 mm or more and 0.50 mm or less.
  • the pair of sides is the first pair of sides and extends in the second direction and is separated in the first direction when viewed from the extrusion direction from the opening peripheral edge of the extrusion hole 8a.
  • a processing granule 9 having a contour further including a second pair of sides and having parallelism of the second pair of sides set to a value in the range of 0 mm or more and 0.10 mm or less is obtained.
  • the parallelism of the other surface with respect to the reference plane (datum plane) based on one surface of the pair of surfaces has a pair of surfaces spaced apart in one direction.
  • the processing granules 9 set to a value in the range of more than 0 mm and not more than 0.20 mm are obtained.
  • FIG. 4 is a schematic diagram of the combined unit 10 according to the first embodiment.
  • the composite unit 10 includes the processing granular material 9, the processing target object 17 processed by the processing granular material 9, and the flexible container 11 that accommodates the processing granular material 9 and the processing target object 17.
  • FIG. 5A is a vertical cross-sectional view of the composite unit 10 of FIG. 4 before being pressed.
  • FIG. 5B is a vertical cross-sectional view of the combined unit 10 of FIG. 4 after being pressed.
  • the processing granular material 9 is strongly pressed against the surface of the processing target 17.
  • the object 17 to be processed is crushed by the processing granular material 9 in the container 11 or processed by polishing the surface or the like.
  • the processing target 17 is crushed so that the content of the processing target 17 is diffused inside the container 11.
  • the processing target material 17 is processed by the processing target material 9 in a state where the processing target material 9 and the processing target object 17 are housed in the flexible container 11, so that the processing target material 17 is processed. It is possible to process the object to be processed by efficiently contacting the object to be processed 17 with the processing granular material 9 while preventing the scattering of the object 9 and the object to be processed 17.
  • the configuration of the processing target 17 is not limited. Further, inside the composite unit 10, a soft carrier for supporting the processing granular material 9 and the processing target 17 may be arranged.
  • the carrier may be made of, for example, the same material as the processing granules 9 or other biodegradable material. Examples of applications of the composite unit 10 include, but are not limited to, cosmetic applications.
  • the processing granules 9 can be provided with biodegradability by containing at least one of polylactic acid and cellulose ester. Therefore, the processing granules 9 can be biodegraded under the environment. Therefore, even if the processing granules 9 are discharged into the environment, the influence of the processing granules 9 on the environment can be reduced.
  • the processing granules 9 have a plurality of corners and the maximum particle size is set to a value in the range of 0.18 mm or more and 3.35 mm or less, the particle size of the processing granules 9 is relatively small.
  • the size can be made small, and minute corners can be formed on the processing granular material 9. Accordingly, for example, by pressing the processing granular material 9 against the surface of the processing target object 17 in a limited space, the processing target object 17 can be easily processed with a small external force.
  • processing granular material 9 contains at least one of polylactic acid and cellulose ester, for example, a raw material containing the component is supplied to the extruder 1 to extrude the linear resin material 15. By cutting the material 15, the processing granules 9 can be efficiently manufactured.
  • the processing granules 9 are often used in a device called a sand blaster, for example.
  • the processing granular material 9 is used as a medium when the processing target 17 is polished by a sand blaster. It is also conceivable that a small amount of media (processing granular material 9) is attached to the processing object 17 that has been removed by polishing with a sand blaster. In this way, the processing granules 9 may flow out to the environment.
  • the processing granules 9 be composed of a biodegradable material that is at least one of polylactic acid and cellulose ester. Further, if the processing granules 9 contain impurities other than the biodegradable material (for example, organic substances such as starch and wood flour, or inorganic substances), the strength of the processing granules 9 may decrease. Therefore, when the processing granules 9 contain impurities other than the biodegradable material, the impurities have a value in the range of less than 5 wt% of the processing granules 9, preferably in the range of less than 1 wt%. It is desirable to be set. It is most desirable that the processing granules 9 do not contain such impurities.
  • the processing granular material 9 of the present embodiment contains at least one of polylactic acid and cellulose ester as a main component, and the content of the organic component and the inorganic component other than the main component is 5 or less. It is set to a value in the range of less than wt%. According to this configuration, the biodegradability of the main component can be easily imparted to the processing granules 9. Further, the hardness of the processing granular material 9 can be maintained high, and the workability when processing the processing target object 17 can be favorably maintained.
  • the processing granular material 9 is formed in a polyhedral shape having a plurality of polygonal surfaces 9a, and the side length of each side is set to a value in the range of 0.18 mm or more and 3.35 mm or less. Therefore, many corners can be provided on the surface of the processing granules 9 and the machinability can be imparted to the portions corresponding to the peripheral edges of the respective faces of the polyhedron. Can be configured.
  • the plurality of surfaces 9a of the processing granular material 9 include the surfaces 9a having any one of a triangle, a quadrangle, a pentagon, and a hexagon in a plan view, and therefore, the peripheral surfaces of the respective surfaces of the polyhedron are included.
  • the processing granular material 9 having high processability can be configured.
  • the processing granules 9 are hexahedrons, for example, the processing granules 9 can be manufactured by cutting the line-shaped resin material 15 having a rectangular cross section, and the processing granules having excellent processability are obtained. 9 can be manufactured more efficiently.
  • the side length of the processing granular material 9 is set to a value in the range of 0.18 mm or more and less than 3.00 mm.
  • the side length can be appropriately reduced, and the minute corner portions formed between the adjacent surfaces can be increased as compared with other shapes having the same weight.
  • the smaller the side length in a certain range the easier it is to increase the minute corners as compared with other shapes having the same weight.
  • the processing granular material 9 has a contour including a pair of sides extending in a first direction perpendicular to the one direction and separated in a second direction perpendicular to the first direction when viewed from the one direction.
  • Parallelism is set to a value in the range of 0 mm or more and 0.50 mm or less.
  • the shape of the processing granule 9 can be easily made uniform.
  • the workability when processing the object 17 to be processed using the processing granular material 9 can be made uniform, and the object 17 can be processed with stable quality.
  • the processing granular material 9 having such a configuration can be efficiently manufactured by using, for example, the extruder 1.
  • the extrusion direction of the linear resin material 15 from the extrusion hole 8a is a direction perpendicular to the one direction.
  • the processing granular material 9 has a contour in which the pair of sides is a first pair of sides when viewed from one direction, and further includes a second pair of sides that extend in the second direction and are separated from each other in the first direction. And the parallelism of the second pair of sides is set to a value in the range of 0 mm or more and 0.10 mm or less.
  • the processing granular material 9 having a contour including two pairs of sides having different parallelisms when viewed from one direction is obtained. According to the processing granular material 9 having such a shape, it is possible to easily make the respective characteristics of the surface corresponding to the first pair of sides and the surface corresponding to the second pair of sides different from each other. As a result, it is possible to easily make the processing granular material 9 multifunctional.
  • the processing granular material 9 has the other surface whose parallelism is set to a value in the range of more than 0 mm and not more than 0.20 mm. According to the processing granular material 9 having such a shape, by setting the parallelism of the other surface to the above value, it is possible to impart appropriate workability to the surface within a certain range. As a result, it is possible to easily adjust the workability when processing the processing target 17 using the processing granular material 9.
  • the method for producing the processing granules 9 according to the present embodiment has the first step and the second step, and the molten material contains at least one of polylactic acid and cellulose ester, so that Biodegradability can be imparted to the granular material 9. Therefore, the processing particles 9 can be decomposed under the environment, and the influence of the processing particles 9 on the environment can be reduced.
  • the processing granules 9 have a plurality of corners and the maximum particle size is set to a value in the range of 0.18 mm or more and 3.35 mm or less, the particle size of the processing granules 9 is relatively small.
  • the size can be made small, and minute corners can be formed on the processing granular material 9. Accordingly, for example, by pressing the processing granular material 9 against the surface of the processing target object 17 in a limited space, the processing target object 17 can be easily processed with a small external force.
  • such a processing granular material 9 extrudes a line-shaped resin material 15 by extruding a molten material from an extrusion die 8, and the line-shaped resin material 15 is in a direction perpendicular to the extrusion direction from the extrusion hole 8a. It can be manufactured efficiently by cutting into pieces.
  • the linear resin material 15 after extruding from the extrusion hole 8a
  • the cross-sectional shape of the line-shaped resin material 15 can be molded in consideration of the expansion amount that expands due to the swell phenomenon. Therefore, it is possible to easily form the processing granules 9 having a desired shape.
  • the line-shaped resin material 15 is simply cut in a direction perpendicular to the extrusion direction from the extrusion hole.
  • the processing granules 9 having a relatively small particle size are obtained. Therefore, for example, the yield of the processing granules 9 can be significantly improved, and the manufacturing process can be simplified to reduce the production cost, as compared with the manufacturing method including the process of crushing and classifying the linear resin material.
  • the opening peripheral edge is formed into a polygonal shape in the second step by extruding the molten material from the extrusion hole 8a having a shape in which the linear distance D1 is set to a value in the range of 0.18 mm or more and 4.30 mm or less.
  • a processing granule 9 is obtained which is formed in a polyhedron shape having a plurality of surfaces 9a and each side Q has a side length set to a value in the range of 0.18 mm to 3.35 mm.
  • the processing granules 9 are formed in a polyhedron shape having a plurality of polygonal surfaces 9a, and the side length of each side Q is set to a value in the range of 0.18 mm to 3.35 mm. Since it can be obtained, many corners can be provided on the surface of the processing granules 9 and, at the same time, the workability can be imparted to the portions corresponding to the peripheral edges of the respective faces 9a of the polyhedron.
  • the object 9 can be configured.
  • the molten material is extruded from the extrusion hole 8a at the peripheral edge of the opening having a shape in which adjacent vertices P are connected by a curved line segment L.
  • the cross-sectional shape of the line-shaped resin material 15 can be molded in consideration of the amount of expansion of the line-shaped resin material 15 that has been extruded from the extrusion hole 8a due to the swell phenomenon. Therefore, it is possible to easily form the processing granular material 9 having a desired shape.
  • the maximum distance D2 is extruded from the extruding hole 8a at the peripheral edge of the opening, which is set to a value in the range of greater than 0% of the maximum inner diameter of the extrusion die 8 and 25% or less.
  • the molten material is extruded from the extrusion hole 8a at the peripheral edge of the opening formed in the shape having the number of vertices P in the range of 3 or more and 6 or less.
  • this method by extruding the molten material from the extrusion hole 8a in which the peripheral shape is formed as described above, by having the surface 9a of any one of a triangle, a quadrangle, a pentagon, and a hexagon, It is possible to efficiently manufacture the processing granules 9 having high workability in the portion corresponding to the peripheral edge of each surface 9a.
  • the processing granules 9 may contain a predetermined additive in addition to at least one of polylactic acid and cellulose ester.
  • this additive include a plasticizer, a heat stabilizer, a foam nucleating agent, and a foaming auxiliary agent.
  • polylactic acid has a heat melting property
  • a plasticizer is not required when using polylactic acid.
  • cellulose ester does not have heat-melting property, it is desirable to use a plasticizer when using cellulose ester.
  • plasticizers are given in "Handbook of Plasticizers", Ed.Wypych, George, ChemTec Publishing (2004).
  • plasticizers include dimethyl phthalate, diethyl phthalate, dibutyl phthalate, dioctyl phthalate, diisononyl phthalate, butyl benzyl phthalate, butyl phthalyl butyl glycolate, tris (2-ethylhexyl) trimellitate, triethyl phosphate, triphenyl phosphate, tricle phthalate.
  • Plasticizers including di-phosphate, p-phenylene bis (diphenyl phosphate), and other phosphate derivatives, diisobutyl adipate, bis (2-ethylhexyl) adipate, triethyl citrate, acetyltriethyl citrate, citric acid (eg, Citroflex® Trademark)), monoacetin, diacetin, triacetin, tripropionine, tributyrin, sucrose acetate isobutyrate, Lucose pentapropionate, triethylene glycol-2-ethylhexanoate, polyethylene glycol, polypropylene glycol, polypropylene glycol dibenzoate, polyethylene glutarate, polyethylene succinate, polyalkyl glycoside, 2,2,4-trimethyl-1 , 3-Pentanediol isobutyrate, diisobutyrate, phthalic acid copolymer, 1,3-butanediol
  • a glycerin ester plasticizer can be used as the plasticizer.
  • a glycerin ester plasticizer a lower fatty acid ester of glycerin, in other words, an ester compound of glycerin and a fatty acid having 2 to 4 carbon atoms can be used.
  • the fatty acid having 2 carbon atoms is acetic acid
  • the fatty acid having 3 carbon atoms is propionic acid
  • the fatty acid having 4 carbon atoms is butyric acid.
  • the glycerin ester-based plasticizer may be one in which all three hydroxyl groups of glycerin are esterified with the same fatty acid, or one in which two hydroxyl groups are esterified with the same fatty acid, or three of glycerin All of the hydroxyl groups of may be esterified with different fatty acids.
  • Glycerin ester-based plasticizers are non-toxic and easily biodegradable, so the load on the environment is small. Moreover, the glass transition temperature of the obtained cellulose triacetate composition for thermoforming can be lowered by adding the glycerin ester plasticizer to the cellulose acetate. Therefore, excellent thermoformability can be imparted to the raw material.
  • examples of the glycerin ester plasticizer include triacetin in which three hydroxyl groups of glycerin are esterified with acetic acid, and diacetin in which two hydroxyl groups are esterified with acetic acid.
  • glycerin ester-based plasticizers particularly preferred is triacetin (glycerol trisacetate) in which all three hydroxyl groups of glycerin are esterified (in other words, acetylated) with acetic acid.
  • Triacetin is a component recognized to be safe for human consumption, and because it is easily biodegraded, it has a low impact on the environment.
  • the cellulose acetate composition for thermoforming obtained by adding triacetin to cellulose acetate is more biodegradable than when cellulose acetate is used alone. Further, the glass transition temperature of cellulose acetate can be efficiently lowered by adding triacetin to cellulose acetate. Therefore, excellent thermoformability can be imparted to the raw material.
  • Triacetin is preferably pure in chemical structure and highly pure. Further, for example, a plasticizer containing triacetin in an amount of 80% by weight or more or 90% by weight or more and monoacetin and / or diacetin as the balance may be used.
  • the addition amount of the glycerin ester-based plasticizer is preferably, for example, a value in the range of 2 parts by weight or more and 40 parts by weight or less with respect to 100 parts by weight of the total amount of the cellulose acetate and the glycerin ester-based plasticizer, preferably 5 parts by weight. More preferably, the value is in the range of 10 parts by weight or more and 40 parts by weight or less, further preferably the value in the range of 10 parts by weight or more and 30 parts by weight or less, and the value in the range of 10 parts by weight or more and 25 parts by weight or less. Is most preferred.
  • the amount of the glycerin ester plasticizer added is less than 2 parts by weight, thermoformability cannot be sufficiently imparted to the cellulose acetate, and if it exceeds 40 parts by weight, the glycerin ester plasticizer may bleed out. May increase.
  • the raw material of the processing granules 9 is obtained by blending cellulose acetate having an acetyl substitution degree of 1.4 or more and 1.8 or less and a glycerin ester plasticizer.
  • the method for producing this raw material include a method in which a plasticizer, particularly a glycerin ester plasticizer, is directly added to cellulose acetate.
  • the glycerin ester plasticizer When directly adding the glycerin ester plasticizer to the cellulose acetate, it is preferable to mix the cellulose acetate and the glycerin ester plasticizer. This mixing can be performed by a mixer such as a planetary mill, a Henschel mixer, a vibration mill, a ball mill. It is preferable to use a Henschel mixer because homogeneous mixing / dispersion is possible in a short time. Although the degree of mixing is not particularly limited, for example, when using a Henschel mixer, it is preferable to set the mixing time to about 10 minutes or more and 1 hour or less.
  • drying method After mixing cellulose acetate and glycerin ester plasticizer, dry the mixture.
  • this drying method include a method in which the temperature is set to 50 ° C. or higher and 105 ° C. or lower, and the mixture is allowed to stand for 1 hour or more and 48 hours or less to dry.
  • the above mixing can be performed by a mixing machine such as a planetary mill, a Henschel mixer, a vibration mill, and a ball mill. If the production of the processing granules 9 is on a small scale, the mixture may be mixed using a food processor or the like.
  • the mixing conditions are not particularly limited, but it is preferable to add the dispersion or solution containing the plasticizer little by little to the cellulose acetate while stirring.
  • a dispersion or solution containing a plasticizer may be added to 100 parts by weight of cellulose acetate at 2 parts by weight / min to 20 parts by weight / min.
  • the degree of substitution of cellulose acetate can be set to a value in the range of 2.2 or more and 2.7 or less, for example.
  • the degree of substitution of cellulose acetate is, for example, preferably in the range of 2.3 or more and 2.6 or less, and particularly preferably in the range of 2.4 or more and 2.6 or less.
  • Cellulose diacetate having a substitution degree set to such a value is easily plasticized by triacetin. Therefore, for example, it is preferable to manufacture the processing granules 9 by using a raw material containing cellulose diacetate and triacetin.
  • other embodiments will be described focusing on differences from the first embodiment.
  • FIG. 6 is a front view of the extrusion die 18 according to the second embodiment.
  • the extrusion die 18 has the same configuration as the extrusion die 8 except that the number of the vertices P of the extrusion holes 18a is 6.
  • the extrusion hole 18a has a substantially star-shaped peripheral shape.
  • FIG. 7 is a perspective view of the processing granular material 19 according to the second embodiment.
  • the molten material is extruded through the extrusion holes 18a, whereby the processing granules 19 are configured to have a hexagonal surface 19a in a plan view.
  • the length dimension (side length) of each side Q that defines the contour of the hexagonal surface 19a is set to a value in the range of 0.18 mm or more and 3.35 mm or less.
  • the side length is further set to a value in the range of 0.18 mm or more and less than 3.00 mm.
  • FIG. 8 is a front view of the extrusion die 28 according to the third embodiment.
  • the extrusion die 28 has the same configuration as the extrusion die 8 except that the number of the vertices P of the extrusion holes 28a is 5.
  • the extrusion hole 28a has a substantially star-shaped peripheral shape.
  • FIG. 9 is a perspective view of the processing granular material 29 according to the third embodiment.
  • the molten material is extruded through the extrusion holes 28a, so that the processing granules 29 have a pentagonal surface 29a in plan view.
  • the length dimension (side length) of each side Q that defines the contour of the pentagonal surface 29a is set to a value in the range of 0.18 mm or more and 3.35 mm or less.
  • the side length is further set to a value in the range of 0.18 mm or more and less than 3.00 mm.
  • FIG. 10 is a front view of the extrusion die 38 according to the fourth embodiment.
  • the extrusion die 38 has the same configuration as the extrusion die 8 except that the number of the apexes P of the extrusion holes 38a is three.
  • the extrusion hole 38a has a substantially triangular peripheral shape.
  • FIG. 11 is a perspective view of the processing granular material 39 according to the fourth embodiment.
  • the molten material is extruded through the extrusion hole 38a, so that the processing granular material 39 is configured to have an equilateral triangular surface 39a in a plan view.
  • the length dimension (side length) of each side Q that defines the contour of the equilateral triangular surface 39a is set to a value in the range of 0.18 mm or more and 3.35 mm or less.
  • the side length is further set to a value in the range of 0.18 mm or more and less than 3.00 mm.
  • FIG. 12 is a front view of the extrusion die 48 according to the fifth embodiment. As shown in FIG. 12, in the extrusion die 38, the opening peripheral edge of the extrusion hole 48a is formed in a circular shape.
  • FIG. 13 is a perspective view of the processing granular material 49 according to the fifth embodiment.
  • the processing granular material 49 is formed in a cylindrical shape, and the side length of each side Q in a side view is set to a value in the range of 0.18 mm or more and 3.35 mm or less. ing. In the processing granular material 49 of the present embodiment, the side length is further set to a value in the range of 0.18 mm or more and less than 3.00 mm.
  • a processing granular material 49 is obtained which is formed in a cylindrical shape and in which the side length of each side Q in a side view is set to a value in the range of 0.18 mm or more and 3.35 mm or less. Further, in the second step of the present embodiment, the processing granular material 49 having the side length set to a value in the range of 0.18 mm or more and less than 3.00 mm is obtained.
  • a processing granular material 49 which is formed in a cylindrical shape and in which the side length of each side Q in a side view is set to a value in the range of 0.18 mm or more and 3.35 mm or less. Therefore, the particle size of the processing granules 49 can be made relatively small, and a minute corner portion can be formed in a portion corresponding to between the end surface and the side surface of the cylindrical body of the processing granules 49. Accordingly, for example, by pressing the processing granular material 49 against the surface of the processing target object 17 in a limited space, the processing target object 17 can be easily processed with a small external force.
  • such a processing granular material 49 extrudes a molten material from an extrusion die 38 to extrude a linear resin material 15 having a circular cross section, and the linear resin material 15 is extruded from an extrusion hole 38a in the extrusion direction. It can be manufactured efficiently by cutting in a direction perpendicular to.
  • the molten material is discharged from the extruded hole of the elliptical opening peripheral edge whose diameter in the major axis direction is set to a value in the range of 0.18 mm or more and 4.30 mm or less.
  • an elliptic cylinder is formed, and the side length of each side Q in side view is set to a value in the range of 0.18 mm or more and 3.35 mm or less. You may get things.
  • FIG. 14 is a horizontal sectional view of the extrusion die 58 according to the sixth embodiment.
  • the extrusion die 58 has a plurality of extrusion holes 58a arranged in parallel in the horizontal direction, and a plurality of partition members 59 for partitioning the adjacent extrusion holes 58a.
  • the opening peripheral edge of the extrusion hole 58a has, for example, a shape similar to that of the extrusion hole of any of the first to fifth embodiments, but is not limited to this. According to this configuration, a plurality of linear resin materials 15 (strand resin materials) can be obtained at one time, and the manufacturing efficiency of the processing granules can be significantly improved.
  • the processing granular materials 9 of Examples 1 to 3 were prepared by the following method.
  • As the cellulose ester cellulose acetate having a degree of acetyl substitution of 2.45 (cellulose acetate manufactured by Daicel Corp., intrinsic viscosity: 84 mPa ⁇ s) was used.
  • the cellulose acetate in the granular state was dried for 1 hour in a dryer set at 105 ° C., and then left to cool in a desiccator at room temperature (25 ° C.) for 1 hour.
  • the mixture was put in a vat and dried at 80 ° C for 2 hours. Then, the size of the lumps in the mixture was adjusted using a test sieve (opening: 3.35 mm) according to JIS Z 8801 to adjust the raw materials.
  • a target value of the side length is obtained by performing the first and second steps using the extrusion molding machine 1 of the first embodiment (“Process 11” manufactured by Thermo Fisher Scientific Co., Ltd. with the extrusion die 8).
  • Wecess 11 manufactured by Thermo Fisher Scientific Co., Ltd. with the extrusion die 8.
  • was 1.5 mm side length is about 1.0 mm or more and 1.7 mm or less
  • the extruder 1 was set as follows.
  • Feed rate of raw material to the internal space 4a about 7 g / min
  • Raw material heating temperature value in the range of 180 ° C to 220 ° C
  • Rotational speed of screw 5 90 rpm
  • Forming speed of the line-shaped resin material 15 2.5 m / min
  • Linear distance D1 of the extrusion hole 8a of the extrusion die 8 is 1.5 mm.
  • the obtained processing granules 9 were classified using a test sieve (mesh size was set to 1.0 mm, 1.4 mm, and 1.7 mm) according to JIS Z8801.
  • a test sieve mesh size was set to 1.0 mm, 1.4 mm, and 1.7 mm
  • the processing granules 9 of Example 1 having a maximum particle size of less than 1.0 mm, 1.0 mm or more and less than 1.4 mm, 1.4 mm or more and less than 1.7 mm, and 1.7 mm or more were screened.
  • the target value of the side length is 1.0 mm (the side length is in the range of 0.85 mm or more and 1.18 mm or less) in the same manner as in Example 1 except that the setting of the extruder is changed as follows. A hexagonal hexahedron for processing Example 9 was obtained.
  • Forming speed of the line-shaped resin material 15 4 m / min
  • Straight line distance D1 of the extrusion hole 8a of the extrusion die 8 is 1.0 mm.
  • the obtained processing granules 9 were classified using a test sieve (mesh size was set to 0.85 mm, 1.18 mm, 1.4 mm) based on JIS Z 8801.
  • a test sieve mesh size was set to 0.85 mm, 1.18 mm, 1.4 mm
  • the processing granules 9 of Example 2 having a maximum particle size of less than 0.85 mm, 0.85 mm or more and less than 1.18 mm, 1.18 mm or more and less than 1.4 mm, and 1.4 mm or more were sieved.
  • the target value of the side length is 0.5 mm (the side length is in the range of 0.425 mm or more and 0.6 mm or less) in the same manner as in Example 1 except that the setting of the extruder is changed as follows. A hexagonal hexahedron for processing Example 9 was obtained.
  • Forming speed of the line-shaped resin material 15 11 m / min
  • Straight line distance D1 of the extrusion hole 8a of the extrusion die 8 is 0.5 mm.
  • the obtained processing granules 9 were classified using a test sieve (mesh size was set to 0.425 mm, 0.5 mm, 0.6 mm) in accordance with JIS Z8801.
  • a test sieve mesh size was set to 0.425 mm, 0.5 mm, 0.6 mm
  • the processing granules 9 of Example 2 having the maximum particle size of less than 0.425 mm, 0.425 mm or more and less than 0.5 mm, 0.5 mm or more and less than 0.6 mm, and 0.6 mm or more were sieved.
  • Example 1 the yield of the processing granular material 9 in which the side length was set to a value in the range of 1.4 mm or more and less than 1.7 mm was 99.61 wt%, and the side length target. It was confirmed that the processing granules 9 having a side length close to the value of 1.5 mm can be produced with a very high yield.
  • Example 2 the yield of the processing granules 9 whose side length was set to a value in the range of 0.85 mm or more and less than 1.18 mm was 90.1 wt%, and the side length was It was confirmed that the processing granules 9 having a side length close to the target value of 1.0 mm can be produced in the highest yield next to Example 1.
  • Example 3 the yield of the processing granules 9 whose side length was set to a value in the range of 0.425 mm or more and less than 0.6 mm was 84.3 (35.9 + 48.4). ) Wt%, and it was confirmed that the processing granules 9 having a side length close to the side length target value of 0.5 mm can be produced in the highest yield next to Example 2.
  • Example 4 a cube-shaped processing granular material 9 having a side length target value of 0.5 mm was prepared as Example 4.
  • a cylindrical processing granular material 49 having a target side length of 0.5 mm was prepared as Example 5.
  • a cubic processing granular material 9 having a side length target value of 1.0 mm was prepared as Example 6.
  • Example 7 a cylindrical processing granular material 49 having a side length target value of 1.0 mm was prepared as Example 7.
  • FIG. 15 is a diagram showing how parallelism of the processing granules 9 and 49 of Examples 4 to 9 is measured.
  • a cylindrical processing granular material 49 is illustrated as an example.
  • the processing granules 9 and 49 are arranged on the upper surface of the horizontally arranged stage 60, and the objective of the microscope is viewed from one direction (vertical direction and extruding direction from the extruding hole 8a).
  • the lens 61 was brought close to the processing particles 9 and 49, and the processing particles 9 and 49 viewed from the one direction were photographed at a predetermined focal length. Thereby, a 3D image of the processing granular material 9 was obtained. Based on this 3D image, the cross-sectional shape of the processing particles 9 and 49 perpendicular to the horizontal plane was calculated.
  • FIG. 16 is a diagram showing a cross-sectional shape of the processing granular material 9 of Example 4.
  • FIG. 17 is a diagram showing a cross-sectional shape of the processing granular material 49 of the fifth embodiment.
  • 18 is a figure which shows the cross-sectional shape of the granular material 9 for a process of Example 6.
  • FIG. 19 is a figure which shows the cross-sectional shape of the granular material 49 for a process of Example 7.
  • FIG. In the cross-sectional shapes shown in FIGS. 16 to 19, the width of the processing granules 9 and 49 on the stage 60 side is larger than the actual width due to the focal length, but the parallelism can be calculated without any problem. it can.
  • each of the processing granules 9 of Examples 4 to 7 has a pair of surfaces spaced apart in one direction and based on one of the pair of surfaces. It was found that the parallelism of the other surface (the upper surface in FIGS. 16 to 19) with respect to the reference plane was set to a value in the range of more than 0 mm and 0.20 mm or less.
  • each of the processing granules 9 and 49 of Examples 4 to 9 includes a first pair of sides extending in a first direction perpendicular to one direction and separated in a second direction perpendicular to the first direction. It had a contour including a second pair of sides extending in the second direction and separated in the first direction.
  • the parallelism of the first pair of sides is set to a value in the range of 0 mm to 0.50 mm, and the parallelism of the second pair of sides is set to a value of the range of 0 mm to 0.10 mm inclusive. It turned out that it was done.
  • the present invention is not limited to the above embodiments, and the configuration and method thereof can be changed, added, or deleted without departing from the spirit of the present invention.
  • the above embodiments may be arbitrarily combined with each other, and for example, a part of the configuration or method in one embodiment may be applied to another embodiment.
  • the present invention when producing a processing granule having a relatively small particle size, the influence on the environment is low, and the processing granule having excellent workability of the object to be processed can be produced with high production efficiency. It has an excellent effect of being manufactured. Therefore, it is beneficial to apply it widely as a processing granule, a composite unit including the processing granule, and a manufacturing method of the processing granule that can exert the significance of this effect.

Abstract

加工用粒状物は、ポリ乳酸及びセルロースエステルのうちの少なくともいずれかを含み、複数の角を有すると共に、最大粒径が0.18mm以上3.35mm以下の範囲の値に設定されている。

Description

加工用粒状物、加工用粒状物を備える複合ユニット、及び加工用粒状物の製造方法
 本発明は、加工用粒状物、加工用粒状物を備える複合ユニット、及び加工用粒状物の製造方法に関する。
 加工対象物を研磨又は粉砕等することにより加工する目的で、例えば、粒状物が用いられる。この粒状物は、一例として特許文献1に開示されるように、樹脂材料により構成される。
 樹脂材料からなる粒状物を製造する場合、例えば、押出成形機の押出ダイから溶融材料を押し出して形成したライン状の樹脂材料を切断し、樹脂片を粉砕及び分級することで製造される。
特表2008-528310号公報
 従来の加工用粒状物は、使用中に飛散する可能性があることを考慮すると、環境に与える影響が低いことが望ましい。また例えば、限られたスペースで加工対象物を良好に加工できるように、粒径が比較的小さい加工用粒状物を製造する場合、加工対象物の加工性に優れる加工用粒状物を効率よく製造できることが望ましい。
 そこで本発明は、粒径が比較的小さい加工用粒状物を製造する場合において、環境に与える影響が低く、加工対象物の加工性に優れる加工用粒状物を高い製造効率で製造可能にすることを目的とする。
 上記課題を解決するために、本発明の一態様に係る加工用粒状物は、ポリ乳酸及びセルロースエステルのうちの少なくともいずれかを含み、複数の角を有すると共に、最大粒径が0.18mm以上3.35mm以下の範囲の値に設定されている。
 上記構成によれば、加工用粒状物が、ポリ乳酸及びセルロースエステルのうちの少なくともいずれかを含むことにより、加工用粒状物に生分解性を付与できる。このため、環境下において、加工用粒状物を生分解できる。従って、加工用粒状物が万一環境中に放出された場合でも、加工用粒状物の環境に与える影響を低減できる。
 また、加工用粒状物が、複数の角を有すると共に、最大粒径が0.18mm以上3.35mm以下の範囲の値に設定されていることにより、加工用粒状物の粒径を比較的小さくできると共に、加工用粒状物に微小な角部を形成できる。これにより、例えば、限られたスペースで、加工用粒状物を加工対象物の表面に押圧することで、少ない外力で加工対象物を加工し易くすることができる。
 また、このような加工用粒状物は、ポリ乳酸及びセルロースエステルのうちの少なくともいずれかを含むため、例えば、当該成分を含む原料を押出成形機に供給してライン状樹脂材料を押出し、当該材料を切断することで、加工用粒状物を効率よく製造できる。
 多角形状の複数の面を有する多面体状に形成されると共に、各々の辺の辺長が、0.18mm以上3.35mm以下の範囲の値に設定されていてもよい。これにより、加工用粒状物の表面に多くの角を設けることができると共に、多面体の各面の周縁に相当する部分にも加工性を付与できるので、高い加工性を有する加工用粒状物を構成できる。
 前記複数の面は、平面視において、三角形、四角形、五角形、及び六角形のうちいずれかの形状の面を含んでいてもよい。これにより、加工用粒状物の多面体の各面の周縁に相当する部分に高い加工性を有する加工用粒状物を構成できる。
 円柱体状に形成されると共に、側面視における各々の辺の辺長が、0.18mm以上3.35mm以下の範囲の値に設定されていてもよい。これにより、加工用粒状物の粒径を比較的小さくできると共に、加工用粒状物の円柱体の端面と側面との間に相当する部分に微小な角部を形成できる。よって、例えば、限られたスペースで、加工用粒状物を加工対象物の表面に押圧することで、少ない外力で加工対象物を加工し易くすることができる。また、このような加工用粒状物は、例えば原料を押出成形機に供給して、断面が円形のライン状樹脂材料を押出し、当該材料を切断することで効率よく製造できる。
 前記辺長が、更に0.18mm以上3.00mm未満の範囲の値に設定されていてもよい。この構成によれば、辺長を適度に縮小し、同一重量の他の形状のものに比べて隣接する面の間に形成される微小な角部を増大できる。これにより、例えば、当該粒状物により加工対象物を研磨する際の研磨性を向上できる。
 一方向から見て、前記一方向に垂直な第1方向に延び且つ前記第1方向に垂直な第2方向に離隔する一対の辺を含む輪郭を有し、前記一対の辺の平行度が、0mm以上0.50mm以下の範囲の値に設定されていてもよい。
 上記構成によれば、加工用粒状物の前記一対の辺が高い精度で平行に保たれるため、複数の加工用粒状物の形状を均一にし易くすることができる。これにより、加工用粒状物を用いて加工対象物を加工する際の加工性を均一化でき、安定した品質で加工対象物を加工できる。
 前記一対の辺は、第1の一対の辺であり、前記一方向から見て、前記第2方向に延び且つ前記第1方向に離隔する第2の一対の辺を更に含む輪郭を有し、前記第2の一対の辺の平行度が、0mm以上0.10mm以下の範囲の値に設定されていてもよい。これにより、一方向から見て、互いに平行度が異なる2対の辺を含む輪郭を有する加工用粒状物が得られる。このような形状の加工用粒状物によれば、第1の一対の辺に対応する表面と、第2の一対の辺に対応する表面との各特性を互いに異ならせ易くできる。結果として、加工用粒状物の多機能化を図り易くできる。
 前記一方向に離隔して並ぶ一対の面を有し、前記一対の面のうち、一方の面に基づく基準平面に対する他方の面の平行度が、0mmより大きく0.20mm以下の範囲の値に設定されていてもよい。このような形状の加工用粒状物によれば、前記他方の面の平行度を上記値に設定することで、当該面に一定範囲で適度な加工性を付与できる。結果として、加工用粒状物を用いて加工対象物を加工する際の加工性を調節し易くできる。
 前記ポリ乳酸及び前記セルロースエステルのうちの少なくともいずれかを主成分として含み、前記主成分以外の有機成分及び無機成分の含有量が、5重量%未満の範囲の値に設定されていてもよい。この構成によれば、加工用粒状物に前記主成分による生分解性を付与し易くできる。また、加工用粒状物の硬度を高く維持でき、加工対象物を加工する際の加工性を良好に保持できる。
 本発明の一態様に係る複合ユニットは、上記したいずれかの前記加工用粒状物と、前記加工用粒状物により加工される加工対象物と、前記加工用粒状物と前記加工対象物とを収容する柔軟な容器とを備え、前記容器に外部から外力を加えることで、前記容器内において、前記加工対象物が前記加工用粒状物により加工される。
 上記構成によれば、柔軟な容器の内部に加工用粒状物と加工対象物とを収容した状態で加工用粒状物により加工対象物を加工することで、限られたスペースで、加工用粒状物及び加工対象物の飛散を防止しながら、加工対象物に加工用粒状物を効率よく接触させて、加工対象物を加工できる。
 本発明の一態様に係る加工用粒状物の製造方法は、ポリ乳酸及びセルロースエステルのうちの少なくともいずれかを含む溶融材料を、最大内径が0.18mm以上4.30mm以下の範囲の値に設定された開口周縁の押出孔から押し出すことにより、ライン状樹脂材料を押出成形する第1ステップと、ライン状樹脂材料を前記押出孔からの押出方向に垂直な方向に切断することにより、複数の角を有すると共に、最大粒径が0.18mm以上3.35mm以下の範囲の値に設定された加工用粒状物を得る第2ステップとを有する。
 上記方法によれば、溶融材料がポリ乳酸及びセルロースエステルのうちの少なくともいずれかを含むことにより、加工用粒状物に生分解性を付与できる。このため、環境下において、加工用粒状物を分解でき、加工用粒状物の環境に与える影響を低減できる。
 また、加工用粒状物が、複数の角を有すると共に、最大粒径が0.18mm以上3.35mm以下の範囲の値に設定されていることにより、加工用粒状物の粒径を比較的小さくできると共に、加工用粒状物に微小な角部を形成できる。これにより、例えば、限られたスペースで、加工用粒状物を加工対象物の表面に押圧することで、少ない外力で加工対象物を加工し易くすることができる。
 また、このような加工用粒状物は、溶融材料を押出ダイから押し出すことでライン状樹脂材料を押出成形し、このライン状樹脂材料を押出孔からの押出方向に垂直な方向に切断することで、効率よく製造できる。
 また、上記のように設定された開口周縁の押出孔によりライン状樹脂材料を押出成形することで、ライン状樹脂材料を押出孔からの押出方向に垂直な方向に切断するだけで、比較的粒径の小さい加工用粒状物が得られる。よって例えば、ライン状樹脂材料を粉砕・分級する工程を有する製造方法に比べて、加工用粒状物の収率を大幅に向上できると共に、製造工程を簡素化して生産コストの低減を図れる。
 前記第1ステップでは、前記開口周縁が、複数の頂点を有し且つ隣接する前記頂点同士間の直線距離が0.18mm以上4.30mm以下の範囲の値に設定された形状の前記押出孔から溶融材料を押し出すことにより、前記第2ステップにおいて、多角形状の複数の面を有する多面体状に形成されると共に、各々の辺の辺長が、0.18mm以上3.35mm以下の範囲の値に設定された前記加工用粒状物を得てもよい。
 上記方法によれば、多角形状の複数の面を有する多面体状に形成されると共に、各々の辺の辺長が0.18mm以上3.35mm以下の範囲の値に設定された加工用粒状物が得られるため、加工用粒状物の表面に多くの角を設けることができると共に、多面体の各面の周縁に相当する部分にも加工性を付与できるので、高い加工性を有する加工用粒状物を構成できる。
 前記第1ステップでは、隣接する前記頂点同士が、開口中心に向けて湾曲する曲線分によりそれぞれ結ばれてなる形状の前記開口周縁の前記押出孔から溶融材料を押し出してもよい。
 上記方法によれば、押出孔から押し出した後のライン状樹脂材料がスウェル現象により膨張する膨張分を見込んで、ライン状樹脂材料の断面形状を成形できる。このため、目的の形状を有する加工用粒状物を形成し易くすることができる。
 前記第1ステップでは、前記押出孔の正面視において、前記曲線分と、前記隣接する頂点を通る仮想線との間の前記仮想線に垂直な方向の最大距離が、前記最大内径の0%よりも大きく且つ25%以下の範囲の値に設定された前記開口周縁の前記押出孔から溶融材料を押し出してもよい。
 上記方法によれば、上記のように周縁形状が形成された押出孔から溶融材料を押し出すことで、比較的粒径が小さい加工用粒状物を製造できると共に、押出孔から押し出した後のライン状樹脂材料がスウェル現象により膨張する膨張分を見込んで、ライン状樹脂材料の断面形状を成形できる。このため、目的の形状を有する加工用粒状物を更に形成し易くすることができる。
 前記第1ステップでは、3以上6以下の範囲の数の前記頂点を有する形状に形成された前記開口周縁の前記押出孔から溶融材料を押し出してもよい。この方法によれば、上記のように周縁形状が形成された押出孔から溶融材料を押し出すことで、三角形、四角形、五角形、及び六角形のうちいずれかの形状の面を有することにより、各面の周縁に相当する部分に高い加工性を有する加工用粒状物を効率よく製造できる。
 前記第1ステップでは、直径が0.18mm以上4.30mm以下の範囲の値に設定された円形状の前記開口周縁の前記押出孔から溶融材料を押し出すことにより、前記第2ステップにおいて、円柱体状に形成されると共に、側面視における各々の辺の辺長が、0.18mm以上3.35mm以下の範囲の値に設定された前記加工用粒状物を得てもよい。
 上記方法によれば、円柱体状に形成されると共に、側面視における各々の辺の辺長が、0.18mm以上3.35mm以下の範囲の値に設定された加工用粒状物が得られるため、加工用粒状物の粒径を比較的小さくできると共に、加工用粒状物の円柱体の端面と側面との間に相当する部分に微小な角部を形成できる。これにより、例えば、限られたスペースで加工用粒状物を加工対象物の表面に押圧することで、少ない外力で加工対象物を加工し易くすることができる。
 また、このような加工用粒状物は、溶融材料を押出ダイから押し出すことで断面が円形のライン状樹脂材料を押出成形し、このライン状樹脂材料を押出孔からの押出方向に垂直な方向に切断することで、効率よく製造できる。
 前記第2ステップでは、前記辺長が、更に0.18mm以上3.00mm未満の範囲の値に設定された前記加工用粒状物を得てもよい。この方法によれば、製造する加工用粒状物の辺長を適度に縮小し、同一重量の他の形状のものに比べて隣接する面の間に形成される微小な角部を増大できる。これにより、例えば、加工対象物を研磨する際の研磨性が向上された加工用粒状物が得られる。
 前記第2ステップでは、前記ポリ乳酸及び前記セルロースエステルのうちの少なくともいずれかを主成分として含み、前記主成分以外の有機成分及び無機成分の含有量が、5重量%未満の範囲の値に設定された前記加工用粒状物を得てもよい。
 上記方法によれば、製造する加工用粒状物に前記主成分による生分解性を付与し易くできる。また、硬度を高く維持でき、加工対象物を加工する際の加工性を良好に保持できる加工用粒状物が得られる。
 前記第2ステップでは、前記開口周縁からの押出方向から見て、前記押出方向に垂直な第1方向に延び且つ前記第1方向に垂直な第2方向に離隔する一対の辺を含む輪郭を有し、前記一対の辺の平行度が、0mm以上0.50mm以下の範囲の値に設定された前記加工用粒状物を得てもよい。この方法によれば、加工用粒状物の前記一対の辺が高い精度で平行に保たれるため、製造される複数の加工用粒状物の形状を均一にし易くすることができる。
 前記第2ステップでは、前記一対の辺が第1の一対の辺であり、前記押出方向から見て、前記第2方向に延び且つ前記第1方向に離隔する第2の一対の辺を更に含む輪郭を有し、前記第2の一対の辺の平行度が、0mm以上0.10mm以下の範囲の値に設定された前記加工用粒状物を得てもよい。
 これにより、一方向から見て、互いに平行度が異なる2対の辺を含む輪郭を有する加工用粒状物が得られる。このような形状の加工用粒状物によれば、第1の一対の辺に対応する表面と、第2の一対の辺に対応する表面との各特性を互いに異ならせ易くできる。結果として、加工用粒状物の多機能化を図り易くできる。
 前記第2ステップでは、前記一方向に離隔して並ぶ一対の面を有し、前記一対の面のうち、一方の面に基づく基準平面に対する他方の面の平行度が、0mmより大きく0.20mm以下の範囲の値に設定された前記加工用粒状物を得てもよい。これにより、前記他方の面の平行度を上記値に設定することで、当該面に一定範囲で適度な加工性を付与できる加工用粒状物が得られる。
 本発明の各態様によれば、粒径が比較的小さい加工用粒状物を製造する場合において、環境に与える影響が低く、加工対象物の加工性に優れる加工用粒状物を高い製造効率で製造できる。
第1実施形態に係る押出成形機の概略図である。 図1の押出ダイの正面図である。 図1の加工用粒状物の斜視図である。 第1実施形態に係る複合ユニットの概略図である。 (a)は、図4の複合ユニットの押圧前の鉛直断面図である。(b)は、図4の複合ユニットの押圧後の鉛直断面図である。 第2実施形態に係る押出ダイの正面図である。 第2実施形態に係る加工用粒状物の斜視図である。 第3実施形態に係る押出ダイの正面図である。 第3実施形態に係る加工用粒状物の斜視図である。 第4実施形態に係る押出ダイの正面図である。 第4実施形態に係る加工用粒状物の斜視図である。 第5実施形態に係る押出ダイの正面図である。 第5実施形態に係る加工用粒状物の斜視図である。 第6実施形態に係る押出ダイの水平断面図である。 実施例の加工用粒状物の平行度を測定する際の様子を示す図である。 辺長目標値が0.5mmの立方体状の実施例の断面形状を示す図である。 辺長目標値が0.5mmの円柱状の実施例の断面形状を示す図である。 辺長目標値が1.0mmの立方体状の実施例の断面形状を示す図である。 辺長目標値が1.0mmの円柱状の実施例の断面形状を示す図である。
 以下、各実施形態について図を参照して説明する。
 (第1実施形態)
 [押出成形機]
 図1は、第1実施形態に係る押出成形機1の概略図である。押出成形機1は、駆動部2、減速部3、筒状部4、少なくとも1つ(ここでは一対)のスクリュー5、貯留部6、ダクト7、押出ダイ8、及びカッター(ペレタイザー)12を備える。
 駆動部2は、一例としてモータを内蔵し、スクリュー5をその軸回りに回転させる回転駆動力を発生させる。減速部3は、駆動部2からの出力を回転数を減速させた状態でスクリュー5へ伝達する。筒状部4は、水平方向に延びる円柱状の内部空間4aを有する。筒状部4の内部空間4aには、スクリュー5がその軸回りに回転可能に軸支されている。スクリュー5の周面には、螺旋溝5aが形成されている。内部空間4aの長手方向一端側には、減速部3が配置され、長手方向他端側は、外部に開口されている。
 貯留部6は、上下方向に延び、筒状部4の上方に配置されて、下端が筒状部4の内部空間4aに接続されている。貯留部6には、加工用粒状物9の原料が貯留される。当該原料は、ポリ乳酸及びセルロースエステルのうちの少なくともいずれかを含み、貯留部6から筒状部4の内部空間4aに供給される。
 ダクト7は、筒状部4の下方から内部空間4aに冷却風を供給可能に設けられている。押出ダイ8は、筒状部4の内部空間4aの長手方向他端側に配置され、内部空間4aの開口の周縁において筒状部4に脱着自在に取り付けられている。押出ダイ8は、筒状部4の内部空間4aと連通する押出孔8aを有する。カッター12は、押出ダイ8の押出孔8aから押し出されるライン状樹脂材料15を所定のタイミングで切断する。なお押出成形機1は、ここでは一対のスクリュー5を備える二軸式であるが、1本のスクリュー5を備える単軸式でもよいし、その他の形式でもよい。
 押出成形機1の駆動時には、駆動部2の回転駆動力が減速部3を介してスクリュー5に伝達され、スクリュー5が回転される。また、貯留部6に貯留された原料が、筒状部4の内部空間4aに供給されて加熱される。これにより溶融材料が形成される。
 溶融材料は、スクリュー5の螺旋溝5aにより内部空間4aの長手方向他端側に向けて搬送されながら、押出ダイ8に押圧される。溶融材料は、押出ダイ8の押出孔8aから外部に押し出される。このとき、溶融材料が押出孔8aの開口周縁により成形されることで、固形のライン状樹脂材料15が得られる。ライン状樹脂材料15は、押出孔8aの周縁形状に対応した断面形状を有し、押出孔8aからの押出方向に垂直な方向にカッター12により切断される。これにより、加工用粒状物9が得られる。
 [押出ダイ及び加工用粒状物]
 図2は、図1の押出ダイ8の正面図である。図2に示すように、押出ダイ8の押出孔8aは、一例として、最大内径が0.18mm以上4.30mm以下の範囲の値に設定されている。押出孔8aは、開口周縁が非円形に形成されている。押出孔8aの開口周縁は、一例として複数の頂点Pを有し、隣接する頂点P同士が、開口中心に向けて湾曲する曲線分Lによりそれぞれ結ばれてなる多角形状に形成されている。
 隣接する頂点P同士間の直線距離D1は0.18mm以上4.30mm以下の範囲の値に設定されている。押出孔8aの正面視において、曲線分Lと、隣接する頂点Pを通る仮想線Vとの間の仮想線Vに垂直な方向の最大距離D2は、押出ダイ8の最大内径の0%よりも大きく且つ25%以下の範囲の値に設定されている。押出孔8aの開口周縁は、3以上6以下の範囲の数の頂点Pを有する形状に形成されている。ここでは一例として、押出孔8aは、開口周縁が4つの頂点Pを有する形状に形成されている。例えば、図2の押出孔8aの場合、最大距離D2は、0mmよりも大きく且つ1.2mm以下の範囲の値に設定されている。
 ここで、溶融材料が押出ダイ8の押出孔8aから押し出される際、押出孔8aの周縁により圧縮されていた溶融材料が押出孔8aの径方向に開放されて膨張するスウェル現象(応力緩和現象)が生じる場合がある。スウェル現象が生じると、ライン状樹脂材料15の断面形状を所望の形状に設定しにくくなるおそれがある。
 この問題に対して本実施形態では、複数の頂点Pを有し、隣接する頂点P同士が曲線分Lによりそれぞれ結ばれてなる多角形状に押出孔8aの開口周縁を形成することで、スウェル現象の発生に伴うライン状樹脂材料15の断面形状の変形が防止される。
 図3は、図1の加工用粒状物9の斜視図である。図3に示すように、加工用粒状物9は、ポリ乳酸及びセルロースエステルのうちの少なくともいずれかを含む。本実施形態の加工用粒状物9は、ポリ乳酸及びセルロースエステルのうちの少なくともいずれかを主成分として含み、主成分以外の有機成分及び無機成分の含有量が、5重量%未満の範囲の値に設定されている。ここで言う主成分とは、加工用粒状物9に50重量%よりも多く含有される成分を指す。
 加工用粒状物9は、複数の角を有すると共に、最大粒径が0.18mm以上3.35mm以下の範囲の値に設定されている。ここでは、加工用粒状物9は、多角形状の複数の面9aを有する多面体状に形成されると共に、各々の辺Qの長さ寸法(辺長)が、0.18mm以上3.35mm以下の範囲の値に設定されている。本実施形態の加工用粒状物9は、更に前記辺長が、0.18mm以上3.00mm未満の範囲の値(例えば2.9mm)に設定されている。
 ここで言う角とは、加工用粒状物9が多面体状に形成されている場合、3面以上の面の突合せ位置の頂点を指す。また、加工用粒状物9が円柱体状又は楕円柱体状に形成されている場合、端面と側面との境界(辺)を指す。また、加工用粒状物9が多面体状、円柱体状、及び楕円柱状のいずれにも該当しない形状に形成されている場合、隣接する2面の境界(辺)、又は3面以上の面の突合せ位置の頂点の少なくともいずれかを指す。また、頂点Pの数は適宜設定可能であるが、一例として、4以下であることが好ましい。
 また、ここで言う辺長とは、多面体状の加工用粒状物9の正面視又は側面視において、加工用粒状物9の投影面にて隣接する頂点P同士間の直線距離を指す。また、ここで言う多面体、円柱体、及び楕円柱体には、例えば、製造時に生じうる若干の形状誤差を有する形状も含まれる。また製造時の誤差を考慮して、加工用粒状物9の最大粒径の下限値及び最大値の各々は、それぞれ数%の誤差を含んでいてもよい。また、多数の加工用粒状物9を用いる場合、当該粒状物群には、例えば、最大粒径が0.18mm未満のものが15重量%以下で含まれていてもよい。
 また、加工用粒状物9の最大粒径の値は、JIS Z 8801に準拠する試験用ふるいのうち、加工用粒状物9が通過可能なふるいの目開きの最小値として規定される。また、加工用粒状物9の粒径分布は、公知の方法、例えば、動的光散乱法、レーザ回折・散乱法、画像イメージング法、及びふるい法のいずれかにより測定できる。
 加工用粒状物9の最大粒径は、上記範囲において適宜設定可能である。加工用粒状物9の最大粒径の上限値は、例えば、3.35mm、3.0mm、2.5mm、2.0mm、及び1.5mmのいずれかに設定できる。加工用粒状物9の最大粒径の下限値は、例えば、0.18mm、0.20mm、0.30mm、0.40mm、及び0.50mmのいずれかに設定できる。また別の例では、加工用粒状物9の最大粒径は、2.98mm以下の範囲の値に設定するのが望ましい。加工用粒状物9の最大粒径は、通常はバラス効果により、押出孔8aの最大内径よりも小さくなる傾向がある。
 加工用粒状物9の複数の面9aは、平面視において、三角形、四角形、五角形、及び六角形のうちいずれかの形状(ここでは四角形のみ)の面9aを含んでいる。本実施形態では、上記多面体は六面体である。
 加工用粒状物9は、一方向から見て、前記一方向に垂直な第1方向に延び且つ第1方向に垂直な第2方向に離隔する一対の辺を含む輪郭を有する。一対の辺の平行度は、0mm以上0.50mm以下の範囲の値に設定されている。
 また加工用粒状物9は、一方向から見て、前記一対の辺が第1の一対の辺であり、第2方向に延び且つ第1方向に離隔する第2の一対の辺を更に含む輪郭を有する。この第2の一対の辺の平行度は、0mm以上0.10mm以下の範囲の値に設定されている。一方向から見た加工用粒状物9の輪郭は、上記した2対の辺を含むことにより、矩形状に形成されている。これにより加工用粒状物9は、上記した2対の辺に対応して、平行度が異なる2対の表面領域を有している。
 また加工用粒状物9は、一方向に離隔して並ぶ一対の面を有し、一対の面のうち、一方の面に基づく基準平面(データム平面)に対する他方の面の平行度が、0mmより大きく0.20mm以下の範囲の値に設定されている。これにより加工用粒状物9の当該他方の面は、平行度の範囲により許容される、ある程度の凹凸形状が形成されている。本実施形態の加工用粒状物9の前記一対の面は、以下に示すライン状樹脂材料15が切断される切断面に相当する。
 ここで言う平行度とは、JIS B 0022及びJIS B 0621:1984に定義される。即ち、関連形体に幾何公差を指示するときに、その公差域を規制するために設定した理論的に正確な幾何学基準であるデータム直線又はデータム平面に対して平行な幾何学的直線又は幾何学的平面からの平行であるべき直線形体又は平面形体の狂いの大きさを指す。
 加工用粒状物9の形状、辺Qの辺長、及び粒径等は、例えば、市販品のデジタルマイクロスコープ(例えば、株式会社ハイロックス製「RH-2000」)等を用いて確認及び計測できる。
 加工用粒状物9は、押出成形機1を用いて製造される。本実施形態の加工用粒状物9の製造方法は、ポリ乳酸及びセルロースエステルのうちの少なくともいずれかを含む溶融材料を、最大内径が0.18mm以上4.30mm以下の範囲の値に設定された開口周縁の押出孔8aから押し出すことにより、ライン状樹脂材料15を押出成形する第1ステップと、ライン状樹脂材料15を押出孔8aからの押出方向に垂直な方向に切断することにより、複数の角を有すると共に、最大粒径が0.18mm以上3.35mm以下の範囲の値に設定された加工用粒状物9を得る第2ステップとを有する。ライン状樹脂材料15は、一例として、押出方向に垂直な面内で回転する回転刃により連続的に切断される。ライン状樹脂材料15の切断方法は、これに限定されない。
 押出孔8aの最大内径は、上記範囲において適宜設定可能である。押出孔8aの最大内径は、例えば、得ようとする加工用粒状物9の最大粒径や使用する樹脂の粘度等を考慮して決定できる。押出孔8aの最大内径の上限値は、例えば、4.30mm、3.80mm、3.30mm、2.90mm、2.80mm、2.50mm、及び2.10mmのいずれかに設定できる。押出孔8aの最大内径の下限値は、例えば、0.18mm、0.20mm、0.25mm、0.30mm、0.50mm、及び0.70mmのいずれかに設定できる。得ようとする加工用粒状物9の加工対象物に対する研磨性を向上させるためには、例えば、押出孔8aの最大内径は、2.80mm以下の範囲の値に設定するのが好ましい。
 本実施形態の第1ステップでは、開口周縁が、直線距離D1が0.18mm以上4.30mm以下の範囲の値に設定された形状の押出孔8aから溶融材料を押し出すことにより、第2ステップにおいて、多角形状の複数の面9aを有する多面体状に形成されると共に、各々の辺Qの辺長が、0.18mm以上3.35mm以下の範囲の値に設定された加工用粒状物9を得る。また本実施形態の第2ステップでは、前記辺長が、更に0.18mm以上3.00mm未満の範囲の値に設定された加工用粒状物9を得る。
 また本実施形態の第2ステップでは、ポリ乳酸及びセルロースエステルのうちの少なくともいずれかを主成分として含み、前記主成分以外の有機成分及び無機成分の含有量が、5重量%未満の範囲の値に設定された加工用粒状物9を得る。
 また本実施形態の第1ステップでは、一例として、隣接する頂点P同士が曲線分Lによりそれぞれ結ばれてなる形状の開口周縁の押出孔8aから溶融材料を押し出す。また本実施形態の第1ステップでは、最大距離D2が、押出ダイ8の最大内径の0%よりも大きく且つ25%以下の範囲の値に設定された開口周縁の押出孔8aから溶融材料を押し出す。また本実施形態の第1ステップでは、3以上6以下の範囲の数(ここでは4)の頂点Pを有する形状に形成された開口周縁の押出孔8aから溶融材料を押し出す。
 また本実施形態の第2ステップでは、押出孔8aの開口周縁からの押出方向から見て、一方向(押出方向)に垂直な第1方向に延び且つ第1方向に垂直な第2方向に離隔する一対の辺を含む輪郭を有し、一対の辺の平行度が、0mm以上0.50mm以下の範囲の値に設定された加工用粒状物9を得る。
 また本実施形態の第2ステップでは、前記一対の辺が第1の一対の辺であり、押出孔8aの開口周縁からの押出方向から見て、第2方向に延び且つ第1方向に離隔する第2の一対の辺を更に含む輪郭を有し、この第2の一対の辺の平行度が、0mm以上0.10mm以下の範囲の値に設定された加工用粒状物9を得る。
 また本実施形態の第2ステップでは、一方向に離隔して並ぶ一対の面を有し、一対の面のうち、一方の面に基づく基準平面(データム平面)に対する他方の面の平行度が、0mmより大きく0.20mm以下の範囲の値に設定された加工用粒状物9を得る。
 [複合ユニット]
 図4は、第1実施形態に係る複合ユニット10の概略図である。複合ユニット10は、加工用粒状物9と、加工用粒状物9により加工される加工対象物17と、加工用粒状物9と加工対象物17とを収容する柔軟な容器11とを備える。
 図5の(a)は、図4の複合ユニット10の押圧前の鉛直断面図である。図5の(b)は、図4の複合ユニット10の押圧後の鉛直断面図である。図5(a),(b)に示すように、複合ユニット10では、容器11に外部から外力を加えることで、加工用粒状物9が加工対象物17の表面に強く押圧される。加工対象物17は、容器11内において、加工用粒状物9により粉砕され、又は、表面が研磨等されることで加工される。このとき、例えば加工対象物17が液状の内容物を封入した封入体である場合、加工対象物17が粉砕されることで、加工対象物17の内容物が容器11の内部に拡散される。
 複合ユニット10によれば、柔軟な容器11の内部に加工用粒状物9と加工対象物17とを収容した状態で加工用粒状物9により加工対象物17を加工することで、加工用粒状物9及び加工対象物17の飛散を防止しながら、加工対象物17に加工用粒状物9を効率よく接触させて、加工対象物を加工できる。
 なお、加工対象物17の構成は限定されない。また、複合ユニット10の内部には、加工用粒状物9及び加工対象物17を担持する柔軟な担持体が配置されていてもよい。この場合、担持体は、例えば、加工用粒状物9と同様の材料や、その他の生分解性材料により構成されていてもよい。複合ユニット10の用途としては、例えば、化粧品用途が挙げられるが、これに限定されない。
 以上説明したように、本実施形態によれば、加工用粒状物9がポリ乳酸及びセルロースエステルのうちの少なくともいずれかを含むことにより、加工用粒状物に生分解性を付与できる。このため、環境下において、加工用粒状物9を生分解できる。従って、加工用粒状物9が万一環境中に放出された場合でも、加工用粒状物9の環境に与える影響を低減できる。
 また加工用粒状物9が、複数の角を有すると共に、最大粒径が0.18mm以上3.35mm以下の範囲の値に設定されていることにより、加工用粒状物9の粒径を比較的小さくできると共に、加工用粒状物9に微小な角部を形成できる。これにより、例えば、限られたスペースで、加工用粒状物9を加工対象物17の表面に押圧することで、少ない外力で加工対象物17を加工し易くすることができる。
 また、このような加工用粒状物9は、ポリ乳酸及びセルロースエステルのうちの少なくともいずれかを含むため、例えば、当該成分を含む原料を押出成形機1に供給してライン状樹脂材料15を押出し、当該材料15を切断することで、加工用粒状物9を効率よく製造できる。
 ここで加工用粒状物9は、例えば、サンドブラスターと称される装置の中で使用されることが多い。サンドブラスターで加工対象物17を研磨する場合のメディアとして加工用粒状物9が用いられる。サンドブラスターで研磨して取り出された加工対象物17には、微量のメディア(加工用粒状物9)が付着している場合も想定される。このようにして、加工用粒状物9が環境に流出する可能性がある。
 この場合、加工用粒状物9は、ポリ乳酸及びセルロースエステルのうちの少なくともいずれかである生分解性材料により構成されていることが望ましい。また、加工用粒状物9が前記生分解性材料以外の不純物(例えば澱粉や木粉等の有機物や、無機物)を含有していると、加工用粒状物9の強度が低下する場合がある。従って、加工用粒状物9に前記生分解性材料以外の不純物が含まれる場合、当該不純物は、加工用粒状物9の5重量%未満の範囲の値、好ましくは1wt%未満の範囲の値に設定されていることが望ましい。なお、加工用粒状物9は、このような不純物を含有しないことが最も望ましい。
 ここで上記したように、本実施形態の加工用粒状物9は、ポリ乳酸及びセルロースエステルのうちの少なくともいずれかを主成分として含み、主成分以外の有機成分及び無機成分の含有量が、5重量%未満の範囲の値に設定されている。この構成によれば、加工用粒状物9に前記主成分による生分解性を付与し易くできる。また、加工用粒状物9の硬度を高く維持でき、加工対象物17を加工する際の加工性を良好に保持できる。
 また加工用粒状物9は、多角形状の複数の面9aを有する多面体状に形成されると共に、各々の辺の辺長が、0.18mm以上3.35mm以下の範囲の値に設定されているので、加工用粒状物9の表面に多くの角を設けることができると共に、多面体の各面の周縁に相当する部分にも加工性を付与できるので、高い加工性を有する加工用粒状物9を構成できる。
 また加工用粒状物9の複数の面9aは、平面視において、三角形、四角形、五角形、及び六角形のうちいずれかの形状の面9aを含んでいるため、多面体の各面の周面部分に高い加工性を有する加工用粒状物9を構成できる。
 また本実施形態では、加工用粒状物9が六面体であるため、例えば、断面が矩形のライン状樹脂材料15を切断することで加工用粒状物9を製造でき、加工性に優れる加工用粒状物9を更に効率よく製造できる。
 また本実施形態では、加工用粒状物9の前記辺長が、更に0.18mm以上3.00mm未満の範囲の値に設定されている。この構成によれば、前記辺長を適度に縮小し、同一重量の他の形状のものに比べて隣接する面の間に形成される微小な角部を増大できる。これにより、例えば、加工用粒状物9により加工対象物17を研磨する際の研磨性を向上できる。加工用粒状物9では、一定範囲において、前記辺長が小さいほど、同一重量の他の形状のものに比べて微小な角部を増大させ易い。
 また加工用粒状物9は、一方向から見て、一方向に垂直な第1方向に延び且つ第1方向に垂直な第2方向に離隔する一対の辺を含む輪郭を有し、一対の辺の平行度が、0mm以上0.50mm以下の範囲の値に設定されている。
 この構成によれば、加工用粒状物9の一対の辺が高い精度で平行に保たれるため、加工用粒状物9の形状を均一にし易くすることができる。これにより、加工用粒状物9を用いて加工対象物17を加工する際の加工性を均一化でき、安定した品質で加工対象物17を加工できる。なお、このような構成の加工用粒状物9は、例えば押出成形機1を用いることで効率よく製造できる。この場合、押出孔8aからのライン状樹脂材料15の押出方向が、前記一方向に垂直な方向となる。
 また加工用粒状物9は、一方向から見て、前記一対の辺が第1の一対の辺であり、第2方向に延び且つ第1方向に離隔する第2の一対の辺を更に含む輪郭を有し、第2の一対の辺の平行度が、0mm以上0.10mm以下の範囲の値に設定されている。これにより、一方向から見て、互いに平行度が異なる2対の辺を含む輪郭を有する加工用粒状物9が得られる。このような形状の加工用粒状物9によれば、第1の一対の辺に対応する表面と、第2の一対の辺に対応する表面との各特性を互いに異ならせ易くできる。結果として、加工用粒状物9の多機能化を図り易くできる。
 また加工用粒状物9は、平行度が0mmより大きく0.20mm以下の範囲の値に設定されている前記他方の面を有する。このような形状の加工用粒状物9によれば、前記他方の面の平行度を上記値に設定することで、当該面に一定範囲で適度な加工性を付与できる。結果として、加工用粒状物9を用いて加工対象物17を加工する際の加工性を調節し易くできる。
 また、本実施形態に係る加工用粒状物9の製造方法は、第1ステップと第2ステップとを有し、溶融材料がポリ乳酸及びセルロースエステルのうちの少なくともいずれかを含むことにより、加工用粒状物9に生分解性を付与できる。このため、環境下において、加工用粒状物9を分解でき、加工用粒状物9の環境に与える影響を低減できる。
 また加工用粒状物9が、複数の角を有すると共に、最大粒径が0.18mm以上3.35mm以下の範囲の値に設定されていることにより、加工用粒状物9の粒径を比較的小さくできると共に、加工用粒状物9に微小な角部を形成できる。これにより、例えば、限られたスペースで、加工用粒状物9を加工対象物17の表面に押圧することで、少ない外力で加工対象物17を加工し易くすることができる。
 また、このような加工用粒状物9は、溶融材料を押出ダイ8から押し出すことでライン状樹脂材料15を押出成形し、このライン状樹脂材料15を押出孔8aからの押出方向に垂直な方向に切断することで、効率よく製造できる。
 また第1ステップにおいて、隣接する頂点P同士が曲線分Lによりそれぞれ結ばれてなる形状に形成された押出孔8aから溶融材料を押し出すので、押出孔8aから押し出した後のライン状樹脂材料15がスウェル現象により膨張する膨張分を見込んでライン状樹脂材料15の断面形状を成形できる。このため、目的の形状を有する加工用粒状物を9形成し易くすることができる。
 また、上記のように設定された開口周縁の押出孔8aによりライン状樹脂材料15を押出成形することで、ライン状樹脂材料15を押出孔からの押出方向に垂直な方向に切断するだけで、比較的粒径の小さい加工用粒状物9が得られる。よって例えば、ライン状樹脂材料を粉砕・分級する工程を有する製造方法に比べて、加工用粒状物9の収率を大幅に向上できると共に、製造工程を簡素化して生産コストの低減を図れる。
 また第1ステップでは、開口周縁が、直線距離D1が0.18mm以上4.30mm以下の範囲の値に設定された形状の押出孔8aから溶融材料を押し出すことにより、第2ステップにおいて、多角形状の複数の面9aを有する多面体状に形成されると共に、各々の辺Qの辺長が、0.18mm以上3.35mm以下の範囲の値に設定された加工用粒状物9を得る。
 これにより、多角形状の複数の面9aを有する多面体状に形成されると共に、各々の辺Qの辺長が0.18mm以上3.35mm以下の範囲の値に設定された加工用粒状物9が得られるため、加工用粒状物9の表面に多くの角を設けることができると共に、多面体の各面9aの周縁に相当する部分にも加工性を付与できるので、高い加工性を有する加工用粒状物9を構成できる。
 また第1ステップでは、隣接する頂点P同士が曲線分Lによりそれぞれ結ばれてなる形状の開口周縁の押出孔8aから溶融材料を押し出す。これにより、押出孔8aから押し出した後のライン状樹脂材料15がスウェル現象により膨張する膨張分を見込んで、ライン状樹脂材料15の断面形状を成形できる。このため、目的の形状を有する加工用粒状物9を形成し易くすることができる。
 また第1ステップでは、最大距離D2が、押出ダイ8の最大内径の0%よりも大きく且つ25%以下の範囲の値に設定された開口周縁の押出孔8aから溶融材料を押し出す。このように周縁形状が形成された押出孔8aから溶融材料を押し出すことで、比較的粒径が小さい加工用粒状物9を製造できると共に、押出孔8aから押し出した後のライン状樹脂材料15がスウェル現象により膨張する膨張分を見込んで、ライン状樹脂材料15の断面形状を成形できる。このため、目的の形状を有する加工用粒状物9を更に形成し易くすることができる。
 また第1ステップでは、3以上6以下の範囲の数の頂点Pを有する形状に形成された開口周縁の押出孔8aから溶融材料を押し出す。この方法によれば、上記のように周縁形状が形成された押出孔8aから溶融材料を押し出すことで、三角形、四角形、五角形、及び六角形のうちいずれかの形状の面9aを有することにより、各面9aの周縁に相当する部分に高い加工性を有する加工用粒状物9を効率よく製造できる。
 [加工用粒状物の添加剤]
 加工用粒状物9は、ポリ乳酸及びセルロースエステルのうちの少なくともいずれかの他、所定の添加剤を含んでいてもよい。この添加剤としては、例えば可塑剤、熱安定剤、発泡核剤、発泡補助剤等が挙げられる。ここで、ポリ乳酸は熱融解性を有するため、ポリ乳酸を用いる場合には可塑剤は不要である。セルロースエステルは熱融解性がないため、セルロースエステルを用いる場合には可塑剤を用いることが望ましい。
 可塑剤については、"Handbook of Plasticizers", Ed.Wypych,George,ChemTec Publishing(2004) に詳細が例示されている。可塑剤の例としては、ジメチルフタレート、ジエチルフタレート、ジブチルフタレート、ジオクチルフタレート、ジイソノニルフタレート、ブチルベンジルフタレート、ブチルフタリルブチルグリコレート、トリス(2-エチルヘキシル)トリメリテート、トリエチルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、p-フェニレンビス(ジフェニルホスフェート)、及びその他のホスフェート誘導体、ジイソブチルアジペート、ビス(2-エチルヘキシル)アジペート、クエン酸トリエチル、クエン酸アセチルトリエチル、クエン酸を含む可塑剤(例えば、Citroflex(登録商標))、モノアセチン、ジアセチン、トリアセチン、トリプロピオニン、トリブチリン、スクロースアセテートイソブチレート、グルコースペンタプロピオネート、トリエチレングリコール-2-エチルヘキサノエート、ポリエチレングリコール、ポリプロピレングリコール、ポリプロピレングリコールジベンゾエート、ポリエチレングルタレート、ポリエチレンサクシネート、ポリアルキルグリコシド、2,2,4-トリメチル-1,3-ペンタンジオールイソブチレート、ジイソブチレート、フタル酸共重合体、1,3-ブタンジオール、脂肪族エポキシドで末端封鎖された1,4-ブタンジオール、ビス(2-エチルへキシル)アジペート、エポキシド化大豆油、及びこれらの混合物からなる群から選択されるものが挙げられる。
 また可塑剤としては、グリセリンエステル系可塑剤を用いることができる。このグリセリンエステル系可塑剤としては、グリセリンの低級脂肪酸エステル、言い換えれば、グリセリンと炭素数2~4の脂肪酸とのエステル化合物を用いることができる。炭素数2の脂肪酸は酢酸であり、炭素数3の脂肪酸はプロピオン酸であり、炭素数4の脂肪酸はブチル酸である。グリセリンエステル系可塑剤は、グリセリンの3個のヒドロキシル基すべてが同じ脂肪酸によってエステル化されているものでもよく、2個のヒドロキシル基が同じ脂肪酸によってエステル化されているものでもよく、グリセリンの3個のヒドロキシル基すべてが異なる脂肪酸によってエステル化されているものでもよい。
 グリセリンエステル系可塑剤は、無毒性であり、容易に生分解されるため環境への負荷が小さい。また、グリセリンエステル系可塑剤をセルロースアセテートに添加することにより、得られる熱成形用セルローストリアセテート組成物のガラス転移温度を低下させることができる。このため、原料に対して優れた熱成形性を付与することもできる。
 上記脂肪酸が酢酸である場合、グリセリンエステル系可塑剤として、グリセリンの3個のヒドロキシル基が酢酸によってエステル化されているトリアセチン、及び2個のヒドロキシル基が酢酸によってエステル化されているジアセチン等が挙げられる。
 上記グリセリンエステル系可塑剤の中でも、特に、グリセリンの3個のヒドロキシル基すべてが酢酸によってエステル化(言い換えればアセチル化)されているトリアセチン(グリセロールトリスアセタート)が好ましい。トリアセチンは、人が摂取しても安全と認められる成分であり、容易に生分解されるため環境への負荷が小さい。また、トリアセチンをセルロースアセテートに添加することにより得られる熱成形用セルロースアセテート組成物は、セルロースアセテートを単体で用いた場合よりも生分解性が向上する。更に、トリアセチンをセルロースアセテートに添加することにより、セルロースアセテートのガラス転移温度を効率よく低下させることができる。このため、原料に対して優れた熱成形性を付与することができる。
 なおトリアセチンは、化学構造的に純粋であり、純度が高いものがよい。また、例えばトリアセチンを80重量%以上又は90重量%以上含み、残部としてモノアセチン及び/又はジアセチンが含まれている可塑剤が用いられてもよい。
 グリセリンエステル系可塑剤の添加量としては、セルロースアセテート及びグリセリンエステル系可塑剤の合計量100重量部に対し、例えば、2重量部以上40重量部以下の範囲の値であることが好ましく、5重量部以上40重量部以下の範囲の値であることがより好ましく、10重量部以上30重量部以下の範囲の値であることが更に好ましく、10重量部以上25重量部以下の範囲の値であることが最も好ましい。例えば、グリセリンエステル系可塑剤の添加量が2重量部未満であると、セルロースアセテートに熱成形性を十分に付与できず、40重量部を超えると、グリセリンエステル系可塑剤がブリードアウトする可能性が高くなるおそれがある。
 [加工用粒状物の原料の調整]
 加工用粒状物9の原料は、一例として、アセチル置換度が1.4以上1.8以下のセルロースアセテートと、グリセリンエステル系可塑剤とを配合することにより得られる。この原料の製造方法としては、例えば、セルロースアセテートに可塑剤、特にはグリセリンエステル系可塑剤を直接添加する方法が挙げられる。
 セルロースアセテートにグリセリンエステル系可塑剤を直接添加する場合、セルロースアセテートとグリセリンエステル系可塑剤とを混合することが好ましい。この混合は、遊星ミル、ヘンシェルミキサー、振動ミル、ボールミルなどの混合機により行うことができる。短時間で均質な混合・分散が可能であるため、ヘンシェルミキサーを用いることが好ましい。また、混合の程度は特に限定されないが、例えば、ヘンシェルミキサーを用いる場合、混合時間を10分以上1時間以下の程度に設定することが好ましい。
 セルロースアセテートとグリセリンエステル系可塑剤とを混合した後、混合物を乾燥する。この乾燥方法としては、例えば、50℃以上105℃以下の温度に設定し、混合物を1時間以上48時間以下の間静置して乾燥する方法が挙げられる。
 上記混合は、遊星ミル、ヘンシェルミキサー、振動ミル、及びボールミルなどの混合機により行うことができる。加工用粒状物9の製造が小スケールであれば、フードプロセッサー等を用いて混合物を混合してもよい。また、混合の条件は特に限定されるものではないが、撹拌しながら、可塑剤を含む分散液又は溶液を、セルロースアセテートに少量ずつ添加することが好ましい。例えば、100重量部のセルロースアセテートに対して、可塑剤を含む分散液又は溶液を、2重量部/min~20重量部/minで添加してもよい。
 セルロースアセテートの置換度は、例えば、2.2以上2.7以下の範囲の値に設定できる。セルロースアセテートの置換度は、例えば、2.3以上2.6以下の範囲が好ましく、2.4以上2.6以下の範囲の値が特に好ましい。このような値に置換度が設定されたセルロースジアセテートは、トリアセチンにより容易に可塑化される。このため、例えば、セルロースジアセテートとトリアセチンを含む原料を用いることで、加工用粒状物9を製造することが好ましい。以下、その他の実施形態について、第1実施形態との差異を中心に説明する。
 (第2実施形態)
 図6は、第2実施形態に係る押出ダイ18の正面図である。図6に示すように、押出ダイ18は、押出孔18aの頂点Pの数が6である点を除いて、押出ダイ8と同様の構成を有する。これにより押出孔18aは、略星形の周縁形状を有する。
 図7は、第2実施形態に係る加工用粒状物19の斜視図である。図7に示すように、溶融材料が押出孔18aから押し出されることで、加工用粒状物19は、平面視において六角形の面19aを有するように構成される。六角形状の面19aの輪郭を規定する各辺Qの長さ寸法(辺長)は、0.18mm以上3.35mm以下の範囲の値に設定されている。本実施形態の加工用粒状物19は、更に前記辺長が、0.18mm以上3.00mm未満の範囲の値に設定されている。
 (第3実施形態)
 図8は、第3実施形態に係る押出ダイ28の正面図である。図8に示すように、押出ダイ28は、押出孔28aの頂点Pの数が5である点を除いて、押出ダイ8と同様の構成を有する。これにより押出孔28aは、略星形の周縁形状を有する。
 図9は、第3実施形態に係る加工用粒状物29の斜視図である。図9に示すように、溶融材料が押出孔28aから押し出されることで、加工用粒状物29は、平面視において五角形の面29aを有するように構成される。五角形状の面29aの輪郭を規定する各辺Qの長さ寸法(辺長)は、0.18mm以上3.35mm以下の範囲の値に設定されている。本実施形態の加工用粒状物29は、更に前記辺長が、0.18mm以上3.00mm未満の範囲の値に設定されている。
 (第4実施形態)
 図10は、第4実施形態に係る押出ダイ38の正面図である。図10に示すように、押出ダイ38は、押出孔38aの頂点Pの数が3である点を除いて、押出ダイ8と同様の構成を有する。これにより押出孔38aは、略三角形の周縁形状を有する。
 図11は、第4実施形態に係る加工用粒状物39の斜視図である。図11に示すように、溶融材料が押出孔38aから押し出されることで、加工用粒状物39は、平面視において正三角形の面39aを有するように構成される。正三角形状の面39aの輪郭を規定する各辺Qの長さ寸法(辺長)は、0.18mm以上3.35mm以下の範囲の値に設定されている。本実施形態の加工用粒状物39は、更に前記辺長が、0.18mm以上3.00mm未満の範囲の値に設定されている。
 (第5実施形態)
 図12は、第5実施形態に係る押出ダイ48の正面図である。図12に示すように、押出ダイ38は、押出孔48aの開口周縁が円形状に形成されている。図13は、第5実施形態に係る加工用粒状物49の斜視図である。
 図13に示すように、加工用粒状物49は、円柱体状に形成されると共に、側面視における各々の辺Qの辺長が、0.18mm以上3.35mm以下の範囲の値に設定されている。本実施形態の加工用粒状物49は、更に前記辺長が、0.18mm以上3.00mm未満の範囲の値に設定されている。
 これにより、例えば、加工用粒状物49を加工対象物17の表面に押圧することで、少ない外力を加工用粒状物49に付与しながら加工対象物17を加工し易くすることができる。
 第5実施形態の第1ステップでは、直径が0.18mm以上4.30mm以下の範囲の値に設定された円形状の開口周縁の押出孔48aから溶融材料を押し出すことにより、第2ステップにおいて、円柱体状に形成されると共に、側面視における各々の辺Qの辺長が、0.18mm以上3.35mm以下の範囲の値に設定された加工用粒状物49を得る。また本実施形態の第2ステップでは、前記辺長が、更に0.18mm以上3.00mm未満の範囲の値に設定された加工用粒状物49を得る。
 上記方法によれば、円柱体状に形成されると共に、側面視における各々の辺Qの辺長が、0.18mm以上3.35mm以下の範囲の値に設定された加工用粒状物49が得られるため、加工用粒状物49の粒径を比較的小さくできると共に、加工用粒状物49の円柱体の端面と側面との間に相当する部分に微小な角部を形成できる。これにより、例えば、限られたスペースで加工用粒状物49を加工対象物17の表面に押圧することで、少ない外力で加工対象物17を加工し易くすることができる。
 また、このような加工用粒状物49は、溶融材料を押出ダイ38から押し出すことで断面が円形のライン状樹脂材料15を押出成形し、このライン状樹脂材料15を押出孔38aからの押出方向に垂直な方向に切断することで、効率よく製造できる。
 なお、第5実施形態の変形例として、第1ステップでは、長軸方向の直径が0.18mm以上4.30mm以下の範囲の値に設定された楕円形状の開口周縁の押出孔から溶融材料を押し出すことにより、第2ステップにおいて、楕円柱体状に形成されると共に、側面視における各々の辺Qの辺長が、0.18mm以上3.35mm以下の範囲の値に設定された加工用粒状物を得てもよい。
 (第6実施形態)
 図14は、第6実施形態に係る押出ダイ58の水平断面図である。図14に示すように、押出ダイ58は、水平方向に並設された複数の押出孔58aと、隣接する押出孔58a同士の間を仕切る複数の仕切部材59とを有する。押出孔58aの開口周縁は、例えば、第1~第5実施形態のいずれかの押出孔の開口周縁と同様の形状を有するが、これに限定されない。この構成によれば、複数のライン状樹脂材料15(ストランド樹脂材料)を一度に得ることができ、加工用粒状物の製造効率を大幅に向上できる。
 (確認試験)
 次に、確認試験について説明するが、本発明は、以下に示す各実施例に限定されるものではない。
 以下の方法により、実施例1~3の加工用粒状物9を作成した。
 [原料の調整]
 セルロースエステルとして、アセチル置換度2.45のセルロースアセテート((株)ダイセル製酢酸セルロース、極限粘度:84mPa・s)を用いた。このセルロースアセテートを、粒状のまま、105℃に設定した乾燥機にて1時間乾燥し、その後、デシケータにて室温(25℃)で1時間放冷した。
 その後、上記セルロースアセテートを80重量部(400g)ミキサーに投入して攪拌した。この攪拌中、ピペットを用いて、速度約15g/minで、可塑剤としてトリアセチンを20重量部(100g)ミキサーに添加してセルロースアセテートと混合した。この混合の際、トリアセチンの総量の半分をミキサーに投入した時点でミキサーを停止し、ミキサーの内壁、底壁、及び攪拌翼に付着した混合物を除去した。その後、残量のトリアセチンを上記速度でミキサーに添加して混合した。その後、ミキサーを停止し、ミキサーの内壁、底壁、及び攪拌翼に付着した混合物を除去し、再びミキサーを1分以上稼働させた。これにより混合物を得た。
 混合物をバットに入れ、80℃で2時間乾燥させた。その後、JIS Z 8801に準拠する試験用ふるい(目の開き:3.35mm)を用いて混合物中の塊のサイズを整え、原料を調整した。
 [加工用粒状物の製造]
 第1実施形態の押出成形機1(サーモフィッシャーサイエンティフィック(株)製「Process11」に押出ダイ8を装着したもの)を用い、第1及び第2ステップを行うことで、辺長の目標値が1.5mm(辺長が1.0mm以上1.7mm以下の範囲の値程度)の六面体の実施例1の加工用粒状物9を得た。この加工用粒状物9の製造に際し、押出成形機1を以下の通りに設定した。
 原料の内部空間4aへのフィード量:約7g/min
 原料の加熱温度:180℃以上220℃以下の範囲の値
 スクリュー5の回転速度:90rpm
 ライン状樹脂材料15の形成速度:2.5m/min
 押出ダイ8の押出孔8aの直線距離D1:1.5mm
 次に、得られた加工用粒状物9を、JIS Z 8801に準拠する試験用ふるい(目開き寸法が1.0mm,1.4mm,1.7mmに設定されたもの)を用いて分級した。これにより、最大粒径が1.0mm未満、1.0mm以上1.4mm未満、1.4mm以上1.7mm未満、1.7mm以上の実施例1の加工用粒状物9をそれぞれふるい分けた。
 また、押出成形機の設定を以下の通りに変更した以外は実施例1と同様の方法で、辺長の目標値が1.0mm(辺長が0.85mm以上1.18mm以下の範囲の値程度)の六面体の実施例2の加工用粒状物9を得た。
 ライン状樹脂材料15の形成速度:4m/min
 押出ダイ8の押出孔8aの直線距離D1:1.0mm
 次に、得られた加工用粒状物9を、JIS Z 8801に準拠する試験用ふるい(目開き寸法が0.85mm,1.18mm,1.4mmに設定されたもの)を用いて分級した。これにより、最大粒径が0.85mm未満、0.85mm以上1.18mm未満、1.18mm以上1.4mm未満、1.4mm以上の実施例2の加工用粒状物9をふるい分けた。
 また、押出成形機の設定を以下の通りに変更した以外は実施例1と同様の方法で、辺長の目標値が0.5mm(辺長が0.425mm以上0.6mm以下の範囲の値程度)の六面体の実施例2の加工用粒状物9を得た。
 ライン状樹脂材料15の形成速度:11m/min
 押出ダイ8の押出孔8aの直線距離D1:0.5mm
 次に、得られた加工用粒状物9を、JIS Z 8801に準拠する試験用ふるい(目開き寸法が0.425mm,0.5mm,0.6mmに設定されたもの)を用いて分級した。これにより、最大粒径が0.425mm未満、0.425mm以上0.5mm未満、0.5mm以上0.6mm未満、0.6mm以上の実施例2の加工用粒状物9をふるい分けた。
 次に、実施例1~3のそれぞれにおいて、最も収率の多い最大粒径の範囲の加工用粒状物9の表面を市販品のデジタルマイクロスコープ(株式会社ハイロックス製「RH-2000」)により観察した。このとき、実施例1~3の各々において、複数個の加工用粒状物9の1の面を平面視し、辺Qの辺長の最大値及び最小値と、隣接する辺Qの間の内角(以下、単に内角と称する。)の最大値及び最小値とを測定した。この試験結果を表1~3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1に示すように、実施例1では、辺長が1.4mm以上1.7mm未満の範囲の値に設定された加工用粒状物9の収率が99.61wt%であり、辺長目標値1.5mmに近い辺長を有する加工用粒状物9を非常に高い収率で製造できることが確認された。
 また表2に示すように、実施例2では、辺長が0.85mm以上1.18mm未満の範囲の値に設定された加工用粒状物9の収率が90.1wt%であり、辺長目標値1.0mmに近い辺長を有する加工用粒状物9を、実施例1に次ぐ高い収率で製造できることが確認された。
 また表3に示すように、実施例3では、辺長が0.425mm以上0.6mm未満の範囲の値に設定された加工用粒状物9の収率が84.3(35.9+48.4)wt%であり、辺長目標値0.5mmに近い辺長を有する加工用粒状物9を、実施例2に次ぐ高い収率で製造できることが確認された。
 また、実施例1~3のいずれにおいても、辺長のばらつきが抑制されていると共に、内角がほぼ90°に保持されており、加工用粒状物9が立方体状に精度よく形成されていることが分かった。また別の実験において、辺長を0.18mm以上3.35mm以下の範囲の値に設定し、所定のふるいを用いた以外は実施例1と同様に加工用粒状物9を製造した場合、実施例1~3と同様に高い収率で加工用粒状物9を製造できることが分かった。
 次に、実施例1~3と同様の製造方法に基づき、且つ、押出成形機1の押出孔8aの開口周縁形状等を調整することで、以下の実施例4~9の加工用粒状物9,49を準備した。
 具体的には、辺長目標値が0.5mmの立方体状の加工用粒状物9を実施例4として準備した。また、辺長目標値が0.5mmの円柱状の加工用粒状物49を実施例5として準備した。また、辺長目標値が1.0mmの立方体状の加工用粒状物9を実施例6として準備した。
 また、辺長目標値が1.0mmの円柱状の加工用粒状物49を実施例7として準備した。辺長目標値が1.5mmの立方体状の加工用粒状物9を実施例8として準備した。また、辺長目標値が1.5mmの円柱状の加工用粒状物49を実施例9として準備した。
 その後、市販品のデジタルマイクロスコープ(株式会社ハイロックス製「RH-2000」)を用い、実施例4~9の加工用粒状物9,49の3D画像を得た。ここで図15は、実施例4~9の加工用粒状物9,49の平行度を測定する際の様子を示す図である。図15では、一例として円柱状の加工用粒状物49を図示している。
 図15に示すように、ここでは、水平に配置されたステージ60の上面に加工用粒状物9,49を配置し、一方向(鉛直方向且つ押出孔8aからの押出方向)からマイクロスコープの対物レンズ61を加工用粒状物9,49に接近させ、当該一方向から見た加工用粒状物9,49を所定の焦点距離で撮影した。これにより、加工用粒状物9の3D画像を得た。この3D画像に基づき、加工用粒状物9,49の水平面に垂直な断面形状を算出した。
 図16は、実施例4の加工用粒状物9の断面形状を示す図である。図17は、実施例5の加工用粒状物49の断面形状を示す図である。図18は、実施例6の加工用粒状物9の断面形状を示す図である。図19は、実施例7の加工用粒状物49の断面形状を示す図である。図16~19に現れた断面形状では、焦点距離の都合上、加工用粒状物9,49のステージ60側の幅が実際よりも広くなっているが、平行度の算出は問題なく行うことができる。
 図16~19に示すように、実施例4~7の加工用粒状物9のいずれも、一方向に離隔して並ぶ一対の面を有し、この一対の面のうち、一方の面に基づく基準平面に対する他方の面(図16~19では上面)の平行度が、0mmより大きく0.20mm以下の範囲の値に設定されていることが分かった。
 また、実施例8,9についても実施例4~7と同様の方法で加工用粒状物9,49の3D画像を撮影した。その結果、実施例8の加工用粒状物9の前記他方の面の平行度は、0.060mm以上0.085mm以下の範囲の値であった。また実施例9の加工用粒状物49の前記他方の面の平行度は、0.043mm以上0.196mm以下の範囲の値であった。これにより、実施例8,9の加工用粒状物9,49も、実施例4~7の加工用粒状物9,49と同様の平行度の面を有することが分かった。
 次に、実施例4~9の各々について、3D画像に基づいて加工用粒状物9,49の前記一方向から見た輪郭を示す合成画像を作成した。この合成画像に現れた加工用粒状物9,49の輪郭は、実施例4~9のいずれも矩形状であった。また、実施例4~9の加工用粒状物9,49のいずれも、一方向に垂直な第1方向に延び且つ第1方向に垂直な第2方向に離隔する第1の一対の辺と、第2方向に延び且つ前記第1方向に離隔する第2の一対の辺を含む輪郭を有していた。また、第1の一対の辺の平行度が、0mm以上0.50mm以下の範囲の値に設定され、第2の一対の辺の平行度が、0mm以上0.10mm以下の範囲の値に設定されていることが分かった。
 本発明は上記各実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、その構成及び方法を変更、追加、又は削除できる。上記各実施形態は、互いに任意に組み合わせてもよく、例えば1つの実施形態中の一部の構成又は方法を他の実施形態に適用してもよい。
 以上のように本発明によれば、粒径が比較的小さい加工用粒状物を製造する場合において、環境に与える影響が低く、加工対象物の加工性に優れる加工用粒状物を高い製造効率で製造できる優れた効果を有する。従って、この効果の意義を発揮できる加工用粒状物、加工用粒状物を備える複合ユニット、及び加工用粒状物の製造方法として、広く適用すると有益である。
 L  押出孔の周縁の曲線分
 P  押出孔の周縁の頂点
 Q  加工用粒状物の辺
 V  仮想線
 8,18,28,38,48  押出ダイ
 8a,18a,28a,38a,48a  押出孔
 9,19,29,39,49  加工用粒状物
 9a,19a,29a,39a,49a  加工用粒状物の面
 10  複合ユニット
 11  容器
 15  ライン状樹脂材料
 17  加工対象物
 

Claims (21)

  1.  ポリ乳酸及びセルロースエステルのうちの少なくともいずれかを含み、複数の角を有すると共に、最大粒径が0.18mm以上3.35mm以下の範囲の値に設定されている、加工用粒状物。
  2.  多角形状の複数の面を有する多面体状に形成されると共に、各々の辺の辺長が、0.18mm以上3.35mm以下の範囲の値に設定されている、請求項1に記載の加工用粒状物。
  3.  前記複数の面は、平面視において、三角形、四角形、五角形、及び六角形のうちいずれかの形状の面を含む、請求項2に記載の加工用粒状物。
  4.  円柱体状に形成されると共に、側面視における各々の辺の辺長が、0.18mm以上3.35mm以下の範囲の値に設定されている、請求項1に記載の加工用粒状物。
  5.  前記辺長が、更に0.18mm以上3.00mm未満の範囲の値に設定されている、請求項2~4のいずれか1項に記載の加工用粒状物。
  6.  一方向から見て、前記一方向に垂直な第1方向に延び且つ前記第1方向に垂直な第2方向に離隔する一対の辺を含む輪郭を有し、
     前記一対の辺の平行度が、0mm以上0.50mm以下の範囲の値に設定されている、請求項1~5のいずれか1項に記載の加工用粒状物。
  7.  前記一対の辺は、第1の一対の辺であり、
     前記一方向から見て、前記第2方向に延び且つ前記第1方向に離隔する第2の一対の辺を更に含む輪郭を有し、
     前記第2の一対の辺の平行度が、0mm以上0.10mm以下の範囲の値に設定されている、請求項6に記載の加工用粒状物。
  8.  前記一方向に離隔して並ぶ一対の面を有し、
     前記一対の面のうち、一方の面に基づく基準平面に対する他方の面の平行度が、0mmより大きく0.20mm以下の範囲の値に設定されている、請求項6又は7に記載の加工用粒状物。
  9.  前記ポリ乳酸及び前記セルロースエステルのうちの少なくともいずれかを主成分として含み、前記主成分以外の有機成分及び無機成分の含有量が、5重量%未満の範囲の値に設定されている、請求項1~8のいずれか1項に記載の加工用粒状物。
  10.  請求項1~9のいずれか1項に記載の前記加工用粒状物と、
     前記加工用粒状物により加工される加工対象物と、
     前記加工用粒状物と前記加工対象物とを収容する柔軟な容器とを備え、
     前記容器に外部から外力を加えることで、前記容器内において、前記加工対象物が前記加工用粒状物により加工される、複合ユニット。
  11.  ポリ乳酸及びセルロースエステルのうちの少なくともいずれかを含む溶融材料を、最大内径が0.18mm以上4.30mm以下の範囲の値に設定された開口周縁の押出孔から押し出すことにより、ライン状樹脂材料を押出成形する第1ステップと、
     ライン状樹脂材料を前記押出孔からの押出方向に垂直な方向に切断することにより、複数の角を有すると共に、最大粒径が0.18mm以上3.35mm以下の範囲の値に設定された加工用粒状物を得る第2ステップとを有する、加工用粒状物の製造方法。
  12.  前記第1ステップでは、前記開口周縁が、複数の頂点を有し且つ隣接する前記頂点同士間の直線距離が0.18mm以上4.30mm以下の範囲の値に設定された形状の前記押出孔から溶融材料を押し出すことにより、前記第2ステップにおいて、多角形状の複数の面を有する多面体状に形成されると共に、各々の辺の辺長が、0.18mm以上3.35mm以下の範囲の値に設定された前記加工用粒状物を得る、請求項11に記載の加工用粒状物の製造方法。
  13.  前記第1ステップでは、隣接する前記頂点同士が、開口中心に向けて湾曲する曲線分によりそれぞれ結ばれてなる形状の前記開口周縁の前記押出孔から溶融材料を押し出す、請求項12に記載の加工用粒状物の製造方法。
  14.  前記第1ステップでは、前記押出孔の正面視において、前記曲線分と、前記隣接する頂点を通る仮想線との間の前記仮想線に垂直な方向の最大距離が、前記最大内径の0%よりも大きく且つ25%以下の範囲の値に設定された前記開口周縁の前記押出孔から溶融材料を押し出す、請求項13に記載の加工用粒状物の製造方法。
  15.  前記第1ステップでは、3以上6以下の範囲の数の前記頂点を有する形状に形成された前記開口周縁の前記押出孔から溶融材料を押し出す、請求項12~14のいずれか1項に記載の加工用粒状物の製造方法。
  16.  前記第1ステップでは、直径が0.18mm以上4.30mm以下の範囲の値に設定された円形状の前記開口周縁の前記押出孔から溶融材料を押し出すことにより、前記第2ステップにおいて、円柱体状に形成されると共に、側面視における各々の辺の辺長が、0.18mm以上3.35mm以下の範囲の値に設定された前記加工用粒状物を得る、請求項11に記載の加工用粒状物の製造方法。
  17.  前記第2ステップでは、前記辺長が、更に0.18mm以上3.00mm未満の範囲の値に設定された前記加工用粒状物を得る、請求項12及び16のいずれか1項に記載の加工用粒状物の製造方法。
  18.  前記第2ステップでは、前記ポリ乳酸及び前記セルロースエステルのうちの少なくともいずれかを主成分として含み、前記主成分以外の有機成分及び無機成分の含有量が、5重量%未満の範囲の値に設定された前記加工用粒状物を得る、請求項11~17のいずれか1項に記載の加工用粒状物の製造方法。
  19.  前記第2ステップでは、前記開口周縁からの押出方向から見て、前記押出方向に垂直な第1方向に延び且つ前記第1方向に垂直な第2方向に離隔する一対の辺を含む輪郭を有し、前記一対の辺の平行度が、0mm以上0.50mm以下の範囲の値に設定された前記加工用粒状物を得る、請求項11~18のいずれか1項に記載の加工用粒状物の製造方法。
  20.  前記第2ステップでは、前記一対の辺が第1の一対の辺であり、前記押出方向から見て、前記第2方向に延び且つ前記第1方向に離隔する第2の一対の辺を更に含む輪郭を有し、前記第2の一対の辺の平行度が、0mm以上0.10mm以下の範囲の値に設定された前記加工用粒状物を得る、請求項19に記載の加工用粒状物の製造方法。
  21.  前記第2ステップでは、前記一方向に離隔して並ぶ一対の面を有し、前記一対の面のうち、一方の面に基づく基準平面に対する他方の面の平行度が、0mmより大きく0.20mm以下の範囲の値に設定された前記加工用粒状物を得る、請求項19又は20に記載の加工用粒状物の製造方法。
PCT/JP2019/028083 2018-10-17 2019-07-17 加工用粒状物、加工用粒状物を備える複合ユニット、及び加工用粒状物の製造方法 WO2020079902A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19872441.1A EP3711901A4 (en) 2018-10-17 2019-07-17 TREATMENT PELLETS, COMPOUNDING UNIT EQUIPPED WITH TREATMENT PELLETS AND PROCESS FOR THE PRODUCTION OF TREATMENT PELLETS
JP2020529650A JP6997317B2 (ja) 2018-10-17 2019-07-17 加工用粒状物、加工用粒状物を備える複合ユニット、及び加工用粒状物の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018195910 2018-10-17
JP2018-195910 2018-10-17

Publications (1)

Publication Number Publication Date
WO2020079902A1 true WO2020079902A1 (ja) 2020-04-23

Family

ID=70283855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028083 WO2020079902A1 (ja) 2018-10-17 2019-07-17 加工用粒状物、加工用粒状物を備える複合ユニット、及び加工用粒状物の製造方法

Country Status (3)

Country Link
EP (1) EP3711901A4 (ja)
JP (1) JP6997317B2 (ja)
WO (1) WO2020079902A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021251458A1 (ja) * 2020-06-10 2021-12-16 株式会社ダイセル スクラブ剤、スクラブ剤含有組成物、及びスクラブ剤の製造方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4726456U (ja) * 1971-04-15 1972-11-25
JPH09225810A (ja) * 1996-02-15 1997-09-02 Shimadzu Corp 自然分解性の研磨用樹脂粒子
WO1998040434A1 (en) * 1997-03-14 1998-09-17 Board Of Regents Of University Of Nebraska Degradable composite polymer and method of making such composite polymer
JP2002018727A (ja) * 2000-07-10 2002-01-22 Kenko Sangyo Kk 研磨用複合体
JP2002129145A (ja) 2000-10-24 2002-05-09 Unitica Fibers Ltd 研磨材
JP2008528310A (ja) 2005-01-28 2008-07-31 サンーゴバン アブレイシブズ,インコーポレイティド 研磨用品及びその製造方法
JP2009160717A (ja) * 2008-01-10 2009-07-23 Unitica Fibers Ltd 研磨材
JP2009291870A (ja) * 2008-06-04 2009-12-17 Unitica Fibers Ltd 研磨材
US20120168979A1 (en) * 2010-12-30 2012-07-05 Saint-Gobain Ceramics & Plastics, Inc. Method of forming a shaped abrasive particle
JP2015508444A (ja) * 2012-01-10 2015-03-19 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド 複雑形状を有する研磨粒子およびその形成方法
KR20170100528A (ko) 2014-11-24 2017-09-04 엔바이로플라츠 인터내셔널 홀딩스 리미티드 콘크리트용 압출된 플라스틱 골재

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4726456U (ja) * 1971-04-15 1972-11-25
JPH09225810A (ja) * 1996-02-15 1997-09-02 Shimadzu Corp 自然分解性の研磨用樹脂粒子
WO1998040434A1 (en) * 1997-03-14 1998-09-17 Board Of Regents Of University Of Nebraska Degradable composite polymer and method of making such composite polymer
JP2002018727A (ja) * 2000-07-10 2002-01-22 Kenko Sangyo Kk 研磨用複合体
JP2002129145A (ja) 2000-10-24 2002-05-09 Unitica Fibers Ltd 研磨材
JP2008528310A (ja) 2005-01-28 2008-07-31 サンーゴバン アブレイシブズ,インコーポレイティド 研磨用品及びその製造方法
JP2009160717A (ja) * 2008-01-10 2009-07-23 Unitica Fibers Ltd 研磨材
JP2009291870A (ja) * 2008-06-04 2009-12-17 Unitica Fibers Ltd 研磨材
US20120168979A1 (en) * 2010-12-30 2012-07-05 Saint-Gobain Ceramics & Plastics, Inc. Method of forming a shaped abrasive particle
JP2015508444A (ja) * 2012-01-10 2015-03-19 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド 複雑形状を有する研磨粒子およびその形成方法
KR20170100528A (ko) 2014-11-24 2017-09-04 엔바이로플라츠 인터내셔널 홀딩스 리미티드 콘크리트용 압출된 플라스틱 골재

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Handbook of Plasticizers", 2004, CHEMTEC PUBLISHING
See also references of EP3711901A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021251458A1 (ja) * 2020-06-10 2021-12-16 株式会社ダイセル スクラブ剤、スクラブ剤含有組成物、及びスクラブ剤の製造方法
JP2021195307A (ja) * 2020-06-10 2021-12-27 株式会社ダイセル スクラブ剤、スクラブ剤含有組成物、及びスクラブ剤の製造方法

Also Published As

Publication number Publication date
JP6997317B2 (ja) 2022-01-17
EP3711901A4 (en) 2021-11-17
EP3711901A1 (en) 2020-09-23
JPWO2020079902A1 (ja) 2021-02-15

Similar Documents

Publication Publication Date Title
EP2694041B1 (en) Process for producing cellulose derivatives of high bulk density, good flowability and improved dispersibility in cold water
JP6063605B1 (ja) セルロースアセテート粉体およびセルロースアセテート粉体の製造方法
WO2020079902A1 (ja) 加工用粒状物、加工用粒状物を備える複合ユニット、及び加工用粒状物の製造方法
JPH05201899A (ja) 溶融共晶化されたソルビトール/キシリトール、それよりなる摂取可能な組成物及び溶融共晶化されたソルビトール/キシリトールの製造方法
JP2017052961A (ja) セルロースアセテート粉体およびセルロースアセテート粉体の製造方法
AU648704B2 (en) Method of extruding starch under low moisture conditions using feed starch having coarse particle size
JP2022519531A (ja) 澱粉混合物の調製方法
WO2021251458A1 (ja) スクラブ剤、スクラブ剤含有組成物、及びスクラブ剤の製造方法
CN108485218A (zh) 果壳粉增强聚乳酸丝材及其制备方法和3d打印
KR20180134375A (ko) 용해된 기능화제를 사용하여 알칼리 금속 카보네이트, 바이카보네이트 및 세스퀴카보네이트 제형을 제조하기 위한 압출 방법
CN109082088A (zh) 一种生物降解覆盖地膜及其制备方法
JP6133384B2 (ja) 寒天乾燥物、及びその製造方法
WO2017163555A1 (ja) 小麦粉組成物の製造方法
JP3166102B2 (ja) マルチトール含蜜結晶
EP3907054A1 (en) Method of production thermoplastic starch, and thermoplastic starch so produced
Gamero-Barraza et al. Effect of extrusion processing on cottonseed protein and corn flour interactions through molecular dynamics simulation
CN108813557B (zh) 一种α淀粉-聚甘油酯复合乳化剂及其制备方法
JPS6244141A (ja) 小麦粉の熟成促進法
US2576910A (en) Process for the gelatinization of cellulose acetate
JPH03247435A (ja) 軟質塩ビ製成形品の製法
WO2002040011A1 (fr) Fabrication de medicaments en granules renfermant des acides amines ramifies
JP2007277103A (ja) 湿式造粒法
JPWO2017069144A1 (ja) 被覆膨化菓子の製造方法
JPH06292518A (ja) あゆ用飼料の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020529650

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19872441

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019872441

Country of ref document: EP

Effective date: 20200616

NENP Non-entry into the national phase

Ref country code: DE